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Abstract
The building sector consumes 75%ofUS electricity, offering substantial energy, cost, andCO2

emissions savings potential. New technologies enable buildings toflexiblymanage electric loads across
different times of day and season in support of a low-cost, low-carbon electric grid. Assessing the value
of such technologies requires an understanding of building electric load variability at a higher
temporal resolution than is demonstrated in previous studies ofUS building efficiency potential.We
adapt Scout, an open-accessmodel ofUS building energy use, to characterize sub-annual variations in
baseline building electricity use, costs, and emissions at the national scale.We apply this baseline in
time-sensitive analyses of the energy, cost, andCO2 emissions savings potential of various degrees of
energy efficiency andflexibility, finding that efficiency continues to have strong value in a time-
sensitive assessment frameworkwhile the value offlexibility depends on assumed electricity rates,
measuremagnitude and duration, and the amount of savings already captured by efficiency.

1. Introduction

Residential and commercial buildings consumed 75%of
US electricity in 2018 and are expected to drive nearly
70% of projected growth in US electricity demand
through 2040 [1]. Buildings thus offer large potential
savings in energy, operating costs, andCO2 emissions for
the US electricity sector. Historically, national potential
assessments of building efficiency have focused on
estimating the annual energy savings delivered by policy
instruments such as building codes and standards,
equipment labeling, and technology research and devel-
opment programs [2], with associated estimates of the
economic value of energy efficiency reported on an
annual basis, as well [3–9]. Such annual potential
assessments fundamentally assume that the operational
impacts of efficient building technologies remain static
across all hours of the day, days of theweek, and seasons.

Advances in building technologies enable buildings
to play a more active role in managing hourly electric
loads to support a low-cost, modernized electric grid

[10, 11]. Smart controls and connectivity give buildings
the ability to respond to grid signals and reduce or shift
electricity consumption at certain times of day. These
reductions and shifts may be achievable while providing
comparable levels of core building services such as com-
fort to occupants, though service level impacts are highly
dependent on building envelope and other factors such
as occupant and operator preferences [12]. In this paper,
we refer to these smart, connected responses as the
energy flexibility of a building, which the International
Energy Agency defines as ‘the ability to manage its
demand and generation according to local climate con-
ditions, user needs and energy network requirements’
[13]. New forms of energy efficiency and flexibility tech-
nologies that provide grid services through load shed-
ding and shifting may be an effective option to avoid
electric system costs, such as capital costs for new power
generation, operation andmaintenance costs for existing
generation, and capital costs for transmission and dis-
tribution upgrades [14–16]. Energy flexible buildings
may also support increased penetrations of renewable
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energy by reducing the risk of renewable power over-
generation and curtailment, thus increasing its cost-
effectiveness [17].

Because the cost of supplying electricity varies
based on time of day and season [18], grid-focused
valuations of building energy efficiency and flexibility
must accordingly be assessed at a high temporal reso-
lution. Existing national-scale energy modeling tools
have limited ability to characterize the variations in
building electricity use across sub-annual time inter-
vals. For example, while the ElectricityMarketModule
of the US Energy Information Administration’s (EIA)
National Energy Modeling System (NEMS) [19] yields
hourly estimates of total US electricity demand, these
estimates are not disaggregated to the building sector
and its electric end uses, for which NEMS only yields
annual estimates.

Moreover, the absence of a consistent framework
for assessing the impacts of both energy efficiency and
flexibility measures on baseline building electric loads
makes it challenging to develop effective strategies for
deploying these measures in tandem. Joint assess-
ments of efficiency and flexibility measures are largely
absent from the literature on national and regional
energy demand, despite the need to understand poten-
tial trade-offs and synergies between the two approa-
ches [13]. Recent work places a strong focus on
quantifying the flexible potential of buildings at an
aggregate level without directly addressing the role of
efficiency within the proposed methodologies
[20–22]. Studies that do examine both energy effi-
ciency and flexibility either rely on outdated baseline
datasets and proprietary forecasts, place a limited
focus on peak demand impacts [23], or otherwise
afford only qualitative descriptions of the relative
impacts of efficiency and flexibility on electricity
demand, their possible interactions, and related inte-
gration opportunities [24–26].

To address these gaps and limitations, we develop
a new basis for quantitatively assessing the time-vary-
ing impacts of energy efficiency and flexibility on US
building energy use, energy costs, and CO2 emissions.
We map EIA projections of annual baseline building
electricity use, cost, and emissions to a sub-annual
basis, yielding estimates of hourly, seasonal, and regio-
nal variations in building electricity use that support
time-sensitive valuation of energy efficiency and flex-
ibility impacts at the national scale. We include an
illustrative use of this updated baseline for the case of
residential cooling to demonstrate how conventional
energy efficiency measures compare to dynamic flex-
ibility measures in terms of their electricity, cost, and
emissions savings benefits inUS buildings.

