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Nonconvex regularizations in fluorescence molecular

tomography for sparsity enhancement

Dianwen Zhu, Changqing Li†
School of Engineering, University of California Merced,

Merced, CA 95343, USA

Abstract. In vivo fluorescence imaging has been a popular functional imaging

modality in preclinical imaging. Near infrared probes used in fluorescence molecular

tomography (FMT) are designed to localize in the targeted tissues, hence sparse

solution to the FMT image reconstruction problem is preferred. Nonconvex

regularization methods are reported to enhance sparsity in the fields of statistical

learning, compressed sensing etc. We investigated such regularization methods in FMT

for small animal imaging with numerical simulations and phantom experiments. We

adopted a majorization-minimization (MM) algorithm for the iterative reconstruction

process and compared the reconstructed images using our proposed nonconvex

regularizations with those using the well known L1 regularization. We found that the

proposed nonconvex methods outperform L1 regularization in accurately recovering

sparse targets in FMT.
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1. INTRODUCTION

Fluorescence molecular tomography (FMT) is an important functional imaging tool

that can monitor cell and molecular activities in vivo. Its applications include

cancer imaging, drug delivery, stem cell trafficking, enzyme activity monitoring, etc.

(Cherry 2004, Ntziachristos et al. 2005). FMT collects near infrared photons propagated

to the object boundary from inside tissues, then recovers the internal fluorophore

concentrations by minimizing the discrepancy between measurements from the FMT

system and predicted values from a physical model—usually referred to as the “forward

model”, through a least squares model. The forward modeling is based on a diffusion

equation that is solved on a finite element mesh (Fedele et al. 2003, Li et al. 2009a).

Due to the intense scattering and absorption of photons and the relatively small

amount of collected data, FMT system is usually severely ill-conditioned. Improving

the system matrix, of course, is another way to alleviate the ill-conditioning. A detailed

list of references in this respect is available from (Dutta et al. 2012). Despite these

efforts, due to the noise and numerical errors, regularization techniques are still needed

to stabilize the system. Tikhonov or L2 regularization is a popular choice. It is effectively

assuming a multivariate Gaussian prior for the solution from a Bayesian point of view,

which undesirably tend to oversmooth the image. In FMT for small animal imaging,

the target is usually very small, hence the desired solution of the image reconstruction

problem would be sparse. We point out that in vivo FMT system may suffer a lot of

background signal or noise, which reduces the sparisty of the signal. So a background

subtraction approach might be applied before we start the regularization methods (Ale

et al. 2013). When incorporating this prior knowledge into the least squares model,

L1 regularization is the natural choice since it is well known for sparsity enhancement,

especially in the field of compressed sensing (Candes et al. 2008). For the FMT system,

comparison has been done recently on the effects of L1 with joint L1 and total variation

(TV) regularization, noticing that TV may enhance local smoothness, although no clear

winner was found comparing the performances of L1 with joint L1 and TV (Dutta

et al. 2012). The sparsity promoting effects of Lp regularization for a more general

1 ≤ p < 2 has been investigated as well (Han et al. 2010). A matrix-free strategy using

Lp(1 ≤ p < 2) regularization was also proposed for FMT (Baritaux et al. 2010). These

papers clearly demonstrated the effects of Lp(1 ≤ p < 2) regularizations in enhancing

sparsity. One feature in common among these efforts was that they were all solving

convex optimization problems.

However, nonconvex regularizations have stronger effects in promoting sparse

solutions, despite the potential local minima issues (Chartrand 2007). It has been

actively studied in the signal processing, image denoising, image restoration fields,

etc. (Chartrand 2007, Figueiredo et al. 2007). In paticular, a comprehensive study

on different nonconvex regularizations have been done as well (Gasso et al. 2009).

Recall that the ideal sparsity regularization would be the inclusion of the L0 norm,

but this minimization problem is combinatorial and is NP-hard to solve in general
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Figure 1. (a) Family of nonconvex functions Lq (0 < q < 1) and (b) logarithmic

function in one dimension. L1 is also plotted as a reference.

(Natarajan 1995). L1 and Lp (1 < p < 2) norms are effective approximations, but clearly

the Lq pseudo norm, as q → 0, would be an even better approximation to L0. We can

intuitively understand the 1-dimensional version of this phenomenon from figure 1: on

interval x ∈ (0, 1), when we decrease the same amount of y in Lq : y = xq (0 < q < 1)

and L1 : y = x, we need to decrease x more significantly in the former, as illustrated in

figure 1 (a).

