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Abstract

We present an efficient numerical method to solve for cyclic steady
states of nonlinear electro-mechanical devices excited at resonance.
Many electro-mechanical systems are designed to operate at reso-
nance, where the ramp-up simulation to steady state is computation-
ally very expensive – especially when low damping is present. The
proposed method relies on a Newton-Krylov shooting scheme for the
direct calculation of the cyclic steady state, as opposed to a näıve tran-
sient time-stepping from zero initial conditions. We use a recently
developed high-order Eulerian-Lagrangian finite element method in
combination with an energy-preserving dynamic contact algorithm in
order to solve the coupled electro-mechanical boundary value problem.
The nonlinear coupled equations are evolved by means of an opera-
tor split of the mechanical and electrical problem with an explicit as
well as implicit approach. The presented benchmark examples in-
clude the first three fundamental modes of a vibrating nanotube, as
well as a micro-electro-mechanical disk resonator in dynamic steady
contact. For the examples discussed, we observe power law compu-
tational speed-ups of the form S = 0.6 · ξ−0.8, where ξ is the linear
damping ratio of the corresponding resonance frequency.
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1 Introduction

In today’s micro-electro-mechanical systems / nano-electro-mechanical sys-
tems (MEMS / NEMS), many components are designed to operate at res-
onance. As particular examples, we mention the recent micro-mechanical
resonant switch (reso-switch) by [1], and the nanotube radio by [2]. Other
examples include MEMS resonators or the electro-mechanical charge pump as
in [3, 4] and references therein. Such devices show great potential to improve
upon their semiconductor-based counterparts which require unconventional
and expensive transistors.

For the resonant systems discussed in this work, one is typically inter-
ested in simulating the operating mode at steady state. In order to find the
steady state solution, one traditionally evolves the time-dependant electro-
mechanical equations from typically zero initial conditions until a steady state
is reached. The number of cycles to reach a steady state by such näıve time
stepping may be many thousands or even millions, depending on the damping
of the system. Especially for modern designs with very low damping, the sim-
ulation up to a steady state will become very expensive, or may be even im-
possible with this classical approach. In this work we address an alternative,
more efficient method to find cyclic steady states directly (CSS method). The
CSS method has been inspired by recent works [5, 6], where a cyclic steady
state is calculated directly by means of a Newton-Krylov shooting scheme. In
[6], the authors consider the evolution of treaded rolling bodies. Other works
on Couette turbulence [7], integrable equations [8], mode-locked lasers [9], or
surface water waves [10] have used a similar mathematical framework. To
our knowledge, we demonstrate for the first time the application of the CSS
method in the context of electro-mechanical systems, and in the presence of
highly nonlinear shock-like response due to electro-mechanical impact. As
will be observed, the CSS method shows strong speed-ups in comparison to
traditional time stepping, and opens completely new areas for the simulation
of electro-mechanical systems in the face of very low damping.

We note that the simulation of the electro-mechanical systems in this
work present further challenges that have been addressed in separate work
[11, 12, 13]: the coupled simulation of the electro-mechanical equations by
itself, the solution of the electrical field in the entire space, and nonlinear
deformation involving shock-like response due to impact. In a recent work
we have proposed a high-order Eulerian-Lagrangian finite element method
for the simulation of electro-mechanical systems [11, 12, 13]. The Eulerian-
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Figure 1: Schematic of the electro-mechanical boundary value problem.

Lagrangian approach has been developed for systems involving highly non-
linear deformations and electro-mechanical impact; we employ this earlier
work as the framework within which we develop our CSS methodology.

The outline of this paper is as follows. In Section 2, we state the govern-
ing equations of the continuum electro-mechanical boundary value problem
and our choice of discretization using an Eulerian-Lagrangian finite element
method. In Section 3, we discuss the direct algorithmic solution of cyclic
steady states in space-time before we test the algorithm for various numeri-
cal examples in Section 4.

2 Governing Equations

2.1 Electro-Mechanical Boundary Value Problem

We assume we want to solve the electro-mechanical boundary value problem
sketched in Fig. 1. We divide the space into domains R, V andW : R should
be thought of as a body with boundary Γ, and V ,W as air or vacuum;
note W represents the far-field domain. In the following, we assume that
any magnetic effects are neglected and we assume that the electrical field is
quasi-static with respect to the mechanical deformation. In order to solve for
the electrical field e in the quasi-static case with a linear dielectric material,
we employ an electrical potential Φ, such that e = −∇Φ. This leads to the
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need to solve Poisson’s equation in all space R, V and W , where we assume
the corresponding linear isotropic permittivities εR, εV and εW . In such a
case, and in the absence of any volume charge, one requires