To the authors’ knowledge, this work is the first to
develop a national baseline for time-sensitive valua-
tion of energy efficiency and flexibility in the US build-
ing sector. Our analysis framework and results can be
used to demonstrate how next-generation building
technologies that dynamically reshape energy loads

across the day compare to traditional, static efficiency
measures in terms of total energy, cost, and emissions
savings potential. In this way, we aim to develop quan-
titative insights that can inform the emerging debate
surrounding demand-side flexibility from buildings as
part of energy policymaking.

2.Methods

Hourly estimates of US building energy use, operating
costs, and CO2 emissions are generated using Scout,
v0.4.1 (scout.energy.gov), an open-source software
program4 developed by the US Department of Energy
[27]. Scout estimates the national energy use, CO2

emissions, and operating cost savings potential of
emerging building energy conservation measures
(ECMs) across a long time horizon (2015–2050);
savings can be explored under multiple technology
adoption cases nationally or for a subset of climate
zones.

Given that Scout’s analysis approach has been
described in detail elsewhere [28], we focus on describ-
ing the modifications we made to this approach to
enable time-sensitive assessments (see appendix B
for an overview of Scout’s analysis approach and base-
line data available online at stacks.iop.org/ERL/14/
124012/mmedia). Specifically, we use typical daily
energy load, price, and emissions shapes for each sea-
son and Scout climate region to re-apportion Scout’s
baseline annual energy, cost, and emissions totals,
which reflect EIA Annual Energy Outlook Reference
Case projections [29], across all hours of a year.

Hourly energy load shapes are drawn from the
Electric Power Research Institute (EPRI) End Use
Load Shapes Library v5.0 [30]. Average hourly energy
loads (kW) are normalized by annual electric demand
across all hours of a certain day type in peak (May–
September) and off-peak (October–April) seasons.
Hourly energy loads are also broken out by pre-2004
North American Electric Reliability Corporation
(NERC) region [31], facility type (residential or com-
mercial), and energy end use (e.g. lighting, cooling,
heating, etc). A selection of the load shapes used is
plotted in appendix B (figure B1).

Hourly electricity price shapes correspond to
active time-of-use (TOU) rates in the US Utility Rate
Database (URDB) [32]. Hourly TOU rates are broken
out by customer type (residential, commercial, indus-
trial), month of the year, day type (weekday, weekend),
and US Energy Information Administration (EIA) uti-
lity code5. A selection of the price shapes used is plot-
ted in appendix B (figure B2).

Finally, hourly marginal CO2 emissions factors are
drawn from a previous analysis of these factors for the

4
Scout’s source code is publicly-available: https://github.com/

trynthink/scout.
5
Only the residential and commercial TOU rates were used for this

study.
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US electricity system [33]. Emissions factors are broken
out by post-2011 NERC region [31] and by three
seasons, summer (May–September), winter (December–
February), and intermediate (March–April; October–
November). The full set of marginal emissions shapes
used are plotted in appendixB (figureB3).

To develop sub-annual estimates of US building
energy use, energy cost, and CO2 emissions, these
hourly energy load shapes, price shapes, and emissions
factors are translated to a common temporal and spa-
tial resolution and applied to Scout’s default baseline
data for the sub-annual time segment(s) of interest.

First, a common set of three seasons is established
across the datasets: summer (May–September), winter
(December–February), and intermediate (March–
April; October–November). These seasons match
those used in the marginal emissions factor data,
requiring modification to the EPRI and URDB
datasets6.

Given these common seasonal definitions, hourly
energy load, electricity price, and CO2 emissions esti-
mates are mapped to the annual timescale reflected in
Scout’s baseline data. For energy loads, we estimate the
fraction of annual load, r b u d h, , , ,

ldF , for each combina-
tion of pre-2004 NERC region r, building type b, end
use u, season s, day type d, and hour h:7

L

L
, 1r b u s d h

r b u s d h
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s d h r b u s d h
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where Lr b u s d h, , , , , is the raw hourly load intensity from
the EPRI database for pre-2004 NERC region r,
building type b, end use u, season s, day type d, and
hour h;D and S are the total sets of day types (weekday,
weekend) and seasons (summer, winter, intermedi-
ate); and s d,

ldg represents the total number of days per
year that fall into day type d and season type s, further
defined as:

N
N
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365

, 2s d dw
ds

,
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where the constants 52.1429 and 365 are the number
of weeks and days per year, respectively, Ndw is the
number of each day type per week (5 for weekdays, 2
for weekends), and Nds is the number of days that fall
under each season (153 in summer, 90 in winter, and
122 in the intermediate seasons).

