UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
CrowdGrader: A Tool For Crowdsourcing the Evaluation of Homework Assignments

Permalink
https://escholarship.org/uc/item/5ds8139q

Authors

de Alfaro, Luca
Shavlovsky, Michael

Publication Date
2013

DOI
10.1145/2538862.2538900

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-

NoDerivatives License, availalbe at https://creativecommons.org/licenses/by-nd/4.0}

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/5ds8139g
https://creativecommons.org/licenses/by-nd/4.0/
https://escholarship.org
http://www.cdlib.org/

CrowdGrader: A Tool For Crowdsourcing the Evaluation of
Homework Assignments’

Luca de Alfaro
Computer Science Dept.
University of California
Santa Cruz, CA 95064, USA
luca@ucsc.edu

ABSTRACT

CrowdGrader is a system that lets students submit and collabora-
tively review and grade homework. We describe the techniques
and ideas used in CrowdGrader, and report on the experience of
using CrowdGrader in disciplines ranging from Computer Science
to Economics, Writing, and Technology. In CrowdGrader, students
receive an overall crowd-grade that reflects both the quality of their
homework, and the quality of their work as reviewers. This creates
an incentive for students to provide accurate grades and helpful re-
views of other students’ work. Instructors can use the crowd-grades
as final grades, or fine-tune the grades according to their wishes.
Our results on seven classes show that students actively participate
in the grading and write reviews that are generally helpful to the
submissions’ authors. The results also show that grades computed
by CrowdGrader are sufficiently precise to be used as the home-
work component of class grades. Students report that the main
benefits in using CrowdGrader are the quality of the reviews they
receive, and the ability to learn from reviewing their peers’ work.
Instructors can leverage peer learning in their classes, and easily
handle homework evaluation in large classes.

Categories and Subject Descriptors

K.3.2 [Computer and Information Science]: Education

Keywords

Crowdsourcing, Grading, Peer evaluation

1. INTRODUCTION

Grading complex assignments, such as essays or computer-
science submissions that require compilation or build steps, can be
a cumbersome and time-consuming process. Especially for large
classes, the grading burden on the instructor and teaching assis-
tants may limit the amount of in-depth feedback that the students

*CrowdGrader is a trademark of CrowdGrader LLC. This work
was supported in part by the Google Research Award “Crowd-
sourced Ranking”. The authors are listed in alphabetical order.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGCSE’14, March 5-8, 2014, Atlanta, GA, USA.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2605-6/14/03 ...$15.00.
http://dx.doi.org/10.1145/2538862.2538900.

Michael Shavlovsky
Computer Science Dept.
University of California
Santa Cruz, CA 95064, USA
mshavlov@ucsc.edu

receive for their submissions. At the same time, students are often
receptive in learning from their peers, and they can benefit from be-
ing able to compare and discuss their solutions with other students
(see, e.g., [2L 4.

To explore the use of peer feedback in grading homework, we
developed CrowdGrader, a web-based tool for the collaborative
grading and evaluation of homework assignments. Students submit
their solutions to homework problems to CrowdGrader, and they
are then asked to review and grade a small number (usually, 4 to
6) of submissions by other students. The overall grade they receive
in a homework assignment depends both on the (aggregate) grade
they receive for their submission, and on their effort and precision
in reviewing their peer’s submissions. Thus, students have an in-
centive to provide accurate evaluations. CrowdGrader is publicly
available at http://www.crowdgrader.orgl So far, it has
been used for assignments ranging in topic from Computer Sci-
ence, to Economics, Biology, Literature, Technology, and Writing;
the class size ranged from a dozen students to many hundreds.

In building CrowdGrader, we hoped students would benefit from
being able to examine the solutions submitted by other students:
accomplished students would be able to look at alternative ways
of solving the same problem, and students who encountered dif-
ficulties would be able to study several working solutions to the
problem while grading. We also hoped that students would bene-
fit from their peer’s feedback, which can be more varied and more
detailed than what can be provided by a single instructor, or a few
teaching assistants, in charge of a large class.

