
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Characterizing complex phenotypes in metabolism : an "omics"-driven systems approach

Permalink
https://escholarship.org/uc/item/5ds062cp

Author
Mo, Monica L.

Publication Date
2009
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5ds062cp
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA, SAN DIEGO

Characterizing complex phenotypes in metabolism: An “omics”-driven
systems approach

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Bioengineering

by

Monica L. Mo

Committee in charge:

Professor Bernhard Ø. Palsson, Chair
Professor Steven Briggs
Professor Jeff Hasty
Professor Andrew McCulloch
Professor Shyni Varghese

2009



Copyright

Monica L. Mo, 2009

All rights reserved.



The dissertation of Monica L. Mo is approved, and

it is acceptable in quality and form for publication

on microfilm and electronically:

Chair

University of California, San Diego

2009

iii



DEDICATION

To Don...I look forward to all that’s to come.

iv



TABLE OF CONTENTS

Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Vita and Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Chapter 1 Modeling complex phenotypes of metabolism . . . . . . . . . . . . . . 1
1.1 The human genome: A system defined . . . . . . . . . . . . . . . 1
1.2 Genome-scale reconstructions in metabolic systems biology . . . 2
1.3 Integrating high-throughput information and bottom-up systems

biology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Dissertation outline . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Terminology and Definitions . . . . . . . . . . . . . . . . . . . . . 10

Chapter 2 Yeast as a model system for genome-scale modeling in eukaryotes . . . 12
2.1 Examples uses of the expanded iND750 yeast reconstruction . . . 13
2.2 Method approaches to constructing and validating the iMM904

network model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 Reconstruction methods . . . . . . . . . . . . . . . . . . . 15
2.2.2 Methods of converting network to model . . . . . . . . . . 15

2.3 Method approaches to validating the iMM904 network model . . 16
2.3.1 Chemostat data validation . . . . . . . . . . . . . . . . . . 16
2.3.2 Genome-scale gene deletion validation . . . . . . . . . . . 16

2.4 Reconstruction content of the iMM904 network . . . . . . . . . . 17
2.5 Predicting deletion growth phenotypes for genome-scale validation 19
2.6 Recapitulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Chapter 3 Towards constraint-based modeling of human metabolism . . . . . . . 23
3.1 Metabolism as a complex system . . . . . . . . . . . . . . . . . . 25
3.2 Analyzing human metabolism in systems biology . . . . . . . . . 25
3.3 Preliminary work at the organelle-scale: the human cardiomyocyte

mitochondria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 H. sapiens Recon 1: A Genome-scale Network Reconstruction of

Global Human Metabolism . . . . . . . . . . . . . . . . . . . . . 28
3.4.1 Building the Recon 1 network . . . . . . . . . . . . . . . . 28
3.4.2 Characterizing the knowledge landscape . . . . . . . . . . 29

v



3.4.3 Identifying potential alternative drug targets . . . . . . . 31
3.4.4 Mapping and analyzing expression data . . . . . . . . . . 31
3.4.5 Network-based disease phenotype characterization . . . . 33

3.5 Recapitulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Chapter 4 Characterizing drug response phenotypes in human metabolism . . . . 35
4.1 Method approaches to analyzing pharmacogenomic data . . . . . 36

4.1.1 Data processing and mapping . . . . . . . . . . . . . . . . 36
4.1.2 Gene expression analysis to determine reaction activity scores 36
4.1.3 Analysis of metabolic response phenotypes (MRPs) . . . . 39
4.1.4 Mapping of MCF-7 proteome data . . . . . . . . . . . . . 39
4.1.5 Analysis of metabolite markers . . . . . . . . . . . . . . . 40

4.2 Evaluating drug metabolic response phenotype (MRP) profiles . 40
4.3 Characterizing the global drug response pattern of MCF-7 cells . 45
4.4 Metabolite markers are consistent with mechanisms of drug action 47
4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Chapter 5 Connecting extracellular metabolomic measurements to intracellular
flux states in yeast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.1 Methods for integration and analysis of exometabolomic data . . 55

5.1.1 Constraining the iMM904 network with exometabolomic
data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1.2 FBA optimization of EM-constrained networks . . . . . . 57
5.1.3 Sampling of the steady-state solution space of EM-constrained

network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.1.4 Standardized scoring of flux differences between perturba-

tion and control conditions . . . . . . . . . . . . . . . . . 60
5.2 Inferring intracellular perturbation flux states from exo-metabolomic

profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2.1 Aerobic and anaerobic gdh1/GDH2 mutant behavior . . . 61
5.2.2 Potassium-limited and excess ammonium environments . 68

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Chapter 6 Integrative metabolomic-based analysis of embryonic stem cells . . . . 73
6.1 Method approaches to analyzing ESC-mediated metab-olic pathways 74

6.1.1 Network analysis of metabolomic data . . . . . . . . . . . 74
6.1.2 Analyzing network effects of activated and inhibited reac-

tions mediated by oxidative enzymes . . . . . . . . . . . . 77
6.2 Network analysis reveals altered redox status between ESC and

mature populations . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.3 In vitro studies implicate redox state to mediate ESC pluripotency

and differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.4 Network analysis of in vitro inhibited enzyme activities link stem-

ness phenotype to broader metabolic effects . . . . . . . . . . . . 83
6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

vi



Chapter 7 In closing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.1 Lessons learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.2 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

vii



LIST OF FIGURES

Figure 1.1: Dissecting the different biological levels of interaction in human metabolic
physiology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Figure 1.2: Incorporation of genomic and biochemical knowledge derived from the
genome annotation and experimental literature into a BiGG-structured
knowledge base network. . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Figure 2.1: Comparison of experimental and predicted aerobic and anaerobic glucose
uptake rates at different dilution rates. . . . . . . . . . . . . . . . . . . 14

Figure 2.2: ROC curve plots of iMM904 and iLL672 growth predictions using dif-
ferent optimization analysis methods. . . . . . . . . . . . . . . . . . . . 18

Figure 3.1: Metabolic phenotype as a consequence of the interactions between ex-
ternal (environmental and nutritional) and internal (e.g. genetic and
proteomic) factors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Figure 3.2: The four general steps of bottom-up systems biology that enables study-
ing a physiological system in silico. . . . . . . . . . . . . . . . . . . . . 26

Figure 3.3: An overview of the Recon 1 reconstruction process from the Build 35
genome annotation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 3.4: The three initial applications of the Recon 1 network to demonstrate its
use. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 4.1: Schematic illustrating the conversion of gene expression data to reaction
activity scores. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 4.2: Weighted average Pearson correlation coefficients (PCCs) between MRP
profiles in different categories. . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 4.3: Comparison of a subset of reaction activities between the global drug
response and MCF-7 proteome biomarker profile. . . . . . . . . . . . . . 46

Figure 4.4: Example listings of the highest metabolite scores (p < 0.05) for carba-
mazepine, genistein, and COX-2 inhibitors. . . . . . . . . . . . . . . . . 48

Figure 4.5: Metabolite intermediates of IMP synthesis and mitochondrial oxidation
are highly associated (p<0.05) with metformin response. . . . . . . . . 50

Figure 4.6: Highly perturbed (p < 0.05) metabolic intermediates of tyrosine-related
pathways are associated with HDAC inhibitor response. . . . . . . . . . 51

Figure 5.1: Schematic illustrating the integration of exometabolomic (EM) data
with the constraint-based framework. . . . . . . . . . . . . . . . . . . . 56

Figure 5.2: Schematic of sampling and scoring analysis to determine intracellular
flux changes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Figure 5.3: Perturbation reaction subnetwork of gdh1/GDH2 mutant under aerobic
conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Figure 5.4: Perturbation reaction subnetwork of gdh1/GDH2 mutant under anaer-
obic conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Figure 5.5: Clustergram of top reporter metabolites (i.e. in yellow) in ammonium-
toxic and potassium-limited conditions. . . . . . . . . . . . . . . . . . . 72

viii



Figure 6.1: Schematic illustrating the metabolomic-based analysis using the FVA
approach to identify broader reaction activites linked to upregulated
metabolites. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Figure 6.2: Schematic illustrating the network analysis using the FVA approach to
evaluate the systemic effects of activated and inhibited reactions medi-
ated by COX, LOX, PLA2, and fatty acid desaturases. . . . . . . . . . 77

Figure 6.3: Heatmap showing 46 metabolites whose structures were identified by
tandem MS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Figure 6.4: Heatmap of the highest metabolic reaction differences (> 80th-percentile)
between ESCs and mature populations. . . . . . . . . . . . . . . . . . . 81

Figure 6.5: Reduced glutathione (GSH) levels as a function of days of ESC differ-
entiation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Figure 6.6: Broader reaction activities associated with inhibiting (self-renewal) and
activating (differentiation) oxidative (COX, LOX, PLA2) and fatty acid
desaturase (5Δ and 6Δ desaturases) pathways. . . . . . . . . . . . . . . 86

ix



LIST OF TABLES

Table 1.1: List of available genome-scale human metabolic networks. . . . . . . . . 4

Table 2.1: Comparison of iMM904 (full and reduced) and iLL672 gene deletion pre-
dictions and experimental data under minimal media conditions. . . . . 21

Table 4.1: Subset list of gene names and mean correlation (p < 0.02) between drugs
sharing similar gene targets. . . . . . . . . . . . . . . . . . . . . . . . . . 44

Table 5.1: Statistical comparison of the differential intracellular metabolite data set
(p < 0.05) with metabolites involved in perturbed reactions predicted
by FBA optimization and sampling analyses for aerobic and anaerobic
gdh1/GDH2 mutant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Table 5.2: List of the top ten significant reporter metabolite and subsystem scores
for the gdh1/GDH2 vs. wild type comparison in aerobic conditions. . . . 65

Table 5.3: List of top ten significant reporter metabolite and subsystem scores for
the gdh1/GDH2 vs. wild type comparison in anaerobic conditions. . . . 68

x



ACKNOWLEDGEMENTS

These past five years in graduate school has been quite a journey, one that I could

not have gone through without the help and support of some important people. First, I’d

like to thank the National Institutes of Health and National Science Foundation for the

research grants that have funded my graduate studies during my time at UCSD. I’d like

to also thank all of my thesis committee members for their time and commitment. Dr.

Palsson, I am extremely thankful for your constant encouragement and the career (and

travel!) opportunities you’ve pushed my way through these past several years.

I’d like to acknowledge the members of the Systems Biology Research Group, past

and present. It has been a pleasure to have been a part of such a uniquely talented group

of researchers, and I look forward to continuing to collaborate on new projects with you

all. To my office mates Karsten and Vasiliy, thank you for always keeping lab life light and

humorous. Jan, thanks for always having the answers to all of my statistics and computer

questions. Neema, thanks for all of the edible treats during our talks about research and

everything else random. Markus, thank you for being in the lab at a time when I needed

guidance the most in those first few years of graduate school. I’ll always be thankful for

your constructive criticism and having you as a sounding board for my random ideas during

our long conversations. To my fellow Recon 1 reconstructors, thank you for the dedication

and time you put into the work that preceded much of my thesis studies that followed. You

made my life much easier.

Thank you, Mom and Dad for getting me to this point in my life. I may not always

admit that I follow your advice, but much of what I’ve done up to this point has been an

extension of what you’ve taught me. Laura, as cliche as it sounds, you really are the best

little sister one can ask for. To Jen H, Esther, and Jen A, great friends are hard to come by,

especially ones who support you unconditionally through all aspects of life. I will always

treasure our conversations over caffeinated drinks, training runs, poker nights, and mini-

vacations. You kept me grounded and sane through this entire graduate school process, and

most importantly, helped me maintain perspective on what life should be about. To this

little being growing inside of me, thank you for providing the “urgency” to complete this

chapter of my life. I can’t wait to finally meet you. Don, thank you for your unwavering

love and support through these past 8 years. You’re right, patience and persistence really

does pay off in the end.

The text of Chapter One, in full, is a reprint of the material as it appears in M.L.

xi



Mo and B.Ø. Palsson. 2009. Understanding human metabolic physiology: A genome-to-

systems approach. Trends in Biotechnology, 27(1):37-44. I was the primary author of this

publication and the co-author participated and supervised the research, which forms the

basis for this chapter.

The text of Chapter Two, in part, is a reprint of the material as it appears in

M.L. Mo, B.Ø. Palsson, and M.J. Herrgard. 2009. Connecting extracellular metabolomic

profiles to intracellular metabolic states in yeast. BMC Systems Biology. 3:37. I was the

primary author of the publication and the co-authors participated and/or supervised the

research which forms the basis for this chapter.

The text of Chapter Three, in full, is a reprint of the material as it appears in M.L.

Mo, N. Jamshidi, and B.Ø. Palsson. 2007. A Genome-scale, Constraint-based Approach

to Systems Biology of Human Metabolism., Molecular Biosystems. 3:9 and in M.L. Mo

and B.Ø. Palsson. 2009. Understanding human metabolic physiology: A genome-to-

systems approach. Trends in Biotechnology, 27(1):37-44. I was the primary author of these

publications and the co-authors participated and/or supervised the research which forms

the basis for this chapter.

The text of Chapter Four, in full, is a reprint of the material as it will likely

appear in M.L. Mo, M.J. Herrgard, and B.Ø. Palsson. 2009. Characterizing global drug

response phenotypes in human metabolism. (In preparation). I was the primary author of

the publication and the co-authors participated and/or supervised the research which forms

the basis for this chapter.

The text of Chapter Five, in full, is a reprint of the material as it appears in M.L.

Mo, B.Ø. Palsson, and M.J. Herrgard. 2009. Connecting extracellular metabolomic profiles

to intracellular metabolic states in yeast. BMC Systems Biology. 3:37. I was the primary

author of the publication and the co-authors participated and/or supervised the research

which forms the basis for this chapter.

The text of Chapter Six, in part, is a reprint of the material as it will likely appear

in Yanes, O., Clark, J., Mo, M.L., Wong, D.M., Sanchez-Ruiz, A., Benton, P., Trauger, S.A.,

Desponts, C., Patti, G.J., Palsson, B.Ø., Ding, S., Siuzdak, G., Highly reactive endogenous

metabolites characterize embryonic stem cells. Nature Chemical Biology (In review). I

was the primary author of the text in that portion of the publication and the co-authors

participated and/or supervised the research which forms the basis for this chapter.

The text of Chapter Seven, in part, is a reprint of the material as it appears in

M.L. Mo and B.Ø. Palsson. 2009. Understanding human metabolic physiology: A genome-

xii



to-systems approach. Trends in Biotechnology, 27(1):37-44. I was the primary author of

this publication and the co-author participated and supervised the research, which forms

the basis for this chapter.

xiii



VITA

2004 B.S., Bioengineering: Biotechnology,
University of California, San Diego

2007 M.S., Bioengineering,
University of California, San Diego

2009 Ph.D., Bioengineering,
University of California, San Diego

PUBLICATIONS

Duarte, N.D., Becker, S.A., Jamshidi, N., Thiele, I., Mo, M.L., Vo, T.D., Srivas, R.,
Palsson, B.Ø., Global reconstruction of the human metabolic network based on genomic
and bibliomic data , Proc Natl Acad. Sci U S A, 104(6):1777-82 (2007)

Becker, S.A., Feist, A.M.,Mo, M. L., Hannum, G., Palsson, B.O., Herrgard, M.J. Quanti-
tative prediction of cellular metabolism with constraint-based models: The COBRA Tool-
box., Nat. Protocols, 2, 727-738 (2007)

Mo, M.L., Jamshidi, N., Palsson, B.Ø., A Genome-scale, Constraint-based Approach to
Systems Biology of Human Metabolism., Molecular Biosystems. 3:9 (2007)

Herrgrd, M. J., Swainston, N., Dobson, P., Dunn, W. B., Arga, K. Y., Arvas, M., Blthgen,
N., Borger, S., Costenoble, R., Heinemann, M., Hucka, M., Le Novre, N., Li, P., Liebermeis-
ter, W.,Mo, M. L., Oliveira, A. P., Petranovic, D., Pettifer, S., Simeonidis, E., Smallbone,
K., Spasi, I., Weichart, D., Brent, R., Broomhead, D. S., Westerhoff, H. V., Kardar, B.,
Penttil, M., Klipp, E., Palsson, B.Ø., Sauer, U., Oliver, S. G., Mendes, P., Nielsen, J. and
Kell, D. B., A consensus yeast metabolic network obtained from a community approach to
systems biology., Nature Biotechnology, 26: 1155-1160 (2008).

Mo, M.L. and Palsson, B.Ø. Understanding human metabolic physiology: A genome-to-
systems approach, Trends in Biotechnology. 27(1):37-44 (2009).

Mo, M.L., Palsson, B.Ø., Herrgard, M.J., Connecting extracellular metabolomic profiles
to intracellular metabolic states in yeast. BMC Systems Biology. 3:37 (2009).

Yanes, O., Clark, J.,Mo, M.L., Wong, D.M., Sanchez-Ruiz, A., Benton, P., Trauger, S.A.,
Desponts, C., Patti, G.J., Palsson, B.Ø., Ding, S., Siuzdak, G., Highly reactive endogenous
metabolites characterize embryonic stem cells. Nature Chemical Biology (In review)

Mo, M.L., Herrgard, M.J., Palsson, B.Ø. Characterizing global drug response phenotypes
in human metabolism (In preparation).

xiv



ABSTRACT OF THE DISSERTATION

Characterizing complex phenotypes in metabolism: An “omics”-driven

systems approach

by

Monica L. Mo

Doctor of Philosophy in Bioengineering

University of California San Diego, 2009

Professor Bernhard Ø. Palsson, Chair

The advent of high-throughput technologies has resulted in an explosion of molecu-

lar data. A major challenge is found in interpreting and understanding these different types

of data sets at a phenotypic level. Systems biology has capitalized on these technologies by

consolidating various types of biological information into structured networks for their anal-

ysis and computation. The bottom-up systems biology approach, in particular, has been

crucial in providing mechanistic foundations for systems-level modeling in microorganisms,

and its extension to eukaryotic metabolism has made it possible to elucidate complex pheno-

types in a systematic manner. The work presented in this dissertation describes the integra-

tive use of high-throughput data and genome-scale network reconstructions to characterize

complex phenotypes of eukaryotic metabolism. First, the genome-scale reconstructions of

yeast and human metabolism are discussed, which provide the contextual basis in which

“omics” data is analyzed. Previously developed constraint-based modeling approaches were

refined to analyze “omics” data sets, in particular for transcriptomic and metabolomic

data. Finally, example applications are presented in the evaluation of physiological and

perturbed metabolic states of yeast and human cellular systems. The studies discussed

herein are: (1) analyzing drug response phenotypes of human metabolism; (2) evaluating

genetic and environmentally perturbed processes in yeast ammonium assimilation; and (3)

characterizing the pluripotent phenotype of embryonic stem cell metabolism. The work

described in this dissertation represents advancement towards integrating bottom-up and

data-driven approaches to understanding broader “omics”-to-phenotype relationships.
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Chapter 1

Modeling complex phenotypes of

metabolism

1.1 The human genome: A system defined

The human genome sequence is generally touted as a blueprint to physiological

functions of the human body. However, the translation from the annotated sequence to

cellular physiology remains elusive. The annotated sequence contains a wealth of informa-

tion about the gene products (proteins) and the biochemical processes that they mediate.

This information essentially provides a parts list of biological components that exist in hu-

man cells, but it is thfe interplay between these components which governs physiological

behavior.

Human metabolic physiology arises collectively from different levels of biological

organization, as illustrated in Figure 1.1, and thus requires a systems perspective to under-

stand it as a whole. A system is a collection of individual parts that work synergistically

as a single, functional unit. Much of human physiology can be described in a synonymous

manner; for example, tissue-level functions are the result of interactions between multiple

cell types, and the human body is comprised of interconnected organ and tissue systems that

enable various whole-body functions. This overall systems view on biology is the concep-

tual foundation for the construction and use of networks to understand human physiologic

functions.