In this paper, we aimed to study the effects of the family of nonconvex Lq(0 < q < 1)

regularizations for FMT, and compare their effects in promoting sparsities with the well

known L1 regularization. We also included Logarithmic(Log) regularization as another

potential nonconvex candidate for L0 in promoting sparsity. Similar to the case of

Lq, (0 < q < 1), figure 1 (b) shows that to minimize Log (x), we need x to rapidly

decrease to 0 as well. To the best of our knowledge, effects of nonconvex regularizations

have not been studied in FMT although similar efforts have been made in the broader

field of medical image reconstruction. For example, a nonconvex reconstruction of

2D CT images was studied (Sidky et al. 2007). Lq (0 < q < 1) regularizations was

also reported to provide enhanced sparsity and improved spatial resolution for images

reconstructed in a diffuse optical tomography (DOT) system (Okawa et al. 2011).

However, their system matrix was much smaller in size and there is no non-negativity

constraint, so their method can not be directly applied to our FMT model. Also in the

field of DOT, it has been shown very recently that Lq (0 < q ≤ 1) regularizations hold

promise in improving the reconstructed image quality (Prakash et al. 2014). Nonetheless,

the DOT system is different and their approach is different than ours and can only handle

nearly noise-free data.
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2. MATERIALS AND METHODS

2.1. Regularized nonlinear least squares models

Image reconstruction in FMT is modeled as a regularized least squares problem with a

non-negativity constraint, which can be written into the following form:

x̂ = min
x≥0

Φ(x) :=
1

2
‖Ax− b‖2L2 + λ ·R(x), (1)

where x = (xj)n×1 represents the nodes to be reconstructed, A = (aij)m×n the system

matrix, b = (bj)m×1 the measurements, and λ ·R(x) the regularization term, reflecting

our a priori knowledge about the solution. Although other prior information such as

structure, shape, location, etc. of the target from other imaging modalities can also be

incorporated (Li et al. 2009b, Wang et al. 2011), since our focus of this paper is on the

sparsifying effects of regularization terms, we restrict:

λ ·R(x) = λ1‖x‖L1 + λlog‖x‖log + λq‖x‖Lq , (2)

where 0 < q < 1 and λ1, λlog, and λq are regularization parameters, among which only

one will be non-zero at a time so that we may compare the effects of different penalties.

We have the following two quick remarks:

(i) For the L1 term, we can safely get rid of the absolute value sign, and replace

the L1 norm by the equivalent linear form: λ11
tx, due to the non-negativity

constraint, where 1t is the vector of the same dimension as x but with all ones

(Dutta et al. 2012).

(ii) For the nonconvex terms, we define

‖x‖log =
n∑
i=1

[log(xj+δlog)− log δlog] and ‖x‖qLq =
n∑
i=1

(xj+δq)
q, (3)

where we added small constants δlog and δq, (e.g. 1.0E-9) to each xj in the above

definitions to avoid singularities when xj approaches 0. Note that we again omitted

the absolute value symbols due to the non-negativity requirement.

2.2. Preconditioned conjugate gradient

Preconditioned conjugate gradient (PCG) algorithm is the typical way of solving least

squares problems and it is usually quite effective. So one may take the first order

derivative, or gradient, of Φ(x) with respect to x, and then solve ∇Φ(x) = 0. It is clear

that

∇Φ(x) = AtAx− (Atb− λ11N) + λlog./(x + δlog) + qλq. ∗ (x + δq)
q−1,(4)

where ./ and .∗ are entry-wise division and multiplication for vectors, respectively. Then

one may follow the nonlinear PCG procedure. However, PCG suffers one major issue

in our FMT model since the system matrix A is usually very large: a very expensive

backtracking line search is needed to enforce the non-negativity constraint.
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2.3. MM algorithm

We turn to methods that limits the operations on the system matrix to increase updating

speed. MM algorithms—also known as optimization transfer algorithms and its special

case, the separable quadratic surrogates (SQS) algorithm (Erdogan & Fessler 1999), has

the desired advantages including avoiding matrix inversions, linearizing an optimization

problem, dealing gracefully with inequalities, etc. (Hunter & Lange 2004). Recall the

definition of a surrogate function Φsur(x) in the minimization problem, the following

three conditions should hold:
Φsur(x) ≥ Φ(x), for all x;

Φsur(xn) = Φ(xn), at some point xn;

∇Φsur(xn) = ∇Φ(xn), at point xn.

