Lawrence Berkeley National Laboratory

Recent Work

Title

ALPHA-DECAY BARRIER PENETRABILITIES WITH AN EXPONENTIAL NUCLEAR POTENTIAL I. EVEN-EVEN NUCLEI

Permalink

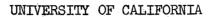
https://escholarship.org/uc/item/5dt064w8

Author

Rasmussen, John O.

Publication Date

1958-09-01


UNIVERSITY OF CALIFORNIA

Radiation
Laboratory

BERKELEY, CALIFORNIA

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

Radiation Laboratory Berkeley, California Contract No. W-7405-eng-48

ALPHA-DECAY BARRIER PENETRABILITIES WITH AN EXPONENTIAL NUCLEAR POTENTIAL I. EVEN-EVEN NUCLEI

John O. Rasmussen September, 1958

ALPHA-DECAY BARRIER PENETRABILITIES WITH AN EXPONENTIAL NUCLEAR POTENTIAL I. EVEN-EVEN NUCLEI*

John O. Rasmussen

Radiation Laboratory and Department of Chemistry University of California, Berkeley, California

September, 1958

ABSTRACT

The real potential derived by optical model analysis of alpha elastic scattering data is used for calculation of barrier penetrabilities for all known alpha decay groups of even-even nuclei. The barrier penetration factors were calculated by numerical integration in the WKB approximation taking into account centrifugal barrier effects but ignoring non-central interactions. Using these penetration factors and the experimental alpha half lives, the reduced level widths δ^2 are calculated. Ratios of δ^2 values for ground and excited state alpha groups are tabulated as a set of reduced hindrance factors.

 $^{^{\}star}$ This work was performed under the auspices of the U. S. Atomic Energy Commission.

Summer visitor, Department of Physics, University of Washington, Seattle, Washington.

ALPHA-DECAY BARRIER PENETRABILITIES WITH AN EXPONENTIAL NUCLEAR POTENTIAL

I. EVEN-EVEN NUCLEI

John O. Rasmussen

Radiation Laboratory and Department of Chemistry University of California, Berkeley, California September, 1958

INTRODUCTION

Theoretical calculations of barrier-penetration factors for alpha emission have traditionally been made by assuming an abrupt nuclear cut-off to the Coulombic potential at some "effective nuclear radius", although some attempts have been made to take into account the effects of a finite range to the nuclear potential. Uncertainties regarding the nuclear potential for alpha particles have made it difficult to gain much knowledge of the absolute probabilities of alpha-particle formation by nuclei. It is important that one be able to separate the barrier penetrability from the intranuclear dynamic effects on alpha decay rates. By using a nuclear potential derived from alpha-scattering information we hope to have obtained such a fundamentally more significant treatment of alpha decay data.

Recently there have been careful optical-model analyses of alphaparticle scattering data, and these analyses define the real potential in the nuclear surface region quite well. Originally, potentials of the Woods - Saxon form were used in the optical-model analysis. There were some problems of nonuniqueness of fits and some apparent dependence of potentials on the alpha-particle bombarding energy (cf. discussion in reference 4). Calculations of barrier-penetration factors for ground-state transitions of even-even alpha emitters have been made with the above-mentioned nuclear potential.

Igo has continued a careful study of the problem of optical-model analysis and has recently published a simple exponential expression for the real part of the alpha-nuclear potential valid in the surface region for |V| < 10 Mev:⁵

$$V(r) = -1100 \exp \left\{ -\left[\frac{r - 1.17A^{1/3}}{0.574}\right] \right\} \text{ MeV},$$

where r is the distance in fermis and A is the mass number. This expression gives a good fit for target elements from argon to lead and for bombarding energies between 18 and 48 Mev.

Method of Calculation

It seems reasonable to expect that this potential should be nearly that experienced by alpha particles (3 to 8 Mev) emitted in alpha decay. Accordingly, we have used Igo's potential to calculate barrier penetration factors for most of the known alpha emitters. We have taken the natural logarithm of the penetration factor P to be equal to twice the WKB integral

$$-\int_{R_{1}}^{R_{0}} \frac{(2M)^{1/2}}{\pi} \left[V(r) + \frac{2Ze^{2}}{r} + \frac{\pi^{2}}{2mr^{2}} \ell(\ell+1) - E \right]^{1/2} dr$$

evaluated between the inner and outer classical turning points, where the integrand vanishes. Here M is the reduced mass of the alpha particle, Ze is the charge on the daughter nucleus, & is the orbital angular momentum of the emitted alpha, and E is the total decay energy that would be exhibited by the nucleus if stripped of its orbital electrons, i.e., alpha-particle energy plus recoil energy plus electron-screening corrections as given by Eq. (25.1) of reference 6.