The complex nature of biological interactions has led to the need for and develop-

ment of systems biology, an emerging field of research that combines high-throughput ex-

1
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perimentation with computational tools to systematically analyze biological systems. Two

approaches are commonly used in systems biology, top-down and bottom-up; both aim

at understanding the interactions arising under various physiological conditions, but from

different perspectives. The top-down strategy analyzes from a global point-of-view by dis-

secting the overall system into its smaller interacting parts and generally requires statistical

measures. Alternatively, the bottom-up approach first specifies in detail the individual

components and interactions of a system. The components are then pieced together into a

larger system, thus providing a mechanistic basis to studying its underlying biology based

on the known, specified parts. The data type largely determines the approach which is

most amenable to answering a particular biological question and is dependent on the level

of interaction detail available.

In the post-genomic era, the genome-to-life concept has ignited (molecular) sys-

tems biology and the implementation of its central paradigm: molecular components ->

networks -> computational models -> physiological studies [1]. Since much of the com-

ponent data is genome-derived, this paradigm is tantamount to developing a mechanistic

genotype-phenotype relationship. The prospects of such a development would indeed be

transformative in biology and, if successfully realized, can have a broad impact on the

life sciences and life science-based industries. The shift towards human systems biology

has been initiated with the emergence of bottom-up, genome-scale human metabolic net-

works [2, 3, 4], which will play an important role in studying human health and disease.

1.2 Genome-scale reconstructions in metabolic systems biol-

ogy

Metabolism is widely known to play an important role in human physiology, and its

function is important to understanding disease states and progression [5, 6], aging and nutri-

tion [7, 8], and sports, astronaut and soldier performance [9, 10]. In particular, metabolism

is a key factor in human disease, including diabetes and obesity [11, 12], cancer [13, 14],

neurodegenerative and psychiatric diseases [15, 16], alcoholism [17], and ischemia [18]. Suc-

cessful implementation of molecular systems biology of human metabolism is thus likely to

have broad consequences.

The reconstruction of genome-scale metabolic networks in microorganisms is now

well developed [19, 20, 21, 22, 23, 24] and has been successfully implemented in computing

microbial metabolic phenotypes for a variety of biological applications [25, 26]. While the
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Figure 1.1: Dissecting the different biological levels of interaction in human metabolic

physiology.

Human metabolism is the consequence of interacting components organized at the tissue,

cellular, pathway, and reaction levels. Metabolic functions of organs result from interacting

tissues. Tissue functions are mediated by cell-to-cell interactions, which are controlled

by networks of pathway activity within each cell. Pathways are comprised of connecting

reactions that carry out specific metabolic functions, linked together by the metabolites in

which they process and form.
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Table 1.1: List of available genome-scale human metabolic networks.

Metabolic
Network

Publication Description

HumanCyc Genome Bi-
ology (2005)

An automated draft reconstruction based on map-
ping from Ensembl and Entrez Gene databases.
PathoLogic alrogithm was used to fill pathway
holes with candidate reactions based on sequence
comparison.

Recon 1 PNAS
(2007)

A manually curated network reconstruction and
functional in silico model. Manual curation, reaction
gap assessment and 288 flux balance analysis (FBA)-
based functional validation tests were performed.

Edinburgh Hu-
man Metabolic
Network

Molecular
Systems
Biology
(2007)

Network created from automated genome annotation
mapping and inclusion of biochemical legacy data.
EMP database was used to obtain and integrate bio-
chemical literature-based information.

biochemical makeup of enzymes and metabolites vary, the general framework of metabolism

is consistent across all organisms and metabolic studies have been enabled for a wide range

of species using similar methodologies. Thus, a logical next step is to extend the successful

development and analysis of microbial metabolic networks to an analogous effort to study

human metabolism. Reconstructing metabolism provides a starting basis to building large-

scale, mechanistically-accurate networks for human physiology as the biochemical transfor-

mations of metabolism are well studied and documented at both pathway and mechanistic

levels. Metabolic systems may thus become the first process in human cells and tissues

where the application of molecular systems biology will bear fruit.

Two approaches have emerged in systems biology, top-down and bottom-up; both

aim at understanding the interactions arising under various physiological conditions, but

from different perspectives. The top-down strategy analyzes from a global point-of-view by

dissecting the overall system into its smaller interacting parts with statistical approaches.

Alternatively, the bottom-up approach first specifies in detail the individual components and

interactions of a system. Components are then pieced together into a larger system, thus

providing a mechanistic basis to studying its underlying biology based on known, specified

parts. Since much of the components are genome-derived, a bottom-up network reconstruc-

tion approach is crucial to developing a mechanistic genotype-phenotype relationship.

An annotated genome along with literature, or bibliome, data defines the known

components present in a biological system. Because this information exists in many dif-
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ferent domains, there is a need to compile the data in a structured format which catalogs

genes, their associated protein products, and related biological functions. A component-by-

component, or bottom-up, approach to network reconstruction results in a biochemically,

genetically, and genomically (BiGG) structured format that serves as a knowledge base of

genome-derived biological components and a framework for computational modeling. This

part of the reconstruction process has been described extensively for microbial metabolic

networks [26, 27] and can thus be readily applied towards human metabolism.

Figure 1.2 illustrates the general information that is derived and considered from

annotation databases and the bibliome as it is incorporated into a BiGG reconstruction.

The information is structured such that the whole genome is dissected into its gene parts

(genomically), genes are related to its encoded proteins (genetically), and protein enzymes

are linked to their catalytic reaction functions and the metabolite species in which they

interconvert (biochemically). Such information is structured to describe the connections

between genes, proteins, and their respective metabolic functions. Complex relationships,

such as reactions catalyzed by more than one enzyme (i.e. isozymes) and multi-functional

proteins, can be textually and graphically described as Boolean logic relationships as an

additional layer of reaction information [2, 3]. This multi-level structure distinguishes a

knowledge base network from a standard database by providing an integrative view of dis-

parate data types and placing them in a relevant biological context. Automation and manual

curation approaches can be used to reconstruct a network. Automated methods have been

used to enable quicker mining and cross-comparison of data from different resources and

automatically assign potential functions to annotated genes. However, this essentially gen-

erates a rough draft of the knowledge content that requires additional refinement to enhance

its content quality. Further investigation and consideration of experimental data based on

literature reading provides evidence for a biochemical reactions addition to the network

and has been emphasized as an integral part of the reconstruction process [3, 4]. While

manual verification of literature evidence is a timely and laborious process, it is a crucial

QC/QA procedure that a reconstruction process must undergo to ensure content quality.

Such procedures include charge- and mass-balancing reactions, determining localization of

reaction activity, identifying substrate and cofactor specificity, and, more specific to human

metabolic reconstructions, the incorporation of alternatively spliced variants. These data

workflows have previously been defined and have been implemented in metabolic networks

for microbial and human systems [26, 27, 28].

While the genome annotation can be used to derive a majority of human metabolic
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reactions, missing reactions exist where the genome has not been fully elucidated and re-

quire additional evaluation to fill in the gaps. Gap-filling can be done algorithmically; for

example, one approach involves prediction of candidate reactions required to fill human

metabolic pathway gaps by projecting known pathways from other organisms [2]. Alter-

natively, reactions can be inferred directly from network topology [29]. A more arduous

approach involves manual assessment of published literature and adding those reactions

that were not automatically identified from the annotated genome. Literature mining and

review not only increases the confidence of adding a reaction, but also places the physi-

ological functions that each reaction fulfills into context (e.g. at the metabolic pathway

level).

Further consideration can be made to ensure reaction gaps are filled in the context

of metabolic functions. Cellular biomass growth or energy demands are metabolic functions

that are primarily assessed for networks of single-celled, microbial organism. However, cur-

rent genome-scale human networks represent metabolic reactions that exist in any human

cell and are therefore a global depiction of all human metabolic functions. Thus, in recon-

structing a network for global human metabolism, a variety of basic metabolic functions

that can exist in any human cell must be considered. Functional validation testing was

implemented, as described in [3], during the reconstruction procedure and ensured that 288

basic metabolic processes compiled from literature were indeed computationally functional.

Tested metabolic processes represent a defined list of known physiological functions and

include ketogenesis, ATP production, and biosynthesis of non-essential amino acids from

their respective precursors. Algorithms have now been developed which can be useful during

reconstruction to computationally identify gaps and determine candidate reactions required

to fulfill a particular metabolic function [30, 31].

Once formed, the BiGG knowledge base becomes the basis for a mathematical rep-

resentation of the network that is reconstructed from it. A network is comprised of nodes

and links, where the nodes are biological components and the links are chemical transac-

tions between components. Thus, a metabolic network is comprised of metabolites and

biochemical reactions that catalyze transformations between them as the respective nodes

and links. Its mathematical description culminates in a matrix format of stoichiometric co-

efficients where the rows are the metabolite components and the columns the reaction links,

effectively representing a two-dimensional annotation of the genome [32]. This representa-

tion thus provides the mathematical context to quantitatively study human metabolism as

a whole as well as by compartment (e.g. cell- or tissue-specific).
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Figure 1.2: Incorporation of genomic and biochemical knowledge derived from the genome

annotation and experimental literature into a BiGG-structured knowledge base network.

High-throughput annotation data provides information on gene products, transcript vari-

ants, and their associated functions as well as localization (i.e. cellular compartment and

tissue). Literature documents specific biochemical details from experiments on the gene

product functions, such as reaction mechanism and substrate specificity.
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1.3 Integrating high-throughput information and bottom-up

systems biology

High-throughput technologies can now simultaneously measure high quality mea-

surements of biomolecules in biological systems. The molecules of interest are primarily of

the four main ’omes’: the genome, transcriptome, proteome, and metabolome. Genomic

analysis is performed by genotyping the sequence to accurately identify single nucleotide

polymorphisms (SNPs) in the genome that are related to a particular phenotypic trait.

Transcriptomic analysis is considered the most established of the high-throughput method-

ologies, in which the expression state of all gene transcripts are measured simultaneously on

individual DNA probes on microarrays [33]. Proteomics analogously detects and identifies

all proteins present in a cell using tandem mass spectroscopy. More recently, quantitative

proteomics has been made possible through the use of isotope labeling techniques in tandem

with mass spectroscopy to quantify relative protein abundances [34]. More recently, the de-

velopment of new technologies has advanced towards acquiring metabolomic data [35]. The

metabolome is the set of intracellular and extracellular metabolites present under a given

physiological condition and is essentially the metabolic phenotype culminating from vari-

ous upstream control points at the signaling, transcriptional, and proteomic levels. Taken

together, these datasets represent the biological components at varying mechanistic levels

that are simultaneously present to give rise to its resulting phenotype.

The vast amount of information generated by high-throughput technologies re-

quires computational tools to facilitate their biological interpretation. Bottom-up network

reconstructions are organized such that the incorporation and analysis of different data

types can be done in the context of a genomically- and biochemically-structured frame-

work (i.e. “context for content”). Since human metabolic networks represent global hu-

man metabolism, the networks can be further refined by datasets for specified conditions.

The gene-protein-reaction structured format allows the integration of gene and protein ex-

pression data to determine metabolic reaction activity present for a given condition [28].

For instance, a method exploiting this format was recently used to predict tissue-specific

metabolism based on gene expression and proteomic information mined from various public

databases [36]. By integrating tissue-specific high-throughput data with a global metabolic

network, specific metabolic activities for 10 different tissues were accurately predicted and

determined a significant role for post-transcriptional regulation in tissue-specific metabolic

phenotypes.
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In addition to gene and protein expression data, metabolomic information can

also be directly incorporated as they are explicitly represented in metabolic networks.

High-throughput metabolomics has become increasingly available and provide quantita-

tive information on various metabolic states. For example, the HMDB database contains

detailed physiological and disease concentration metabolite levels from several biofluids

and tissues [37]. Since metabolic networks describe the mechanistic relationships between

metabolites, they can be used to systematically identify underlying pathways associated

with the measured metabolites. Such applications are an alternative to the standard, top-

down statistical approaches used to analyze high-throughput “omics” data and enable the

interpretation of high-throughput data in the context of a mechanistically-detailed modeling

framework.

1.4 Dissertation outline

“Omic” data sets represent simultaneous measurements for thousands of biochem-

ical molecules, and understanding the relationships between these different data types will

require a systems approach. Genome-scale network reconstructions have been built for

metabolism in a number of target microorganisms [38], and constraint-based computational

methods applied to these networks have proven successful in evaluating many aspects of

metabolic phenotypes. Recent studies have highlighted bottom-up network analysis of high-

throughput data as an potential alternative to standard statistical approaches as it provides

a context in which the relationships between the components have already been defined.

Therefore, these networks provide a “context for content” to systematically characterize

phenotypic behavior and offer an exciting prospect for using such an approach to better un-

derstand complex phenotypes of higher-order organisms since a large amount of information

already exists and continues to be generated.

This dissertation focuses on the integrative analysis of gene expression and metab-

olomic data using constraint-based network approaches in eukaryotic metabolism. The work

presented herein can be categorized into three general areas: (1) the bottom-up network

reconstructions for yeast and human metabolism as contexts for integration and analysis of

high-throughput data; (2) the development of method approaches to analyze quantitative

transcriptomic and metabolomic data in the context of network reconstructions; and (3)

the application of these methods on genome-scale network reconstruction to characterize

distinguishing metabolic features under physiological and perturbation conditions.
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Chapter two introduces genome-scale network reconstructions of yeast metabolism,

which serves as a model organism for reconstructing and analyzing eukaryotic networks.

Examples of studies that were enabled by a previous genome-scale yeast reconstruction,

iND750, are discussed, followed by the reconstruction process and validation of the most

current yeast metabolic network, iMM904.

Chapter three discusses the first global reconstruction of human metabolism, Re-

con 1, and some of the initial applications that been used to study the network. It begins

by introducing studies on an organelle-level human metabolic network that illustrates the

promising uses of a smaller human metabolic network. The reconstruction process and

initial applications of the global human metabolic network which followed are discussed.

Chapter four presents a study on integrating pharmacogenomic response data with

the global network of human metabolism to study drug-specific metabolic response signa-

tures. It discusses the use of a constraint-based approach to assess the overall network

effects of metabolic intervention of candidate drug molecules and highlighting metabolic

pathways as proposed mechanisms of action.

In chapter five, extracellular metabolome data measured in response to environ-

mental and genetic perturbations of ammonium assimilation pathways was integrated with

the updated iMM904 yeast network to characterize intracellular metabolic pathways that

are broadly perturbed. The chapter presents a proof-of-concept study that shows how ex-

tracellular metabolomic data can be incorporated with a genome-scale network to evaluate

the metabolic behavior of the intracellular system based on metabolite-level constraints.

Chapter six demonstrates the integration of metabolomic data with the genome-

scale human metabolic network to characterize the stemness phenotype of embryonic stem

cells. A constraint-based approach following similar principles from the previous chapter is

used in evaluating the network behavior of stem cell metabolism, and experimental studies

further supported the results from the analysis.

1.5 Terminology and Definitions

Bibliome: the comprehensive compilation of published literature text and associ-

ated information.

Genome-scale model: a computational model converted from a genome-scale net-

work reconstruction by defining and implementing mathematical parameters to calculate

phenotypic behavior of the reconstructed organism.
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High-throughput technology: technological methods that enable rapid large-scale,

high-quality measurements of biomolecules (i.e. genome, transcriptome, proteome, metab-

olome) for scientific experimentation.

Genome-scale network reconstruction: a genome annotation-based, manually cu-

rated assembly of biochemical transformations which describe specific biological processes

(e.g. metabolism, transcriptional regulation) that exists in a specific organism or cell-type.

Knowledge base: the collection of knowledge information (i.e. from databases, lit-

erature, etc.) stored as a logically organized structure that represents relationships between

the stored information.

Systems biology: an integrative field of research that combines experimental and

computational approaches to systematically study relationships and interactions between

various components of a biological system.

The text of this chapter, in full, is a reprint of the material as it appears in M.L.

Mo and B.Ø. Palsson. 2009. Understanding human metabolic physiology: A genome-to-

systems approach. Trends in Biotechnology, 27(1):37-44. I was the primary author of this

publication and the co-author participated and supervised the research, which forms the

basis for this chapter.



Chapter 2

Yeast as a model system for

genome-scale modeling in

eukaryotes

Saccharomyces cerevisiae has been one of the most important model organisms

to study eukaryotic cellular processes. It has been an ideal experimental system to study

primarily because of its ability to be genetically manipulated as well as its ability to grow

under various culture conditions. As a result, a large availability of high-throughput and

physiological experimental data for S. cerevisiae can be integrated and analyzed in a mod-

eling framework [39, 40]. With the completion of its annotated genome sequence [41], the

reconstruction of the first genome-scale eukaryotic metabolic network, iFF708. was pos-

sible. The network consisted of 708 genes, 1175 metabolic reactions, and 733 metabolites

compartmentalized in the cytosol and mitochondria [42], and was used to calculate key phys-

iological parameters and behavior that were found to accurately recapitulate physiological

experimental data [42, 43].

This chapter presents a brief overview of the genome-scale studies resulting from

an expanded yeast reconstruction, followed by the reconstruction of the most recent S.

cerevisiae metabolic network, iMM904 and its validation as a modeling framework for yeast

metabolism.

12
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2.1 Examples uses of the expanded iND750 yeast reconstruc-

tion

Subsequent expansions of the iFF708 networks have since progressed over the

years. An expanded network, iND750, was reconstructed based on the iFF708 network

to include more detailed descriptions of additional cellular compartments, defined logical

relationships between genes, proteins, and reactions, as well as charge- and elementally

balanced metabolic reactions [44]. The iND750 yeast reconstruction represented the first

computable genome-scale eukaryotic metabolic network to capture detailed relationships

between genetic and biochemical components as well as comprehensive cellular localization

of charge- and elementally-balanced metabolic reactions. A more recent version of the yeast

metabolic network, iMM904, was expanded to account for 904 genes, 1,223 metabolites,

and 1,412 reactions with detailed expansion of lipid and carbohydrate metabolism as well

as pathways involved in the metabolism and transport of observed secreted metabolites.

The continual process of improving and updating network reconstructions has

provided the essential basis for enabling the analysis of high-throughput data. One such

example of an integrative use of the iND750 network was described in a study that utilized

computational and experimental validation approaches to uncover novel regulatory and

metabolic interactions. The iND750 network provided a central framework for integrative

analysis of known regulatory mechanisms to construct the first transcriptional regulatory

network for eukaryotic metabolism. The resulting integrated metabolic/regulatory net-

work, iMH805/775, accounted for 805 genes (55 transcription factors and 750 metabolic

genes) and 775 regulatory interactions, with 82 intra- and extracellular metabolites act as

input signals to the regulatory network [45]. In addition to representing regulatory inter-

actions, iMH805/775 also included rules describing the mode of combinatorial control by

different transcription factors (TF) at each promoter. The regulatory network represented

an integration of genome-wide datasets on protein-DNA interactions (ChIP-chip) and TF

binding motifs by combining ChIP-chip data, binding site motifs on promoters, and ex-

pression change in TF knock-out/overexpression strains. By combining experimental and

computational approaches,novel regulatory mechanisms for specific genes were identified to

be involved in utilization of particular carbon sources such as PGM2 (galactose) and HXT1

(mannose) [45]. Regulatory interactions identified through this process were included in

iMH805/837 and demonstrated that a systematic approach can be used to analyze different

types of high-throughput datasets and fill in missing eukaryotic regulatory mechanisms.
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Figure 2.1: Comparison of experimental and predicted aerobic and anaerobic glucose

uptake rates at different dilution rates.

Measured experimental and computed iMM904 values were plotted and shown to be com-

parably similar under both conditions.

