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Abstract

Purpose—Epigenetic events play a major role in the carcinogenesis of tobacco-related cancers.

We conducted a retrospective cohort study to evaluate the effects of exposure to the anti-

convulsant agent valproic acid (VPA), a HDAC inhibitor, on the risk for cancers of the lung, head

and neck, prostate, bladder and colon.

Patients and Methods—The study was based on the 2002–2008 National Veterans Affairs

(VA) medical SAS dataset linked to the VA Central Cancer Registry. The cohort was defined as

subjects over 40 years of age who were followed in the VA system for at least one year for one of

four diagnoses for which a VPA indication exists (bipolar disorder, PTSD, migraines and

seizures). Multivariable Cox proportional hazard models were used to estimate hazard ratios (HR)

and 95% confidence intervals (CI) reflecting the association between VPA use and cancer

incidence.

Results—VPA use was associated with a significant reduction in the risk for cancers of the head

and neck (HR 0.66, 95% CI (0.48–0.92)) Additional associations were seen with duration of

treatment and median VPA drug levels. No significant differences in cancer incidence was

observed for lung-(HR 1.00; 95%CI 0.84–1.19), bladder- (HR 0.86; 95% CI 0.64–1.15), colon-

(HR 0.95; 95% CI 0.74–1.22) and prostate cancers (HR 0.96 95% CI 0.88–1.12)
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Conclusion—VPA use is associated with a lower risk of head and neck cancers.

Introduction

Epigenetic changes, involving either DNA methylation or changes in chromatin structure1, 2,

are early carcinogenic events in many cancer sites including lung3–5, prostate6, 7, colon8, 9,

bladder10, 11, and head and neck12–14. DNA methyltransferases (DNMTs) and histone-

deacetylases (HDACs) are major epigenetic mediators for which pharmacologic inhibitors

are available. In animal models, inhibition of DNMTs and HDACs has been shown to

prevent the development of both lung15 and prostate cancers16. In addition, our own data

show that HDAC1,2 and 3 not only are associated with increased DNMT1 protein levels in

lung cancers compared to normal controls, but that they are directly responsible for

stabilizing DNMT1 expression17. Valproic acid (VPA), which has been widely used for

psychiatric or neurologic disorders as a mood stabilizer or anti-epileptic drug, has recently

been described to act as class I HDAC inhibitor18 HDAC inhibition is observed at VPA

concentrations as low as 30 ug/ ml17. . Epigenetic therapies such as the DNMT inhibitor

azacytidine and the HDAC inhibitor vorinostat have been proven effective against several

hematologic malignancies such as myelodysplastic syndrome19–21and cutaneous T-cell

lymphomas22. A recent phase II study showed promise for the combination of azacytidine

with the HDAC inhibitor entinostat for the treatment of lung cancer23. However, no clinical

evidence exists so far on the association between use of HDAC inhibitors and cancer risk.

Given the importance of epigenetic mechanisms in early carcinogenesis24, and the

preclinical evidence supporting the anti-carcinogenic effects of VPA25, we conducted a

retrospective cohort study evaluating the risk of various malignancies in relation to VPA

use.

Materials and Methods

Data sources

We searched the National Veterans Affairs (VA) Medical SAS datasets in conjunction with

the VA Decision Support Systems (DSS) data from the VA Corporate Data Warehouse

(CDW). The project was approved by the Institutional Review Board (IRB) at Emory

University and by the Research and Development Committee at the Atlanta VA Medical

Center (VAMC). Data were extracted by the VA Informatics and Computing Infrastructure

(VINCI). The data elements obtained on each study subject included scrambled social

security number, gender, age, first date of encounter, last day of encounter, first filled

prescription of VPA, last filled prescription of VPA, serum drug levels for VPA where

available, International Classification of Disease, 9th edition (ICD-9) codes of associated

psychiatric (bipolar disorder, PTSD, depression, anxiety, schizophrenia, substance- and

alcohol abuse) or neurologic (migraines and seizures) diagnoses and smoking related co-

morbidities such as coronary artery disease and COPD. The smoking status of study subjects

was determined from health-flags which are recorded by clinical providers at the end of a

clinical visit and which serve as a quality measure for medical care delivered in the VA

system. Smoking-related health flags characterize patients as "never-smoker, " "non-smoker,