The integrations were carried out numerically by the use of an IBM-650 digital computer. The outer turning point was found by solution of a quadratic equation and the inner turning point was found by a simple iterative procedure. The barrier integral was evaluated by a modified Simpson's-rule summation with the barrier region divided into 128 equal intervals. Simpson's rule was modified at the ends to better take into account the fact that the integrand is zero at the turning points and behaves there as $C \mid r - R_t \mid^{1/2}$. The Simpson's rule applied is

$$I_{128} = \frac{\Delta r}{3} (3y_1 + 4y_2 + 2y_3 + 4y_4 + 2y_5 + \dots + 2y_{123} + 4y_{124} + 2y_{125} + 4y_{126} + 3y_{127}).$$

The error introduced by using only 128 intervals is somewhat different for different alpha emitters, being greatest for the lowest energy cases. In a typical case, the ground-state transition of $\rm Cm^{242}$, we have $\rm I_{32}$ (32 intervals) = 31.0526, $\rm I_{64}$ = 31.0159, and $\rm I_{128}$ = 31.0129. The absolute error in $\rm I_{128}$ is

probably less than I_{128} - I_{64} or 0.003. Rounding errors in the computer at the eighth significant figure are probably two orders of magnitude less than this. Thus, the penetration factors calculated here should be accurate to about 1%, the error consistently giving penetration factors that are on the low side. Using the experimental decay rate data, we calculate a reduced alpha emission width δ^2 from the following expression:

$$\lambda = \delta^2 P/h,$$

where λ is the decay constant, and h is Planck's constant. This definition is equivalent to the previous definition of δ^2 applied to the model with the sharp-cut-off potential (cf. reference 6, pp. 149 to 151).

Results - Ground-State Transitions

Table I lists for even-even nuclei the data used, most of which are from Table I of reference 6, and three computed quantities of interest: R_i , the radius at which the alpha of the particular energy considered will enter the barrier; P, the penetration factor; and δ^2 , the reduced emission width.

It is to be noted that R_i is a function not only of mass number but also of energy. One sees, for example, a discontinuous increase of about 0.2 fermis for Z=84 in going across the 126-neutron shell, where the alpha energies increase discontinuously. If these calculations are to have fundamental significance as a calculation of the probability current impinging on the barrier, it is essential that the process of formation of alpha particles from their constitutent nucleons does not take place within the region of $r > R_i$. It is reasonable to suppose that alpha formation more readily occurs in the surface region than in the nuclear interior, since the low nucleon density in the surface means a small fermi momentum and less inhibition of nucleon clusters by the exclusion principle.

Electron-scattering experiments have shown that the charge density in Bi²⁰⁹ falls to half its central value at 6.47 fermis and to one-tenth at 7.82 (cf. reference 4). R_i values for the polonium isotopes of about this mass number are ~9.2. The R_i values obtained here with the Igo potential seem sufficiently larger than the size parameters of the nuclear charge density to give reasonable assurance that alpha formation does not appreciably occur within the potential barrier defined by the optical model potential. Values of P and

Table I Ground-state transitions of even-even nuclei (ℓ = 0)

