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ABSTRACT Limosilactobacillus reuteri, a probiotic microbe instrumental to human 
health and sustainable food production, adapts to diverse environmental shifts via 
dynamic gene expression. We applied the independent component analysis (ICA) to 
117 RNA-seq data sets to decode its transcriptional regulatory network (TRN), identifying 
35 distinct signals that modulate specific gene sets. Our findings indicate that the ICA 
provides a qualitative advancement and captures nuanced relationships within gene 
clusters that other methods may miss. This study uncovers the fundamental properties 
of L. reuteri’s TRN and deepens our understanding of its arginine metabolism and the 
co-regulation of riboflavin metabolism and fatty acid conversion. It also sheds light on 
conditions that regulate genes within a specific biosynthetic gene cluster and allows for 
the speculation of the potential role of isoprenoid biosynthesis in L. reuteri’s adap­
tive response to environmental changes. By integrating transcriptomics and machine 
learning, we provide a system-level understanding of L. reuteri’s response mechanism to 
environmental fluctuations, thus setting the stage for modeling the probiotic transcrip­
tome for applications in microbial food production.

IMPORTANCE We have studied Limosilactobacillus reuteri, a beneficial probiotic microbe 
that plays a significant role in our health and production of sustainable foods, a type 
of foods that are nutritionally dense and healthier and have low-carbon emissions 
compared to traditional foods. Similar to how humans adapt their lifestyles to different 
environments, this microbe adjusts its behavior by modulating the expression of genes. 
We applied machine learning to analyze large-scale data sets on how these genes 
behave across diverse conditions. From this, we identified 35 unique patterns demon­
strating how L. reuteri adjusts its genes based on 50 unique environmental conditions 
(such as various sugars, salts, microbial cocultures, human milk, and fruit juice). This 
research helps us understand better how L. reuteri functions, especially in processes like 
breaking down certain nutrients and adapting to stressful changes. More importantly, 
with our findings, we become closer to using this knowledge to improve how we 
produce more sustainable and healthier foods with the help of microbes.

KEYWORDS L. reuteri, probiotic, machine learning, transcriptome, systems biology

L imosilactobacillus reuteri (L. reuteri) has become a focal point in probiotic research 
due to its versatile roles in human health and various commercial applications. 

Recognizing that reuterin is an intermediate in glycerol metabolism, its function extends 
beyond fermentation byproduct to a potent antimicrobial and its broader efficacy 
in food preservation (1). Reuterin’s active form, 3-hydroxypropionaldehyde, has been 
validated for antimicrobial activity in an array of food matrices, combating pathogens 
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like E. coli O157:H7, S. Enteritidis, and L. monocytogenes (2). Such capabilities underscore 
its utility in safeguarding diverse food items, thereby contributing to the food 
industry. L. reuteri has been identified as a potential probiotic strain capable of synthe­
sizing bioactive compounds that could fortify foods with essential nutrients. Notably, 
it can transform linoleic acid into conjugated linoleic acid (CLA), a fatty acid with a 
wide array of health benefits, including anti-cancer and anti-inflammatory properties (3). 
Moreover, L. reuteri is among the Lactobacillaceae family with the capability to enhance 
the nutritional profile of foods by producing vitamin B2 (riboflavin), an essential vitamin 
that plays a crucial role in cellular metabolism (4). Harnessing these capabilities, L. 
reuteri could be utilized in the development of functional foods enriched with CLA and 
riboflavin, thus providing these essential nutrients directly through the diet without the 
need for additional supplementation. These attributes position L. reuteri for developing 
nutrient-enriched functional foods, reducing the need for dietary supplements. While 
L. reuteri is recognized for its probiotic efficacy, it is not a native component of the 
human-associated microbiome. However, its presence in the human gut is associated 
with the suppression of pathogenic microbes and the support of beneficial commen­
sals (2, 5). L. reuteri has been isolated from the human gut, vagina, and breast milk, 
providing various health benefits pertaining to host-associated microbiome modulation 
(6). Specifically, the benefits of L. reuteri range from improving vaginosis symptoms (7), 
reducing serum fat/cholesterol levels (8, 9), alleviating chronic intestinal inflammation 
(10), ameliorating symptoms of cystic fibrosis (11), protecting the gut microbiome of 
extremely preterm infants (12), and even alleviating maternal depression (13), among 
a host of other advantages (6). However, the underlying mechanisms of action remain 
largely unexplored for a significant proportion of these observed benefits attributed to L. 
reuteri. Generally, the health impact of L. reuteri has been intricately linked to metabolic 
activity, which is, in turn, influenced by environmental conditions. To enrich potential 
insights of how L. reuteri adapts its gene expression in response to environmental 
changes, we applied the machine learning algorithm independent component analysis 
(ICA) to a comprehensive data set of L. reuteri gene expression. However, to move from a 
theoretical model to a confirmed understanding, we recognize the necessity to validate 
the predictions of our analysis through experimental verification to solidify the role of 
ICA and data analytics in elucidating these adaptive mechanisms. Machine learning, 
particularly ICA, can integrate a wide array of data inputs by extracting focal points of 
interest (14). In this study, we applied ICA to elucidate the activity of iModulons (15), 
representing groups of genes that provide a comprehensive view of broad biologi­
cal functions concerning varying experimental conditions. By contributing to future 
regulatory network-building endeavors that aim to enhance the predictive accuracy 
of regulatory actions, improving our understanding of species-specific transcriptional 
regulatory networks (TRNs) can provide insights into molecular sensing and feedback 
regulatory systems (16). Conversely, reverse engineering the TRN can illuminate the 
organism’s adaptive response to a dynamic environment (17–19). Reconstruction of L. 
reuteri’s TRN is essential for hypothesizing its adaptive mechanisms in diverse environ­
ments. While ICA aids in mapping the TRN, it is important to note that the predictive 
power of such computational tools remains hypothetical until experimentally validated. 
The current predictions provide a foundation that must be empirically tested to ascertain 
their accuracy and reliability in depicting regulatory interactions.

Despite the widespread utilization of L. reuteri for health and commercial benefits, 
a notable gap exists in studies attempting to elucidate the metabolic mechanisms 
underpinning this organism’s response to dynamic conditions. As of this writing, while 
investigating NCBI’s SRA database, it was found that only 36 studies explored L. reuteri 
gene expression in response to changing environmental conditions. Of these, only six 
leveraged next-generation RNA sequencing, and just one utilized RNA-seq to study L. 
reuteri in vitro. To bridge this gap, we have created the Lactobacillus Precision RNA-seq 
Expression Compendium for Independent Signal Extraction or LactoPRECISE compen­
dium, based on a large RNA-seq data set, spanning a wide array of media conditions, 
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to recapitulate some of the key genome-scale features of L. reuteri’s TRN (Fig. 1). 
This compendium, comprising 117 individual experiments, enables us to interrogate 
gene expression regulators and characterize their activity. Unlike earlier co-expression 
networks such as weighted correlation network analysis, which uses standard hierarchi­
cal clustering or correlation-based approaches, our study employs a modern machine 
learning-based approach for clustering. This enables a more refined delineation of 
co-regulated gene clusters.