Another study using the iND750 network was used to derive a systematic condition-

dependent annotation (CDA) of metabolic genes that reflects the context-dependent nature

of their functionality [46]. Based on the CDA predictions, novel functionally annotated

pathways were derived and experimentally verified using substrate auxotrophy measure-

ments of single and double gene deletion strains. For example, the CAR2 gene which that

was annotated to be involved in arginine biosynthesis was found to also interact in proline

biosynthesis, a finding that had not been previously annotated [46]. Thus, metabolic net-

work reconstructions can serve as a framework to systematically evaluate metabolic gene

annotations as a function of its environmental condition.

A more recent version of the yeast metabolic network, iMM904, was expanded to

account for 904 genes, 1,223 metabolites, and 1,412 reactions with detailed expansion of

lipid and carbohydrate metabolism as well as pathways involved in the metabolism and

transport of observed secreted metabolites. As shown in previous studies, the continual

process of improving and updating network reconstructions has provided the essential basis

for enabling the analysis of high-throughput data.
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2.2 Method approaches to constructing and validating the

iMM904 network model

2.2.1 Reconstruction methods

The previously reconstructed iND750, a fully compartmentalized and elementally-

balanced S. cerevisiae metabolic network, was used as the basis for reconstructing the

iMM904 network [44]. The network was further expanded to include additional genes and

reactions based on genomic, biochemical, and physiological information [see Additional file

S1]. The details of existing reactions (substrate and cofactor specificity, reaction reversibil-

ity, and compartmentalization) in the iND750 network were also re-evaluated to update the

model based on existing literature. The iMM904 network was reconstructed using the Sim-

Pheny modeling software (Genomatica Inc, San Diego, CA). Existing gene-protein-reaction

(GPR) associations from iND750 were also reviewed and several were modified to include

additional genes and proteins. GPR associations are Boolean representations of the logical

relationship between ORFs and their corresponding transcripts, proteins, and reactions to

enable mapping of genes to their respective functions.

2.2.2 Methods of converting network to model

The network reconstruction was converted to a constraint-based model using es-

tablished procedures [47]. Network reactions and metabolites were assembled into a stoi-

chiometric matrix S containing the stoichiometric coefficients of the reactions in the net-

work. The steady-state solution space containing possible flux distributions is determined

by calculating the null space of S : S ∙ v = 0, where v is the reaction flux vector. Minimal

media conditions were set through constraints on exchange fluxes corresponding to the ex-

perimental measured substrate uptake rates. All the model-based calculations were done

using the Matlab COBRA Toolbox [47] utilizing the glpk or Tomlab/CPLEX (Tomopt,

Inc.) optimization solvers.
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2.3 Method approaches to validating the iMM904 network

model

2.3.1 Chemostat data validation

The iMM904 model was initially validated by simulating wild type yeast growth in

aerobic and anaerobic carbon-limited chemostat conditions and comparing the simulation

results to published experimental data on substrate uptake and byproduct secretion in these

conditions [48]. The study was performed following the approach taken to validate the

iFF708 model in a previous study [43]. The predicted glucose uptake rates were determined

by setting the in silico growth rate to the measured dilution rate, which are equivalent

under continuous culture growth, and minimizing the glucose uptake rate. The accuracy

of in silico predictions of substrate uptake and byproduct secretion by the iMM904 model

was similar to the accuracy obtained using the iFF708 model and results are shown in

Figure 2.1.

2.3.2 Genome-scale gene deletion validation

The iMM904 network was further validated by performing genome-scale gene

lethality computations following established procedures to determine growth phenotypes

under minimal medium conditions and compared to published data. A modified version

of the biomass function used in previous iND750 studies was set as the objective to be

maximized and gene deletions were simulated by setting the flux through the correspond-

ing reaction(s) to zero. The biomass function was based on the experimentally measured

composition of major cellular constituents during exponential growth of yeast cells and was

reformulated to include trace amounts of additional cofactors and metabolites with the as-

sumed fractional contribution of 10−6. These additional biomass compounds were included

according to the biomass formulation used in the iLL672 study to improve lethality predic-

tions through the inclusion of additional essential biomass components [49]. The model was

constrained by limiting the carbon source uptake to 10 mmol/h/gDW and oxygen uptake

to 2 mmol/h/gDW. Ammonia, phosphate, and sulfate were assumed to be non-limiting.

The experimental phenotyping data was obtained using strains that were auxotrophic for

methionine, leucine, histidine, and uracil. These auxotrophies were simulated by deleting

the appropriate genes from the model and supplementing the in silico strain with the appro-

priate supplements at non-limiting, but low levels. Furthermore, trace amounts of essential
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nutrients that are present in the experimental minimal media formulation (4-aminobenzoate,

biotin, inositol, nicotinate, panthothenate, thiamin) were supplied in the simulations [49].

Three distinct methods to simulate the outcome of gene deletions were utilized:

Flux-balance analysis (FBA) [1, 50, 51], Minimization of Metabolic Adjustment (MoMA)

[52], and a linear version of MoMA (linearMoMA). In the linearMoMA method, minimiza-

tion of the quadratic objective function of the original MoMA algorithm was replaced by

minimization of the corresponding 1-norm objective function (i.e. sum of the absolute val-

ues of the differences of wild type FBA solution and the knockout strain flux solution).

The computed results were then compared to growth phenotype data (viable/lethal) from

a previously published experimental gene deletion study [49].

The comparison between experimental and in silico deletion phenotypes involved

choosing a threshold for the predicted relative growth rate of a deletion strain that is

considered to be viable. We used standard ROC curve analysis to assess the accuracy of

different prediction methods and models across the full range of the viability threshold

parameter, with results shown in Figure 2.2. The ROC curve plots the true viable rate

against the false viable rate thus allowing comparison of different models and methods

without requiring arbitrarily choosing this parameter a priori [53]. The optimal prediction

performance corresponds to the point closest to the top left corner of the ROC plot (i.e.

100% true viable rate, 0% false viable rate). The values reported in Table 2.1 correspond to

selecting the optimal viability threshold based on this criterion. We summarized the overall

prediction accuracy of a model and method using the Matthews Correlation Coefficient

(MCC) [53]. The MCC ranges from -1 (all predictions incorrect) to +1 (all predictions

correct) and is suitable for summarizing overall prediction performance in our case where

there are substantially more viable than lethal gene deletions. ROC plots were produced in

Matlab (Mathworks, Inc.).

2.4 Reconstruction content of the iMM904 network

A previously reconstructed S. cerevisiae network, iND750, was used as the basis

for the construction of the expanded iMM904 network. Prior to its presentation here, the

iMM904 network content was the basis for a consensus jamboree network that was recently

published but has not yet been adapted for FBA calculations [54]. The majority of iND750

content was carried over and further expanded on to construct iMM904, which accounts

for 904 genes, 1,228 individual metabolites, and 1,412 reactions of which 395 are transport
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Figure 2.2: ROC curve plots of iMM904 and iLL672 growth predictions using different

optimization analysis methods.
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reactions. Both the number of gene-associated reactions and the number of metabolites

increased in iMM904 compared with the iND750 network. Additional genes and reactions

included in the network primarily expanded the lipid, transport, and carbohydrate subsys-

tems. The lipid subsystem includes new genes and reactions involving the degradation of

sphingolipids and glycerolipids. Sterol metabolism was also expanded to include the for-

mation and degradation of steryl esters, the storage form of sterols. The majority of the

new transport reactions were added to connect network gaps between intracellular compart-

ments to enable the completion of known physiological functions. We also added a number

of new secretion pathways based on experimentally observed secreted metabolites [55].

A number of gene-protein-reaction (GPR) relationships were modified to include

additional gene products that are required to catalyze a reaction. For example, the protein

compounds thioredoxin and ferricytochrome C were explicitly represented as compounds

in iND750 reactions, but the genes encoding these proteins were not associated with their

corresponding GPRs. Other examples include glycogenin and NADPH cytochrome p450

reductases (CPRs), which are required in the assembly of glycogen and to sustain catalytic

activity in cytochromes p450, respectively. These additional proteins were included in

iMM904 as part of protein complexes to provide a more complete representation of the

genes and their corresponding products necessary for a catalytic activity to occur.

Major modifications to existing reactions were in cofactor biosynthesis, namely

in quinone, beta-alanine, and riboflavin biosynthetic pathways. Reactions from previous

S. cerevisiae networks associated with quinone, beta-alanine, and riboflavin biosynthetic

pathways were essentially inferred from known reaction mechanisms based on reactions in

previous network reconstructions of E. coli [42, 44]. These pathways were manually reviewed

based on current literature and subsequently replaced by reactions and metabolites specific

to yeast. Additional changes in other subsystems were also made, such as changes to

the compartmental location of a gene and its corresponding reaction(s), changes in reaction

reversibility and cofactor specificity, and the elucidation of particular transport mechanisms.

2.5 Predicting deletion growth phenotypes for genome-scale

validation

The updated genome-scale iMM904 metabolic network was validated by compar-

ing in silico single-gene deletion predictions to in vivo results from a previous study used to

analyze another S. cerevisiae metabolic model, iLL672 [49]. This network was constructed
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based on the iFF708 network [42], which was also the starting point for reconstructing the

iND750 network [44]. The experimental data used to validate the iLL672 model consisted

of 3,360 single-gene knockout strain phenotypes evaluated under minimal media growth

conditions with glucose, galactose, glycerol, and ethanol as sole carbon sources. Growth

phenotypes for the iMM904 network were predicted using FBA [1, 50, 51], MoMA [52], and

linear MoMA methods as described in Methods and subsequently compared to the experi-

mental data (Table 2.1). Each deleted gene growth prediction comparison was classified as

true lethal, true viable, false lethal, or false viable. The growth rate threshold for consider-

ing a prediction viable was chosen for each condition and method separately to optimize the

tradeoff between true viable and false viable predictions (maximum Matthews correlation

coefficient, see Methods).

Since iMM904 has 212 more genes than iLL672 with experimental data, we also

present results for the subset of iMM904 predictions with genes included in iLL672 (reduced

iMM904 set). When the same gene sets are compared, iMM904 improves gene lethality

predictions under glucose, galactose, and glycerol conditions over iLL672 somewhat, but is

less accurate at predicting growth phenotypes under the ethanol condition. It should be

noted that the iLL672 predictions were obtained directly from [49] and thus the growth

rate threshold was not optimized similarly to iMM904 predictions. Overall, when viability

cutoff is chosen as indicated above for each method separately, the three prediction methods

(FBA, MOMA, and linear MOMA) perform similarly.

While the full gene complement in iMM904 greatly increased the number of true

viable predictions, the full model also made significantly more false viable predictions com-

pared with reduced iMM904 and iLL672 predictions. However, it is important to note

that 143 reactions involved in dead-end biosynthetic pathways were actually removed from

iFF708 to build the iLL672 reconstruction [49]. These dead-ends are considered knowledge

gaps in pathways that have not been fully characterized and, as a result, lead to false viable

predictions when determining gene essentiality if the pathway is in fact required for growth

under a certain condition [44, 56]. As more of these pathways are elucidated and included

in the model to fill in existing network gaps, we can expect false viable prediction rates to

consequently decrease. Thus, while a larger network has a temporarily reduced capacity

to accurately predict gene deletion phenotypes, it captures a more complete picture of cur-

rently known metabolic functions and provides a framework for network expansion as new

pathways are elucidated [30].
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Table 2.1: Comparison of iMM904 (full and reduced) and iLL672 gene deletion predictions

and experimental data under minimal media conditions.

Media Model Method True
viable

False
viable

False
lethal

True
lethal

MCC

Glucose iMM904 full FBA 647 10 32 33 0.60

iMM904 full linMOMA 644 10 35 33 0.58

iMM904 full MOMA 644 10 35 33 0.58

iMM904 reduced FBA 440 9 28 33 0.61

iMM904 reduced linMOMA 437 9 31 33 0.60

iMM904 reduced MOMA 437 9 31 33 0.60

iLL672 full MOMA 433 9 35 33 0.57

Galactose iMM904 full FBA 595 32 36 59 0.58

iMM904 full linMOMA 595 32 36 59 0.58

iMM904 full MOMA 595 32 36 59 0.58

iMM904 reduced FBA 409 12 33 56 0.67

iMM904 reduced linMOMA 409 12 33 56 0.67

iMM904 reduced MOMA 409 12 33 56 0.67

iLL672 full MOMA 411 19 31 49 0.61

Glycerol iMM904 full FBA 596 43 36 47 0.48

iMM904 full linMOMA 595 44 37 46 0.47

iMM904 full MOMA 598 44 34 46 0.48

iMM904 reduced FBA 410 20 34 46 0.57

iMM904 reduced linMOMA 409 21 35 45 0.56

iMM904 reduced MOMA 412 21 32 45 0.57

iLL672 full MOMA 406 20 38 46 0.55

Ethanol iMM904 full FBA 593 45 29 55 0.54

iMM904 full linMOMA 592 45 30 55 0.54

iMM904 full MOMA 592 44 30 56 0.55

iMM904 reduced FBA 408 21 27 54 0.64

iMM904 reduced linMOMA 407 21 28 54 0.63

iMM904 reduced MOMA 407 20 28 55 0.64

iLL672 full MOMA 401 13 34 62 0.68
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2.6 Recapitulation

The continual update and expansion of the S. cerevisiae metabolic reconstruction

has resulted in high-quality, well-curated networks that provide a mathematical structure

for modeling experimental data. The development of these network reconstructions have

driven the advancement of methods used to interrogate network properties and have shown

to improve the scope and reliability of biological studies. The successful development of

genome-scale yeast reconstructions have shown that such networks can enable a systems-

level understanding of eukaryotic metabolism. The lessons learned in developing the yeast

networks provide the foundation for building similar computational frameworks for human

metabolism that have the potential to advance research and development in disease and

health.

The text of this chapter, in part, is a reprint of the material as it appears in M.L.

Mo, M.J. Herrgard, and B.Ø. Palsson. 2009. Connecting extracellular metabolomic profiles

to intracellular metabolic states in yeast. BMC Systems Biology. 3:37. I was the primary

author of the publication and the co-authors participated and/or supervised the research

which forms the basis for this chapter.



Chapter 3

Towards constraint-based modeling

of human metabolism

The procedures for reconstructing genome-scale networks and extending its capa-

bilities to a non-kinetic, constraint-based model are now well-established, enabling hypo-

thesis-driven biology and the analysis of metabolic capabilities in microorganisms [25]. With

a more complex system in humans than in single-celled organisms, there is a greater need for

the application of constraint-based models to understand the basis of normal and pathophys-

iological metabolism. As shown in the last chapter, the development of the genome-scale

yeast metabolic reconstruction has served as a foundational platform for systems modeling of

eukaryotic metabolism. The approaches developed for integrative analysis of genome-scale

yeast metabolic reconstructions led to an analogous effort to reconstructing and studying

human metabolism.

The completion of the first genome-scale human metabolic network, Recon 1, is

a key step to applying computational systems biology in a biomedical context [3]. As a

comprehensive, literature-based reconstruction of human metabolism, Recon 1 accounts for

1,496 genes encoding for proteins, 2,004 proteins, 2,766 metabolites, and 3,311 metabolic and

transport reactions. This network reconstruction was converted into an in silico model of

human metabolism and validated through the simulation of 288 known metabolic functions

found in a variety of cell and tissue types. This chapter presents a brief overview of limited

human metabolic networks, the reconstruction process and completion of the H. sapiens

Recon 1 network, and early network applications adapted to understand human metabolism

at a systems-level.

23
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Figure 3.1: Metabolic phenotype as a consequence of the interactions between external

(environmental and nutritional) and internal (e.g. genetic and proteomic) factors.

While both individual 1 and 2 are subjected to the same external factors, different metabolic

phenotypes arise from the unique interactions between external factors and an individual’s

internal factors. These differences can result in a healthy phenotype for individual 1 and a

disease phenotype for individual 2. Due to the large size and complexity of the interactions

and resulting networks, computational models will be critical for mechanistic analysis and

interpretation of results.
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3.1 Metabolism as a complex system

Metabolism plays a central role in determining the functional state within a cell,

underscored by its involvement in integral cellular processes. It is an interconnected system

of chemical transformations necessary to sustain various cellular functions and includes

the degradation of molecules for energy production and the assembly of essential cellular

constituents. The components in metabolism consist of thousands of metabolites, molecules

that are either synthesized through anabolic processes or degraded in catabolic pathways,

and the enzymes that catalyze these biochemical conversions. Together, they form intricate

interaction networks that govern cellular behavior which ultimately determines how the

body functions.

The complex nature of human metabolism is further evinced when considering dis-

eases with complex genotype-phenotype relationships, such as obesity and Type 2 diabetes,

which have emerged as prevalent epidemics in the U.S. and increasingly on a worldwide

basis [57, 58]. Steps have been made towards the understanding of genotype-phenotype re-

lationships in metabolic syndrome through the identification of genes resulting in metabolic

dysfunction [57, 59, 60, 61]. While a genetic predisposition exists in acquiring these dis-

orders, environmental factors are often a triggering influence on their development, which

has led to more recent studies on how nutrient-gene interactions alter metabolic homeosta-

sis [62, 63]. The development of metabolic disorders is essentially the consequence of an

intricate interplay between genetic, environmental, and nutritional factors (Figure 3.1). It

has thus become clear that this is a multifaceted problem that requires a systemic approach

to explore a system of causes.

3.2 Analyzing human metabolism in systems biology

Reconstruction of genome-scale human metabolic networks has initiated devel-

opment towards studying human physiology in silico at a systems-level. There are four

crucial steps to this process which have been described [1], with the biological representa-

tion becoming more focused and detailed at each level and thus culminating in a systems

framework to analyze and model human metabolic phenotypes (Figure 3.2).

Two general approaches used to study metabolic network systems are (1) topology-

based analysis and (2) in silico modeling. Metabolic networks are data structures describing

known biochemical interactions between metabolites and, as such, can be used to define

structural, or topological, features of metabolism. A key motivation for understanding net-
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Figure 3.2: The four general steps of bottom-up systems biology that enables studying a

physiological system in silico.

Components from various biological sources is first compiled and incorporated into a BiGG

structured format. The assembled information becomes the basis for a network reconstruc-

tion specific to the system of interest. The network can be converted into a computational

model by imposing mathematical parameters relevant to specific biological conditions (e.g.

genetic, environmental). Each step in the process formulates a more detailed in silico repre-

sentation of the studied system, thus increasing the level of physiological focus and refining

the genotype-phenotype relationship.
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work topology is that metabolic functions, and its corresponding malfunctions, are thought

to be determined in part by how their interactions are structured. This topology-function re-

lationship has already been extensively studied in microbial networks [64, 65, 66, 67, 68, 69]

as well as in smaller-scale human metabolic and signaling networks [70, 71, 72, 73], and a

similar approach can be readily applied towards understanding human physiological and

disease functions at a larger scale.

The imposition of modeling parameters adds another dimension to analyzing gen-

ome-scale networks. By formulating mathematical constraints corresponding to different

physiological environments, a network can be adapted into a computational, or in silico,

model of metabolism for a specified condition. While a network itself can be used to

look at connectivity properties, its converted model form can be used to study its func-

tional metabolic states. Various mathematical procedures have already been developed

that explore systems properties, in particular around the steady-state, of genome-scale

models [25, 47]. Once in its in silico form, the genome-scale model can be used to per-

form a number of biological studies as demonstrated by the historical use of the E. coli

metabolic reconstructions [26, 74]. Progress has already been made to adapt computational

approaches to study smaller human metabolic networks, including calculating candidate

metabolic states under diabetic, ischemic, and dietetic conditions in the cardiomyocyte mi-

tochondria [75] and simulating effects of plasma environment on hepatocyte metabolism [76].

3.3 Preliminary work at the organelle-scale: the human car-

diomyocyte mitochondria

Prior to the establishment of Recon 1, a metabolic model of the cardiomyocyte

mitochondria was reconstructed and used successfully in the systemic analyses of various

biological properties [77]. The network was constructed predominantly using proteomic and

biochemical data and consisted of 189 elementally and charge-balanced reactions. Three

functional capabilities were assessed (ATP production, heme synthesis, and phospholipid

synthesis), wherein flux variability analysis was used to characterize inherent network flex-

ibility when each metabolic function was carried out [77]. The study indicated that a large

portion of mitochondrial network reactions was accessible for optimal heme and phospho-

lipid biosyntheses while it was severely restrictive for ATP production.

