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ABSTRACT OF THE DISSERTATION

Enabling the Use of Clinically Generated Datasets

to Improve Diagnostic Methods in Multiparametric MRI

of the Prostate

by

Karthik Venkataraman Sarma

Doctor of Philosophy in Bioengineering

University of California, Los Angeles, 2021

Professor Corey W. Arnold, Chair

In this work, we aimed to develop methods and approaches to enable the use of unannotated

or weakly annotated clinically generated datasets in clinical data science and deep learning, in

the clinical context of prostate cancer and multiparametric MRI of the prostate. Specifically,

we demonstrate: 1) The development of an optimized regional targeted biopsy strategy that

could reduce the number of biopsies that need to retrieved in a targeted biopsy procedure,

by creating a combined MRI, ultrasound, and histopathological evaluation dataset from the

clinical record, 2) the creation of a state-of-the-art prostate organ segmentation model using

unrefined clinically-generated annotations as well as an evaluation of the utility of those

annotations to improve model training on small strongly annotated datasets, 3) the training

of a high performance segmentation model on private data originating from three different

healthcare institutions using the federated learning approach, without requiring any data to

be transferred across institutional boundaries, and 4) the creation of patient-level predictive

models for prostate cancer risk stratification from multiparametric MRI of the prostate, and
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an evaluation of the relative contribution of pretrained voxel-level feature extractors using

unannotated, weakly annotated, and strongly annotated data with the finding that even an

unannotated data-based pretrained model is effective. The contributions of this dissertation

demonstrate the potential uses of unannotated and weakly annotated clinically generated

data in clinical data science and machine learning model development for healthcare, and

enable the development of clinical tools for the prostate cancer clinical workflow.
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CHAPTER 1

Introduction

1.1 Motivations

The field of artificial intelligence (AI) in medicine has garnered explosive interest over the

course of the last decade, driven in part by rapid advances in fields like deep learning

(DL) as well as the deployment of AI-enhanced technologies across a wide variety of func-

tional domains across society, from finance, to social media, to the automotive industry

and beyond [ED19]. In this context of rapidly advancing utilization of AI across society,

significant attention has been paid to the potential of AI-enhanced technologies to “trans-

form” healthcare, with some media reporting that the deployment of AI may herald the

end of entire medical specialties, such as radiology [CE16, Muk17]. A number of major

results over the last five years in the fields of ophthalmology [GPC16, QCB17, BCK20],

dermatology [YCL17, Har18, EKN17], pathology [BPB20, EVJ17, COS18], and radiology

[CGT18, MSG20] have contributed to the growing interest in how AI may change the future

of medicine.

It is beyond the scope of this dissertation to predict what the long term future may hold

for the practice of medicine. However, it is notable that despite the fanfare and predictions

of widespread change, the practical impact of AI on the day-to-day practice of medicine

remains minimal today. This stands in stark contrast to the advent of computerization and

the electronic medical record, which over the course of the last two decades have changed

almost every imaginable clinical workflow and significantly altered the day-to-day lives of

every healthcare provider in the United States.

Medicine is not without successfully deployed AI-based systems; over 200 AI-based med-

ical devices have been approved by the FDA, with the pace of new device applications

increasing significantly year over year [MDV21]. Over half of these devices are targeted at

radiology, such as the Arterys Cardio AI system for cardiac landmark detection and segmen-

tation on cardiac MRI [RMG20] and the iCAD ProFound AI for breast density measurement

and malignancy detection on tomosynthesis [CTP19]. These devices largely focus on clinical
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workflow enhancements for well-circumscribed problems, with the aim of saving clinicians

time and improving the reliability and consistency of interpretation. Though these are laud-

able goals with an important impact on cost and quality, they are far from the life-changing,

specialty-destroying specter that some have heralded.

There are many challenges that have prevented AI from having the same impact in health-

care as it has in some other fields [KKS19]. The healthcare industry is naturally cautious,

and medical professionals demand a high standard of evidence before the introduction of new

clinical tools and practices. Computerization is also relatively new to the industry, with fewer

than 50% of medical practices having adopted any electronic health record system as recently

as 2010 [Hea19]. There is no doubt that these general industry factors have contributed to

a slowdown in the pace of development and acceptance of AI-based technologies.

However, several unique factors regarding medical data also present significant challenges

to the development of medical AI. Despite advances in the use of evidence-based medicine

over the last three decades, medical practice is still highly variable, with different institu-

tions and providers following different approaches and protocols. Additionally, differences

in enrolled patient populations at different care centers can lead to highly heterogeneous

disease patterns, diagnoses, and prognoses. This complicates efforts to make use of AI-based

models trained at one institution at a different institution, a barrier that has affects even

well-funded, large-scale projects like IBM Watson for Oncology [SSJ21, CCK19].

Additionally, the full scope of information used to make a decision is not always available

for machine learning use. For example, a radiologist may evaluate an entire MRI volume for

cancer suspicion, but may only annotate a few slices, or even only annotate the regions of

highest suspicion during routine clinical practice, as there is not a clinical need for a compre-

hensive annotation. This means that efforts to train machine learning models may require

time-consuming and expensive re-annotation of clinical data to produce “gold standard”

annotations, making access to large quantities of data challenging at best. For example,

one of the largest publicly available medical imaging datasets is the RSNA 2019 Brain CT

Hemorrhage Challenge dataset, consisting of 25,312 CT studies (874,345 slices) [FPS20],

and most challenge datasets in healthcare are much smaller. In comparison, the ImageNet

challenge dataset has approximately 10,000,000 images [RDS15]. Because machine learning

(and especially deep learning) models require large quantities of data to train, with more

data being required for “harder” problems, this presents a significant challenge.

One potential solution to this problem is to collate data from multiple institutions, as was

done in the RSNA challenge [FPS20]. This would enable the creation of larger datasets and
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potentially allow the training of models that generalize more effectively across institutions.

However, medical data is highly controlled for regulatory and ethical purposes, as the pro-

tection of patient privacy is fundamental obligation of healthcare providers. This makes the

development of multi-institutional datasets challenging, as data must be carefully evaluated

and de-identified before it can be shared across institutional boundaries. In addition, data

sharing can be politically complex because of the inherent value of medical data; because

large private corporations are now willing to pay for access to data, the free sharing of data

for research purposes can be seen as a waste of potential resources as once shared, data

cannot be reclaimed.

Continued advancement in the field of medical artificial intelligence in order to harness

the full potential of the technology to improve clinical workflows, reduce costs, and improve

care quality will require overcoming some of these data challenges in order to enable the

development of the best possible models. It is this goal that has motivated the work presented

in this dissertation.

1.2 Contributions

In this work, we aimed to develop methods and approaches to enable the use of unannotated

or weakly annotated clinically generated datasets in clinical data science and deep learning,

in order to address the barriers described in Section 1.1. Because clinical data science cannot

be separated from the context of a clinical domain, we chose the domain of prostate cancer

and multiparametric MRI of the prostate, and aimed to make contributions that were both

helpful to the development of prostate-specific clinical tools and shed light on the broader

problem of how to unlock the potential of clinical data. The main contributions of this

dissertation can be summarized in the following specific aims:

Aim 1 To combine MRI and ultrasound imaging data with histopathological diagnoses

from the clinical record in order to develop an optimized strategy for biopsy

sampling that can reduce the number of biopsies that need to be obtained in a

single procedure while maintaining the same level of diagnostic performance.

Aim 2 To develop a state-of-the-art prostate organ segmentation model using unrefined

clinically-generated annotations, to evaluate the utility of such annotations to

enable better training of models using small gold standard datasets, to evaluate

the impact of the quantity of data used on the utility of the dataset, and to
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evaluate the relative benefit of the use of a domain-relevant weakly annotated

dataset over a generic pretraining dataset.

Aim 3 To train a high performing segmentation model using private data from multiple

institutions and the federated learning approach which demonstrates general-

izability both across those institution and to external data, without requiring

any of the private data to be transferred across institutional boundaries.

Aim 4 To create patient-level predictive models for prostate cancer risk stratification

from multiparametric MRI of the prostate using pretrained voxel-level fea-

ture extractors, and to evaluate the relative contribution of using unannotated,

weakly annotated, or strongly annotated data on the final performance of that

model.

1.3 Outline

This dissertation is organized as follows:

Chapter 1 is the chapter you are currently reading, and provides an introduction and

outline for the dissertation.

Chapter 2 provides a background on prostate cancer, risk stratification, multipara-

metric MRI, prostate biopsy, deep learning, and the literature in the field

of machine learning for prostate cancer.

Chapter 3 provides a deep dive into MRI-ultrasound fusion targeted biopsy, and our

findings from a detailed analysis of clinical data at our institution that the

use of a regional targeted biopsy strategy could enable clinicians to achieve

similar diagnostic performance while requiring the retrieval of fewer cores.

Chapter 4 details our efforts to build a high performance generalizable prostate seg-

mentation model using “noisy” clinical annotations, rather than gold-standard

annotations, as well as the contribution of dataset size to the performance

and generalizability of the model, finding that “noisy” annotations can be

used effectively to develop state-of-the-art models.

Chapter 5 reports on our efforts to train a high-performance prostate segmentation

model using data from multiple institutions, without requiring that data
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to be collocated in a single location, thus overcoming the regulatory and

privacy challenges of multi-institutional dataset generation via Federated

Learning.

Chapter 6 describes our work to develop patient-level predictive models for prostate

cancer risk stratification using pretrained voxel-level feature extractors with

and without radiologist-generated cancer and/or prostate annotations, find-

ing that unannotated data can still be used to develop equally effective

patient-level models.

Chapter 7 summarizes the findings and contributions of this dissertation, and poten-

tial future directions of research motivated by this work.
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CHAPTER 2

Background

2.1 Prostate Cancer

Prostate cancer is the second leading cause of cancer death in American men, accounting

for 26% of new cancer diagnoses and 9% of cancer deaths in men [SMJ15]. The discrepancy

between these rates creates a need for risk stratification to avoid subjecting patients with

clinically indolent cancers to unnecessary interventions, which can be the cause of significant

morbidity and cost. Several methodologies have been developed to perform risk stratifi-

cation of diagnosed prostate cancer, such as the Cancer of the Prostate Risk Assessment

(CAPRA) score, which integrates information from risk factors like age and prostate-specific

antigen (PSA) with biopsy results to produce an overall estimator of cancer severity and risk

[SMJ15, CPE05, SSE06]. These methods have been used successfully to predict outcomes

like recurrence after prostatectomy and mortality [DWM98, LBI10, HSB11, BLB15, MSM14,

SKK14, SYT15, CDC15, MGF13, BIT12, IHN11]. Unfortunately, the requirement of biopsy

information for these methods (which were developed for presurgical and postsurgical use)

precludes their utility as noninvasive tools for screening.

The appropriate methodology for prostate cancer screening has been an area of con-

siderable debate. The primary components currently involved in screening are the digital

rectal exam (DRE) and serum biomarkers, such as PSA, PSA density, PCA3 [HTP08], PHI

[CPS11], and 4Kscore [VCR10]. Over the course of the last decade, recommendations on

when to deploy these screening methods (i.e., when to routinely screen with serum PSA tests)

have evolved, with current recommendations from the USPSTF [US18] and AUA [CAB13]

to make individualized decisions regarding serum PSA screening between the ages of 55 and

69 years, and to avoid screening at 70 years and older. Unfortunately, despite advances in

screening approach as well as new serum tests, overdiagnosis still remains a major problem

due to limited specificity [SYT15, VCA08, CC13, PPP15, KAS15, LUV08, LCK].
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2.1.1 Prostate Biopsy

Due to the limitations of noninvasive screening for prostate cancer, positive screening results

are generally followed up by transrectal biopsy of the prostate to obtain pathological confir-

mation, but this methodology remains limited. In the transrectal prostate biopsy procedure,

a biopsy sampling needle is used to obtain biopsy cores from the prostate. In a standard

“template” biopsy procedure, 6-12 cores are obtained from the prostate in a distributed

manner, with recent guidelines recommending 10-12 cores (“extended core biopsy”) in order

to optimize detection while minimizing morbidity.

Historically, this procedure was done with manual guidance (i.e. the urologist used

clinical experience to determine how to insert the sampling needle in order to obtain the

needed cores); however, the predominant method is now ultrasound-guided biopsy (“TRUS

biopsy”), in which the needle is rigidly attached to an ultrasound probe which is used to image

the prostate in real-time and provide feedback to the urologist as to the correct positioning

of the probe. The procedure is typically performed in the outpatient clinic setting under

local anesthesia.

Ultrasound-guided biopsy improves targeting, but has limited utility in discriminating

suspicious regions from benign changes in the prostate, leading to a substantial risk of

undergrading due to poor biopsy localization [GAA15, LS02, KMW09]. As a result, 90% of

patients diagnosed with prostate cancer receive treatment, even though up to 60% of those

patients could be candidates for active surveillance [CC13, DES07, JMC15]. Notably, such

treatment often results in long-term reductions in functional outcomes [DAB12]. In addition,

the biopsy procedure itself can rarely result in adverse events such as hospital admissions

due to infection [RKF13, SKM10, BGS04, NSL13].

2.1.2 Gleason System

Once biopsy cores are retrieved, they are sent for histopathological analysis in order to receive

tissue diagnosis. This assessment is the most critical in determining the final diagnosis and

treatment approach, and is performed by a clinical pathologist who examines the specimen

microscopically in order to assess for metaplastic or neoplastic patterns.

The Gleason grading system is used to provide a standardized assessment of prostate

pathology [GMA74]. This system is designed to categorize the architectural features of

prostate cells based on growth pattern and degree of differentiation. Patterns are graded from

1-5, and for each sample a “primary” and “secondary” score are provided (i.e. “3+4”), with
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the two scores often being added together to create a composite score. Generally, composite

scores range from 6-10 as scores under 6 are usually instead reported as benign [Eps10].

Occasionally, a tertiary score may also be provided if a small area of high grade tumor

is present; this tertiary score is reported alongside the primary, secondary, and composite

scores.

Over the last decade, the ISUP grade group system has been adopted to further categorize

Gleason scores based on risk stratification [EEA15]. This system classifies Gleason scores

into five grade groups (1-5) with increasing risk of cancer mortality with increasing grade

group [BBF16, HCF17]. The grade groups are as follows:

• Grade group 1: Gleason score ≤ 6

• Grade group 2: Gleason score = 3+4

• Grade group 3: Gleason score = 4+3

• Grade group 4: Gleason score = 8

• Grade group 5: Gleason score ≥ 9

The Gleason scoring system and ISUP grade group system are generally the more critical

component of final diagnosis, and are part of the major clinical guidelines for prostate cancer

staging and treatment [Nat15]. The Gleason system can, however, suffer from poor inter-

rater reliability [BEM08]. Additionally, the Gleason grade assigned is only as good as the

sample provided to the pathologist, and as such biopsy results must be interpreted with con-

sideration of the risk of sampling error. A discussion of score “upgrading” on whole-prostate

histopathology vs. prostate biopsy core histopathology is presented in Chapter 3.

2.1.3 Prostate Multiparametric MRI

The use of magnetic resonance imaging in the diagnosis and management of prostate can-

cer has steadily garnered interest due to the limited capability of ultrasound to assess

the prostate. When imaging the prostate, generally multiple different magnetic resonance

imaging (MRI) pulse sequences spanning both anatomic and functional parameters are ac-

quired, including T2-weighted imaging (T2W), diffusion-weighted imaging (DWI), dynamic

contrast-enhanced imaging (DCE), and magnetic resonance spectroscopic imaging (MRSI).

This methodology, multiparametric MRI (mp-MRI), has been studied for targeted biopsy,
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active surveillance, and screening [MYN13, WSG15, CLD15, EPB15, TC12, AAA14, SAM14,

TLP15, AKA14, SNM13].

In the area of targeted biopsy, several major clinical trials have investigated the use of

real-time ultrasound-MRI image fusion to allow for more precise acquisition of biopsy cores

from areas of interest. In this approach, mpMRI of the prostate is obtained, and a trained

abdominal radiologist evaluates the images and highlights one or more regions of interest

(“ROIs”) for suspicion of cancer. The prostate itself is then contoured on MRI, and the

contour and ROIs are then transmitted to the TRUS biopsy workstation. During the biopsy

procedure, the workstation performs a real-time image fusion between the previous MRI and

the current ultrasound view in order to enable the urologist to visualize the ROIs delineated

on MRI within ultrasound space. This allows the urologist to guide the biopsy sampling

needle towards the ROIs and obtain targeted samples (Figure 2.1). Generally, a “combined”

biopsy procedure is performed, in which the standard cores are obtained from the systematic

sampling locations, as well as additional cores from each ROI. A more in-depth discussion

about the choice of sampling targets for MRI-ultrasound targeted biopsy as well as the

relative benefits of targeted biopsy vs. systematic biopsy is presented in Chapter 3.

While this approach can mitigate the risk of missing prostate cancers due to poor biopsy

sampling, it still relies on accurate identification of regions of interest via expert interpre-

tation. In order to perform the procedure, mpMRI of the prostate must be available, as

well as a trained abdominal radiologist, and a biopsy workstation capable of performing

MRI-ultrasound fusion (alternatively, some targeted biopsy procedures are doing entirely

within the bore of an MR scanner, thus eliminating the need for ultrasound and potentially

improving targeting). These requirements, as well as the relative novelty of the approach

and the increased cost, have limited access to the procedure.

Another major area of interest in prostate mp-MRI is the use of imaging to risk stratify

patients, avoiding biopsy in low-risk patients by identifying only clinically significant tu-

mors for further workup [MYN13, WSG15, EPB15, TC12, TLP15, SNM13, CDM12, ME15,

PMR15]. In this paradigm, patients with a positive initial screening test (DRE or serum

biomarker) are referred for mp-MRI. The resulting images would be analyzed and then de-

pending on the computed risk, the patient may be referred for systematic and/or targeted

biopsy, or for active surveillance with serial imaging. For this paradigm to be safe and ef-

fective, mp-MRI must achieve a sufficient negative predictive value for clinically significant

prostate cancer. Based on research over the last decade, the NPV of mpMRI is between 83

and 95% for clinically significant prostate cancer (“csPCA”) [TMA13, MVS17], which has
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Figure 2.1: Example of Targeted Prostate Biopsy. Reproduced from Marks, et al. [MYN13].
a-c) T2, ADC, and DCE images from mpMRI scan obtained from patient in advance of biopsy,
with radiologist-defined region of interest designated by arrows. d-e) Schematic diagram of biopsy
device with ultrasound probe being used to collect cores from the region of interest. f) Whole-
mount histopathology specimen from radical prostatectomy with lesion associated with MR lesion
of interest outlined by pathologist.
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enabled the development of clinical guidelines for active surveillance.

One major limitation of mp-MRI identified in the literature is the poor to moderate

inter-reader reliability for identifying potentially clinically significant cancers on mp-MRI

outside of a small set of major academic medical centers with experience in prostate MRI

[RGC16, GSL19]. In addition, reliability amongst experts may be poor specifically for DCE-

MRI. A potential driver of these limitations is the difficulty of interpreting the raw images,

which requires “cognitive” fusion of several modalities and temporal data in the context of

relatively few voxels for analysis.

2.1.4 PI-RADS

In order to provide a standardized assessment of prostate mpMRI, the Prostate Imaging

Reporting and Data System (PI-RADS) was developed [TRH19, BWV16, DAA11, BRC12].