In this study, we successfully applied ICA to the LactoPRECISE compendium to define 
35 unique iModulons, which have been used in this study to improve our understanding 
of L. reuteri transcriptional regulation. iModulon activity, inferred from each respective 
iModulon across various conditions, indicates the biological regulation and signaling 
that underlies actual activity. Therefore, these activity levels offer valuable insights into 
the biological function, potentially guiding strain design strategies. Expressly, we have 
provided insight into regulating L. reuteri modules related to microbial food production.

FIG 1 Comprehensive iModulon workflow overview. Our workflow in analyzing the LactoPRECISE compendium, a curated data set containing 117 internally 

sequenced RNA-seq samples derived from a diversity of 50 unique conditions, encompasses an extensive range of 13 distinct condition types. We employ the 

machine learning algorithm independent component analysis (ICA) to discern the underlying structure of iModulons from our in-house-sequenced data set. 

Through data analytics, we scrutinize Modulons to uncover media-specific regulatory mechanisms governing metabolism, investigate context-dependent gene 

expression, and predict pathways leading to the biosynthesis of probiotic secondary metabolites. Our workflow offers a fresh view of probiotic strain design 

while highlighting data analytics approaches in the field.

Research Article mSystems

March 2024  Volume 9  Issue 3 10.1128/msystems.01257-23 3

https://doi.org/10.1128/msystems.01257-23


MATERIALS AND METHODS

RNA extraction and library preparation

This study used Limosilactobacillus reuteri MM4-1A (PTA-6475) as the model strain. The 
strain was cultured in different growth media, including the base medium Chemically 
Defined Media (CDM), De Man-Rogosa-Sharpe (MRS), and specific food-like media, such 
as human milk, infant formula, or melon fruit juice, with appropriate supplements 
to extract a broad range of gene expression responses. We conducted experiments 
under aerobic or anaerobic conditions, covering variations in carbohydrate supplemen­
tation, gut microbial metabolites, salt stress, vitamin supplementation or removal, 
various media compositions, temperature changes, bile salt stress, co-cultures with other 
microbes, iron supplementation or removal, nucleotide supplementation or removal, pH 
changes, amino acid supplementation or removal, human food media, and antibiotic 
treatments. A detailed list of all the growth conditions and the exact supplementary in 
the respective media can be found in Table S1.

To prepare the samples, overnight cultures of the strains were grown at defined 
temperatures with mixing in the respective media. The cultures were then diluted to 
a starting optical density at 600 nm (OD600) of approximately 0.01 and incubated at 
defined temperatures with stirring. When the cultures reached an OD600 of 0.4, 2 mL 
was transferred to centrifuge tubes containing 4 mL of RNAprotect Bacteria Reagent 
(Qiagen). After vortexing for 5 seconds, the tubes were incubated at room temperature 
for 5 minutes. The samples were centrifuged for 10 minutes at 5,000 × g, and the 
supernatant was removed. Cell pellets were stored at −80°C until further processing. 
In conditions involving antibiotic treatment, the antibiotics were added at 2× or 5× 
their minimum inhibitory concentration when the bacterial culture reached an OD600 
of approximately 0.2. The cultures were then incubated at defined temperatures with 
stirring for an additional hour before sample collection.

Total RNA was isolated and purified from the frozen cell pellets using the Zymo 
Research Quick-RNA Fungal/Bacterial Microprep Kit, following the manufacturer’s 
protocols. To remove ribosomal RNA (rRNA), 1 µg of total RNA was treated with 
thermostable Rnase H (Hybridase) and short DNA oligos that specifically targeted and 
degraded rRNA at 65°C to preserve mRNA integrity. The resulting rRNA-subtracted RNA 
was converted into libraries using the KAPA RNA HyperPrep kit, which incorporated short 
Y-adapters and barcoded PCR primers. The libraries were quantified using a fluorescent 
assay and assessed for size distribution using a TapeStation. After pooling the libraries 
and performing a 1× SPRI bead cleanup to remove residual PCR primers, the final library 
pool was quantified and sequenced on an Illumina instrument (NextSeq, Novaseq).

RNA-Seq data acquisition, processing, and formation of LactoPRECISE

Given the scarcity of in vitro studies on L. reuteri next-generation RNA-seq in public 
repositories, the data for LactoPRECISE were exclusively sourced from internal sequenc­
ing. All 163 raw paired-end RNA-seq samples generated for this study were subjected 
to the prokaryotic RNA-seq processing pipeline outlined by Sastry et al. and mapped 
to our reference genome (GCF_020785475.1) (20). Post-processing, the gene expression 
compendium was log transformed to transcripts per million (logTPM). A standardized 
iModulon quality control protocol is utilized; we then manually curated the experimental 
metadata to distinguish biological replicate samples and annotate individual samples 
with details such as media descriptions, treatment specifics, environmental changes, 
growth stages, and other pertinent growth-related parameters.

Data failing any of the four FASTQC measures: per base sequence quality, per 
sequence quality scores, per base n content, and adapter content were excluded from 
further analysis. Samples with less than 500,000 reads mapped to coding sequences 
were also discarded. We employed hierarchical clustering to identify samples with 
atypical expression profiles. After these initial quality control steps, we carried out 
manual metadata curation on the remaining data. We extracted details such as strain 
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description, base media, carbon source, treatments, and temperature from existing 
literature. We assigned a unique name to each project, and within each project, we used 
unique identifiers to recognize replicates. Post-curation, we removed samples if they 
(i) lacked metadata, (ii) were without replicates, or (iii) showed a Pearson R correlation 
between replicates lower than 0.80. To determine if samples had a low correlation 
between replicates, gene expression data were processed through a correlation-based 
filtering and averaging filter to address potential dissimilarities within sample groups 
and their respective replicates. Specifically, gene expression data were first grouped 
by specific conditions. The internal consistency of each group was gauged by deter­
mining the pairwise Pearson correlation coefficient for samples within the group. To 
accommodate variations in gene expression data correlations, we set defined correlation 
thresholds at 0.8, 0.85, 0.9, and 0.95, excluding any lower thresholds due to concerns 
about replicate quality. If the correlation coefficient for any sample replicates within a 
group fell below these thresholds, indicating considerable internal variance, we averaged 
all samples within that group to produce a single representative expression profile. 
This approach yielded a filtered expression matrix, with groups with high internal 
dissimilarity represented by one averaged profile for further analyses. This procedure 
was reiterated for each correlation threshold to compare outcomes at various stringency 
levels of the filtering process. Notably, a threshold of R = 0.80 was chosen for subse­
quent ICA analyses. The logTPM data within each project were then centered on a 
reference condition specific to that project. Refer to Fig. S1A for a detailed depiction 
of the procedure’s outcomes, illustrating the number of conditions averaged due to 
within-group variance.

Simultaneously, a preliminary TRN was constructed to capture a comprehensive 
representation of genes and their known associated regulatory elements. This process 
entailed accumulating known transcription factor data from RegPrecise and collating 
regulatory interactions from existing L. reuteri literature (21). The resources utilized for 
this draft TRN, including transcription factors, are cataloged in Table S2.