∇2Φ = 0 (1)

in all space, with given Dirichlet boundary data Φ = Φ̄ along Γ. Here,
we limit ourselves to the purely Dirichlet boundary value problem along Γ.
Please refer to [11] for a more general discussion of (1) and alternate boundary
conditions. The variational form for (1) reads: Find Φ ∈ Ps, such that∫

R
εR∇δΦ · ∇Φdv +

∫
V
εV∇δΦ · ∇Φdv = −

∫
ΓBE

δΦqV da (2)

for all δΦ ∈ Pv along with the requirement Φ = Φ̄ on Γ. We note the coupling
to the mechanical displacement u of the body R, which affects the domains
R, V , and the boundary Γ. The spaces Ps and Pv are suitable subspaces of
H1. The effect ofW is modelled as a far field boundary condition along ΓBE

via the boundary element method as described in [11].
For the mechanical problem, we consider a continuum body R with mass

density ρ (see Fig. 1). In the following we will describe the deformation of
this body with respect to a reference configuration R0 at time t = t0. For
each material point X in the reference configuration R0 we associate a vector
X ∈ R3. For the same material point in R we associate x ∈ R3. Then we
define the displacement u(X, t) ∈ R3 via the relation x(X, t) = X+u(X, t)
for all t > t0. The deformation gradient is given by F = ∂x/∂X, the
Jacobian determinant by J = det(F ), the right Cauchy-Green tensor by
C = FTF, and the left Cauchy-Green tensor by B = FF T . Euler’s first law
in the coupled theory is given by

ρü = divT + ρb̄ in R , (3)

u = ū on Γu , (4)

where Γu ⊂ Γ is the Dirichlet-boundary for the mechanical problem, b̄ is the
body force term, and T is the total Cauchy stress which satisfies

[[T]]n = 0 , (5)

where [[T]] denotes the jump in the total Cauchy stress across the boundary Γ
with normal vector n. In this work we assume a linear material polarization,
and total Cauchy stress

T = Tm + Te , (6)
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with purely mechanical part

Tm = ρ0J
−1(Λ ln J − µ)I + ρ0µJ

−1B , (7)

and electrical part

Te =2ρ0c J
−2
[
1/2(I1I4 − I2I6 − I5)I + (I1I6 − I4)B − I6B

2

−I1Be⊗Be + B(Be⊗Be) + (Be⊗Be)B] + TM , (8)

as detailed in [13]. Furthermore, we denote the small strain Lamé parameters
Λ = Eν/[(1 + ν)(1 − 2ν)], µ = E/[2(1 + ν)], the Young’s modulus E, the
Poisson ratio ν, c = −(εR− ε0)/(2ρ0), the free-space permittivity ε0, and the
identity tensor I. The six invariants Ii, i = 1, . . . , 6 are given by

I1 = trC, I2 = trC∗, I3 = detC, (9)

I4 = tr (CE⊗ E) , I5 = tr
(
C2E⊗ E

)
, I6 = tr (E⊗ E) , (10)

with C∗ = (detC) C−1, E = F Te, and the Maxwell stress TM = ε0
[
e⊗ e− 1

2
(e · e) I

]
.

The mechanical boundary traction due to the external electrical field is given
by

T+
Mn = ε0

[
(e · n) e− 1

2
||e||2n

]
(11)

along the Neumann boundary Γt ⊂ Γ, where the superscript (.)+ indicates
the limit as we approach the boundary Γ from outside R. From (3) we derive
the mechanical weak form: Given initial conditions u(t0) = u0, u̇(t0) = u̇0

at t = t0, find u ∈ Us, such that∫
R
δu ·ρü dv+

∫
R
∇δu ·T dv =

∫
R
δu ·ρb̄ dv+

∫
Γt

δu ·
(
t̄a + T+

Mn
)

da , (12)

for all admissible variations δu ∈ Uv at any t > t0, together with given
data u = ū on the Dirichlet boundary Γu. Here, t̄a is the applied (mechan-
ical) traction due to external forces, and the spaces Us and Uv are suitable
subspaces of H1.

2.2 Semi-Discrete Form

In order to solve (2) and (12) in the context of finite elements, we use a
Galerkin discretization for the electrical as well as for the mechanical field.
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Figure 2: Discretization in space: (left) Eulerian finite element mesh with
immersed boundary for the electrical field; (right) Lagrangian finite element
mesh for the mechanical motion.