This system is designed to categorize focal prostate nodules seen on MRI based on the level of

suspicion for cancer, with standardized criteria for assigning a score between 1 and 5 as suspi-

cion of cancer increases. The system is periodically updated to improve the standardization

and utility of the categorization, and in addition to scoring criteria also provides standard

image acquisition parameters, as well as terminology for referring to prostate findings. The

scores are defined as follows:

• PI-RADS 1: Clinically significant cancer is highly unlikely to be present.

• PI-RADS 2: Clinically significant cancer is unlikely to be present.

• PI-RADS 3: The presence of clinically significant cancer is equivocal.

• PI-RADS 4: Clinically significant cancer is likely to be present.

• PI-RADS 5: Clinically significant cancer is highly likely to be present.

The scores integrate information from multiple imaging parameters, including T2-weighted,

diffusion-weighted (using an ADC map based on high b-value DWI), and dynamic contrast-

enhanced (DCE, also known as “perfusion-weighted”). Different criteria are used for lesions

in the peripheral zone and the transition zone; in the peripheral zone the diffusion-weighted

images are the primary factor, and in the transition zone, the T2-weighted images are the

primary factor. In both zones, DCE images are used only to differentiate between images

with intermediate scores based on the primary factor, with focal and early enhancement

being the factor contributing to higher score.
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2.1.4.1 UCLA Score

Before the release of the PI-RADS v2 scoring system, a quantitative PI-RADS v1 based

scoring system was developed and used at UCLA. This system used the PI-RADS v1 criteria

to assign individual parameter scores, and then used the formula (T2W + 2*ADC + DCE -

0.25*TZ)/4, where T2W, ADC, and DCE were the single-parameter scores, and TZ was 1 if

the lesion was in TZ and 0 if not. After the release of PI-RADS v2, a retrospective assessment

was performed to compare the performance of the UCLA score against PI-RADS v2 and

found similar performance for prostate cancer detection, grading and staging [MBH19].

2.2 Deep Learning

2.2.1 Convolutional Neural Networks

Deep convolutional neural networks (CNNs) have been shown to outperform other learning

systems models (such as shallow perceptrons, support vector machines, regression, and k-

means clustering) in large-scale image classification tasks [LTT15, SZ14, KSH12, DCM12,

MKS15, RDS15, CBG14, JTL15, HZR15, SZ15, EKN17, CAL16, IPK18].

CNNs are extensions of traditional deep neural networks comprised of a hierarchy of

functional layers classified into different possible types, including convolutional, non-linear

activation, pooling, and fully-connected.

In a convolutional layer, each neuron in the layer is only connected to a subset of its

input (such as a 3x3 region, or “patch,” out of a 21x21 input matrix) at a time. This is

the “receptive field” of that particular neuron. The learned weights for these neurons are

tied together such that there is a fixed number of sets of weights (the “filters”) that are

applied to every patch in the input. The result of this operation is an output set consisting

of a map of the outputs of each filter upon each patch, referred to as the layers “feature

map.” Each convolutional layer will learn filters that represent a high-level feature over

the output of the previous layer. This approach allows for the filters to be shared across

all of the possible locations (i.e. receptive fields) for the entire image, which reduces the

number of parameters vs. a fully connected network and enables the creation of a shared,

hierarchical representation of learned information. This approach is optimized for input

data with meaningful location-independent “spatial”-type relationships within each sample,

such as natural images (i.e. an “edge” is a spatial-type relationship which is independent of

location).
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A non-linear layer takes the output of a layer and applies a non-linear “activation func-

tion” in order to introduce non-linearity to the network, allowing it to capture more complex

functions [HZR15, GBB11, HN10]. Commonly used nonlinearities include sigmoid, tanh, and

ReLU.

A pooling layer takes patches from input values and groups them together via a mathe-

matical operation, such as “max” or “mean.” The result is a smaller output layer that also

represents features in a more translation-invariant manner. For example a 2x2 max-pooling

layer might take an input of size 4x4, and return a 2x2 matrix that consists of the maximum

element of each 2x2 submatrix of the input.

A fully-connected layer is a traditional neural network layer in which every input neuron is

connected to every output neuron, allowing for complex dependencies across the input to be

learned. These layers are generally used at the end of a network that produces classifications

in order to condense all of the learned features into set of outputs, and to enable input of

related non-imaging information (i.e. to combine other features such as age or test results

with an imaging result).

Regularization layers, such as dropout [HSH14] and batch normalization [IS15] are used

to avoid overfitting and thus improve generalizability. These layers generally work through

explicitly or implicitly penalizing coefficients in order to incentivize models to learn sparse

representations of learned information. Dropout is an implicit regularizer that randomly

(with some specified probability) selects nodes for each and removes them. The resulting

randomly sparse activations encourage the network to learn a sparse representation. Batch

normalization is also an implicit regularizer that normalizes its inputs for every batch in

order to reduce internal covariate shift. As a side effect, with small batch sizes a large

number of separate normalizations occur per epoch, essentially adding different noise to

each batch. This reduces the information content per batch, which incentivizes a sparse

model representation.

CNN models are often based on popular architectures which have been demonstrated

for image analysis in the literature. These architectures include AlexNet [KSH12], ResNet

[HZR16], DeepLab [CPK16], U-Net [RFB15], and many more.

2.2.1.1 U-Net

The U-Net [RFB15] and 3D U-Net [CAL16] are examples of “fully convolutional” CNNs,

which have an output shape equal to the input shape. These networks use a encoder-
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decoder pattern, in which serial encoders are first used to create an embedding of the input

sample using chains of convolutional layers followed by pooling layers and activation layers

(the downslope of the “U”). After the encoders have processed the input, the resulting

intermediate output has low spatial resolution and high context and information density.

This intermediate output is then fed through a series of decoders, which consist of up-

convolutional layers followed by convolutional layers. In order to restore access to spatial

information, “skip”-connections are used. At each decoder level, the intermediate output

of the encoder at the same level is concatenated onto the input from the previous up-

convolution before being input into the convolutional layers at that level. This combination

of high context information with high localization information can enable higher performance

from the network (Figure 4.1).

2.3 Machine Learning in Prostate

2.3.1 Organ Segmentation

Automated prostate segmentation is an active area of research, and substantial published

work exists on the development of machine learning models for the purpose. However,

these state of the art prostate segmentation algorithms [JXS19, JYF21, WLT19, TLZ20,

WWW21, ZWY20] are often trained on small research-quality annotated datasets curated

specifically for machine learning. Examples include the 100 patient Prostate MR Image Seg-

mentation (PROMISE12) challenge dataset [LTV14] and the 60 patient NCI-ISBI (National

Cancer Institute International Symposium on Biomedical Imaging) Automated Segmen-

tation of Prostate Structures (ASPS13) challenge dataset [Blo15]. Other algorithms have

been trained on institutionally developed local datasets that include between 100 and 650

studies [SZH20, CLR19, CZB17, SHS21]. Unfortunately, the development of research-quality

prostate boundary annotations is challenging. For example, for the PROMISE12 dataset,

segmentations were created by an experienced radiologist, verified by a second experienced

radiologist, and then re-annotated by a third nonclinical observer – a complex and expensive

process. This is necessitated by the fact that interrater reliability for prostate segmen-

tation is poor to moderate and current commercial software-based tools perform poorly

[GOM12, BMF18]. The performance of the deep learning-based models described above

hovers around 0.9 Dice coefficient, which may be the upper limit due to the inherent un-

certainty in the “true” segmentation. An in-depth discussion about deep learning-based

prostate segmentation can be found in Chapter 4.
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2.3.2 Lesion Detection and Characterization

2.3.2.1 Detection

Lesion detection models predict the presence of cancer (either any cancer, or clinically sig-

nificant prostate cancer, generally considered to be grade group /geq 3) from an input MRI

volume. Because these models do not require a radiologist’s interpretation before use, they

have significant potential in increasing access to MR evaluation of the prostate and MR-

targeted biopsy, as well as the potential to lower cost and improve consistency of MR-based

interpretation. Though no lesion detection computer-aided diagnosis tools have yet transi-

tioned to the clinic, a significant body of research exists in the area.

Many efforts in CAD have focused on voxel-based feature generation using support vector

machines, manually engineered features and statistics, and deep learning [LWT13, WBT14,

PBV07, VBG08, VBR09, MAB11, SKP11, VBK12, HVH13, LTG17, TLR17, SLT18]. These

voxel-based features are then used to produce a volume-level prediction using an aggregation

methodology. For example Lay et al. [LTG17] produce a voxel-wise cancer prediction over

the prostate volume, and then aggregate these predictions into cells of 3mm x 3mm x 3mm

and then measure the 90th percentile cancer scores in each score to determine whether to

designate the cell as positive for cancer or not. Based on this methodology, their random

forest model achieves a cancer detection AUC of 0.93 using a dataset of 224 cases and T2,

ADC, and high b-value volumes. In follow-on work, the team found that the use of deep

learning-based edge detection models improved their performance to 0.97 [SLT18, TLR17]

on the same dataset.

Alternatively, Xu et al. [XBA19] use a “hit-or-miss” methodology, in which the model is

evaluated by determining if any voxels over the 90th percentile cancer scores overlap with

voxels designated as cancerous by a radiologist. Using this approach, their deep residual net

model achieves a cancer detection AUC of 97% using a dataset of 346 cases and T2, ADC,

and high b-value volumes.

2.3.2.2 Characterization

Lesion characterization models predict information about a prostate cancer when input an

MRI volume as well as the localization of a lesion within the volume (i.e. a point or region

of interest). Thus, they differ from the detection problem in that a radiologist must evaluate

the image and highlight suspicion and cannot be used on undifferentiated images. Despite
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this limitation, characterization models are of considerable interest, in part because of the

limitations inherent in current methods for accurate characterization of lesions from MRI; as

described above, the most widely used methodology for manual characterization of the risk

level of MRI-visible lesions is the PI-RADS v2.1 system, which can suffer from inconsistency

in some settings and has highest performance as a negative predictor [WMA20, MAL20,

MSS15, GGG19, BDS20, PBB17].

Significant advancement in lesion characterization was driven by the ProstateX-1 and

ProstateX-2 [AHD18] grand challenges, which provided approximately 180 mpMRI scans

with a spatial indicator of the locus of cancer suspicion within the lesion and the biopsy-

proven Gleason grade group. A wide variety of papers have investigated prediction of lesion

character (generally dichotomized as grade group ≥ 3), including deep learning-based meth-

ods [SZY18, STK17, KXW15, CHL19, MSG17, LZF17, WLC18, LBK15]. For example, Yang

et al. [SZY18] obtained an AUC of 0.94 using a VGGNet-based deep learning model.

2.3.3 Challenges in Interpretation

One challenge in interpreting the literature of ProstateX-based models (and generally for

all challenge dataset-based models) is the inherent “meta-overfitting” that occurs with the

release of serial models over time. This issue is a generalization of the machine learning data

leakage problem. In order to avoid data leakage on an individual experiment level, data is

often split into “training,” “validation” and “test” sets. The training set is used to train

models, the validation set is used to optimize over hyperparameters (i.e. model design),

and the test set is used to perform a final evaluation. This ensures that the model is not

inadvertently fit to the test set through hyperparameter optimization (i.e. by choosing a

model design that happens to work particularly well for that specific test set). During the

course of a challenge period, the test set is generally withheld in order to avoid fitting models

to the test set and final evaluation is performed at the end of the challenge. However, after

the completion of a challenge and the release of the test set, subsequent published models

are necessarily published because of their favorable performance on the test set. This may

over time lead to upward trending performance statistics that may in part be due to the

gradual fitting of model design to the test set generated by the publication solely of models

that perform well on that set. This “meta-overfitting” makes comparison of “best-in-class”

challenge results to results from separate datasets difficult.
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CHAPTER 3

Optimizing Spatial Biopsy Sampling for the Detection

of Prostate Cancer

3.1 Overview

The current gold standard for prostate cancer diagnosis involves a targeted biopsy of suspi-

cious MRI regions of interest combined with a systematic template biopsy; together, they

form a combined biopsy procedure consisting of, at our institution, an average of 17 retrieved

biopsy cores.

When compared to MRI-targeted biopsy, systematic biopsy has been shown to detect

higher rates of clinically insignificant cancer, defined using the International Society of Uro-

logical Pathology (ISUP) prostate cancer grading system as grade group 1, and lower rates

of clinically significant cancer, defined as grade group ≥ 2 (these same grade group desig-

nations are used in this study) [KRB18, EFK19]. Nevertheless, combined biopsy is widely

recommended since studies have shown that in 14-16% of patients who underwent both pro-

cedures and received a csPCa diagnosis, the csPCa was detected by systematic biopsy alone

[HWM19, RPR19].

The combined biopsy approach requires obtaining significantly more biopsy cores than

either systematic biopsy or MRI-targeted biopsy alone, increasing the cost, length, and

discomfort of the procedure as well as the risk for sepsis, hematospermia, and pelvic and

perineal pain [SKM10, BGS04]. In order to reduce these risks, it is prudent to retrieve the

minimal number of biopsy cores required to adequately assess the patients current cancer

status.

Although a precedent has been set establishing combined biopsy as the most robust

prostate biopsy protocol [AWR20], no study to date has rigorously investigated the spatial

The work described in this chapter was published as: Raman AG*, Sarma KV*, Raman SS,
et al. Optimizing Spatial Biopsy Sampling for the Detection of Prostate Cancer. J Urol. 2021.
doi:10.1097/ju.0000000000001832. * indicates equal contribution.
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relationship between systematic biopsy cores and MRI targets using the measured locations

of obtained cores. As a result, little evidence is available to guide the determination of the

optimal total number and location of biopsy cores that should be obtained from a patient;

instead, most attention has been focused on determining the appropriate number of cores

sampled from each ROI in the targeted biopsy component [TFS20, KRR18, SDT20, LSG19].

Tschirdewahn et al. used a retrospective analysis to examine the use of a targeted satu-

ration biopsy strategy in which biopsies were taken only from the MRI target and adjacent

areas [TWB20], an approach suggested in some scenarios by the Prostate Imaging Report-

ing and Data System (PI-RADS) committee [PWR19]. This analysis found that restricting

sampling to targeted locations within ROIs and systematic biopsy locations within adjacent

Ginsburg sectors (which segment the prostate into zones from which each systematic biopsy

should be sampled [KWC13]) was superior to targeted or systematic biopsy alone. How-

ever, the true biopsy retrieval coordinates were not available to enable a complete analysis

of the relationship between distance and yield. In addition, without prostatectomy data,

upgrading and downgrading rates could not be assessed, making a full sensitivity assessment

impossible.

In this study, we propose a biopsy site selection strategy which we refer to as “regional

targeted biopsy” (RTB). This strategy optimizes the selection of additional biopsy sites

by focusing on regions of the prostate located within the two-centimeter penumbra of a

radiologist-designated ROI with a high suspicion index (i.e. PI-RADS score). Prior work

that places MRI underestimation of prostate cancer tumors when compared to whole mount

at a median of 13.5 mm per tumor, along with clinical intuition from the urologists and

radiologists involved in this study helped inform the decision of using a 2-cm margin as the

basis for constructing a RTB [PNK17]. A sensitivity analysis of this threshold choice is

provided. We hypothesized that this strategy would achieve equivalent detection rates for

clinically significant prostate cancer while requiring the retrieval of fewer biopsy cores.

In order to evaluate the potential impact of this strategy, we retrospectively calculated

the results of an RTB by discarding cores obtained from combined biopsy that are located

outside of the two-centimeter ROI penumbra. This location assessment was enabled using

a retrospective sensor fusion approach that provides the three-dimensional localization of

each retrieved biopsy core within the prostate. We compared both csPCa detection rates

across our entire cohort and grade group upgrading and downgrading rates of a subcohort

who underwent radical prostatectomy across four different protocols: systematic biopsy,

MRI-targeted biopsy, combined biopsy, and RTB.
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3.2 Materials and Methods

3.2.1 Study Inclusion and Exclusion Criteria

We retrospectively collected data from a cohort of patients at our institution who underwent

standardized 3 Tesla multiparametric MRI followed by standardized MRI-ultrasound fusion

combined (both systematic and targeted) biopsy using spatially localized targets on a single

system with specialized fusion software (Artemis and Profuse; Eigen Inc, Grass Valley, Cali-

fornia) between 2011 and 2018. Patients were included regardless of how many biopsies they

may have had previous to the study period or their Prostate Specific Antigen (PSA) value;

however, for patients with repeat biopsies during the study period, only the first biopsy

session was included for analysis. To ensure a fair comparison of cancer detection rates, we

chose to include only the subset of patients who received at least 10 systematic biopsy cores.

This minimum threshold of 10 systematic cores was consistent with recommendations from

the European Association of Urology and others [MBB17, Pre03, HWS19]. All MRI lesions

were graded by one of three experienced genitourinary radiologists (SR, DL, and EF with

22, 29, and 5 years of domain-specific experience respectively) using a published institutional

score for lesions graded between 2011 and 2014 and the PI-RADS version 2 score for lesions

graded between 2015 and 2018 [SNM13]. The institutional score is a 1 to 5 Likert score

based on quantitative metrics that has been shown to have a similar csPCa detection rate to

PI-RADS version 2 [MBH19]. Patients were excluded from analysis if their biopsy procedure

was performed under a clinical trial protocol to avoid confounding from protocol differences,

and were also excluded from analysis if real-time positional data was corrupt or unavailable

for one or more of their biopsy cores.

3.2.2 MRI and Biopsy Protocols

As a part of routine clinical interpretation, MRI target ROI contours were drawn on axial

T2-weighted scans by one of three experienced genitourinary radiologists using commercially

available annotation software (DynaCad; Invivo-Philips, Gainesville, Florida). To maximize

specificity, the clinical annotation protocol required ROI margins to be drawn tightly around

suspicious targets. These MRI annotations were then transferred to the MRI-ultrasound

fusion device to enable the biopsy procedure. During the procedure, real-time sensor fusion

was used to determine the three-dimensional spatial coordinates of the tip and base of each

individual biopsy core retrieved, including both targeted and template cores. Patients were

anesthetized using a periprostatic nerve block of 20cc 1% xylocaine, and all cores were
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retrieved by a single urologist (LSM) with 10 years of fusion biopsy experience.

Computerized targeting guidance was provided for both systematic and targeted cores.

For systematic cores, a target marker was designated on the procedural console and the

operator retrieved a core from the designated location. For targeted cores, a radiologist-

delineated ROI was displayed on the procedural console, and the operator retrieved cores

from the ROI. Our combined biopsy protocol uses the “target + standard” approach for

all biopsies, wherein targeted cores were taken before systematic cores. All cores that were

intended to be targeted at an ROI were designated as targeted cores and all cores that were

intended to be systematic were designated as such, regardless of their position relative to

the ROI. Cores were taken every 5 mm along the longest axis for irregularly-shaped ROIs,

and in a cross-hair pattern for regularly shaped ROIs. The standard minimum number of

cores per ROI was 2, though a single patient in our dataset received 1 core for their ROI.

All retrieved biopsy cores were interpreted by a subspecialized group of genitourinary

pathologists with 5-15 years of experience in prostate cancer interpretation and assigned

Gleason scores and grade groups [EEA15]. For the purposes of this study, clinically significant

prostate cancer included any biopsy core assigned a ISUP grade group of 2 or higher.