Implementation of independent component analysis

Following the PyModulon workflow, we employed ICA on the RNA-seq compendium 
using the optICA extension derived from the FastICA algorithm (14). The optICA 
algorithm generates two matrices, M and A, necessary for determining iModulon activity. 
The M-matrix comprises robust components constituting the iModulons, while the 
A-matrix contains the activities of the iModulon. These matrices are approximations 
derived from the X-Matrix, representing the expression data drawn from the RNA-seq 
compendium.

Determining the optimal number of iModulons for LactoPRECISE requires the 
identification of an optimal dimensionality to circumvent both under-decomposition 
and over-decomposition of the gene expression compendium. To identify this optimal 
dimension (22), we performed multiple rounds of gene expression profile clustering 
within a range of 30–100, using a step size of 10. The optimal dimension of 60 was 
eventually selected, corresponding to the number of non-single gene independent 
components matching the final component count (Fig. S1B). The execution of the ICA 
algorithm with gene expression clustering ultimately yielded 35 robust iModulons for L. 
reuteri.

iModulon regulon enrichment, functional annotation, and characterization

To uncover the biological roles of iModulons within LactoPRECISE, we utilized the 
PyModulon Python package to enrich each iModulon with known regulators identified 
in our preliminary TRN (20). We aligned each iModulon to our preliminary TRN table 
to identify iModulons with a substantial intersection with previously characterized 
transcriptional regulators. This step was essential to establish potential regulatory roles 
of identified iModulons. We assessed the relation of predicted iModulons to previously 
defined regulators using “iModulon recall” and “regulon recall” metrics. The “iModulon 
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recall” metric measures the ratio of shared genes to the total genes in an iModulon, while 
the “regulon recall” quantifies the ratio of shared genes to the total genes in a regulon 
(Fig. 2E).

Following this, to further interpret the functional context of the iModulons and 
their associated genes, KEGG (23) and Cluster of Orthologous Groups (COG) data were 
retrieved via the EggNOG mapper (24). UniProt IDs were obtained using the Uniprot ID 
mapper (25), operon information was gathered from Biocyc (26), and Gene Ontology 

FIG 2 Description of the LactoPRECISE transcriptomics compendium. (A) A tree map depiction of the 35 identified iModulons 

and their associated functional categories. The dimensions of the individual boxes correlate with the number of genes 

found in each respective iModulon. (B) A principal component analysis plot based on the LactoPRECISE compendium gene 

expression highlights conditions that are similar or different. A red circle highlights conditions that undergo anaerobic 

fermentation. (C) Graphical representation of the volume of published research that includes the mention of “L. reuteri” in 

the abstract, plotted against the body of published microarray or next-gen RNA-seq literature. (D) The top 10 iModulons 

contribute to the most significant proportion of explained variance; the explained variance is described by a value of σ2. These 

iModulons capture key functions such as ribosome protein synthesis, secondary metabolite biosynthesis, stress response, 

amino acid synthesis, fatty acid conversion, and unknown functions. (E) A scatterplot of all regulatory iModulons. Each 

point signifies an individual iModulon, with the size of the point proportionate to the gene count within the corresponding 

iModulon. Regulatory iModulons are segmented into four quadrants: regulon subset (top left), well matched (top right), 

poorly matched (bottom left), and regulon discovery (bottom right).
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(GO) annotations were gathered from AmiGO2 (27, 28). With all gene expression 
data and annotations, ChatGPT 3.5 (August 3 version) was utilized in the initial char­
acterization of uncharacterized iModulons to redefine some as functional iModulons, 
thereby contributing to a more comprehensive exploration of gene regulatory networks 
(29). Specifically, for all genes for each uncharacterized iModulon, their gene names 
and weight per iModulon within the compendium, potential interactions with known 
regulons, and COG annotations if available were input into ChatGPT (more detailed 
methods and conversations with ChatGPT are available in the Supplementary Meth­
ods section). ChatGPT output predictions of uncharacterized iModulon function. These 
predictions were verified by assessing individual gene membership, biological function, 
and relation to known regulons via existing publications and database to prevent 
integration of false-positive or “hallucination” Modulons.

Reconstructing L. Reuteri ArgR bitome

Considering the lack of comprehensive information about gene-operon relations, we 
undertook an algorithmic approach with Bitomics to segregate genes into operons 
based on spatial proximity (30). This led to the creation of a data frame with a novel 
distance algorithm that systematically arranges L. reuteri genes into operon clusters. 
Initially, genes were batched based on their respective accession IDs. Sorted sets of 
genes were parsed through an iterative operation, which checked for spatial congruity 
with each preceding gene. If the spatial gap fell within a predefined threshold, it was 
assigned to the current operon; otherwise, a new operon cluster was initiated. This 
process ultimately led to operon clusters that can be described as lists of genes grouped 
based on their operon classification. This organization allowed for enhanced compre­
hension of the spatial arrangement and operational interactions among the genes in 
preparation for downstream analysis.

To form a position-specific scoring matrix (PSSM) for ArgR, we aligned the binding 
sites of E. coli’s known ArgR iModulon. We subsequently quantified the frequency of each 
nucleotide at individual positions, normalizing this against the background frequency 
in the entire sequence, which resulted in the computation of log-odds scores. The 
“bitome_fasta.motif_search” function was employed for the iterative computation of 
motif scores for equidistant segments, equivalent to the motif length. The segment with 
the most substantial score was earmarked as the motif score of that sequence.

Motif scores became the basis for a logistic regression model in our study, enhanced 
by applying elastic net regularization. We leveraged the elastic net penalty, chosen to 
counteract multicollinearity among predictors while fostering a lean feature selection 
process. This streamlined selection simplifies the interpretation of how genes interplay 
with ArgR. A resampling technique was also deployed to address the challenge of 
class imbalance, a potential pitfall in predictive modeling. Using the motif scores as 
the input matrix and binarized ArgR regulon memberships as target labels, a logistic 
regression model was built with an elastic net penalty (with an L1 to L2 ratio of 0.5) 
for regularization. To tackle class imbalance, we employed a SMOTETomek resampling 
technique, set to a parameter of k_neighbors = 5, to generate a balanced training 
set. To ensure the representation of each class, we utilized a fivefold cross-validation 
with stratified sampling. The train-test-split was conducted within the operon space, 
ensuring genes from the same operon were kept together. The model’s performance was 
evaluated using an area under the receiver operating characteristic (AUC-ROC) curve, 
with a pre-decided threshold of 0.8 as the benchmark for satisfactory performance.

Prediction of biosynthetic gene clusters

Biosynthetic gene clusters (BGCs) in L. reuteri were identified using the antiSMASH 
7.0 algorithm (31) applied to the L. reuteri reference genome (GCF_020785475.1). We 
intentionally selected a “relaxed” detection strictness setting to increase the likelihood 
of capturing a broader array of potential BGCs since L. reuteri is not known to have 
many BGCs. AntiSMASH identified two main types of L. reuteri BGCs using this setting: 
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ribosomally synthesized and post-translationally modified peptides (RiPP) and type III 
polyketide synthase (T3PKS). This method also offers gene ontology annotations for the 
constituents of the predicted BGCs. It is worth noting that although RiPP genes were 
present, they appeared inactive in our compendium, leading us to focus our analysis on 
T3PKS.