We solve for the mechanical deformation on a Lagrangian grid [Fig. 2(right)],
whereas we solve for the electrical field on a fixed Eulerian grid with embed-
ded boundary conditions [Fig. 2(left)]. In order to solve for the electrical
potential Φ on a fixed Eulerian grid with embedded boundary conditions, we
employ a high-order immersed boundary method as described in [11]. One
uses a continuous Galerkin discretization in elements that are not intersected
by the boundary Γ. For elements that are intersected by Γ, special elements
are employed with an interpolation that follows the boundary shape locally.
The discrete form of the electrical quasi-static problem can be stated as:
Find Φh

R,Φ
h
V ∈ Ph

s , such that∫
R
εR∇δΦh

R · ∇Φh
Rdv +

∫
V
εV∇δΦh

V · ∇Φh
Vdv = −

∫
ΓBE

δΦh
VqVda (13)

for all δΦh
R, δΦ

h
V ∈ Ph

v along with the requirement Φh
V = Φh

R = Φ̄ on Γh.
Depending on the choice of interpolation in the intersected elements, the
requirement Φh

V = Φh
R = Φ̄ on Γh is either enforced in a weak sense (e.g.

the eXtended finite element method [14, 15]), or in a strong sense (e.g. the
immersed boundary discontinuous-Galerkin method, IB-DG [16]). In this
work we assume the use of the IB-DG method and that after such efforts,
the electrical boundary value problem can be stated as: Find Φ, such that

K(U)Φ = Q(U) , (14)

where the electro-static stiffness K, the electrical solution vector Φ, and the
equivalent flux vector Q are assembled in accordance with (13). Note that the
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electrical stiffness K, as well as the flux vector Q depend on the mechanical
deformation vector U due to the change in position of the boundary Γ.

Concerning the solution of the mechanical deformation, we employ a
Lagrangian discretization in space [see Fig. 2(right)], and derive the semi-
discrete variational form: Find uh ∈ Uh

s , such that∫
R
δuh ·ρüh dv+

∫
R
∇δuh ·Th dv =

∫
R
δuh ·ρb̄ dv+

∫
Γt

δuh ·
(
t̄a + T+

Mn
)

da ,

(15)
for all admissible variations δuh ∈ Uh

v at any t > t0. Let us denote uh =∑
iNiui, u̇h =

∑
iNiu̇i, üh =

∑
iNiüi with Ni ∈ Uh and the expansion

coefficients U = [ui], U̇ = [u̇i], Ü = [üi]. Using a Galerkin discretization,
we can bring (15) into the algebraic form: Given U 0, U̇ 0, find U such that

MÜ + Rdiv = F ext , (16)

for all time instants t > t0, where M is the mass matrix, Rdiv the stress-
divergence term of the mechanical linear momentum balance, and F ext the
traction due to external forces. We encounter two types of electrical forces on
the continuum: A body force due to internal fields and a surface traction due
to the external electrical field. As mentioned earlier, the total Cauchy-stress
T can be split into a purely mechanical part Tm, as well as an electrical part
Te given by (7) and (8) respectively. Consequently we apply an additive split
to Rdiv = Rdiv,m + Rdiv,e, where

Rdiv,m ←
∫
R
∇δuh ·Tm dv , (17)

Rdiv,e ←
∫
R
∇δuh ·Te dv , (18)

with Rdiv,m the classical, purely mechanical stress-divergence term, and Rdiv,e

the contribution of electrical body forces. In the following we assume that
F ext is split into

F ext = F contact + F dis + F+
M , (19)

viz., the surface traction F contact due to mechanical contact, the dissipative
force F dis for example due to friction or absorbing boundary conditions, and
the surface traction F+

M due to external electrical fields. We are omitting
any other applied forces that have been introduced via t̄a for the sake of
simplicity.
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2.3 Algorithmic Solution of the Coupled System

For future reference, let us define

R(U ,Φ) = Rdiv,m(U) + Rdiv,e(U ,Φ)− F+
M(U ,Φ)− F contact(U) . (20)

We account for any dissipative effects by an explicit linear model with a
damping matrix D, such that we can bring (16), (14) in the form: Given
U 0, U̇ 0, find (U ,Φ) such that

MÜ + DU̇ + R(U ,Φ) = 0 , (21)

K(U)Φ = Q(U) , (22)

for all time instants t > t0. This states the coupled nonlinear semi-discrete
system. In order to integrate equations (21) and (22) in time, we will exam-
ine both an implicit method (mid-point rule) as well as an explicit method
(centered-difference scheme), for which the algorithmic enforcement of dy-
namical contact is discussed in [12, 13].

For the dynamical implicit solution we employ the mid-point rule. Let
Un ≡ U(tn), U̇n ≡ U̇(tn), Ün ≡ Ü(tn), Φn ≡ Φ(tn) at t = tn. Then for one
step (tn, tn+1] we require: Given Un, U̇n, and ∆tn, find Un+1, U̇n+1 such
that

MÜn+1/2 + DU̇n+1/2 + R(Un+1/2,Φn+1/2) = 0 , (23)

K(Un+1/2)Φn+1/2 = Q(Un+1/2) , (24)

where

Φn+1/2 = (Φn+1 + Φn)/2 , (25)

Un+1/2 = (Un+1 + Un)/2 , (26)

U̇n+1/2 = (Un+1 −Un)/∆tn , (27)

Ün+1/2 = (2/∆t2n)(Un+1 −Un)− (2/∆tn)U̇n . (28)

This method is second-order accurate and unconditionally stable for linear
systems. At each time-step one has to solve the fully coupled nonlinear
problem by an iterative method. To this end, we use a staggered scheme,
and a mass lumping procedure following [17, p.704] together with a Newton
iterator. In this setting, for each time-step and each iteration of the Newton-
Raphson method, one first calculates the electrical field for a fixed mechanical
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configuration, and subsequently the resulting electrical forces are updated in
this configuration in order to drive the mechanical displacement.