A study on diabetic, ischemic, and dietetic metabolic states was performed in

which random sampling of the steady-state solution space was used to calculate candidate
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flux distributions based on imposed constraints derived from experimental data [75]. Subse-

quent simulations demonstrated how reaction flux distributions, reaction correlations, and

network flexibility under these conditions deviated from the normal physiologic condition.

Interestingly, the flux through pyruvate dehydrogenase (PDH) was found to be severely lim-

ited under a diabetic state in comparison to the normal condition. This was in agreement

with published observations that PDH activity is often restricted in diabetics [78], thus

suggesting that PDH inhibition in vivo may be due in part to stoichiometric restrictions

rather than entirely to regulatory actions.

One approach in constraint-based models to simplify metabolic networks includes

the calculation of correlated reaction sets (co-sets), sets of reactions that are always active or

inactive together due to mass conservation constraints. This means that a flux through one

reaction implies a flux through other reactions in the co-set (conversely if there is a reaction

without any net flux in one reaction, all of the other reactions in the co-set do not carry any

flux). These co-sets can be calculated by running a series of optimizations as in flux cou-

pling [79] or by sampling the flux solution space and calculating the perfectly correlated sets

of reactions [75]. Mapping of calculated mitochondrial co-sets to diseases described in the

Online Mendelian Inheritance in Man (OMIM) database (http://www.ncbi.nlm.nih.gov/)

enabled the classification and correlation of causal SNPs in a systemic and mechanistic

fashion [80]. Most of the co-sets involved contiguous sets of reactions, but those involving

non-contiguous groups of reactions could potentially provide novel insights. One such exam-

ple involved a reaction co-set found in the urea cycle, in which deficiencies due to different

reactions presented similar phenotypes for three out of the four reactions in the co-set. The

results from this study indicated that network-wide analysis of reaction co-sets can be used

to elucidate the genotype-phenotype relationship.

3.4 H. sapiens Recon 1: A Genome-scale Network Recon-

struction of Global Human Metabolism

3.4.1 Building the Recon 1 network

The overall procedure for the reconstruction has previously been described in de-

tail [3] and will be discussed in brief while highlighting the major differences from previous

metabolic network reconstructions. The initial component list based on the genome an-

notation of Build 35 provided the basic framework for the whole reconstruction and was
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followed by a manual curation phase which involved perusing through over 1,500 citations

in the “bibliome” in addition to the use of available internet resources and databases. These

manual curation steps (outlined in Figure 3.3) are unchanged in comparison to the stan-

dardized approach and accounts for the most time-consuming process.

The reconstruction effort was carried out in a parallelized manner divided among

six researchers based on metabolic pathways. Like the other metabolic reconstructions, the

reconstruction and model building process involved iterative steps; however, these debugging

steps were more involved in building Recon 1 due to the fact that multiple researchers were

reconstructing different parts of the network at the same time and a global cell was being

reconstructed, not a single cell. The latter point was addressed by determining 288 bibliome-

defined, metabolic objectives that exist in the human body, which include basic physiological

functions such as ATP production and ketogenesis [3]. In addition, an internal QC/QA

process was maintained in which changes and additions were tracked and each metabolic

function was re-simulated at every iteration, thus ensuring that newer model iterations did

not lose functionality. These efforts resulted in a BiGG-structured reconstruction of global

human metabolism.

3.4.2 Characterizing the knowledge landscape

The manual curation procedure combined with the testing of functional capabil-

ities resulted in the definition of the knowledge landscape for human metabolism. Almost

all of the reactions were assigned confidence scores which provided an indication of the

strength of evidence for making the gene annotation and the associated reactions. Ex-

perimental evidence, such as demonstrated enzymatic activity, had the highest confidence

scores, whereas reactions that were added due to modeling evidence (i.e. a simulation could

not be carried out without the inclusion of a particular reaction) received the lowest. Once

the reconstruction was complete, it was possible to look over the whole set of reactions

and classify the pathways in terms of confidence scores. These classifications are obviously

subjective due to the semi-standardized pathway classifications. Pathway definitions, for

example, are neither one-to-one nor completely standardized; however, it can highlight ar-

eas in which little experimental evidence is available. The dominant pathways in the areas

with low confidence were intracellular transport reactions. This relatively neglected area

of metabolism can have significant impact on the types of predictions made by the model.

For example, the difference between active and passive transport can have quantitative and

qualitative implications in energetic predictions. An interesting observation across many of
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Figure 3.3: An overview of the Recon 1 reconstruction process from the Build 35 genome

annotation.

An initial list of components was compiled from Build 35 and manually curated. The manual

curation steps are among the most time consuming aspects of the reconstruction, however

they also contribute significantly towards making a biologically accurate, functional model.

The iterative debugging process was carried out for the 288 functional tests at each iteration

to ensure proper physiological functioning of the Recon 1 metabolic network.
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the pathways was that the knowledge landscape was uneven, that is, there were significant

differences among all the pathways and within pathways as well. The dips, or so-called val-

leys, in the knowledge landscape direct areas in which further experiments can help make

new contributions to the scientific infrastructure.

3.4.3 Identifying potential alternative drug targets

Recon 1 was analyzed under aerobic glucose conditions using flux coupling [79] to

identify over 250 coupled reaction sets. One of the largest involved the cholesterol biosyn-

thesis pathway, which passes multiple intracellular compartments (cytosol, endoplasmic

reticulum, and peroxisome). 3-hydroxy-3-methylglutaryl-Coenzyme A (HMG-CoA) reduc-

tase, the metabolic target of the anti-lipidemic class of statin drugs, was in this coupled

reaction set. As a variation on the study with the cardiac mitochondria which suggested

that causal SNP associated diseases in one co-set have similar phenotypes [80], one can

make the case for proposing alternative drug targets for reactions in the same co-set. With

the HMG-CoA co-set, other members of the set are thus identified as potential alternative

drug targets for treating hyperlipidemia. As demonstrated for the human mitochondria,

deficiencies in enzymes belonging to the same functionally coupled reaction set may have

similar phenotypes [80]. Another example with potential disease applications involved a

coupled reaction set associated with glutathione metabolism in which multiple enzymes

were causally associated with hemolytic anemia (when deficiencies of the enzymes were ob-

served in patients). These examples demonstrate that in silico simulations can provide an

analytical approach to study the causes and consequences of disease, leading to potential

insight into new drug treatment targets.

3.4.4 Mapping and analyzing expression data

H. sapiens Recon 1 includes information about biological relationships between

gene transcripts, their corresponding protein products, and the reactions these proteins

catalyze. As such, gene expression profiles from the skeletal muscle of patients before and

after bariatric surgery were mapped to the network [60]. This particular data set was valu-

able because gene expression profiling was carried out on the same patient before and after

surgery, so each patient could serve as their own control. Rather than identifying a handful

of genes that were statistically determined as up-regulated or down-regulated, all metabolic

genes from each expression profile were mapped onto Recon 1 to observe overall expression



32

Figure 3.4: The three initial applications of the Recon 1 network to demonstrate its use.

The mapping of high-throughput data can be mapped to the Recon 1 network through

GPR associations to visualize metabolic trends. Correlated reaction sets, or co-sets, can

be calculated to indicate reactions that are used together under a particular condition. A

knowledge landscape describing the confidence of literature evidence used to reconstruct

Recon 1 systematically characterizes areas of metabolism which are abundant or lacking in

direct experimentation.
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changes. Changes among the three patients were observed to be consistent with one an-

other, wherein the overall patterns observed indicated an increased reliance on anaerobic

pathways and decreased expression in enzymes involved in oxidative phosphorylation. These

patterns were consistent with expression profiles in primates subjected to long-term caloric

restriction [81] thus suggesting the muscle tissue in patients experience caloric restriction

one year following surgery.

3.4.5 Network-based disease phenotype characterization

More recently, an expanded study was published on a metabolic disease network

that was constructed to describe gene-disease phenotype relationships using the Online

Mendelian Inheritance in Man (OMIM) database and Recon 1 [82]. A large-scale comparison

with patient records indeed showed that adjacent reaction connectivity is correlated with

co-expression of disease phenotypes and is thus a possible predictor of disease co-morbidity.

Detailed analysis of disease associations provided additional insight into underlying reaction

mechanisms contributing to a shared pathophysiology. An interesting example discussed

the high association between diabetes and hemolytic anemia, which, upon further analysis,

was explained by a NADPH deficiency via glucose-6-phosphate dehydrogenase leading to

glutathione deficiency, resulting in hemolytic anemia. Such studies indicate that human

metabolic network-based studies can expand into mechanistic analysis of disease relevant

to diagnostic and therapeutic applications.

3.5 Recapitulation

The analysis of fundamental genotype-phenotype relationships in human biology

has been initiated with the reconstruction of a global human metabolic network. Recon 1

represents a milestone in metabolic systems biology as a mathematically-structured knowl-

edge base that enables systematic studies of human metabolism and its properties. Genome-

scale metabolic reconstruction have shown to be useful, systematic frameworks to studying

yeast metabolism, as discussed in the previous chapter. Similar approaches have be broadly

extended to studying human metabolism, and preliminary work with both a smaller car-

diomyocyte mitochondrial network and the global metabolic network have been promising.

Hence, continued development of applications for the human network reconstruction will

enhance its use in systems analysis and discovery.

The text of this chapter, in full, is a reprint of the material as it appears in M.L.
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Mo, N. Jamshidi, and B.Ø. Palsson. 2007. A Genome-scale, Constraint-based Approach

to Systems Biology of Human Metabolism., Molecular Biosystems. 3:9 and in M.L. Mo

and B.Ø. Palsson. 2009. Understanding human metabolic physiology: A genome-to-

systems approach. Trends in Biotechnology, 27(1):37-44. I was the primary author of these

publications and the co-authors participated and/or supervised the research which forms

the basis for this chapter.



Chapter 4

Characterizing drug response

phenotypes in human metabolism

The pharmaceutical industry aims to develop drugs that achieve maximum ther-

apeutic benefits for the condition treated while minimizing adverse side effects. Research

efforts have historically focused on identifying “druggable” molecular components for ther-

apeutic intervention based on binding and accessibility characteristics of the identified tar-

get [83, 84]. Physiological understanding of drug intervention, however, requires not only

evaluating static effects on the target itself but also the dynamic consequence on overall

cellular responses resulting from both direct and indirect drug interactions. The common

occurrence of adverse reactions and the emerging application of drug repositioning indicate

the existence of off-target binding effects that are often unaccounted for in the primary

analysis of the target [85]. Drug intervention based on one target may lead to broader,

downstream effects than another, given the complex interconnected nature of biological in-

teractions and pathways. This increases the relevance of identifying an overall therapeutic

effect to understand mechanisms of action and presses the need for integrative approaches

to elucidate systems-level drug phenotypes.

A number of network-based studies have emerged as a result of the wide availability

of pharmacological data such as, for example, on drug-gene interactions and side effect sim-

ilarities [86, 87, 88]. These approaches, however, are limited to information that is already

anticipative of a drug’s action. Alternatively, response data records profiles of molecular

measurements (e.g. at gene and protein expression levels) that represent actual biological

responses to drug perturbations [89, 90, 91, 92]. Network-based prediction of tissue-specific

35
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metabolic states from transcriptomic data have recently highlighted the constraint-based

approach as an useful alternative to standard methods that rely primarily on statistical

inference [93, 36]. Given the interest in metabolic enzymes and regulators as therapeutic

targets [84], incorporating drug response data with genome-scale metabolic networks can

be a first step towards evaluating systemic drug response phenotypes.

This chapter focuses on a network-based approach to characterize systemic phe-

notypes of human metabolism based on pharmacogenomic response data. An integrative

network approach was applied to evaluate drug-specific metabolic reaction activities using

expression profiles from the Connectivity Map database [94] in the context of a global human

metabolic reconstruction. The resulting reaction response signatures were further evaluated

to identify profiles of metabolite markers relevant to potential mechanisms of action. The

results of this study show that the metabolic network-based approach can be a valuable

tool in pharmacogenomic analysis for characterizing systemic drug response phenotypes.

4.1 Method approaches to analyzing pharmacogenomic data

4.1.1 Data processing and mapping

Gene expression CEL files for the AffyMetrix U133 chips were downloaded from

the Connectivity Map database and MAS5-normalized with the BioConductor package [95]

to obtain probe intensities and detection p-values for each array. Human Entrez Gene

identifiers associated with the probes were used to map detection p-values to their corre-

sponding reactions based on the Boolean gene-protein-reaction (GPR) associations as was

previously described [93]. Reactions which were not associated with a gene were assigned a

p-value according to the 90th-percentile for that expression profile. The Recon 1 metabolic

network was constrained to allow uptake at an arbitrary exchange value of -1 of metabolites

according to a supplemented DMEM media composition, described as the culture medium

environment from the original dataset [94].

4.1.2 Gene expression analysis to determine reaction activity scores

The GIMME algorithm [93] was used to analyze quantitative gene expression pro-

files in the context of the genome-scale human metabolic network. Briefly, the GIMME

algorithm uses quantitative gene expression data and flux balance analysis (FBA) [1, 50, 51]

as a cue to activate reactions in a network model to construct condition-specific metabolic

networks required to achieve pre-determined metabolic objectives. Reactions are deemed
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Figure 4.1: Schematic illustrating the conversion of gene expression data to reaction

activity scores.

MAS5-normalization of the array data was performed to obtain Wilcoxon p-values. p-values

are mapped to metabolic network reactions based on GPR associations, and each network

reaction is then set as a metabolic objective in separate LP problems. The FBA-based

approach calculates weighted flux distribution scores for each reaction metabolic objective.
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active if above an imposed expression value cutoff, and inactive reactions are reactivated

as required to fulfill the objective while minimizing the difference from the cutoff value.

An “inconsistency” score is calculated to quantify the predicted networks agreement with

gene expression data for a particular metabolic objective, with a lower score indicating a

better network agreement with the objective. For this study, the GIMME approach was

implemented as a scoring method to determine each drug-treated expression profiles agree-

ment, or consistency, with the optimal activity of each metabolic reaction (Figure 4.1). We

calculated inconsistency scores for all Recon 1 network reactions by setting each reaction

as a required metabolic objective in separate GIMME problems. The method was modified

to weight each reaction with a detection p-value function to determine and score the most

probable flux distribution that optimizes for each network reaction (i.e. likelihood that op-

timal activity is achieved for each metabolic reaction). This approach allows for optimizing

for the most probable functional flux distribution (“path of least resistance”) when solving

for a network most consistent with expression data and unbiased assessment of all reactions

as objective functions. Hence, each reaction is quantified with a “functionality” score that

defines its optimal activity enabled by the most probable flux distribution.

The Recon 1 network [3] was first converted into an irreversible network such

that all reactions were restricted to positive flux values. The optimal flux value for each

metabolic reaction objective was first calculated using FBA with the optimization problem:

(1) vmax,i = max{cT v,iv: S ∙ v = 0, α < v < β},

where S is the stoichiometric matrix, v is the reaction flux vector, α and β are vectors

for the lower and upper bounds of the reactions, and cv,i corresponds to the imposed reac-

tion objective for each i reaction. The reaction activity scores, xi, were calculated for each

i reaction by setting the lower bound to the optimal reaction activity, vmax,i, and solving:

(2) xi = min{cT pv: S ∙ v = 0, α < v < β, αi = vmax,i},

where mapped detection p-values p were stored in a weighting vector cp, and each vec-

tor component cp,i =pi
0.5 mapped to each i th reaction.
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4.1.3 Analysis of metabolic response phenotypes (MRPs)

The drug reaction activity scores were normalized to the control activity scores to

determine how each reaction activity changes relative to its respective controls:

(3) Ri =
xdrug,i−μcontrol,i
σcontrol,i/

√
ncontrol,i

,

where Ri is the i
th reaction response, μcontrol,i, αcontrol,i, and ncontrol,i are the respective

mean, standard deviation, and number of arrays for each i th control reaction activity score.

This normalization allows us to account for variability in the control activities. Since the

activity scores were determined based on the weighted summation of detection probabilities,

a lower drug reaction score compared to its control would indicate a higher overall prob-

ability of activity whereas a higher score would signify a lower probability. The resulting

normalized scores represent a quantitative metabolic signature of relative high (activated)

and low (inhibited) activity perturbations according to each array.

A Welchs t-test was used to assign statistical significance of reaction response

changes in drug treatments with a minimum of 3 replicate array sets (df = n-2). Statistical

significance was determined between groups of replicate drug treatment conditions and all

other treatments. The Wilcoxon rank sum test was used to determine statistical significance

of drug treatment pairwise correlations between similar treatments, shared gene targets, and

drug metabolizing enzymes versus all possible pairwise correlations. Statistical significance

of reaction frequency across all 353 drug treatments was determined with a one-variable

Chi-square test (df = 1) of equivalent probability for increased and decreased activities.

4.1.4 Mapping of MCF-7 proteome data

The MCF-7 proteomic biomarker data was taken from the supplemental material

of a previous published study [96]. Up-regulated and down-regulated protein biomarkers

were based on the statistical significant threshold established in the original study. UniProt

identifiers from the supplemental material were mapped to their respective Entrez Gene

identifiers, which were then mapped to Recon 1 network reactions based on the GPR asso-

ciations.
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4.1.5 Analysis of metabolite markers

Perturbed metabolites were summarized based on statistical reaction significance

of the MRP profiles using an approach similar to a previously published reporter metabolite

analysis [97]. In brief, statistical significance of reactions are summarized around metabo-

lites to identify significantly perturbed metabolites of the metabolic network. These reporter

metabolites indicate dominant perturbation features at the metabolite level for a particular

drug condition. The reporter metabolite Z-score for any metabolite j is derived from the

response scores of the reactions consuming or producing j (set of reaction responses denoted

as rj) as:

(4) zmet,j =
mmet,j−μmet,Nj

σmet,Nj
,

where Nj is the number of reactions in rj and mmet,j is calculated as:

(5) mmet,j =
1√
Nj

∑

iεrj

Ri.

Metabolite scores were normalized by computing μmet,Nj and σmet,Nj correspond-

ing to the mean mmet and its standard deviation for 1,000 permutation reaction sets of

size Nj . with positive scores indicating a significantly perturbed metabolic region relative

to what is expected by random chance. Statistical significance of the metabolite marker

Z-scores are found according to a one-tailed distribution.

4.2 Evaluating drug metabolic response phenotype (MRP)

profiles

The Connectivity Map database is a collection of pharmacogenomic profiles for

cancer cell lines that have been treated in culture with drug (i.e. perturbagen) molecules [94].

The likeness, or connectivity, between drugs is assessed by comparing a user-determined

query set of up- or down-regulated genes to the reference drug expression profiles in the

database. In this study, we evaluated the set of gene expression levels that are mapped to

metabolic reactions (n = 2,114) in Recon 1 to determine the network-wide effects on opti-

mizing each reaction activity. We used the initial published set from the database (build
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01), with a focus on the most comprehensive cell line dataset available for the MCF-7 breast

cancer cell line.

We use an integrative metabolic network approach to analyze gene expression

profiles by asking the following question: how does the overall metabolic expression profile

affect the functional capability of each biochemical reaction? Expression profiles from drug-

treated and untreated cell cultures were first analyzed based on a published optimization-

based (GIMME) method that computes and scores a steady-state flux distribution most

consistent with an expression profile for a defined objective function [93]. Each network

reaction was evaluated as an objective function with the optimization algorithm and scored

to quantify the most probable flux distribution enabling its optimal activity. This gener-

ated a reaction activity vector based on each array (ndrug=353, ncontrol=59), thus defining

the most likely optimal flux activities consistent with the data. Unscored reactions (no

flux activity) were removed from further analysis. Pearson correlation coefficients (PCCs)

between pairs of the same treatment were computed to evaluate the degree of similarity

between replicate conditions. We compared the reaction score vectors and the subset of

mapped normalized expression data to find that the average reaction score vector PCC =

0.955 was significantly higher than the average array data PCC = 0.776 (Wilcoxon p <

10−10). Hence, the result indicates that the conversion to reaction activity scores is robust

to data noise as it significantly improves profile similarity of the array data in which the

scores were derived from.