We describe the ideas and techniques used in CrowdGrader,
and we report on the experience and quantitative results in using
CrowdGrader in seven classes: four Computer Science classes fo-
cused on Android and Web development, algorithms and C++, and
Java; one Economics class, and two Engineering classes in which
homework consisted in essay-writing.

The lifecycle of an assignment in CrowdGrader consists of three
phases: a submission phase, a review phase, and a grading phase.

The submission phase is standard: students can submit their so-
lutions either individually or, if the homework assignment allows
it, as groups of collaborating students.

In the review phase, each student must review a given number
of submissions. In our experiments, asking that each submission
was reviewed by 5 or more students yielded sufficient accuracy,
while resulting in acceptable workload for the students. The prob-
lem of assigning reviews to students turned out to be more com-
plex than expected. In every assignment, there are students who
do not do their reviews, and naive approaches to assigning reviews
led to some submissions receiving too few reviews. We eventually
resorted to an on-line algorithm, in which students are assigned a
review task only upon completing the previous one; the algorithm

http://www.crowdgrader.org

dynamically estimates the probability that each will be completed,
on the basis of previous history, and assigns review tasks to try to
achieve uniform coverage.

When students are assigned a submission to evaluate, they must
review it, and evaluate its quality. We experimented with two ap-
proaches to quantitative evaluation: one based on ranking, the other
based on grades. We initially asked students to rank the submis-
sions they reviewed in quality order. We thought that, while stu-
dents might not always be able to assign absolute grades with pre-
cision, they are likely to have a correct opinion of the relative mer-
its of the submissions. This approach did not work well in practice:
students instinctively disliked the process, often omitting the rank-
ing step, and they expressed doubts about the accuracy of the final
result. Consequently, we switched to grades, asking students to as-
sign grades to the submissions they review. We experimented with
several algorithms for aggregating the grades received by each sub-
mission into a single consensus grade for each submission; some
initial results are reported in [|6]. For the results given in this paper,
we used the algorithm used in Olympic competitions: the lowest
and highest grades received are discarded, to help eliminate out-
liers, and the remaining grades are averaged.

To provide an incentive for students to be accurate in their grades
and helpful in their reviews, CrowdGrader assigns to each student
an overall crowd-grade that combines three grades:

o the consensus grade computed for the student’s submission;

e an accuracy grade that measures the precision of the student
in grading submissions;

o a helpfulness grade that measures how helpful were the re-
views written by the student.

Making the review accuracy and helpfulness part of the overall
grade received by the student generates an incentive to provide
good quality reviews and evaluations that worked well in practice:
the results show both a high participation in the review process, and
a high average helpfulness of the resulting reviews. Instructors can
either directly use the crowd-grades as grades for the assignment,
or they can fine-tune them before assigning them: the instructor is
thus always in control of the final assigned grades.

The students perceived the richness of feedback, and the ability
to inspect several working solutions of the homework assignments,
as the main benefits of CrowdGrader compared to evaluations by
a teaching assistant. Instructors can easily grade assignments in
large classes, and by having access to all reviews, they can quickly
identify how well the students are learning the subject matter.

In the remainder of the paper, we describe in more detail the var-
ious phases of the review and grading process, and we describe the
experimental results we obtained in using CrowdGrader in several
classes.

2. PREVIOUS WORK

The work most closely related in goals to ours is the proposal
to crowdsource the review of proposals for use of telescope time
by [[12]], as well as the recent NSF pilot project for reviewing fund-
ing proposals [14]]. As in those approaches, we also distribute the
task of reviewing the submissions to the same set of people who
submitted the items to be reviewed. Both for proposals submitted
to a specific panel, and for solutions submitted to the same home-
work assignment, the submissions are on sufficiently related topics
that the problem of matching submission topic with reviewer ex-
pertise can be disregarded. For proposals, of course, care must be
taken to avoid conflicts of interest; our situation for homeworks is

relatively simpler. Where the problems differ is that proposal re-
viewing is essentially a top-k problem: the best k proposals must
be selected for funding. Homework grading, on the other hand, is
an evaluation problem: each item needs to be graded on a scale.
In top-k problems, the most important consideration is precision
at the top; mis-ranking items that are far from the top k carries
no real consequence. In our evaluation problem, each evaluation
carries approximately the same importance, and we do not need to
precisely rank students whose submissions have approximately the
same quality. While there are techniques that can be applied to both
problems, this difference in goals justifies the reliance of [12 [14]
on comparisons, and ours on grades.