(5)

There are different ways to implement MM algorithms. For example, one may

add a nonnegative term to obtain the surrogate function (Prakash et al. 2014). In the

following, we first follow the SQS routine (Erdogan & Fessler 1999) to majorize the least

squares fitting term:

1

2
‖b−Ax‖2L2 =

1

2

m∑
i=1

(bi − (Ax)i)
2

≤ 1

2

m∑
i=1

n∑
j=1

βij{bi − (Axk)i −
aij
βij

(xj − xkj )}2

=
n∑
j=1

{
(xj − xkj )2

2

m∑
i=1

a2ij
βij
− xj

m∑
i=1

aij(bi − (Axk)i) + gj(x
k
j )}

:=
n∑
j=1

Φols
j (xj),

(6)

where gj(x
k
j ) denotes a function of xkj only, and the parameters βij are non-negative

and satisfy that
∑n

j=1 βij = 1. It is also helpful to keep in mind that only xj’s are the

unknown variables, all the others (e.g. xk, xkj ) are known constants. Following (Fessler

et al. 1997), we conveniently set βij = aij/
∑

j aij in this paper.

For the L1 regularization, we don’t need any surrogate:

λ1‖x‖L1 = λ1

n∑
j=1

xj :=
n∑
j=1

ΦL1

j (xj). (7)

To handle the complex nonconvex regularizations log xj and xqj (0 < q < 1), we use

the following:

λlog log(xj + δlog) ≤ λlog
(
log(xkj + δlog) + (xkj + δlog)

−1(xj − xkj )
)
, (8)

λq(xj + δq)
q ≤ λq

(
(xkj + δq)

q + q ∗ (xkj + δq)
(q−1)(xj − xkj )

)
. (9)

These inequalities are straightforward since the right-hand side terms represent the lines

tangent to log(x) and xq, respectively, at point xk, which are above the graphs of these

concave functions. We can also quickly see that the 2nd and 3rd requirements in (5)

hold. So we take the right-hand sides as our linear surrogates, and denote them as

ΦLog
j (xj) and ΦLq

j (xj) respectively.
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2.4. Iterative update

Now that the surrogate function Φsur is decoupled, we can derive the iterative update

by differentiating each variable separately and setting them to 0:

∂Φsur
j

∂xj
= 0⇒

∂Φols
j

∂xj
+
∂ΦL1

j

∂xj
+
∂ΦLog

j

∂xj
+
∂ΦLq

j

∂xj
= 0

⇒ (xj − xkj )
m∑
i=1

a2ij
βij
−

m∑
i=1

aij(bi − (Axk)i) (10)

+ λ1 +
λlog

xkj + δlog
+

qλq
(xkj + δq)1−q

= 0.

Denoting
∑m

i=1

a2ij
βij

by κj, we derive the non-negative solution for the above equation

in two steps:

(i) We obtain the non-negative ordinary least squares (OLS) solution, which

corresponds to the case when all the regularization parameters disappear,

xk+1
j,OLS =

(
xkj +

∑m
i=1 aij(bi − (Axk)i)

κj

)
+

, (11)

where u+ = max(0, u), representing the positive part of any function u. In matrix

form, we have

xk+1
OLS =

(
xk +

1

κ
At(b− Axk)

)
+

; (12)

where division by κ is in Hadamard sense or entry-wise.

(ii) We obtain the non-negative regularized solution:

xk+1
j,sp = (xk+1

OLS −
λsp
κj

)+, (13)

where

λsp =


λ1, ifλ1 6= 0;
λlog

xkj+δlog
, ifλlog 6= 0;

qλq
(xkj+δq)

1−q , ifλq 6= 0.

