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Scaling up multi-agent patrolling in urban environments

Rohan Patil, Alexander Langley, and Henrik Christensen

UC San Diego, 9500 Gilman Dr., La Jolla, California

ABSTRACT

Patrolling is generally classified as either regular or adversarial patrolling. Regular patrolling aims to periodically
visit important locations so that the duration between visits to locations is minimized. Regular patrolling,
however, is typically deterministic. In the presence of an adversary which is able to observe the patrollers’
behavior before deciding on a plan for intrusion, deterministic patrolling allows an intruder to invade a location
when it knows that patrollers will be elsewhere. Adversarial patrolling addresses this problem by using stochastic
strategies that resist the intruder’s ability to learn and predict the patrollers’ actions.

Keywords: Patrolling, multi-robot, adversarial, decentralized

1. INTRODUCTION

Multi-robot systems have gained interest in the security domain because of their ability to perform tasks which
are difficult for a single robot.1,2 In particular, patrolling is a task which benefits from the cooperation of
multiple robots because of the large area which needs to be continuously surveilled. Broadly speaking, we can
classify patrolling algorithms as either regular or adversarial.3 In regular patrolling, the goal is for a team of
robots to collectively optimize a performance metric, such as the time between visits to important locations.4

The focus of this work, however, will be adversarial patrolling, where patrollers must factor the intruder’s intent
and possible strategies into their own decision-making.5

There is previous work on large-scale patrolling which considers the problem of patrolling a large area with a
limited number of patrollers.6,7 However, the problem of calculating the expected gain for an additional patroller
is underexplored. It is important to calculate the expected gain for an additional patroller because it allows us
to determine the expected returns on resources required to deploy another agent.

We present a patrolling algorithm that is robust and linear in the number of patrollers. The algorithm is
robust because it can handle the case when the number of patrollers is reduced or increased. There can be
multiple reasons for the number of patrollers to be reduced. For example, a patroller might fail, or a patroller
might be reallocated to another task. It is important to be able to handle such cases because it allows us to
quickly recalculate a strategy for the reduced number of patrollers. The robustness of the algorithm is further
enhanced by the fact that it is linear in the number of patrollers and that a change in number of patrollers does
not require re-calculation of strategy for all patrollers. This is important because it allows us to quickly calculate
a strategy for many patrollers.

Our work addresses the problem of computing the expected detection rate for a patroller. The expected
detection rate is important because it allows us to determine the expected returns on resources required to
deploy another agent. We show that we can explicitly find the Markov transition matrix for the patrollers and
use it to compute the expected detection rate for a particular intruder strategy. The construction of the Markov
transition matrix is done in a way which allows us to quickly compute the expected detection rate for many
patrollers. Moreover, the update of the transition matrix is linear in the number of patrollers, which allows us
to quickly calculate the expected detection rate for a different number of patrollers.

The construction of the algorithm results in a partially observed Markov decision process (POMDP) from
the perspective of the intruder. It is known that finding an optimal solution for a POMDP is intractable.8,9 The
patroller strategies leverage this fact, making it hard to find an optimal intruder strategy. We experiment with
various intruder strategies under different scenarios and show that the intruder even with complete knowledge
about the patroller strategies and intensive computation power finds it difficult to achieve a low detection rate.
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2. RELATED WORKS

As previously stated, patrolling algorithms are broadly classified as either regular or adversarial. In regular
patrolling, on one hand, a team of robots formulates its strategy to optimize a metric such as the time between
visits to each location of interest.3,10 Such strategies are generally deterministic,10–12 and for this reason can
be brittle in the face of a strategic intruder who can learn about the patrollers’ behaviors. On the other hand,
adversarial patrolling methods explicitly model the potential intruder, and seek to optimize a lower bound on
the chance of detecting an intruder anywhere in the environment.3 Adversarial patrolling algorithms generally
produce stochastic patrolling behaviors that are more resistant to exploitation by an intruder.6,13,14 Another
feature of adversarial patrolling is that the intruder is able to observe the patrollers’ strategies to choose the best
possible attack.5,15

