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Abstract

Based on 4D-CT, we aimed to characterize the pattern of morphological changes in lung tumors 

during respiration, and investigated its potential in non-invasively differentiating lung 

adenocarcinoma (AC) and squamous cell carcinoma (SCC).

We applied a 3D surface analysis on 22 tumors (13 AC, 9 SCC) to investigate the tumor regional 

morphological fluctuations in response to respiration phases. Tumor surface vertices among ten 

respiratory phases were matched using surface-based registration, and the shape descriptors (ρ and 

detJ) were calculated and tracked across respiration stages in a regionally aligned scenario. 

Pairwise group comparisons were performed between lung AC and SCC subtypes, in terms of 

ratios of maximal shape changes as well as correlation coefficients between tumor shape and 

respiratory stage indicators from the lung.

AC type tumors had averaged larger surface measurements at exhale than at inhale, and these 

surface measurements were negatively correlated with lung volumes across respiratory stages. In 

contrast, SCC type tumors had averaged smaller surface measurements at exhale than at inhale, 

and the correlations with lung volumes were positive. The group differences in maximal shape 

changes as well as correlations were both statistically significant (p < 0.05).

We developed a non-invasive lung tumor sub-type detection pipeline based on respiration-induced 

tumor surface deformation. Significant differences in deformation patterns were detected between 

lung AC and SCC. The derived surface measurements may potentially serve as a new noninvasive 

imaging biomarker of lung cancer subtypes.
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1. Introduction

Lung cancer is one of the leading causes of cancerous deaths worldwide, with a five-year 

survival rate of 15% (Siegel et al 2015, Fitzmaurice et al 2017). Adenocarcinoma (AC) and 

Squamous cell carcinoma (SCC) are two major types of non small cell lung cancer 

(NSCLC), with considerable prognostic differences in staging criteria, overall survival 

(Ichinose et al 1995, Suzuki et al 1999, Kawase et al 2011), and treatment options, 

particularly in the choices of chemotherapy regimens (Scagliotti et al 2011, Huang et al 
2016). Therefore, pretreatment histopathological diagnosis of lung cancers is highly 

demanded in histologically adapted treatment to maximize therapeutic outcomes. To obtain a 

definitive pretreatment histopathological diagnosis, flexible bronchoscopy and CT-guided 

lung biopsy are two mainstream methods (de Margerie-Mellon et al 2016). The former is 

less sensitive to peripheral lung tumors, while the latter is contraindicated by significant 

coagulopathy, severe respiratory insufficiency and inadequate patient cooperation (Manhire 

et al 2003, Rivera et al 2013). With the development of imaging techniques, in vivo thoracic 

screening in high-risk populations has become possible, which facilitates early detections of 

lung abnormalities and leads to improved resectability and survival (Midthun 2013, 

Purandare and Rangarajan 2015). However, current imaging techniques have mainly focused 

on differentiating malignant lesions from benign nodules, providing inadequate 

characterization for tumor histological subtypes.

Although their exact originations are not clearly understood, lung AC and SCC are thought 

to arise from different cell types and thus have different tissue constitutions (Sutherland and 

Berns 2010, Hanna and Onaitis 2013). Tumors with AC histology often resemble the 

glandular structure and contain a significant amount of mucus, while tumors with SCC 

histology commonly constitute of flat cells that line inside major airways and are thus 

frequently seen with cavities (Hanna and Onaitis 2013, Purandare and Rangarajan 2015). 

Lung tumors, like other surrounding lung tissues, would also present varying levels of 

morphological changes with respiration (figure 1). Under the influence of internal airflow 

exchanges and surrounding tissue pressure fluctuations, these two types of lung tumors with 

distinct microenvironment and cellular constitutions may present different patterns of 

morphological changes during breathing. Therefore, quantifying the tumor shape changes 

across respiration phases has the potential to provide insights into the tumor tissue 

constitution and thus have further histologic implications.

Four-dimensional computed tomography (4D-CT) has been widely used in radiation therapy 

to monitor tumor respiratory motion to better define personalized tumor margins (Boldea et 
al 2008). Researchers have generally viewed tumors as rigid structures, and mainly 

considered the displacement of tumor center of mass (COM) during respiration. Only a few 

studies have attempted to investigate tumor shape deformation. In particular, to investigate 
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whether lung tumors deform during respiration, Wu and colleagues compared the adequacy 

of lung tumor delineation using only rigid body transformation versus rigid plus deformable 

registration. In their work, the effect of respiration on lung tumor volumes was found to be 

primarily described by rigid translation, with a subtle, but observable improvement in 

accuracy by succeeding deformable registration (Wu et al 2009). Because the deformation is 

small, these morphological changes are often ignored by subsequent imaging analysis and 

are rarely associated with clinical diagnosis, which is the focus of the current study.