The works of [12]] and [14] discuss incentive mechanisms for
reviewers, consisting in awarding a better placement in the final
ranking to proposals whose authors did a better job of reviewing.
We follow the same approach, but we have the additional constraint
that students must find the reviewing work appropriately rewarded
with respect to the time it takes. For this reason, we let instructors
choose the relative weights of the consensus grade of the submis-
sion, versus the accuracy and helpfulness grades of the reviews, so
that the grades can properly account for the fraction of time spent
in the various activities.

The effect of review incentive on the quality of the ranking is
examined in depth in [13]. The main problem, also raised in [[12]],
is that the incentive mechanism makes the grading a “Keynesian
beauty contest”, where reviewers are rewarded for thinking like
other reviewers; in turn, this may encourage a “race to mediocrity”,
in which non-controversial, blander proposals may fare better than
more audacious and original ones. We agree with the authors of
[13]] that this may be a true problem for proposal review. However,
we believe that in the context of homework assignments, the prob-
lem may be minor. The helpfulness and accuracy grades do not
overly punish students who mis-evaluate a single submission; this
gives more leeway to students presented with a homework submis-
sion that does not follow the beaten path. We also believe that the
less competitive evaluation setting, as compared to a top-k setting,
may lessen the problem.

The topic of crowdsourced grading has been discussed also in an
influential blog post [5]]. The blog post advances the idea that one of
the main benefits of crowdsourced grading consists in teaching the
skill to analyze and evaluate the work of others, a view we share.

3. THE REVIEW PHASE

The review phase is of primary importance for the accuracy of
the generated ranking, and we experimented with several designs.

3.1 Review assignment

CrowdGrader implements an anonymous review process. Since
students cannot choose which submissions they review, and they do
not know the identity of the submissions’ authors, they have limited
ability to collude and cause their friends to receive higher grades.

In conferences, it is customary to assign papers to program-
committee members in a single batch; each member then has a
period of time to read the papers and enter all reviews. Crowd-
Grader instead assigns submissions for review one at a time: stu-
dents are assigned a new review task only upon completion of the
previous ones. Unlike conference papers, solutions submitted to as-
signments can be quite similar one to the other: by having students
work on one review at a time, we hoped to reduce the likelyhood of
students mixing up the submissions and their reviews. Indeed, we
received no valid reports of mis-directed reviews. Furthermore, by
delaying the assignment of new reviews until students have finished
previous ones, CrowdGrader can better ensure that all submissions

receive roughly the same number of reviews, even if some students
fail to do any reviewing work. For each submission, CrowdGrader
computes the number of likely reviews, consisting of the completed
reviews, along with the review tasks that had been assigned only a
short time before. When assigning reviews, CrowdGrader chooses
from submissions having least number of likely reviews.

3.2 Ranking vs. grades

For the first two homework assignment conducted using Crowd-
Grader, we decided to ask students to rank homework submissions,
rather than grade them. Ranking is a simpler problem than grading,
since it involves only a relative, rather than absolute, judgement.
Consequently, we thought that asking students to rank the submis-
sions they reviewed would lead to more precise results than grad-
ing; an extensive body of literature attests to the fact that precise
global rankings can be obtained by merging partial rankings 7} |1}
3011, 9L {10, 8]

Unfortunately, many students skipped the ranking step, leaving
the submission they just reviewed in the default position where it
was placed: at the bottom of the rank. To confirm this, we measured
the fraction of times that students would rank the just-reviewed sub-
mission higher than a previously-reviewed submission. This frac-
tion should have been close to 50%, since submissions are assigned
in an order that does not depend on their quality. Instead, in the first
assignment this fraction was only 36%. Even after strongly remind-
ing students to provide a ranking, the fraction rose only to 41% in
the second assignment that relied on ranking.