3.2.3 Biopsy Distance Calculations

For each patient, the three-dimensional spatial coordinates corresponding to each biopsy core

were retrieved. We then linearly interpolated 30 points between the tip and base to represent

the three-dimensional trajectory of the retrieved core. The distance between a targeted or

systematic biopsy core and an ROI was determined by both a distance from the edge of

the ROI and the distance from the centroid of the ROI. If multiple ROIs were present, the

smallest distance of the core to any ROI was used.

To determine an individual biopsy cores distance from the edge of an ROI, we first used

the ray-casting algorithm to determine if the core intersected the ROI [Rot82]. A distance

of 0 was assigned to biopsy cores intersecting the ROI, while the shortest three-dimensional

distance between the set of points representing the biopsy core and ROI margin was assigned

to biopsy cores not intersecting the ROI. In addition to the distance from the edge, we

computed the shortest three-dimensional distance between each core and the ROI centroid

as an alternative distance metric.
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3.2.4 Statistical Methods

To compare the cancer detection rates of systematic biopsy, MRI-targeted biopsy, combined

biopsy, and RTB, as well as subsequent whole-mount grade group upgrading and downgrad-

ing of each of these methods, the two-tailed, two-proportion z-test was used. All tests were

evaluated at a significance level of p < 0.05.

3.3 Results

3.3.1 Patient Cohort

The initial study cohort included 1,705 patients. We excluded 239 patients with fewer than 10

systematic biopsy cores, 233 patients who participated in the Prospective Assessment of Im-

age Registration for the Diagnosis of Prostate Cancer) PAIREDCAP clinical trial [EFK19],

and 262 patients due to missing biopsy core positional data. The final study cohort included

971 patients who underwent 3 Tesla multiparametric MRI and MRI-ultrasound fusion biopsy

between April 2011 and December 2018 (Figure 3.1) with an average age, PSA level, and

prostate volume of 64.5 ± 7.4 years, 8.4 ± 7.9 ng/ml, and 49.9 ± 24.2 cm3, respectively

(Table 3.1). The average ROI volume was 0.9 ± 2.2 cm3, and when the ROI volume was

expanded by 2 cm, the average expanded ROI volume was 26.4 ± 9.0 cm3.

Table 3.1: Clinical and Demographic Information for both Patient Cohorts. Average
age, PSA, prostate volume, and number of targeted, systematic, combined biopsy, and simulated
regional targeted biopsy cores are presented with their standard deviations. All other values are
presented with their corresponding percentage of the cohort listed in parentheses. RT = regional
targeted, ROI = region of interest, csPCA = clinically significant prostate cancer.

Attribute All patients (N = 971) Prostatectomy (N = 102)

Age (years) 64.5± 7.4 62.2± 6.1

Race

Caucasian 616 (63.4%) 72 (70.6%)

Asian 54 (5.6%) 6 (5.9%)

African American 37 (3.8%) 4 (3.9%)

Hispanic 22 (2.3%) 3 (2.9%)

Native American 1 (0.1%) 0

Mixed 1 (0.1%) 0

Other 19 (2.0%) 2 (2.0%)
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Attribute All patients (N = 971) Prostatectomy (N = 102)

Unknown 221 (22.8%) 15 (14.7%)

PSA (ng/ml) 8.4± 7.9 8.2± 6.8

Prostate Volume (cm3) 60.8± 29.1 46.5± 18.1

ROI Volume (cm3) 0.9± 2.2 0.7± 0.9

RT ROI Volume (cm3) 26.4± 9.0 23.4± 7.3

Maximum ROI Score

3 415 (42.7%) 34 (33.0%)

4 380 (39.1%) 37 (36.2%)

5 176 (18.1%) 31 (30.4%)

Previous Biopsy

No Previous Biopsy 309 (31.8%) 39 (38.2%)

1 Previous Biopsy 413 (42.5%) 41 (40.2%)

> 1 Previous Biopsy 246 (25.3%) 22 (21.6%)

Unknown 3 (0.3%) 0

Number of

Targets 1.3± 0.6 1.4± 0.6

Targeted Cores 5.0± 1.9 5.2± 1.9

Systematic Cores 11.9± 1.1 11.6± 0.9

Combined Biopsy Cores 17.0± 2.0 16.8± 1.9

RT Cores 13.2± 1.5 13.8± 3.5

csPCa Targeted Cores 1.0± 1.7 2.0± 1.7

csPCa Systematic Cores 0.5± 1.2 1.2± 1.4

csPCa Combined Cores 1.6± 2.5 3.2± 2.6

csPCa RT Cores 1.5± 2.5 3.1± 2.6
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Figure 3.1: Patient Exclusion Criteria. The initial study cohort of 1,705 patients underwent
combined biopsy at our institution. Patients were excluded if they received a systematic biopsy
with fewer than ten cores, if they were subjects in the PAIREDCAP trial, or if they were missing
coordinates for one or more biopsy cores. The primary distance analysis set therefore includes 971
patients. Among these 971 patients, 102 underwent prostatectomy less than a year after biopsy
and were included in the prostatectomy subset.
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Of these 971 patients, 117 patients underwent prostatectomy after biopsy, and 855 were

placed on active surveillance or received other medical treatment. For our prostatectomy

subset analysis, we excluded 15 patients whose biopsies occurred more than a year before

prostatectomy, yielding a final prostatectomy subcohort of 102 patients. This one-year cutoff

was chosen to align with our active surveillance protocol, in which repeat biopsy is not

generally performed less than 12 months after the previous biopsy.

3.3.2 Biopsy Core Distance Analysis

In the primary analysis cohort of 971 patients, 16,459 cores were obtained, including 13,515

no cancer cores, 1,409 grade group 1 cores, 941 grade group 2 cores, 243 grade group 3 cores,

168 grade group 4 cores, and 183 grade group 5 cores. The cumulative proportion of cores

with csPCa as a function of distance from the ROI is shown in Figure 3.2.

3.3.3 Biopsy Prostate Cancer Detection Rates

The cancer detection rates of different regional target penumbra sizes, as well as the number

of cores saved for each size are shown in Table 3.2. Systematic, MRI-targeted, combined,

and RTB (defined with a chosen 2 cm margin around the ROI) detected csPCa in 27.0%

(262/971), 38.3% (372/971), 44.8% (435/971) and 44.0% (427/971) of patients, respectively.

Although combined biopsy detected significantly more patients with csPCa compared to

systematic and MRI-targeted biopsy (p < 0.001 and p = 0.004, respectively), it detected

a similar number of patients with csPCa to RTB (p = 0.71). The RTB approach resulted

in a 22.1% (3,644/16,459) decrease in the overall number of biopsy cores (an average of 3.8

cores per patient) when compared to combined biopsy (Figure 3.3, Table 3.1). MRI-targeted

biopsy utilized an average of 3.97 cores per ROI while RTB, which expanded the ROI size,

utilized an average of 10.58 cores per ROI.

The cancer detection rates of RTB, MRI-targeted, and systematic biopsy were addi-

tionally stratified by PI-RADS score and compared to combined biopsy (Table 3.3). RTB

maintained a cancer detection rate above 95% (with the number of csPCa cases found by

combined biopsy used as ground truth) for PI-RADS 3, 4, and 5 cases while MRI-targeted

biopsy improved steadily from 74.5% to 85.7% to 93.3% for PI-RADS 3, 4, and 5 respectively.

Systematic biopsy, MRI-targeted biopsy, combined biopsy, and RTB detected only cancer-

negative cores in 434/971 (44.7%), 446/971 (45.9%), 323/971 (33.3%), and 353/971 (36.4%)

patients, respectively and detected at most grade group 1 cancer in 275/971 (28.3%), 153/971
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Figure 3.2: Cancer Capture with Distance from the ROI. The proportion of cores found
within varying distances of the edge of the closest ROI and the centroid of the closest ROI is shown,
stratified by grade group. 94.2% and 97.0% of grade group 2 or higher cores are found within 1.5
cm and 2 cm of the edge of the ROI, respectively. 86.8% and 92.7% of grade group 2 or higher
cores are found within 1.5 cm and 2 cm of the ROI centroid, respectively.
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Table 3.2: Cancer Detection Rates of RTB with Varying Penumbra Size. The cancer
detection rates of regional targeted biopsy with an increasing ROI margin is shown, along with the
average number of cores saved relative to combined biopsy. The P-value represents the results of a
two-proportion z-test comparing the cancer detection rate of each regional targeted biopsy method
with combined biopsy. RTB = regional targeted biopsy, csPCa = clinically significant prostate
cancer.

RTB
Penumbra
Distance

(mm)

Patients
with csPCa

Found

Proportion of Total
csPCa Patients

Detected

Average Number of Fewer
Cores Relative to
Combined Biopsy

p-val for
RTB vs.

Combined

5 396 0.91 9.658 0.074
10 413 0.949 7.45 0.314
15 421 0.968 5.501 0.522
20 427 0.982 3.753 0.715
25 432 0.993 2.211 0.891
30 434 0.998 1.064 0.964
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Figure 3.3: Expanded Three-Dimensional ROI for Regional Targeted Biopsy. Three-
dimensional representation of a patients prostate with the original (left) radiologist-derived ROI
(maroon) and regional target (right) covering 20 millimeters (mm) in all directions from the edges
of the ROI.
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Table 3.3: Cancer Detection Rates of RTB, MRI-targeted, Systematic, and Combined
Biopsy by PI-RADS Score. The number of csPCa cases found by each of the four biopsy
methods discussed are stratified by PI-RADS scores. The number in parentheses shows each biopsy
methods number of csPCa cases detected as a percentage of the total number of csPCa cases
detected by combined biopsy for that PI-RADS score.

PIRADS RTB Targeted Systematic Combined

3 105 (95.5%) 82 (74.5%) 69 (62.7%) 110 (100%)
4 173 (98.9%) 150 (85.7%) 111 (63.4%) 175 (100%)
5 149 (99.3%) 140 (93.3%) 82 (54.7%) 150 (100%)
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(15.8%), 213/971 (21.9%), and 191/971 (19.7%) patients, respectively. Combined and RTB

detected only cancer-negative cores in a similar number of patients (p = 0.15) but signif-

icantly fewer than MRI-targeted and systematic biopsy (p < 0.001). Systematic biopsy

detected significantly more grade group 1 prostate cancer compared to combined, MRI-

targeted, and RTB (p = 0.001, p < 0.001, p < 0.001, respectively).

3.3.4 Locations of Positive Biopsies Outside MRI Targets

In 63 of 971 patients (6.5%) csPCa was detected only on systematic biopsy. In 8 of these 63

cases (12.7%), a systematic core that detected csPCa was greater than 2 cm from an MRI

target (i.e. outside the regional penumbra). Every csPCa systematic core found for these 8

patients was of grade group 2. Of the 63 patients for whom systematic biopsy alone found

csPCa, 18 had bilateral or midline targets and 45 had unilateral targets. Within the set of

45 patients with unilateral targets, csPCa was detected only ipsilateral to the target in 25

patients (55.6%), only contralateral to the target in 16 patients (35.6%), and both ipsilateral

and contralateral to the target in 4 patients (8.9%). Entirely omitting contralateral biopsy

would have thus missed csPCa in 16/971 patients (1.6%). The locations and grade groups

of the positive cores found outside of unilateral MRI targets are shown in 3.4.

Table 3.4: Grade Groups of Positive Cores Found Outside Unilateral MRI Targets.
Positive core counts in each group are presented; all cores originate from the 45 patients who had
only ipsilateral MRI targets and positive cores outside of those targets. Four of these patients
had both ipsilateral and contralateral positive cores, which have been allocated to the appropriate
columns.

Gleason Group Ipsilateral Lesions (N = 37) Contralateral Lesions (N = 25)

Group 2 28 23
Group 3 4 2
Group 4 4 0
Group 5 1 0

3.3.5 Whole Mount Histopathology Analysis

For the subcohort of 102 patients who underwent robotic prostatectomy and MRI-sectioned

axial whole mount histopathology within a year of combined biopsy, 20.6% (21/102) and

12.7% (13/102) of patients were upgraded to grade groups ≥ 2 and ≥ 3, respectively, when

compared to the maximum grade group assigned to any retrieved biopsy core (i.e. any

combined biopsy core, Figure 3.4). When only RTB cores within 2 cm of a target were
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included in the comparison, 25 (24.5%) and 14 (13.7%) were upgraded to grade group ≥ 2

and grade group ≥ 3, respectively. These upgrading rates were not significantly different

when compared to combined biopsy (p = 0.50, p = 0.84, respectively). When the upgrading

results of MRI-targeted biopsy alone or systematic biopsy alone were compared to combined

biopsy, all upgrading rates were significantly higher, except for the grade group 3 upgrading

of MRI-targeted biopsy (19 vs. 13 cases, p = 0.25). Downgrading on whole mount pathology

occurred in relatively few cases without significant differences between biopsy protocols (p >

0.05 for all comparisons).

3.4 Discussion

An ideal prostate biopsy protocol would maximize the detection of csPCa using the fewest

biopsy samples to optimize clinical utility while minimizing morbidity and cost. In this

study, we used a retrospective analysis to evaluate a regional targeted biopsy strategy in

which biopsy cores are only sampled from MRI targets (and their 2 cm margins) with a

PI-RADS-related score of 3 or higher. We found that this optimized strategy performed

similarly to combined biopsy in the detection of csPCa, while requiring significantly fewer

biopsy cores (on average 3.8) per patient and 22% fewer cores overall.

In the entire study cohort, we found that 94.2% and 97.0% of grade group 2 or higher

prostate cancers were detected even if cores retrieved more than 1.5 cm or 2 cm, respectively,

from the edge of the MRI target were removed from consideration. The high csPCa detection

rate of cores in the penumbral region of MRI targets confirms the importance of the MRI-

derived ROI as a hub of csPCa and supports the role of an institutional Likert and PI-RADS-

based ROI scoring system as a predictor of underlying csPCa [RBT17, FNM16, MBS17]. This

study also confirms that MRI-targets that are drawn for specificity can underestimate the

true size and extent of tumor volumes [PNK17, PEV18]. Our analysis of the relationship

between RTB distance thresholds and the resulting cancer detection rates (Table 3.2) may

also have implications for optimal margin size determination for focal therapy.

A major advantage of this study is the use of whole-mount histopathology data to indicate

the ground truth presence of csPCa. We found that the prostate cancer upgrade rates after

prostatectomy for combined biopsy and for RTB did not exhibit a statistically significant dif-

ference, despite the fewer biopsy cores used for the regional strategy. In contrast, systematic

biopsy and MRI-targeted biopsy alone had significantly higher upgrade rates than com-

bined biopsy. This aligns with other studies that show that combined biopsy demonstrates
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Figure 3.4: Upgrading and Downgrading of csPCa Diagnosis After Robotic Prosta-
tectomy. The highest grade group from the biopsy and subsequent prostatectomy grade group
were compared. The upgrading and downgrading of these grade groups for each of the four biopsy
methods is shown, using the whole mount prostatectomy as ground truth.
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the fewest upgrades on prostatectomy compared to systematic and MRI-targeted, and that

MRI-targeted biopsy tends to have fewer upgrades than systematic biopsy [AWR20, DST19].

Ultimately, the results of our whole-mount analysis suggest that a regional targeted biopsy

can be an effective method for maximizing csPCa yield by achieving the sensitivity benefit

of combined biopsy with fewer sampled cores.

One limitation of our work is the retrospective analytic approach we used to evaluate

regional targeted biopsy. In this approach, we censored certain systematic cores based on

a defined distance from the ROI as a stand-in for a true regional targeted biopsy. Thus,

this study cannot establish the prospective efficacy of a true regional targeted biopsy when

compared to combined biopsy. Since systematic biopsy cores were obtained after targeted

biopsy cores, it is also possible that the operators knowledge of the target location may have

influenced the placement of systematic cores. In addition, results are from a single tertiary

institution with genitourinary MRI and pathology expertise, and all biopsy procedures were

performed by a single urologist (LSM) with significant MRI-ultrasound fusion biopsy experi-

ence; as such, our findings may not be representative of those obtained in other care settings.

The real-time sensor fusion approach we used to determine biopsy core locations has a 2-3

mm registration uncertainty, which may have led to inaccuracies in the calculation of biopsy

distances [MYN13]; additionally, the designation of ROIs was done by a single radiologist for

any given patient, and may be subject to inter-reader differences in boundary delineation.

3.5 Conclusions

We found that a regional targeted biopsy strategy had statistically similar sensitivity for

clinically significant prostate cancer as a combined biopsy approach while requiring fewer

cores, outperforming the MRI-targeted and systematic biopsy approaches alone. The success

of the strategy was driven by the propensity of the most significant biopsy cores retrieved

to be in the penumbral region of MRI targets with a PI-RADS-related score of 3 or higher.

These findings can be useful to clinicians when determining the optimal set of biopsy locations

for an individual patient and suggest that the regional targeted biopsy approach should be

further evaluated as an alternative to combined MRI-targeted and systematic biopsy.
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CHAPTER 4

Harnessing Clinical Annotations to Improve Deep

Learning Performance in Prostate Segmentation

4.1 Overview

Prostate segmentation is a component of the routine evaluation of prostate magnetic reso-

nance imaging (MRI) necessary both for surveillance (through volume estimation) as well

as targeted biopsy (to enable registration with real-time ultrasound). In the segmentation

workflow, a clinician (generally a radiologist or urologist) will manually review the slices of

a 3D T2-weighted MR image and produce a contour for each slice. In some workflows, the

radiologist will use a computer-assistance tool, such as DynaCAD Prostate (Invivo-Philips,

Gainesville, Florida) [Inv], to assist in segmentation, either by first producing an approxi-

mate annotation that is then edited by the radiologist, or by providing an assisted drawing

tool that heuristically supports the designation of a contour. Regardless of workflow, seg-

mentation requires a slice-by-slice analysis, which is time consuming, requires the skills of

a specially trained radiologist, and is prone to intra- and inter-reader variability [BCS19].

In addition to the utility of such segmentations for these clinical applications, obtaining a

precise segmentation is critical for supporting image analysis research, as incorrectly assign-

ing image regions may impair trained classifier accuracy, particularly in the case of lesion

detecting classifiers that rely on input prostate segmentations as a component of the input

pathway.

Automated prostate segmentation is an active area of research, and substantial pub-

lished work exists on the development of machine learning models for the purpose. However,

these state of the art prostate segmentation algorithms [JXS19, JYF21, WLT19, TLZ20,

WWW21, ZWY20] are often trained on small research-quality annotated datasets curated

The work described in this chapter is in press as: Sarma KV, Raman AG, Dhinagar NJ, et al. Harnessing
clinical annotations to improve deep learning performance in prostate segmentation. PLOS ONE. 2021.
doi:10.1371/journal.pone.0253829.
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specifically for machine learning. Examples include the 100 patient Prostate MR Image Seg-

mentation (PROMISE12) challenge dataset [LTV14] and the 60 patient NCI-ISBI (National

Cancer Institute International Symposium on Biomedical Imaging) Automated Segmen-

tation of Prostate Structures (ASPS13) challenge dataset [Blo15]. Other algorithms have

been trained on institutionally developed local datasets that include between 100 and 650

studies [SZH20, CLR19, CZB17, SHS21]. Unfortunately, the development of research-quality

prostate boundary annotations is challenging. For example, for the PROMISE12 dataset,

segmentations were created by an experienced radiologist, verified by a second experienced

radiologist, and then re-annotated by a third nonclinical observer – a complex and expensive

process.

