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Beyond Boltzmann-Gibbs statistics: Maximum entropy hyperensembles
out-of-equilibrium

Gavin E. Crooks∗
Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720

(Dated: February 23, 2006)

What is the best description that we can construct of a thermodynamic system that is not in
equilibrium, given only one, or a few, extra parameters over and above those needed for a description
of the same system at equilibrium? Here, we argue the most appropriate additional parameter is the
non-equilibrium entropy of the system, and that we should not attempt to estimate the probability
distribution of the system, but rather the metaprobability (or hyperensemble) that the system
is described by a particular probability distribution. The result is an entropic distribution with
two parameters, one a non-equilibrium temperature, and the other a measure of distance from
equilibrium. This dispersion parameter smoothly interpolates between certainty of a canonical
distribution at equilibrium and great uncertainty as to the probability distribution as we move away
from equilibrium. We deduce that, in general, large, rare fluctuations become far more common as
we move away from equilibrium.

PACS numbers: 05.70.Ln, 05.40.-a

Consider a gas confined to a piston, as illustrated in
figure 1. The realization on the left was sampled from
thermal equilibrium with a fixed plunger. To describe
the probability of every single possible configuration of
the particles we only need to know the Hamiltonian of
the system and the temperature of the environment [1].
On the other hand, the system on the right has been
sampled from a non-equilibrium ensemble. Although the
Hamiltonian is the same, the plunger has recently been
in violent motion, and this perturbation has driven the
ensemble away from equilibrium. To describe the config-
urationally probability we now need to know the entire
past history of perturbations that the system has under-
gone. The dynamics and historical details matter.

This example illustrates the essentially difficultly we
face when trying to directly extend equilibrium statistical
mechanics out of equilibrium. There is only one ensemble
that can describe a given system in thermal equilibrium,
but there are a multitude of ways that the same system
can be out-of-equilibrium. The constraint that the equi-
librium entropy is maximized is a very strong condition.
However, let us take a step back, and reflect that statis-
tical mechanics itself is designed to circumvent a similar
difficulty. In classical mechanics we typically assume that
we know the exact microstate of the system. However, in
statistical mechanics, we recognize that often such a de-
tailed description is neither possible nor desirable. A few
bulk measurements or parameters do not provide nearly
enough information to fix the microstate. Instead we con-
tent ourselves with calculating the probability that the
system occupies a particular microstate. To ask what the
state of the system is, rather than what it could be, is to
ask an unnecessarily difficult question.

Out-of-equilibrium we essentially face the same prob-
lem, compounded. Clearly we cannot obtain enough in-
formation from a few measurements to determine the mi-
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FIG. 1: Schematic realizations of a gas confined to a piston
in and out of equilibrium.

croscopic state of the system, but if the system is out
of equilibrium then a few parameters or measurements
are not sufficient (in general) to determine the ensem-
ble either. Therefore, perhaps the correct approach is
not to try to determine what the probability distribu-
tion of the system is, but instead attempt to determine
what the probabilities could be. In other words, instead
of thinking about an ensemble of systems, we instead
envisage an ensemble of ensembles, a ‘hyperensemble’,
where each member of the hyperensemble has the same
instantaneous Hamiltonian, but is described by a differ-
ent probability distribution. We seek a generic descrip-
tion of the typical non-equilibrium ensemble given a few
parameters or measurements that describe the average
behavior of the hyperensemble.

This basic approach is borrowed from Bayesian statis-
tics, where it is not uncommon to estimate the proba-
bility of a probability density (a ‘metaprobability’) when
the available data is too sparse to reliable estimate the
probability directly [2–4]. Reference [2] contains a lucid
description of this procedure in the context of amino acid
sequence profiles. The hyper- prefix is also borrowed from
Bayesian statistics, were it is usual to talk about hyper-
priors (a prior distribution of a prior distribution) and
associated hyper-parameters.

With this insight, we can move beyond the standard
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canonical ensemble by changing the question. Instead of
trying to find the probability distribution θ of the system
directly, we instead estimate the metaprobability P (θ),
the probability of the microstate probability distribution.
We proceed analogously to the maximum entropy deriva-
tion of equilibrium statistical mechanics [1, 5]. We will
find the probability distribution of ensembles P (θ) that
maximizes the entropy H of the hyperensemble,

H (P (θ)) = −
∫

dθ P (θ) log
P (θ)
m(θ)

, (1)

while maintaining certain appropriate constraints. Here,
m(θ) is a measure on the space of probability distribu-
tions. It acts as a prior and ensures that this entropy is
invariant under a change of variable.