		Experiment	al data		Cal	culated result	S
Atomic no.	Mass no.	α-particle energy with screening correction (Mev)	Partial half- life for α decay ^a (sec)	α group intensity (%)	R _i (fermis)	Barrier penetration factor ^a P	Reduced width 82 (Mev)
60	144	1.92	1.58 (23)	100	8.44	2.18 (-42)	0.0083
62	146	2.57	1.58 (15)	100	8.47	1.19 (-34)	0.0152
64	148	3.18	4.47 (9)	100	8.50	7.52 (-30)	0.0852
72	174	2.53	9.5 (22)	100	8.77	5.44 (-43)	0.0555
78 78	190 192	3.33 2.63	1.87 (18) 3.17 (22)	100 100	8.95 8.95	1.16 (-37) 3.04 (-46)	0.013 297
84 84 84 84 84 84 84 84	202 204 206 208 210 212 214 216 218	5.609 5.404 5.252 5.142 5.332 8.810 7.714 6.808 6.032	1.56 (5) 1.367 (6) 1.52 (7) 9.24 (7) 1.17 (7) 3.04 (-7) 1.636 (-4) 1.58 (-1) 1.827 (2)	100 100 100 100 100 100 100 100	9.11 9.13 9.15 9.17 9.20 9.35 9.33 9.32 9.32	7.35 (-25) 7.02 (-26) 1.14 (-26) 2.96 (-27) 3.63 (-26) 1.32 (-13) 1.58 (-16) 1.67 (-19) 1.31 (-22)	0.0250 0.0299 0.0165 0.0104 0.00676 0.0714 0.111 0.109 0.120
86 86 86 86 86 86	208 210 212 218 220 222	6.173 6.071 6.297 7.162 6.317 5.521	6.90 (3) 9.70 (3) 1.38 (3) 1.90 (-2) 5.44 (1) 3.31 (5)	100 100 100 99.8 99.7	9.19 9.21 9.24 9.34 9.34 9.33	4.35 (-23) 1.64 (-23) 1.74 (-22) 4.67 (-19) 2.85 (-22) 5.38 (-26)	0.00957 0.0180 0.0119 0.322 0.184 0.161

		Experiments			Cal	Calculated results			
Atomic no.	Mass no.	α-particle energy with screening correction (Mev)	Partial half- life for α decay ^a (sec)	α group intensity (%)	R _i (fermis)	Barrier penetration factor ^a P	Reduced width 82 (Mev)		
88	222	6.590	3.80 (1)	95	9.35	5.19 (-22)	0.138		
88	224	5.717	3.15 (5)	94.8	9.34	5.91 (-26)	0.146		
88	226	4.813	5.12 (10)	94.3	9.34	3.48 (-31)	0.152		
90	226	6.367	1.853 (3)	79	9.37	8.40 (-24)	0.145		
90	228	5.458	6.00 (7)	71	9.36	2.73 (-28)	0.124		
90	230	4.718	2.528 (12)	74	9.37	6.61 (-33)	0.127		
90	232	4.044	4.381 (17)	76	9.37	3.29 (-38)	0.151		
92	228	6.709	6.943 (2)	75 est.	9.38	3.26 (-23)	0.0951		
92	230	5.923	1.798 (6)	67.2	9.38	8.70 (-27)	0.123		
92	232	5.357	2.321 (9)	68	9.39	7.51 (-30)	0.112		
92	234	4.807	7.83 (12)	72	9.40	2.34 (-33)	0.113		
92	236	4.538	7.53 (14)	75.3	9.41	2.71 (-35)	0.103		
92	238	4.219	1.415 (17)	77	9.42	7.67 (-38)	0.203		
94	23 ⁴	6.230	5.40 (5)	75 est.	9.42	3.56 (-26)	0.112		
94	236	5.803	8.50 (7)	68.9	9.43	2.65 (-28)	0.0876		
94	238	5.535	2.822 (9)	72	9.44	9.30 (-30)	0.0786		
94	240	5.202	2.073 (11)	75.5	9.46	9.75 (-32)	0.107		
94	242	4.938	1.201 (13)	74	9.47	1.90 (-33)	0.0930		
96	240	6.291	2.317 (6)	70	9.47	9.87 (-27)	0.0877		
96	242	6.150	1.404 (7)	73•7	9.49	2.16 (-27)	0.0697		
96	244	5.839	6.050 (8)	76•7	9.50	5.60 (-29)	0.0649		
98	246	6.794	1.285 (5)	78	9.53	3.02 (-25)	0.0577		
98	248	6.302	3.02 (7)	80	9.54	1.70 (-27)	0.0447		
98	250	6.066	3.452 (8)	83	9.56	1.16 (-28)	0.0594		
98	252	6.154	6.98 (7)	84.5	9.58	3.56 (-28)	0.0976		
100	254	7.242	1.150 (4)	83	9.62	4.09 (-24)	0.0505		

The number in parentheses is the power of 10 by which the preceding number is to be multiplied.