In this study, we track and quantify the regional tumor shape deformation based on 4D-CT. 

Our approach is twofold: firstly, to develop a 3D tumor shape based pipeline capable of 

detecting respiration-induced subtle morphological fluctuations; secondly, to evaluate the 

feasibility of using respiration-induced tumor deformation pattern as a new imaging 

biomarker for diagnosing two histological subtypes of lung cancers.

2. Methods and materials

2.1. Subjects and data

Under Institutional Review Board approval, 180 patients with histologically confirmed 

primary lung tumors or lung metastases were retrospectively solicited from our institutional 

database between the end of 2014 to the beginning of 2018. However, only 30 4D-CT 

images were retrieved for this study. 4D-CT were not mandatory in our institution during 

this period. It was either not ordered or discarded due to artifacts near the tumor for the rest 

150 patients. After excluding the patients who did not go through biopsies or had non-adeno 

and nonsquamous lung metastases, 19 patients were finally enrolled in this study. All 

enrolled patients underwent 4DCT scans before radiation therapy. A total of 22 tumors (19 

primaries and three metastatic) were identified in the enrolled patients. Tumors were biopsy 

confirmed and histologically discriminated into 11 primary AC, eight primary SCC, two 

metastatic AC, and one metastatic SCC. Patient demographic information and tumor 

characteristics are summarized in table 1.

All 4D-CT scans were taken in a 16-slice GE Optima CT580™ scanner with energy of 120 

kvp, current of 118 mA, and slice thickness of 2.5 mm. Each imaging session took an 

average of 15 min with a cumulative radiation dose of 5–10 cGy. A maximum of 3000 slices 

was collected in each scan to cover the whole lung or as much as allowed. 4D-CT scans 

were conducted in cine mode guided by Real-time Position Management (RPM™) system 

(Varian Medical Systems, Palo Alto, CA) and reconstructed in AdvantageSim™ 4D software 

(GE Healthcare, Milwaukee, WI). To control the imaging quality, patient’s breathing and 

movement were monitored in the clinical 4D-CT scan. If a patient achieved natural breathing 

and minimized non-breathing related body movement, we considered the artifacts were 

minimized. Additionally, board-certified clinical physicists evaluate every 4D-CT to 

determine stitching artifacts. The determinization of phase error was achieved through 

AdvantageSimTM software (GE), using RPMTM (Varian) as breathing surrogate. Scans 

with visible stitching artifacts or phase error greater than 5% were discarded and not 

included in our study.
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2.2. Data preprocessing

The data preprocessing pipeline is illustrated in figure 2. For each patient, the initial 

boundary of the gross tumor volume (GTV-init) and the affected lung (Lung-init) were 

manually segmented by a single radiation oncologist on the first 4D-CT phase (CT 0%) 

corresponding to the end-of-inhalation (EOI). The intra-rater reliability score |A ∩ B|
|A ∪ B|  was 

0.89, in four participants (two for each lung cancer subtypes) at two different times spanning 

six weeks, in which A, B are segmentations. Tumor and Lung contours from the rest of the 

nine respiration phases were propagated through between-phase registrations. Specifically, 

CT images of phase 0 were first rigidly aligned to each of the following phases, and 

followed by nonlinear registration in the FMRIB software library (FSL) (Jenkinson et al 
2012), to fully compensate internal movements and deformation. Linear and nonlinear 

registration matrices were combined to warp GTV-init and Lung-init and form GTV and 

Lung segmentations of the corresponding respiration phases. The contours were examined 

by the same radiation oncologist and edited when necessary.

Based on the resultant segmentation, 3D GTV meshes of each tumor for all ten phases were 

constructed using the marching cube algorithm (Lorensen and Cline 1987). To obtain 

regional correspondences between different respiratory phases, tumor surfaces from all 

phases were further matched using a surface-based constrained harmonic registration (Wang 

et al 2010, 2011). This step ensures that the surface tracking is limited to the tumor, 

excluding the influence of surrounding tissues.