Talking to students, we understood that they were skipping the
ranking step because of a combination of forgetfulness, and unwill-
ingness. Several students mentioned that they felt uncomfortable
with providing a ranking of their peers. They complained about
having to rank arbitrarily submissions they considered roughly
equivalent, and they considered ranking a blunt instrument, unable
to differentiate between the cases of submissions of similar, and
widely different, quality. After the second assignment, we decided
to base CrowdGrader on grades: this led to markely increased stu-
dent satifaction.

3.3 Declining evaluations

We discovered early on that it was important to allow students
to decline some review tasks, without incurring negative conse-
quences. In our programming assignments, there were many cases
in which students were unable to review submissions due to fac-
tors beyond their control. In the CS/Android class, their instal-
lation of Eclipse and Android SDK occasionally misbehaved in a
way that left students unable to load and review the code submitted
by other students. In the CS/C++ class, glitches or differences in
the build environment occasionally prevented students from com-
piling and executing the submissions under review. Initially, when
students were required to enter a grade to receive credit for their re-
view effort, they entered very low grades for the submissions they
could not evaluate. This caused upset among the recipients of the
low grades, and it was the largest source of discrepancy among the
grades assigned to the same submission. The solution was to let
students flag a review task as “declined", omitting the grade, and
providing as review an explanation of why they were declining it.

4. GRADE ASSIGNMENT

Once the review phase is over, CrowdGrader computes for each
student a crowd-grade that is the result of combining three grades:
the consensus grade received by the submission, and the accuracy
and helpfulness grades reflecting the quality of the student’s review
work.

4.1 Consensus grade

We experimented with several techniques for aggregating the
grades each submission received into a single consensus grade.
Currently, CrowdGrader computes the consensus grades by rely-
ing on a reputation system, which gives more weight to the grades
assigned by the students who have a high measured grading accu-
racy; the details can be found in [|6]. For the sake of simplicity, the
results presented in this paper are obtained using the well-known
technique used in Olympic competitions: for each submission, we
discard the highest and lowest grades, and we average the remain-
ing grades. We nickname this technique maverage, as it is a mix
of median and average methods; compared to average, maverage
is more resistant to outliers. In general, if n grades are available,
maverage discards the [n/4] lowest and the |n/4] highest grades
before averaging.

4.2 Accuracy grade

To quantify the accuracy of each student in assigning grades, we
compare the grading accuracy of the student to the grading accu-
racy of a fully random grader. Precisely, consider a set S of sub-
missions, and U of users (students). Let R C S x U be the set of
reviews performed, and let Ro j = {i | (¢,5) € R} be the set of
submissions reviewed by student j, and i o R = {j | (¢,7) € R}
be the set of reviewers of submission <.

For (i,7) € R, denote by g;; the grade assigned by j to 4, and
let g; be the consensus grade of submission 7, computed using the
maverage method described above. The average square error v; of
a student j € U with respect to the consensus grades is:

vj = E{(9sj — 9:)*Vicroj -
A hypothetical “fully random” grader, who assigns to each submis-

sion a grade picked at random from the complete set of assigned
grades, would have average square error given by:

- L \2
0 =E{(9:; — 91)" }i,er,ies -

We assign to each student j an accuracy grade that measures how

much better the student is than such a fully random grader using:

4 =1— min(vj, 0) ‘

(%

4.3 Helpfulness grade

To provide an incentive for students to write helpful reviews,
CrowdGrader allows students to rate and leave feedback on each
review they receive. The feedback provided on reviews goes some
of the way towards providing an incentive to write helpful reviews:
all students naturally like to receive praise for their work, rather
than having sloppiness or imprecisions pointed out to them. Fur-
thermore, students can rate the reviews they receive, assigning them
integer ratings ranging from —2 (incorrect, completely unhelpful)
to 42 (very helpful), with 0 being the neutral rating. These review
ratings are used to compute the helpfulness grade h; € [0,1] of
each reviewer j € U, as follows. Let L; be the list of review feed-
backs received by j (this list may be shorter than the number of re-
views performed by j, as some reviews might not have received any
feedback). We drop from L; one of the lowest feedbacks f with
f = min L, obtaining L’. For a feedback f € {—2,...,+2}, we
let the weight of feedback f be w(f) = 2if f < 0, and w(f) =1
if f > 0, so that negative feedback weighs twice as much as pos-
itive feedback. We then compute the helpfulness grade of student
j €U via:

Zfeufw(f))ﬂ ’

h; = max {O,min [c(l t5 S e w(f)

Class N students | N assign. | N req revs o
CS/Android 68 5 6| 25%
CS/Web 78 2 51 25%
CS/C++ 102 5 51 25%
CS/Java 22 1 41 25%
Eng/Essay1 55 2 51 2%
Eng/Essay2 232 1 6| 15%
Econ 61 6 5125%

Table 1: Number of students, number of assignments for the class,
number of required reviews, and relative weight « of reviews (ex-
pressed as percentage), for the various classes considered.

where 0.5 < ¢ < 1 is the default helpfulness for reviewers who
receive no feedback for their reviews. This equation has been hand-
tuned based on experience; we currently use ¢ = 0.7. We discard
the lowest rating from L in order to prevent tit-for-tat behaviors,
in which students who receive a low grade react by labeling the
associated review as unhelpful. Students receive a low helpfulness
grade only if multiple of their reviews are labeled as unhelpful, with
insufficient helpful reviews to mitigate such negative ratings.

4.4 Crowd-grade and final grade

Once the consensus, accuracy, and helpfulness grades have been
computed, they are merged into the crowd-grade ~y; of student j €
U by giving a weight « € [0, 1] to the review work of the student.
Indicating by M the maximum grade for the assignment, by n;
the number of reviews performed by j, and by N the number of
reviews that every student was supposed to complete, we let:

(aj + h;) min{n;, N'}
2N ’

In CrowdGrader, instructors can choose the percentage o for which
the review activity of a student enters in the crowd-grade. Many in-
structors leave o unchanged from its default value of 25%; as we
will see in the next section, this value generates a sufficient incen-
tive to perform the reviews, leading to most of them being com-
pleted. Once the crowd-grades are computed, the instructor can
either assign them directly as final grades, or the instructor can fine-
tune them, changing individual grades to correct mistakes occurred
during the review phase, as well as re-scaling them to modify the
overall grade distribution to better reflect the level of accomplish-
ment of students in the class. This leaves the instructor always in
full control of the grades that are assigned to the students.

v =1-a)g; +aM

S. RESULTS

We provide results on the student participation in the review
phase, and on the accuracy of the grades computed by Crowd-
Grader. Our results are drawn from seven classes that have been
taught using CrowdGrader as the primary means of grading as-
signments: four are Computer Science classes on Android, web,
C++, and Java; one is an Economics class, and two are Engi-
neering classes which involved essay writing. The assignments in
Computer Science classes consisted in programming assignments
in which students had to turn in bundles of files that consituted
the applications. The assignments in the Economics class involved
answering questions in English. The classes in Engineering in-
volved writing summaries and essays on specific topics. For each
of these classes, we include in our statistics all the assignments that
used CrowdGrader. Table[Ilsummarizes some basic data about the
classes.

Class N | Percrev | Minrev | Avgrev | Avg len
CS/Android | 5 106% 50% 90% 203
CS/Web 2 95% 70% 96% 463
CS/C++ 5 95% 56% 90% 406
CS/Java 1 100% 75% 105% 79
Eng/Essayl | 2 78% 40% 77% 130
Eng/Essay2 | 1 92% 50% 89% 329
Econ 6 98% 82% 101% 163

Table 2: Participation in the CrowdGrader review phase. N is the
number of assignments for the class. Perc rev is the percentage of
students who did at least one review, expressed as percentage of
students who submitted a solution; this percentage can be greater
than 100% since some students may have only reviewed. Min rev
and Avg rev are respectively the minimum and average number of
reviews received by submissions, expressed as percentages of the
number of reviews required in the assignments. Avg rev len is the
average length of an individual review, in number of characters.

