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Abstract

Probabilistic prediction is a central process in language com-
prehension. Properties of probability distributions over predic-
tions are often difficult to study in natural language. To obtain
precise control over these distributions, we created artificial
languages consisting of sequences of shapes. The languages
were constructed to vary the uncertainty of the probability dis-
tribution over predictions as well as the probability of the pre-
dicted item. Participants were exposed to the languages in a
self-paced presentation paradigm, which provides a measure
of processing difficulty at each element of a sequence. There
was a robust pattern of graded predictability: shapes were pro-
cessed faster the more predictable they were, as in natural lan-
guage. Processing times were also affected by the uncertainty
(entropy) over predictions at the point at which those predic-
tions were made; this effect was less consistent, however.
Keywords: Entropy, prediction, statistical learning, artificial
language, psycholinguistics

Introduction
Our environment is characterized by recurring temporal pat-
terns; the sound of an ambulance siren, for example, tends to
predict the appearance of an ambulance. Humans can quickly
learn to exploit these contingencies between stimuli to antic-
ipate future events and react to those events more effectively.
The ability to track dependencies across the elements of a
sequence is central to language processing: prediction of up-
coming words is employed during language comprehension
(DeLong, Urbach, & Kutas, 2005) and may play a central
role in acquisition (Gómez, 2002).

Prediction in natural language is rarely categorical: there is
generally some uncertainty as to the upcoming word. Rather
than predict a single word or avoid making predictions al-
together, readers maintain a probability distribution over the
upcoming words: words that are more likely to come up are
activated to a greater extent (Smith & Levy, 2013). Probabil-
ity distributions over predictions are often difficult to study in
natural language, due to the need to find sets of words that
happen to have the desired probabilistic relations in a natu-
ral corpus. The present study builds on work that shows that
the processing of temporal contingencies can be studied using
artificial language learning experiments. These experiments
typically consist of a familiarization phase, in which partici-
pants are exposed to the artificial language, and a test phase,
in which they are requested to distinguish sequences that fol-
low the patterns of the language from sequences that do not.
We use this paradigm to study probabilistic prediction in se-
quence learning and processing.

Quantifying probabilistic prediction: A predictive de-
pendency is made up of two parts: the point at which the

prediction is generated (the predictive item) and the point at
which it is matched against the incoming input (the predicted
item). We study both parts of the process. At the predictive
item, multiple probabilistic predictions can typically be gen-
erated. Higher uncertainty over the correct prediction may
lead to increased competition among those predictions and
slower processing. We follow earlier work in quantifying un-
certainty using the entropy of the distribution over possible
predicted items (Linzen & Jaeger, 2014; Hasson, 2017):

H =− ∑
w∈W

P(w) log2 P(w) (1)

where W is the set of possible items and P(w) is the proba-
bility of w in the current context. At the point at which pre-
dictions are matched against the input, input items that were
predicted with a higher probability may be processed more
quickly. In natural language, processing difficulty at an item
w is proportional to its surprisal (− log2 P(w)): more surpris-
ing words tend to be read more slowly (Smith & Levy, 2013).
A final expectation-based measure that has been argued to be
a reliable predictor of reading times (RTs) in natural language
is uncertainty reduction: words that reduce uncertainty about
the sequence to a greater extent are predicted to be read more
slowly (Hale, 2003; Frank, 2013).

The experiments: We report two experiments designed to
examine these quantitative measures of probabilistic predic-
tion in artificial languages. In what follows, we briefly dis-
cuss our general methodological strategy.

In many artificial language learning experiments, the fa-
miliarization phase consists of passive exposure; as such, the
only behavioral measure collected in these studies is the pro-
portion of correct grammaticality judgments given after the
familiarization stage is over. Recently, a number of online
paradigms have been proposed that track the learning pro-
cess as it unfolds over the course of the familiarization phase
(Siegelman, Bogaerts, Christiansen, & Frost, 2017). On-
line paradigms also provide an index of processing time at
each individual item of the sequence, making them partic-
ularly well-suited to studying the generation and validation
of predictions. We adopt one of these paradigms, the self-
paced reading paradigm (Just, Carpenter, & Woolley, 1982),
adapted to artificial language learning by Karuza, Farmer,
Fine, Smith, and Jaeger (2014). In this paradigm, the ele-
ments of each sequence are presented sequentially; the par-
ticipant controls when the next sequence element is revealed.