" “nonsmoker for more than × number of years”, "past smoker, " "current smoker" and also
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include information on smoking cessation counseling. Cancer cases were ascertained by

linking the data from the CDW with the VA Central Cancer Registry (VACCR) in

Washington, DC using scrambled social security numbers as unique identifiers. The

VACCR has been reported to capture at least 90% of cancer cases treated in the VA

system.26

Study population

The inclusion criteria for the main cohort were as the following: 1) the presence of at least

one diagnosis of psychiatric or neurologic diseases for which long term VPA has an

accepted clinical indication (bipolar disorder, PTSD, migraines or seizures), 2) clinical

follow up for a duration of at least one year 3) current smoker or former smoker, and 4) age

at least 40 years at the inclusion of the cohort. We excluded patients without evidence of a

smoking history because the preponderance of the preclinical evidence points towards a

particular role of HDAC and DNMT1 mediated epigenetic changes in the etiology of

smoking-related cancers. Subjects who had a cancer diagnosis within a year after their first

visit to the VA were excluded to account for possible asymptomatic prevalent cases. Since

all five types of cancer studied in this analysis are very rare in young patients, we

furthermore excluded patients who were less than 40 years old. This enrichment of patients

at risk for smoking related cancers based on age and smoking status is supported by

numerous studies evaluating interventions for the risk reduction of such cancers27–29. Given

a concern that the VACCR may have underreported cancer cases in its early years since

inception in 1999, we defined the beginning of the observation period as the later date of

either January 1, 2002 or the first visit to the VA for one of the four inclusion diagnoses. At

the time of analysis VACCR data were available until December 31, 2008, which was

defined as the end of the study period. . Since short-term drug exposure is unlikely to

influence cancer risk, we excluded patients with less than 1 year of VPA use30. The start of

the observation period was defined as the first visit for one of the 4 inclusion diagnoses for

non-VPA users and the date of the first filled prescription for VPA users. The end of the

observation period was either the date of a cancer diagnosis, the last visit date for one of the

inclusion diagnoses or the end of the study period.

Statistical analysis

All statistical analyses were carried out using SAS9.2 software (SAS Institute Inc, Cary,

NC). All the tests were two-sided with statistical significance set at p < 0.05. The

characteristics of each cohort were compared using the chi-square test and student t-test.

Cancer incidence over the follow-up period was calculated as a rate of new occurrence of

cancer over the total number person-years and further explored using Kaplan-Meier method.

Univariate analyses of cancer incidence and cancer-deaths were performed using log rank

test. Multivariate adjusted hazard ratios (HR) for cancer incidence were determined using

Cox-proportional hazard model. Covariates considered in the multivariate analyses were

age, gender, race, smoking status, psychiatric disease (bipolar disorder, PTSD,

schizophrenia, depression, anxiety), neurologic disease (seizures and migraines), COPD and

evidence of alcohol and substance abuse. Formal tests were conducted to confirm the

assumption of proportionality. To assess on the impact of VPA exposure duration and VPA

serum drug levels, similar multivariate analyses were performed for different intervals of
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VPA use and levels. For propensity score analyses, propensity scores for VPA use were

calculated from logistic regression using age at study entry, gender, race, smoking status,

alcohol and substance abuse, diagnosis of each individual psychiatric and/or neurologic

disorder (by ICD9 code) and COPD as independent variables. Propensity scores were used

in a multivariate model as an independent variable and in subgroup analyses divided by

quintiles of propensity score31. Tests for interactions between VPA use, alcohol use and

smoking were conducted.

Propensity scores for VPA use were calculated from the logistic regression model that used

age at study entry, gender, smoking status, substance abuse, diagnosis of each individual

psychiatric and/or neurologic disorder, COPD and CAD as independent variables. Subgroup

analysis by propensity score quintile or matching by propensity score are well established

methods to balance cofactors within a groups, thus reducing biases which could arise from

vastly different distributions of these cofactors in a Cox proportional hazard model31

Propensity scores were used in a multivariate model as an independent variable and in

subclass analyses stratified by propensity score quintiles31.