The trick to maximum entropy methods is finding the
appropriate constraints, since with an arbitrary choice of
constraint and prior practically any answer can be man-
ufactured. To avoid this trap, we seek a minimal set
of physically and mathematically reasonable parameters.
Clearly, the hyperensemble must be normalized,

1 =
∫

dθ P (θ) . (2)

And, by analogue with the canonical ensemble, we should
constrain the mean energy of the ensemble of ensembles,

〈〈E〉〉 =
∫

dθ P (θ)
∑

i

θiEi (3)

Thus far, we have incorporated the same informa-
tion and constraints that lead to the canonical ensem-
ble, namely the density of energy states, normalization
and mean energy. To move beyond the canonical en-
semble we require a measure of how far the system is
from equilibrium. After all, the quintessential feature of
non-equilibrium systems is that they are not in equilib-
rium. What is the most appropriate measure? If the
system were in equilibrium, then the entropy would be
maximized given the constraints. It follows that out-
of-equilibrium the entropy of the ensemble is not maxi-
mized, and moreover, the entropy cannot be determined
with any certainty from a measurement of the mean en-
ergy alone. Therefore, the entropy itself can be used as
an additional, physically relevant constraint.

〈S〉 =
∫

dθ P (θ)

[
−
∑

i

θi log θi

]
(4)

To summarize, we will maximize the entropy of the hy-
perensemble (Eq. 1) subject to normalization, the mean
energy and the mean ensemble entropy (Eq. 2–4). The
solution to this problem is found by introducing Lagrange
multiplies {λ} and then applying the calculus of variation
in the usual way:

P (θ) = m(θ)e−λ0−λ1〈E〉−λ2S(θ) (5)
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FIG. 2: The entropic distribution (Eq. 8) over 2 states. (a)
Reference distribution ρ = (0.5, 0.5), λ = 0, 1, 2, 4, 8 (Broad
to peaked) (b) λ = 4, ρ1 = 0.05, 0.20, 0.35, 0.5, 0.65, 0.80, 0.95
(left to right). (c) ρ = (0.1, 0.95), λ = 0.5, 1, 2, 4, 8. (d)
Same ρ, log scale, λ = 0.5, 1, 2, 4, 8, 16, 32, 64, 128. Note that
the reference distribution controls the mode and that as the
dispersion parameter λ approaches 0 the distributions become
broader and the mean moves towards 1

2
.

Some manipulation will illuminate the significance of
this expression. Let us rewrite with λ0 = logZ, λ1 = λβ
and λ2 = λ.

P (θ) =
m(θ)
Z(β, λ)

exp

(
−βλ

∑
i

θiEi + λ
∑

i

θi log θi

)
(6)

In the absence of any compelling evidence to the con-
trary, we will assume a uniform, uninformative prior over
probabilities, m(θ) ∝ constant.

The parameter β has units of entropy per unit of en-
ergy and is effectively an inverse temperature. Therefore,
we can naturally introduce a canonical ensemble with the
same effective temperature,

ρi =
1

Q(β)
exp(−βEi), (7)

and rewrite the maximum entropy hyperensemble as∥∥∥∥∥ P (θ) =
Q(β)
Z(β, λ)

exp

(
−λ
∑

i

θi log
θi

ρi

)
(8)

It is now evident that our hyperensemble has the func-
tional form of the entropic distribution, a probability of
probabilities that occasionally occurs in Bayesian statis-
tics [6–10]. This same functional form also appears as
the asymptotic limit of the multinomial distribution with
large sample sizes [11], in large deviation theory [11, 12],
and as the natural conjugate prior of the Dirichlet distri-
bution.

The entropic distribution over a binary state space is
illustrated in fig. 2, and with a Gaussian reference (e.g.



3

a particle in a harmonic potential) in fig. 3. We see that
as λ decreases the dispersion of the probability distribu-
tions increases, the mean distribution moves away from
the canonical distribution, the average probability of rare
states increases, and the probability of common states
decreases to compensate. Moreover, in fig. 3 we see that
λ controls a crossover in behavior; if ρ > λ−1 then the
uncertainty in θ and the bias away from equilibrium are
relatively small, whereas for rare states, ρ < λ−1, the
perturbation are large. Therefore, the generic, predicted
behavior is that rare events typically (but not necessar-
ily) become far more common as the condition of thermal
equilibrium is relaxed.

We can deduce some important properties of the hy-
perensemble by noting that the function in the exponen-
tial of Eq. 8 is the relative entropy of θ to the reference
canonical distribution, ρ [11]:

D(θ‖ρ) =
∑

i

θi log
θi

ρi
(9)

This is a natural measure of how distinguishable one dis-
tribution is from another. Since the relative entropy is
zero if the distributions are identical, and positive if they
are not, it immediately follows that the mode of the en-
tropic distribution is located at the reference ρ. In other
words, the single most probable distribution of the hy-
perensemble is a canonical distribution controlled by the
effective temperature β, and the dispersion of the hyper-
ensemble about that mode is controlled by the inverse
scale parameter λ. If λ is very large the hyperensemble
collapses to a single point at the mode and we recover the
canonical ensemble of equilibrium statistical mechanics.
It follows that the reference temperature is numerically
equal to the conventional temperature of the same sys-
tem with the same mean energy at thermal equilibrium.
As λ decreases the dispersion increases and typical dis-
tributions differ significantly from the reference, until at
λ = 0 every distribution in equally likely.

Another way of looking at the canonical hyperensemble
is to note that the relative entropy of θ to a canonical
reference ρ can be interpreted as a generalized free energy
difference [13].