Game-theoretic methods are a popular choice for modeling the adversarial patrolling scenario, where it is
assumed that the patrollers know the intruder’s possible set of strategies and its utility function.5,6, 16,17 In
particular, zero-sum Stackelberg games model scenarios in which patrollers must commit to a patrolling strategy
that is resistant to attacks even when the intruder is able to learn their strategies perfectly, and have enjoyed
wide adoption in adversarial patrolling.5,16–18 In this work, we also assume that the intruder has access to
patrollers’ strategies and is able to optimize its attack against them. We expand on previous approaches,
however, in two ways. First, we explicitly account for the intruder’s learning process,15 while maintaining the
assumption of complete intruder knowledge. Second, rather than jointly optimizing all patrollers’ strategies
at once, the patrollers compute their strategies one after another. Closely resembling other iterative strategy
optimization frameworks such level-k thinking,1,19,20 each patroller considers what the intruder observes about
previous patrollers’ behaviors when formulating its strategy. We refer the reader to3 for a comprehensive survey
of both regular and adversarial patrolling.

Defining the intruder’s strategy set is a crucial design choice when formulating an adversarial patrolling prob-
lem, and determines the way the intruders move throughout the environment and initiate attacks. In several prior
works, the intruder is assumed to be able to appear instantaneously at any location in the environment,6,7, 15,16

which we shall refer to for the remainder of this work as the heavy hitters problem. Other prior work21 considers
mobile intruders whose strategy sets consist of paths through the environment, but only consider stationary
sensors rather than mobile patrollers, for covering an area (coverage problem). Another variety of problem is
where the aim is to control a perimeter and deny entrance to intruders.18,22 In this case, the motion of the
patroller is constrained to be along the perimeter. In contrast to these prior works, we consider the fully general
case of both patrollers and intruders moving on arbitrarily connected graphs.

3. BACKGROUND AND FRAMEWORK

In the previous section, we discussed the various settings in which patrolling algorithms are used, and the
challenges faced in designing them. Here, we will describe the problem formulation and the framework that we
use to design patrolling algorithms.

3.1 Problem Statement and Formulation

The previous section discussed the heavy hitters problem, linear defense problem (perimeter patrol) and coverage
problem. All these settings address the issue of patrolling an environment to maximize the probability of
detecting an intruder. However, these problem settings in general consider neither limited intruder mobility, nor
that certain locations are more likely to be targeted by the intruder, which is an important factor in designing
patrolling algorithms. The added limitations weaken the intruder, however, it is not necessary that previous works
benefit from it. Hence, we consider the real-world scenario where the intruder is limited by the environment and
design an algorithm that tries to benefit from the limitations.

In our setup, we select potential points of attack and try to patrol them. The intruder is a given a set of entry
points to enter the environment to reach the points of interest (objectives). It is assumed that the patrollers
know these objective points, but not the entry points. The idea is that in real life scenarios, some intruders may
have access via some entry points, while others may have access via other entry points. Another assumption is



that the environment is most of the time large enough that it might be impossible to have complete coverage of
the environment.

These assumptions create certain additional expectations from the patrolling algorithm.

• The patrolling algorithm should be able to detect the intruder as soon as possible.

• The algorithm should prioritize that the intruder can not reach the objective points over faster detection.

• Computation required to determine patroller movements during execution should be low.

In addition, when a human designs a patrolling strategy, we consider various factors like areas of which have
a higher chance of being targeted and strategic points arising due to topography, which if compromised might
give intruders an advantage. Ideally, we want patrolling algorithms to consider all these factors along with the
above-mentioned requirements. However, encoding all this information obtained from human understanding
presents a challenge.

We model our environment as a strongly connected directed planar graph G(V,E), where the vertices V
represent the patrol regions, and the edges E represent the connectivity, similar to some previous works.4,23,24

Moreover, as it is a planar graph, we have |E| = O(|V |). We assume that the patrollers can move from one
vertex to another only if there is an edge between them. The intruder can enter the environment from a subset
of vertices E ⊂ V . The intruder and patroller interaction is modelled as a game. The patrollers are given a set
of objective points O ⊂ V to patrol. At the start of the game, the intruder is given an objective point o ∈ O.
The patrollers are not aware of the entry points E and the intruder’s objective point o. When the game starts,
the patrollers start from some positions and the intruder starts from its preferred entry point. The game ends
either when the intruder comes in the visibility of a patroller or the intruder reaches the objective point, with
the first case resulting in a patroller win and the other in a loss.