Previous studies of prediction have focused on sequences
with nonadjacent dependencies: the sequence is of the form
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AXB, where A predicts B (Karuza et al., 2014; Misyak, Chris-
tiansen, & Bruce Tomblin, 2010). Instead, we use dependen-
cies of the form AB, without an intervening element; such de-
pendencies are in general easier to learn (Newport & Aslin,
2004). By increasing the likelihood that our participants will
learn the language, we can ask more fine-grained questions
than would be possible using nonadjacent dependencies.

Summary of goals: We address the following issues:

1. Does the probability of the second shape B given the first
shape A affect the processing of B?

2. Are processing times at the point where the prediction can
be made (shape A) affected by the uncertainty of the prob-
ability distribution over predictions?

3. Does the reduction of uncertainty about the sequence at
shape B entail greater processing difficulty?

Experiment 1
Stimuli
Following Karuza et al. (2014), we used sequences of let-
ters from the Ge’ez script, which is used to write several
Ethiopian and Eritrean languages. We refer to these letters
as shapes since none of our participants were familiar with
this script. As in Karuza et al. (2014), our sequences con-
sisted of three shapes. As we have mentioned, we omitted the
intermediate shape – the dependency was adjacent. To keep
the structure of the stimuli similar to the stimuli used in the
previous study and to avoid task effects related to the begin-
ning of a new sequence, all of the sequences started with a
fixed shape r (distinct from the A and B shapes). This shape
was the same in all trials for a given participant and was not
analyzed.

The language used in this experiment is described in Ta-
ble 1. Each participant was exposed to two types of A shapes.
Low entropy A shapes were followed by one of two B shapes,
with probability 1/4 and 3/4 respectively. High entropy A
shapes were followed by one of four B shapes, each with
probability 1/4. There were two A shapes of each type, for
a total of four A shapes. None of the B shapes were repeated
across A shapes: there were 12 distinct B shapes. We refer
to the B shapes with a probability of 1/4 as high surprisal
shapes, and to shapes with a probability of 3/4 as low sur-
prisal shapes.

To control for potential differences in the visual complex-
ity of particular shapes, the shapes that served as a1, a2 and
b1, . . . ,b6 were counterbalanced across participants.

Participants
A total of 44 participants (24 women and 20 men; age range:
20–28, mean age: 23.4) from the Hebrew University of
Jerusalem community completed the experiments.

Procedure
The experiment consisted of three phases: familiarization,
test and a post-test phase.

Shape R Shape A Shape B TP Surprisal

High entropy: (H = 2)
r a1 b1 1/4 2
r a1 b2 1/4 2
r a1 b3 1/4 2
r a1 b4 1/4 2

Low entropy: (H = 0.81)
r a2 b5 1/4 2
r a2 b6 3/4 0.41

Table 1: Half of the language used in Experiment 1 (the
other half is duplicated: a high entropy a3 paired with high
surprisal b7 through b10 and a low entropy a4 paired with a
high surprisal b11 and a low surprisal b12). TP indicates the
transitional probability between the A and the B shape (e.g.,
P(b1|a1) = 1/4). H indicates the entropy of each distribution.

Familiarization phase: Each trial started with a sequence
of dashes where the shapes would be; participants pressed
the spacebar to reveal the next shapes one by one. When
a shape was revealed, the previous shape was replaced by a
dash again. Before this phase of the experiment began, par-
ticipants were instructed to try to remember the sequences,
since they would be tested on them later on.

There were 288 sequences in this phase. This contrasts
with the familiarization phase in Karuza et al. (2014), which
consisted of 432 sequences; we chose to have a shorter fa-
miliarization phase because prediction effects in Karuza et
al. (2014) plateaued about half way through the experiment.
We further simplified their design by eliminating the catch
trials meant to ensure that participants were paying atten-
tion. These trials were not necessary because we analyzed
data only from participants who successfully learned the lan-
guage: our assumption was that participants who were not
paying attention would fail to learn the language.