2.3. Statistical analysis

We hypothesized that the tumor surface descriptors are sensitive to the morphological 

differences presented by lung SCC and AC. Three GTV shape descriptors were defined: 

structural-wise tumor volume (Vt), vertex-wise radial distance (ϱ) and determinant of 

Jacobian vectors (detJ). Vt is an intuitive and coarse estimation of the shape changes, while 

the other two vertex-wise measurements probe into the complex tumor geometry. In 

particular, ϱ is the distance between a surface vertex to the medial line of the structure, 

which directly estimates the thickness of a vertex, and captures the regional shape feature in 

the normal direction. A brief illustration of ρ is shown in figure 3. J is the Jacobian matrix of 

the deformation resulting from constrained harmonic registration. Suppose two triangle 

surface meshes with planar coordinates denoted by vi, wi, i = 1,2,3. The discrete derivative 

map J mapping [v1, v2, v3] to [w1, w2, w3] can be calculated by (Wang et al 2008, 2011, Shi 

et al 2013)

J = w3 − w1, w2 − w1 v3 − v1, v2 − v1
−1 . (1)

The determinant of the Jacobian matrix (detJ) for a surface vertex captures regional shape 

feature in surface area by describing the extent of necessary deformation to warp a specific 

local region to match its target.

Statistical analyses were conducted by two measurements: M1 measures maximal changes 

of the surface shape parameters between the EOI and EOE (end-of-exhalation) phases; M2 

Lao et al. Page 4

Phys Med Biol. Author manuscript; available in PMC 2018 December 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



measures the correlation coefficient between surface shape parameter fluctuations and 

breathing phases. Key steps of M1 and M2 were illustrated in figure 4. In M1, the intra-

tumor averaged vertex-wise ratio of shape parameters (ϱ, detJ) were compared between EOI 

and EOE phases defined from the volume of the affected lung. Here, the respiration phases 

were determined using the volume of the tumor-bearing lung (excluding tumor tissues). In 

M2, the vertex-wise correlation between tumor shape descriptors (ϱ, detJ) and all respiration 

phases was performed. Specifically, at each tumor surface vertice, Pearson’s correlation was 

calculated as follows:

Rρ − Vlung
=

COV ρ, V lung
σρ * σVlung

(2)

RdetJ − Vlung
=

COV detJ, V lung
σdetJ * σVlung

(3)

where ϱ, detJ are two surface measurements, Vlung is the tumor-bearing lung volume 

excluding tumor, and COV and σ are covariance and standard deviation respectively. 

Significantly correlated vertices were extracted. The corresponding correlation coefficients 

were then averaged to determine to what extent and in which direction the tumor surface 

changes are correlated to lung movement.

On all measurements from M1 and M2, group comparisons were conducted between lung 

primary AC (ACl) and lung primary SCC (SCCl) groups, as well as all AC (ACa) and all 

SCC (SCCa) groups (tumors grouped regardless of primary or metastasis), using Student t-
tests on respective parameters. Because the AC and SCC tumor locations are heterogeneous 

in terms of their proximity to central bronchi and their tumor-bearing lungs, the influence of 

tumor locations is analyzed by comparing surface descriptors of tumors in peripheral versus 

central and left versus right lung. In addition, the predictive power of the above-mentioned 

metrics was further evaluated using logistic regression followed by receiver operating 

characteristic (ROC) analysis.

3. Results

Figure 5 displays mean and standard deviations of measurements for all lung tumor subtypes 

using four different metrics: surface averaged ϱ ratios (ϱratio), detJ ratios (detJratio), averaged 

correlation coefficient over areas showing a significant association between shape and 

respiration phases Rϱ − Vlung
 and R detJ − Vlung

. Group comparison results based on these 

measurements are further summarized in table 2.

As shown in figure 5, mean surface measurement ratios (ϱratio and detJratio) for tumors with 

histology sub-type AC were greater than 1, showing expansion of tumor surfaces in the EOE 
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compared to the EOI phase, while the same measurements for tumors with histology sub-

type SCC were less than 1, showing a contraction of tumor surfaces from EOI to EOE phase. 

The differences of ϱratio and detJratio between ACl and SCCl groups are both statistically 

significant (p < 0.05). The same significances were found in group comparisons between 

ACa and SCCa. As a contrast, traditional measurements based on Vt detected no statistical 

significance in any of the group comparisons.