3.2 Importance and Utility Matrix

Previous works6,16 have used the concept of utility matrix to model strategy finding as a polymatrix game. We
use a similar concept to model the patrolling problem, however, we use a utility matrix which is a function of
the relative “importance” of the nodes. We introduce the concept of importance to model the strategic points
in the environment. Importance is a real scalar which gives the relative loss to the patrollers if the intruder were
to occupy the particular node. As such, it is never beneficial for the patrollers if the intruder is occupying any
of the nodes. Hence, the value of importance of a node is always non-negative. Note that defining importance
from the perspective of intruder’s gain allows us to model both strategic points and points of interest to the
intruder. For example, if a point is important for the patrollers from a strategic viewpoint, then by giving a high
importance value will promote the patrollers to visit the partcular place for often. In contrast, points which need
to be surveiled but do not necessarily have strategic importance will also receive a high importance value, and
the relative difference between the importance values for a strategic point and say an objective point instructs
the patrollers which is to be given a higher preference.

We use these importance values to construct a utility matrix for the patrollers. Utility matrix is a |V | × |V |
matrix which gives the utility of a patroller if it is at a node u and the intruder is a node v. We choose a simple
function for the construction of the utility matrix.

In this section, we describe how we can define a notion of importance for the nodes in G. In particular, this
allows us to construct a utility matrix

For this work, we define the importance of a node v, represented by I(v) as

I(v) = max
o∈O

α exp (−γd(o, v)) (1)

where α and γ are positive hyperparameters, and d(o, v) is the length of the shortest path connecting o and
v inclusive. We call α the scaling factor or scale and γ the exponent scale.



The entry for the utility matrix corresponding to nodes u, v is given by

U(u,v) = (α− I(v) + 1)× exp(−γd(u, v)) (2)

3.3 Patrol Group Modelling and Strategy Formalism

A patrol group of size n consists of patrollers p1, p2, . . . , pn. The strategy construction of patrollers follows a
“Multi-leader single follower” Stackelberg model. The ith patroller pi acts as a follower of p1, p2, . . . , pi−1 and
a leader of pi+1, pi+2, . . . , pn. This means that the patrollers sequentially decide their strategies based on the
strategies of the patrollers that have already decided their strategies and prioritize points that are not already
covered by the patrollers that have already decided their strategies.

We represent the strategy of the patroller as a vector σi ∈ ∆|V |∗. The strategy of the patroller is a probability
distribution over the vertices of the graph. The patroller samples a vertex from this distribution and moves to
that vertex from its current position using the shortest path. The patroller repeats this process until the game
ends, when the intruder is either detected or reaches its objective. Naturally, the probability distribution of
the patroller pi being at a vertex v at any given point in time is different from σi. Let ρi be the probability
distribution of the patroller pi being at a vertex v at any given point in time which we call as the prior distribution
of pi.

Lemma 3.1. Suppose that a patroller has a strategy σ. Then, the probability that it selects to move along the
shortest path from vertex u to vertex v is given by σ(u)σ(v).

Proof. The patroller can move from u to v only if it is at vertex u and the vertex v is sampled from the
strategy σ. The patroller can be at vertex u and is supposed to sample a vertex from σ only if the vertex u was
previously sampled from σ. Hence, the probability that the patroller moves from u to v is given by σ(u)σ(v).

Lemma 3.2. Given a patroller with a strategy σ, we have:

P (v|a → b) =
I(v ∈ a → b)

|a → b|

where a → b is the ordered set of vertices in the shortest path from a to b.

Proof. It is easy to see that P (v|a → b) will be 0 if v is not in the shortest path from a to b. In a shortest
path, the vertices in the path cannot be repeated. Hence, the probability of being at a vertex v in the shortest
path from a to b is same as the probability of being at any other vertex w in the shortest path from b to a.

Hence, P (v|a → b) ∝ I(v ∈ a → b). Hence, P (v|a → b) = I(v∈a→b)
|a→b| .

We can define a transition matrix Ta→b which moves the patroller from vertex a to vertex b along the shortest
path from a to b. The transition matrix is defined as:

Tv,u = I((u, v) ∈ a → b)

where (u, v) ∈ G(E) and (u, v) ∈ a → b means that edge (u, v) is in the shortest path from a to b.