Test phase: This phase consisted of 24 trials, each of which
elicited a judgment for one sequence. All three shapes of the
sequence were presented at once (not in self-paced presen-
tation). Half of the trials contained sequences that had been
presented during familiarization; the other half contained the
shapes from the familiarization phase arranged in unseen se-
quences. Participants were asked to press one button if the se-
quence appeared familiar given the sequences they had seen
in the first phase, and another button if it did not.

Post-test phase: The test phase was followed by another
self-paced presentation phase. This phase was somewhat
shorter, consisting of 192 trials. Participants were again in-
structed to attempt to remember the shapes. The goal of this
phase was to examine the behavior of participants who have
already learned the language; for example, if predictability
effects were found, are they restricted to the stages in which
the participant has not yet mastered the language?

2593



Familiarization Post−test

High entropy

Low entropy

300

600

900

1200

0 60 120 180 240 0 60 120 180

Trial

R
ea

di
ng

 ti
m

e 
(m

s)

Familiarization Post−test

High entropy,
high surprisal

Low entropy,
high surprisal

Low entropy,
low surprisal300

600

900

1200

1500

1800

0 60 120 180 240 0 60 120 180

Trial

R
ea

di
ng

 ti
m

e 
(m

s)

Figure 1: Reading times in Experiment 1 (above: A shape;
below: B shape).

Results
Accuracy: We briefly analyze the familiarity judgments
from the test phase before moving on to the analysis of the
processing time data from the familiarization phase, which
is the focus of this study. On average, participants were
more likely to judge a sequence as grammatical, leading
to higher accuracy on grammatical than ungrammatical se-
quences (82% vs. 60%). To test for differences across types
of test sequences, we coded the test sequences based on the
category of their A and B shapes (e.g., low entropy + high
surprisal). Logistic mixed-effects models fitted separately
to grammatical and ungrammatical sequences did not find
significant differences across sequence types (grammatical:
χ2(2) = 2.8, p = .24; ungrammatical: χ2(2) = 4.4, p = .11).

RT preprocessing and analysis: We refer to the sequential
processing times measured by key press latencies as read-
ing times (RTs) for consistency with the sentence process-
ing literature. Following Karuza et al. (2014), we excluded
shapes on which RTs were (1) longer than six seconds or
(2) three standard deviations higher or lower than the partici-
pant’s mean RT for shapes in the same position. This resulted
in the exclusion of 1.1% and 2.5% of the shapes respectively.

We only analyzed RTs from participants who gave correct
grammaticality judgments to at least 18 of the 24 sequences

(the lowest number for which p < .05 according to an exact
binomial test). Of the 44 participants, 23 passed this thresh-
old. Our statistical analysis largely followed Karuza et al.
(2014). RTs were log-transformed and submitted to a linear
mixed-effects regression with a random intercept for shape
and a random intercept and slope for all fixed effects. Trial
number and its interaction with the experimental factors were
included in all models.

RT results: The time course of the results is plotted in Fig-
ure 1. Overall, RTs decreased markedly over the course of
the familiarization phase, picked up in the beginning of the
post-test phase, then decreased again.

The average difference in RTs between high and low en-
tropy A shapes in the familiarization phase was 119 ms (877
ms for high entropy and 758 ms for low entropy shapes). The
linear mixed-effects model analysis indicated that this differ-
ence was statistically significant (χ2(1) = 4.2, p = .04). The
effect of trial number was highly significant (χ2(1) = 31.5,
p < .001). The interaction between trial number and entropy
did not reach significance (χ2(1) = .06, p = .81), suggest-
ing that there was no clear evidence that the effect of entropy
changed over the course of the experiment.