RESULTS

Elucidation of the L. reuteri transcriptional regulatory network through 
transcriptomic compilation and independent component analysis

To understand the global transcriptional regulation that governs the physiological 
processes across a broad range of conditions, which can lead to diverse functional 
responses in L. reuteri, we applied ICA to a large RNA-seq compendium. LactoPRECISE 
contains 117 RNA-seq samples across a range of 50 different conditions from 13 different 
media types to allow for profiling that extracts diverse regulatory interactions from 
expression data, helping to distinguish between specific transcriptional regulators. Our 
analysis identified 35 integral components or iModulons, which account for 45% of the 
variance in gene expression across our compendium and thus represent the variation 
derived from transcriptional regulation (Fig. 2D).

The variance explained by the 35 iModulons is notably lower than that by principal 
component analysis (PCA) on the X-matrix alone (45% in ICA and 56.1% in PCA) (Fig. 2). 
The “anaerobic fermentation” functional group includes iModulons which likely underlie 
the regulatory processes of fermentation in L. reuteri; specifically, “nitrate reductase and 
cofactor metabolism,” “intestinal carbohydrate and host interaction,” “sugar fermentation 
regulator,” CcpA, and DeoR comprise of 23% of our transcriptional profile. Analyzing 
the outlier group “anaerobic fermentation” through PCA, we found a 26.48% variance 
contribution from outliers in anaerobic conditions. The integration of PCA with ICA offers 
a nuanced view of gene regulation and function, enhancing our understanding of the 
data in the LactoPRECISE database. Unlike traditional coexpression methods such as 
weighted correlation network analysis, which are dependent on linear correlations (32) 
such as Pearson’s correlation, ICA exposes independent sources of expression variation, 
capturing complex, and nonlinear relationships among genes (15). This flexibility yields 
a granular and adaptable method for revealing intricate regulatory networks across 
conditions.

Manual characterization enabled interpretations of iModulons derived from 
independent components as sources of biologically relevant observations in the 
compendium, capturing a broad spectrum of biological functional categories (Fig. 1A). 
Fig. S2 illustrates the correlation of iModulons across the compendium by utilizing 
hierarchical clustering. Fig. S3 further identifies the top five most significant iModulon 
clusters and highlights iModulons with the most similar cellular responses in L. reuteri. 
Notably, iModulons with known biological functions can explain the highest fraction of 
expression variance in our compendium including those controlling ribosomal protein 
synthesis (RP-Operon-1 and RP-Operon-2), secondary metabolite production (isoprenoid 
biosynthesis and adaptive response), nitrate reductase (nitrate reductase and cofactor 
metabolism), stress response (PerR), amino acid synthesis [T-box (methionine), ArgR, 
lysine riboswitch], a uncharacterized iModulon (uncharacterized-4), and deoxyribonu­
cleoside synthesis operon transcriptional regulator (DeoR) (Fig. 2D).

In our initial characterization of these 35 iModulons, we found that 13 identi­
fied iModulons overlapped with known regulators, suggesting that these “regulatory 
iModulons” reflect the basic structure of previously known regulons. Details on each 
iModulon and their respective functions, number of genes, and other relevant character­
istics can be found in Table S3. We also observed two additional iModulons, dominated 
by a single, high-coefficient gene, which could be termed “single-gene iModulons,” 
possibly regulated solely by that gene.

We further quantified the relationship between regulatory iModulons and known 
regulons used to reconstruct our draft TRN using metrics such as “iModulon recall” 
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and “regulon recall” (Materials and methods). Most identified regulatory iModulons 
show a high iModulon recall rate, indicating strong agreement between the draft TRN 
structure and the newly identified iModulons for L. reuteri (Fig. 2E). High iModulon 
recall and regulation recall values denote a consistency between a particular iModulon 
and a previously characterized regulon. The overlap between the gene lists in compu­
ted iModulons and regulons within each quadrant is visualized by background Venn 
diagrams in each quadrant. Regulon recall is the ratio of shared genes between an 
iModulon and a regulon to the total genes in a regulon. In contrast, iModulon recall is the 
proportion of shared genes to the overall genes in an iModulon.

Next, we attempted to characterize the remaining 20 “uncharacterized iModulons” 
using data from public databases such as KEGG, COG, UniProt, Biocyc, and GO anno­
tations. These iModulons were defined through various approaches, such as investigat­
ing gene membership, functional gene annotations, iModulon activity against various 
conditions, and ChatGPT 3.5. While ICA exhibits a high success rate in identifying 
biologically valuable modules of the TRN, many remain uncharacterized; however, 
utilization of ChatGPT improved our ability to describe uncharacterized iModulons 
functionally. Despite concerns about ChatGPT’s potential for delivering inconsistent 
information in the form of “hallucinations,” the language model proved valuable in 
synthesizing overlooked gene annotations which may have required higher levels of 
expert insights. This enhanced the curation of uncharacterized iModulons and led to 
the characterization of 11 functional iModulons (stress response and homeostasis, cell 
envelope and transport-related, RP-Operon-1, nitrate reductase and cofactor metabo­
lism, sugar fermentation regulator, intestinal carbohydrate and host interaction, Fe-S 
cluster metabolism, RP-Operon-2, oxidative stress response, isoprenoid biosynthesis and 
adaptive response, stress response and proteostasis); these functional iModulons contain 
gene groups related to specific biological functions, but not directly linked to a known 
transcriptional regulator. Finally, the remaining nine uncharacterized iModulons that 
could not be adequately characterized can be ideal targets for future research; specif­
ically, the iModulon “uncharacterized-9” will be presented later in the manuscript as 
involved in the regulation of nitrogen metabolism (see Fig. 7). This analysis has led to 
the systematic characterization of at least 26 iModulons. It has provided a broad range of 
functional descriptions that can be used to compare iModulons to their respective gene 
clusters.

Visualizing L. reuteri’s iModulons: deciphering key regulatory roles in the 
probiotic landscape

L. reuteri’s relatively small number of iModulons is likely due to its compact genome (33); 
we have provided a visualization to display each iModulon’s specific role in regulating 
this probiotic organism. Fig. 3 presents the top 10 iModulons that contribute to the 
greatest explained variance in the LactoPRECISE compendium to display the relative 
influence and condition-specific behavior of each iModulon. Each subplot displays both 
an iModulon’s gene membership, a histogram that plots gene expression and frequency 
within that iModulon, and if those genes are regulated by a known regulon. Next to 
each histogram, a color-coded bar plot signifies the respective iModulon’s activity levels 
against different condition types. These iModulons contribute to the highest explained 
variance and possibly the most crucial functions in the LactoPRECISE compendium: 
RP-Operon-1, isoprenoid biosynthesis and adaptive response, nitrate reductase and 
cofactor metabolism, PerR, DeoR, T-box (methionine), uncharacterized-4, ArgR, lysine 
riboswitch, and RP-Operon-2. For a complete view of the remaining 25 iModulons 
with histograms and activity plots within the LactoPRECISE compendium, refer to the 
Supplementary Figures (Fig. S4).
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Bistable controls between fatty acid conversion and flavin mononucleotide 
production uncovered by iModulon analysis