If, however, rough clinical annotations could be used to enable training a highly accurate

segmentation model, these issues could be avoided, and substantially more data could be

available. In this study, we train a prostate segmentation model using a large clinical prostate

MRI dataset and rough clinical annotations created as part of the clinical workflow at our

academic medical center. We then explore generalizing that model through refinement with

small datasets, and the impact of original dataset size on generalizability. Finally, to confirm

that it is the prostate specific features in our model that improve generalization rather than

general MR features, we explore the relative utility of using our pretrained prostate model

for as a basis for generalization versus a model pretrained on an MR dataset from brain

cancer patients.

4.2 Materials and Methods

4.2.1 Data

Four retrospective sources of data were used for this project. For training our segmenta-

tion model with our clinical data, we used MRI data collected from patients seen at our

institution during routine clinical procedures. For examining generalization, we made use of

two research-quality prostate MRI challenge datasets. Finally, for determining the relative

utility of using our model trained with clinical data as a pre-trained starter, we made use

of a brain MRI challenge dataset for comparison. All data was used for this work under

the approval of the University of California, Los Angeles (UCLA) institutional review board

(IRB# 16-001087). Informed consent was waived with the approval of the IRB for this ret-

rospective study of medical records, based on institutional guidelines, the fact that the study

involved no more than minimal risk, the fact that the waiver would not adversely affect the
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rights and welfare of study patients, and the impracticality of conducting the retrospective

analysis in which results would not change care already delivered to study patients. Data

used for this study was de-identified after collection and before analysis.

4.2.1.1 Primary Dataset

Our internal clinical population for this study consists of 1,620 MRI studies collected from

1,111 patients who underwent transrectal ultrasound-MRI fusion biopsy (TRUS biopsy)

using the Artemis guided biopsy system (Eigen Systems) between 2010 and 2018 at our

institution using a standardized protocol and 3T magnet (Trio, Verio, or Skyra, Siemens

Healthcare). As part of the protocol, prostate MRIs were contoured in a two-part process.

First, the attending radiologist for the case (the attending radiologists for the patients in-

cluded in this study each had between 10-27 years of experience) created a prostate contour

using the DynaCAD Prostate image analysis platform as part of the routine clinical workflow.

This contour was then used by a technician to re-contour the prostate on the Profuse (Eigen

Systems) platform in order to enable use with the Artemis biopsy system, as DynaCAD

segmentations cannot be directly imported for use on the Artemis.

We retrospectively collected 3D axial turbo spin echo (TSE) T2-weighted images and

prostate contour sets from these studies. T2 images were acquired clinically using the spatial

and chemical-shift encoded excitation (SPACE, Siemens Healthcare) protocol, with field of

view (FOV) 170 x 170 x 90 mm3 and resolution 0.66 x 0.66 x 1.5 mm3. Acquisition parameters

are provided in Table 4.1. Studies were collected from our institutions picture archiving and

communication system (PACS). Corresponding T2 prostate contours were collected from the

Profuse image analysis platform. Imaging data were collected from every available study for

each patient seen at our institution during the study period. Studies were excluded from

retrieval if the T2 image or contour was missing from PACS or corrupt, or if the image

exhibited a protocol deviation, such as a variance in FOV or resolution. A total of 1,620

studies were included from 1,111 patients, and 84 studies were excluded. Of the 1,620

included studies, 29 used an endorectal coil.

4.2.1.2 External Prostate Challenge Datasets

Two external challenge prostate datasets were used for this study: ProstateX-2 [AHD18]

and PROMISE12 [LTV14].

The ProstateX-2 Challenge was a prostate cancer prediction challenge held in 2017. This
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Table 4.1: Imaging acquisition parameters for study datasets. Full acquisition data is
not available for the PROMISE12 dataset, and the counts for images acquired at different field
strengths and resolutions are not available.

UCLA (n=1620) ProstateX-2 (n=99) PROMISE12 (n=50)
Vendor(s) Siemens Siemens Siemens, GE

Field Strength 3T 3T 1.5T, 3T
In-plane resolution (mm) 0.664 0.5 0.25-0.75
Slice thickness (mm) 1.5 3.6 2.2-4.0

TR (ms) 2200 5660 Not available
TE (ms) 201 104 Not available

Endorectal coil used (n, %) 29 (1.8%) 0 (0%) 24 (48%)
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dataset consists of 99 deidentified cases collected from patients seen at Radboud University

Medical Center in the Netherlands. A consistent imaging protocol was used for all cases,

which was significantly different from the protocol used for the primary dataset at our in-

stitution. A variety of images and clinical variables were provided with each case. For use

in our experiments, we retrieved transverse T2-weighted MR images from each case in the

dataset. These images were then annotated with a research-quality prostate contour by

co-author B.T., an experienced abdominal radiologist.

The PROMISE12 Grand Challenge was a prostate segmentation-specific challenge held

in 2012. This dataset includes 50 deidentified cases collected from four different centers

(Haukeland University Hospital in Norway, Beth Israel Deaconess Medical Center in the

United States, University College London in the United Kingdom, and Radboud Univer-

sity Nijmegen Medical Center in the Netherlands). Each institution had unique acquisition

protocols, with wide variability in the MR field strength, endorectal coil usage, and im-

age resolution. Each case consists of a transverse T2 weighted MR image and a reference

research-quality prostate contour produced by agreement of two expert radiologists (one

radiologist at the institution where the image was acquired, and a second radiologist at

Radboud University). Detailed acquisition parameters are not available for this dataset, but

images were scanned at a variety of field strengths (1.5T or 3T), with or without endorectal

coil, and with a variety of acquisition resolutions, pulse sequences, and device manufacturers

[LTV14].

4.2.1.3 Brain Cancer Challenge Dataset

Transfer learning is a often-used approach for accelerating the development of deep learning

models [RZK19]. In transfer learning, a pre-trained model, usually trained on an out-of-

domain dataset such as ImageNet [RDS15], is used to initialize model weights before fine-

tuning on the study dataset. This approach is well-known to improve convergence and

model performance in natural image recognition and medical image analysis by providing pre-

trained feature detection layers. Unfortunately, there is not a commonly accepted pretrained

3D model that could be used in order to facilitate comparison against our domain-specific

clinically annotated data.

As such, in order to provide a non-prostate comparison, the Brain Tumor Segmentation

(BraTS) 2019 [BAS17, MJB15] challenge dataset was also used for this study. The dataset

includes over 300 annotated cases collected from 19 different institutions using a wide variety

of protocols. These cases include T2-weighted images of the brain with tumor segmentations.
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These segmentations were created manually using a multi-step protocol requiring agreement

between multiple raters and final approval by an experienced neuroradiologist. Though

tumor segmentation is a far more complex segmentation task than organ segmentation, this

dataset provided an MRI comparison with a defined 3D segmentation task that could be

leveraged as pretraining for prostate MRI segmentation. The BraTS 2019 data originates

from large number of institutions and includes data collected with a variety of acquisition

parameters; a specific breakdown of these parameters is not available [BRJ18].

4.2.2 Preprocessing

In order to facilitate transportability, we processed images from all three datasets using the

same pipeline. Initial preprocessing was done in Python, primarily using the SimpleITK

toolkit [LCI13], and included bias field correction [TAC10] and resampling to isotropic voxel

size (1mm x 1mm x 1mm) for further processing; these steps were based on preprocessing

done in previous work [CLR19, TAC10, SSR18, GMV15]. After initial preprocessing, we

applied interquartile range (IQR)-based intra-image normalization to address the relative

nature of MR image intensity values (both within and between institutions). Each image

was normalized to the image-level IQR (calculated from the central 128x128 column of the

volume) and then values were clipped between two IQRs below the first quartile and five

IQRs above the third quartile, in order to eliminate outlying values created by imaging

artifacts. The preprocessing pipeline is depicted in Figure 4.1.

4.2.3 Augmentation

For all model training in this study, real-time augmentation using the Batchgenerators pack-

age was performed [IJW20]. Three augmentation transformations were used: 1) random

elastic deformation, 2) random rotation in the range [−π/8, π/8] in the axial plane, and

[−π/4, π/4] along the axis, and 3) random mirroring across the y-axis. After augmentation,

the image was cropped to the central column of the transformed image (i.e. the central

128x128 voxels in the x, y plane), which always contained the prostate for our dataset.

4.2.4 Model, Training and Evaluation

The base model used for this study was the 3D U-Net [CAL16]. For all experiments, the

network was configured with four encoder levels, three decoder levels, a ReLU transfer func-
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Figure 4.1: 3D U-Net Model Diagram and Preprocessing Steps. A) Network diagram
of the 3D U-Net used for this study. Numbers within the ovals represent number of feature maps
at that layer. Connections represent network operations, such as 3x3x3 3D convolution (“Conv”),
2x2x2 max pooling (“Max Pool”), 3x3x3 3D transposed convolution (“Deconv”), skip feature map
concatenation (“Concat”), batch normalization (“BN”), rectified linear unit activation (“ReLU”),
and softmax output (“Softmax”). B) Process diagram of preprocessing steps. Once images were
imported from the archive (either PACS or challenge download), N4ITK bias field correction was
applied. Images were then resampled to 1mm isotropic resolution and IQR normalized. During
training, real-time augmentation was applied to each input image to create the training sample for
that epoch.
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tion and group normalization (using eight groups) following every convolutional layer, and

a softmax output layer. The model architecture is depicted in Figure 4.1. All training and

evaluation was done using the PyTorch framework on a DGX-1 (NVIDIA) deep learning

appliance. Mixed-precision training using the NVIDIA Accelerated Mixed Precision (AMP)

was used at optimization level O2, consisting of 16-bit model weights and inputs, 32-bit

master weights and optimizer parameters, and dynamic loss scaling.

Network inputs consisted of the full augmented image volume (with dimension 128x128x136).

Training was performed using the Adam optimizer with learning rate 10−5 and the soft Dice

loss function. Each epoch consisted of training on a full dataset comprised of one augmented

sample generated for every original input sample.

The primary evaluation metric used to compare segmented volumes was the soft Dice

coefficient function as denoted in Equation 4.1, where SDL is the segmentation of a deep

learning model and Sm is the manual segmentation. The value of the coefficient can range

between 0 (no overlap) and 1 (perfect overlap).

dice(SDL, Sm) =
2|SDL ∩ Sm

|SDL|+ |Sm

(4.1)

The average Hausdorff distance (AHD) was also used as a secondary metric, as denoted

in Equation 4.2, where X is the set of all points within the manual segmentation, Y is the

set of all points within the segmentation of the deep learning model, and d is the Euclidean

distance. The AVD is a positive real number, and smaller numbers denote better matching

segmentations.

ahd(X, Y ) =

1
|X|

!
X minY d(x, y) + 1

|Y |
!

Y minX d(x, y)

2
(4.2)

The evaluation metrics were calculated for whole prostate gland segmentation on the

entire uncropped volume. In addition, each slice of the segmentation mask was split into

three subvolumes: the apex subvolume (consisting of the apical 25% of prostate slices), the

base subvolume (consisting of the basal 25% of prostate slices), and the midgland subvolume

(consisting of the remaining middle 50% of slices); the Dice evaluation metric was calculated

for each subvolume. Means and standard deviations across the entire dataset were reported

for performance on the whole prostate as well as each of the three subvolumes. These were

calculated using the following approach: for each of the five folds, metrics were calculated

for each of the images within the fold using the model trained without that folds data.
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Once the metrics were calculated for every study, the mean and standard deviation of each

metric across all images was computed (including whole-volume and subvolume metrics) and

reported as the evaluation result.

4.3 Experiments

4.3.1 Baseline Models

To establish baseline performance, models were first trained from scratch separately on the

primary dataset, the ProstateX-2 (PX2) data, and the PROMISE12 (P12) data. Training

was performed using five-fold cross-validation (CV) over each entire dataset, with 324 images

per fold. The evaluation metrics were then computed using the approach described above.

4.3.2 Generalizability to Challenge Datasets

To assess the utility of the baseline primary dataset model on the external challenge datasets,

two sets of experiments were done for each dataset. First, the model was used to produce

segmentation mask predictions for each example in the external datasets, and mean scores

were reported for each dataset. Then, the model was refined for each external dataset using

the baseline primary dataset model as the pretrained weight initializer. This refining was

done using five-fold CV over 100 epochs, and validation soft Dice scores were calculated and

reported as in the previous experiments. Results were compared for superiority against the

baseline models using a one-tailed paired t-test, with α = 0.001.

4.3.3 Impact of Dataset Ablation

To assess the impact of the size of the primary dataset on both segmentation performance

and generalizability, a series of ablation experiments were conducted. First, a series of

models was trained using truncated versions of the primary dataset. In these experiments,

the training set for each fold was truncated to a fixed proportion of its original size, from 5%

to 80%. The validation set was not truncated to ensure a fair comparison. Five-fold CV was

again used over 100 epochs. The resulting models were then evaluated using the soft Dice

criterion to determine model performance on the primary dataset. In order to determine the

impact of ablation on generalizability, the resulting models were then refined for 100 epochs

using the PX2 or P12 datasets (without truncation), and then evaluated as in the previous
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experiments. These models were compared for superiority against the baseline models using

one-tailed paired t-tests, with α = 0.001.

4.3.4 Comparison to BraTS Model

In order to assess the relative importance of using the domain-specific primary baseline

model as a pretrained weight initializer, a comparison model was trained using the BraTS

dataset. The BraTS dataset was chosen for the comparison model because of the similar

underlying data (T2-weighted imaging) and 3D nature of the desired output. The BraTS

data was preprocessed using the same pipeline before training as the prostate data, and

the same model architecture and training protocol was used. Five-fold CV was performed

over 150 epochs. The BraTS model was then used as a pretrained weight initializer for

refining PX2 and P12 segmentation models, using the same approach as in the previous

experiments. These models were compared for superiority against the baseline models using

one-tailed paired t-tests, with α = 0.001; additionally, the refined ablation models were

compared against the refined BraTS models for superiority using one-tailed paired t-tests,

with α = 0.001.

4.4 Results

4.4.1 Baseline Models

Training results are shown in Table 4.1; all results are reported as mean ± standard deviation

in tables and text. The primary baseline model achieved a high overall performance, with a

mean overall Dice coefficient of 0.909 ± 0.042 and mean AHD of 0.156 ± 0.231. This result

is comparable to the top performing prostate segmentation models found in the literature.

Example evaluation segmentations for the baseline model on the primary dataset are shown

in Figures 4.2, 4.7, and 4.8. The PX2 and P12 models performed less well, with mean

overall Dice coefficients of 0.702± 0.083 and 0.568± 0.122, and mean AHDs of 0.480± 0.555

and 2.155 ± 2.466, respectively. Across all three models, midgland Dice performance was

the highest (0.762-0.941) and performance on the base and apex regions was more limited

(0.501-0.863). The P12 model was the worst performing across every measure. Performance

measures on a per-sample basis for the PX2 and P12 baseline models are shown in Figure

4.3.
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Table 4.2: Evaluation results for baseline models. PX2 = ProstateX-2, P12 = PROMISE12, AHD
= average Hausdorff distance; results reported as mean ± standard deviation across all images.

Dataset
Soft Dice Coefficients

AHD
Overall Base Midgland Apex

Primary 0.909± 0.042 0.863± 0.095 0.941± 0.030 0.832± 0.094 0.156± 0.231
PX2 0.702± 0.083 0.679± 0.117 0.849± 0.051 0.702± 0.093 0.480± 0.555
P12 0.568± 0.122 0.501± 0.168 0.762± 0.087 0.561± 0.168 2.155± 2.466
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Figure 4.2: Example UCLA baseline model segmentations. The orange contour depicts
ground truth segmentation and the shaded blue area depicts model segmentation. A) Example apex,
midgland, and base slice from a sample in the primary dataset with a high metric on evaluation.
The soft Dice coefficient for this sample was 0.928, and the average Hausdorff distance was 0.085.
Images of all of the slices for this study are presented in Figure 4.7. B) Example apex, midgland,
and base slice from a sample in the primary dataset with a low metric on evaluation. The soft Dice
coefficient for this sample was 0.738, and the average Hausdorff distance was 0.935. Images of all
of the slices for this study are presented in Figure 4.8.
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Figure 4.3: Evaluation metrics for PX2 and P12 datasets. Soft Dice coefficients (A) and
average Hausdorff distances (B) for every sample in the ProstateX-2 (PX2, n=99) and PROMISE12
(P12, n=50) datasets, after model evaluation for the baseline, BraTS, and refined primary baseline
models. Each solid dot represents a single training example. The models trained by refining the
BraTS pretrained model or the baseline pretrained model both exhibited improved performance
and reduced variance on both evaluation metrics, and with the refined primary baseline model
exhibiting the highest performance and lowest variance. Detailed statistics are available in Tables
4.2, 4.3, and 4.5.

45



4.4.2 Generalizability to Challenge Dataset

Results are shown in Table 4.3. For the PX2 dataset, the primary baseline model exhibited

a mean overall Dice coefficient of 0.465±0.291 and AHD of 4.824±5.920 before refining, and

a coefficient of 0.912± 0.029 and AHD of 0.150± 0.192 after refining. For the P12 dataset,

the primary baseline model exhibited an overall Dice coefficient of 0.708 ± 0.210 and AHD

of 1.953± 3.747 before refining and a Dice of 0.852± 0.091 and AHD of 0.581± 1.314 after

refining. Similar to the previous experiments, Dice performance in the midgland region was

higher than that in the base and apex regions for all models. For both datasets, the refined

primary baseline model performed significantly better (p < 0.001) than the baseline model

trained with only the respective dataset across all measures. Though the unrefined UCLA

model performed better on the P12 dataset, after refining, performance was best on the PX2

dataset. Performance measures on a per-sample basis for the PX2 and P12 refined baseline

models are shown in Figure 4.3. Example segmentations before and after refining are shown

in Figures 4.4 and 4.5.

Table 4.3: Evaluation results for retargeted models. * denotes significantly higher than
baseline model, p < 0.001. PX2 = ProstateX-2, P12 = PROMISE12, AHD = average Hausdorff
distance; results reported as mean ± standard deviation across all images.

Refining? Dataset
Soft Dice Coefficients

AHD
Overall Base Midgland Apex

No PX2 0.465± 0.291 0.314± 0.314 0.517± 0.316 0.401± 0.312 4.824± 5.920
Yes PX2 0.912*±0.029 0.851*±0.102 0.949*±0.024 0.849*±0.070 0.150*±0.192
No P12 0.708± 0.210 0.475± 0.317 0.779± 0.215 0.679± 0.221 1.953± 3.747
Yes P12 0.852*±0.091 0.744*±0.207 0.918*±0.046 0.777*±0.134 0.581*±1.314

4.4.3 Impact of Dataset Ablation

Results for these experiments are shown in Table 4.4 and Figure 4.6. We found that model

performance generally increased as the proportion of data used increased, with the primary

model exhibiting an overall mean Dice coefficient of 0.638 at 5% and 0.909 at 100%. Both

the PX2 and P12 models exhibited significantly increased performance (p < 0.001) over their

baseline at all ablation levels. For all three sets of models, the models trained at the 60%

ablation level achieved approximately the eightieth percentile performance.
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Figure 4.4: Example ProstateX-2 segmentations. Orange contour depicts ground truth
segmentation. Shaded blue area depicts model segmentation. The soft Dice coefficient and average
Hausdorff distance metrics were 0.645 and 1.024 for the baseline model, 0.864 and 0.167 for the
BraTS model, and 0.932 and 0.079 for the refined primary baseline model.
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Figure 4.5: Example PROMISE12 segmentations. Orange contour depicts ground truth
segmentation. Shaded blue area depicts model segmentation. The soft Dice coefficient and average
Hausdorff distance metrics were 0.536 and 2.974 for the baseline model, 0.678 and 0.291 for the
BraTS model, and 0.910 and 0.102 for the refined primary baseline model.
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Table 4.4: Model performance using ablated primary dataset. Reported metric is over-
all soft Dice coefficient. * denotes significantly higher than baseline model, p < 0.001. PX2 =
ProstateX-2, P12 = PROMISE12, FT = fine-tuned, results reported as mean across all images.