For TOU electricity prices, we first assess the med-
ian and 5th/95th percentile price shapes for a given
state st, building type b, season s, and day type d combi-
nation, where the ratio of the maximum to minimum
hourly electricity price was used to calculate

percentiles for each combination. Electricity price
shapes for each individual utility in the URDB are
mapped to a US state by finding the state that is asso-
ciated with the utility’s code in EIA form 861 [34].
Median and 5th/95th percentile electricity price
shapes are then normalized by the average annual elec-
tricity price, yielding hourly electricity price inten-
sities, st b s d h, , , ,

prF , for a given combination of state st,
building type b, season s, day type d, and hour h:8
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where Pst b s d h, , , , is the hourly electricity price from the
URDB database for state st, building type b, season s,
day type d, and hour h, and the parenthesized term
represents the average electricity price across all
72 hours covered by our data for a given region and
building type (3 seasons, 24 h per season). s d,

prg
represents the total number of days per year that fall
into day type d and season type s:

N
N

7
, 4s d

dw
ms,

prg = ( )

where the constant 7 is the number of days per week,
Ndw is the number of each day type per week, and Nms

is the number ofmonths in each season s.
For marginal emissions, hourly emissions factors

in each season s are similarly normalized by the aver-
agemarginal emissions factor across all hours and sea-
sons, yielding hourly marginal emissions intensities,

rn s h, ,
mefF , for a given combination of post-2011 NERC

region rn, season s, and hour h:9

E
E

72
, 5rn s h rn s h

s

S

h rn s h
, ,

mef
, ,

1 1

24
, ,

1

å å
F = = =

-⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ( )

where Ern s h, , is the hourly marginal emissions factor
[33] for post-2011 NERC region rn, season s, and hour
h, and the parenthetical term represents the average
marginal emissions factor across all 72 h covered by
our data for a given region.

The hourly annual load fractions ( r b u s d h, , , , ,
ldF ) and

hourly price and emissions intensities ( st b s d h, , , ,
prF and

rn s h, ,
mefF ) calculated above are defined by different regio-

nal breakdowns that must be mapped to the American
Institute of Architects (AIA) climate zone (z) break-
down used in Scout’s baseline data. These climate
zones, which are specified by number of cooling
degree days and heating degree days, have been used
historically by the US Department of Energy for its

6
In the case of the EPRI dataset, it was assumed that the off-peak

season (October–April) daily load shapes could be used to represent
hourly load intensities for both the winter and intermediate seasons.
In the case of the URDB dataset, which breaks down electricity
prices on a monthly basis, the average price shapes across all
applicablemonths for each of the three seasonswere used.
7
For example: the fraction (between 0 and 1) of total annual

residential cooling load in theMAIN region that occurs onweekdays
between 1 and 2 PMacross all summermonths.

8
For example: the electricity price onweekdays between 1 and 2 PM

for the summer season in commercial buildings in Texas
( 1st b s d h, , , ,

prF = represents an hourly price intensity that is equal to
the average electricity price).
9
For example: themarginal emissions intensity between 1 and 2 PM

for the summer season in the ERCOT region ( 1rn s h, ,
mefF = represents

an hourly marginal emissions intensity that is equal to the average
emissions intensity).
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Residential Energy Consumption Survey [35]. Pre-
2004 NERC region (load shapes), state (price shapes),
and post-2011 NERC region (marginal emissions fac-
tors) are mapped to AIA climate zone at the county
resolution, enabling a population-weighted determi-
nation of the portion of each region that falls into each
AIA climate zone.10

Finally, sub-annual baseline energy, emissions,
and cost estimates are calculated by applying the
hourly load fractions ( z b u s d h, , , , ,

ldF ), price intensities

( z b s d h, , , ,
prF ), and emissions intensities ( z s h, ,

mefF ) to Scout’s
annual baseline energy use, CO2 emissions, and oper-
ating cost estimates for the electric fuel ( f ), as defined
in (6)–(9):

E E , 6z b u t v y s d h z b u t v y z b u s d h, , , , , , , ,
base

, , , , ,
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, , , , ,
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where E C,z b u t v y s d h z b u t v y s d h, , , , , , , ,
base

, , , , , , , ,
base , and z b u t v y s d h, , , , , , , ,

basey
are the total primary energy use, CO2 emissions, and
operating costs attributable to a given baseline stock
segment (defined by climate zone z, building type b,
end use u, technology t, and building vintage v) in
projection year y, and to a given season s, day type d,
and hour h within that projection year.11 SSf yelec,= is
the site-to-source electricity factor in year y, which is
used to translate primary energy use estimates to the
site energy use estimates reported in our results,
Ez b u t v y s d h, , , , , , , ,

base st‐ . CIf y, and FCb y, are, respectively, the
CO2 emissions intensity for primary energy of baseline
fuel type f in year y and the primary energy cost for
building type b in year y. Calculations for site-to-
source conversion factors, emissions intensities, and
energy costs are further detailed in appendix B.