There were three types of B shapes: high surprisal ones that
followed a low entropy A shape (e.g., b5, see Table 1); high
surprisal ones that followed a high entropy A shape (e.g., b1);
and low surprisal ones that followed a low entropy A shape
(e.g., b6). We first examined the effect of surprisal, collapsing
across the two categories of high surprisal shapes. We found
that high surprisal shapes were read more slowly than low
surprisal shapes (χ2(1) = 17.8, p < .001); the average differ-
ence in RT was 200 ms (812 ms for high surprisal and 612
ms for low surprisal shapes). The effect of trial number was
highly significant again (χ2(1) = 44.6, p < .001), and inter-
acted with surprisal such that the effect of surprisal weakened
over the course of the familiarization phase (χ2(1) = 9.9,
p = .002).

Finally, we compared the two types of high-surprisal B
shapes, which were matched for surprisal but differed in the
entropy of the A shape that preceded them. The mean RTs
were almost identical across these two types of shapes (812
ms after high entropy A shapes and 813 ms after low entropy
ones). This difference was not significant in the statistical
analysis (main effect of entropy: χ2(1) = 1.2, p = .27; inter-
action with trial number: χ2(1) = .9, p = .35).

Discussion
In this experiment, participants were taught a language de-
signed to assess the effect of measures of probabilistic pre-
diction on sequence processing. Neither surprisal nor uncer-
tainty reliably affected judgment accuracy in the test phase;
they did, however, modulate processing times during the fa-
miliarization phase. First, predictability affected RTs in the
expected way: high surprisal B shapes were read more slowly
than low surprisal ones. Second, uncertainty at the A shape af-
fected RTs in a way that is consistent with competition among
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the predictions: higher entropy shapes were read more slowly
than low entropy ones.

Finally, we did not find evidence for an effect of uncer-
tainty reduction on the B shape. To see why, note that the
B shapes are the last item in the sequence; as such, they re-
duce the uncertainty about the sequence to 0. The amount by
which uncertainty is reduced is therefore equal to the entropy
of the distribution over predictions at the A shape; yet there
was no evidence for a difference in reading times between
high surprisal B shapes that followed a high entropy A shape
(and therefore reduced entropy by 2 bits) and high surprisal
B shapes that followed a low entropy A shape (and reduced
entropy by only 0.41 bits).

Experiment 2
In Experiment 1, uncertainty was perfectly correlated with
the number of possible predictions: high entropy A shapes
had four prediction options compared to two options in low
entropy A shapes. The goal of the current experiment is to ex-
amine whether we can find entropy effects when the number
of options is kept constant. For a given number of options,
entropy is highest when the distribution is uniform; we there-
fore compare a uniform distribution to a skewed one, that is,
with one option that is more likely than the others.

Participants
A total of 49 participants completed the experiment. Two
participants were excluded for not completing the experiment
and one for having prior exposure to Amharic, which uses the
Ge’ez script; of the remaining participants, 35 were women
and 11 men (age range: 19–31; mean age: 23.8).

Materials
The language used in Experiment 2 is shown in Table 2.
There were three types of A shapes. Two of the A shapes
could be followed by three possible B shapes (to avoid hav-
ing to teaching participants a very low probability option, we
used three options instead of four as in Experiment 1.) After
a1, the distribution of the B shapes was uniform: each of the
shapes had a probability of 1/3. After a2 the distribution was
skewed: one of the shapes had a probability of 2/3 and the
other two 1/6 each.

To control for the possibility that any difference between
the two 3-option shapes could reflect skew rather than en-
tropy as such, we additionally included a third type of A shape
that was followed by one of two B shapes, each with prob-
ability 1/2. As this distribution is uniform, we expect this
shape to pattern with a1 if the relevant factor is skew. Con-
versely, since its entropy is lower than either 3-option shapes,
it should be processed faster than either of them if entropy is
the relevant factor.

Due to the larger number of conditions and the need to pro-
vide sufficient exposure to lower probability B shapes (1/6
compared to 1/4 in Experiment 1), each type of A shape was
represented by a single shape only.