 δ^2 are given to three significant figures although in many cases, especially the rare earth examples, the experimental uncertainty in energy and half-life are such that only the order of magnitude is significant. The results for δ^2 are so anomalous as to cast doubt on the experimental data.

Figure 1 is a semi-logarithmic plot of δ^2 vs. neutron number. For comparison with δ^2 calculated with other potentials, refer to Fig. 5 of reference 4 and the associated discussion. There are no important differences between the trends of δ^2 from Table I of this paper and the δ^2 values calculated with the earlier Igo-Thaler potential, as discussed in reference 4.

Results - Excited-State Transitions

The extensive alpha-particle spectroscopic studies of the last few years have revealed many new transitions to excited states of even-even nuclei, and studies of associated gamma and electron radiations have made possible the definite spin assignments of many of these excited states. In other cases the systematic energy trends of excited states of even-even nuclei usually permit one to assign spins with confidence. (For an excited level populated by alpha decay from the ground state, 0+, of an even-even nucleus, the parity must be even if the spin is even, and odd if the spin is odd).

Table II presents the results of the calculations on excited-state transitions. Table II is of the form of Table I except for an additional data column giving the assumed angular momentum ℓ . The data are principally taken from Table I of reference 6, except for ℓ values, which were not given there. Our ℓ value assignments come from various publications, from inference from energy level systematics, and from private communications. ⁷

The usual basis for discussion of rates of excited-state alpha transitions in even-even nuclei is the hindrance factor, F, the ratio of the rates of ground-state and of excited-state alpha intensities of the given nucleus multiplied by the ratio of barrier-penetration factors calculated by some prescription not taking into account any centrifugal barrier effects. Of more fundamental significance when angular momenta can be assigned to transitions is the reduced hindrance factor, defined similarly to F except that the barrier penetrability prescription takes into account the centrifugal barrier effects. (See p. 181 of reference 6 for discussion of this terminology).

UCRL-8452

9-

Table II

Excited state transitions

		Experi	mental data			Calculated	results
Atomic no.	Mass no.	α-particle energy with screening correction (Mev)	Partial half- life for α decay (sec)	α group intensity (%)	Spin parity	Barrier penetration factor P	Reduced width δ^2 (Mev)
84	210	4.544	1.17 (7)	.0012	2+	3.16 (-31)	.00931
86	218	6.564	1.90 (-2)	.200	2+	1.62 (-21)	.186
86	220	5.782	5.44 (1)	•3	2+	6.10 (-25)	.259
86	222	5.020	3.31 (5)	07	2+	4.59 (- 29)	.132
88	222	6.268 5.946 5.801 5.756	3.8 (1)	4 .0094 .032 .002	2+ 2+ 1- 4+	1.32 (-23) 4.35 (-25) 1.22 (-25) 1.46 (-26)	.229 .0163 .186 .103
88	224	5.481 5.186 5.076	3.15 (5)	4.9 01	2+ 2+ 1-	1.97 (-27) 4.15 (-29) 1.29 (-29)	.226 .0220 .0705
88	226	4.629 4.376 4.219	5.12 (10)	5.7 .014 .0021	2+ 2+ 1-	1.10 (-32) 1.48 (-34) 1.22 (-35)	.291 .0529 .0966
90	226	6.258 6.130 6.063	1.853 (3)	19 1.7 .6	2+ 1- 4+	1.62 (-24) 5.91 (-25) 5.92 (-26)	.181 .0445 .157
90	228	5.375 5.245 5.209 5.174	6.00 (7)	28 .4 .2 .03	2+ 1- 4+ 3-	5.40 (-29) 1.34 (-29) 1.64 (-30) 2.04 (-30)	.248 .0143 .0584 .00703
90	230	4.651 4.512 4.469 4.404 4.309 4.281	2.528 (12)	26 .2 .03 .001_6 8x106	2+ 4+ 1- 3- 6+ 5-	1.28 (-33) 3.44 (-35) 8.23 (-35) 1.04 (-35) 1.24 (-37) 7 2.14 (-37)	.230 .0659 .00413 .00109 .33x10-4 4.24x10