Theorem 3.3. Given a patroller with a strategy σ for a strongly connected graph G(V,E) which has a prior ρ,
there exists a static transition matrix T ∈ R|V |×|V | such that:

∀v∈∆|V |∀ϵ>0∃k∈N||T kv − ρ|| < ϵ

Furthermore,

ρu =
∑
v∈V

{
σ(a)σ(b)

|a → b|
Ta→b

}
v,u

∗∆n is the unit n-simplex



Proof. If we show that there is a stochastic matrix T such that Tv,u > 0 only if (u, v) ∈ E and Tv,u = 0
otherwise, and Tv,u is equal to the probability of the patroller moving along the edge (u, v), then we have shown
that T is a transition matrix for the patroller. As it is a strongly connected graph, T has a stationary distribution
ρ which is the prior of the patroller.

Let us represent the probability of the patroller moving from vertex u to vertex v in a single step as P (v|u).
By definition, (u, v) /∈ E =⇒ P (v|u) = 0. Hence, P (v|u) = 0 ⇐⇒ Tv,u = 0. Moreover, P (v|u) is equal to the
probability of the patroller moving along the edge (u, v) in a single step. Hence, P (v|u) = Tv,u. In addition, let
P (u) = ρu be the probability of the patroller being at vertex u at any given point in time.

P (v|u) =
∑

a∈V,b∈V

P (v, a → b|u)

=
∑

a∈V,b∈V

P (v|a → b, u)P (a → b|u)

=
∑

a∈V,b∈V

I((u, v) ∈ a → b)P (a → b|u)

=
∑

a∈V,b∈V

I((u, v) ∈ a → b)
P (u|a → b)P (a → b)

P (u)

=⇒ P (v|u)P (u) =
∑

a∈V,b∈V

I((u, v) ∈ a → b)P (u|a → b)P (a → b)

Using lemmas 3.2 and 3.1, we have:

P (v|u)P (u) =
∑

a∈V,b∈V

σ(a)σ(b)

|a → b|
I((u, v) ∈ a → b)

Construct a matrix M such that Mv,u = P (v|u)P (u) for all v, u ∈ V . We have:

M =
∑

a∈V,b∈V

σ(a)σ(b)

|a → b|
Ta→b

It is easy to see that ρu = P (u) =
∑

v∈V Mv,u for all u ∈ V .

Hence, we have:

P (v|u) = 1

ρu

∑
a∈V,b∈V

σ(a)σ(b)

|a → b|
I((u, v) ∈ a → b) =

Mv,u

ρu
(3)

Hence, we have Tv,u =
Mv,u

ρu
which is the transition matrix for the patroller.

From the above theorem, we have that the movements of the patroller can be modelled as a Markov chain.
The transition matrix T is a function of the strategy, σ and the prior is the stationary distribution of the Markov
chain. Furthermore, the theorem proof gives an explicit construction of the transition matrix T as well as the
prior ρ.

Before discussing the construction of the patrol group, we define the notion of visibility matrix. Let G(V,E)
be a graph. The visibility matrix V is a matrix such that Vv,u = 1 if u can see v and Vv,u = 0 otherwise. The
vector pvisi = Vρi gives the probability that a vertex v is visible to the patroller pi. Note that pvisi is not a
probability distribution over the vertices, as multiple nodes can be visible to the patroller at the same time.



Given a patrol group Pg, we define the visibility probability of a vertex v as the probability that the vertex
is visible to at least one patroller in the patrol group. Let P vis

g be the vector of visibility probabilities of the
vertices in the graph.

Theorem 3.4. When a graph G(V,E) is patrolled by the patrol group Pg with n patrollers with the visibility
matrix V:

P vis
g = 1−

n∏
i=1

(1− pvisi ) = 1−
n∏

i=1

(1− Vρi)

Proof. Let P vis
g be the vector of visibility probabilities of the vertices in the graph. Let pvisi be the vector of

visibility probabilities of the vertices in the graph for patroller pi. Let p
vis
i = Vρi.

Hence, we have that the probability that a vertex v is not visible to the patroller pi is given by 1−(pvisi )v. The
probability that a vertex v is not visible to any patroller is given by 1−

∏n
i=1(1−(pvisi )v). Hence, we have that the

probability that a vertex v is visible to at least one patroller is given by 1−
∏n

i=1(1−(pvisi )v) = 1−
∏n

i=1(1−Vρi)v.
Hence, we have that P vis

g = 1−
∏n

i=1(1− Vρi).