To calculate the time-sensitive impacts of different
energy efficiency andflexibilitymeasures in section 3.3,
we define representative Scout ECMs that modify the
sub-annual baselines based on percentage reductions
to yield new estimates for (6)–(9). These modifications
are specific to the type of measure applied (e.g. an
efficiency measure applies a percentage load reduction
evenly across all hours of the day, while a flexibility
measure modifies the baselines based on percentage
reductions during peak hours or percentage shifts from
peak hours to off-peak hours). Given the variability
of TOU rates in theURDB, we calculate savings poten-
tial for flexibility measures across a low, medium,
and high savings potential, which are characterized

by different measure durations and price intensities
from the URDB. Further details are provided in
appendix B.

3. Results

3.1.Hourly end-use electricity consumption, cost,
and emissions totals
We first characterize hourly variations in electricity
consumption by building end use in order to identify
building loads that are substantial contributors to
hourly variations in electricity demand, costs, and
emissions. We focus on the residential sector and the
year 2018 throughout the following analyses, but the
model framework we use can make projections for
both residential and commercial buildings for any year
from 2015–2050. We include hourly end-use varia-
tions in electricity consumption for commercial build-
ings in 2018, as well as results for the year 2030 for
both residential and commercial buildings, in
appendix A (figures A1–A3).

Figure 1 presents hourly end-use electricity, cost,
and emissions totals for residential buildings in 2018.
Figure 1(a) shows that electricity demand peaks from 5
to 6 PM, primarily driven by space cooling, which
accounts for over 37%of the total load (excludingmis-
cellaneous loads) during the peak hour. Minimum
demand occurs from 3 to 4 AM, when it is 1.7 times
lower than at peak. Space heating and water heating
are the largest contributors to demand during this
hour. Across the day, thermal end uses show the lar-
gest temporal variations, whereas other end uses are
comparatively flatter.

Figure 1(b) shows the total operating costs of elec-
tricity use across each hour, again disaggregated by
building end use. This figure shows two cost values for
each hour. The labeled totals above each stacked bar
represent the cost of each hour’s electricity demand
under TOU pricing, where the total cost is derived
using time-sensitive adjustment factors that weight
hourly electricity costs based on an analysis of all exist-
ing residential TOU rates from the URDB. Here, we
present cost totals using a rate shape that is the 50th
percentile of all TOU rates in terms of peak to off-peak
price ratio.

In addition to cost values based on the 50th per-
centile TOU rate structure, we also present hourly
costs using the average residential retail rate for elec-
tricity, whichwas $0.13/kWh in 2018 [40]. These costs
are represented by a dashed line infigure 1(b).

Estimating total costs under TOU pricing ampli-
fies the peak to off-peak ratio seen in figure 1(a), as
TOU rates increase during peak hours in order to
reflect the higher costs to utilities of supplying elec-
tricity during these hours. The total cost during the
peak hour is $7.5 billion, nearly three times higher
than during 3–4 AM. Space cooling again accounts for

10
The database used for this mapping is publicly available [36] and

draws from the US Census Bureau [37], the US Environmental
Protection Agency’s eGRID database [38], and data from the Pacific
Northwest National Laboratory used formapping climate regions to
counties [39].
11

For example: the total primary electricity use attributable to air
source heat pump operation in single family homes in northern
climates between 1 and 2 PMon summerweekdays in the year 2030.
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a substantial share of total costs, around 41% during
the peak hour.

Comparing the cost totals under TOUpricing with
costs totals under the average retail electricity price
shows that full adoption of TOU rates nationally
would increase costs by $8.3 billion between 2 and 8
PM. This represents a 26% increase in electricity costs
during the peak period and signals a significant
increase in the potential cost savings for measures that
reduce electricity use during these hours. Figure 1(b)
reveals an opportunity to save electricity costs by shift-
ing peak period electricity use to hours where costs
under TOU pricing are below the dashed line (12–8
AM; 9–11 PM).

Total hourly emissions from electricity consump-
tion are shown in figure 1(c). These totals are calcu-
lated by applying a marginal emissions scaling factor
to each hour’s electricity consumption total. The peak
to off-peak ratio in marginal emissions, which is
around 1.5, is lower than the ratios for either electricity
use or costs. This is because marginal power sector
emissions are, on average in the US across regions and
seasons, slightly higher during nighttime hours than
during peak hours. This trend likely occurs because
demand is low during nighttime and early-morning
hours and coal is more often on the margin. When
demand increases during morning and peak hours,
gas-fired generators are more often on the margin
because they have ramp rates that make them better
suited to supplying this demand [33].

3.2. Seasonal and regional variations for electric
space cooling
Given the large contributions of space cooling to
hourly electricity consumption patterns in the

residential sector, next we characterize how electric
space cooling and its resulting costs vary seasonally
and regionally across the US. We include results for
residential space heating in appendix A (figure A4).
We present results for seasonal and regional variations
in space cooling and heating for commercial buildings
there, as well (figures A5–A6).

For our analysis of seasonal variations, we split the
year into summer (May–September) and winter/
shoulder (October–April) seasons. Our regional ana-
lysis disaggregates national results to the five AIA cli-
mate zones as described in the Methods. The climate
zones are ordered numerically fromnorth to south.