Model 5% 10% 15% 20% 40% 60% 80% 100%
Primary 0.638 0.754 0.775 0.825 0.883 0.901 0.906 0.909
PX2 FT 0.740* 0.814* 0.829* 0.861* 0.899* 0.907* 0.909* 0.912*
P12 FT 0.625* 0.721* 0.727* 0.781* 0.831* 0.848* 0.842* 0.852*
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Figure 4.6: Soft Dice coefficients for models trained with ablated dataset. Soft Dice
Coefficients for models trained using the ablated primary dataset (“Primary”) or trained using an
ablated primary model as weight initializer (“FT”). PX2 = ProstateX-2, P12 = PROMISE12, FT =
fine-tuned. Significant improvements can be seen in the performance of the fine-tuned models at 5%
of the primary dataset used for training the ablated primary baseline model, with the performance
benefits leveling out at 60% of the dataset.
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4.4.4 Comparison to BraTS Model

The results of these experiments are shown in Table 4.5. The final overall soft Dice coefficient

of the resulting model on the BraTS segmentation task was 0.591. When refined on the PX2

dataset, the mean overall soft Dice coefficient was 0.834, and the AHD was 0.299 ± 0.465.

When refined on the P12 dataset, the mean overall Dice coefficient was 0.704, and the AHD

was 1.428 ± 2.603. In both cases, the refined BraTS model significantly outperformed the

baseline model across all measures (p < 0.001), but was outperformed by the ablation models

at 20% and higher (p < 0.001). Performance measures on a per-sample basis for the PX2

and P12 refined BraTS models are shown in Figure 4.3. Example segmentations are shown

in Figures 4.4 and 4.5.

Table 4.5: Evaluation results for refined BraTS models. * denotes significantly higher than
baseline model, p < 0.001. PX2 = ProstateX-2, P12 = PROMISE12, AHD = average Hausdorff
distance; results reported as mean ± standard deviation across all images.

Dataset
Soft Dice Coefficients

AHD
Overall Base Midgland Apex

PX2 0.834*±0.072 0.783*±0.126 0.903*±0.065 0.775*±0.097 0.299*±0.465
P12 0.704*±0.137 0.614*±0.208 0.820*±0.120 0.644*±0.186 1.428*±2.603

4.5 Discussion

In this study, we developed a prostate segmentation CNN model using a large clinically gen-

erated dataset, and examined the relationship between dataset size and model performance.

We further explored the generalizability of the model to external datasets, and the relative

contribution of using the model as a pre-trained starter for improving performance when

training on limited datasets.

We found that the network trained on our institutions dataset did not perform well

initially when used on outside data. However, refining the network on the external data

using the initial model as a pre-trained starter yielded significantly superior performance to

training using randomly initialized models. On the PX2 dataset, using our institutions model

as a pre-trained starter yielded an increase in mean overall Dice coefficient of 30%, and on

the P12 dataset, an increase of 49%. Using a model trained on data (BraTS 2019) completely

unrelated to prostate segmentation as a pre-trained starter also yielded improvements over

baseline, but was not as effective as using the primary dataset as a starter. As demonstrated

in Figure 4.3, model performance improved progressively from the baseline model, to the
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model trained using the non-relevant BraTS MR data, and finally to the model trained

with the highly relevant UCLA prostate MR data. The final performance of the models we

trained using our pre-trained prostate MR starter was comparable to other results from the

literature on both datasets using more complex models [ZWY20, JSH19, IPK18], highlighting

the value of creating a domain-specific starter for this task. For example, the leading model

on the P12 leaderboard (submitted on 9/7/2020) has a Dice score of 0.895, which compares

favorably with our final overall Dice coefficient of 0.852 [LTV14]. The leading model trained

on a large private dataset (trained on 648 studies at the NIH) has a Dice score of 0.915,

which compares favorably with our 0.909 [SZH20].

We also found that using truncated versions of our dataset still yielded significant im-

provements. Even using a model trained on only 15% of the primary dataset as a pre-trained

starter yielded improvements over baseline of 18% and 28% on the PX2 and P12 datasets,

and the gains from increasing dataset set saturated at approximately 60% of the primary

dataset.

These findings are notable in part because our primary dataset consists of rough clinical

contours that have not been carefully re-annotated to produce a machine learning-quality

dataset and images that were not filtered for inclusion of only optimal quality series. We

included in our primary dataset images with quality limitations, images that used endorectal

coils, and images from patients who had had prostate treatments that significantly distort

the visual appearance of the prostate. Despite these complications, we still found that we

were able to train a state-of-the-art model and then use that model to boost the performance

of models trained on gold-standard data. The performance gained through the use of our

model as a pre-trained starter was greater than that obtained using an unrelated pretrained

model (as is typical for transfer learning; i.e. ImageNet [RDS15]), suggesting that our model

was able to learn features that were useful starters for the segmentation models trained for

the external datasets.

Our work does have some limitations. Because we did not use a machine learning-quality

version of our dataset, it is difficult to compare the overall performance results on our data

to state-of-the-art models. In addition, the imperfections in the clinically generated ground

truth segmentations we used for our primary dataset likely include both areas incorrectly

annotated in the foreground and the background. As a result, some differences between

model predictions and the ground truth in the primary dataset are the result of inaccurate

labels, rather than model error.

Because we held the model design constant and simple in order to isolate the dependent
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variables in our experiments to the datasets used for training and pretraining (and as such

used data from all folds in our evaluations, rather than a single held-out fraction), we may

have been prevented from realizing performance gains that other works have found through

complex model designs or post-processing steps. However, our intent with these choices

was to demonstrate that even a simple model with rough clinical contours can provide

substantial value when contemplating model development. This finding may have significant

implications for future work, in which larger datasets with lower-quality annotations may

be combined with smaller datasets with high-quality annotations to maximize the value

of available data without requiring the significant expenditure of re-annotation effort. We

plan to further explore this hypothesis in future work using more difficult problems, such as

prostate cancer segmentation, in order to determine if this approach may unlock additional

potential for medical image analysis. Additionally, because this is a retrospective analysis

and does not include the real-time ultrasound used for image fusion, it is not possible for

us to evaluate the impact of segmentation quality from different models on registration and

biopsy targeting. Future, prospective work should include such an evaluation.

4.6 Conclusion

We trained a state-of-the-art model using rough clinical annotations, producing a prostate

segmentation model with a mean overall Dice coefficient of 0.909 and an AHD of 0.156. We

additionally found that models trained using truncated fractions of our data were effective

pre-trained starters for achieving higher performance models on external prostate segmen-

tation challenge datasets. Our findings suggest a role for the combined use of datasets with

low-quality and high-quality annotations in future medical image analysis model develop-

ment in order to maximize performance while minimizing annotation effort.
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Figure 4.7: Full volume example of primary baseline dataset segmentation, high met-
ric. Orange contour depicts ground truth segmentation. Shaded blue area depicts model segmen-
tation. Slices depicted from apex to base. The soft Dice coefficient for this sample was 0.928, and
the average Hausdorff distance was 0.085.
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Figure 4.8: Full volume example of primary baseline dataset segmentation, low metric.
Orange contour depicts ground truth segmentation. Shaded blue area depicts model segmentation.
Slices depicted from apex to base. The soft Dice coefficient for this sample was 0.738, and the
average Hausdorff distance was 0.935.
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CHAPTER 5

Federated Learning Improves Site Performance in

Multi-Center Deep Learning Without Data Sharing

5.1 Overview

The disposition of healthcare data has generated significant interest in recent years. With

the rapid expansion of the use of software-enhanced medical diagnostics, devices, and other

interventions, access to clinical data has become critical to innovation. Clinicians and health-

care researchers facing this new data climate are forced to balance their professions ethical

directives to “protect patient privacy in all settings to the greatest extent possible” and to

“contribute to the advancement of knowledge and the welfare of society and future patients”

[AMA17]. When the sharing of data is contemplated, ethics committees must evaluate the

relative risks of unauthorized protected health information disclosure against the benefits of

performing research and innovation using healthcare data.

An important contributor to the demand for healthcare data is the rapid advent of

artificial intelligence (AI)-enhanced applications. For example, the field of medical image

analysis has been driven forward in recent years by the advent of deep learning (DL). DL

has enabled a wave of innovation in imaging decision support, with recent major results in the

fields of ophthalmology [GPC16, QCB17, BCK20], dermatology [YCL17, Har18, EKN17],

pathology [BPB20, EVJ17, COS18], and radiology [CGT18, MSG20].

A major limitation of the DL approach is the need for a large volume of training data that

captures the full breadth of inputs on which the model is likely to be subsequently used. In

the field of natural image processing, large-scale pooled datasets with over a million images

captured by a variety of different cameras are commonly used [RDS15]. This large volume is

required because deep learning models are primarily interpolators, not extrapolators that is,

The work described in this chapter was published as: Sarma KV, Harmon S, Sanford T, et al. Federated
learning improves site performance in multicenter deep learning without data sharing. J Am Med Informatics
Assoc. 2021. fdoi:10.1093/jamia/ocaa341.
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they perform best when presented with inputs that are similar to the data that those models

were trained on. This creates the need to ensure that models intended for widespread clinical

use are exposed to heterogeneous data sources that capture the full breadth of the patient

populations, clinical protocols, and data acquisition devices (i.e. scanners) that they will be

used on.

However, medical imaging data in most cases is siloed within provider institutions, and as

a result, assembling large-scale datasets traditionally requires the transfer of data between

these silos. Such transfers present ethical and legal challenges around preserving patient

privacy. As a result, very few public large-scale pooled medical image datasets exist. This

has led to a challenge of generalizability for deep learning models in medical imaging research,

which are often trained on single-institution datasets. Such models often suffer from poor

performance when transferred to other institutions with differing protocols, equipment, or

patient populations [YA18, DLR18]. As a result, there is a need for methods to enable

the development of general models for clinical use, without requiring the creation of pooled

datasets.

An alternative methodology to centralizing multi-center datasets is known as “distributed”

learning [CBL18]. In this paradigm, data is not combined into a single, pooled dataset. In-

stead, data at a variety of institutions is used to train the DL model by distributing the

computational training operations across all sites. One such approach is federated learning

(FL) [RHL20, KMR20, LMX19, RCS20, SER20]. In FL, models are trained simultaneously

at each site and then periodically aggregated and re-distributed. This approach requires only

the transfer of learned model weights between institutions, thus eliminating the requirement

to directly share data. However, a limitation of this approach is that no single model ever

“sees” a complete picture of the universe of potential inputs during the training phase, thus

placing pressure on the federated aggregation function to adequately distribute knowledge

from each site into the model. Previous work has demonstrated the potential utility of FL for

model training, generally using publicly available data to simulate multi-institutional train-

ing. However, works that examine the practical application of FL in radiological applications

are still limited [RCS20, SER20]. Our work shows that FL can be reduced to practice using

real-world private clinical data across multiple institutions, and that this approach creates

a model that demonstrates improved generalizability both within the participating institu-

tions, and with outside data.

In this work, we demonstrate the application of FL at three institutions: the University

of California, Los Angeles (UCLA); the State University of New York (SUNY) Upstate
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Medical University; and the National Cancer Institute (NCI). For this demonstration, we

used the medical image analysis task of whole prostate segmentation, an initial step for MRI

diagnosis of cancer and fusion-guided interventions. We demonstrate that FL training and

aggregation is able to produce a model that learns general predictive weights applicable to

each institution dataset, and demonstrates improved generalizability when applied to an

external validation dataset.

5.2 Materials and Methods

5.2.1 Study Design

In this study, we use data collected retrospectively from each of our institutions to train and

validate DL models to perform whole prostate segmentation on MRI. At no point during

this study was private data transferred or shared across institutions. Instead, training on

private data was done at that datas respective institution, and model weights were iteratively

aggregated by a federated server and redistributed (Figure 5.1). After training, we evaluated

the generalizability of each of the models using held-out testing sets from each institution,

as well as an external challenge dataset.

5.2.2 Data Governance

One of the major challenges in multi-center DL studies is data governance. Our collaboration

included one industry partner (nVIDIA, Inc.), two public universities (UCLA and SUNY

Upstate), and one Federal institution (NCI). For this study, UCLA, SUNY Upstate and the

NCI established a two-way agreement with nVIDIA to collaborate and share model weights,

but no material transfer agreement to exchange protected or private data was required. All

three academic institutions had IRB approval for review and image analysis, with written

informed patient consent or waiver of patient consent.

5.2.3 Datasets and Preprocessing

Each institution retrospectively collected one prostate MRI from each of a cohort of 100

patients enrolled in an IRB-approved protocol studying the use of MRI for prostate cancer

diagnosis (the “private datasets”). Axial T2 weighted (T2W) images of the prostate acquired

at 3T were obtained for each patient. A ground truth whole prostate segmentation was
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Local Model

Local Model

Local Model

Private Data

Private Data

Private Data

Global Model

Federated Server

Figure 5.1: Federated Learning System Overview. Each participating institution (UCLA,
NIH and SUNY Upstate) possesses a private dataset of prostate images. These images are used to
train a local copy of the deep learning model using a local machine learning workstation. After each
local training epoch, the local model weights are then sent to the federated server (a cloud-hosted
application). Once weights are received from every institution, they are aggregated by the server,
and the resulting weights are distributed to each institution. The local model is updated with the
new weights, and the process restarts. At no point is any data shared between institutions; only
model weights are transmitted.
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produced for each patient by an expert clinician at each institution (radiologist or urologist

ranging from 9-27 years of experience). Segmentations were performed under the standard

manual and semi-automatic clinical methodologies in place at the individual institutions. In

order to demonstrate broad generalizability, participating institutions intentionally made no

effort to harmonize either the T2W acquisition protocol or segmentation methodologies. In

addition, 343 axial T2W images of the prostate were obtained from the public SPIE-AAPM-

NCI PROSTATEx dataset [AHD18] (the “challenge dataset”). These images were annotated

with ground truth whole prostate segmentations by an expert clinician.

Each T2W image and annotation included in the study was resampled to an isotropic

1mm x 1mm x 1mm voxel size. The images were then converted to the NIFTI format [LM14]

for training, and the intensity values within each image were normalized to zero mean and

unit variance. Each of the private datasets was divided into a training set of 80 images and

a held-out test set of 20 images.

5.2.4 Model Architecture and Data Augmentation

The 3D Anisotropic Hybrid Network [LXZ18] (3D AH-Net) was used as the DL model for

this study, using an ImageNet [RDS15] pretrained ResNet50 backbone. This architecture

is designed to perform well on anisotropic 3D volumes with higher slice spacing relative to

in-plane voxel spacing. This network was chosen based on the image acquisition parameters

(Table 5.2) for the NCI and SUNY datasets, which had high in-plane to slice spacing ratios

(approx 1:10 vs 1:3 for UCLA).

Unlike the 3D U-Net, the 3D AH-Net does not use 3x3x3 convolutional kernels on input

volumes in order to avoid issues caused by the anisotropy (i.e. poor alignment, loss of context,

etc.). Instead, for every block, first a 2D multi-channel encoder is used on each slice, and

then a 3D column encoder (1x1x3) is used on the encoded slice sets. The 2D multi-channel

encoder is derived by pretraining a 2D multi-channel model (in this case ResNet50 on RGB

ImageNet data), and then sets of three neighboring slices are fed into the pretrained network

as channels (i.e. slice 0 = R, slice 1 = G, slice 2 = B, etc.). U-Net type skip connections are

also used in the network.

The training metric was the soft Dice loss (Equation 5.1), and the Adam optimizer with

validation metric-based learning rate decay was used for training. Real-time data augmen-

tation was performed using the Deep Stacked Transformation [ZWY20] methodology. The

DST approach augments data using serial “stacked” transformations from the following list:
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Gaussian noise with kernel standard deviation between [0.1, 1.0], intensity scaling between

[-0.1, 0.1], and contrast gamma correction with γ between [0.5, 4.5].

5.2.5 Training Strategy and Federated Model Aggregation

Each private training set of 80 images was split into five sets of 16 images each. Then, for

each experiment, five sub-models were trained, each using one of the sets of 16 images as

validation data, and the remainder as training data. The resulting sub-models were then

combined into a single ensemble model outputting the mean of all five sub-models. The

same cross-validation training sets were used for all experiments. A total of four training

experiments were performed: one training run to develop a private model at each institution,

and an additional training run to develop an FL model across all institutions.

All models were trained for 300 epochs. For the FL training, a cloud-based federated

weight aggregation server (“federated server”) was deployed by UCLA on a secure Amazon

Web Services instance using the Clara application framework (nVIDIA, Inc.). Bilateral

websocket connections (over SSL) were established during training between each institutions

training server and the cloud-based aggregation server. After each training epoch, model

weights and validation metrics from each institution for that epoch were sent to the server,

where an aggregation function [MMR17] was used to combine them into a single set of model

weights which were then sent back to each institution. These weights were then used as the

basis for the next training epoch, and the process was repeated until all epochs had elapsed.

The aggregation function used a weighted average of input models to produce the combined

model. Each institutions input was weighted based on the validation metric (mean Dice

coefficient) from the most recent training epoch reported by the corresponding institution

on the validation set for that fold. The FL training framework was implemented using

the nVIDIA Clara Train SDK [NVI], and training at each site was performed using single

nVIDIA GPUs.

5.2.6 Statistical Analysis

Each of the ensemble models was evaluated at each institution using its held-out test set,

producing an evaluation for each model at each institution. In addition, each of the models

was also evaluated on the challenge dataset. The evaluation metric used to compare seg-

mented volumes was the Dice coefficient function as denoted in Equation 5.1, where SDL is

the segmentation of a deep learning model and Sm is the manual segmentation. The value
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of the coefficient can range between 0 (no overlap) and 1 (perfect overlap).

dice(SDL, Sm) =
2|SDL ∩ Sm

|SDL|+ |Sm

(5.1)

The mean Dice coefficient was then compared for each model on each of the individual

private test sets, as well as the overall mean Dice coefficient for each model (across all of the

test set data). The mean Dice coefficient was also separately computed for each model on

the challenge dataset. Finally, 2-sided paired t-tests were used to compare the mean Dice

coefficients from each private model to the FL model, for both the “combined” private test

set and the held-out challenge dataset.

5.3 Results

Patient and imaging characteristics of the three private datasets are shown in Tables 5.1

and 5.2. Tables 5.3 and 5.4 show all experimental results. The private models performed

well on their own private test sets (Dice coefficient range: 0.883-0.925) but had diminished

performance on the other private test sets (Dice coefficient range: 0.575-0.887). This led to

overall mean Dice coefficients between 0.745 and 0.833 for the private models.