		Experim	ental data			Calculated	l results
Atomic no.	Mass no.	α-particle energy with screening correction (Mev)	Partial half- life for α decay (sec)	α group intensity (%)	Spin parity	Barrier penetration factor P	Reduced width δ^2 (Mev)
90	232	3.986	4.381 (17)	24	2+	5.70 (-39)	.277
92	230	5.852 5.701 5.695	1.798 (6)	32.1 0.4 0.3	2 1 44 1-	2.24 (-27) 1.06 (-28) 4.72 (-28)	.229 .0602 .0101
92	23.2	5.301 5.174 5.036	2.331 (9)	32 .32 .01	2+ 4+ 1-	2.05 (-30) 9.95 (-32) 6.39 (-32)	.193 .0397 .00193
92	234	4.756 4.64 4.311	7.83 (12)	28 •3 2.5x10 ⁻⁵	2+ 4+ 1-	5.98 (-34) 2.485 (-35) 3.29 (-37)	.171 .0441 2.78x10 ⁻⁴
92	236	4.49 4.378	7.53 (14)	27 •5	2+ 4+	6.76 (-36) 2.51 (-37)	1.52 .0759
92	238	4.172 4.062	1.415 (17)	23 .1	2+ 4+	1.76 (-38) 5.27 (-40)	.265 .0384
94	234	6.184	5 . 40 (5)	25	2+	1.28 (-26)	.104
94	236	5.756 5.65 5.487	8.50 (7)	30.9 .18 .002	2+ 4+ 6+	8.82 (-29) 6.90 (-30) 1.23 (-31)	.118 .00880 .00550
94	238	5.492 5.394 5.243 5.044 4.745	2.822 (9)	28 .095 .004 7x10 ⁻⁶ 1.2x10 ⁻⁴	2+ 4+ 6+ 8+ 0+	3.12 (-30) 2.45 (-31) 4.36 (-33) 1.74 (-35) 7.05 (-35)	.0913 .00395 .00931 .00409
94	240	5.158 5.054	2.073 (11)	24.5 .1	2+ 4+	3.03 (-32) 1.88 (-33)	.112 .00737
94	242	4.894	1.201 (13)	26	2+	5.57 (- 34)	.1103

Table II (cont'd.)

			mental data	·····		Calculated results		
Atomic no.	Mass no.	α-particle energy with screening correction (Mev)	Partial half- life for α decay (sec)	α group intensity (%)	Spin parity	Barrier penetration factor P	Reduced width δ^2 (Mev)	
96	242	6.106 6.005 5.851 5.645 5.555 5.24 5.16	1.404 (7)	26.3 .035 .006 3xlo ⁻⁵ 3.2xlo ⁻⁴ 1.4xlo ⁻⁴ 2xlo ⁻⁵	2+ 4+ 6+ 8+ 1- 0+ 2+	7.81 (-28) 7.27 (-29) 1.75 (-30) 1.02 (-32) 1.10 (-30) 1.53 (-32) 2.77 (-33)	.0688 9.83×10 ⁻¹ .00701 .0602 5.95×10 ⁻¹ .0186 .0148	
.96	2 44	5.797 5.70 5.552	6.05 (8)	23.3 .016 4x10-3	2+ 4+ 6+	1.98 (-29) 1.75 (-30) 3.84 (-32)	.0557 4.3½x10-1 .00494	
9 8	246	6.752 6.656 6.508	1.285 (5)	22 .16 .015	2+ 4+ 6+	1.20 (-25) 1.41 (-26) 4.83 (-28)	.01:09 .00253 .00692	
98	250	6.023	3 . 45 (8)	17	2+	4.18 (-29)	.0337	
98	252	6.111 6.013	6.98 (7)	15.5 .2	2+ 4+	1.30 (-28) 1.24 (-29)	.00666 .0494	
100	254	7.202 7.102	1.15 (4)	17.4	2+ 4+	1.73 (-24) 2.17 (-25)	.0244 .00459	