For the dynamical explicit solution we investigate the centered-difference
scheme (e.g. [18, p.490]): Given Un, U̇n, Ün and ∆tn, for one step (tn, tn+1]
we require:

MÜn+1 + DU̇n+1 + R(Un+1,Φn+1) = 0 , (29)

K(Un+1)Φn+1 = Q(Un+1) , (30)

and

Un+1 = Un + ∆tnU̇n + (∆t2n/2)Ün , (31)

U̇n+1 = U̇n + (∆tn/2)
[
Ün + Ün+1

]
. (32)

This scheme is second-order accurate and conditionally stable. One requires
a sufficiently small time-step, such that the Courant condition is satisfied.
Following [19], one typically chooses

∆tn = δc
h

vp
, (33)

with the element size h of the smallest element, and the p-wave speed vp which

can be estimated for a linear elastic material by vp =
√

2µ/ρ+ Λ/ρ, where Λ
and µ are the first and second Lamé-parameters. In the following we assume
the empirical factor δc = 0.9. Since the scheme is explicit, we can solve the
electrical and mechanical problem independently and only encounter linear
equations. Thus the explicit method is computationally more efficient in
comparison to the implicit method when the time-steps are comparable. Note
however, that the stability requirement (33) must be satisfied, which imposes
a restriction on the method and may require much smaller time-steps as
compared to the implicit method.

When exciting the system (21), (22) by a periodic load, one may encounter
a cyclic steady state if the damping is sufficient. In order to find steady
state solutions to (21), (22), one traditionally evolves (21), (22) from initial
conditions U 0, U̇ 0, typically zero conditions, until a steady state is reached.
We term this methodology the näıve time-stepping method, alternately the
full time-stepping (FTS) method. Such time-stepping through the transient
phase will be very expensive for systems with low damping. In the following
we investigate a method, that enables one to find steady state solutions
directly – without the need to fully step through the entire transient phase.
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3 Cyclic Steady State Solutions

Our focus in this study is on systems that are excited by an electrical field
in resonance with one of the system’s vibrational modes. For linear prob-
lems, such problems are easily approached via traditional modal analysis; see
e.g. [17, p.580]. However, in the nonlinear setting one requires alternative
methodologies. Here we will propose a direct numerical solution, in order to
find steady state solutions of the fully coupled nonlinear problem excited at
a given resonance frequency without the need to resort to the FTS method.

3.1 Direct Solution of Cyclic Steady States

The steady state solution of interest arises from equations (21), (22) when
they are subjected to harmonic excitation. In the following we assume that
the damping is sufficient such that the system will reach a cyclic steady state
for a harmonic load, typically as part of the potential boundary conditions. In
order to find cyclic steady state solutions for the nonlinear coupled system
excited at frequency ω, we consider the method advocated in [5, 6]. In
our case the period is given by T = 2π/ω, where the mechanical state is
represented by X = [U ; U̇ ]. The CSS problem reads: Given a period T , find
X0 such that

H(X0) = X(T )−X0 = 0 , (34)

where X(T ) evolves according to (21), (22) with initial conditions X0.1 Put
simply, the CSS problem amounts to finding the initial conditions such that
the nonlinear system evolves back to them within one period. The solution
to (34) will be found using the Newton-Raphson method: Given a guess X i

0,
we update X i+1

0 = X i
0 + ∆X i

0, where we find ∆X i
0, such that

DH [X i
0](∆X i

0) = −H(X i
0) . (35)

Here the application of the tangent operator means

DH [X0](∆X0) = ∆X(T )−∆X0 , (36)

where ∆X(T ) is found by evolving the linearized equation

M∆Ü + D∆U̇ +
∂R

∂U
(U ,Φ)∆U = 0 , (37)

1 Note that one could also treat the period T as an additional unknown to solve for, but
here we assume T as a given parameter matching the excitation frequency of the external
load.
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over one period starting from initial conditions ∆X0 along the path X(t)
that is determined from (21), (22) with initial conditions X0.