In comparison, the FL model performed well on all three test sets. The FL model

exhibited private test set mean Dice coefficients between 0.880 and 0.920, yielding an overall

result of 0.895. The statistical analysis using 2-sided paired t-tests demonstrated that the FL

model was significantly superior to any of the private models (p < 0.001 for all comparisons).

The private models exhibited varied performance on the challenge dataset (Dice coeffi-

cient range: 0.812-0.872). The generic FL model outperformed each of the private models,

with an overall mean Dice coefficient of 0.889. The statistical analysis again demonstrated

that the FL model was significantly superior to any of the private models (p < 0.001).

Table 5.1: Patient Demographics.

Private Test Set Institution
NCI SUNY UCLA

Age (years) 66 (47-83) 66 (49-81) 65 (50-83)
Prostate Size (cc) 65.5 (21.7-231) 72.9 (26.8-210) 52.1 (15.8-147)
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Table 5.2: Image Acquisition Parameters.

Private Test Set Institution
NCI

SUNY UCLA
with endorectal coil (n=50) without endorectal coil (n=50)

Vendor(s) Philips Medical Systems Siemens Siemens
Field Strength 3T 3T 3T

In-plane resolution 0.273mm 0.352mm 0.625mm 0.664mm
Slice thickness 3mm 3mm 3mm 1.5mm

TR (ms) 4775 3686 5500 2230
TE (ms) 120 120 136 204
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Table 5.3: Model Evaluation Results: Private Test Sets.
** Significantly lower than FL model (p < 0.001).

Private Test Set Institution
NCI (n=20) SUNY (n=20) UCLA (n=20) Overall (n=60)

Private Models
NCI 0.925± 0.016 0.854± 0.050 0.720± 0.165 0.833± 0.131**
SUNY 0.887± 0.027 0.906± 0.018 0.768± 0.064 0.854± 0.074**
UCLA 0.777± 0.102 0.575± 0.177 0.883± 0.069 0.745± 0.178**

FL Model 0.920± 0.029 0.880± 0.034 0.885± 0.032 0.895± 0.036
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Table 5.4: Model Evaluation Results: Public Test Set.
** Significantly lower than FL model (p < 0.001).

ProstateX (n=343)

Private Models
NCI 0.872± 0.062**
SUNY 0.838± 0.043**
UCLA 0.812± 0.136**

FL Model 0.889± 0.036

65



5.4 Discussion

We sought to demonstrate that data-distributed learning can be successfully operationalized

across multiple institutions with real patient data using federated learning, and that the

resulting model would gain the benefit of having learned from each of the private datasets

without ever needing to transfer or pool data at a single location.

Since no transfer of protected health information (or even de-identified health informa-

tion) was required, we were able to address the privacy and data governance limitations

inherent to multi-center studies through the use of simplified two-way collaboration agree-

ments, rather than requiring the negotiation of a complex four-way collaboration and mate-

rial transfer agreement that would have been required if data was shared across institutions.

This allowed for expedited ethics and compliance reviews because of the minimal risk posed

by the FL paradigm, and enabled us to be assured that our patients privacy was maintained.

The FL model that we trained performed well across all of the private datasets, yielding

an overall performance level that was significantly better than that of any of the private

models alone. This suggests that the FL model was able to benefit from the advantage

of learning important institution-specific knowledge through the FL aggregation paradigm,

without requiring any individual training site to “see” the full breadth of inputs.

Additionally, our results showed that the FL model performed significantly better than

any of the individual private models on the held-out challenge dataset, suggesting that the

model also attained the expected advantages inherent in training with more data through

the FL aggregation method, even though the full dataset was not seen at any single training

site.

Our work does have limitations. In this work, we did not attempt to address the potential

for an inside actor (i.e. one of the participating institutions) to attempt to recover the

underlying patient data through a model inversion attack on the trained weights shared

during federated learning. Future enhancements to the federated approach could include the

addition of calibrated distortion to shared model weights in order to suppress the potential

for inversion. However, we believe the method we demonstrate in this paper significantly

better protects the privacy of patients than the current standard of direct sharing of data. In

addition, though model inversion is a technical risk that cannot be ruled out, we empirically

believe that the practical risk of inversion outside of crafted malintent on the part of study

designers to be low due to the weight averaging scheme in place. Finally, we note that the

sharing of trained model weights is an accepted practice within healthcare [SR20, LM20], and
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in the worst case our method is no less secure as only model weights are ever transmitted.

Secondly, the task we used (prostate segmentation on T2-weighted MRI) is relatively

simple and all private models achieved high performance on their own institutional datasets.

Thus, we were unable to demonstrate the expected benefit that an FL-trained model would

significantly outperform a single-site-trained model on that single sites data. In addition,

because we used similarly sized private datasets at each institution, we did not explore the

potential in varying the federated model aggregation methodology, which could be extended

to differentially weight model weights from institutions based on data quantity, quality,

or other metrics. Thirdly, adding additional institutions to the federation may present

new challenges in heterogeneity of imaging data quality, governance, intellectual property,

and model generalizability. In order to ensure that the FL model performs well at each

institution in a large federation, it may be necessary in future work to explore adding an

additional private fine-tuning step at each institution, though care must be taken to avoid

losing generalizability through overfitting.

5.5 Conclusion

The power of federated learning was successfully demonstrated across three academic in-

stitutions using real clinical prostate imaging data. The federated model demonstrated

improved performance across both held-out test sets from each institution and an external

test set, validating the FL paradigm. This methodology could be applied to a wide variety

of DL applications in medical image analysis, and merits further study to enable accelerated

development of DL models across institutions, enabling greater generalizability in clinical

use.
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CHAPTER 6

Developing Patient-Level Predictive Models Using

Pretrained Voxel-Level Feature Extractors for Prostate

mpMRI

6.1 Overview

Prostate cancer is the second most frequent cancer diagnosis and the fifth leading cause

of death for men worldwide [SMJ15]. However, there is a significant discrepancy between

the incidence (26% of new diagnoses in men) and mortality (9% of cancer deaths in men)

due to the heterogeneous nature of prostate cancer [SMJ15]. This discrepancy creates the

need for risk stratification to avoid subjecting patients with indolent cancers to unnecessary

interventions, which can be the cause of significant morbidity in cost.

This need is currently addressed through systematized grading systems that assign scores

to patients based on the clinical impression of an appropriate diagnostic. For patients who

undergo prostate biopsy, the Gleason grading system [GMA74] (and more recently, the ISUP

grade group system [EEA15]) is used to classify the patient’s prostate cancer based on

histopathological examination of the samples retrieved. This pathologic diagnosis is the

most accurate, definitive diagnosis and allows for the best prognostication. However, it

does require an invasive biopsy procedure (which, as all invasive procedures, is subject to

potential morbidity). Additionally, there is a risk of sampling error. Because a limited

number of biopsy cores can be obtained in any given procedure, the cores retrieved may not

pass through the most severe areas of cancer within the prostate, resulting in an inaccurate

patient-level risk classification [RSR21]. Though advanced targeted biopsy techniques (such

as MR-ultrasound targeted biopsy [MYN13]) improve the probability that a representative

biopsy will be sampled, a significant misclassification risk still remains.

These two major limitations of pathological diagnosis via biopsy (the invasive nature of

the diagnostic and the risk of sampling error) motivate the desire for enhanced non-invasive

approaches for risk assessment. Reliable imaging-based diagnostics for prostate cancer could
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enable more accurate stratification and the avoidance or deferral of invasive diagnostics for

some patients, reducing morbidity and cost.

The clinically accepted approach for mpMRI-based risk stratification is the PI-RADS

v2 scoring system. This system enables radiologists to report their impressions of imaging

using a five-point grading system which correlates with Gleason grade [BWV16]. However,

this approach suffers from a major limitation: a prostate-trained abdominal radiologist is

generally required to review images and generate a PI-RADS score, which eliminates the

possibility at many centers due to a lack of availability. Additionally, though use of this

score enables some patients to defer biopsy, the population of patients who proceed to biopsy

based on high PI-RADS score still includes patients with low risk cancer.

The development of a machine learning-based predictive model for patient-level risk scores

(such as PI-RADS or ISUP grade group) is thus of considerable interest. A high performance

patient-level prediction (PLP) model for PI-RADS could enable the use of prostate mpMRI

even in the absence of a specially trained abdominal radiologist, thus expanding access to

noninvasive diagnosis. Additionally, a PLP model for ISUP grade group could have the

potential to produce a higher quality risk stratification than the PI-RADS system, enabling

the use of “watchful waiting” rather than invasive intervention for a broader group of patients.

Traditionally, such a model would be trained by training a network to locate the areas

of suspicion that would be located by a radiologist, an approach that is taken by prior work

in the field [TLR17, LTG17, SLT18]. However, this approach requires the use of training

data that has been annotated by a highly qualified radiologist. This poses a number of

challenges. In the traditional clinical workflow, radiologists do not attempt to annotate an

entire visualized defect within an MRI volume. Instead, the areas of maximal suspicion are

annotated in order to maximize the probability that a biopsy obtained from that area will be

representative. Though clinically useful, such annotations are of limited utility in training

a machine learning model because they falsely represent abnormal-appearing areas on an

MRI as “normal” since they not annotated as suspicious. This false-negative ground truth

problem can limit the capability of a network to learn appropriate features. To address this

problem, prior studies have had trained radiologists re-annotate manually, an expensive and

time-consuming process.

If instead an entire network could be trained using simply the unannotated mpMRI

images as inputs and the risk score (PI-RADS or ISUP grade group) as targets, the need

for radiologist re-annotation of training data would be eliminated, unlocking substantial

additional data for use. However, attempting to directly train a PLP model in this manner

69



is challenging because of the “vanishing gradients” problem [LXL19]. This problem, which

generally affects deep learning models due to the need to propagate error information through

the entire network, is partially alleviated when voxel-wise supervision is provided (i.e. a

region of interest mask of the volume), and exacerbated when limited supervision is provided

(i.e. a single patient-level risk score). Several approaches have been proposed in the literature

to address this issue, such as the use of short and/or long residual connections [HZR16].

Here, we propose an approach to successfully train deep learning-based PLP models

using domain-specific voxel-level pretraining. Specifically, we demonstrate both PI-RADS

and Gleason PLP models developed by first pretraining a fully convolutional voxel-level

network on one of three different voxel-level targets in order to generate a deep prostate

feature encoder, and then using that encoder to train a fully connected attention network

to produce the final PLP model. We also demonstrate how this approach can facilitate the

addition of non-imaging clinical variables (such as PSA) into the model to improve the final

result.

6.2 Materials and Methods

6.2.1 Data

Our internal clinical population for this study consists of 1,785 MRI studies collected from

1,534 patients who underwent transrectal ultrasound-MRI fusion biopsy (TRUS biopsy)

using the Artemis guided biopsy system (Eigen Systems) between 2010 and 2018 at our

institution using a standardized protocol and 3T magnet (Trio, Verio, or Skyra, Siemens

Healthcare). As part of the protocol, prostate MRIs were contoured in a two-part process.

First, the attending radiologist for the case (the attending radiologists for the patients in-

cluded in this study each had between 10-27 years of experience) created a prostate contour

using the DynaCAD Prostate image analysis platform as part of the routine clinical workflow.

The radiologist then contoured any regions of interest (ROIs) for targeted biopsy sampling.

These regions of interest were selected based on either the PI-RADS v2 criteria [BWV16] or,

before the development of the PI-RADS v2 criteria, the UCLA score [MBH19], a comparable

imaging-based risk stratification score. These contours were then used by a technician to

re-contour the prostate on the Profuse (Eigen Systems) platform in order to enable use with

the Artemis biopsy system, as DynaCAD segmentations cannot be directly imported for use

on the Artemis.
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We retrospectively collected 3D T2-weighted (T2W) images, apparent diffusion coefficient

(ADC) maps, and prostate and ROI contour sets from these studies. Imaging volumes were

collected from our institutions picture archiving and communication system (PACS) and

corresponding contours were collected from the Profuse image analysis platform. T2 images

were acquired clinically using the spatial and chemical-shift encoded excitation (SPACE,

Siemens Healthcare) protocol.

Full-text radiology reports associated with the studies were collected from our institu-

tion’s electronic health record (EHR) system, and histopathological results from each ob-

tained biopsy core were acquired from the laboratory informatics system (LIS). Data were

collected from every available study for each patient seen at our institution during the study

period. Studies were excluded from retrieval if the T2 image, ADC map or contour was

missing from PACS or corrupt, if the full-text radiology report was not retrievable, or if the

image exhibited a protocol deviation, such as a variance in FOV or resolution.

After retrieval of the studies, clinical data was extracted manually from the full-text

radiology reports and pathology results. This included the study quality assessment, prior

prostate cancer treatment status, presence of endorectal coil, overall PI-RADS or UCLA

score and sequence-level scores, patient age and biopsy Gleason scores. Studies were ex-

cluded if the prior prostate treatment had occurred, such as transurethral resection of the

prostate (TURP), laser interstitial thermal therapy (LITT), or radiation therapy (RT), if

an endorectal coil was used, or if study quality limitations were noted (such as motion ar-

tifacts or prosthesis susceptibility artifacts). A total of 1,103 studies were included from

999 patients, and 682 studies were excluded. All data was used for this work under the

approval of the University of California, Los Angeles (UCLA) institutional review board

(IRB# 16-001087).

6.2.2 Preprocessing

6.2.2.1 MRI Volumes

T2W and ADC volumes were preprocessed using a common pipeline. Initial preprocessing

was done in Python, primarily using the SimpleITK toolkit [LCI13]. First, N4ITK bias field

correction [TAC10] was performed. Then, T2W volumes were resampled to isotropic voxel

spacing using a B-spline approach, and ADC volumes were resampled to the same voxel

spacing as the resulting isotropic T2W volume; these steps were based on preprocessing

done in previous work [CLR19, TAC10, SSR18, GMV15].
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After initial preprocessing, we applied a previously used interquartile range (IQR)-based

intra-image normalization [SRD21] to address the relative nature of MR image intensity

values (both within and between institutions). Each image was normalized to the image-

level IQR (calculated from the central 128x128 column of the volume) and then values were

clipped between two IQRs below the first quartile and five IQRs above the third quartile, in

order to eliminate outlying values created by imaging artifacts. Volumes were then cropped

to the central 128x128 in the x, y plane, which includes the prostate.

6.2.2.2 Clinical Variables

For every study, the maximum PI-RADS v2 score for any region of interest was used to label

the study. Similarly, for every biopsy procedure, assigned Gleason grades were converted

to ISUP grade groups, and the maximum grade group from the procedure was used the

label the study. PI-RADS v2 scores were dichotomized as ≥ 4 and ISUP grade groups were

dichotomized as ≥ 2.

Based on the UCSF-CAPRA risk scoring system [CPE05], age was dichotomized as either

<50 or ≥50 years old, and PSA was categorized into five ordinal categories (Table 6.1).

Table 6.1: UCSF-CAPRA PSA Categories.

PSA level Points
PSA ≤ 6 0

6 < PSA ≤ 10 1
10 < PSA ≤ 20 2
20 < PSA ≤ 30 3

PSA > 30 4

6.2.3 Data Augmentation and Model Architecture

We adopted a multi-stage model approach motivated by [ZPN21] for this effort in order

to overcome the challenges posed by limited patient-level supervision. In the first stage of

training, an end-to-end fully convolutional neural network (FCN), the “base model,” based

on the 3D U-Net [CAL16] was trained using one of three voxel-level ground truth options:

autodidactic models genesis, organ segmentation, or cancer region of interest. Once all three

FCNs were trained, the second stage of model development began. For the second stage PLP

models, the initial 3D U-Net FCN was truncated to the bottom of the encoder hierarchy, and

the output of this base encoder was then fed into the second stage fully connected model.
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This second stage was then trained using one of two patient-level dichotomized ground truth

options: maximum PI-RADS v2 score or maximum ISUP grade group, with varying levels

of “freezing” applied to the encoder layers of the base model. All base and PLP models were

trained by stacking the T2W and ADC volumes as input channels.

6.2.3.1 Autodidactic Models Genesis

We used the generic autodidactic models (“Models Genesis”) approach [ZSS19] as one of our

pretrained model creation methodologies. The models genesis approach is a variation on the

traditional autoencoder approach. Instead of training the model to recreate input as output,

a Models Genesis autodidactic model is trained to restore an original image from a perturbed

version of the image. The random perturbation applied for our work included flipping on

the x and y axes, local pixel shuffling (in which random small windows were selected and

pixel shuffled randomly within each window), nonlinear intensity transformation (in which

intensities are resampled using a nonlinear monotonic intensity transformation), in-painting

(in which randomly selected small rectangular patches are masked to fixed random intensity),

and out-painting (in which random rectangular edge regions are cropped out of the image).

This overall approach is intended to train a model to develop an understanding of appearance,

texture, geometry, and context of the input distribution in order to create an informative

pretrained model without requiring semantic labeling of the input space.

6.2.3.2 Model Architecture

The base model used for this study was the 3D U-Net [CAL16]. For all experiments, the net-

work was configured with four encoder levels, three decoder levels, a ReLU transfer function

and batch normalization following every convolutional layer, and a softmax output layer.

The number of features per encoder level was 64, 128, 256, and 512, with the encoder levels

reducing the number of features by a factor of two at each level until the final set of 64

feature maps, which was then fed into a final convolutional layer and a sigmoid output layer.

For the autodidactic model, two output volumes were produced (one for each input), and

for the segmentation and ROI models, one output volume was produced.

The PLP model used a variable architecture with multiple optimized hyperparameters

and a shared basic structure. First, the 512-feature output of the final encoder of the base

model was average pooled across all dimensions, resulting in a 512-element encoded vector.

Optionally, one or two soft attention modules [SOS18] were also used, modeled after [LZG20].
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These attention modules were fed the 128 feature and/or 256 feature encoder level outputs

as inputs and the 512 feature encoder level outputs as gating channels, and the resulting

softmax output was then also pooled by sum into 128 or 256 elements respectively.

The 512 (and optionally 256 and 128) element vectors were then concatenated, and op-

tionally, the scalar variables for age and/or PSA were also appended to this intermediate

vector. The resulting intermediate output was then optionally fed through a batch normal-

ization and/or dropout layout before being fed through a fully connected layer to produce

the final output.

The complete model architecture is depicted in Figure 6.1.

6.2.3.3 Hyperparameters

A number of configurable hyperparameters were used in the patient-level model architecture

in order to enable experimentally investigating the optimal PLP model design. Configurable

hyperparameters included the inclusion of age and PSA as model inputs, the use of one or

both attention blocks, the use of a final batch normalization and/or dropout layer, and the

depth to which the base model was frozen. A table of all the configurable model and training

hyperparameters is displayed in Table 6.2.

6.2.3.4 Data Augmentation

For all model training in this study, real-time augmentation using the Batchgenerators pack-

age was performed [IJW20]. Three augmentation transformations were used: 1) random

elastic deformation using a thin plate spline, 2) random rotation in the range [−π/8, π/8] in

the axial plane, and [−π/4, π/4] along the axis, and 3) random mirroring across the y-axis.

Data augmentation was performed once for every training example for each epoch (i.e., for

each epoch, new augmented data was generated in real time and used for training).