Table III
Hindrance factors of excited-state transitions in even-even nuclei

	Energy of	Reduced hindrance factor						
Alpha emitter	final state (kev)	2+ state	4+ 6+ 1- state state state	Other state				
Po ²¹⁰	804	.726						
Rn ²¹⁸	609	1.73						
Rn ²²⁰	545	.711						
$_{\rm Rn}^{\rm 222}$	510	1.22						
²²²	324.6	.603						
	650	8.52						
	800 850		.695 1.34					
Ra ²²⁴	241	.646	 -J - -					
πα	540	6.65						
226	650		2.07					
Ra ²²⁶	187	.522						
	450 (610	2;88	1.57					
Th ²²⁶	111.1	.802						
	242	.002	3.27					
228	309		.928					
Th 228	84.47	.502	8.66	0.5				
	217 253		2.13					
000	289			17.7 (3-)				
Th ²³⁰	67.62	•553.	2.006					
	-210 -253		1.926 30.7					
	-320			117 (3-)				
	416 445		173	299 (5 -)				
Th ²³²		E) E		699 ()-1				
U ²³⁰	59	•545						
0 0	72.13 226.4	.538	2.04					
	230.4		12.1	•				
u ²³²	57.5	.580						
	186 . 1 326		2.82 57.9					
$u^{23^{1_{4}}}$	52 . 4	.658	· 71•9					
	170	• 050	2.50					
	505		407					

-13Table III (cont'd.)

	Energy of		Reduced hindrance factor						
Alpha emitter	final state (kev)	2+ state	4+ state	6+ state	1- state	Other state			
ս ²³⁶	49 163	.674	1.35						
.u ²³⁸	48 160	0.767	5.30						
Pu ²³⁴	47	1.08	; ;						
Pu ²³⁶	47.5 156 321	.741	9.86	16.0					
Pu ²³⁸	43.50 143.31 296.4 499 806	.861	19.9	8.45		19.2 (8+) 4.54 (0+)			
Pu ²⁴⁰	45 151	.958	14.5						
Pu ²¹ 42	45	.835							
Cm ²⁴²	44.11 146.0 303.7 514 605 ~930	1.013	70.9	9.94	118	11.6 (8+) ~3.8 (0+) ~4.8 (2+)			
Cm ²⁴⁴	42.88 141.8 292	1.16	150	13.1					
Cf ²⁴⁶	42.12 140 291	1.41	26.9	8.35	•				
Cf ²⁵⁰	44	1 .7 6							
Cf ²⁵²	43.4 143	1.99	14.7						
Fm ²⁵⁴	42 140	2.07	11.0						

We have calculated reduced hindrance factors as simply the ratio of δ^2 for the ground-state transition to δ^2_L for the excited-state. These ratios are summarized in Table III.

For the spherical nuclei (region of Pb^{208}) the calculated δ^2 values probably have fundamental significance in terms of the probability currents impinging on the barrier. For the spheroidal nuclei the interpretation is more complicated, and numerous publications have been devoted to the problems associated with this asphericity. For these spheroidal nuclei our calculations may serve as a basis for further analysis — a basis with somewhat more theoretical justification than presently published hindrance-factor values.

Let us compare our reduced hindrance factors for $\rm Cm^{242}$ and $\rm Th^{230}$ with results of earlier calculations. Hindrance factors and centrifugal-barrier factors have previously been given for $\rm Cm^{242}$ and $\rm Th^{230}$. The values of our Table III are to be compared with the quotient of hindrance factor and centrifugal-barrier factor. Table IV gives this comparison.

Table IV Reduced hindrance-factor comparison for ${\rm Cm}^{242}$ and ${\rm Th}^{230}$

Nucleus	Excited-state energy (kev)	Spin and parity	Hindrance factor (ref. 6)	Centrifugal barrier factor (ref. 6)	Reduced h	indrance factor This work
Cm ²⁴²	0	0+	(1)	(1)	(1)	(1)
	1414	2+	1.7	1.6	1.1	1.01 '
	146	4+	390 /	4.9	80	71
	304	6+	350	29	12	10
	514	8+	5000	340	15	12
	605	1-	500	1.2	420	380 *
	935	0+	20	1	20	18 *
	1030	2+	45	1.6	28	24
_{Th} 230	0	0+	(1)	(1)	(1)	(1)
	68	2+	1.1	1.7	0.65	0.55
	210	4+	12	5.4	2.2	1.93
	253	1-	38	1.2	32	31
	320	3 -	370	2.8	130	117
	416	6+	8200	4O	205	173
	445	5 -	4900	14	350	299

^{*}See reference 8.