The reaction score vectors were then evaluated to determine response signatures

of metabolism, or metabolic response phenotype (MRP) profiles, related to drug action

perturbations. MRPs were calculated by normalizing reaction scores of drug-treated cells

to their respective control scores to identify how each reaction in the network is affected

by drug intervention. The MRP profiles are represented as vectors of perturbed activity

scores, in which each score component defines the relative reaction activity change between

drug treatment and control. We then verified the similarity across profiles of cells treated

under the same drug conditions (i.e. same drug or same drug concentration). PCCs were

calculated for all possible pair-wise MRP combinations as an unbiased control (average PCC

= 0.416). The MRPs between cells treated with the same drug were more significantly

correlated than the control average with a mean PCC = 0.485 (Wilcoxon p < 10−7). MRPs

for cells treated with the same concentration of the same drug were only slightly higher

(mean PCC = 0.501, Wilcoxon p < 10−7). Similarity considerably improves when we

only evaluate reaction activities that are significantly perturbed (mean PCC = 0.914, p <
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Figure 4.2: Weighted average Pearson correlation coefficients (PCCs) between MRP pro-

files in different categories.

(A) The similarity measure between replicate treatment conditions (i.e. same drug, same

concentration of drug) were significantly higher. MRPs of the same gene target and drug

metabolizing enzymes showed less similarity. (B) Drugs which targeted metabolic proteins

had higher similarity between MRPs. Gene targets that were not metabolism-related were

more susceptible to metabolic response variation.
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0.05); overall, the results indicate MRP profiles are significantly consistent between similar

treatment conditions (see Figure 4.2A).

In principle, drugs presumed to elicit a similar action, such as through its gene-

targeted or drug metabolizing actions, have related response phenotypes. To assess whether

drugs with the same gene targets or metabolizing enzymes indeed share similar responses,

we evaluated a subset of MRPs of drugs with known shared gene targets and metabolizing

enzymes based on information downloaded from the DrugBank database [98]. Surprisingly,

we found that MRPs between drugs that share either the same targets or drug metabo-

lizing enzymes have a decreased likelihood of sharing a similar metabolic response. MRPs

between drug pairs with shared gene targets were slightly less correlated (mean PCC =

0.403, Wilcoxon p < 0.02) when compared to the average control expectation. Table 4.1

provides the subset of gene targets and respective average correlations between drugs which

share that targeted action. Correlation between MRPs that shared a drug metabolizing

enzyme were even lower (mean PCC = 0.356, Wilcoxon p < 10−10), suggesting that the

process in which drugs are metabolized have an insignificant impact on the systemic re-

sponse phenotype. Drugs whose targets are metabolic reactions were generally more highly

correlated than gene targets pertaining to non-metabolic actions (Figure 4.2B).

Among the highly correlated MRPs are those sharing targeted actions related

to nucleotide metabolism-related genes such as GMPR, ADSL, AMPD1, and IMPDH1.

Metabolism can be mediated by upstream controls at the gene expression and signaling

levels, and a number of existing FDA-approved therapies target such controls to enhance or

inhibit specific metabolic processes [84]. However, our analysis shows that non-metabolic

targets generally result in a higher response variation, as indicated by a lower average

PCC for non-metabolic proteins, targeted receptors, channels or transporters, and signaling

proteins. The systemic metabolic responses are shown to be unconserved in drugs with

similarly expected gene-targeted or metabolizing actions, particularly for those which are

not directly related to a targeted metabolic activity. Furthermore, it emphasizes that the

same interacting target between drugs does not guarantee a similar metabolic response as

there are additional effects occurring downstream or away from the expected interaction.

Thus, the development of a viable metabolic target may depend on a more direct approach

to ensure a more accurate response.
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Table 4.1: Subset list of gene names and mean correlation (p < 0.02) between drugs

sharing similar gene targets.

Gene tar-
get

Gene description Mean cor-
relation

ABCG2 ATP-binding cassette, sub-family G, member 2 0.858

TUBB1 tubulin, beta 1 0.836

rpsD 30S ribosomal protein S4 0.819

GMPR guanosine monophosphate reductase 0.779

ADSL adenylosuccinate lyase 0.670

AMPD1 adenosine monophosphate deaminase 1 0.669

GMPS guanine monophosphate synthetase 0.668

IMPDH2 IMP (inosine monophosphate) dehydrogenase 2 0.667

PPARG peroxisome proliferator activated receptor gamma 0.665

ALOX5 arachidonate 5-lipoxygenase 0.585

HPRT1 hypoxanthine guanine phosphoribosyl transferase 1 0.580

PPAT phosphoribosyl pyrophosphate amidotransferase 0.580

PIM1 PIM-1 kinase 0.545

CACNA2D1 calcium channel, alpha 2/delta subunit 1 0.544

HRH1 histamine receptor H1 0.538

NFKB1 nuclear factor of kappa light polypeptide gene enhancer 0.476

HSP90AA1 heat shock protein 90kDa alpha (cytosolic), class A 0.469

PIK3CG phosphoinositide-3-kinase, gamma polypeptide 0.453

DRD1 dopamine receptor D1 0.433

ADRA2A adrenergic receptor, alpha 2a 0.417

SCN5A sodium channel, voltage-gated, type V, alpha subunit 0.415

ALB albumin 0.415

PTGS1 prostaglandin-endoperoxide synthase 1 0.388

CALM1 calmodulin 1 0.385

ABCB1 ATP-binding cassette, sub-family B (MDR/TAP) 0.371

PDE4A phosphodiesterase 4A, cAMP-specific 0.356

ESR2 estrogen receptor 2 0.355

PDPK1 3-phosphoinositide dependent protein kinase-1 0.340

CACNG1 calcium channel, voltage-dependent, gamma subunit 1 0.124
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4.3 Characterizing the global drug response pattern of MCF-

7 cells

A global drug response pattern was characterized based on the frequency in which

metabolic reaction activities were functionally different (i.e. increased vs. decreased ac-

tivities). Metabolic reactions that were significantly up- or down-regulated (Bonferonni p

< 10−4) across all 353 profiles represent commonly affected activities of the drug-treated

MCF-7 cells. Among the most commonly upregulated reaction activities involve the pentose

phosphate pathway, folate metabolism, and purine catabolism. An energetic dependency

on mitochondrial oxidation (TCA cycle, fatty acid metabolism, oxidative phosphorylation)

is emphasized as several glycolytic activities broadly decrease in response to drug-induced

conditions. The oxidative activities are coupled to a redox response to mitigate reactive

oxygen species (ROS) production as glutathione peroxidase and superoxide dismutase ac-

tivities are among the most highly activated functions. These pathways are consistent with

a cellular redox maintenance response, which has been proposed to play a role in drug

toxicity and is equally critical as the target-binding event itself [99].

We compared the broader drug response to MCF-7 metabolism by assessing a

subset of metabolic reactions based on a set of proteomic biomarkers previously identified

in wild-type MCF-7 cell lines [96] (Figure 4.3). A published study identified a profile of

protein markers that were significantly upregulated and downregulated in MCF-7 cells us-

ing an integrative proteo-transcriptomic approach, where 39 metabolic proteins mapped to

37 significantly upregulated (positive) and 12 downregulated (negative) reaction activities.

Interestingly, a significant overlap (overlap = 0.83, p < 10−4) was observed between the

drug response activities and the biomarkers. Upregulated proteins involved in de novo nu-

cleotide synthesis (pentose phosphate pathway, folate metabolism, and IMP biosynthesis)

correspond to their respective predicted drug response activities. Nucleotide metabolism is

particularly crucial for cellular proliferation, and many common chemotherapeutic agents

are designed around the inhibition of purine and pyrimidine synthesis pathways [100]. En-

hanced TCA cycle, ATP synthase, glutathione peroxidase, and catalase activities in con-

junction with downregulated reactions of aerobic glycolysis implicate a heavier reliance on

mitochondrial energy production and stress detoxification during drug intervention. While

glycolysis is generally the focus in cancer metabolism, it has been shown that oxidative

metabolism plays a more significant role in ATP production than glycolytic metabolism in

a number of different cancer cells, including MCF-7 cells [101, 102]. These results suggest
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Figure 4.3: Comparison of a subset of reaction activities between the global drug response

and MCF-7 proteome biomarker profile.

A significant overlap (83%) is shown for activities related to increased purine synthesis and

pentose phosphate pathways. Up-regulated oxidative metabolism (TCA cycle, glutathione

peroxidase, catalase, ATP synthase) and broadly down-regulated glycolytic activities is

indicative of a general cellular redox maintenance response.
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that redox and biosynthetic capabilities are primed in MCF-7 metabolism to moderate drug

toxicity effects related to oxidative stress.

4.4 Metabolite markers are consistent with mechanisms of

drug action

The effects of drug action were further summarized by reaction changes around

metabolites to identify metabolic nodes where surrounding reactions were most prominently

affected. These are considered central metabolite hubs where reaction perturbations con-

verge on as a consequence of a particular drug response and can be regarded as potential

markers specific to its action. Note that only a subset of 41 drugs could be analyzed as

replicate drug-treated sets were required to determine the statistical significance of reaction

perturbations (see Methods for further details).

A detailed analysis of the most significantly perturbed metabolites (p < 0.05) can

be used to identify the primary response modes of drug action (Figure 4.4A). For instance,

precursor metabolites involved with cortisol synthesis were highly scored for carbamazepine,

a drug which primarily treats corticosteroid-induced psychotic and mood disorders [103].

Fatty acids and their acyl-CoA derivatives were the primary metabolite markers of the

isoflavone genistein, indicative of its beneficial effects on treating hyperlipidemia [104]. In

another example, sodium phenylbutyrate, a drug used in the treatment of hyperammone-

mia, has been previously reported to have a hypocholesterolemic effect in vivo [105, 106].

Metabolite markers related to 27-hydroxycholesterol, a biliary cholesterol derivative sug-

gested to prevent atherosclerosis [107], proposes that the 27-hydroxylation pathway is po-

tentially linked to this beneficial effect.

An analysis of metformin response revealed aminoimidazole carboxamide ribonu-

cleotide (AICAR) as the key metabolite linked to its mechanism of action. Metformin, an

anti-diabetic drug, acts as an energetic switch for catabolic metabolism through the acti-

vation of AMP-activated kinase (AMPK). AICAR, an intermediate of IMP biosynthesis, is

commonly used as a mimetic for AMPK activation [108] and the identification of AICAR

as the primary biomarker suggests regulation of folate-dependent purine synthesis plays

an important role during AMPK mediation. This is further supported as metabolites in-

volved with the reactions AICAR transformylase and IMP cyclohydrolase are also highly

perturbed. (Figure 4.5).

Comparison between drugs in a similar therapeutic class can be used to iden-
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Figure 4.4: Example listings of the highest metabolite scores (p < 0.05) for carbamazepine,

genistein, and COX-2 inhibitors.

(A) Metabolite precursors of the cortisol synthesis pathway are indicated as markers of

carbamazepine, which treats corticosteroid-related psychotic disorders. The treatment of

hyperlipidemia by genistein action is highly associated with the general perturbation of

fatty acyl-CoAs. (B) Metabolite markers of the COX-2 inhibitors rofecoxib, celecoxib,

and LM-1685 indicate a broader mediation of eicosanoid metabolic pathways related to

prostaglandin and leukotriene synthesis.
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tify common mechanisms of action. For instance, metabolites associated with eicosanoid

metabolism (prostaglandins D2/E2/H2 and leukotriene C4) were predicted to be broadly

perturbed by the COX-2 inhibitors, consistent with its targeted inhibition of eicosanoid

metabolism (Figure 4.4B). Rofecoxib is also shown to be associated with metabolite mark-

ers of keratan and chondroitin sulfate degradation, although celecoxib and LM-1685, a

celecoxib analogue, were more weakly associated with the signature. COX-2 inhibitors are

commonly used to alleviate symptoms of osteoarthritis, and the signature is consistent with

studies showing the beneficial effects of COX-2 inhibitors have on osteoarthritic cartilage

through the mediation of proteoglycan catabolism [109].

Tyrosine and 3,4-dihydroxy-L-phenylalanine (L-DOPA), the respective substrate

and product of tyrosine hydroxylase, are identified as common metabolite markers of the hi-

stone deacetylase (HDAC) inhibitors, valproic acid and trichostatin A. Figure 4.6 illustrates

the metabolites markers that are implicated in the phenylalanine- and tyrosine-derived cate-

cholamine and thyroid hormone synthesis pathways. HDAC inhibitors act as modulators of

gene expression and have been widely used to treat psychiatric and neurological disorders.

Tyrosine hydroxylase (TH) is the rate limiting enzyme in the synthesis of catecholamine

neurotransmitters, and studies have shown that both drugs are involved in TH promoter reg-

ulation [110, 111]. Additionally, although reports of long-term valproate usage on endocrine

functions and thyroid hormone levels have been conflicting [112], our results implicate its

involvement in triiodothyronine (T3) and thyroxine (T4) synthesis.

Potential side effect mechanisms can be revealed by evaluating the metabolite

markers of metabolic response. Metabolites of vitamin B6 metabolism (pyridoxal and pyri-

doxamine phosphate) and the B6-dependent process of oxalate synthesis (i.e. oxalate, hy-

droxypyruvate, glyoxylate) were strongly associated with haloperidol action. The develop-

ment of tardive dyskinesia generally occurs in schizophrenic patients who are on long-term

treatment of haloperidol, a dopamine antagonist. However, symptoms can be effectively

reduced by treating patients with vitamin B6 [113], thus indicating deficient activation of

vitamin B6 as a possible cause of the haloperidol-related side effect.

In another example, metformin response was shown to be significantly associ-

ated with metabolite markers involved in TCA cycle (acetyl-CoA, oxaloacetate, fumarate)

and oxidative phosphorylation (ubiquinol-10, ubiquinone-10). Furthermore, fatty acids and

their acyl-carnitine derivatives are also highly associated with metformin action. These

metabolites are linked to mitochondrial oxidation, consistent with a previous study show-

ing inhibition of mitochondrial oxidative metabolism as a common mechanism of metformin
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Figure 4.5: Metabolite intermediates of IMP synthesis and mitochondrial oxidation are

highly associated (p<0.05) with metformin response.

The highest scores shown in the table implicate significantly perturbed metabolite mark-

ers involved in the reactions AICAR formyltransferase (AICART) and IMP cyclohydrolase

(IMPC), as highlighted on the IMP synthesis pathway. A signature associated with mito-

chondrial β-oxidation, TCA cycle, and oxidative phosphorylation are also strongly mediated

by metformin and acts as a potential contributor to the lactic acidosis side effect.
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Figure 4.6: Highly perturbed (p < 0.05) metabolic intermediates of tyrosine-related path-

ways are associated with HDAC inhibitor response.

Catecholamine synthesis is regulated through the mediation of tyrosine hydroxylase (TH)

by both valproic acid and trichostatin A responses. Thyroid hormones, T3 and T4, are also

highly associated with valproic acid, indicating that endocrine function is affected by its

therapeutic use.

that contributes to its well-known side effect of lactic acidosis [114] (Figure 4.5). Since dia-

betic patients have been shown to have dysfunctional TCA cycle activity in skeletal muscle

cells [115], the amplification of the TCA cycle and oxidative phosphorylation deficiency by

metformin enhances the likelihood of such an adverse effect.

4.5 Discussion

Significant effort has previously focused on identifying a drug action response that

is directly associated with the anticipated target function. Genome-wide data now makes it

possible to consider the systems-level effects of targeted drug intervention. Network recon-
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structions provide a structured context in which gene expression data can be systematically

interpreted in terms of their biochemical functions. We have demonstrated that the sys-

tematic evaluation of pharmacogenomic profiles with the human metabolic network can be

used to characterize metabolic response phenotypes in drug-treated MCF-7 cells. First, we

validated the MRPs by showing that the degree of similarity between reaction activities of

replicate conditions is significantly correlated, whereas those sharing similarly targeted or

anticipated actions are not generally conserved. Cellular redox mediation was implicated

as a major downstream consequence of drug-induced actions; these pathways were also

found to be highly associated with the inherent MCF-7 proteome profile, thus suggesting

the cell line’s endogenous metabolic signature may be less susceptible to oxidation-related

drug toxicity. Furthermore, presented examples of proposed metabolite markers related

to individual drug mechanisms were consistent with therapeutic and side effects that have

been previously documented in literature. In the example for metformin, we were able to

identify a primary metabolite marker that serves as a mimetic of the drug’s principal tar-

geted action. It is important to note that the response phenotypes were characterized with

a global metabolic network rather than the cell-type in which the data was measured from.

However, the global network could still be useful in inferring therapeutic effects on certain

cell- or tissue-types, such as in the case of the COX-2 inhibitor rofecoxib on osteoarthritic

cartilage.

Although the subset of analyzed drug targets was not entirely involved with me-

diating metabolism, our analysis implicates non-metabolic drug targets generally result in

a higher metabolic response variation. The regulation of metabolism through various hier-

archical levels (e.g. transcriptional, translational, signaling) are often complex, with many

interacting factors that are still not fully elucidated. There is also the possibility of increased

error when the hierarchical flow of information is coordinated among a larger cascade of

components given that there are additional interactions downstream from the targeted site.

Studies have already demonstrated that the influence of hierarchical regulation on metabolic

fluxes can vary significantly between different enzymes [116]; thus, the optimal metabolic

intervention may require targeting the biochemical enzymes themselves rather than through

indirect actions at other regulatory levels. Indeed, anti-metabolites may be a more viable

avenue to optimally exhibit a desired metabolic effect as they directly affect or impede the

use of a metabolite.

The network-based approach presented here is currently limited to studying meta-

bolism. Nevertheless, metabolism plays a central role in human physiology and its functional
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response is essential to understanding the overall efficacy and effects to a drug. The devel-

oping discipline of pharmacometabolomics further emphasizes the emerging importance of

metabolic biomarker signatures for elucidating and predicting drug response [117]. Given

that genome-scale metabolic reconstructions continue to be developed for various cellular

systems, a similar approach applied to pathogenic organisms could be valuable to the drug

target discovery process for infectious disorders.

The text of this chapter, in full, is a reprint of the material as it will likely appear

in M.L. Mo, M.J. Herrgard, and B.Ø. Palsson. 2009. Characterizing global drug response

phenotypes in human metabolism (In preparation). I was the primary author of the pub-

lication and the co-authors participated and/or supervised the research which forms the

basis for this chapter.



Chapter 5

Connecting extracellular

metabolomic measurements to

intracellular flux states in yeast

The measurement and identification of metabolites enables the study of unique

chemical profiles which represent the downstream “end products” of gene and protein ex-

pression control. Of particular interest in metabolite biomarker discovery are the quantita-

tive profiles of metabolites that are secreted into the extracellular environment by cells under

different conditions. Recent advances in profiling the extracellular metabolome (EM) have

allowed obtaining insightful biological information on cellular metabolism without disrupt-

ing the cell itself. This information can be obtained through various analytical detection,

identification, and quantization techniques for a variety of systems ranging from unicellular

model organisms to human biofluids [35, 118, 119, 120].

Metabolite secretion by a cell reflects its internal metabolic state, and its com-

position varies in response to genetic or experimental perturbations due to changes in in-

tracellular pathway activities involved in the production and utilization of extracellular

metabolites [55]. Variations in metabolic fluxes can be reflected in EM changes which can,

in turn, provide insight into the intracellular pathway activities related to metabolite se-

cretion. The extracellular metabolomic approach has already shown promise in a variety

of applications, including capturing detailed metabolite biomarker variations related to dis-

ease and drug-induced states and characterizing gene functions in yeast [121, 122, 123, 124].