Results

Cohort characteristics

A total of 636,051 individuals over age 40 were initially identified. After excluding never-

smokers and subjects with unknown smoking status and patients who had a cancer diagnosis

within the first year after their first VA visit, the final cohort consisted of 439,628 patients of

whom 26,911 had filled prescriptions for VPA for more than one year. The mean follow-up

duration was 4.40 years (SD 2.29) for non-VPA users and 4.42 years (SD 2.05) for VPA

users (p=0.11). VPA users on average were slightly younger than non-users (median age 59

years vs.60 years), and tended to have a higher incidence of bipolar disorder, schizophrenia,

seizure d/o, migraines and alcohol and substance abuse. The prevalence of PTSD,

depression and anxiety was lower in VPA users. No significant differences between VPA

users and non-users were observed in terms of proportions of former (51%) and current

smokers (49%) as well as prevalence of COPD (18%) at baseline (Table 1). Also, despite the

risk for weight gain with VPA, body mass indices (BMI) were not significantly different

between the two groups.

Cancer incidence

Crude and adjusted hazard ratios (HRs) for lung, head and neck, prostate, colorectal and

bladder cancer comparing VPA users to non-users are shown in Table 2. In the multivariate

analysis VPA use was associated with significant reductions in risk for head and neck

cancers (HR 0.66, 95% CI 0.48–0.92). No association between VPA use and risk reduction

was observed for lung, colorectal, prostate or bladder cancers. No interaction was found

between VPA use, smoking and alcohol use.

Relationship of VPA use duration and VPA blood levels to head and neck cancer risk

The relationship between VPA use duration and head and neck cancer risk is shown in

Figure 1. Compared to VPA non-users, those who used VPA for 1 to 3 years had no
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significant reduction in head and neck cancer risk (HR 0.96 (95% CI 0.58–1.60) while

subjects with exposure of three years and more enjoyed a significant risk reduction (0.57

(0.39–0.85) (Figure 1). Next we analyzed the association between median VPA drug levels

and the reduction of head and neck cancer risk by dose using the previously defined cutoff

of 40 ug/ml for effective HDAC inhibition17. A statistically significant risk reduction for

head and neck cancer was only observed in the group that had median VPA levels in the

therapeutic range for HDAC inhibition (HR 0.59 (95%CI 0.35–0.99) (Figure 1). Both time

and concentration-dependence of the VPA effect on head and neck cancer risk reduction

support a causal relationship.

Impact of VPA use on clinical cancer characteristics

Squamous cell carcinomas of the head and neck have two very different etiologies. In

addition to classic risk factors like tobacco and alcohol, infections with certain serotypes of

human papilloma viruses (HPV), most notably HPV16 have emerged as a cause for the

rapidly rising incidence of oropharyngeal carcinomas32–34. A distinction between

oropharyngeal and non-oropharyngeal cancers is important since HDAC inhibitors have

been described of being capable in vitro to induce apoptosis in HPV infected cells,

suggesting that a preferential effect against HPV positive cancers may exist35.

Our analysis revealed a nearly equal reduction in the risk for oropharyngeal (HR 0.67,

95%CI 0.32–1.37) and non-oropharyngeal cancers by VPA (HR 0.67, 95%CI 0.47–0.95)

(Figure 1). Since it is possible that exclusion of non-smokers from the cohort

disproportionally eliminated patients with HPV-related head and neck cancers, we also

analyzed the risks for oropharyngeal (HR 1.02 (95% CI 0.63–1.66) and non-oropharyngeal

cancers (HR 0.75 (95% CI0.57–0.98) in the entire cohort including never smokers. These

findings argue against a preferential antiviral mechanism of action for VPA and suggest that

VPA may be particularly effective against smoking induced squamous cell carcinomas.

Discussion

In this retrospective cohort study of US veterans, VPA use is associated with a significantly

decreased incidence of head and neck squamous cell carcinomas. The observed relationship

between long-term exposure to an HDAC inhibitor (in this case VPA) and reduced cancer

risk in this VA population-based study complements preclinical data on the role of early

epigenetic events in carcinogenesis1 and confirms for the first time clinically that inhibitors

of epigenetic repressors may serve as promising cancer prevention agents. Our data

demonstrated that risk reduction for head and neck cancers was most pronounced after three

years of VPA use. The optimal exposure duration could not be determined in this study,

since the number of events in patients with longer exposures was limited. A longer follow-

up of our cohort or a larger validation cohort will be necessary to address this question.