In order to assemble the operator DH [X0] in each Newton step, one may
iteratively calculate each column DH [X0]:,i via

DH [X0]:,i = DH [X0](ei) , (38)

with basis vectors ei ∈ RN (i = 1, . . . , N), where N is the length of X.
While this gives the full operator for a direct solution of (35), the assembly
via (38) is expensive. As advocated in [6], we instead employ the general-
ized minimal residual method (GMRES) so that only the application of the
operator is needed. To this end let us denote A = DH [X i

0], b = −H(X i
0)

and x = ∆X i
0, so that for each Newton step ‘i’ we wish to solve Ax = b.

In the proposed scheme, one computes the m-th order Krylov subspace
Km = span{b, Ab,A2b, . . . , Am−1b} by a standard Arnoldi iteration. The
minimizer of the residual ||Ax − b||2 over Km gives the approximate solu-
tion which we set to ∆X i

0. For each Newton step, one has to compute
(34) by evolving (21), (22) with initial conditions X i

0. Subsequently, one
evolves (37) (m − 1) times with multiple initial conditions b, Ab, . . . , Am−2b
in order to construct the Krylov subspace within which an approximate so-
lution to (35) is found. In this work we find the dimension m, by requiring
||Ax − b||/||b|| < 10−3 during the Arnoldi iteration as in [6]. The algorithm
is summarized in Alg. 1. We refer to [20] for a more detailed discussion on
GMRES and Arnoldi iterations.

4 Numerical Examples

In the following examples we will consider that a cyclic steady state is
reached, when the relative L2-norm of H(tn) = X(tn) −X(tn − T ) after
a period T ,

Residual =

√∑
i |Xi(tn)−Xi(tn − T )|2∑

i |Xi(tn)|2 , (39)

is converged by six orders of magnitude. All accuracy considerations have
been done within this scope. Note that another tolerance setting will change
the accuracy requirements on the discretization, and results will differ from
the current study.
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Cyclic Steady State Solution

Given X0
0 = [U 0

0, U̇
0

0].
LOOP i

1. Calculate H(X i
0) according to (34), (21) and (22).

2. Iteratively form m-th order Krylov subspace by an Arnoldi iteration and computing
DH [X i

0](.) according to (36) and (37).

3. Find the minimizer X̃ of the residual ||DH [X i
0](X̃) + H(X i

0)||2 over Km

by a least-square approximation.

4. Set ∆X i
0 = X̃.

5. Check convergence ||∆X i
0||2/||X i

0||2 < TOL and update if needed
X i+1

0 = X i
0 + ∆X i

0 .

Algorithm 1: Cyclic steady state solution via GMRES.

4.1 Critical Time-step

In order to obtain accurate results and optimal convergence rates, it is crucial
to ensure a converged discretization in the time-domain. In our examples we
require the finite element solution at steady state to be converged by six
orders of magnitude. Given a linearized damping ratio ξ, we find the number
of time-steps per cycle T/∆tn for the centered-difference scheme and for
the mid-point rule by monitoring the residual (39), such that convergence
is achieved. In addition, the requirement (33) must be met when using the
explicit time-stepper.

4.2 Nanotube Vibration

Our first example deals with a carbon nanotube that is excited by an external
electrical field. As discussed in [13], carbon nanotubes possess very unique
and promising characteristics for use as NEMS resonators [21, 22, 2, 23, 24].
In this study we suppose that the carbon nanotube is a conductor. After cer-
tain corrections when extracting material properties, the use of continuum
mechanics is still justified for such systems [25], and various mechanical mod-
els exist [26, 27]. We focus here on the efficient simulation of the first three
cyclic modes of vibration of a nanotube as sketched in Fig. 3 via Alg. 1.
In this study we consider a nanotube with a sharp corner. While carbon
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nanotubes may be closed smoothly at the tip, the cut-nanotube imposes a
greater challenge on the computational treatment due the singularity that
arises in the electrical field at the corner. We demonstrate the necessity of a
high-order IB-DG in such a case, in order to achieve convergence of Alg. 1.

4.2.1 Fully transient solution method: Nanotube

For analysis purposes we will consider a very coarse discretization such that
we can also consider the fully transient solution (FTS) method. As sketched
in Fig. 3, we assume that the nanotube is mechanically clamped and electri-
cally grounded. A separate input voltage Vi at an external electrode creates
a capacitive force across the gap, such that the nanotube will vibrate. The
input voltage is given by