D(θ‖ρ) = βF (θ)− βF (ρ), (10)

βF (p) = −
∑

i

pi log pi + β
∑

i

piEi

Since ρ is canonical F (ρ) = S/β − 〈E〉 is the Helmholtz
free energy, whereas F (θ) can be interpreted as a gener-
alized, non-canonical free energy. Using these definitions,
the canonical hyperensemble can be written as

P (θ) ∝ exp
{
−λβ

[
F (θ)− F (ρ)

]}
. (11)

The physical picture is that near thermal equilibrium the
ensemble that maximizes the free energy dominates the
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FIG. 3: The entropic distribution (Eq. 8) with a Gaussian
reference distribution (zero mean, unit variance) and disper-
sion λ = 100. The dashed line is the reference ρ, the points
are a single Monte-Carlo sample of θ, and the solid line is the
mean distribution 〈θ〉. Note that the variation of θ away from
the reference is relatively large for intrinsically rare states,
ρ < 1/λ.

hyperensemble. As we move away from equilibrium the
free energy is no longer necessarily maximized. Rather
the probability of obtaining a particular ensemble out
of equilibrium is determined by the generalized free en-
ergy difference between that ensemble and the reference
canonical ensemble. This expression is pleasingly remi-
niscent of the thermodynamic fluctuation representation
of standard statistical mechanics [14], except we are now
looking at fluctuations in ensemble rather than state.

We can also derive the entropic hyperensemble by di-
rectly constraining the mean relative entropy 〈D(θ‖ρ)〉.
From the viewpoint of information theory, this is the av-
erage penalty for encoding states of the system assum-
ing the they are drawn from the reference distribution
ρ rather than the true distributions [11]. This mea-
sure is very similar to the Jensen-Shannon divergence
〈D(θ‖〈θ〉)〉 [15], except that the reference distribution is
the mode, rather than the mean of θ.

Currently, various modifications or extensions of
Boltzmann-Gibbs statistics are being investigated, in-
cluding Tsallis statistics (Which modifies the entropic
function) [16] and maximum entropy production (Which
modifies the constraints) [17]. Perhaps the most simi-
lar approach to the present work is superstatistics [18],
where the central idea is that a system may be locally in
equilibrium (either in time or space), but globally out-
of-equilibrium. Therefore, the system as a whole can be
described by a mixture of canonical ensembles, each with
a different local temperature. In contrast, the compo-
nents of the maximum entropy hyperensemble are not
required to be canonical. The essentially difficulty with
superstatistics is that the distribution of effective temper-
atures is unconstrained. It is therefore interesting to ask
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what distribution of local temperature would maximize
the hyperentropy given that the members of the hyper-
ensemble are canonical? Since the result will depend on
the density of states, let us explore a simple, but impor-
tant, special case, a collection of harmonic oscillators.
The partition function is Q(β) = β−c and therefore the
mean energy scales as 〈E〉 = c/β, where the constant
‘c’ is proportional to the size of the system. An obvious
choice for the prior is m(T ) ∝ 1/T [3]. Plugging these
relations into Eq. 8 we find

P (T ) ∝
(

T

T ◦

)cλ−1

e−cλT/T◦
, (12)

where T is the effective local temperature and T ◦ = 1/β
is the reference temperature. Here, with the hyperensem-
ble approach we predict that if the system is linear and
locally in equilibrium, then the temperature fluctuations
follow a gamma distribution [19–21] with mean T ◦ and
standard deviation T ◦/

√
cλ. If the temperature fluctua-

tions are not gamma distributed, then either the system
is not linear, not in local equilibrium, or we have failed to
incorporate some important, pertinent information about
the system [3].

It is worth noting that we would have obtained very
different results if we had chosen different constraints.
As previously mentioned, this is the essential weakness
of maximum entropy methods; we must rely on the plau-
sibility of the constraints, rather than the rigor of the
derivation. In particular, if we maximize the hyperen-
tropy given the mean relative entropy of the reference ρ
to the ensemble θ, 〈D(ρ‖θ)〉, we obtain a Dirichlet distri-
bution. This in turn leads to the prediction that the local
temperature of a linear system follows an inverse gamma
distribution, which is known to be equivalent to the non-
extensive thermodynamics of Tsallis [16, 18]. This is an
intriguing connection, but unfortunately 〈D(ρ‖θ)〉 has no
immediately obvious deep physical or information theo-
retic significance.

In this paper, I have argued that a natural way of
moving beyond equilibrium Boltzmann-Gibbs statistics
is to change the question: Instead of trying to determine
what the probability distribution of a system is, we in-
stead ask what the probability distribution could be. We
seek an ensemble of ensembles that captures the generic
properties of matter generically out-of-equilibrium. The
solution to this problem is found by maximizing the en-
tropy of the hyperensemble, given the mean energy and
mean ensemble entropy. This yields a physically plau-
sible description of fluctuations away from equilibrium,

a natural definition of temperature out-of-equilibrium, a
natural measure of distance away from equilibrium, and
the intuitively plausible prediction that rare events typi-
cally become far more common as a system moves away
from thermal equilibrium.
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