While differences in the baseline clinical characteristics of VPA-users vs. non-users in this

cohort were adjusted for by multivariate and propensity score analysis, potential sources of

bias remain. The most important variable in determining the cancer risk of the aerodigestive

system is the cumulative lifetime smoking history. The health-flags collected in the VA

databases give detailed information about the current smoking status, but do not provide the
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cumulative amount of cigarettes smoked. Since the psychiatric co-morbidities on which our

cohort selection is based is strongly associated with increased tobacco abuse, tobacco related

morbidity and mortality36, 37 and since these psychiatric co-morbidities are not entirely

evenly distributed between VPA users and nonusers, it is possible that the life time exposure

of cigarettes could have been imbalanced between the groups. However, since psychiatric

co-morbidities were more common in the VPA group, this is likely to be weighted heavier in

the VPA users and is thus unlikely to explain the observed results of decreased incidence of

head and neck cancer. Given that the risk for COPD, another closely linked smoking related

disease was identical between VPA users and non-users (Table 1), the cumulative smoking

histories were most likely comparable.

Non-compliance with a medical regimen could have been a source of bias. Compliance is

always a concern, particularly in patients with mental illness. Our data demonstrated that the

head and neck cancer risk reduction in patients with a sub-therapeutic median VPA level

was less evident. Thus it is possible that inclusion of patients with poor medication

compliance in the VPA exposed group may have made the association less prominent.

Finally, evidence is emerging that the risk for smoking related cancers may be dependent on

certain genotypes of nicotine and carcinogen metabolizing enzymes such as cytochrome P

(CYP)-2A6 and others38, 39. The nature of our study does not grant us detailed knowledge of

these genotypes. However, given the fact that the risk for other smoking related

malignancies such as lung- and bladder cancer is unaffected by VPA exposure it is unlikely

that significant imbalances in the genotypes of these metabolizing enzymes are responsible

for the observed risk reduction in head and neck cancer.

A mechanistic explanation for why squamous cell carcinomas of head and neck are more

susceptible to prevention by VPA is not straightforward, but recent whole genome

sequencing, genotyping, methylation and gene expression projects have provided a wealth of

information implicating epigenetic events, particularly in aerodigestive SCCs. Whole

genome sequencing in head and neck and lung squamous cell carcinomas identified frequent

mutations and amplifications of the histone methyltransferases PRDM9 and EZH2 in both

malignancies in up to 20% of the cases40, 41. Recent whole genome approaches have

revealed defects in four driver pathways in head and neck cancer: mitogenic signaling, cell

cycle control, p53 signaling and NOTCH signaling42. All of these pathways are potentially

affected by epigenetic changes: p16 is not expressed in the vast majority of non-HPV related

head and neck cancers. In more than 50% of the cases p16 is silenced epigenetically by

promoter methylation43. p53 is mutated in more than 80% of head an neck cancers, however

even those tumors without mutation frequently show loss of expression. One potential

mechanism for this is epigenetic silencing of p14 which shares a bi-directional promoter

with p16 and controls the activity of the ubiquitin-ligase MDM2, which targets p53 for

proteasomal degradation44. Notch signaling in head and neck cancer has a predominantly

tumor- suppressive effect. It is possible that the upregulation of NOTCH1 after treatment

with HDAC inhibitors can be an additional tumor suppressive mechanism45, 46. Finally, a

recent study analyzing the DNA methylation pattern of head and neck cancers identified a

subset of tumors with a hypermethylator phenotype, similar to the previously described

CIMP phenotype in colon cancer. It will need to be explored if this subset of head and neck
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cancers is particularly sensitive to the effects of epigenetic therapies42. While the precise

underlying molecular events for these observations need to be unraveled, our data provide

epidemiologic support for the susceptibility of head and neck cancers to the effects of

HDAC inhibitors. While anticancer effects of HDAC inhibitors against HPV-related

malignancies have been described in vitro35, our data demonstrate that VPA use does not

preferentially decrease the risk of cancers of the oropharynx, which account mostly for

HPV-related cases32–34, making an antiviral effect of VPA unlikely as the primary

contributor to the observed decrease in head and neck cancer incidence at least in patients

with smoking history.