Vi(t) = VDC + VAC sinωit , (40)

with constant part VDC, alternating amplitude VAC, and frequencies ωi, i =
1, 2, 3. The ωi represent the linearized eigen-frequencies about the static
deformation resulting from VDC. For the numerical example we consider
a nanotube length of 80 nm and a diameter of 8 nm. The initial gap to
the electrode is 46 nm, and we assume a nonlinear Neo-Hookean material
as in (7) with E = 1 TPa, ν = 0.31, ρ = 1 g/cm3. The resulting lin-
earized eigen-frequencies are summarized in Tab. 1 in accordance with an
ultra-high frequency resonator [28]. We assume a mass-proportional damp-
ing D = αMM , with αM ∈ {5 · 109 s−1, 10 · 109 s−1}. Then, the linearized
damping ratios are given by ξi = αM/(2ωi) as tabulated in Tab. 1 for lin-
earized Mode 1-3 excitations. Note in this study we limit ourselves to a 20×2
finite element grid for the mechanical motion in order to calculate the fully
transient response, which already sets a limit of > 1443 time-steps per cycle
according to (33) for the fundamental mode in the explicit case. One would
need to consider a mesh refinement, and/or the use of enhanced elements or
incompatible modes in order to gain more accurate results in such a bending
dominated problem. Such methods are well established, and we refer to [29]
for a brief historical account and references therein. For the electrical field
we use a 25× 25 Eulerian finite element grid, in combination with the high-
order IB-DG method to accurately evaluate the singularity of the boundary
traction around the nanotube corner. In Tab. 1(bottom, αM = 10 · 109 s−1)
we monitor the number of time-steps per cycle Ti/∆tn = 2π/(ωi∆tn) for
the explicit and implicit method to reach steady state, as well as the total
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f1 = 7.2 GHz f2 = 42.6 GHz f3 = 111.2 GHz

Vi Vi Vi

Figure 3: Nanotube vibration schematic showing mode shapes and linearized
vibrational frequencies.

computational time TCPU in our MATLAB implementation. The implicit
method is seen to be more efficient in this example for the simulation of the
lower modes since it is unconditionally stable, and larger time-steps may be
used as long as accuracy is preserved. For the higher modes, requirement (33)
imposes less restriction on the stability region, and the explicit method will
be more efficient in comparison to the mid-point rule as we observed higher
accuracy for similar time-step sizes. In the remaining discussion we will limit
our discussion to the use of explicit time-stepping for both the CSS and the
FTS methods.

Since in our case we employ mass-proportional damping, the damping ξi
becomes smaller for a fixed αM at higher excitation frequencies. The direct
consequence of this is that, as shown in Tab. 1, the number of cycles to
overcome the transient phase to a steady state is relatively higher at higher
excitation frequencies. As mentioned earlier, we assume that a steady state
is reached when the residual (39) is converged by six orders of magnitude.

Figure 4 shows a typical result for a first mode excitation with ξ1 =
5.6 · 10−2, VDC = 60 V and VAC = 40 V after 40 cycles of oscillation with
zero initial conditions. One can observe the deformed mechanical mesh,
the electrical potential field, as well as the Maxwell boundary traction at
various time instants. Note that such large motions can be easily tracked
with the immersed boundary method, and no remeshing or motion of the
electrical mesh is required – as becomes necessary when using a Lagrangian
or arbitrary Eulerian-Lagrangian (ALE) approach. Note moreover, that the
boundary force around the corner stems from a singular charge distribution;
this is well captured by our chosen IB-DG method.

In Fig. 5 we monitor the vertical tip displacement and velocity for the
case αM = 5 · 109 s−1 with loading VDC = 60 V and VAC = 40 V. The results
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αM = 5 · 109 s−1 fi[GHz] ξi Ni Ti/∆t
expl
n T expl

CPU [h]

Mode 1: 7.2 5.6 · 10−2 40 1444 78.8
Mode 2: 42.6 9.4 · 10−3 238 244 81.0
Mode 3: 111.2 3.6 · 10−3 621 96 82.7

αM = 10 · 109 s−1 fi[GHz] ξi Ni Ti/∆t
expl
n T expl

CPU [h] Ti/∆t
impl
n T impl

CPU [h]

Mode 1: 7.2 1.1 · 10−1 20 1444 42.1 36 3.0
Mode 2: 42.6 1.9 · 10−2 119 244 42.1 88 43.3
Mode 3: 111.2 7.2 · 10−3 310 96 42.6 144 184.8