The differences in deformation trends were more evident by correlating surface descriptors 

with the whole breathing cycle in M2. After excluding surface areas either unchanged or 

uncorrelated to respiration, the remaining tumor surfaces with AC type (ACl and ACa) 

showed mean negative correlation to lung volumes, indicating tumor morphological changes 

opposite to that of the tumor-bearing lung. On the contrary, tumors with SCC type (SCCl 

and SCCa) showed mean positive correlation to the lung volume changes, indicating tumor 

morphological changes consistent to that of the tumor-bearing lung. In the group-wise 

comparisons shown in table 2, the differences of R between ACl and SCCl, as well as 

between ACa and SCCa are both statistically significant (p < 0.01). The differences in the 

four surface metrics for the tumors located in peripheral versus central or left versus right 

lung were not statistically significant.

The ROC curves of the five metrics in AC/SCC discrimination are presented in figure 6. As 

demonstrated by the respective AUCs, metrics derived from M2 Rρ − Vlung
, R detJ − Vlung

performed the best in identifying AC tumors, either within the primary lung tumors (figure 

6(a)), or in a mix of primary and metastatic lung tumors (figure 6(b)), both showed AUCs 

above 0.9. Consistent with results from group comparisons, compared to M2 derived 

metrics, M1 derived metrics (ρratio, det Jratio) were less efficient in AC identification, 

yielding AUCs of 0.81–0.89. As expected, for the same task, the performance of Vtratio was 

limited, with AUCs around 0.5 for both cases.

4. Discussion

4.1. Methodological considerations

4D imaging data reveal organ physiological and mechanical properties (Hegi-Johnson et al 
2017). The advances of quantitative medical image analysis and the developments of 

registration algorithms have afforded the detection of tissue deformation during breathing. In 

recent years, the displacement field obtained from between-phase deformable registration 

has been utilized in 4D radiation therapy planning (Lim-Reinders et al 2017, Zhong et al 
2017). By providing a more refined tumor delineation and an improved targeting accuracy in 

radiotherapy, deformable registration has shown to outperform registration based on 

translation and rotation only (Poulsen et al 2012, Ge et al 2014). However, the extent of 

tumor morphological changes with respiration is found to be small. Thus it is challenging to 

characterize using global radiomic features, such as short or long axes, sphericity, 

compactness and volume.

To obtain a quantitative assessment for regional morphological changes of normal organs or 

tumors, voxel-wise registration is a typical choice and has been effective in revealing shape 
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deformation for organs with relatively large deformation, such as heart and lung (Weiss et al 
2006, Li et al 2013). While for lung tumors, due to the relatively large translational 

displacement, the small shape changes can be overwhelmed by the variation of surrounding 

tissues within the region of interest. To eliminate the effect of surrounding tissues, one study 

extracted the 3D tumor from the original imaging space and measured the maximal tumor 

dimensional changes in three cardinal planes (Kyriakou and McKenzie 2012). However, this 

oversimplifies the actual tumor deformation reacting to heterogeneous mechanical 

environment and properties.

In this study, we modeled lung tumors using 3D surface meshes and tracked the 

morphological fluctuations in a regionally aligned condition. We used two metrics to capture 

local shape changes: ϱ and detJ. These two metrics characterize vertex-wise geometric 

features in two main aspects—the normal direction and the surface area, and have been 

shown to efficiently reveal small morphological alterations (Lao et al 2014, 2017). Surface-

based constrained harmonic registration affords vertex-to-vertex correspondences, which is a 

key prerequisite to the regional analysis and has been validated in analyses of brain anatomic 

abnormalities (Wang et al 2011, Lao et al 2014, 2017). Using 3D surface models, 

respiration-related tumor morphological changes are monitored on all surface vertices, 

allowing the analysis of shape expansions and contractions on the complete tumor surfaces, 

instead of the limited three cardinal planes. This allows a more accurate characterization of 

the intrinsically heterogenous lung tumor that exhibits non-uniform surface changes with 

respiration.

In addition to directly measuring the extent of tumor changes in M1, the correlation based 

method (M2) denotes how ‘responsive’ the tumor changes with respiration and is less 

affected by the absolute tumor deformation. Combining the results from M1 and M2, 

possible biases of tumor locations in histologic-wise group comparisons are also mitigated. 

Moreover, using correlations between tumor surface parameters and lung measurements, we 

are able to extract the changes that are truly associated with respiration. This further reduces 

the influence of irrelevant tumor surface alterations from non-respiratory activities, such as 

pulsations of heart and vessels, and inevitable image artifacts from 4D-CT images.