However, interpreting changes in the extracellular metabolome can be challenging due to

54
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the indirect relationship between the proximal cause of the change (e.g. a mutation) and

metabolite secretion.

Since metabolic networks describe mechanistic, biochemical links between metabo-

lites, integration of such data can allow a systematic approach to identifying altered path-

ways linked to observed quantitative changes in secretion profiles. Measured secretion rates

of major byproduct metabolites can be applied as additional exchange flux constraints that

define observed metabolic behavior. For example, a recent study integrating small-scale

EM data with a genome-scale yeast model correctly predicted oxygen consumption and

ethanol production capacities in mutant strains with respiratory deficiencies [125]. The

respiratory deficient mutant study used high accuracy measurements for a small number of

major byproduct secretion rates together with an optimization-based method that are well

suited for such data. Here, we expand the application range of the model-based method

used in [125] to extracellular metabolome profiles, which represent a temporal snapshot

of the relative abundance for a larger number of secreted metabolites. Our approach is

complementary to statistical (i.e. “top-down”) approaches to metabolome analysis [126]

and can potentially be used in applications such as biofluid-based diagnostics or large-scale

characterization of mutants strains using metabolite profiles.

This chapter will focus on the use of a constraint-based sampling approach on an

updated genome-scale network of yeast metabolism to systematically determine how EM

level variations are linked to global changes in intracellular metabolic flux states. By using

a sampling-based network approach and statistical methods (Figure 5.1), EM changes were

linked to systemic intracellular flux perturbations in an unbiased manner without relying

on defining single optimal flux distributions. The inferred perturbations in intracellular

reaction fluxes were further analyzed using reporter feature approaches [97, 127] in order

to identify dominant metabolic features that are collectively perturbed (Figure 5.2). The

sampling-based approach also has the additional benefit of being less sensitive to inaccu-

racies in metabolite secretion profiles than optimization-based methods and thus can more

readily be used in settings such as biofluid metabolome analysis.

5.1 Methods for integration and analysis of exometabolomic

data

The methods implemented in this study are shown schematically in Figures 5.1

and 5.2 and the steps are described as follows.
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Figure 5.1: Schematic illustrating the integration of exometabolomic (EM) data with the

constraint-based framework.

(A) Cells are subjected to genetic and/or environmental perturbations to secrete metabolite

patterns unique to that condition. (B) EM is detected, identified, and quantified. (C) EM

data is integrated as required secretion flux constraints to define allowable solution space.

(D) Random sampling of solution space yields the range of feasible flux distributions for

intracellular reactions. (E) Sampled fluxes were compared to sampled fluxes of another

condition to determine which metabolic regions were altered between the two conditions

(see Figure 5.2). (F) Significantly altered metabolic regions were identified.
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5.1.1 Constraining the iMM904 network with exometabolomic data

Relative levels of quantitative EM data were incorporated into the constraint-

based framework as overflow secretion exchange fluxes to simulate the required low-level

production of experimentally observed excreted metabolites. The primary objective of this

study is to associate relative metabolite levels that are generally measured for metabonomic

or biofluid analyses to the quantitative ranges of intracellular reaction fluxes required to

produce them. However, without detailed kinetic information or dynamic metabolite mea-

surements available, we approximated EM datasets of relative quantitative metabolite levels

to be proportional to the rate in which they are secreted and detected (at a steady state)

into the extracellular media. This approach is analogous to approximating uptake rates

based on metabolite concentrations from a previous study performing sampling analysis on

a cardiomyocyte mitochondrial network to identify differential flux distribution ranges for

various environmental (i.e. substrate uptake) conditions [75].

The raw data was normalized by the raw maximum value of the dataset (thus the

maximum secretion flux was 1 mmol/hr/gDW) with an assumed error of 10% to set the

lower and upper bounds and thus inherently accounting for sampling calculation sensitivity.

The gdh1/GDH2 strains were flask cultured under minimal glucose media conditions; thus,

glucose and oxygen uptake rates were set at 15 and 2 mmol/hr/gDW, respectively, for the

gdh1/GDH2 strain study. In the anaerobic case the oxygen uptake rate was set to zero,

and sterols and fatty acids were provided as in silico supplements as described in [43]. For

the potassium limitation/ammonium toxicity study the growth rate was set at 0.17 1/h,

and the glucose uptake rate was minimized to mimic experimental chemostat cultivation

conditions. These input constraints were constant for each perturbation and comparative

wild-type condition such that the calculated solution spaces between the conditions differed

based only on variations in the output secretion constraints.

5.1.2 FBA optimization of EM-constrained networks

A modified FBA method with minimization of the 1-norm objective function be-

tween two optimal flux distributions was used to determine optimal intracellular fluxes based

on the EM-constrained metabolic models. This method determines two optimal flux distri-

butions simultaneously for two differently constrained models (e.g. wild type vs. mutant) -

these flux distributions maximize biomass production in each case and the 1-norm distance

between the distributions is as small as possible given the two sets of constraints. This



58

approach avoids problems with alternative optimal solutions when comparing two FBA-

computed flux distributions by assuming minimal rerouting of flux distibution between a

perturbed network and its reference network. Reaction flux changes from the FBA opti-

mization results were determined by computing the relative percentage fold change for each

reaction between the mutant and wild-type flux distributions.

5.1.3 Sampling of the steady-state solution space of EM-constrained net-

work

We utilized artificial centering hit-and-run (ACHR) Monte Carlo sampling [75, 128]

to uniformly sample the metabolic flux solution space defined by the constraints described

above. Reactions, and their participating metabolites, found to participate in intracellular

loops [129] were discarded from further analysis as these reactions can have arbitrary flux

values. The following sections describe the approaches used for the analysis of the different

datasets.

Sampling approach used in the gdh1/GDH2 study. Due to the overall shape of the

metabolic flux solution space, most of the sampled flux distributions resided close to the

minimally allowed growth rate (i.e. biomass production) and corresponded to various futile

cycles that utilized substrates but did not produce significant biomass. In order to study

more physiologically relevant portions of the flux space we restricted the sampling to the

part of the solution space where the growth rate was at least 50% of the maximum growth

rate for the condition as determined by FBA. This assumes that cellular growth remains an

important overall objective by the yeast cells even in batch cultivation conditions, but that

the intracellular flux distributions may not correspond to maximum biomass production

[43].

To test the sensitivity of the results to the minimum growth rate threshold, sepa-

rate Monte Carlo samples were created for each minimum threshold ranging from 50% to

100% at 5% increments. We also tested the sensitivity of the results to the relative mag-

nitude of the extracellular metabolite secretion rates by performing the sampling at three

different relative levels (0 corresponding to no extracellular metabolite secretion, maximum

rate of 0.5 mmol/hr/gDW, and maximum rate of 1.0 mmol/hr/gDW). For each minimum

growth rate threshold and extracellular metabolite secretion rate, the ACHR sampler was

run for 5 million steps and a flux distribution was stored every 5000 steps. The sensitivity

analysis results indicate that the reaction Z-scores are not significantly affected by either the
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Figure 5.2: Schematic of sampling and scoring analysis to determine intracellular flux

changes.

(A) Reaction fluxes are sampled for two conditions. (B & C) Sample of flux differences

is calculated by selecting random flux values from each condition to obtain a distribution

of flux differences for each reaction. (D) Standardized reaction Z-scores are determined,

which represent how far the sampled flux differences deviates from a zero flux change.

Reaction scores can be used in visualizing perturbation subnetworks and analyzing reporter

metabolites and subsystems.
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portion of the solution space sampled or the exact scaling of secretion rates. The final overall

sample used was created by combining the samples for all minimum growth rate thresholds

for the highest extracellular metabolite secretion rate (maximum 1 mmol/hr/gDW). This

approach allowed biasing the sampling towards physiologically relevant parts of the solution

space without imposing the requirement of strictly maximizing a predetermined objective

function. The samples obtained with no EM data were used as control samples to filter

reporter metabolites/subsystems for Tables 5.3 and 5.4 whose scores were significantly high

due to only random differences between sampling runs.

Sampling approach used in the potassium limitation/ammonium toxicity study.

Since the experimental data used in this study was generated in chemostat conditions,

and previous studies have indicated that chemostat flux patterns predicted by FBA are

close to the experimentally measured ones [130], we assumed that sampling of the optimal

solution space was appropriate for this study. In order to sample a physiologically reasonable

range of flux distributions, samples for four different oxygen uptake rates (1, 2, 3, and 4

mmol/hr/gDW with 5 million steps each) were combined in the final analysis.

5.1.4 Standardized scoring of flux differences between perturbation and

control conditions

A Z-score based approach was implemented to quantify differences in flux samples

between two conditions (Figure 5.2). First, two flux vectors were chosen randomly, one

from each of the two samples to be compared and the difference between the flux vectors

was computed. This approach was repeated to create a sample of 10,000 (n) flux difference

vectors for each pair of conditions considered (e.g. mutant or perturbed environment vs.

wild type). Based on this flux difference sample, the sample mean and standard deviation

between the two conditions was calculated for each reaction i. The reaction Z-score was

calculated as: , which describes the sampled mean difference deviation from a population

mean change of zero (i.e. no flux difference between perturbation and wild type). Note that

this approach allows accounting for uncertainty in the flux distributions inferred based on

the extracellular metabolite secretion constraints. This is in contrast to approaches such

as FBA or MoMA that would predict a single flux distribution for each condition and thus

potentially overestimate differences between conditions.

The reaction Z-scores can then be further used in analysis to identify significantly

perturbed regions of the metabolic network based on reporter metabolite [97] or subsys-
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tem [127] Z-scores. These reporter regions indicate, or “report”, dominant perturbation

features at the metabolite and pathway levels for a particular condition. The reporter

metabolite Z-score for any metabolite j can be derived from the reaction Z-scores of the

reactions consuming or producing j (set of reactions denoted as Rj) as:

(1) Zmet,j =
mmet,j−μmet,Nj

σmet,Nj
,

where Nj is the number of reactions in Rj and mmet,j is calculated as

(2) mmet,j =
1√
Nj

∑

iεRj

Zi.

To account and correct for background distribution, the metabolite Z-score was normal-

ized by computing μmet,Nj and met,,Nj corresponding to the mean mmet and its standard

deviation for 1,000 randomly generated reaction sets of size Nj . Z-scores for subsystems

were calculated similarly by considering the set of reactions Nk that belongs to each subsys-

tem k. Hence, positive metabolite and subsystem scores indicate a significantly perturbed

metabolic region relative to other regions, whereas a negative score indicate regions that are

not perturbed more significantly than what is expected by random chance. Perturbation

subnetworks of reactions and connecting metabolites were visualized using Cytoscape [131].

5.2 Inferring intracellular perturbation flux states from exo-

metabolomic profiles

5.2.1 Aerobic and anaerobic gdh1/GDH2 mutant behavior

The gdh1/GDH2 mutant strain was previously developed [132, 133] in order to

lower NADPH consumption in ammonia assimilation, which would in turn favor the NADPH-

dependent fermentation of xylose. In this strain, the NADPH-dependent glutamate dehy-

drogenase, Gdh1, was deleted and the NADH-dependent form of the enzyme, Gdh2, was

overexpressed. The net effect is to allow efficient assimilation of ammonia into glutamate

using NADH instead of NADPH as a cofactor. While growth characteristics remained unaf-

fected, relative quantities of secreted metabolites differed between the wild-type and mutant

strain under aerobic and anaerobic conditions.

We analyzed EM data for the gdh1/GDH2 and wild-type strains reported in [55]
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Figure 5.3: Perturbation reaction subnetwork of gdh1/GDH2 mutant under aerobic con-

ditions.

The network illustrates a simplified subset of highly perturbed reactions connected to

aerobically-secreted metabolites predicted from the sampling analysis of the gdh1/GDH2

mutant strain. The major secreted metabolites (glutamate, proline, D-lactate, and 2-

hydroxybuturate) were also detected in the anaerobic condition.
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under aerobic and anaerobic conditions separately using both FBA optimization and samp-

ling-based approaches as described in Methods. 43 measured extracellular and intracellular

metabolites from the original dataset [55], primarily of central carbon and amino acid

metabolism, were explicitly represented in the iMM904 network. Extracellular metabolite

levels were used to formulate secretion constraints and differential intracellular metabolites

were used to compare and validate the intracellular flux predictions. Perturbed reactions

from the FBA results were determined by calculating relative flux changes, and reaction

Z-scores were calculated from the sampling analysis to quantify flux changes between the

mutant and wild-type strains, with Zreaction > 1.96 corresponding to a two-tailed p-value

< 0.05 and considered to be significantly perturbed.

To validate the predicted results, reaction flux changes from both FBA and sam-

pling methods were compared to differential intracellular metabolite level data measured

from the same study. Intracellular metabolites involved in highly perturbed reactions (i.e.

reactants and products) predicted from FBA and sampling analyses were identified and com-

pared to metabolites that were experimentally identified as significantly changed (p < 0.05)

between mutant and wild-type. Statistical measures of recall, accuracy, and precision were

calculated and represent the predictive sensitivity, exactness, and reproducibility respec-

tively. From the sampling analysis, a considerably larger number of significantly perturbed

reactions are predicted in the anaerobic case (505 reactions, or 70.7% of active reactions)

than in aerobic (394 reactions, or 49.8% of active reactions). The top percentile of FBA

flux changes equivalent to the percentage of significantly perturbed sampling reactions were

compared to the intracellular data. Results from both analyses are summarized in Table 5.1.

Sampling predictions were considerably higher in recall than FBA predictions for both con-

ditions, with respective ranges of 0.83-1 compared to 0.48-0.96. Accuracy was also higher

in sampling predictions; however, precision was slightly better in the FBA predictions as

expected due to the smaller number of predicted changes. Overall, the sampling predictions

of perturbed intracellular metabolites are strongly consistent with the experimental data

and significantly outperforms that of FBA optimization predictions in accurately predicting

differential metabolites involved in perturbed intracellular fluxes.

Perturbation subnetworks can be drawn to visualize predicted significantly per-

turbed intracellular reactions and illustrate their connection to the observed secreted metabo-

lites in the aerobic and anaerobic gdh1/GDH2 mutants. Figure 5.3 shows an example of a

simplified aerobic perturbation subnetwork consisting primarily of proximal pathways con-

nected directly to a subset of major secreted metabolites (glutamate, proline, D-lactate,
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Table 5.1: Statistical comparison of the differential intracellular metabolite data set (p <

0.05) with metabolites involved in perturbed reactions predicted by FBA optimization and

sampling analyses for aerobic and anaerobic gdh1/GDH2 mutant.

Overall statistics indicate combined results of both conditions (Recall = Rec; Accuracy =
Acc; Precision = Pre).

Aer FBA Aer Sam-
pling

Ana FBA Ana
Sampling

Overall
FBA

Overall
Sampling

Rec 0.48 0.83 0.96 1.00 0.71 0.91

Acc 0.55 0.62 0.64 0.64 0.60 0.63

Pre 0.78 0.69 0.64 0.63 0.68 0.66

and 2-hydroxybuturate). Figure 5.4 displays anaerobic reactions with Z-scores of similar

magnitude to the perturbed reactions in Figure 5.3. The same subset of metabolites is also

present in the larger anaerobic perturbation network and indicates that the NADPH/NADH

balance perturbation induced by the gdh1/GDH2 manipulation has widespread effects be-

yond just altering glutamate metabolism anaerobically. Interestingly, it is clear that the

majority of the secreted metabolite pathways involve connected perturbed reactions that

broadly converge on glutamate. Note that Figures 5.3 and 5.4 only show the subnetworks

that consisted of two or more connected reactions for a number of secreted metabolites

no contiguous perturbed pathway could be identified by the sampling approach. This indi-

cates that the secreted metabolite pattern alone is not sufficient to determine which specific

production and secretion pathways are used by the cell for these metabolites.

To further highlight metabolic regions that have been systemically affected by

the gdh1/GDH2 modification, reporter metabolite and subsystem methods [97, 127] were

used to summarize reaction scores around specific metabolites and in specific metabolic

subsystems. The top ten significant scores for metabolites/subsystems associated with

more than three reactions are summarized in Tables 5.2 (aerobic) and 5.3 (anaerobic), with

Z > 1.64 corresponding to p < 0.05 for a one-tailed distribution.

Perturbations under aerobic conditions largely consisted of pathways involved in

mediating the NADH and NADPH balance. Among the highest scoring aerobic subsys-

tems are TCA cycle and pentose phosphate pathway key pathways directly involved in

the generation of NADH and NADPH. Reporter metabolites involved in these subsystems

glyceraldehyde-3-phosphate, ribulose-5-phosphate, and alpha-ketoglutarate were also iden-

tified. These results are consistent with flux and enzyme activity measurements of the

gdh1/GDH2 strain under aerobic conditions [134], which reported significant reduction in
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Table 5.2: List of the top ten significant reporter metabolite and subsystem scores for the

gdh1/GDH2 vs. wild type comparison in aerobic conditions.

*No. of reactions categorized in a subsystem or found to be neighboring each metabolite
Reporter metabolite Z-score No of reactions*

L-proline [c] 2.71 4

Carbon dioxide [m] 2.51 15

Proton [m] 2.19 51

Glyceraldehyde 3-phosphate [c] 1.93 7

Ubiquinone-6 [m] 1.82 5

Ubiquinol-6 [m] 1.82 5

Ribulose-5-phosphate [c] 1.80 4

Uracil [c] 1.74 4

L-homoserine [c] 1.72 4

Alpha-ketoglutarate [m] 1.71 8

Reporter subsystem Z-score No of reactions*

Citric Acid Cycle 4.58 7

Pentose Phosphate Pathway 3.29 12

Glycine and Serine Metabolism 2.69 17

Alanine and Aspartate Metabolism 2.65 6

Oxidative Phosphorylation 1.79 8

Thiamine Metabolism 1.54 8

Arginine and Proline Metabolism 1.44 20

Other Amino Acid Metabolism 1.28 5

Glycolysis/Gluconeogenesis 0.58 14

Anaplerotic reactions 0.19 9
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Figure 5.4: Perturbation reaction subnetwork of gdh1/GDH2 mutant under anaerobic

conditions.

Subnetwork illustrates the highly perturbed anaerobic reactions of similar Zreaction mag-

nitude to the reactions in Figure 5.3. A significantly larger number of reactions indicates

mutant metabolic effects are more widespread in the anaerobic environment. The network

shows that perturbed pathways converge on glutamate (highlighted in green), the main

site in which the gdh1/GDH2 modification was introduced, which suggests that the direct

genetic perturbation effects are amplified under this environment.

the pentose phosphate pathway flux with concomitant changes in other central metabolic

pathways. Levels of several TCA cycle intermediates (e.g. fumarate, succinate, malate) were

also elevated in the gdh1/GDH2 mutant according to the differential intracellular metabolite

data. Altered energy metabolism, as indicated by reporter metabolites (i.e. ubiquinone-6,

ubiquinol-6, mitochondrial proton) and subsystem (oxidative phosphorylation), is certainly

feasible as NADH is a primary reducing agent for ATP production. Pentose phosphate

pathway and NAD biosynthesis also appears among the most perturbed anaerobic subsys-

tems, further suggesting perturbed cofactor balance as a common, dominant effect under

both conditions.

Glutamate dehydrogenase is a critical enzyme of amino acid biosynthesis as it
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acts as the entry point for ammonium assimilation via glutamate. Consequently, metabolic

subsystems involved in amino acid biosynthesis were broadly perturbed as a result of the

gdh1/GDH2 modification in both aerobic and anaerobic conditions. For example, the pro-

line biosynthesis pathway that uses glutamate as a precursor was significantly perturbed

in both conditions, as supported by significantly changed intracellular and extracellular

levels. There were differences, however, in that more amino acid related subsystems were

significantly affected in the anaerobic case (Table 5.4), further highlighting that altered am-

monium assimilation in the mutant has a more widespread effect under anaerobic conditions.