Understanding control mechanisms over intricate metabolic networks is crucial to 
progressing microbial strain design for desired probiotic metabolites. Regulatory 
networks modulate the production of essential compounds like vitamins, fatty acids, 
and natural products in the desired quantities (34–38). While several other iModulons 
may contribute more toward explained variance in the LactoPRECISE compendium, the 
additional value lies in improving the knowledge of iModulons useful in the probi­
otic industry. Microbial fatty acid conversion can present unique challenges, such as 
rate-limiting steps or specific micronutrient requirements (39, 40). FMN, a precursor 
to riboflavin (vitamin B2), plays a vital role in human health by supporting metabolic 
processes, and its synthesis in probiotics contributes to improved gut health and nutrient 
absorption (41). Riboflavin and fatty acid conversion may be likely regulated by both the 
FMN-Riboswitch iModulons and the FabT iModulon, which both potentially play a pivotal 
role in influencing a two-step synthesis process for these desirable products in microbial 
foods. Besides nutritional fortification advantages, riboflavin might also influence the 
regulation and conversion of various fatty acids (42–46).

The analysis of Fig. 4A and B reveals co-regulation of FabT and FMN-Riboswitch 
iModulons in L. reuteri, modulated by specific media components. Thiamine limita­
tion or E. coli coculture suppresses both iModulons, while glucose or human milk 
elevates their activities (47–51). Despite L. reuteri’s known limitations in starch metab­
olism, as highlighted by its reliance on reuteransucrases for synthesizing reuteran 
from sucrose and glucanotransferase for converting starch into soluble polymers 
without the production of usable oligosaccharides, our observed responses suggest 

FIG 3 Visualization of the top 10 iModulons with the highest contribution to the explained variance in the LactoPRECISE compendium. Each subplot presents 

an iModulon with a histogram detailing gene frequencies across various expression levels followed by the respective iModulon activity level across all conditions. 

This visual representation provides insights into the relative influence and condition-specific behavior of each iModulon.
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broader carbohydrate metabolic capabilities. This potentially involves indirect regulatory 
mechanism influences by complex carbohydrate interactions. Such findings underscore 
a nuanced regulatory interplay, pivotal for understanding L. reuteri’s metabolic functions 
and optimizing strain design.

FIG 4 Bistable regulation and interactive metabolic pathways between FabT and FMN-Riboswitch iModulons in producing microbial foods and natural products. 

(A) Binary heatmap showing the two distinct activities of the FabT and FMN-Riboswitch iModulons across various conditions. The color gradient illustrates the 

relative activity level of the iModulons, with red indicating positive activity and blue indicating negative. Overlapping conditions likely indicate a transition 

state between the two iModulons. (B) A bar plot represents conditions exhibiting similar activity between the FMN-Riboswitch and FabT iModulons. The 

conditions are represented on the x-axis, and the corresponding iModulon activity level is on the y-axis. This similarity highlights the potential bistability 

of regulation under these specific conditions. (C) Differential iModulon activity (DIMA) plot depicting the interactions and shared regulatory trends between 

various iModulons, including those for stress response and purine production. The distinctive trend line connecting FabT and FMN-Riboswitch iModulons reflects 

their potential bistable regulation. (D) Scatter plot illustrating the iModulon activity of FabT plotted against FMN Riboswitch. The distinctive cluster at the top 

suggests a particular set of conditions where both iModulons are simultaneously active, providing evidence for a potential “third state” in the bistable regulation. 

(E) Schematic diagram depicting a model of interconnected metabolic pathways involved in producing microbial foods (mediated by FabT) and natural products 

(mediated by FMN Riboswitch). This figure highlights the importance of these iModulons in the overall metabolic network and their potential roles in bistable 

regulation.
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This observation is further strengthened by a differential iModulon activity plot that 
illustrates peculiar but similar trajectories for FabT and FMN-Riboswitch iModulon under 
the conditions which regulate both FabT and FMN-Riboswitch activities (Fig. 4C). The 
most interesting is the grouping of two iModulons associated with stress response 
mechanisms (oxidative stress response and stress response and proteostasis) and natural 
product production during stressful conditions (isoprenoid biosynthesis and adaptive 
response) which may highlight the role of stress response in the production of micro­
bial foods and natural production. Moreover, Fig. 4D and A scatter plot illustrating the 
iModulon activity of FabT plotted against FMN Riboswitch reveals a distinctive cluster 
of conditions at the top (purple outlining). This cluster suggests a particular set of 
conditions where both iModulons are simultaneously active. This provides evidence 
for a potential “third state” in the bistable regulation, likely due to specific regula­
tory conditions. Specifically, it should be noted that these highlighted conditions that 
activate this state are either media supplemented with riboflavin precursors or anaerobic 
fermentation conditions.

Fig. 4E proposes a model of bistable regulation between the FMN-Riboswitch and 
FabT iModulons. The crosstalk from these iModulons potentially forms a feedback loop 
driven by riboflavin supplementation, which enhances fatty acid conversion of linoleic 
acid into CLA in probiotics (52). Delving deeper, riboflavin is already established to 
modulate the kinetic stability of lipids by acting as a antioxidant (53). Interestingly, in 
non-prokaryote models, there is a documented influence of vitamins, either through 
restrictions or supplements, on fatty acid conversion (54, 55). In the context of our study, 
this could suggest that the FMN Riboswitch, upon activation, promotes FAD production. 
This production might initiate various metabolic events such as energy production, fatty 
acid breakdown, and flavoenzyme generation. Overall, this hypothetical model portrays 
iModulons in action that may play an important role in a more complicated metabolic 
regulatory system, which may benefit microbial food and natural product synthesis. 
However, there is a lack of substantial experimental results that support this interpre­
tation of riboflavin and fatty acid interplay. While our model presents a promising 
blueprint, rigorous experimental probing is vital to refine, validate, or challenge our 
present understanding.

Fine-tuning arginine production: exploring the role of medium components 
on L. reuteri strain design

The activity of the ArgR iModulon under various conditions was investigated by 
examining the expression of selected genes that are well annotated in L. reuteri (Fig. 
5). Given the propensity of L. reuteri, an arginine auxotroph, to convert arginine to 
ornithine and considering the likely broader implications of the ArgR iModulon in 
acid resistance and biofilm formation, this iModulon presents as a particularly compel­
ling case study for our investigation and merits focused attention in future research 
(56). By comparing individual gene expression against iModulon activity, we identified 
conditions that act as activators or repressors of the ArgR iModulon. These observations 
were further strengthened by using Pearson R correlation across the genes arcA (Pearson 
R = 0.89, P-value <1−10), arcC (Pearson R = 0.89, P-value <1−10), argF (Pearson R = 0.89, 
P-value <1−10), argH (Pearson R = −0.94, P-value <1−10), carA (Pearson R = −0.83, P-value 
<1−10), and gtfA (Pearson R = 0.13, P-value <1.48−1), thus providing strong correlation 
into the conditions activating or repressing the ArgR iModulon with high confidence 
(except for gtfA). Conditions like co-culturing with other lactic acid bacteria (LAB) strains 
(L. lactic cremoris JS102 or S. thermophilus) or supplementing fruit juice consistently 
activated the ArgR iModulon. Interestingly, in our study, we observed that while iron 
is not essential for the growth of most Lactobacillus strains, its absence in the growth 
medium notably influences the expression of argF/H and, subsequently, the activity of 
the ArgR iModulon. This finding suggests the existence of a regulatory mechanism in 
Lactobacillus that responds to iron availability, impacting specific gene expressions and 
modulating metabolic pathways. Overall, the limitation of various nucleotides or amino 
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acids, exposure to antibiotics, and iron limitation were found to repress the activity of the 
ArgR iModulon.