4.2. Pathological considerations

Although the exact cellular mechanism underpinning the observed differences is beyond the 

scope of our study, the different deformation patterns presented by the two histologic 

subtypes indicate contrasting tumor tissue constitutions, which may be further traced to the 

altered regulation of pulmonary surfactant. Formed by type-II alveoli cells, pulmonary 

surfactant is a surface active protein capable of reducing alveolar surface tension and 

preventing atelectasis (Zuo et al 2008). Growing evidence has linked lung AC to the 

mutations of type II surfactant secreting alveoli cells (Xu et al 2012), while the gene 

expression patterns of lung SCC are thought to originate from tracheal basal cell progenitors 

(Sutherland and Berns 2010). Close examination of peripheral-blood samples of lung cancer 

patients reported significantly higher expression rate of Pro-Surfactant B in lung AC type 

than that in SCC type as well as healthy controls (He et al 2017), while no difference was 

detected between SCC type and controls (Sin et al 2013). As a result, abnormal regulation of 
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surfactant in lung AC tumors would lead to a breakage of regular lung homeostasis and may 

induce a ‘delay’ in tumor tissues that disaccord the regular rhythm of rising and falling in 

normal lung tissues. However, due to the retrospective nature of this study, individual 

surfactant levels were not available. Therefore, this preliminary hypothesis needs further 

validation. For instance, a correlation between the ‘delay’ in AC tumors and patient’s 

pulmonary surfactant levels, would help elucidate how the alterations in surfactant levels 

may result in changes in tumor deformations.

As cancer-initiating cells are likely to inherit the characteristic attributes of normal tissue 

stem cells, meta-static AC and SCC tumor cells may exhibit similar tissue constitutions as 

primary tumors and thus have similar deformation patterns in respiration. Our group 

analyses on ACa and SCCa groups are consistent with these cellular properties. Nonetheless, 

this should be validated in a larger cohort study, since only three metastatic tumors were 

included in this study. In addition, as shown in figure 5, the averaged correlation coefficients 

over significant areas in the AC group only trend in the negative direction, implying mixed 

positive and negative correlations presented in AC tumor surfaces, with the negative ones 

being dominant. This can be attributed to the tumor heterogeneity. Although the tumor 

surface presents an overall trend of asynchronization to lung expansions and contractions, 

different areas of the same tumor may still present different behaviors, possibly due to the 

uneven distribution of surfactant within tumors, or blockage of airflow tubular with 

surrounding airways. However, these explanations should be taken with caution, given the 

small sample size the absence of direct tissue surfactant data. Future large-scale studies with 

more biological examination will be needed to validate the hypothesis generated here.

4.3. Limitations and future directions

There are several limitations in our study. First, the small sample size, especially for the 

SCC group, has limited the statistical power in our results. For the same reason, the 

compounding effects of patients’ age, gender, and tumor staging on respiration-induced 

tumor deformation cannot be excluded. Second, tumor contour delineation was performed 

on 4D-CT, which were subject to binning artifacts. Although our correlation based methods 

have potentially removed considerable deformation caused by random image artifacts, the 

effect of image artifacts cannot be completely eliminated. Future advanced reconstruction 

protocols shall be integrated into the scan to achieve optimized projection binning (Werner 

et al 2017). Third, respiration-induced shape changes were tracked in limited phases (n = 

10), which may be inadequate to describe the possible delay between lung and tumor 

deformation. In the future, the surface morphology tracking pipeline can be further validated 

on larger datasets with higher temporal resolution.

5. Conclusions

Based on ten binned four D-CT, we developed a tumor surface morphology tracking pipeline 

to characterize the respiration-induced tumor deformation. The derived surface 

measurements successfully detected significant differences in deformation patterns between 

histologic subtypes of AC and SCC. To our knowledge, this is the first study to show the 

diagnostic value of the respiration-induced 4D deformation. The developed surface 
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measurements can potentially serve as new non-invasive imaging biomarker discriminating 

lung AC and SCC subtypes, while these findings need to be validated in a larger study.
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Figure 1. 
Examples of axial 4D-CT for a patient with lung AC (A) and another with lung SCC (B), as 

well as their corresponding tumor and lung volume trajectories across respiratory phases. 