As shown in figure 2(a), hourly summer electricity
consumption for space cooling during the peak hour
(5–6 PM) is five times larger than at its minimum
(6–7 AM). Cooling electricity use during peak is con-
centrated in the southern andmid-Atlantic states, with
CZ5 accounting for nearly 37% of demand and CZ3
and CZ4 accounting for an additional 44% during the
peak hour.

The hourly cost variations shown in figure 2(b)
show an even larger peak to off-peak ratio for space
cooling in summer (around 11 times higher during
peak). This substantial ramp in hourly cooling costs is
due to the alignment of high space cooling loads with
the highest TOU prices for electricity during the early
evening hours. The total costs for space cooling are
again concentrated in climate zones 3–5.

3.3. Time-sensitive impacts of efficiency and
flexibilitymeasures
The hourly baselines of US building electricity use
developed in figures 1 and 2 (and in figures A1–A6)
can be used to assess the benefits of conventional

Figure 1.Hourly end-use electricity, cost, and emissions totals for residential buildings in 2018. (a), Total hourly site electricity
consumption in terawatt hours (TWh). Each colored bar represents a single end use, and bar labels indicate the total usage during each
hour. (b), Total hourly operating costs in 2018 billionUSD. End-use and labeled cost totals represent costs under full adoption of
current TOU rates. The dashed line represents cost totals using a national average retail rate for electricity. (c), Total hourly emissions
from electricity generation inMtCO2.
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efficiency technologies alongside new flexible building
measures in terms of their electricity, cost, and
emissions savings potential. We conduct two analyses
to demonstrate how these baselines can be used to
estimate demand, cost, and emissions impact poten-
tials for residential space coolingmeasures.We choose
residential cooling as an example focus because this
end-use segment is both a substantial contributor to
US peak electricity demand as well as one that has clear
efficiency and flexibility potential [41], but the follow-
ing analyses could be applied to other major end uses,
seasons, and/or the commercial buildings sector.

In the first analysis, we show how national elec-
tricity demand and cost savings vary for hypothetical
efficiency and flexibility measures with different
magnitudes of impact on baseline residential
building operations. We include similar estimates of
savings potential for commercial cooling measures in
appendix A (figures A7 andA8).

In the second analysis, we demonstrate a more
specific application of the sub-annual baselines pre-
sented in sections 3.1 and 3.2 by considering example
standalone efficiency and flexibility measures with
building-level operational impacts that have been
reported in previous studies. This analysis is not inten-
ded to definitively assess the savings potentials for each
measure or for broader portfolios of efficiency and
flexibility measures but rather presents an illustrative
case of how such measures can be evaluated under a
time-sensitive framework. It therefore relies on pub-
lished point estimates of baseline load impacts, along
with simplifying assumptions about building stock
envelope efficiency levels, acceptable service thresh-
olds, and occupant behavior; we do not assess the

uncertainty surrounding our estimated demand, cost,
and emissions impacts given possible variations in
these influencing factors.

Figure 3 illustrates the way the three types of mea-
sures we consider can reshape residential space cool-
ing loads. Figure 3(a) shows a hypothetical static
cooling efficiency measure, such as an efficient resi-
dential HVAC system, that reduces electricity use for
space cooling evenly across all hours of the day. In
figure 3(b), we represent a measure that sheds elec-
tricity use during peak hours (shown in the figure as
2–8 PM). Such a measure would entail, for instance,
raising the thermostat cooling set point during this
time window. Finally, figure 3(c) shows a second flex-
ibility measure that shifts electricity consumption
from peak hours (2–8 PM) to the previous six hours,
for example by pre-cooling the building. Note that the
shift measure represented in figure 3(c) assumes no
net increase in daily energy load—e.g. reductions in
peak load are directly translated into load increases of
the samemagnitude during the previous six hours.

We estimate the savings potential of these mea-
sures across varying assumptions about themagnitude
of each measure’s impact on baseline building opera-
tions and underlying TOU rate structures. In figure 4,
we present seasonal peak energy savings (TWh) and
daily peak demand savings (GW) for the residential
sector in summer across different magnitudes of peak
reduction, corresponding to figure 3(b). Figure bars
show total summer season savings in peak energy use
while points indicate average daily peak demand sav-
ings, assuming a peak hour of 6 PM. Total seasonal
peak energy savings range from 8.2 to 41.1 TWh given
a measure that sheds 10%–50% of load during the

Figure 2.Hourly summer season (May–September) space cooling electricity and cost totals for residential buildings by climate zone in
2018. (a), Total hourlyfinal electricity consumption in terawatt hours (TWh). Each colored bar represents one of thefiveUS climate
zones, and bar labels indicate the total usage during each hour. (b), Total hourly operating costs in billion 2018USD. Labeled cost
totals represent costs under full adoption of TOU rates.
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hours of 2–8 PM. Daily peak demand savings range
from 9.2 to 46 GW, or around 1.2%–5.9% of non-
coincident peak summer demand in 2018 [42].