Bitomics analysis illuminates ArgR regulatory complexity in L. reuteri

To enhance our previous analysis focusing on the L. reuteri ArgR iModulon and media 
constraints, a Bitomics methodology that utilized machine learning and comparative 
structural motifs was used to further decipher insights into the dynamic regulatory 
mechanisms governed by the ArgR iModulon (30). This analytical process deepened 
our comprehension of the regulatory mechanisms underlying L. reuteri’s ArgR iModulon. 
By employing gene weight plotting to compare the E. coli and L. reuteri ArgR iModu­
lons, differences were found between the respective gene clusters (Fig. 6). While E. 
coli ArgR is primarily related to “amino acid transport and metabolism,” the L. reuteri 
ArgR gene membership displayed a broader spectrum of COG functions (carbohydrate 
transport and metabolism, energy production and conversion, inorganic ion transport 
and metabolism, transcription, translation/ribosomal structure and biogenesis, and 
genes with unknown functions or lacking COG annotations) and negative gene weights 
across the genes in the ArgR iModulon. These variations highlight the possibility of a 
more intricate regulatory landscape within L. reuteri ArgR marked by diverse functions 
and negative gene weights despite the shared ArgR motif with E. coli (Fig. 6A and B).

A position-specific scoring matrix (PSSM) was also generated to identify the 
distribution of nucleotide frequencies at each position within the ArgR binding sites. 

FIG 5 Insight into the context-specific metabolic networks of the ArgR iModulon. This figure presents an illustrative diagram of the ArgR iModulon, a key 

iModulon in the LactoPRECISE compendium. This iModulon comprises various genes, including arcA, arcC, argF, argH, carA, and gtfA. Alongside the schematic, 

individual gene expression plots corresponding to the activity levels of the ArgR iModulon are also displayed. We observed positive correlations between the 

activity of the ArgR iModulon and context-specific gene expression of ArgR gene members such as arcA, arcC, argF, and gtfA, suggesting that these genes are 

co-activated when arginine synthesis is heightened. In contrast, genes argH and carA display a negative correlation, with high expression when ArgR iModulon 

activity is low, indicating their potential role in regulating the arginine synthesis process.
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We identified significant motifs within the gene sequences using the log-odds scores 
derived from the PSSM. A marked distinction was observed in the motif scores of 
genes residing within and outside the ArgR motif. The enhanced motif scores within 
the ArgR iModulon of L. reuteri confirm the precision of our model in capturing the ArgR 
regulatory network, which is underscored by the identification of genes like arginosucci­
nate synthase (LMB90_RS03525), argininosuccinate lyase (argH), and arginine deiminase 
(arcA). These genes, with their high motif scores, are critical for arginine conversion and 
catabolism, highlighting arginine’s central role in L. reuteri’s metabolic processes. The 
presence of the arginine repressor gene (LMB90_RS04695) within this iModulon further 
illustrates the stringent control over these pathways, which are integral to the organism’s 
energy production and adaptation to stress, demonstrating the multifaceted influence of 
ArgR in L. reuteri’s physiology.

A comparison of ArgR motif prevalence and strength between genes regulated by 
ArgR and a random gene selection further underscored this finding (Fig. 6C). The model’s 
effectiveness is validated by an AUC-ROC score approaching 0.8 (Fig. 6D), a supportive 
metric in the model’s ability to predict ArgR regulatory patterns. Selecting AUC-ROC 
as our performance metric provides a panoramic view of the model’s discrimination 
capabilities, which spans various classification thresholds to ensure that our assessment 
remains balanced.

FIG 6 Decoding ArgR regulation in L. reuteri through structural motif and Bitomics techniques. (A) Gene weight plot for E. coli ArgR iModulon. In E. coli ArgR, 

most genes pertain to “amino acid transport and metabolism.” (B) Gene weight plot for L. reuteri ArgR iModulon. In L. reuteri ArgR, a broader diversity in Clusters 

of Orthologous Groups (COG) functions and negative gene weights is observed. This suggests a more complex regulatory scenario despite the similar ArgR motif 

between the two organisms. (C) Analysis of ArgR motif strength in ArgR regulated genes versus random genes. This plot compares ArgR motif prevalence and 

strength among genes regulated by ArgR and a random selection of genes. Using a PSSM distinguished nucleotide distributions in ArgR binding sites, revealing 

genes within the ArgR motif had markedly higher motif scores than those outside; this distinction was further accentuated when comparing ArgR-regulated 

genes to a random gene cohort. (D) Area under the receiver operating characteristic (AUC-ROC) score assesses the performance of this study’s computational 

model. A high AUC-ROC score reflects the model’s capacity to classify genes correctly under the ArgR regulation based on motif strength. The combined analysis 

presented in this figure illustrates the complexity of ArgR regulation in L. reuteri and points toward potential differences in regulatory strategies compared to E. 

coli, a thoroughly studied model organism.
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Linking nitrogen metabolism to secondary metabolite production in L. reuteri

We investigated nitrogen metabolism and the potential to regulate isoprenoid 
biosynthesis by observing the interplay between the T3PKS BGC and iModulon activity 
within L. reuteri. T3PKS enzymes synthesize polyketides, a large family of secondary 
metabolites with diverse biological activities and therapeutic potential. This iModulon 
comprises genes vital for isoprenoid production, which are essential components of cell 
membranes and play important roles in an organism’s stress response by producing 
secondary metabolites (57). Our examination of the T3PKS gene cluster, illustrated in 
Fig. 7A and identified by antiSMASH 7.0 (31), spotlights the four active genes responsi­
ble for polyketide synthesis. Specifically, the core biosynthetic gene (LMB90_RS06655) 
codes for hydroxymethylglutaryl-CoA synthase, while the three additional biosynthetic 
genes (LMB90_RS06655, LMB90_RS06670, and LMB90_RS06715) code for 1-acyl-sn-glyc­
erol-3-phosphate acyltransferase, D-2-hydroxy-acid dehydrogenase (also found in the 
sugar fermentation regulator iModulon), and RIP metalloprotease RseP, respectively. This 
cluster represents a group of secondary metabolites known for their biological diversity 
and potential therapeutic utility (57).