Shape 1 Shape 2 Shape 3 TP Surprisal

Three options, uniform: (H = 1.58)
r a1 b1 2/6 1.58
r a1 b2 2/6 1.58
r a1 b3 2/6 1.58

Skewed, three options: (H = 1.25)
r a2 b4 4/6 0.58
r a2 b5 1/6 2.58
r a2 b6 1/6 2.58

Uniform, two options: (H = 1)
r a3 b7 3/6 1
r a3 b8 3/6 1

Table 2: Language used in Experiment 2. H indicates the
entropy of each distribution.

Procedure
The structure of the experiment was the same as in Exper-
iment 1. The familiarization self-paced presentation phase
consisted of 324 sequences. This phase was followed by 16
familiarity judgments, and an additional post-test self-paced
presentation phase with 216 sequences.

Results
Accuracy: Overall accuracy was higher than in Experi-
ment 1, though the bias for marking sequences as grammati-
cal remained: 93% of the grammatical sequences and of 77%
of the ungrammatical sequences were identified correctly. We
tested for an effect of the four types of sequences (see Ta-
ble 2) on accuracy rates on grammatical sequences. A logis-
tic mixed-effects model did not reveal an effect of sequence
type (χ2(3) = 4.5, p = .21). Likewise, there was no effect of
either A or B shape type on accuracy rates in ungrammatical
sentences (A: χ2(2)= 2.65, p= .27; B: χ2(3)= 3.2, p= .36).

RT preprocessing and analysis: As before, we restricted
our analysis to participants who showed evidence of learning
the language, defined as giving correct judgments more of-
ten than chance (p < .05 according to the binomial test); this
translates to performing at least 13 of the 16 trials correctly.
Of the 46 participants, 33 passed this threshold. We excluded
key presses with extreme RTs using the same criteria as be-
fore, resulting in the exclusion of 3.38% of the shapes. Anal-
ysis methods were in general identical to Experiment 1, with
the exception that our mixed-effects models did not include a
random intercept for shape in cases where there was only one
shape in each condition (i.e., in the analysis of A shapes).

RT results: The qualitative pattern of results was similar to
Experiment 1: RTs globally decreased over the course of the
familiarization phase, briefly increased in the post-test phase,
then decreased again.
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Figure 2: Condition means in the familiarization phase of Ex-
periment 2 (above: A shape; below: B shape). Error bars
represent 95% within-subject confidence intervals.

We first discuss the statistical analysis of familiarization
phase RTs on A shapes, starting with an analysis of en-
tropy as a numerical predictor There was a main effect of
entropy (χ2(1) = 5.1, p = .02), a main effect of trial num-
ber (χ2(1) = 40.3, p < .001) and a nonsignificant interaction
(χ2(1) = 3.3, p = .07). RTs in the individual conditions were
longest on the uniform 3-option shape and shortest on the
skewed 3-option shape; although the entropy of the 2-option
shape was lowest of all three shapes, average reading times
on this shape were somewhat higher than the skewed 3-option
shape (see Figure 2). The difference in RTs between the two
3-option shapes was significant (χ2(1)= 5.1, p= .02), but the
interaction with trial number was not (χ2(1) = 2.3, p = .13).
The difference between the two shapes with a uniform pre-
diction distribution (3-option vs. 2-option) and the interac-
tion between this difference and trial number did not reach
significance (main effect: χ2(1) = 3.5, p = .06; interaction:
χ2(1) = 3.1, p = .08), and neither did the difference between
the skewed 3-option and uniform 2-option shapes (main ef-
fect: χ2(1) = .5, p = .48; interaction: χ2(1) = .03, p = .87).

We next discuss the B shapes. Again, we first enter sur-
prisal as a numerical predictor. The statistical analysis found
a highly significant effect of this predictor (χ2(1) = 36.2,
p < .001) and of trial number (χ2(1) = 75.3, p < .001),
as well as an interaction between the two (χ2(1) = 20.3,
p< .001). Inspection of the average RTs for each level of sur-
prisal (see Figure 2) suggests that not all differences between

consecutive levels of surprisal are equally large; in fact, only
the difference between the p = 2/6 and p = 3/6 shapes was
statistically significant (χ2(1) = 21.3, p < .001).
Discussion
RTs on the two 3-option A shapes were consistent with the
hypothesis that higher uncertainty leads to longer RTs. The
difference was smaller than in Experiment 1 (around 60 ms),
though that is to be expected given the smaller difference in
entropy between the two shapes in the current experiment.
The same hypothesis, however, predicts that RTs on the 2-
option shape should be lower than either 3-option shape; there
was no evidence for such an effect.