In figure 5, we compare the cost savings potential
of themeasures represented in figures 3(a)–(c). For the
static efficiencymeasure (figure 3(a)), we calculate cost
savings for a 10%, 20%, and 30% reduction in baseline
cooling load across all hours of the day. Both the shed
(corresponding to figure 3(b)) and shift (figure 3(c))
measures are presented as savings ranges based on the
magnitude of peak duration of reduction, assumed
reduction, and TOU rate structure. Consistent with
figure 3(c), the shift estimates in figure 5 reflect off-
peak load increases that match on-peak load decreases
—e.g. no additional daily energy penalty is assumed
for load shifting. The influence of such penalties on
total energy use outcomes is explored later in table 1.

The cost savings for the static efficiency measures
infigure 5 total $2.7, $5.4, and $8.2 billion for the 10%,
20%, and 30% load reductions, respectively. Achiev-
ing the cost savings of a 10% static efficiency measure
using a dynamicmeasure instead would require a 15%
peak reduction under the medium shed scenario

(median rate structure; 2–8 PM peak period) or a 40%
load shift under the high shift scenario (95th percentile
rate structure; shift from 12–8 PM to 4 AM–12 PM).
Similarly, the range in savings potential for a 25% shed
measure is $3.8–$5.2 billion, which is the same as a sta-
tic efficiency measure that saves 14%–19% of elec-
tricity usage across all hours.

Regarding our analysis of several specific efficiency
and flexibility measures, we present seasonal elec-
tricity, cost, and emissions savings potentials along
with daily peak demand reduction potentials for these
measures in table 1. The table includes the technology
measures considered along with references for their
estimated savings at the individual building level. It
also includes assumptions related to measure magni-
tude and duration as well as the TOU rate struc-
tures used.

For the efficiency measure, we model a seasonal
energy efficiency ratio 18 cooling system, which can
save up to 31% in cooling electricity consumption
[43]. For the shed measure, we consider a thermostat
set point adjustment, which could be either occupant-
led or via direct load control [47]. We assume a 15%

Figure 3. Load shapes representing hypothetical efficiency andflexibilitymeasures. (a), Static cooling efficiencymeasure that reduces
electricity use evenly across hours. (b), Dynamic cooling shedmeasure that reduces electricity use during peak hours (2–8 PM). (c),
Dynamic cooling shiftmeasure that shifts electricity use frompeak hours (2–8PM) to the previous six hours. Note that this
hypotheticalmeasure does not assume an energy penalty.

Figure 4. Summer season (May–September) peak energy and demand reduction potential for cooling in residential buildings at
differentmagnitudes of peak energy use (TWh) and demand (GW) reduction. Bars show seasonal peak energy reduction potential
during a peak period from2 to 8 PM. Points showdaily peak demand reduction potential during a peak hour of 6 PM.
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reduction of cooling electricity usage during these
hours [44, 45]. We base the shift measure on a pre-
vious study [46], which simulates a mechanical pre-
cooling measure in a home with thermal performance
typical of new construction. We assume a 65% reduc-
tion in cooling load during peak hours for this mea-
sure and a peak-to-penalty energy ratio of 3.19,
defined as the ratio of peak reduction to any additional
increase in off-peak electricity demand beyond that
attributable to pre-cooling. This off-peak load penalty
is added on top of the pre-cooling electricity increase,
which equals the magnitude of peak electricity reduc-
tion (see appendix B.1 for more details on how we
translate this measure from the underlying study).
Finally, we consider a combined efficiency and flex-
ibility measure, which is based on an efficient cooling
system with load shedding capabilities. For the more
detailed assumptions on which these measures are
based, especially those related to building envelope
and service level impacts, we refer readers to the stu-
dies cited.

The results show that a static cooling efficiency
measure delivers 57.3 TWh of site electricity savings,
29.8 GW of daily peak demand savings, $8.1 billion in
cost savings, and 26.4 MtCO2 in emission savings.
A flexible peak shedding measure, which reduces
usage 15% from 4 to 8 PM, yields 8.4 TWh, 14.4 GW,
$1.5 billion, and 3.8 MtCO2 in savings. A flexible load
shiftingmeasure, which shifts 65% of the 4–8 PM load
to the previous four hours via pre-cooling, leads to an
overall increase in electricity use, costs, and CO2 emis-
sions but results in much larger daily peak demand
savings (62.4 GW) than the other measures. A com-
bined smart-controlled, high-efficiency HVAC system
yields the largest electricity, cost, and emissions sav-
ings across these three metrics, totaling 63.1 TWh,
$9.2 billion, and 29.1MtCO2, though these savings are

less than the sum of the efficiency and peak shedding
measures when considered separately. This measure
also delivers 39.8 GW of daily peak demand savings,
the second highest magnitude of peak demand reduc-
tion after the pre-cooling shiftmeasure.