Table 1: Nanotube vibration example: linearized eigenfrequencies fi, damp-
ing ratios ξi, number of cycles Ni to reach steady state during the fully
transient solution; (top, αM = 5 · 109 s−1) explicit time-step size Ti/∆tn
(steps per cycle) and computational time TCPU for linearized Mode i = 1−3
excitations; (bottom, αM = 10 · 109 s−1) additionally a comparison between
explicit and implicit time-step size Ti/∆tn and computational time TCPU .
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Figure 4: Nanotube vibration, Mode 1 excitation: deformed mechanical
(bold) mesh, electrical (fine) mesh, contour of electrical potential, and
Maxwell boundary traction at VDC = 60 V and VAC = 40 V for various
time instants.
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Figure 5: Nanotube vibration: fully transient solution (FTS) and cyclic
steady state solution (CSS) via GMRES (Alg. 1) of the tip-displacement and
velocity for (top) Mode 1 excitation, (middle) Mode 2 excitation, (bottom)
Mode 3 excitation.
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over time and the corresponding phase portraits are plotted in columns 1
and 2 for Mode 1-3 excitations when we start from zero initial conditions.
The displacement with Mode 1 excitation reaches about −0.9 ± 11 nm and
a velocity of ±68 mm/s at steady state after 40 cycles [Fig. 5(top)]. Looking
at the higher mode excitations, the amplitude of the displacement at steady
state decreases to about −0.9±0.9 nm for Mode 2 excitation after 238 cycles
[Fig. 5(middle)] and −0.9 ± 0.2 nm for Mode 3 excitation after 621 cycles
[Fig. 5(bottom)]; the velocity decreases to about ±33 mm/s for Mode 2
excitation and ±19 mm/s for Mode 3 excitation. Note that the simulation
of the higher modes becomes more expensive, as the number of cycles to
overcome the transient phase increases due to the lower damping. For even
lower damping or finer meshes, the simulation time to overcome the transient
phase will impose severe limitations on the design process if the FTS method
is used.

4.2.2 CSS method: Nanotube

We now employ Alg. 1 in order to find solutions to (34) more efficiently.
As for the FTS, we have employed the explicit time-integration scheme to
evolve (21) as well as (37) with time-step size in accordance to Tab. 1. After
finding the initial conditions X0 according to Alg. 1, we have evolved equa-
tions (21) and (22) with these initial conditions over one period T in order
to compare the results to the FTS method; see Fig. 5, columns 3 and 4. The
direct solution via Alg. 1 shows excellent agreement when compared to the
full time-stepping through the transient phase from zero initial conditions.
In Fig. 5 we have also labeled various corresponding time-instants 1−5 in the
steady state displacement [Fig. 5(third column)] and in the phase portrait
[Fig. 5(fourth column)] to assist in comparison.

In Fig. 6(top) we plot the residual from the FTS scheme [Fig. 6(top,
left)], as well as from the proposed CSS scheme via Alg. 1 [Fig. 6(top,right)]
at various damping values. While the number of cycles to reach convergence
in the transient solution increases for lower damping values, the number
of Newton iterations of the CSS solution remained at about 5 − 6 Newton
iterations, largely independent of damping. We show the numerical values of
the Newton residual of the CSS solution and the size of the Krylov subspace
in Tab. 2 for the case αM = 5 · 109 s−1 as plotted in Fig. 6(top,right), as
well as for the case αM = 10 · 109 s−1. In both cases, we typically encounter
convergence by six orders of magnitude within 4 to 6 iterations.
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Figure 6: Nanotube vibration: (top) convergence of the residual (39) when
using the high-order IB-DG for (left) the fully transient solution (FTS) and
(right) the cyclic steady state solution (CSS) via GMRES (Alg. 1); (bottom)
convergence issues of the low-order IB-DG.
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αM = 5 · 109 s−1 Mode 1 Mode 2 Mode 3

||∆Xj
0||2/||Xj

0||2 mj ||∆Xj
0||2/||Xj

0||2 mj ||∆Xj
0||2/||Xj

0||2 mj

j = 1 1.0 · 100 6 1.0 · 100 24 1.0 · 100 26
2 5.1 · 10−3 16 2.4 · 10−2 52 2.6 · 10−1 63
3 5.0 · 10−4 16 1.3 · 10−4 77 4.9 · 10−3 111
4 7.9 · 10−6 19 1.9 · 10−6 81 1.2 · 10−4 244
5 2.3 · 10−7 14 7.5 · 10−8 81 1.3 · 10−5 244
6 4.4 · 10−8 244

αM = 10 · 109 s−1 Mode 1 Mode 2 Mode 3

||∆Xj
0||2/||Xj

0||2 mj ||∆Xj
0||2/||Xj

0||2 mj ||∆Xj
0||2/||Xj

0||2 mj

j = 1 1.0 · 100 5 1.0 · 100 18 1.0 · 100 20
2 3.2 · 10−3 9 2.8 · 10−2 35 6.2 · 10−1 54
3 1.0 · 10−4 10 5.4 · 10−5 45 7.1 · 10−3 68
4 3.1 · 10−6 10 3.9 · 10−7 49 1.7 · 10−4 87
5 5.3 · 10−9 10 1.3 · 10−6 95
6 9.2 · 10−8 102

Table 2: Nanotube vibration example: residual convergence ||∆Xj
0||2/||Xj

0||2
of Alg. 1 for Mode 1-3 excitations and number of Arnoldi iterations mj for
each Newton step j and various αM .
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We have measured the speed-up S which we define as the computational
time Ttransient that is required to evolve equations (21) and (22) from zero ini-
tial conditions until the residual (39) is converged by six orders of magnitude
divided by the computational time Tcss that is required to find convergence
of (39) by six orders of magnitude via Alg. 1:

S =
Ttransient

Tcss

. (41)

For this example we see speed-ups ranging from S = 3.3 for Mode 1 excitation
at ξ1 = 1.1 · 10−1 all the way up to S = 45.5 for Mode 3 excitation at
ξ3 = 3.6 ·10−3. Please see Section 4.4 for a further discussion of these results.