There was a strong effect of surprisal overall, but there was
often no evidence for differences between consecutive levels
of surprisal. The difference between the two B shapes that
followed the 3-option skewed A shape was particularly large.
Finally, since no two B shapes were matched on predictability
and at the same time differed in the entropy of the A shape that
predicted them, the design of Experiment 2 did not allow us
to test for an effect of uncertainty reduction.

General Discussion
Probabilistic prediction plays a central role in language pro-
cessing: a predictive item sets up expectations for predicted
items later in the sequence. We studied the reflexes of prob-
abilistic prediction in two artificial languages, which allowed
us to exert precise control over the distribution over predic-
tions. We used self-paced presentation (Just et al., 1982;
Karuza et al., 2014), which yields implicit measures of pro-
cessing at every element of the sequence. Two experiments
revealed graded predictability effects parallel to those found
in natural language. They also suggested that higher uncer-
tainty over predictions at the point where predictions are gen-
erated leads to longer processing times, although these effects
were weaker. No clear support was found for an effect of un-
certainty reduction, even when controlling for predictability.

To further investigate the results, we pooled the data from
both experiments and plotted the mean RTs in the familiar-
ization phase by numerical entropy and surprisal in Figure 3
(since Experiment 2 was slightly longer, we discarded the
trials following the first 288 trials for the purpose of this
analysis). The evidence for a linear effect across experi-
ments of the numerical predictors appears stronger for sur-
prisal than for entropy. In particular, there are no clear differ-
ences among low-entropy distributions (lower than 1.5), and
the slight differences that do exist are in the opposite direc-
tion than predicted by a linear relationship between entropy
and RTs. Statistical models including data from both exper-
iments did not reveal overall entropy effects at the A shape
(entropy: χ2(1) = 0.4, p = .53; trial number: χ2(1) = 63,
p < .001; interaction: χ2(1) = 2, p = .16), but did reveal
clear surprisal effects at the B shape as well as an interaction
with trial number (surprisal: χ2(1) = 25.5, p < .001; trial
number: χ2(1) = 104.1, p < .001; interaction: χ2(1) = 21.7,
p < .001).
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Figure 3: Comparison across the experiments: means of the
first 288 trials of the familiarization phase (above: A shape;
below: B shape). Error bars represent within-subject confi-
dence 95% confidence intervals based on two standard devi-
ations from the mean.

While any conclusion from pooling together two experi-
ments with a different design and a different set of subjects
should be taken as tentative, the nonlinear relationship be-
tween entropy and processing times suggests that entropy
may not be the best metric for difficulty in prediction genera-
tion; additional properties of the distribution over predictions,
such as the number of options or the probability of the most
likely option, may need to be taken into consideration.

Figure 1 suggests that RTs in Experiment 1 may have
reached a plateau about 250 trials into the familiarization
phase; differences among conditions appeared to grow in-
creasingly small around this time (Karuza et al. (2014) report
a similar pattern). RTs increased at the beginning of the post-
test phase, and then plateaued again around 100 trials into the
pre-test phase. We did not present an in-depth analysis of the
post-test phase for reasons of space; however, the fact that
the overall increase in RTs at the beginning of the post-test
phase was accompanied by a re-emergence of predictability
and entropy effects suggests that the convergence between the
conditions at the end of the familiarization phase is due to a
floor effect rather than due to participants abandoning predic-
tive processes once the language has been learned.

We made relatively few modifications to the methodology
developed by Karuza et al. (2014), with the goal of building
on their established paradigm. This entailed in particular that

our sequences were made up of visual symbols rather than au-
ditory or written words; none of the symbols had any seman-
tic content. The encouraging results of the present study sug-
gest that this method may be extended to richer artificial lan-
guages that are a closer approximation of natural languages.
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