To create a multi-leader single follower model, we use the patrol group vector of visibility probabilities P vis
g

when only i patrollers are present to construct the strategy of the i+ 1 patroller. In general, every patroller in
the patrol group can have a different utility matrix. However, for simplicity, we assume that all patrollers have
the same utility matrix U as defined in equation 2.

For the i+ 1 patroller, we have:

σi+1 = argmaxx∈∆|V | min
1≤i≤|V |

U ◦ exp

(
−λ

P vis
g

||P vis
g ||∞

)T

x


i

(4)

where λ is a predetermined constant and ◦ represents element-wise multiplication.

In essence, we are promoting the i + 1 patroller to patrol the vertices that are not visible to the other
patrollers. The λ parameter is used to control the trade-off between the utility of the patroller and the visibility
of the vertices. The larger the value of λ, the more the patroller will focus on the utility of the vertices. The
smaller the value of λ, the more the patroller will focus on the visibility of the vertices. Hence, a large value of
λ will create a higher chance for faster capture of the intruder. Therefore, λ is a hyperparameter that allows
us to balance between assuring that the intruder is detected before reaching the goal and the desired speed of
detection.

Figure 1. The graph on the left shows the objectives as red nodes and the entries as the yellow nodes. The remaining
graphs from left to right show the visibility distribution for p1, p2, p3 in the patrol group generated respectively. The
higher the chance that the node is in visibility, the yellower the node. The edges are colored in a similar manner showing
the transition probabilities.



Figure 1 shows the strategies learned by the patrollers in the multi-leader single follower model for a randomly
generated graph and some selected objective points. The yellower the vertex, the more the patroller patrols the
vertex. The patrollers patrol the vertices that are not visible to the other patrollers. The patrollers also patrol
the vertices that are visible to the other patrollers but have a high utility. The patrollers patrol the vertices that
are visible to the other patrollers but have a low utility less frequently. Figure 2 shows a schematic representation
of how a patrol group strategy and prior calculation looks. There is supposed to be a connection between each
ρi and σj where i < j but, these edges are omitted for clarity.

Figure 2. The figure schematically shows a dependency graph of values that depend on other values for the proposed
patrol group. The utility matrix is common for all patrollers, represented by the blue circle. The σ’s are the strategy of
the patrollers and ρ’s are the stationary distribution of the patrollers. The connections between ρi and σj for all i < j
are omitted as it only represents that instead of only using ρi−1, current P

vis
g will be used.

4. INTRUDER STRATEGIES AND EXPERIMENTAL SETUP

The intruder can use various strategies to attack the system. In this section, we describe the strategies that we
consider in our experiments. We also describe the experimental setup that we use to evaluate the effectiveness
of the proposed defense.

4.1 Intruder Strategies

The three strategies that we consider are as follows:

• Simple: The intruder takes the shortest path to the target node and then moves to the next node in the
shortest path to the target node. This strategy takes very less computation. When multiple entries are
present, the intruder chooses the entry which requires the least number of hops to reach the target node.

• Greedy: The intruder is provided access to the priors of the patrollers. The intruder then puts a cost on
each vertex equal to the value of P vis

g and chooses the path which has the least total cost.

• Lookahead: This strategy is similar to the greedy strategy. The intruder weighs the vertices according to
patrol group visibility probabilities. After taking a step, the intruder uses the fact that it is not detected to
redistribute the probability mass in priors of the patrollers to update its belief about the patroller positions.
The patrol group visibility probabilities are then updated accordingly. The intruder then chooses the path
which has the least total cost, takes a step and repeats the process until it reaches the target node.

Each strategy can result in different paths being taken by the intruder for the same target node. To evaluate
the effectiveness of the path taken by the intruder, we use the expected detection rate as a metric. The expected
detection rate is defined as the probability that the intruder is detected by the patrollers in a patrol group for a
particular path.



Let E(Pg, (v1, v2, . . . , vn)) denote the expected detection rate for a patroller group Pg and a path (v1, v2, . . . , vn).
The expected detection rate is defined as the sum of the probabilities of detection for each vertex in the path
until the intruder is detected. The probability of detection at a vertex vt is defined as the probability that the
intruder is detected at vt given that the intruder is not detected at any of the previous vertices.