In summary, long-term use of VPA is associated with a decreased risk for head and neck

cancers in high risk veterans. The extensive preclinical and clinical evidence and the

magnitude of the observed potential benefit warrant further investigation of VPA as a cancer

chemoprevention agent, possibly in patients with premalignant lesions of the head and neck.
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Figure 1.
Forrest Plot showing hazard ratio and 95% confidence intervals for the associations between

VPA use and clinical scenarios. All analyses were conducted as Cox Proportional Hazard

models and controlled for age, gender, race, smoking status, psychiatric disease (bipolar

disorder, PTSD, schizophrenia, depression, anxiety), neurologic disease (seizures and

migraines), and evidence of alcohol and substance abuse, COPD
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Table 1

General characteristics

Entire Cohort

VPA-use
26,911 (%)

Non-VPA-use
412,717 (%)

p

Age (years)

Mean 59.4 61.4

SD 9.2 9.8 <0.001

Median 59 60

Gender
Male 24,969 (92.78) 383,103 (92.82) 0.84

Female 1,944 (7.22) 29,685 (7.18)

Smoking Past 13,660 (50.76) 208,964 (50.63) 0.68

Current 13,251 (49.24) 203,753 (49.37)

Race

Caucasian 19,753 (73.7) 294,391 (71.2) <0.001

African American 4,180 (15.6) 68,310 (16.5)

Hispanic 108 (0.40) 2,024 (0.49)

Asian 62 (0.23) 1,116 (0.27)

Hawaiian 263 (0.98) 3,835 (0.93)

Native American 175 (0.65) 3,390 (0.82)

unknown 2,265 (8.4) 39,886 (9.6)

Bipolar 21,577 (80.18) 249,568 (46.47) <0.001

PTSD 13,261 (49.28) 251,698 (61) <0.001

Seizures 6,925 (25.73) 68,682 (16.74) <0.001

Migraine 3,469(12.89) 46,661 (11.31) <0.001

Anxiety 5,587 (20.76) 87,706 (21.25) 0.057

Depression 6,151 (22.86) 108,732 (26.35) <0.001

Schizophrenia 3,377 (12.95) 16,128 (3.91) <0.001

COPD 4,984 (18.52) 75,338 (18.25) 0.27

Alcohol and substance abuse 6,363 (26.64) 75,749 (18.35) <0.001

BMI (mean) 29.68 29.5 0.41

Follow-up (mean) in years 4.42 4.40 0.11

Propensity score-mean 0.083 0.055 <0.001
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Table 2

Cancer specific Hazard Ratios

Cancer site-specific
analyses

Event
counts Incidence hazard ratios (95% confidence intervals)

Cases Crude Model 1¶ Model 2§

Lung

VPA non-users* 2,151 1 (ref) 1 (ref) 1 (ref)

VPA users** 155 0.96 (0.81–1.14) 1.00 (0.84–1.19) 1.00(0.84–1.20)

Head and Neck

VPA non-users* 916 1 (ref) 1 (ref) 1 (ref)

VPA users* 48 0.68 (0.50–0.93) 0.66 (0.48–0.92) 0.67(0.48–0.92)

Prostate

VPA non-users*** 4,334 1 (ref) 1 (ref) 1 (ref)

VPA users**** 317 0.97 (0.86–1.10) 0.96(0.88–1.12) 0.96(0.85–1.09)

Colon and Rectum

VPA non-users* 1,168 1 (ref) 1 (ref) 1 (ref)

VPA users* 83 0.90 (0.71–1.15) 0.95 (0.74–1.22) 0.95 (0.74–1.21)

Bladder

VPA non-users* 1,388 1 (ref) 1 (ref) 1 (ref)

VPA users* 91 0.93 (0.71–1.21) 0.86 (0.64–1.15) 0.85 (0.63–1.14)

*
412,717 subjects (non-VPA-use),

**
26,911 subjects (VPA use)

***
383,103 subjects (non-VPA-use),

****
24,969 subjects (VPA use)

¶
Cox proportional hazard model adjusted for age, gender, race, smoking status, psychiatric disease (bipolar disorder, PTSD, schizophrenia,

depression, anxiety), neurologic disease (seizures and migraines), and evidence of alcohol and substance abuse, COPD

§
Cox proportional hazard model adjusted for propensity score
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