This effect is especially pronounced for threonine and nucleotide metabolism, which were

predicted to be significantly perturbed only in anaerobic conditions. Intracellular threonine

levels were amongst the most significantly reduced relative to other differential intracellular

metabolites in the anaerobically grown gdh1/GDH2 strain (see [55]), and the relationship

between threonine and nucleotide biosynthesis is further supported by threonine’s recently

discovered role as a key precursor in yeast nucleotide biosynthesis [135]. Other key anaer-

obic reporter metabolites are glycine and 10-formyltetrahydrofolate, both of which are in-

volved in the cytosolic folate cycle (one-carbon metabolism). Folate is intimately linked to

biosynthetic pathways of glycine (with threonine as its precursor) and purines by mediating

one-carbon reaction transfers necessary in their metabolism and is a key cofactor in cellular

growth [136]. Thus, the anaerobic perturbations identified in the analysis emphasize the

close relationship between threonine, folate, and nucleotide metabolic pathways as well as

their potential connection to perturbed ammonium assimilation processes. Interestingly,

this association has been previously demonstrated at the transcriptional level as yeast am-

monium assimilation (via glutamine synthesis) was found to be co-regulated with genes

involved in glycine, folate, and purine synthesis [137].

In summary, the overall differences in predicted gdh1/GDH2 mutant behavior un-

der aerobic and anaerobic conditions show that changes in flux states directly related to

modified ammonium assimilation pathway are amplified anaerobically whereas the indi-

rect effects through NADH/NADPH balance are more significant aerobically. Perturbed

metabolic regions under aerobic conditions were predominantly in central metabolic path-

ways involved in responding to the changed NADH/NADPH demand and did not neces-

sarily emphasize that glutamate dehydrogenase was the site of the genetic modification.

The majority of affected anaerobic pathways were involved directly in modified ammonium

assimilation as evidenced by 1) significantly perturbed amino acid subsystems, 2) a broad

perturbation subnetwork converging on glutamate (Figure 5.4), and 3) glutamate as the
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Table 5.3: List of top ten significant reporter metabolite and subsystem scores for the

gdh1/GDH2 vs. wild type comparison in anaerobic conditions.

*No. of reactions categorized in a subsystem or found to be neighboring each metabolite
Reporter metabolite Z-score No of reactions*

Glutamate [c] 4.52 35

Aspartate [c] 3.21 11

Alpha-ketoglutarate [c] 2.66 17

Glycine [c] 2.65 7

Pyruvate [m] 2.56 7

Ribulose-5-phosphate [c] 2.43 4

Threonine [c] 2.28 6

10-formyltetrahydrofolate [c] 2.27 5

Fumarate [c] 2.27 5

L-proline [c] 2.04 4

Reporter subsystem Z-score No of reactions*

Valine, Leucine, and Isoleucine Metabolism 3.97 15

Tyrosine, Tryptophan, and Phenylalanine
Metabolism

3.39 23

Pentose Phosphate Pathway 3.29 11

Purine and Pyrimidine Biosynthesis 3.08 40

Arginine and Proline Metabolism 2.96 19

Threonine and Lysine Metabolism 2.74 14

NAD Biosynthesis 2.66 7

Alanine and Aspartate Metabolism 2.65 6

Histidine Metabolism 2.24 10

Cysteine Metabolism 1.85 10

most significant reporter metabolite (Table 5.3).

5.2.2 Potassium-limited and excess ammonium environments

A recent study reported that potassium limitation resulted in significant growth

retardation effect in yeast due to excess ammonium uptake when ammonium was provided as

the sole nitrogen source [138]. The proposed mechanism for this effect was that ammonium

could to be freely transported through potassium channels when potassium concentrations

were low in the media environment, thereby resulting in excess ammonium uptake [138]. As

a result, yeast incurred a significant metabolic cost in assimilating ammonia to glutamate

and secreting significant amounts of glutamate and other amino acids in potassium-limited
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conditions as a means to detoxify the excess ammonium. A similar effect was observed when

yeast was grown with no potassium limitation, but with excess ammonia in the environment.

While the observed effect of both environments (low potassium or excess ammonia) was

similar, quantitatively unique amino acid secretion profiles suggested that internal metabolic

states in these conditions are potentially different.

In order to elucidate the differences in internal metabolic states, we utilized the

iMM904 model and the EM profile analysis method to analyze amino acid secretion profiles

for a range of low potassium and high ammonia conditions reported in [138]. As before,

we utilized amino acid secretion patterns as constraints to the iMM904 model, sampled the

allowable solution space, computed reaction Z-scores for changes from a reference condition

(normal potassium and ammonia), and finally summarized the resulting changes using re-

porter metabolites. Figure 5 shows a clustering of the most significant reporter metabolites

(Z > 1.96 in any of the four conditions studied) obtained from this analysis across the

four conditions studied. Interestingly, the potassium-limited environment perturbed only

a subset of the significant reporter metabolites identified in the high ammonia environ-

ments. Both low potassium environments shared a consistent pattern of highly perturbed

amino acids and related precursor biosynthesis metabolites (e.g. pyruvate, PRPP, alpha-

ketoglutarate) with high ammonium environments. The amino acid perturbation pattern

(indicated by red labels in Figure 5.5) was present in the ammonium-toxic environments,

although the pattern was slightly weaker for the lower ammonium concentration. Never-

theless, the results clearly indicate that a similar ammonium detoxifying mechanism that

primarily perturbs pathways directly related to amino acid metabolism exists under both

types of media conditions.

In addition to perturbed amino acids, a secondary effect notably appears at high

ammonia levels in which metabolic regions related to folate metabolism are significantly

affected. As highlighted in green in Figure 5.5, we predicted significantly perturbed key

metabolites involved in the cytosolic folate cycle. These include tetrahydrofolate derivatives

and other metabolites connected to the folate pathway, namely glycine and the methionine-

derived methylation cofactors S-adenosylmethionine and S-adenosylhomocysteine. Addi-

tionally, threonine was identified to be a key perturbed metabolite in excess ammonium

conditions. These results further illustrate the close connection between threonine biosyn-

thesis, folate metabolism involving glycine derived from its threonine precursor, and nu-

cleotide biosynthesis [135] that was discussed in conjunction with the gdh1/GDH2 strain

data. Taken together with the anaerobic gdh1/GDH2 data, the results consistently suggest
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highly perturbed threonine and folate metabolism when amino acid-related pathways are

broadly affected.

In both ammonium-toxic and potassium-limited environments, impaired cellular

growth was observed, which can be attributed to high energetic costs of increased ammo-

nium assimilation to synthesize and excrete amino acids. However, under high ammonium

environments, reporter metabolites related to threonine and folate metabolism indicated

that their perturbation, and thus purine supply, may be an additional factor in decreas-

ing cellular viability as there is a direct relationship between intracellular folate levels and

growth rate [139]. Based on these results, we concluded that while potassium-limited growth

in yeast indeed shares physiological features with growth in ammonium excess, its effects

are not as detrimental as actual ammonium excess. The effects on proximal amino acid

metabolic pathways are similar in both environments as indicated by the secretion of the

majority of amino acids. However, when our method was applied to analyze the physiologi-

cal basis behind differences in secretion profiles between low potassium and high ammonium

conditions, ammonium excess was predicted to likely disrupt physiological ammonium as-

similation processes, which in turn potentially impacts folate metabolism and associated

cellular growth.

5.3 Discussion

The method presented in this study presents an approach to connecting intracellu-

lar flux states to metabolites that are excreted under various physiological conditions. We

showed that well-curated genome-scale metabolic networks can be used to integrate and

analyze quantitative EM data by systematically identifying altered intracellular pathways

related to measured changes in the extracellular metabolome. We were able to identify sta-

tistically significant metabolic regions that were altered as a result of genetic (gdh1/GD2

mutant) and environmental (excess ammonium and limited potassium) perturbations, and

the predicted intracellular metabolic changes were consistent with previously published ex-

perimental data including measurements of intracellular metabolite levels and metabolic

fluxes. Our reanalysis of previously published EM data on ammonium assimilation-related

genetic and environmental perturbations also resulted in testable hypotheses about the role

of threonine and folate pathways in mediating broad responses to changes in ammonium

utilization. These studies also demonstrated that the sampling-based method can be readily

applied when only partial secreted metabolite profiles (e.g. only amino acids) are available.
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With the emergence of metabolite biofluid biomarkers as a diagnostic tool in hu-

man disease [140, 141] and the availability of the genome-scale human metabolic network [3],

extensions of the present method would allow identifying potential pathway changes linked

to these biomarkers. Employing such a method for studying yeast metabolism was pos-

sible as the metabolomic data was measured under controllable environmental conditions

where the inputs and outputs of the system were defined. Measured metabolite biomarkers

in a clinical setting, however, is far from a controlled environment with significant varia-

tions in genetic, nutritional, and environmental factors between different patients. While

there are certainly limitations for clinical applications, the method introduced here is a pro-

gressive step towards applying genome-scale metabolic networks towards analyzing biofluid

metabolome data as it 1) avoids the need to only study optimal metabolic states based

on a predetermined objective function, 2) allows dealing with noisy experimental data

through the sampling approach, and 3) enables analysis even with limited identification

of metabolites in the data. The ability to establish potential connections between extracel-

lular markers and intracellular pathways would be valuable in delineating the genetic and

environmental factors associated with a particular disease.

The text of this chapter, in full, is a reprint of the material as it appears in M.L.

Mo, M.J. Herrgard, and B.Ø. Palsson. 2009. Connecting extracellular metabolomic profiles

to intracellular metabolic states in yeast. BMC Systems Biology. 3:37. I was the primary

author of the publication and the co-authors participated and/or supervised the research

which forms the basis for this chapter.
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Figure 5.5: Clustergram of top reporter metabolites (i.e. in yellow) in ammonium-toxic

and potassium-limited conditions.

Amino acid perturbation patterns (shown in red) were shown to be consistently scored

across conditions, indicating that potassium-limited environments K1 (lowest concentra-

tion) and K2 (low concentration) elicited a similar ammonium detoxification response as

ammonium-toxic environments N1 (high concentration) and N2 (highest concentration).

Metabolites associated with folate metabolism (highlighted in green) are also highly per-

turbed in ammonium-toxic conditions.



Chapter 6

Integrative metabolomic-based

analysis of embryonic stem cells

Many studies on the molecular mechanisms mediating embryonic stem cells (ESCs)

have been previously focused on global gene expression levels that has led to the discovery of

key genes that are involved in stem cell biology [142]. More recently, proteomic-based studies

have identified the complement of functional gene products that operate in ESCs [143, 144].

Despite the advances of these studies, the molecular framework which controls the balance of

ESC pluripotent and differentiation states have not yet been fully elucidated. Therefore, the

study of endogenous metabolites in ESCs is an important relatively unexplored complement

to understanding the stemness phenotype (i.e. pluripotency and differentiation) as it studies

the resulting biochemical signatures that arise from various upstream regulatory controls.

Network reconstructions provide a structured framework to systematically inte-

grate and analyze disparate datasets including transcriptomic, proteomic, metabolomic,

and fluxomic data. Metabolomic data is one of the more relevant data types for this type of

analysis as network reconstructions define the biochemical links between metabolites, and

recent advancements in analytical technologies have allowed increasingly comprehensive

intracellular and extracellular metabolite level measurements [35, 118]. The metabolome

represents the temporal snapshot of the set of metabolites present under a given physiolog-

ical condition and is the culminating phenotype resulting from various “upstream” control

mechanisms. In the previous chapter, the integrative analysis of yeast exometabolomic

data demonstrated that relative metabolic levels can be incorporated as required secre-

tion constraints in a genome-scale network to infer reaction changes related to changes in

73
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metabolomic changes. Analogously, intracellular metabolomic data can be implemented in

a similar manner as an approximate measure of metabolite level that is enforced by the

metabolic network, and reactions linked to these metabolite changes can be systematically

inferred based on these enforced constraints.

A non-targeted, mass spectrometry-based metabolomic approach was recently used

to study ESC metabolism by characterizing the metabolite properties of ESCs compared to

those of differentiated neurons and cardiomyocytes. This chapter presents the application of

an integrative study to analyze broader metabolic pathway usage mediated by ESCs using

a constraint-based approach on the Recon 1 network based on the measured metabolite

data. Metabolomic data was integrated with the metabolic network as imposed metabolite

interval constraints to identify reaction activities that are linked to measured changes in

metabolites characteristic of ESC metabolism. The study described here provides another

example application of using metabolic networks to assess global reaction effects linked to

differential metabolites that have been identified. Findings from the analysis are further

supported by experimental in vitro studies that are briefly described.

6.1 Method approaches to analyzing ESC-mediated metab-

olic pathways

6.1.1 Network analysis of metabolomic data

A constraint-based modeling approach on the genome-scale human metabolic net-

work, Recon 1 [3], was used to analyze metabolomic data measured from ESC and mature

cell populations. Recon 1 was used as a general pathway framework to analyze the reaction

connectivity of the metabolomic data using a constraint-based network approach [25, 47].

Metabolomic data was used to constrain the metabolic network as metabolite interval

ranges, which has recently been described in published studies as an approach to defining

metabolite levels in constraint-based analysis [145, 146]. Flux Variability Analysis (FVA)

was used to analyze metabolic reaction flexibility as a result of increased production of

metabolites observed as upregulated in ESC and mature cell populations. This method was

used to analyze the network consequence on all reaction activities when there is a general

increase in the production of metabolites specified in the measured data (i.e. upregulated

metabolites in ESC and mature cell populations). Briefly, FVA is a variation on flux bal-

ance analysis (FBA) [1, 50, 51] which calculates both minimum and maximum reaction
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Figure 6.1: Schematic illustrating the metabolomic-based analysis using the FVA ap-

proach to identify broader reaction activites linked to upregulated metabolites.

Metabolites levels that are identified to be significantly upregulated in the metabolomic

profile were applied as metabolite demand constraints. Lower and upper bounds of the

interval ranges pertaining to each metabolite demand in the profile were set to its maximum

value. FVA was used to determine activity ranges for all reactions as a result of maximizing

production of the identified metabolites. Reactions that were affected by the metabolite

demand constraints were identified by comparing the flux ranges to a control range (i.e.

unconstrained network).
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flux capacities through linear optimization for each network reaction under the applied

constraint conditions. FVA determines the achievable range of reaction flux flexibility, or

variability [147] when particular reaction constraints are imposed on the network.

For the purpose of this study, FVA was used to identify metabolic reactions which

showed significant activity variation (i.e. were directly affected) when increased production

of metabolites in ESC and mature cell were enforced. Any variation in reaction capacity in-

dicates a general perturbation connected to the metabolite increased production and hence

activities related to ESCs and mature cells. A comparison of reaction flexibilities between

the ESC- and mature cell-constrained networks were an approximation of reaction activity

changes, where decreased flexibility indicates a more restricted (or inhibited) activity, and

increased flexibility indicates the reaction to be more responsive, or active. The optimal

values corresponding to the maximal production for each increased metabolite were first

calculated using FBA with the following linear optimization problem:

(1) mmax,i = max{cTm,iv: S ∙ v = 0, α < v < β},

where S is the stoichiometric matrix, v is the reaction flux vector, α and β are lower and

upper reaction bound vectors, with cm,i corresponds to the imposed production objective

reaction added for each ith upregulated metabolite to determine the maximum production

mmax,i. FVA was performed on the metabolomic-constrained networks to calculate reac-

tion flux ranges (Rmin and Rmax as the upper and lower range limits) that were effectively

changed relative to its control (i.e. no metabolite constraints) flux interval range. The lower

and upper bounds on upregulated metabolite exchange reactions, αm and βm, were fixed to

their respective maximum values and the flux ranges were calculated with FVA. The FVA

equations are as follows:

(2) Rmin = min{cT v : S ∙ v = 0, α < v < β αm = βm = mmax}

(3) Rmax = max{cT v : S ∙ v = 0, α < v < β αm = βm = mmax}

The network was constrained to allow uptake at an arbitrary exchange value of -1 and

secretion of all metabolites with an extracellular transporter reaction defined for its trans-

port. Fixed uptake and secretion exchange constraints were used across all conditions such

that calculated differences were only a function of changes in imposed metabolite demands.

Reaction activity ranges were compared to their reference activity range (i.e. without
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Figure 6.2: Schematic illustrating the network analysis using the FVA approach to evalu-

ate the systemic effects of activated and inhibited reactions mediated by COX, LOX, PLA2,

and fatty acid desaturases.

The flux ranges of all reactions are compared between a control “unaltered” network and

the flux ranges computed following inhibition (decreased activity) or activation (increased

activity) of a reaction. This allowed for identifying broader systemic changes across all

network reactions as a result of inhibiting and activating reactions associated with the

synthesis and oxidative pathways of polyunsaturated fatty acids.

metabolomic constraints) to normalize reaction flexibility changes. Relative activities (i.e.

increased and decreased) were determined by comparing the flux range changes between

ESC and mature cell reactions. The top 80th-percentile reaction changes were considered

to be the highest differences between ESCs and mature cells. Non-parametric Wilcoxon

rank-sum test was used to assess the statistical significance of the highly active reactions.

Statistical analysis and generated plots were performed using Excel and Matlab.

6.1.2 Analyzing network effects of activated and inhibited reactions me-

diated by oxidative enzymes

We evaluated the network effects of activated and inhibited reactions mediated

by COX, LOX, PLA2, and fatty acid desaturase (5Δ and 6Δ desaturase) on the human
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metabolic network using the previously described FVA approach (Figure 6.2). This follows

a similar approach recently used to analyze systems-level effects of epigenetic perturba-

tions [148]. FBA was first used to calculate the maximum capacity emax,j for each j
th

reaction corresponding to the PLA2, COX, LOX, and 5Δ and 6Δ desaturase enzymes, with

cenz,j corresponding to the objective reactions set for each enzyme. FVA was used to cal-

culate the upper and lower range limits for inhibition (Rmin,inh, Rmax,inh) and activation

(Rmin,act, Rmax,act). The lower and upper bounds of the reaction were set to zero and

FVA was performed to simulate reaction inhibition. FVA was then used to analyze the

consequence of reaction activation by setting the lower and upper bounds to its maximum

capacity, emax. The equations are as follows:

(4) emax,j = max{cT enz,j v : S ∙ v = 0, α < v < β}

(5) Rmin,inh = min{cT v : S ∙ v = 0, α < v < β, αenz = βenz = 0}

(6) Rmax,inh = max{cT v : S ∙ v = 0, α < v < β, αenz = βenz = 0}

(7) Rmin,act = min{cT v : S ∙ v = 0, α < v < β, αenz = βenz = emax}

(8) Rmax,act = max{cT v : S ∙ v = 0, α < v < β, αenz = βenz = emax}

The highest reaction activities pertaining to inhibition (ESC self-renewal) were chosen with

an 80th percentile cut-off. A two-tailed Students t-test was used to determine metabolic

reactions that were significantly increased in the activation condition (ESC differentiation)

relative to its inhibition activity. Model-based calculations were done using the Matlab

COBRA Toolbox [47] utilizing the Tomlab/CPLEX (Tomopt, Inc.) optimization solver.

Statistical analysis and generated tables were performed using Excel and Matlab.

6.2 Network analysis reveals altered redox status between

ESC and mature populations

Endogenous metabolites using a liquid chromatography (LC)-electrospray (ESI)

mass spectrometry (MS) approach were measured to find relative abundance metabolite lev-

els in ESCs and mature (i.e. differentiated neurons and cardiomyocytes) cell populations.