FIG 7 Unraveling the interplay between the type III polyketide synthase (T3PKS) gene cluster and iModulon activity in L. reuteri, with an emphasis on nitrogen 

metabolism and isoprenoid biosynthesis. (A) Displays the predicted biosynthetic gene clusters (BGCs) from the L. reuteri genome, as predicted by antiSMASH 

7.0. The focus is on the T3PKS BGC, which comprises one core biosynthetic gene and three additional biosynthetic genes that are active in our compendium. 

(B) We present the gene expression of these four biosynthetic genes plotted against the “isoprenoid biosynthesis and adaptive response” iModulon. The plots 

underscore the strong activation of this iModulon under conditions related to nitrogen metabolisms, such as removing glutamate or uracil and supplementing 

with NH4Cl. (C) Further exploration of this iModulon activity to three well-characterized iModulons [ArgR, lysine riboswitch, and T-box (methionine)], all of 

which are known to regulate amino acid metabolism, as well as the “uncharacterized-9” iModulon, encompassing genes involved in ammonia transport. 

Strong correlations emerge between the “isoprenoid biosynthesis and adaptive response” iModulon and these four iModulons, reinforcing the role of nitrogen 

metabolism in regulating secondary metabolite production. This figure illuminates potential strategies for engineering L. reuteri to optimize the production of 

secondary metabolites by modulating conditions that highly activate key iModulons.
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Interestingly, the “isoprenoid biosynthesis and adaptive response” iModulon 
demonstrated diverse activity when plotting with the expression of T3PKS’s four 
biosynthetic genes across nitrogenous conditions (Fig. 7B). Under specific conditions tied 
to nitrogen metabolism, including glutamate or uracil depletion and NH4Cl supple­
mentation, this iModulon was notably active. Fig. 7C provides a deeper association 
into the intricate relationships between the isoprenoid biosynthesis and adaptive 
response iModulon and four other distinct iModulons: ArgR, lysine riboswitch, and T-box 
(methionine) stand out as established regulators of amino acid metabolism. Concur­
rently, the “uncharacterized-9” iModulon, containing numerous genes tied to ammonia 
transport, will likely have similar functions as the other amino acids regulating iModu­
lons. Hierarchical clustering of LactoPRECISE’s most common iModulon clusters brings 
further insight (Fig. S3); cluster 2 (Spearman’s R = 0.20) encompasses the iModulons 
“isoprenoid biosynthesis and adaptive response,” “lysine riboswitch,” and “uncharacter­
ized-9.” This alignment hints at a synchronized regulation and a shared response across 
the gene expression compendium. Our identification of the “isoprenoid biosynthesis and 
adaptive response” functional iModulon in L. reuteri indicates a predicted involvement 
in isoprenoid pathways, yet it does not confirm the active biosynthesis of isoprenoids 
or carotenoids. This finding presents a potential biological role that necessitates further 
research for confirmation and understanding, highlighting the exploratory nature of 
iModulon analysis in revealing novel microbial functions.

DISCUSSION

Our comprehensive analysis of L. reuteri’s TRN illuminated the identification of 35 
distinct iModulons, offering deeper insights into the molecular mechanics underpin­
ning its functions. Among these, 13 were discerned as regulatory iModulons with 
ties to well-established transcription factors (TFs). This finding not only augments 
our current understanding of TF-gene dynamics but also bridges present knowledge 
between potential co-regulators and regulatory targets. Their complicated roles in stress 
response, along with amino acid and secondary metabolite production, underscore 
their importance in tailoring effective probiotics. This study’s significant finding is the 
identification of 11 unique functional iModulons from 20 uncharacterized ones in L. 
reuteri. iModulons enriched with gene clusters for specific biological roles that are not yet 
linked to known transcriptional regulators offer a promising area for future research. 
Their coordinated response to environmental stimuli underscores their potential in 
revealing novel regulatory mechanisms and advancing microbial strain design. The 11 
functional iModulons identified in LactoPRECISE and their descriptions are presented in 
the Supplementary Discussion.

Specifically, our data analytic approach upon our large iModulon data set has 
identified several metabolic pathways which have been shown to be either non-func­
tional or are unlikely to exist in L. reuteri. Most importantly, these iModulons were 
identified to be “functional iModulons,” a group of iModulons which have not been yet 
identified to be regulated by a transcriptional regulator, but rather a biological response 
to diverse conditions. For example, the “nitrate reductase and cofactor metabolism” 
functional iModulon contains various genes within the NAR operon (narI, narJ, and narH) 
and the molybdenum cofactor-dependent mobB; even though most L. reuteri strains 
lack nitrate respiration, these nitrate reductase genes hint toward the possibility of 
conditional expressions. Further studies are required to better understand their functions 
across various nitrogen conditions. Our study also observed a “Fe-S cluster metabolism” 
functional iModulon; iron assimilation is atypical for L. reuteri and the Lactobacillus as a 
taxonomic group. However, our study identified genes contained within the Suf operon 
(sufB, sufC, and sufD) in addition to feoB; these genes point to a potential metabolic 
function or environmental adaptation that merits further in-depth investigations to 
uncover if regulation of metal homeostasis does play an important physiological role 
in L. reuteri. Finally, the “isoprenoid biosynthesis and adaptive response” functional 
iModulon contained the genes mvaD and mvk, which are related to the potential 
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biosynthesis of isoprenoid precursors. However, without the supplementation of more 
direct in vitro evidence of isoprenoid biosynthesis, the likelihood of this organisms 
producing isoprenoids is speculative and merits further research. These three functional 
iModulons and the other predicted functional iModulons require further investigation 
and evidence to better understand their potential role of their metabolic pathways and 
physiological roles in L. reuteri.

Observing potential co-regulation between select iModulons offers insights into 
shared functionalities, which are essential for advanced strain design efforts. The 
bistable regulation observed in the FabT/FMN iModulons highlights the complexities 
of regulatory mechanisms that are crucial for metabolic functions (58, 59). This concept 
is supported by mathematical models of bistability in microbial systems, as seen in 
the SigE regulatory network in Mycobacteria and the Bacillus subtilis biofilms, where 
bistable emergence of oscillations and stress responses demonstrate similar regulatory 
dynamics (60, 61). Additionally, phenotypic bistability in E. coli’s central carbon metab­
olism further underscores the feasibility of such mechanisms in prokaryotic systems 
(62). In our proposed model, metabolic reconstruction was used as a foundational step, 
delineating biochemical reactions and pathways specific to our organism of interest. 
We hypothesize the interaction between three major metabolic pathways: riboflavin 
biosynthesis, phophoketolase pathway, and the FabT iModulon, providing a comprehen­
sive framework for our analysis. The FMN-Riboswitch acts as a pivotal feedback control 
in this network, influencing the conversion of FAD into FADH2 and thus intersecting 
with the phophoketolase pathway through the utilization of NAD+; given that Lacto­
bacillus is anaerobic and does not utilize ATP through beta oxidation, this may be a 
promising way for energy utilization in this organism (63). This interplay is crucial as it 
links riboflavin metabolism directly to energy production and fatty acid regulation. The 
phophoketolase pathway, pivotal in our model, is likely to progress with NAD utilization 
from FAD conversion into FADH2, leading to lactate and ethanol production and support 
for fatty acid regulation—a key aspect to be validated. The intersection of this pathway 
with fatty acid regulation is particularly intriguing. The FabT iModulon regulates the 
expression of genes essential for fatty acid synthesis, such as AccC, accD, FabF, FabG, 
FabI, and FabZ, which interact with acetyl-CoA, highlighting the intricate network of 
metabolic processes (64). Furthermore, our model suggests that the biosynthesis of 
vitamins such as riboflavin and short-chain fatty acids, such as acetate, are not just 
metabolic end products but also serve as substrates for microbial-based foods (65, 
66). This extends to transforming dietary linoleic acid into CLA via linoleate isomerase, 
indicating a broader scope of fatty acid and vitamin metabolism in microbial systems 
(66, 67). Further influence by dietary elements such as starch and pectin, despite L. 
reuteri’s limited direct starch metabolism and lack of pectinase, possibly hints at a 
broader carbohydrate metabolic capability, likely through indirect gene expression and 
cell wall regulation (68). Overall, our hypothetical model, supported by insights from 
the interconnectedness of these pathways and their regulatory elements, proposes a 
dynamic and complex metabolic regulatory system. This system could have significant 
implications for microbial food and natural product synthesis. However, the current 
lack of substantial experimental results that specifically support this comprehensive 
interpretation highlights the need for rigorous experimental investigation. Our model, 
while promising, requires further refinement, validation, or challenge to enhance our 
understanding of the regulatory response of Lactobacillus spp. to an expanded variety of 
media (69, 70).