Theorem 4.1. Let Pg be a patroller group with patrollers p1, p2, . . . , pk and v1, v2, . . . , vn be a path. Then, there
is a recursive algorithm to calculate E(Pg, (v1, v2, . . . , vn)).

Proof. As the intruder moves from one vertex to another, information about the patroller positions is gained,
as the intruder will move to the next vertex only if it is not detected. It implies that the belief of the intruder
about the patroller positions will be updated.

Let ρti denote the belief of the intruder about the patroller pi’s position at the time t. By definition, ρ1i = ρi
for all patrollers pi.

We want to evaluate a path only until the intruder is not detected, and stop evaluating the path once the
intruder is detected. If it was possible to evaluate only until the intruder is not detected, then we could have
calculated the probability of detection itself. However, the intruder may have gotten detected somewhere in the
path, and that creates the issue that we no longer know the probability of detection of for the rest of the path.

To overcome this issue, we can consider the expected detection rate as the sum of the probabilities of detection
for each vertex in the path until the intruder is detected.

Let X1, X2, . . . , Xn be indicator random variables such that Xt = 1 if the intruder is detected at vertex vt
and Xt = 0 otherwise. Hence, we have,

E(Pg, (v1, v2, . . . , vn)) =

n∑
t=1

E(Xt)

However, we do not know the values of Xt for all t. We can only calculate the values of Xt for t such that the
intruder is not detected at vt. So we only do the summation until the expectation is less than unity. Furthermore,
we add the constraint that only one of the Xi’s can be 1 for all i such that

∑i
j=1 EXj ≤ 1†.

Let V t represent the set of vertices visible to the patrollers at time t.

=⇒ P (Xt = 1) = P (vt ∈ V t)

t−1∏
j=1

(1− P (vj ∈ V j))

Let P vis
g (t) represent the vector of visibility probabilities of the vertices in the graph at the time t for the

patroller group Pg. Then, we have that P (vt ∈ V t) = P vis
g (t)

vt
.

Using theorem 3.4, we have that P vis
g (t) = 1−

∏k
i=1(1− Vρti), where V is the visibility matrix of the graph.

Ideally ρti is a function of the history of the intruder being visible or not to the patroller pi for all the previous
time steps without the constraint that only one of the Xi’s can be 1. However, as we are considering only one
of the Xi’s to be 1, we can calculate ρti under the assumption that for all previous time steps, the intruder was
not in visibility. Hence, we have the following:

ρti = Ωvt(Tiρ
t−1
i )

where Ti is the transition matrix of the patroller pi and Ωvt(ρ
t−1
i ) is a function that returns the belief of the

intruder about the patroller pi’s position at vertex vt. The function Ωvt
(w) is defined as follows:

†All the issues arise because there might be places where the intruder can be detected with probability 1 multiple times
along the path. So, if we say that X ′

t are 1 if intruder is detected and otherwise 0, then P (Xt = 1) = P (X ′
t = 1, X ′

t−1 =
0, . . . , X ′

1 = 0)



(Ωvt(w))i =


0 if i ∈ V(vt)

wi

1−
∑

j∈V(vt)
wj

otherwise

where V(vt) is the set of vertices from which vt is visible.

Let Ωn
(v1,v2,...,vn),T

(w) = Ωvn(TΩvn−1
(T . . . (TΩv1

(w)))). This implies that ρti = Ωn
(v1,v2,...,vt),Ti

(ρi). As the

above equation is a recursive equation, it is possible to recursively calculate ρti.

Let Γt =
∏t

j=1

∏k
i=1(1− Vρji )vj . This implies that Γt = (Γt−1)

∏k
i=1(1− Vρti)vt .

P (Xt = 1) = Γt−1

(
1−

k∏
i=1

(1− Vρti)

)
vt

As it is possible to calculate Γt recursively, we can calculate the expected detection rate for each vertex in
the path. We can also calculate the expected detection rate for the path as a whole using a recursive algorithm.