The identified metabolic signatures implicated significant differences in their metabolite

composition 6.3, suggesting divergent pathways mediating their metabolism during dif-

ferentiation. Among the most highly upregulated ESC metabolites relative to mature cell

populations (fold > 2, p < 0.01) include lipid oxidative stress mediators and secondary lipid



79

Figure 6.3: Heatmap showing 46 metabolites whose structures were identified by tandem

MS.

Lighter colors (yellow and white) correspond to the largest fold changes, where fold is defined

as the relative difference between the integrated peak area of each feature in ESCs relative

to mature populations and vice versa. Metabolite names shown in black are up-regulated

in mature populations relative to ESCs (p<0.01). Metabolite names shown in red are

up-regulated in ESCs relative to mature populations (p<0.01). PCs with even-numbered

carbon chains are indicated as they are the most abundant in nature. The number of C=C

double bonds for each metabolite is shown by the bar graph on the right.
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messengers such as arachidonic acid, prostaglandin E2, eicosapentaenoic acid, linolenic acid,

diacylglycerols (DG), glycerophosphoglycerols (PG), and glycerophosphocholines (GPCho).

Fatty acid constituents associated with DGs, PGs, and GPChos conferred a higher degree of

unsaturation, while mature cell populations showed an abundance of saturated fatty acids

and their acyl-carnitine derivatives primarily in the cardiomyocytes. Overall, elucidated

structures of differentially regulated metabolites revealed there was an increased degree of

unsaturation, or a larger number of carbon-carbon double bonds (C=C), in ESCs while

there is a substantial decrease in unsaturated metabolites in mature cell populations.

We evaluated the differences between reactions mediating the metabolism of up-

regulated ESC and mature cell metabolites in the context of a global human metabolic

network1 [3] using computational methods that were previously described. The differences

in reaction activities represent metabolic activities that are mediated as ESCs differenti-

ate into mature cells. The clustergram in Figure 6.4 summarizes the metabolic reactions

activities indicated to have the highest activity differences (>80th-percentile, Wilcoxon p

< 10−10) between ESCs and mature cells. Purine metabolism was highly associated with

ESCs as indicated by folate metabolism, which drives de novo purine synthesis, and purine

salvage pathways. Interestingly, a recent study in mouse ESCs showed that its growth is

largely sustained through pathways directly associated with purine synthesis [149]. The

analysis also revealed significantly increased activities in ROS detoxification pathways, glu-

tathione metabolism, and eicosanoid metabolism in ESCs relative to mature cells, indicating

a strong mediation of oxidative stress in ESCs. Responsive reaction activities involving fatty

acid chain elongation/desaturation signify an important role for unsaturated fatty acids in

ESC metabolism. Additionally, mitochondrial metabolism (i.e. β-oxidation) is a dominant

feature in mature cells as indicated by more highly active oxidative phosphorylation and car-

nitine shuttle reactions relative to ESCs. These results, in conjunction with the high degree

of unsaturated, or reduced, metabolite levels measured in ESCs, suggest that the regulation

of redox metabolism in ESCs maintains a reduced intracellular state. Consequently, since

chemical unsaturations such as C=C are highly reactive under oxidative conditions, the

results suggest there is broad mediation of reduction-oxidation (redox) metabolic reaction

pathways during ESC differentiation.
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Figure 6.4: Heatmap of the highest metabolic reaction differences (> 80th-percentile)

between ESCs and mature populations.

Lighter colors (yellow and white) correspond to the largest changes. Cluster 1 represents

reaction activities that are up-regulated in ESCs relative to mature populations, namely

such as folate and purine metabolism. Cluster 2 shows reactions that are highly active in

ESCs, such as fatty acid oxidation and desaturation and oxidative stress-related pathways

(ROS detoxification and glutathione metabolism). Cluster 3 and cluster 4 show up-regulated

reactions in mature populations that are consistent with increased mitochondrial energy

metabolism.
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6.3 In vitro studies implicate redox state to mediate ESC

pluripotency and differentiation

The mediation of ESC redox metabolism, in particular fatty acid desaturation

and oxidative stress, was hypothesized to play a critical role during the differentiation pro-

cess based on the metabolomic analysis. To evaluate the consequence of these activities

on the ESC stemness phenotype, the enzyme activities of phospholipase A2 (PLA2), 5Δ

and 6Δ desaturases, cyclooxygenase (COX) and lipooxygenase (LOX) were inhibited in

vitro. 5Δ and 6Δ desaturases are involved in the production of unsaturated fatty acids

(e.g. arachidonic acid, eicosapentaenoic acid) from linoleic acid. PLA2 hydrolyzes phospho-

lipids from the cellular membrane to release unsaturated fatty acids. COX and LOX both

oxidize C=C from the PLA2-released precursors to produce important biological eicosanoid

mediators of the inflammatory response, producing reactive oxygen species (ROS) in the

process. The enzymatic activities were inhibited in vitro by culturing mESCs with their

respective inhibitors and pluripotency was measured through monitoring the expression of

the transcription factor markers Nanog and Oct4 that are heavily involved with self-renewal

of undifferentiated ESCs [150, 151]. The results showed that there was a loss of differenti-

ation and promotion of ESC self-renewal when reaction activities related to the oxidative

stress response were inhibited. In addition, differentiation was delayed when 5Δ and 6Δ

desaturases were inhibited in culture. Thus, the in vitro analysis demonstrated that the

oxidative cascades mediating transformation of chemically reactive (unsaturated) metabo-

lites are crucial in the mediation of stem cell differentiation as its inhibition promotes the

pluripotent state of ESCs.

Glutathione levels were also measured in ESCs to evaluate the cellular redox state

of ESCs (Figure 6.5). The measured metabolic signature of ESCs suggested that a general

reduced cellular state is maintained during its pluripotent state and switches to a highly

oxidative state upon differentiation. Results from the network-based analysis indicated

glutathione metabolism and ROS detoxification to play a key role in mediating the redox

status of ES cells. A primary component of the redox system is the mediation of glu-

tathione metabolism, in which reduced reduced glutathione (GSH) is a major antioxidant

that protects cells from ROS formation. GSH concentrations were determined in ESCs at

day 0, 3, and 7 of differentiation, which showed that GSH levels decreased as a function

of time of differentiation in both growth and chemically defined media. Overall, the in

vitro results support the role of redox maintenance as a key determinant in promoting ESC
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differentiation.

6.4 Network analysis of in vitro inhibited enzyme activities

link stemness phenotype to broader metabolic effects

The inhibition of oxidative cascades led to the observed reduction of ESC differ-

entiation and promotion of its pluripotent state. To further examine the broader metabolic

pathways mediated during ESC self-renewal and differentiation, we used a network ap-

proach to evaluate their respective inhibited and activated effects of oxidative (COX, LOX,

PLA2) and fatty acid desaturase (5Δ and 6Δ desaturases) pathways on the global human

metabolic network [3]. The global effect of inhibiting and activating oxidative pathways

in the human metabolic network was evaluated by using the FVA approach described in

methods. Specifically, we examined pathway reactions involving PLA2, COX, LOX, and

5Δ-6Δ desaturase enzymes. When the oxidative cascades were inhibited, and thus promot-

ing the pluripotent state, the most highly active reactions (>80th-percentile, Wilcoxon p <

10−10) involve glycolysis and pyruvate metabolism (Figure 6.6A). The biosynthesis of sph-

ingolipids, inositol phosphate, nucleotides, glycerophospholipids, and triacylglycerols is also

highly favorable under inhibitory conditions. Formyltetrahydrofolate dehydrogenase, which

participates in the one carbon pool by folate, was predicted to be active in the pluripotent

state. In addition, increased activity of the oxidative phase in the pentose phosphate path-

way provides NADPH required in reductive biosynthetic processes. In general, the network

analysis reveals that the maintenance of the pluripotent phenotype in ESCs is associated

with an active biosynthetic state (i.e. anabolic metabolism) that would be favorable under

hypoxic conditions to promote its self-renewal.

The activation of oxidative cascades results in a general increase in cellular metabolic

reactions relative to the inhibitory conditions. We found that the most significantly in-

creased reactions (Bonferonni-corrected p < 10−5) relative to the pluripotent (inhibitory

oxidative) state are oxidative phosphorylation (e.g., ATP synthase), ROS detoxification

(e.g., glutathione peroxidase, superoxide dismutase, catalase, peroxidase) mitochondrial

and peroxisomal β-oxidation, purine catabolism (e.g., xanthine oxidase) and glutathione

metabolism (e.g., glutathione peroxidase). These results show that activation of the syn-

thesis and oxidation of polyunsaturated fatty acids in ESCs is associated with increased

activities of other pro-oxidative reactions. Inhibition, in contrast, increases anabolic re-

action activities that are associated with pluripotency. In the presence of oxygen, COX-
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Figure 6.5: Reduced glutathione (GSH) levels as a function of days of ESC differentiation.

GSH levels were measured at day 0 (mESC state) in both GM and CDM and then day

3 and 7 in N2B27 differentiated cultures from cells first cultured in GM and CDM. GSH

levels were significantly lower by day 7, indicative of a highly oxidized state.
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and LOX-mediated oxidation leads to the production of downstream eicosanoids such as

prostaglandins [152]. The network analysis shows that activation of these oxidative path-

ways is associated with an overall increase in oxidative stress of the cell (e.g. superoxide

dismutase, catalase, glutathione peroxidase). The result is consistent with recent experi-

mental observations that ROS accumulation and signaling is required for differentiation [153]

and that the regulation of pro-oxidative enzymes such as NADPH oxidase, and subsequent

ROS generation, as well as antioxidants (e.g. glutathione peroxidase) are prerequisites for

differentiation [154, 155, 156].

6.5 Discussion

The integration of ESC metabolomic data with the Recon 1 network provides a

systematic approach to characterizing the stemness phenotype. A constraint-based analysis

of the metabolomic data using the global metabolic network revealed that the unsaturated

metabolites determined to be at higher levels in ESCs are primarily associated with ox-

idative mediation. The in vitro analysis supported that redox metabolism is a primary

mediator of pluripotent and differentiation phenotypes as 1) inhibited fatty acid desatura-

tion pathways delayed differentiation; 2) inhibited oxidative pathways of polyunsaturated

fatty acids promote the pluripotent state; and 3) reduced glutathione levels dropped upon

stem cell differentiation. In addition, further network analysis showed that when the ESC

pluripotent state is promoted by inhibiting enzymes involved in the synthesis and oxidation

of polyunsaturated fatty acids, a broader anabolic effect on metabolism is observed. Thus,

the results indicate a strong association between pluripotency and intracellular oxidative

regulation, supported by previous studies demonstrating that stem cells contain lower levels

of ROS than their mature progeny [157, 158, 153].

Hypoxic conditions are known to maintain the pluripotent and undifferentiated

phenotype of stem/precursor cells both in vitro and in vivo [159, 160, 161]. The observation

is consistent with the existence of hypoxic niches housing stem cells in specific anatomic

locations and in developing embryos [162]. Increased glycolysis and pyruvate metabolic

pathways associated with the ESC pluripotent state is highly favorable for adapting under

hypoxic conditions and is further supported by the fact that these pathways are regulated

by hypoxia-inducible factors (HIFs) [163, 164]. The network analysis supports that stem

cells inherently sustain highly reactive structural precursors under a reduced cellular state

and, together with hypoxic conditions, makes them particularly sensitive to differentiate in
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Figure 6.6: Broader reaction activities associated with inhibiting (self-renewal) and ac-

tivating (differentiation) oxidative (COX, LOX, PLA2) and fatty acid desaturase (5Δ and

6Δ desaturases) pathways.

(A) Heatmap of highest reaction activities associated with inhibition (self-renewal) of oxida-

tive cascades (>80th percentile). High glycolysis and pyruvate metabolism is supportive of

hypoxic environments, and anabolic metabolism is highly upregulated. (B) Heatmap of reac-

tion activities associated with activation (differentiation) of oxidative cascades (Bonferroni-

corrected p<10−5). Oxidative stress activities are indicated as significantly increased in

ESC differentiation state.
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response to oxidation and its consequent oxidative processes. Overall, this study strongly

supports that the activation of oxidative metabolism is a metabolic signature of stem cell

differentiation.

The text of this chapter, in part, is a reprint of the material as it will likely appear

in Yanes, O., Clark, J., Mo, M.L., Wong, D.M., Sanchez-Ruiz, A., Benton, P., Trauger, S.A.,

Desponts, C., Patti, G.J., Palsson, B.O., Ding, S., Siuzdak, G., Highly reactive endogenous

metabolites characterize embryonic stem cells. Nature Chemical Biology (In review). I

was the primary author of the text in that portion of the publication and the co-authors

participated and/or supervised the research which forms the basis for this chapter.



Chapter 7

In closing

We have reached a mature stage with the development of metabolic systems biology

in microorganisms, and the extension of this approach to more complex organisms has

been initiated with existing networks for yeast and human metabolism. A key part of

this process is the bottom-up reconstruction of genome-scale metabolic networks based

on our current knowledge, which requires detailed curation and incorporation of genomic

and biochemical information into a mathematically-structured network. These networks

facilitate systems analysis of the organism in which the network is reconstructed for by using

various constraint-based methods that have been developed and established. The studies

presented in this dissertation focused extensively on refining constraint-based approaches

for the evaluation of “omics”-based phenotypes.

Chapters two and three described the reconstruction process and validation of

genome-scale networks for yeast and human metabolism, which serve as the foundations

for the “omics”-driven systems modeling in subsequent chapters. The studies described in

the latter chapters of the dissertation highlighted constraint-based modeling of metabolic

networks to integrate and analyze transcriptomic and metabolomic data. The use of net-

work reconstructions as a “context for content” refines metabolic capabilities captured by

experimental “omics” measurements and enables the direct computation of the “omics”-

to-phenotype relationship. Chapter four presented a study that adapted the global human

metabolic network to re-interpret previously published pharmacogenomic expression data.

The results in the analysis showed that systemic metabolic phenotypes evaluated for cell

lines could be used to interpret mechanisms of drug response based on pharmacogenomic

data. Chapters five and six focused on the integration and analysis of metabolomic data to

characterize network behavior at its ultimate endpoint phenotypic level. First, a study on

88
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evaluating the ammonium assimilation process in yeast based on extracellular metabolomic

profiles was presented as a proof-of-concept analysis that metabolite data can be incorpo-

rated as demand constraints in network reconstructions. Chapter six presented the inte-

grative use of metabolomic data, genome-scale networks, and in vitro experimentation to

study physiological aspects of stem cell metabolism that was previously not well-explored.

Taken together, these applications have demonstrated that constraint-based modeling of

high-throughput data in the context of genome-scale networks can broaden understanding

of the “omics”-to-phenotype relationship and help drive the biological discovery process.

7.1 Lessons learned

Coming into the systems biology field, my naivete had me initially believe that I

could build a model that would accurately capture physiological behavior. It seemed like

a fairly simple process: build a model, compute, and output all that one needed to know

about that system. Over the years, my idealism was replaced with the realization that no

computational model will ever be a “perfect” one. After all, how can we reconstruct a perfect

replica of a cellular system when it is not the system itself? It is important to remember

the network models described in this dissertation are an engineering-applied approximation

of biology, with modeling assumptions that can seem overly presumptuous. Nevertheless,

just as all other engineering principles have moved towards model simulations as standard

practice in their respective fields, the representation of biology in its computable form is

what enables its systems-level analysis and, ultimately, the prediction of its behavior.

The bottom-up network approach to analyzing eukaryotic systems was established

for yeast metabolism, laying the foundation for utilizing similar approaches for human

systems. This process seems rather straightforward in principle, but as the saying goes,

not all (models) are made equal. Going from a smaller yeast reaction network to the

global human network, which more than doubled in size, proved to be more challenging

in its analysis and interpretation. However, while there were many more components and

interactions to consider, the interconnected nature of metabolic networks still makes it

possible to identify both broader effects and key metabolic nodes that conditions of interest

are mediated in. Ideally, we would be able to use the method approaches described in this

dissertation to pinpoint an exact cause of disruption or modification to the cellular system.

However, perturbations often result in systemic changes that are distal from the affected

site and, in some cases, the primary changes may occur away from the perturbed region.
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Hence, the best way to address this problem currently is to quantify or rank order metabolic

regions by their level of participation, as was described in the method approaches used in the

dissertation studies. While these approaches may not give an exact answer pertaining to a

biological mechanism, the ability to identify broader levels of impact for different metabolic

pathways and regions can be just as significant and relevant.

Systems biology has the potential to be applied in many different avenues of bio-

logical research as was demonstrated in the presented studies. While the modeling of human

physiology is still in its infancy, its future advancements will ultimately drive biomedical

discovery and development in disease and health. Top-down, statistical methods in systems

biology have been useful in the computation of all measured molecular components and is

more comprehensive in nature; however, inferring phenotypic relationships without context

can often be inconclusive. The advantage of using the bottom-up approach that was ex-

tensively described in this dissertation is that the component-to-component relationships

are generally well-defined. The connections between nodes are predefined, and generally

speaking, any errors or falsely defined relationships in such types of models are traceable

to the reconstruction process. Ideally, if technological advances will one day be capable of

identifying all component interactions in a biological system, all models can be described

in a bottom-up fashion as all known cellular constituents can be defined (i.e. a “whole-cell”

model).

7.2 Future directions

While genome-scale networks have proven to be useful in elucidating biological

behavior, what we can learn is still limited by the content and scope of information that

is incorporated into the reconstructed network. Therefore, future advances must be made

towards the integration and modeling of multiple tissue-specific networks and other biolog-

ical systems to improve its physiological relevance and predictive potential. Genome-scale

metabolic networks are a starting point towards modeling more complex biological processes

in humans. The requirement for detailed interaction information highlights the limitations

of the bottom-up network reconstructions since it is dependent on the information that

is already known or confirmed. As molecular biology technologies continue to advance,

coarse-grained details will become more refined and require incorporating additional levels

of information. An intuitive next step is to extend the scope of human molecular systems

modeling from metabolism to other biological systems as more details on their mechanisms
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and interactions are elucidated. The application of similar methodologies used in recon-

structing metabolism has been prototyped at a smaller scale and applied towards human

signal transduction pathways [73, 166], as well as at the genome-scale for E. coli tran-

scriptional and translational machinery [167]. The merging of these systems would indeed

represent a more accurate and comprehensive description of the inherently dependent na-

ture of cellular processes [168]. Additionally, integration of transcriptional regulation with

metabolism has already been achieved for microbial networks in the form of Boolean logic

networks [169, 45, 170]. While the human transcriptional regulation is markedly more

complex than in microorganisms, the general framework has been formulated and can be

implemented at a genome-scale as detailed data on regulatory component interactions be-

comes available. Such a comprehensive network would undoubtedly improve the integrative

analysis of “omics” data as it would account for more components and interactions that

occur under different biological conditions.

Ultimately, a multi-compartment human model can provide a better depiction of

physiologically relevant metabolic states. Efforts have already been initiated towards de-

veloping context-specific metabolic networks from high-throughput data [93, 36], providing

the basis for constructing specific, segmented networks from a global metabolic network

such as Recon 1. Accurate representations of individual cellular and tissue compartments

will be essential to such higher-level modeling and will require rigorous assessment of their

unique metabolic functions and demands. Once individual networks have been formulated,

they can be integrated to form multi-network models. A recent study modeling a code-

pendent, two-organism microbial system showed to accurately predict known physiological

features when considering the flux exchange and interaction between separate metabolic

networks [165]. Indeed, similar approaches can also be applied in principle when modeling

metabolite exchange and interaction between multiple tissue metabolic networks. With the

methods to constructing and integrating context-specific metabolic networks in different

cell- or tissue-types at hand, a multi-compartmentalized, “whole-body” model of human

metabolism can soon be realized.

The text of chapter, in part, is a reprint of the material as it appears in M.L.

Mo and B.Ø. Palsson. 2009. Understanding human metabolic physiology: A genome-to-

systems approach. Trends in Biotechnology, 27(1):37-44. I was the primary author of this

publication and the co-author participated and supervised the research, which forms the

basis for this chapter.
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