6.2.4 Training and Hyperparameter Optimzation

6.2.4.1 Hyperparameter Optimization

Extensive hyperparameter optimization was found in order to characterize the relative impact

of various configurations on final performance, and to obtain the best final performance

results. Optimzation was performed using the Ray Tune framework and Pytorch, using
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Figure 6.1: PLP and Base Model Architecture. A) The base model 3D U-Net architecture
used in this work. The model was configured for either single or double channel output, depending
target. Numbers within the ovals represent the number of feature maps at that layer. Connections
represent network operations, such as 3D convolution (“Conv”), max pooling (“Max Pool”), 3D
transposed convolution (“Deconv”), feature map concatenation (“Concat”), batch normalization
(“BN”), rectified linear unit activation (“ReLU”), 3D average flattening (“Avg Flatten”), attention
modules, and dropout. B) The PLP model architecture used in this work. The PLP model shares
encoding layers with the base model, with feature outputs from the 512, 256 and 128 feature encoder
layers becoming feature inputs for the PLP model. Depicted model is with all hyperparameters
“on.” Model column i) was always present and represented the most encoded 512 feature layer.
Columns ii) and iii) represent the 256 and 128 feature attention modules; encoder outputs were
used as feature input, and the 512 feature layer was used as gating input. Column iv) represents the
clinical variable inputs of Age and PSA. All used columns had their outputs concatenated before
passing through optional BN and dropout layers and a final densely connected layer before final
activation and output.
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a random hyperparameter space sampling approach. For space sampling, the HyperOpt

random search algorithm was used, which iteratively adjusts the sampling distribution based

on performance results of experimental trials to increase the weight of areas of the parameter

space more associated with better performance [BB12]. Individual hyperparameter trials

were scheduled and run using the async successive halving algorithm (ASHA) scheduler

[LJR18], which asynchronously runs trials while pruning poor performers early in order to

minimize wasted time while training. Hyperparameter optimization was configured to run a

total of 100 trials.

The hyperparameter space was initialized using the random distributions depicted in

Table 6.2.

6.2.4.2 Model Training and Evaluation

All training and evaluation was done using the PyTorch framework on NVIDIA Quadro

8000 GPUs with 48 GB of onboard memory. Mixed-precision training using the NVIDIA

Accelerated Mixed Precision (AMP) was used at optimization level O2, consisting of 16-bit

model weights and inputs, 32-bit master weights and optimizer parameters, and dynamic

loss scaling.

Base model training was performed using the Adam optimizer with learning rate 10−5

and either the soft Dice loss function (for the segmentation model), the focal loss function

(for the ROI model [LGG18]), or the mean squared error (MSE) loss (for the autodidactic

Models Genesis model). Each epoch consisted of training on a full dataset comprised of one

augmented sample generated for every original input sample, and training was performed

for 100 epochs without early stopping after 50 epochs of no improvement of validation loss.

For base model training, data was split in a 80% train, 20% validate configuration.

PLP model training was performed using the AdaBoundW optimizer [LXL19] with initial

learning rate (LR), final LR and weight decay configured as hyperparameters. The binary

cross-entropy (BCE) loss was used for optimization, and the area under the receiver operating

characteristic curve (AUC) was used as the evaluation metric.

For PLP model training, data was split in a 60% train, 20% validate, and 20% test

configuration. Optimal hyperparameter configurations for each choice of base model were

selected using the validation AUC, and final results are reported using the test AUC.
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Table 6.2: Hyperparameter Options and Distributions. Hyperparameter search was intial-
ized to a uniform random distribution of the parameters as described by the table. Distributions
used were Choice, which randomly selected one of the arguments with equal probability, Uniform[a,
b, c], which randomly sampled the space between a and b in increments of c, and LogUniform[a, b,
c] which randomly sampled the log-transformed space between a and b in increments of c.

Hyperparameter Distribution
Base Model Choice[Autodidactic, Segmentation, ROI]
Use PSA Choice[True, False]
Use Age Choice[True, False]
Use Attention Module (128) Choice[True, False]
Use Attention Module (256) Choice[True, False]
Use Final Batch Normalization Choice[True, False]
Use Final Dropout Uniform[0, 0.5, 0.1]
Base Model Encoder Freeze Depth Choice[1, 2, 3, 4]
Initial Learning Rate LogUniform[10−5, 10−1, 5 * 10−6]
Final Learning Rate LogUniform[10−5, 10−1, 5 * 10−6]
Weight Decay LogUniform[10−6, 10−3, 5 * 10−7]
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6.3 Results

6.3.1 Dataset Characteristics

1,103 studies were included as part of the analysis dataset, including 225 in the validation set,

215 in the held-out test set, and the remainder in the training set. The mean age of included

patients was 64.6 ± 7.3. The mean PSA of included patients was 8.8 ± 9.4. Maximum

PI-RADS v2 scores were distributed as follows: 1: 1 study (<1%), 2: 21 (2%), 3: 409 (37%),

4: 373 (34%), 5: 299 (27%). ISUP grade groups were distributed as follows: 1: 509 studies

(46%), 2: 303 (27%), 3: 128 (12%), 4: 70 (6%), 5: 93 (8%). Characteristics of the training,

validation and test sets are summarized in Table 6.3.

Table 6.3: Dataset Characteristics. Summary of characteristics of the dataset, including
breakdown of training, validation and test sets. PSA Group refers to the categorization described
in Table 6.1. ISUP GG = ISUP Grade Group.

Characteristic Training Validation Test Overall
n 663 225 215 1103
Age 64.5 ± 7.3 64.5 ± 7.2 65.2 ± 7.7 64.6 ± 7.3

Age ≥ 50 650 (98%) 221 (98%) 212 (99%) 1083 (98%)
PSA 9.0 ± 10.5 8.5 ± 7.5 8.4 ± 7.2 8.8 ± 9.4
PSA Group

0 284 (43%) 106 (47%) 101 (47%) 491 (44%)
1 233 (35%) 63 (28%) 63 (29%) 359 (33%)
2 110 (17%) 41 (18%) 41 (19%) 192 (17%)
3 11 (2%) 10 (4%) 5 (2%) 26 (2%)
4 25 (3%) 5 (2%) 5 (2%) 35 (3%)

PI-RADS v2
1 0 (0%) 1 (<1%) 0 (0%) 1 (<1%)
2 16 (2%) 4 (2%) 1 (<1%) 21 (2%)
3 242 (37%) 86 (38%) 81 (38%) 409 (37%)
4 216 (33%) 76 (34%) 81 (38%) 373 (34%)
5 189 (29%) 58 (26%) 52 (24%) 299 (27%)

ISUP GG
1 306 (46%) 111 (49%) 92 (43%) 509 (46%)
2 177 (27%) 60 (27%) 66 (31%) 303 (27%)
3 82 (12%) 28 (12%) 18 (8%) 128 (12%)
4 46 (7%) 9 (4%) 15 (7%) 70 (6%)
5 52 (8%)) 17 (8%) 24 (11%) 93 (8%)
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6.3.2 Base Model Pretraining

Pretrained base models for the autodidactic, segmentation and ROI targets were successfully

trained using T2 and ADC volumes. The autodidactic model achieved a minimum validation

MSE loss of 0.0001 at epoch 81. The segmentation model achieved a validation soft Dice

coefficient of 0.895 at epoch 100, in line with our previous work [SRD21]. The ROI model

achieved a validation soft Dice coefficient of 0.627, with early stopping at epoch 20.

6.3.3 Hyperparameter Optimization

Hyperoptimization was successfully performed to select optimal hyperparameters configura-

tion for the PI-RADS v2 and ISUP Grade Group (“Gleason”) PLP models, with 100 trials

for each of the two targets. An overview of all 200 trials, broken down by target and base

model, is available in Figure 6.2. The highest performance configurations (by maximum

validation AUC) for PI-RADS v2 exhibited test set AUCs of 0.606 (autodidactic), 0.618

(segmentation), and 0.621 (ROI). The highest performance configurations for ISUP Grade

Group exhibited test set AUCs of 0.692 (autodidactic), 0.696 (segmentation), and 0.702

(ROI). A summary and comparison of configurations for the best performance models is

available in Table 6.4. All three base models produced PLP models with approximately

equivalent maximum performance for both PI-RADS v2 and ISUP Grade Group. However,

the ROI model performed slightly better by trial mean for PI-RADS v2, and the prostate

segmentation model performed slightly better by trial mean for ISUP Grade Group (see

Figure 6.2).

Due to the adaptive probabilistic sampling strategy, it is not possible to rigorously evalu-

ate the impact of individual hyperparameters on performance. However, based on evaluation

of trial means, hyperparameters that appear strongly associated with better performance in-

cluded the use of PSA (for both PI-RADS v2 and ISUP Grade Group, Figure 6.3), and

not using a final batch normalization layer (for both targets, Figure 6.4). The use of the

128 feature attention module appeared to have slightly positive impact for PI-RADS v2 and

negative impact for ISUP Grade Group (Figure 6.5), and the use of the 256 feature attention

module did not appear to have significant impact (Figure 6.6). The use of age appeared to

have little impact for PI-RADS v2 and a negative impact for ISUP Grade Group (Figure

6.7).
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Figure 6.2: Trial Test AUCs by Base Model. Individual trial test AUC values, by target
(color) and base model (row). Each point represents a single trial test AUC. Solid diamonds
represent mean values across the row. Gleason (ISUP Grade Group) models generally performed
better than PI-RADS models. For Gleason models, the prostate segmentation base model had the
most positive impact on test AUC, though the highest performing models across all three base
models are similar. For the PI-RADS models, the ROI base model had the most positive impact,
but again the highest performing models were similar across all three base models, with slightly
poorer performance from the MG model.
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Table 6.4: Optimal Hyperparameter Configurations for PI-RADS v2 and ISUP Grade
Group PLP Models. Best hyperparameter configurations for PI-RADS v2 and ISUP Grade
Group PLP models (by maximum validation AUC). Att128 = 128 feature attention module, Att256
= 256 feature attention module, BN = batch normalization.

PI-RADS v2 ISUP Grade Group
Base Model AD Seg ROI AD Seg ROI

Use Age Yes Yes Yes Yes Yes Yes
Use PSA Yes Yes Yes Yes No Yes
Use Att128 Yes Yes Yes No No No
Use Att256 No Yes Yes Yes Yes Yes
Use BN No No No No No No
AUC 0.606 0.618 0.621 0.692 0.696 0.702
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Figure 6.3: Trial Test AUCs by Use PSA. Individual trial test AUC values, by target (color)
and Use PSA hyperparameter (row). Each point represents a single trial test AUC. Solid diamonds
represent mean values across the row, and solid lines connect diamonds for the same target across
rows. For both targets, models that used PSA generally performed better than models that did
not, with both the mean and best case models with PSA outperforming those without.
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Figure 6.4: Trial Test AUCs by Use Batch Normalization. Individual trial test AUC values,
by target (color) and Use Batch Normalization hyperparameter (row). Each point represents a
single trial test AUC. Solid diamonds represent mean values across the row, and solid lines connect
diamonds for the same target across rows. The use of batch normalization (BN) generally led to
worse performance for both targets, with the mean and best no BN models outperforming those
with BN.
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Figure 6.5: Trial Test AUCs by Use 128 Feature Attention. Individual trial test AUC
values, by target (color) and Use 128 Feature Attention hyperparameter (row). Each point repre-
sents a single trial test AUC. Solid diamonds represent mean values across the row, and solid lines
connect diamonds for the same target across rows. This hyperparameter provided mixed results,
though interpretability is limited by oversampling of the no BN component of the hyperoptimiza-
tion space for Gleason, and the use BN component for PI-RADS. The use of BN appears to provide
limited benefit for PI-RADS but reduces performance for Gleason.
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Figure 6.6: Trial Test AUCs by Use 256 Feature Attention. Individual trial test AUC
values, by target (color) and Use 256 Feature Attention hyperparameter (row). Each point rep-
resents a single trial test AUC. Solid diamonds represent mean values across the row, and solid
lines connect diamonds for the same target across rows. For both targets, the use of 256 feature
attention module seems to have little impact on mean or maximum performance.
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Figure 6.7: Trial Test AUCs by Use Age. Individual trial test AUC values, by target
(color) and Use Age hyperparameter (row). Each point represents a single trial test AUC. Solid
diamonds represent mean values across the row, and solid lines connect diamonds for the same
target across rows. This hyperparameter provided mixed results, though interpretability is limited
by oversampling of the no age component of the hyperoptimization space for Gleason, and the
use age component for PI-RADS. The use of age appears to provide limited benefit for PI-RADS
but reduces performance for Gleason. Notably, the age variable is extremely skewed, with 98% of
study patients in the high age category, which may explain the relative lack of contribution for this
variable.
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6.3.4 Best Performing Models

The best performing models for each target (ISUP Grade Group and PI-RADS v2), for each

choice of base model, were chosen based on the maximum validation AUC, and the test set

AUC is reported. A summary of results is available in Table 6.4. The overall best PI-RADS

v2 model had a test AUC of 0.62, and the overall best ISUP Grade Group model had a

test AUC of 0.70. Training curves for all six models are available in Figure 6.8. All models

experienced approximate training saturation within the first 10 epochs with minimum further

improvement.

ROC curves for the PI-RADS v2 and ISUP Grade Group models are available in Figure

6.9. Smoothed precision-recall curves are available in Figure 6.10 for both targets. The best

model for PI-RADS v2 achieved a precision of 71% at 90% recall, and the best model for

ISUP Grade Group achieved a precision of 65% at 90% recall. The average precision (AP)

metrics for the PI-RADS v2 models were 0.716 (autodidactic), 0.729 (segmentation), and

0.721 (ROI). The AP metrics for the ISUP Grade Group models were 0.754 (autodidactic),

0.720 (segmentation), and 0.723 (ROI). Overall, the three models for each target exhibited

comparable performance.

6.4 Discussion

In this study, we developed novel imaging-based patient-level predictive models for di-

chotomized PI-RADS v2 and ISUP Grade Group using three different types of pretrained

base models, including models based on radiologist-generated ROI annotations, prostate or-

gan segmentations, and no annotations at all. We further explored the contribution of two

clinical variables, age and PSA, to the performance of these models.

We found that our models exhibited better performance for ISUP Grade Group prediction

(AUC 0.7) than for PI-RADS v2 prediction (AUC 0.6). This surprising result likely is due

to the fact that PI-RADS v2 scores are assigned by radiologists who make use of both

high b-value images as well as DCE images, neither of which were available for this study.

Because the PI-RADS v2 score is a composite metric of sequence-level evaluations, lack of

access to some of these sequences may have harmed the predictive power of our models. We

also found that despite extensive hyperparameter tuning, the three base models produced

approximately equivalent best-case models by test set performance. This surprising result

suggests that deep learning can be used to develop successful patient-level models without
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(a) PI-RADS v2

(b) ISUP Grade Group

Figure 6.8: Training Curves for Best PI-RADS v2 and ISUP Grade Group Models.
Curves of validation set AUC vs epoch for the best models for each target, by base model.
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(a) PI-RADS v2

(b) ISUP Grade Group

Figure 6.9: ROC Curves for Best PI-RADS v2 and ISUP Grade Group Models. Test
set performance reciever operating characteristic (ROC) curves for the best models for each target,
by base model. Dotted black line is the identity function. Area under the curve (AUC) for each
trial is listed in the figure legend.
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(a) PI-RADS v2

(b) ISUP Grade Group

Figure 6.10: PR Curves for Best PI-RADS v2 and ISUP Grade Group Models. Test
set performance precision-recall (PR) curves for the best models for each target, by base model.
Opaque curves have been smoothed, lightened curves are original. Average precision (AP) for each
trial is listed in the figure legend.
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requiring access to a radiologist’s annotations, and could have significant implications for

future development. Access to radiologist annotations (i.e. cancer ROIs) is one of the most

challenging barriers to deep learning research in medical imaging, and significantly more

data without annotations (but with patient-level risk scores) could be available for future

work.

We also found that adding PSA information to our models was helpful for performance,

but adding age was not. This is likely because our dataset was heavily skewed towards an

over 50 years old population, which is the cutoff we used for age dichotomization in order

to harmonize with the accepted CAPRA scoring model [CPE05]. Future work could explore

the benefit of a more granular encoding of age.

This work has some limitations. We discarded 38% of the initial dataset (by study count)

due to our exclusion factors, the predominant of which was the inability to automatically

retrieve either the T2W or ADC images from our institution’s PACS or the inability to

retrieve the full text radiology report from our institution’s EMR. It is not possible to exclude

the possibility that these challenges do not occur at random, and future studies should

attempt to recover additional data through a more in-depth search in order to maximize

the included population. We also did not make use of high b-value images or DCE images,

both of which are traditional components of the evaluation of prostate mpMRI. Though

significant debate exists about the necessity of using DCE [KBK17], it remains a component

of the PI-RADS scoring system [TRH19], and established consensus agrees that high b-value

images are of significant value. Future studies should consider including these sequences as

potential drivers of enhanced performance. Finally, the ROI base model trained for this

experiment did not reach state-of-the-art performance (Dice 0.627), likely in part because of

the need to use identical base model architectures for all three pretraining approaches. This

may have limited the contribution of the ROI-based encoded features, and future studies

should explore different base model designs, such as the 3D AH-NET [LXZ18], as well as

alternative training and optimization approaches, to enhance performance.

6.5 Conclusion

We developed novel imaging-based patient-level predictive models using T2W and ADC

images for dichotomized PI-RADS v2 and ISUP Grade Group using three different types of

pretrained base models, achieving a best AUC of 0.702 for ISUP Grade Group and 0.621

for PI-RADS v2. We found that all three of our pretraining approaches were effective in
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facilitating PLP model training, suggesting a role for future, larger-scale studies with un-

annotated datasets in prostate cancer model development. Additionally, we found that the

combination of clinical features like PSA with encoded imaging-based features can be an

effective approach in improving patient-level model performance.
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CHAPTER 7

Conclusion

The aim of this dissertation was to develop methods and approaches to enable the use of

clinically generated datasets in the clinical domain of multiparametric MRI of the prostate,

and with a focus on enabling the use of unannotated or weakly annotated data for machine

learning. The technical chapters of this dissertation describe four major scientific efforts

towards this goal, and the contributions to science are summarized as follows:

Contribution 1 We developed a regional targeted biopsy strategy using a combination

of MRI and ultrasound data and histopathological evaluations from

the clinical record, and found that it had statistically similar sensi-

tivity for clinically significant prostate cancer as a combined biopsy

approach while requiring fewer cores, outperforming the MRI-targeted

and systematic biopsy approaches alone. This finding can be useful

to urologists when determining the optimal set of biopsy locations for

an individual patient and suggest that the regional targeted biopsy

approach should be further evaluated as an alternative to combined

MRI-targeted and systematic biopsy, and demonstrate the value of a

clinical data fusion approach for clinical procedure optimization.

Contribution 2 We trained a state-of-the-art prostate segmentation model using rough

clinical annotations without re-annotation. We additionally found

that models trained using truncated fractions of our data were ef-

fective pre-trained starters for achieving higher performance models

on external prostate segmentation challenge datasets. Our findings

suggest a role for the combined use of datasets with low-quality and

high-quality annotations in future medical image analysis model de-

velopment in order to maximize performance while minimizing anno-

tation effort.

Contribution 3 We made a state-of-the-art federated learning model using private
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clinical prostate imaging data from three academic institutions with-

out transferring any imaging data across institutional boundaries.