4.2 Experimental Setup

To experiment the effectiveness of the proposed algorithm, we generate random graphs with different number
of vertices and edges. For each graph, we generate different configurations of objective points and entry points.
We observe the effectiveness of the proposed algorithm for different number of patrollers with different visibility.
The experiments assume that the visibility of both the patrollers and the intruder is the same. Furthermore, the
number of objective points is always higher than the number of patrollers and that the entry points are always
on the boundary of the graph. We add another constraint that the objectives need to be at least 6 hops away
from the boundary of the graph.

For the purpose of comparison, we also consider the random patroller strategy and a modified version of the
algorithm proposed by Langley, et al.(2022)6 which we call the Nash algorithm. In random patroller strategy,
the patrollers do a random walk on the graph. In the Nash algorithm, all patrollers have the same strategy and
rather than selecting edges, it selects vertices. The vertices are weighed according to net probability of transiting
to the vertex.

We use a base 18× 18 graph for all the experiments. For each graph, we generate 3 different configurations
of entries, with 2 entries in each configuration. The number of objectives is varied between 6 and 9 inclusive.
For each entry configuration and objective count, 3 configurations of objectives are generated. The number of
patrollers is varied between 2 and 5. The experiments are repeated 100 times for each configuration.

We use a total of 20 graphs for an experiment for a given visibility and hole probability. Hole probability
represents the chance of dropping a vertex from the graph. We use a hole probability of 0.15, 0.25, 0.35 for the
experiments. The graphs are generated using the networkx25 library in python. The visibility of the patrollers
and the intruder is either 1 or 2.

5. OBSERVATIONS AND RESULTS

Figure 3 and figure 4 show the results when the visibility is 1 and, 2 respectively. We observe that the proposed
algorithm outperforms the random patroller strategy and the modified version of the algorithm proposed in6

in all cases. The dashed lines in the figures represent the averaged expected detection rate calculated, where
the exact value is clipped to 1 if it is greater than 1 before averaging. Hence, the dashed lines are the clipped
expected detection rates. The solid lines represent the experimental detection rate or experimental accuracy.

One of the reasons why we outperform the Nash equilibrium-based strategy, as the patrollers do not coor-
dinate. Other reasons include that it does not encode the importance of the detection of the intruder, which
acts as an explicit bias in our algorithm while determining patroller strategy. The graphs indicate that even



Figure 3. Shows the experimental accuracy with solid lines and the calculated averaged expected detection rate with
dashed lines. The red color represents the proposed algorithm, the blue color represents the random patroller strategy
and the green color represents the modified version of the Nash strategy6

when multiple patrollers use the same Nash equilibrium-based strategy, the detection rate is competitive with
the proposed algorithm when the intruder uses sophisticated techniques like Look ahead strategy.

However, in cases where the intruder uses a simple strategy, like the shortest path, there is a large difference
in accuracies between the proposed algorithm and the Nash equilibrium-based strategy. This shows that having
the importance information is important for the patrollers to detect the intruder.

The clipped expected detection rate closely follows the experimental accuracy. As it is an expectation, it is
always greater than or equal to the experimental accuracy. We also see the effect of increased visibility on the
expected detection rate and the experimental accuracy. As expected, the accuracy increases with the visibility
because the patrollers can cover more area with less movement.

6. CONCLUSIONS AND FUTURE WORK

We propose an algorithm that is scalable to many patrollers and is robust to change in number of patrollers.
We also propose a method to encode human knowledge of the environment in the form of importance, which
is used to determine the patroller strategy. The proposed algorithm can benefit more than other algorithms



Figure 4. Same as figure 3 but when the visibility of the patrollers and the intruder is 2.

from the limitations that are faced by intruders in real life scenarios. We also show that the proposed algorithm
can outperform the random patroller strategy and the modified version of the algorithm proposed in6 in all the
studied cases. The proposed definition of expected detection rate can be calculated in polynomial time and
serves as a good measure to grasp the benefits and losses when a patroller is added or removed respectively.

Our future work includes exploring strategies which allow communication between patrollers during the
execution of the patrolling algorithm while preserving the scalability, robustness and decentralized execution of
the patrollers. Furthermore, in such a scenario, we can also explore the possibility of using the patrollers to
detect the intruder and then use the patrollers to coordinate to capture the intruder. Some other directions are
the case of multiple coordinating intruders, dynamically changing utility functions and patrolling in a dynamic
environment.
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