Our calculations seem to yield systematically somewhat lower (5 to 15%) values of the reduced hindrance factors than the older calculations. In part this difference may be due to the slightly greater influence of the centrifugal potential with the present diffuse-potential model, because the centrifugal potential not only raises but somewhat thickens the barrier by displacing the inner turning point inward. In order to assess the influence of the centrifugal potential by itself, calculations were run for hypothetical alpha groups of 88 having identical energies to the ground-state transition but with ℓ values of 2 and ℓ . The centrifugal potential reduces the barrier penetrability by factors of 1.708 and 5.917 for ℓ = 2 and ℓ , respectively. Values of the inner turning point (R₁) for ℓ = 0, 2 and ℓ are 9.344, 9.333, and 9.308 fermis, respectively.

Concluding Remarks

It is outside the scope of this paper to go into details as to how these new results may modify earlier theoretical interpretations of alpha decay. The results here are mainly offered as a basis for future fundamental theoretical studies. It is worth noting that the ground-state transitions beyond the 126-neutron shell show δ^2 values of the order of 0.1 MeV, systematically falling off from maximum values for Z=86 to smaller values for the heavier nuclei. Rn²¹⁸ and Z=86 in these, as in other, calculations show reduced widths abnormally large compared to their nearest neighbors. The nuclei with 126 or less neutrons show especially small reduced widths that are an order of magnitude less than the average of heavier nuclei (Po²¹⁰ is especially small).

ACKNOWLEDGMENTS

I wish to thank Dr. George Igo for helpful discussions of the optical-model analysis and for results in advance of publication. Thanks are due Miss Claudette Everson for performing many of the computer runs. Finally I wish to acknowledge the hospitality of the Physics Department of the University of Washington while the final calculations and the writing of this paper were being done.

REFERENCES

- 1. R. G. Thomas, Progr. Theoret. Phys. (Kyoto) 12, 253 (1954).
- 2. H. A. Tolhoek and P. J. Brussard, Physica, 21, 449 (1955).
- 3. R. D. Woods and D. S. Saxon, Phys. Rev. <u>95</u>, 1617 (1954).
- 4. J. O. Rasmussen, Revs. Modern Phys. 30, 424 (1958).
- 5. G. Igo, Phys. Rev. Letters <u>1</u>, 72 (1958).
- 6. I. Perlman and J. O. Rasmussen, Alpha Radioactivity, in <u>Handbuch der Physik</u>, Vol. 42, (Springer-Verlag, Berlin 1957), p. 151.
- 7. I am especially indebted to Drs. F. Asaro and F. S. Stephens for communication of several of their unpublished spin assignments and other data.
- 8. These are the reduced hindrance factors that would be calculated using the intensity values used in Ref. 6. The entries in our Table III are based on newer revised experimental intensities and are different.

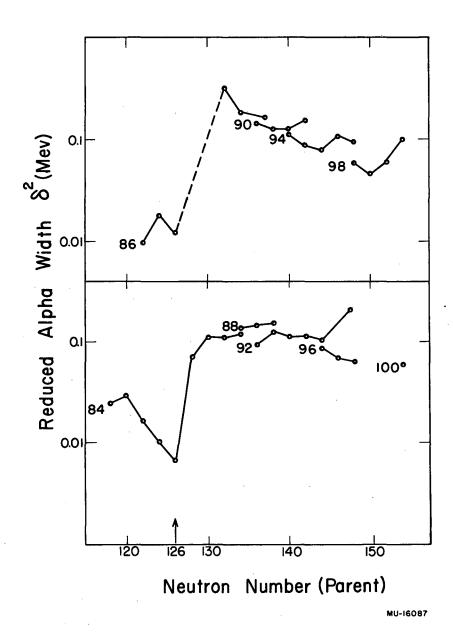


Fig. 1 Plot of reduced widths, δ^2 , for ground state alpha groups. Alternate even atomic numbers are plotted on different ordinate scales to avoid the overlapping of points. The break at 126 neutrons has long been noted. The break is less in ratio for this diffuse nuclear potential than for the sharp nuclear potential usually assumed. The δ^2 values for Rn 218 and U 238 are high in this as in other treatments.

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

- A. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission to the extent that such employee or contractor prepares, handles or distributes, or provides access to, any information pursuant to his employment or contract with the Commission.