The federated model demonstrated improved performance across both

held-out test sets from each institution and an external test set, val-

idating the FL paradigm. This methodology could be applied to a

wide variety of DL applications in medical image analysis in order

to unlock access to much larger clinical datasets while maintaining

regulatory and ethical controls on patient data.

Contribution 4 We developed novel imaging-based patient-level predictive models us-

ing T2W and ADC images for dichotomized PI-RADS v2 and ISUP

Grade Group using three different types of pretrained base models:

un-annotated (autodidactic), weakly annotated (organ segmentation),

and highly annotated (cancer ROI). We found that all three of our pre-

training approaches were effective in facilitating PLP model training,

suggesting a role for future, larger-scale studies with un-annotated

datasets in prostate cancer model development. Additionally, we

found that the combination of clinical features like PSA with en-

coded imaging-based features can be an effective approach in improv-

ing patient-level model performance.

The contributions of this dissertation also suggest numerous opportunities for follow-

on future work to continue to develop the methods and approaches, as well as to make

use of them to develop clinically useful tools. The regional targeted biopsy strategy we

propose in Chapter 3 may require prospective clinical validation in order to provide the

necessary level of evidence to transform clinical practice. Additionally, the combination of

this regional targeted biopsy approach with machine-learning based predictive models, such

as those developed in Chapter 6 could allow for even better site selection, potentially further

reducing the total number of biopsies that may need to be retrieved for some patients. The

federated learning approach we demonstrated for prostate segmentation in Chapter 5 can be

easily adapted to enable training of models for more difficult problems, such as the detection

and delineation of cancer regions of interest on mpMRI. These models could be used to

accelerate the prostate targeted biopsy process, and could also provide even better pretrained

features for patient-level risk prediction models using the approach described in Chapter 6.

Additionally, the use of latest emerging model architectures, such as models designed for

inherently anisotopic data like MR imaging, could enable both better performance for fully
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convolutional image segmentation and improved feature generation for downstream models.

Finally, the imaging-based patient-level predictive models could benefit from the integration

of additional data types, such as the inclusion of high b-value imaging, DCE imaging, and

other clinically measured biomarkers (such as PSA density) in order to better replicate the

data environment used by a urologist to make a decision. The addition of these additional

knowledge sources could yield improved performance of the PLP models, and thus enable

better stratification of patients into treatment and watchful waiting categories. Though

all of the methods and approaches developed over the course of this work are specifically

targeted within the clinical domain of prostate cancer, they could also be transferred to

other disease domains with similar problems, such as the detection and staging of renal and

hepatic cancers.

It is beyond the scope of this dissertation to predict what the long term future may

hold for the practice of medicine. However, it seems likely that the next few decades will

see the introduction of increasing numbers of data science and AI-based tools into medical

practice. Though the pace of change in healthcare can at times feel slow, the art and science

of medicine is nevertheless constantly changing and improving. It is our hope that the

contributions of this work, in combination with the work in progress at research groups like

ours around the world, will enable this process of improvement to continue by unlocking the

potential of clinical data for the development of better predictive models. In doing so, we

hope to help build a healthier future for new generations, just as the physicians and scientists

of the past built one for us.
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Öner, Rengul Cetin-Atalay, Matt Berseth, Vitali Khvatkov, Alexei Vylegzhanin,
Oren Kraus, Muhammad Shaban, Nasir Rajpoot, Ruqayya Awan, Korsuk Sir-
inukunwattana, Talha Qaiser, Yee-Wah Tsang, David Tellez, Jonas Annuscheit,
Peter Hufnagl, Mira Valkonen, Kimmo Kartasalo, Leena Latonen, Pekka Ru-
usuvuori, Kaisa Liimatainen, Shadi Albarqouni, Bharti Mungal, Ami George,
Stefanie Demirci, Nassir Navab, Seiryo Watanabe, Shigeto Seno, Yoichi Tak-
enaka, Hideo Matsuda, Hady Ahmady Phoulady, Vassili Kovalev, Alexander
Kalinovsky, Vitali Liauchuk, Gloria Bueno, M. Milagro Fernandez-Carrobles, Is-
mael Serrano, Oscar Deniz, Daniel Racoceanu, and Rui Venâncio. “Diagnostic
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Hellawell, Richard G. Hindley, Monique J. Roobol, Scott Eggener, Maneesh Ghei,
Arnauld Villers, Franck Bladou, Geert M. Villeirs, Jaspal Virdi, Silvan Boxler,

107
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[LBI10] Giovanni Lughezzani, Lars Budäus, Hendrik Isbarn, Maxine Sun, Paul Perrotte,
Alexander Haese, Felix K Chun, Thorsten Schlomm, Thomas Steuber, Hans
Heinzer, Hartwig Huland, Francesco Montorsi, Markus Graefen, and Pierre I
Karakiewicz. “Head-to-head comparison of the three most commonly used pre-
operative models for prediction of biochemical recurrence after radical prostate-
ctomy.” European Urology, 57(4):562–8, 2010.

[LBK15] Geert J S Litjens, Jelle O Barentsz, Nico Karssemeijer, and Henkjan J Huisman.
“Clinical evaluation of a computer-aided diagnosis system for determining cancer
aggressiveness in prostate MRI.” European Radiology, 25(11):3187–99, 2015.

[LCI13] Bradley C. Lowekamp, David T. Chen, Luis Ibáñez, and Daniel Blezek. “The
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MICCAI, pp. 851–858, Cham, 2018. Springer International Publishing.

[LZF17] Saifeng Liu, Huaixiu Zheng, Yesu Feng, and Wei Li. “Prostate cancer diagnosis
using deep learning with 3D multiparametric MRI.” In Medical Imaging 2017:
Computer-Aided Diagnosis, volume 10134, p. 1013428. SPIE, 2017.

[LZG20] Pradeep Lam, Alyssa H. Zhu, Iyad Ba Gari, Neda Jahanshad, and Paul M.
Thompson. “3D Grid-Attention Networks for Interpretable Age and Alzheimer’s
Disease Prediction from Structural MRI.” arXiv, 2020.

[MAB11] Anant Madabhushi, Shannon Agner, Ajay Basavanhally, Scott Doyle, and George
Lee. “Computer-aided prognosis: predicting patient and disease outcome via
quantitative fusion of multi-scale, multi-modal data.” Computerized Medical
Imaging and Graphics, 35(7-8):506–14, 2011.

[MAL20] Hong Y. Ma, Firas S. Ahmed, Lyndon Luk, Luis A. Pina Martina, Sven Wenske,
and Hiram Shaish. “The negative predictive value of a PI-RADS version 2 score
of 1 on prostate MRI and the factors associated with a false-negative MRI study.”
American Journal of Roentgenology, 215(3):667–672, 2020.

[MBB17] Nicolas Mottet, Joaquim Bellmunt, Michel Bolla, Erik Briers, Marcus G. Cum-
berbatch, Maria De Santis, Nicola Fossati, Tobias Gross, Ann M. Henry, Steven

110



Joniau, Thomas B. Lam, Malcolm D. Mason, Vsevolod B. Matveev, Paul C.
Moldovan, Roderick C.N. van den Bergh, Thomas Van den Broeck, Henk G.
van der Poel, Theo H. van der Kwast, Olivier Rouvière, Ivo G. Schoots, Thomas
Wiegel, and Philip Cornford. “EAU-ESTRO-SIOG Guidelines on Prostate Can-
cer. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent.”
European Urology, 71(4):618–629, 2017.

[MBH19] Sohrab Afshari Mirak, Amirhossein Mohammadian Bajgiran, Melina Hosseiny,
Sepideh Shakeri, Afshin Azadikhah, Anthony E. Sisk, Robert E. Reiter, and
Steven S. Raman. “Comparison of Performance of PI-RADSv2 and a Quanti-
tiative PI-RADSv1 Based Protocol in 3T Multiparametric MRI for Detection,
Grading and Staging of Prostate Cancer Using Whole Mount Histopathology as
Reference Standard in 569 patients.” In Proceedings of the American Urological
Association Annual Meeting, 2019.

[MBS17] Sherif Mehralivand, Sandra Bednarova, Joanna H. Shih, Francesca V. Mertan,
Sonia Gaur, Maria J. Merino, Bradford J. Wood, Peter A. Pinto, Peter L.
Choyke, and Baris Turkbey. “Prospective Evaluation of PI-RADS Version 2
Using the International Society of Urological Pathology Prostate Cancer Grade
Group System.” Journal of Urology, 198(3):583–590, 2017.

[MDV21] Urs J. Muehlematter, Paola Daniore, and Kerstin N. Vokinger. “Approval of
artificial intelligence and machine learning-based medical devices in the USA
and Europe (201520): a comparative analysis.”, 2021.

[ME15] Caroline M Moore and Mark Emberton. “Will the attributes of multiparametric
MRI permit the creation of a new approach to therapy?” Current Opinion in
Urology, 25(6):518–21, 2015.

[MGF13] Pieter Meurs, Rose Galvin, Deirdre M Fanning, and Tom Fahey. “Prognostic
value of the CAPRA clinical prediction rule: a systematic review and meta-
analysis.” BJU International, 111(3):427–36, 2013.

[MJB15] Bjoern H. Menze, Andras Jakab, Stefan Bauer, Jayashree Kalpathy-Cramer,
Keyvan Farahani, Justin Kirby, Yuliya Burren, Nicole Porz, Johannes Slotboom,
Roland Wiest, Levente Lanczi, Elizabeth Gerstner, Marc-Andre Weber, Tal Ar-
bel, Brian B. Avants, Nicholas Ayache, Patricia Buendia, D. Louis Collins, Nico-
las Cordier, Jason J. Corso, Antonio Criminisi, Tilak Das, Herve Delingette,
Cagatay Demiralp, Christopher R. Durst, Michel Dojat, Senan Doyle, Joana
Festa, Florence Forbes, Ezequiel Geremia, Ben Glocker, Polina Golland, Xiaotao
Guo, Andac Hamamci, Khan M. Iftekharuddin, Raj Jena, Nigel M. John, Ender
Konukoglu, Danial Lashkari, Jose Antonio Mariz, Raphael Meier, Sergio Pereira,
Doina Precup, Stephen J. Price, Tammy Riklin Raviv, Syed M.S. S Reza, Michael
Ryan, Duygu Sarikaya, Lawrence Schwartz, Hoo-Chang Shin, Jamie Shotton,

111



Carlos A. Silva, Nuno Sousa, Nagesh K. Subbanna, Gabor Szekely, Thomas J.
Taylor, Owen M. Thomas, Nicholas J. Tustison, Gozde Unal, Flor Vasseur, Max
Wintermark, Dong Hye Ye, Liang Zhao, Binsheng Zhao, Darko Zikic, Marcel
Prastawa, Mauricio Reyes, and Koen Van Leemput. “The Multimodal Brain Tu-
mor Image Segmentation Benchmark (BRATS).” IEEE Transactions on Medical
Imaging, 34(10):1993–2024, 2015.

[MKS15] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Ve-
ness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fid-
jeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis
Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and
Demis Hassabis. “Human-level control through deep reinforcement learning.”
Nature, 518(7540):529–533, 2015.

[MMR17] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. “Communication-Efficient Learning of Deep Networks
from Decentralized Data.” In Artificial Intelligence and Statistics, pp. 1273–
1282, 2017.

[MSG17] Alireza Mehrtash, Alireza Sedghi, Mohsen Ghafoorian, Mehdi Taghipour,
Clare M. Tempany, William M. Wells, Tina Kapur, Parvin Mousavi, Purang
Abolmaesumi, and Andriy Fedorov. “Classification of clinical significance of MRI
prostate findings using 3D convolutional neural networks.” In Medical Imaging
2017: Computer-Aided Diagnosis, volume 10134, p. 101342A. SPIE, 2017.

[MSG20] Scott Mayer McKinney, Marcin Sieniek, Varun Godbole, Jonathan Godwin,
Natasha Antropova, Hutan Ashrafian, Trevor Back, Mary Chesus, Greg C. Cor-
rado, Ara Darzi, Mozziyar Etemadi, Florencia Garcia-Vicente, Fiona J. Gilbert,
Mark Halling-Brown, Demis Hassabis, Sunny Jansen, Alan Karthikesalingam,
Christopher J. Kelly, Dominic King, Joseph R. Ledsam, David Melnick, Hormuz
Mostofi, Lily Peng, Joshua Jay Reicher, Bernardino Romera-Paredes, Richard
Sidebottom, Mustafa Suleyman, Daniel Tse, Kenneth C. Young, Jeffrey De
Fauw, and Shravya Shetty. “International evaluation of an AI system for breast
cancer screening.” Nature, 577(7788):89–94, 2020.

[MSM14] Judd W Moul, Mark J Sarno, Jonathan E McDermed, Melissa T Triebell, and
Mark A Reynolds. “NADiA ProsVue prostate-specific antigen slope, CAPRA-
S, and prostate cancer–specific survival after radical prostatectomy.” Urology,
84(6):1427–32, 2014.

[MSS15] Berrend G. Muller, Joanna H. Shih, Sandeep Sankineni, Jamie Marko, Soroush
Rais-Bahrami, Arvin Koruthu George, Jean J.M.C.H. De La Rosette, Maria J.
Merino, Bradford J. Wood, Peter Pinto, Peter L. Choyke, and Baris Turk-
bey. “Prostate cancer: Interobserver agreement and accuracy with the revised

112



prostate imaging reporting and data system at multiparametric mr imaging1.”
Radiology, 277(3):741–750, 2015.

[Muk17] Siddhartha Mukherjee. “A.I. Versus M.D.” The New Yorker, 2017.

[MVS17] Paul C. Moldovan, Thomas Van den Broeck, Richard Sylvester, Lorenzo Marconi,
Joaquim Bellmunt, Roderick C.N. van den Bergh, Michel Bolla, Erik Briers,
Marcus G. Cumberbatch, Nicola Fossati, Tobias Gross, Ann M. Henry, Steven
Joniau, Theo H. van der Kwast, Vsevolod B. Matveev, Henk G. van der Poel,
Maria De Santis, Ivo G. Schoots, Thomas Wiegel, Cathy Yuhong Yuan, Philip
Cornford, Nicolas Mottet, Thomas B. Lam, and Olivier Rouvière. “What Is the
Negative Predictive Value of Multiparametric Magnetic Resonance Imaging in
Excluding Prostate Cancer at Biopsy? A Systematic Review and Meta-analysis
from the European Association of Urology Prostate Cancer Guidelines Panel.”
European Urology, 72(2):250–266, 2017.

[MYN13] Leonard Marks, Shelena Young, and Shyam Natarajan. “MRIultrasound fusion
for guidance of targeted prostate biopsy.” Current Opinion in Urology, 23(1):43–
50, 2013.

[Nat15] National Comprehensive Cancer Network. “Prostate Cancer Early Detection
(Version 2.2015).”, 2015.

[NSL13] Robert K Nam, Refik Saskin, Yuna Lee, Ying Liu, Calvin Law, Laurence H
Klotz, D Andrew Loblaw, John Trachtenberg, Aleksandra Stanimirovic, An-
drew E Simor, Arun Seth, David R Urbach, and Steven A Narod. “Increasing
hospital admission rates for urological complications after transrectal ultrasound
guided prostate biopsy.” The Journal of Urology, 189(1 Suppl):S12–7; discussion
S17–8, 2013.

[NVI] NVIDIA Corporation. “Clara Train Application Framework Documentation
Clara Train Application Framework v3.0 documentation.”.

[PBB17] Andrei S. Purysko, Leonardo K. Bittencourt, Jennifer A. Bullen, Thomaz R.
Mostardeiro, Brian R. Herts, and Eric A. Klein. “Accuracy and interobserver
agreement for prostate imaging reporting and data system, version 2, for the
characterization of lesions identified on multiparametric MRI of the prostate.”
American Journal of Roentgenology, 209(2):339–345, 2017.

[PBV07] Philippe Puech, Nacim Betrouni, Romain Viard, Arnauld Villers, Xavier Leroy,
and Laurent Lemaitre. “Prostate cancer computer-assisted diagnosis software
using dynamic contrast-enhanced MRI.” Annual International Conference of
the IEEE Engineering in Medicine and Biology Society, 2007:5567–70, 2007.

113



[PEV18] Alan Priester, Fuad Elkhoury, Jacob Vandel, Merdie Delfin, Ely Felker, Shyam
Natarajan, and Leonard Marks. “Targeted Prostate Biopsy: Cancer Extends
Beyond the ROI!” In Proceedings of the American Urological Association Annual
Meeting, volume 199, 2018.

[PMR15] Francesco Paparo, Michela Massollo, Ludovica Rollandi, Arnoldo Piccardo, Fil-
ippo Grillo Ruggieri, and Gian Andrea Rollandi. “The clinical role of multi-
modality imaging in the detection of prostate cancer recurrence after radical
prostatectomy and radiation therapy: past, present, and future.” Ecancermedi-
calscience, 9:570, 2015.

[PNK17] Alan Priester, Shyam Natarajan, Pooria Khoshnoodi, Daniel J. Margolis,
Steven S. Raman, Robert E. Reiter, Jiaoti Huang, Warren Grundfest, and
Leonard S. Marks. “Magnetic Resonance Imaging Underestimation of Prostate
Cancer Geometry: Use of Patient Specific Molds to Correlate Images with Whole
Mount Pathology.” Journal of Urology, 197(2):320–326, 2017.

[PPP15] Sanoj Punnen, Nicola Pavan, and Dipen J Parekh. “Finding the Wolf in Sheep’s
Clothing: The 4Kscore Is a Novel Blood Test That Can Accurately Identify the
Risk of Aggressive Prostate Cancer.” Reviews in Urology, 17(1):3–13, 2015.

[Pre03] Joseph C. Presti. “Prostate biopsy: how many cores are enough?” Urologic
Oncology: Seminars and Original Investigations, 21(2):135–140, 2003.

[PWR19] Anwar R. Padhani, Jeffrey Weinreb, Andrew B. Rosenkrantz, Geert Villeirs,
Baris Turkbey, and Jelle Barentsz. “Prostate Imaging-Reporting and Data Sys-
tem Steering Committee: PI-RADS v2 Status Update and Future Directions.”
European Urology, 75(3):385–396, 2019.
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Malavaud, Paul Cezar Moldovan, Nicolas Mottet, Pierre Mozer, Pierre Nevoux,
Gaele Pagnoux, Gilles Pasticier, Daniel Portalez, Eric Potiron, Athivada Soto
Thammavong, Marc-Olivier Timsit, Arnault Viller, and Jochen Walz. “Use of
prostate systematic and targeted biopsy on the basis of multiparametric MRI in
biopsy-naive patients (MRI-FIRST): a prospective, multicentre, paired diagnos-
tic study.” The Lancet Oncology, 20(1):100–109, 2019.

[RSR21] Alex G. Raman, Karthik V. Sarma, Steven S. Raman, Alan M. Priester,
Sohrab Afshari Mirak, Hannah H. Riskin-Jones, Nikhil Dhinagar, William
Speier, Ely Felker, Anthony E. Sisk, David Lu, Adam Kinnaird, Robert E. Reiter,
Leonard S. Marks, and Corey W. Arnold. “Optimizing Spatial Biopsy Sampling
for the Detection of Prostate Cancer.” Journal of Urology, 2021.

[RZK19] Maithra Raghu, Chiyuan Zhang, Jon Kleinberg, and Samy Bengio. “Transfu-
sion: Understanding Transfer Learning for Medical Imaging.” In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox, and R. Garnett, edi-
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