4.Discussion

Examined across the summer season, the total elec-
tricity, cost, and emissions savings impacts of the peak
shed and shift measures in table 1 appear less favorable
than those of installing more efficient cooling systems
in residential buildings. Indeed, efficiency measures
continue to have high value in a time-sensitive frame-
work, as efficient cooling also delivers substantial
reductions in peak demand. In the case of load shifting
through pre-cooling, a slight increase in seasonal
electricity use (around 6% of the total), costs, and
emissions is observed, reflecting the influence of the
off-peak energy penalty assumed for this measure.
Nevertheless, this measure also yields the highest daily
peak reductions, demonstrating how the benefits of
these dynamic measures are variable under a time-
sensitive framework depending on which time period
is chosen for measure assessment. Moreover, figure 5
shows that the cost implications of shed and shift
measures depend heavily on the assumed magnitude
and duration of peak savings for suchmeasures, as well
as assumed time-varying electricity rate structures.
While the TOU rate shapes applied in this paper reflect
current offerings from utilities, future rate structures
may more heavily reward mid-day load increases [48],
in which case pre-cooling measures would yield
greater cost savings. Finally, while cost effectiveness
was not the focus of the current analysis, measures that
shed or shift loads may require lower incremental
capital costs and thus deliver electricity savings more

Figure 5.Technical cost savings potential for static efficiency and dynamicflexibilitymeasures applied to summer season (May–
September) residential cooling loads. Cost savings from static efficiencymeasures are shownwith dashed lines representing three
magnitudes of efficiency. The cost savings for both the shed and shiftmeasures are presented as ranges for differentmagnitudes. The
lower bound on the range is calculated using a 4 h shed/shift event and aflatter TOU rate structure (5th percentile of all URDB rates)
while the upper bound is calculated using an 8 h shed/shift event and a peakier TOU rate structure (95th percentile of all URDB rates).
The solid lines show a 6 h shed/shift event using themedian TOU rate structure.We assume no energy penalty for the shiftmeasure in
this part of the analysis.
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Table 1.Assessment of specific seasonal (May–September) cooling efficiency andflexibilitymeasures under a time-sensitive framework to estimate their national electricity, cost, andCO2 emissions savings potential in residential buildings
in 2018.

Savingsmeasure Example technology Assumptions

Estimated seasonal

electricity

savings (TWh)
Estimated daily peak

demand savings (GW)
Estimated seasonal cost

savings (BillionUSD)

Estimated seasonal

emissions savings

(MtCO2)

Static cooling efficiency

improvement

SEER 18 cooling system [43] 31% savings, all hours;median TOU rate

structure

57.3a 29.8 $8.1 26.4

Flexible cooling, peak shed Thermostat set-point

adjustment [44, 45]
15% reduction, 4–8PM;median TOU rate

structure

8.4 14.4 $1.5 3.8

Flexible cooling, peak shift Thermal storagewith

pre-cooling [46]
65% shift from4–8PM to 4 hours earlier; 1.7 °C
thermostat turn-down; 3.19 peak-to-penalty

ratio;median TOU rate structure

−11.4 62.4 −$0.6 −5.5

Combined efficiency and

flexibilitymeasure

SEER 18 cooling systemwith

smart-controlled load shedding

capability

31% savings, all hours, plus 15% reduction,

4–8PM;median TOU rate structure

63.1 39.8 $9.2 29.1

a Reference totals for summer season residential cooling in 2018 are 184.8 TWh, 96.2GW, $26.2 billionUSD, and 85.2MtCO2.
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cost-effectively than conventional efficiency measures
when pairedwith time-varying electricity rates [15].

The results presented in table 1 are primarily
intended to show how the time-sensitive framework
developed in this paper can be used to quantify the
hourly and seasonal load, cost, and emissions impacts
of specific efficiency and flexibility measures. As men-
tioned, we rely on point estimates of each measure’s
building-level operational impacts from previous stu-
dies, and a full uncertainty analysis of these estimates is
beyond the scope of this paper. Nevertheless, we
acknowledge the importance of undertaking more
detailed analyses ofmeasure operation at the building-
level, especially regarding the uncertainties inherent to
measure performance in different building and cli-
mate contexts, as well as those related to a measure’s
expected service level impacts and the degree to which
changes in building services would be accepted by
building operators and occupants. Furthermore, we
note that the full savings potentials estimated for the
flexibility measures in table 1 may not be realized
when these measures are implemented in practice, as
utilities will adjust the timing of load shifts and recov-
ery periods to avoid creating new peaks in the system
load shape.