Assignment | |S| | RevsDue | MinRevs | AvgRevs
CS/Androidhw 1 | 60 6 2 54
hw2 | 61 6 2 53

hw3 | 68 6 0 4.8

hw4 | 62 6 6 6.1

hw5 | 57 6 5 53
CS/C++hw 1 | 102 5 0 4.6
hw2 | 97 5 3 4.6

hw3 | 91 5 4 5.1

hw4 | 97 5 3 4.6

hw5 | 90 5 4 5.1

Table 3: Number of reviews assigned and performed for the home-
work assignments that are part of the dataset. |S| is the number of
submissions, RevsDue is the number of reviews that each student
ought to have done, MinRevs is the minimum number of reviews
received by a submission, and AvgRevs is the average number of
reviews per submission.

5.1 Quality of review phase

The participation in the review process in these classes is sum-
marized in Table[2} Participation in the review phase was high, and
most submissions received a number of reviews that was close to
the desired value. The average review length was also reasonably
high.

Table [3] provides more detailed data on the CS/Android and
CS/C++ classes, giving the minumum and average number of re-
views received by submissions in each of their assignments. These
were the first two classes conducted using CrowdGrader. In the first
three assignments of the CS/Android class and in the first assign-
ment of the CS/C++ class, CrowdGrader used a simple approach
that assigned submissions to review uniformly at random among
the submissions in need of review. Since not all students did the
required review work, this simple review assignment method led
to some submissions receiving an inadequate number of reviews.
Once the predictive algorithm described in Section[3.1]was adopted
in later assignments, CrowdGrader was able to guarantee a suffi-
cient number of reviews for all submissions.

Figure[T] gives the histogram of the review feedback provided by
the students in the class Eng/Essay2; the data indicates that stu-
dents generally found the reviews to be helpful. Eng/Essay2 was

125+ 1
100+
8
c (or
3
o
50
25
0 —1 0 1
Helpfulness Grade
Figure 1: Histogram of review helpfulness grades for the
Eng/Essay? class.
Class Average grade stdev
CS/Android 15.2%
CS/Web 10.4%
CS/C++ 11.8%
CS/Java 14.5%
Eng/Essay1 8.0%
Eng/Essay?2 8.2%
Econ 9.6%

Table 4: The average standard deviation of the grades received by
individual submissions in a class, expressed as a percentage of the
maximum grade M.

the only class in which review feedback and ratings were solicited
uniformly: in the other classes, we had only a handful of ratings,
compared to hundreds of reviews. As there is currently no incentive
for students to rate and provide feedback on reviews, few students
do so unless reminded by the instructor.

5.2 Quality of consensus grades

5.2.1 Consistency of student grades

Table [4| gives the average standard deviation of the grades re-
ceived by individual submissions in a class. Precisely, for each
submission ¢ we compute s; = stdjcior{g:; /M }, where [0, M] is
the grading range used for the assignment, and where std{-} is the
standard deviation operator; we then report the average of s; over
all submissions ¢ of a class.

In four CS/C++ assignments, we were also able to measure the
difference between the consensus grades of submissions we knew
were identical; this gives direct information on the “noise” present
in CrowdGrader consensus grades. In these CS/C++ assignments,
students were able to work in groups. Since at the time Crowd-
Grader did not support group submissions (the feature has since
been added), the students were asked to each submit a solution:
the student submissions would be graded independently, and the
TA, who had a list of groups and their members, would later av-
erage the grades received by the students in the same group. This
meant that we had available several pairs of identical submissions,
coming from members of the same group, and graded by Crowd-
Grader independently one from the other. In Table 5} we report

Assignment | D | N. pairs
CS/C++hw 2 | 18.0% 6
CS/C++hw3 | 11.8% 12
CS/C++hw 4 | 10.3% 20
CS/C++hw 5 | 10.9% 20

Table 5: Grade variation between independently graded identical
submissions. D is the square root of the mean square difference of
the grades received by identical submissions, expressed as a per-
centage of the maximum grade M.