(14)

2.5. Selection of regularization parameters and image quality metrics

For each type of regularization, we identify the best image that can be reconstructed by

searching through a range of values for the regularization parameter. There are different

criteria in optical tomography for this selection. 11 methods have been compared

(Correia et al. 2009) for finding the best Tikhonov regularization parameter in image

deblurring—as a first step to optical tomography, and the L-curve method was found to

be the best. Instead of relying on any single criterion in comparing image qualities, we

base our comparison on a mixture of metrics since our goal is to reconstruct the localized

targets, which are expected to be both sparse and correctly positioned. These metrics
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include: the volume ratio (VR) (Tian et al. 2009), which measures the ratio of the

reconstructed target volume to the true target volume and also indicates the sparsity the

reconstructed target; the dice similarity coefficient (Dice) (Dice 1945), which measures

the location accuracy of the reconstructed objects; the mean squared error (MSE), which

measures the error the reconstructed and the true fluorophore concentrations; and the

contrast-to-noise ratio (CNR) (Song et al. 2004), which measures if the reconstructed

target can be clearly distinguished from the background. Their definitions are as follows:

V R =
|rROI|
|ROI|

, (15)

Dice =
2 ∗ |rROI ∩ROI|
|rROI|+ |ROI|

, (16)

MSE =
1

N

N∑
j=1

(xj − x0j)2, (17)

CNR =
Mean(x

ROI
)−Mean(x

ROB
)√

ωROIV ar(xROI
) + (1− ωROI)V ar(xROB

)
(18)

where x and x0 are the reconstructed and true fluorophore concentrations respectively,

rROI the reconstructed region of interest that is defined to be the voxels whose

concentrations are higher than 50% of the maximum of the reconstructed concentrations,

ROI the true region of interest or the true target locations, ωROI = |ROI|/(|ROI| +
|ROB|), ROB the true background region, | · | number of elements, ‘Mean’ and ‘Var’

mean and variance respectively. Generally the closer VR and Dice are to 1, the smaller

MSE is, and the larger CNR is, the better. In this paper, we especially focus on the VR

and Dice values since they measure sparsity and accuracy of target positions.

2.6. Numerical simulations

To validate our algorithm, we simulated two fluorescent tube sources inside a mouse. The

mouse was simulated based on the surface mesh of the Digimouse (Dogdas et al. 2007),

from which we used Tetgen (http://tetgen.org) to regenerate a uniform internal mesh

with a total of 32,332 nodes and 161,439 tetrahedral elements since the internal

tetrahedral elements from Digimouse is not uniform in size. We then simulated two

tubes at the center of the trunk of the mouse with diameters 2mm and lengths 20mm.

For all the nodes inside the two tubes, we assigned the fluorophore concentration to be

1; and outside, 0. Then we chose 5 rings around the trunk, and selected 12 uniformly

distributed nodes from each ring to form a total of 60 laser excitations sources. All the

4020 surface nodes that cover the trunk were set to be detectors. Finally, uniform

white noise with a signal-to-noise ratio of 1 was added to each measurement. We

assumed the excitation wavelength of 650 nm and the emission wavelength of 700nm.

The tissue optical properties were µa = 0.007 mm−1, µ′s = 0.72 mm−1 at 650nm and

µa = 0.014 mm−1, µ′s = 0.78 mm−1 at 700nm.
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Table 1. Metrics of reconstructed images of simulated data under different (a) L1 and

(b) L1/2 regularizations, with the best selections highlighted in bold.

(a)

λq VR Dice MSE CNR

6.2E-4 6.95 0.207 3.841E-3 4.25

6.3E-4 6.95 0.204 3.843E-3 4.24

6.4E-4 6.91 0.205 3.845E-3 4.24

6.5E-4 6.84 0.204 3.847E-3 4.23

6.6E-4 6.81 0.205 3.849E-3 4.22

6.7E-4 6.77 0.20 3.852E-31 4.21

6.8E-4 6.72 0.19 3.854E-39 4.21

(b)

λ1 VR Dice MSE CNR

3.2E-5 4.96 0.261 3.51E-3 4.80

3.4E-5 4.33 0.261 3.54E-3 4.65

3.6E-5 4.02 0.260 3.56E-3 4.55

3.8E-5 4.03 0.255 3.60E-3 4.38

4.0E-5 3.74 0.258 3.64E-3 4.31

4.2E-5 3.44 0.232 3.77E-3 3.84

4.4E-5 3.20 0.231 3.82E-3 3.65

2.7. Phantom experiment

We further designed a cubic phantom with dimension 32 mm by 32 mm by 29 mm

that was composed of 1% intralipid, 2% agar, and water in the background; whereas

in the two capillary target tubes with length 12 mm and diameter 1 mm, 6.5 µm DiD

fluorescence dye solution was injected. The two target tubes also contained uniformly

distributed 18[F]-fluoro-2-deoxy-D-gluocose (FDG) at activity level of 100 µCi for a

simultaneous positron emission tomography (PET) scan, whose result will be used

to validate our FMT. The FEM mesh consists of 8690 nodes and 47,581 tetrahedral

elements. The excitation laser at a wavelength of 650 nm scanned the front surface of

the phantom at 20 illumination nodes. The excitation wave length was 700nm. The

tissue optical properties were µa = 0.0022 mm−1, µ′s = 1.10 mm−1 at both 650nm and

700nm wavelengths. Measurements were collected at 1057 detector nodes for the FMT.