Direct comparison of our findings with previous
studies of US building efficiency and flexibility
impacts on hourly electric demand is precluded by the
narrow focus in these studies on maximum peak
demand reductions for a specific set of technology and
program deployment scenarios. For example, a study
of national efficiency and demand response (DR)
potential by EPRI [23] estimates 218 GW of summer
peak reduction from efficiency and DR measures by
2030, with 12.5 GW attributable to direct residential
central air-conditioning control by utilities. A 2009
Federal Energy Regulatory Commission study [49]
estimates 188 GW of summer peak reduction poten-
tial from DR alone in 2019 but includes the industrial
sector in this estimate. Another study of demand-side
flexibility by the Rocky Mountain Institute (RMI) [15]
finds 49GWof summer peak reduction potential from
shedding 25% of residential air-conditioning loads in
2014. In all cases, the focus on maximum daily sum-
mer peak contrasts with our estimation of average
daily summer peak; thus, the estimated impact on
peak demand from a 25% residential cooling reduc-
tion in our study (about 25 GW, figure 4) is smaller
than that of the RMI study, for example. Moreover,
these studies rely on datasets that are by now more
than a decade old. Broadly speaking, however, the
large potential these studies suggest for peak electric
demand reductions from the building sector, and the
prominent role of efficiency in these reductions in the
EPRI study, are supported by our results.

The valuation approach presented in this paper is
based on utility TOU rates for residential and com-
mercial customers, assuming that such rates constitute
a reasonable, readily-available proxy for the actual

time-varying costs to utilities for supplying energy.12

Future work could incorporatemore direct proxies for
the time-varying costs of electricity supply, such as
wholesale locational marginal pricing (LMP), into our
time-sensitive valuation framework. This research
should consider how different valuation approaches
might adjust the estimated savings potential of effi-
ciency and flexibility measures, especially under high-
renewable energy penetration scenarios, which are
expected to reshape temporal variations in LMP con-
siderably [48].

Similarly, the data used to apportion annual
electricity end uses and emissions estimates to a sub-
annual basis (see section 2) will continue to be upda-
ted. Regarding sub-annual electric load data, reference
models of whole building energy use from the US
Department of Energy have recently been used to gen-
erate highly granular estimates of hourly energy
demand across all major end uses, building types, and
for all 8760 hours of a typical meteorological year [50].
A related effort at the US national labs is generating
hourly load profiles for thousands of prototypical
buildings and calibrating these profiles against
metered utility data [51]. Regarding sub-annual emis-
sions data, hourlymarginal emissions intensities based
on the US Environmental Protection Agency’s Con-
tinuous Emissions Monitoring System continue to be
updated by the Carnegie Mellon Center for Climate
and Energy DecisionMaking and made publicly avail-
able via an online repository [52].

Future work will also focus on developing more
specific definitions of energy flexibility measures, their
impacts on building operations, and their cost effec-
tiveness. While hourly load shape measurements for
individual building technologies remain scarce,
regionally-focused measurement efforts (e.g. [53])
provide a basis for developing and validating measure
load savings shapes, which can be extended to regions
without readily available savings shape measurements
using whole building energy simulation programs
[54]. In developing such saving shapes, service level
thresholds should be considered explicitly—at mini-
mum by referring to relevant operational standards
such as ASHRAE Standard 55 and 62 for thermal com-
fort and ventilation, respectively, and the IES Lighting
Handbook for task illumination [55–57]. Once devel-
oped and validated, measure savings shapes can be
paired in Scout with associated data on technology
capital costs and the latest estimates of time-varying
electricity prices to explore the cost-effectiveness of
flexibility measures alongside that of conventional
efficiency measures. Taken together, these updates to
the modeling framework and its underlying data
ensure that the current analysis is repeatable and that it
remains relevant to policy questions concerning the

12
Time-varying demand charges are also cataloged in the URDB

and could similarly be used as a readily available utility cost proxy
for time-sensitive efficiency valuation.
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role of building energy efficiency and flexibility in
enabling a low-cost, low-carbonUS electricity system.

5. Conclusions

This paper develops hourly estimates of US building
electricity use, cost, and CO2 emissions in order to
facilitate the analysis of electricity saving measures
with time-sensitive impacts alongside conventional,
static efficiency measures. The national savings poten-
tials for static energy efficiency measures and dynamic
flexibility measures presented here enable a like-for-
like comparison of next-generation building technol-
ogies that dynamically reshape energy loads with
traditional efficiency technologies. Quantifying the
magnitude of these measures’ time-sensitive impacts
across multiple metrics is critical to positioning the
buildings sector as a key source of demand-side
flexibility in a future that is likely to see increased stress
on the power grid from climate change as well as
higher penetrations of variable renewable energy
generation [17, 58]. Moreover, from a consumer
perspective, a move towards electricity pricing that
better reflects the real time-varying cost of energy
supply will mean that reductions in electric load
during peak demand hours deliver larger cost savings
than reductions during off-peak hours, increasing the
attractiveness of measures that yield impacts during
high-price periods. An analysis framework that
accounts for this time-varying value is essential for
determining the cost effectiveness of large-scale energy
efficiency or flexibility technology adoption in the
building sector under the rate structures that are likely
to emerge in a future US electricity system that relies
more heavily on distributed energy resources [59, 60].
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