Our analysis provides potential insights toward understanding of the ArgR metabolic 
pathway. The observed metabolism of abundant glutamate during co-cultivation with 
various LABs may indicate symbiotic cross-feeding between strains, as inferred from 
our data (71). However, to firmly establish this understanding, further experimental 
validation is necessary to confirm this observation’s causative relationship and underly­
ing mechanisms. Our results also revealed that L. reuteri possesses active glutaminases, 
which likely play a pivotal role in the organism’s acid resistance. The deamidation of 
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glutamine by these enzymes not only aids in the maintenance of intracellular pH but also 
contributes to the overall acid tolerance of the bacterium by increasing the expression of 
arginine-ornitinine transporters (72). The significance of glutaminases in the metabolism 
of glutamine and the ensuing acid resistance is corroborated by Li et al., who highlighted 
the importance of these enzymes in L. reuteri and other lactobacilli adapted to vertebrate 
hosts, suggesting a conserved mechanism among these bacteria (73). Furthermore, 
the catabolism of arginine alongside glutamine is recognized as a general strategy 
for acid resistance in LAB, including L. reuteri, reflecting a broader adaptive response 
to acidic stress (74). The interplay between these metabolic pathways emphasizes the 
complex regulatory networks that underlie the acid resistance phenotype in L. reuteri 
and potentially in other related probiotic strains. The GH70 family of glycoside hydrola­
ses, which encompasses the gtfA-encoded reuteransucrase, is integral to L. reuteri’s ability 
to process sucrose, into α-glucans. This enzymatic activity is crucial for the synthesis of 
extracellular polysaccharides that facilitate biofilm formation and host adhesion (75–77). 
In conjunction with this, it has been demonstrated that glycerol presence upregulates 
the carA and carB genes in L. reuteri, pivotal in the synthesis of carbamoyl-phosphate. 
While this pathway traditionally leads to arginine synthesis, this may not be a primary 
route in L. reuteri. Nevertheless, the interplay between gtfA-mediated sucrose conver­
sion to α-glucans and the carA/B-driven carbamoyl-phosphate pathway highlights a 
complex metabolic network. This network is not only integral to enhancing L. reuteri’s 
acid resistance but also contributes to supplying essential amino acids to the host. 
Moreover, this sophisticated metabolic interplay can potentially improve the shelf-life 
and freshness of fermented foods, like bread, by optimizing sucrose utilization and 
fostering the production of reuteran-like polymers in L. reuteri (77–79).

Our Bitomics analysis, enhanced with machine learning and comparative structural 
motifs, has revealed a more intricate landscape of ArgR regulation in L. reuteri than 
previously understood, especially when contrasted with E. coli. While E. coli’s ArgR 
primarily relates to amino acid transport and metabolism, L. reuteri’s ArgR demonstrates 
a broader range of functions. This divergence highlights the unique regulatory pathways 
of L. reuteri in arginine metabolism, distinct from those in E. coli. The high AUC-ROC score 
reinforces the model’s predictive strength. These findings, emphasizing the complex 
interplay between ArgR iModulon activity and gene expression under various conditions, 
offer valuable insights for future strain design and applications.

Exploration of nitrogen metabolism and isoprenoid biosynthesis in L. reuteri, utilizing 
AntiSMASH analysis, has uncovered a nuanced interplay between the T3PKS BGC 
and various iModulon activities. The isoprenoid biosynthesis and adaptive response 
iModulon, potentially engaged in synthesizing crucial isoprenoids like ubiquinones 
and carotenoids, displayed varied activity under different nitrogen conditions, reflect-
ing a sophisticated regulatory network. The hierarchical clustering analysis revealed 
coordinated regulation among multiple iModulons, indicative of a strategic metabolic 
equilibrium responsive to nitrogen availability. Importantly, the “additional biosyn­
thetic genes” identified in the T3PKS BGC, such as LMB90_RS06655 (involved in lipid 
biosynthesis), LMB90_RS06670 (part of the sugar fermentation regulator iModulon), 
and LMB90_RS06715 (potentially involved in polyketide synthesis signaling pathways), 
elucidate the intricate contributions to the metabolic versatility of L. reuteri. These 
findings point toward L. reuteri’s metabolic adaptability and underscore the poten­
tial of metabolic engineering in enhancing isoprenoid and polyketide production for 
pharmaceutical and nutritional applications. Additionally, the potential of nitrogenous 
media to activate select iModulons hints at enhancing secondary metabolite production, 
aligning with industrially relevant bioprocesses, thereby emphasizing the real-world 
applicability of our insights. The diverse correlations between the “isoprenoid biosyn­
thesis and adaptive response” iModulon and its four iModulon counterparts across 
numerous nitrogen media underscore an intricate narrative that is speculative in nature. 
While our identification of this iModulon suggests a predicted involvement in isoprenoid 
pathways, it does not conclusively establish the active biosynthesis of isoprenoids or 
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carotenoids; this finding, therefore, underscores a potential, yet unconfirmed, biological 
role that could be leveraged in strain design to influence isoprenoid biosynthesis in L. 
reuteri. The exploratory nature of iModulon analysis, as revealed in this study, highlights 
the need for further research to fully understand and potentially harness these complex 
metabolic interactions (80).

Conclusion

With iModulons presenting a promising frontier in probiotic microbial foods and 
natural product engineering, the potential applications and interpretations are vast. Our 
research has provided an informed, data-driven approach to strain design, emphasizing 
the importance of continually updating and refining our knowledge base for improved 
reconstruction of microbial TRNs. As our understanding evolves, the aim remains to 
harness the vast potential of microbial physiological systems, ushering in innovative 
methods to redefine the future of microbial foods.
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