Tumor and lung contours were highlighted in red and blue, respectively.
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Figure 2. 
Data preprocessing pipeline: from the registration based delineation of tumor contours to the 

construction of time-series of tumor shape parameters. For each of the subject, processing 

steps include: (1) manual segmentation of tumor boundaries on CT 0% (EOI); (2) linear and 

nonlinear registration (reg.) between CT 0% and CT from other respiration phases; (3) 

applying registration resulted in a transformation matrix (TransM) on tumor segmentation 

from CT 0%; (4) 3D surface modal construction based on the above-obtained tumor 

segmentations; (5) surface-based registration and generation of vertex-wise shape 

parameters. Tumor surface parameters from all the phases were assembled to construct an 

intra-subject time-series model of tumor shape for later statistical analysis.
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Figure 3. 
Example of a 3D tumor model (A), its surface mesh (B), and a brief illustration of vertex-

wise radius ϱ (C). In C, the midline of the tumor model is shown in red. Three example 

surface vertices and their corresponding radius are marked in green stars and blue arrows, 

respectively.
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Figure 4. 
Illustrations of statistical analysis methods M1 (A) and M2 (B). In M1, for each subject, a 

stage with least lung volume in the ten phases is identified as the end-exhale stage. Surface 

parameters between the end-exhale and the end-inhale stage are compared in the vertex-

wise, and an intra-tumor averaged ratio are calculated for group comparisons. In M2, 

correlation analysis is conducted between time-series of tumor shape parameters (ϱ, detJ) 

and respiration stage representers (Vlung). Surface correlation coefficients with significance 

correlations (p < 0.05) are then extracted and averaged for group comparisons.
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Figure 5. 
Bar plots of respective measurements from primary (left column) and all (right column) AC 

and SCC tumors in four different methods: surface averaged ϱ ratios (a) and (b) and detJ 
ratios (c) and (d); averaged correlation coefficient between shape parameters (ϱ, detJ) and 

respiration phases (Vlung) (e)–(h).
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Figure 6. 
ROC curves for the identification of AD in primary lung tumors (a) and all lung tumors (b), 

using the five different metrics shown in table 2.
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Table 1.

Patient and tumor characteristics.

Panel A: patient characteristics

Patient ID Age(y) Gender Tumor histology
a

Location
b Affected lung Tumor volume

c
 (cc)

01 71 F Lung AC C/B Right 18.43

02 87 M Lung SCC C/U Left 3.38

03 90 F Lung AC P/U Right 19.10

04 80 F Lung SCC C/U Left 21.37

05 69 M Lung AC P/U Left 1.65

06 89 M Lung AC P/U Right 42.54

07 72 M Lung AC P/U Left 31.84

08 64 M Lung AC P/U Left 1.02

09 77 F Lung AC P/U Left 9.54

10 68 M Lung SCC C/U Left 20.93

11 65 F Mets AC C/U Right 11.58

12 66 M Lung AC C/U Left 163.64

13 81 F Lung AC C/U Left 14.56

14 58 M Lung AC C/U Right 1.42

15 84 M Mets SCC P/U Left 3.46

16 70 M Lung SCC C/U Left 72.30

17
d 72 F Lung SCC C/U Right 33.61

Lung SCC C/U Right 54.02

18
d 84 M Lung AC P/U Right 3.24

Lung AC P/U Right 2.10

19
d 72 M Lung SCC P/B Right 1.25

Lung SCC P/B Right 7.16

Panel B: summary of tumor characteristics

Groups Histology Peripheral/central Upper/bottom Affected lung Volume
e
 (cc)

ACl (n = 11) 11AC 6P5C 11U1B 5L6R 25.20 (47.57)

SCCl (n = 8) 8SCC 2P6C 6U2B 4L4R 26.75 (25.38)

Mets(n = 3) 2AC1SCC 2P1C 3U 2L1R 15.63 (14.62)

a
Adeno (AC), squamous (SCC).

b
Peripheral (P), central (C), upper lung (U), bottom lung (B).

c
Volumes are measured at the end of the inhalation stage.

d
Patients with two primary tumors.

e
Mean (standard deviation).
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Table 2.

Summary of statistical group comparison results.

ACl versus SCCl ACa versus SCCa P versus C L versus R

11/8 13/9 11/11 11/11

V tratio 0.8942 0.8672 0.1928 0.5474

ρratio 0.0027
b

0.0013
b 0.6357 0.6720

detJratio 0.0409
a

0.0232
a 0.4063 0.9074

Rρ − Vlung 0.0001
b

0.0013
b 0.9793 0.9664

R detJ − Vlung 0.0001
b

0.0009
b 0.7649 0.5505

Significant comparisons are marked using

a
for p < 0.05, and

b
for p < 0.01.
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