We threshold the PET images at 20% of the maximum FDG concentrations to identify

the positions of the capillary tubes. For more details of the PET imaging, please refer

to (Li et al. 2009b).

3. RESULTS

3.1. Simulation results

We first show some examples on how the optimization of our regularization parameters

are done. We will only show the results for L1 and L1/2 cases since we are aiming at

comparing our nonconvex regularizers—where L1/2 is the best as we will show later—

with the L1 regularizer. Other cases in simulations are all done in the same fashion.

figure 2 (a) and (b) show how λ1 =6.5E-4 and λq =4E-5 provide the best balance across

the four metrics and will be chosen as the best regularization parameter for L1 and L1/2

respectively. We clearly see in table 1 that for both cases, the selected regularization

parameters are associated with relatively low VR, high Dice, while the MSE and CNR

sit right at their average levels.

The reconstructed images using different regularizations are shown in figure 3. Note
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Figure 2. Comparison of effects of different regularization parameters for (a) L1 and

(b) L1/2. The metrics are normalized by their maximal values respectively. The true

values are listed in Table 1. The best regularization parameters are λ1 =6.5E-4 and

λq =4E-5 respectively, as highlighted by the yellow dotted lines.

that result from L2 regularization is also included as a reference. We find that the

images (d)-(g) corresponding to nonconvex regularization methods are more sparse than

the images from the well known L1 (c) and L2 (b). To further analyze the images

quantitatively, the corresponding image quality metrics, VR, Dice, MSE and CNR

are calculated and shown in table 2. As expected, L1 regularization demonstrated a

better performance than L2 in terms of providing a more sparse (smaller VR) and more

accurately positioned targets (larger Dice), although it yielded a slightly larger MSE

and smaller CNR. More importantly, we can see that Lq, q = 7/8, 1/2, 1/8 and Log

regularizations produce even better results than L1: the VR’s are smaller and Dice’s are

larger, and the associated MSE and CNR values are also slightly improved.

Table 2. Metrics of the best reconstructed images under different regularizations for

simulated data, with the best regularization method highlighted in bold.

Regularizations VR Dice MSE CNR

L2, λ2 =5.0E-5 9.64 0.18 3.77E-3 4.32

L1, λ1 = 6.5E-4 6.84 0.20 3.85E-3 4.23

L7/8, λq =6.1E-4 4.21 0.23 3.83E-3 3.93

L1/2, λq =4.0E-5 3.74 0.26 3.64E-3 4.31

L1/8, λq =3.0E-6 4.81 0.26 3.59E-3 4.43

Log, λlog =1.3E-5 5.06 0.26 3.63E-3 4.29

Among all the nonconvex regularizations, we found that L1/2 produces the best

result. It yields the most sparse solution without sacrificing much on Dice, CNR, and

MSE values. We don’t have a theoretical accounting for this phenomenon yet but

we believe this is related to the fact that when q is too small or as in the Log case,

the regularization emphasizes too much on the sparsity of the solution, whereas the
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Figure 3. Comparison of (a) the ground truth image, and reconstructed images using

MM algorithm with regularization (b) L2 and λ2 =5.0E-5, (c) L1 and λ1 =6.5E-4, (d)

L7/8 and λ7/8 =6.1E-4, (e) L1/2 and λ1/2 =4.0E-5, (f) L1/8 and λ1/8 =3.0E-6, and (g)

Log and λlog =1.3E-5, respectively.

accuracy of the target locations is compromised. As pointed out earlier, when we select

the best regularization parameter for each regularization model, we need to choose the

case where the Dice is relatively high, the associated VR of which may also be larger.

We also noticed that when q is small, Lq and Log performed similarly, which is not

surprising since the shape of the curve of Log and Lq for small q are quite similar, as

seen in figure 1.