the square root of the mean square difference (§; — §;)?, computed
over all pairs (%, 1) of identical submissions, expressed as percent-
age of the grade range M. Except for CS/C++ Homework 2, where
the number of identical submission pairs is only 6, we see that the
difference is about 10%. As we will discuss in the conclusions, in
this class there were some grading problems due differences in the
development and testing environments used for the C++ code, and
perhaps these problems contributed to the grade noise reported in
Table

5.2.2 Evaluation using control grades

For some assignments, we had available control grades given by
the instructor, or other domain experts, for a randomly selected sub-
set of submissions that numbered at least 20. We note that this eval-
uation is inherently approximate: while instructor and TAs are typ-
ically more knowledgeable than students in the subject matter, they
can nevertheless make mistakes when grading homeworks, failing
to spot problems, or not giving credit to great aspects of the work
that go undetected.

For the Android assignments, the control grades were assigned
by a teaching assistant who was a fairly accomplished Android de-
veloper. For the Java assignment, the control grades were provided
by the instructor. For the CS/C++ assignments, the authors graded
20 or more randomly selected submissions for each assignment.
We compared the control grades with the consensus grades accord-
ing to the following metrics:

e p: the coefficient of statistical correlation (also known as
Pearson’s correlation) between the control grades {g;} and
the consensus grades {g; }.

e norm-2: the norm-2 distance (3°,(g: — §:)%)*/? between
the control grades {¢;} and the consensus grades {g; }, ex-
pressed as percentage over the grading range M.

e s-score: we first normalize the control grades {g;} and the
consensus grades {g; }, so that they both have zero mean and
unit variance, obtaining {g;}, {g;} Then, we compute the
standard deviation s of {g; — g; }, and we report the s-score

1—s/v2.

The results for the various assignments are reported in Table[§] We
see that, except for the Android Homework 3, the statistical corre-
lation between consensus grades and control grades is about 0.8.
For all of these homeworks, the difference between consensus and
control grades averaged about 15%. The low correlation (and low
s-score) for the Android Homework 3 can be explained by the fact
that this was a particularly easy homework, in which many students
received similar high grades. In other words, grades were concen-
trated in the high range of the scale [0, M]. So, even if the norm-2
distance of Android Homework 3 is similar to that of the other as-
signments, the correlation and norm-2 results are worse, owing to
the more tightly clustered grades.

Assignment | p | norm-2 | s-score
CS/C++ hw 2 0.75 14.0% 0.50
CS/C++hw 3 0.84 14.9% 0.60
CS/Androidhw 3 | 0.39 | 16.3% 0.22
CS/Java hw 2 0.85 | 17.5% 0.61

Table 6: Grading accuracy: consensus vs. control grades.

6. CONCLUSIONS

The main benefit students report from CrowdGrader consists in
the quality of the feedback they receive, and in their ability to learn
from studying the submissions of their classmates. From the point
of view of the instructor, the benefit lies in facilitating student learn-
ing, and in the ability to handle the grading and evaluation of large
classes. In this latter respect, the grading precision provided by
CrowdGrader was sufficient for assigning, at the end of each class,
the portion of the grade due to homework. If we assume that the
control error has similar error to the consensus grade, and the er-
rors are uncorrelated, the control error of about 15% reported in
Table [f] corresponds to an error with respect to a “true" grade of
15%/+/2 =~ 10%, which is roughly the noise in consensus grades
measured in Tables [4 and [5} In our experience, such an impreci-
sion is not uncommon in grading complex homeworks that require
judgement on the part of the grader. Indeed, the number of students
who complained about mis-gradings was about the same as the one
we typically experience using TAs. When a mis-grading was re-
ported, the instructor was able to read the reviews and the grades
provided by the students, in addition to accessing the submission.
Resolving the mis-gradings, when indeed they were mis-gradings,
was simple; as usual, many of the reported mis-gradings were re-
ally mis-perceptions of the quality of one’s own submission.

One of the authors taught the CS/Web and CS/Android classes.
In these classes, we noted that students were generally more ready
to reward originality than teaching assistants. The main goal of a
teaching assistant is often to avoid controversy, in order to avoid
confrontations with students. Thus, teaching assistants generally
felt a stronger obligation to follow a rigid grading scheme, for the
sake of consistency, and subtract a fixed number of points for each
type of error encountered. Students felt less constrained by the need
for full consistency, as the authors of the submissions they graded
could not easily identify or compare the grades they received from
the same grader.