3.2. Phantom experiment result

Selection of regularization parameters for phantom experiments are done in a similar

way as the numerical simulations. The phantom results are summarized in figure 4 and

table 3. We included the image reconstructed from PET as the truth. Since we don’t

have the true image intensity information available, we can only compute the VR, Dice

and CNR metrics. From figure 4, we also clearly see the pattern we identified in the

simulation section, that is, (1) for Lq, 0 < q < 1 and Log regularizations, more sparse

and accurate images are reconstructed than in L1 and L2; and (2) images (e)-(g) are

very similar to each other, although (e) corresponding to L1/2 regularization has the

most sparse structure. Quantitatively, the best performance in terms of VR and Dice

are also observed for L1/2 as shown in table 3 although L1/8 and Log yield higher CNR’s.

4. DISCUSSION AND CONCLUSION

We introduced nonconvex regularizations into the reconstruction of FMT and validated

the new methods with both numerical simulations and phantom experiments. The MM

algorithm was adopted for a straightforward iterative update. We started the iterative

algorithm from a uniform initial value that can be randomly chosen on interval (0, 1).
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Figure 4. Reconstructed images for phantom experiment: (a) PET result as truth, (b)

using MM algorithm with regularization L2 and λ2 =3.0E-6, (c) L1 and λ1 =9.0E+3,

(d) L7/8 and λ7/8 =1.0E+5, (e) L1/2 and λ1/2 =5.0E+7, (f) L1/8 and λ1/8 =1.0E+10,

(g) and Log and λlog =9.0E+11, respectively.

Table 3. Metrics of the best reconstructed images under different regularizations for

phantom data, with the best regularization method highlighted in bold.

Regularizations VR Dice CNR

L2, λ2 =3.0E-6 7.64 0.19 4.44

L1, λ1 =9.0E+3 4.33 0.26 6.11

L7/8, λq =1.0E+5 3.17 0.28 6.33

L1/2, λq =5.0E+7 2.56 0.39 5.11

L1/8, λq =1.0E+10 3.13 0.35 7.11

Log, λlog =9.0E+11 2.78 0.36 6.88

We ran a total of 2000 steps for both the simulated and phantom data. For the simulated

data, each iteration takes about 1.6 seconds to finish on an Intel i5 2400 3.1GHz PC

and the incremental update became less than 2E-5 when the iteration stopped. For the

phantom, each iteration takes only about 0.09 seconds since its mesh is much smaller.

We used four different image quality metrics, VR, Dice, MSE and CNR to analyze

the reconstructed images. In both numerical simulations and phantom experiment, the

comparison between the nonconvex methods and the well known L1 and L2 methods

demonstrated that nonconvex Lq (0 < q < 1) and Log regularizations can reconstruct

more sparse images while keeping targets more accurately positioned, as indicated by

the smaller VR and larger Dice values than those from L1 and L2 regularizations. The

new methods are robust since almost identical reconstruction results were obtained from

six simulated noisy data sets, each corrupted by white Gaussian noise with SNR 1.

The MM algorithm that we adopted guarantees monotonicity, yet one of its

potential drawback is that it tends to have very slow convergence (Hunter & Lange

2004, Dutta et al. 2012). So the 2000 max iteration steps may still not guarantee that

the result we obtained using our convex surrogate be the global minimize, especially

when the FMT system is ill-posed and ill conditioned. The reconstructed images look

satisfactory overall; however, the VR values for the reconstructed images are still too

large (> 3.7 and > 2.5 for simulations and phantom data, respectively), far away from
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the ideal value, and the Dice similarity coefficients are also quite low (< 0.3 and < 0.4 for

simulations and phantom data, respectively). We noticed that combination of MM and

PCG can increase the convergence (Dutta et al. 2012), and different surrogate functions

lead to different convergence rates (Zhou et al. 2011) as well. So we may follow these

directions and hopefully improve the convergence of our MM algorithm in FMT.

We are also planning to validate our algorithms with in vivo experiments, which

involve more factors such as different noise patterns and background signals due to

autofluorescence etc. (Ale et al. 2013). So we may have to combine other approaches

to make sure the targets are indeed sparse before applying our algorithm to the in vivo

data.

In conclusion, we presented a nonconvex framework for reconstructing localized

FMT targets and it is more effective in enhancing sparsity than the well known L1

regularization method.
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