In the computer-science assignments we considered, the greatest
source of errors was the non-uniformity between the coding en-
vironments of the authors of homework submissions, and of the
students who graded the submissions. In the C++ assignments, stu-
dents would develop under linux, and their code was build under
Mac OS X for grading, or vice versa: build instructions and Make-
files often did not work, or libraries were missing. In the Android
assignments, students had to cope with the somewhat temperamen-
tal nature of the Android SDK in Eclipse, which occasionally mal-
functioned, or with libraries that due to complex build settings were
occasionally omitted. The fact that some students tested assign-
ments on Android emulators, while others relied on actual phones
or tablets, along with the different formats and screen sizes of the
various Android devices, also contributed to evaluation variability.
The clarity and precision of homework assignments is likely the
major factor in the precision of any tool, or any TA, in evaluating
submitted solutions.

Acknowledgements

We thank Ira Pohl at UC Santa Cruz for being an early adopter
of CrowdGrader, and for providing insight and encouragement for
this work. We thank Marco Faella at the University of Naples for
agreeing to use Crowdgrader in his class when the tool was still in
an early, very much experimental, version.

7. REFERENCES

[1] J. Bartholdi, C. Tovey, and M. Trick. Voting schemes for
which it can be difficult to tell who won the election. Social
Choice and Welfare, 6(2):157-165, 1989.

[2] D.J. Boud, R. Cohen, and J. Sampson. Peer learning in

higher education: learning from & with each other.

Psychology Press, 2001.

R. Bradley and M. Terry. Rank analysis of incomplete block

designs: 1. the method of paired comparisons. Biometrika,

39(3/4):pp. 324-345, 1952.

K. Cho, T. Chung, W. King, and C. Schunn. Peer-based

computer-supported knowledge refinement: An empirical

investigation. Communications of the ACM, 51(3):83-88,

2008.

C. Davidson. How to crowdsource grading, 2009.

http://www.hastac.org/blogs/

cathy-davidson/how-crowdsource-grading.

L. de Alfaro and M. Shavlovsky. Crowdgrader:

Crowdsourcing the evaluation of homework assignments.

Technical Report UCSC-SOE-13-11, UC Santa Cruz, 2013.

arXiv:1308.5273.

[7] J.-C. de Borda. Memoire sur les Elections au Scrutin. 1781.

[8] C.Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank

aggregation methods for the web. In Proceedings of the 10th

international conference on World Wide Web, pages

613-622. ACM, 2001.

A. Elo. The Rating of Chess Players Past and Present. New

York, Arco, 1978.

[10] M. Glickman. Paired Comparison Models with Time-varying
Parameters. Harvard University, 1993.

[11] R. Luce. Individual choice behavior : a theoretical analysis.
Wiley N.Y, 1959.

[12] M. Merrifield and D. Saari. Telescope time without tears: A
distributed approach to peer review. Astronomy &
Geophysics, 50(4):4-16, 2009.

[13] P. Naghizadeh and M. Liu. Incentives, quality, and risk: A
look into the NSF proposal review pilot. Arxiv, 1307.6528v1,
2013.

[14] National Science Foundation. Dear colleague letter:
Information to principal investigators (PIs) planning to
submit proposals to the sensors and sensing systems (sss)
program October 1, 2013 deadline, 2013.

[3

—

[4

—

(5

—

[6

—_

[9

—

http://www.hastac.org/blogs/cathy-davidson/how-crowdsource-grading
http://www.hastac.org/blogs/cathy-davidson/how-crowdsource-grading

	Introduction
	Previous work
	The Review Phase
	Review assignment
	Ranking vs. grades
	Declining evaluations

	Grade Assignment
	Consensus grade
	Accuracy grade
	Helpfulness grade
	Crowd-grade and final grade

	Results
	Quality of review phase
	Quality of consensus grades
	Consistency of student grades
	Evaluation using control grades

	Conclusions
	References