4.2.3 Comparison to Low-order Method

In the example just presented, we used a high-order immersed boundary
method. It is instructive to observe what happens if one uses instead a
low-order immersed boundary method [16, 11]. Fig. 6(bottom) displays the
algorithmic performance with the use of a low-order IB-DG; this is seen to
result in reduced or even incomplete convergence of the residual for the FTS
method [Fig. 6(bottom,left)], as well as for the CSS solution [Fig. 6(bot-
tom,right)]. Such observations are consistent to what has been previously
observed in [11] and indicate to us the necessity of a higher-order accurate
immersed boundary method in this example with a singular electric field.
The high-order IB-DG is needed not only for accuracy and physically mean-
ingful results, but also for obtaining convergence during the Newton iteration
of the cyclic steady state solution via Alg. 1.

4.3 Reso-switch

Our second example examines a micro-electro-mechanical disk resonator,
which is excited in the wine-glass mode by a forced vibration such that dy-
namic contact occurs with a rigid electrode as sketched in Fig. 7. Such
on-chip resonators or dynamic switches show high potential for the replace-
ment of transistors, e.g. for power-amplification, due to their superior quality
factors (low damping properties) [30, 31, 3, 4]. The system is similar to the
resonance switch (reso-switch) in the work by [1].

As sketched in Fig. 7, we assume that the driving electrodes are operated
at a periodic input voltage Vi, and the resulting capacitive force brings the
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Figure 7: Reso-switch example: (left) schematic ‘off ’-mode; (middle)
schematic ‘on’-mode; (right) mechanical mesh, electrical mesh, input/output
electrodes, and boundary element (BE) domain.

disk into a resonant vibration mode. The voltage at the disk is kept constant
at VD. During this vibration mode, the disk will periodically switch contact
with the output electrodes, where a voltage Vo is measured. No contact along
the input axis occurs due to a larger air-gap in comparison to the output
axis. During ‘off ’-mode, an electrical charge Q assembles on the electrodes,
whereas a current i flows when the disk touches the electrodes, or during
electrical breakdown.

In the context of finite elements, we find the linearized eigenmodes numer-
ically by a standard subspace iteration [32, p.156]. The calculation is done
assuming quarter-symmetry, as our mode of interest has quarter-symmetry.
For the mechanical deformation of the disk we employ 108 quadrilateral el-
ements with a bi-linear interpolation [see Fig. 7(right)], and a plane stress
nonlinear Neo-Hookean material model as derived from (7) with standard
material properties of Nickel: E = 179 GPa, ν = 0.31, ρ = 8.9 g/cm3.
For a disk radius R = 70 µm and thickness 4 µm, we obtain the linearized
fundamental frequency f0 = 14.8 MHz.

For the electrical field computation, we use a background mesh with
1200 quadrilateral elements that cover the domain of interest as sketched
in Fig. 7(right). The electrode boundaries are aligned with the background
mesh, and the boundary motion of the disk is captured by the immersed
boundary method. We apply a resonant load at the input electrodes:

Vi(t) = VDC + VAC sinωt , (42)

where ω = 2πf0, the bias-voltage is given by VDC, and the load amplitude
is VAC. At the output electrodes we assume Vo = VD when the disk is in
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Figure 8: Reso-switch example: transient solution and cyclic steady state
solution (CSS) via GMRES (Alg. 1) of the top-disk-node displacement and
velocity for (top) Case 1, and (bottom) Case 2.

contact or during electrical breakdown (‘on’-mode), and otherwise calculate
Vo from the requirement

dQ

dt
=

Vo
RL

, (43)

where the output load RL = 220 Ω and the total charge Q on both output
electrodes is calculated from the electrical field (see [13]). The damping is
assumed to be mass-proportional with D = αMM , such that the linearized
damping ratio is ξ = αM/(2ω). In the following example we test the case
ξ = 5.6 · 10−2. Note that the mesh densities are artificially low so that we
have easy access to the FTS solution for comparison purposes.

4.3.1 FTS method: Reso-Switch

As with the nanotube example we will begin our discussion of the reso-
switch by looking at the transient full time-stepping method from zero initial
conditions. We will do so looking at two separate cases, one that leads to
contact and one that does not.

Case 1 : First we will excite the disk at a load VDC = 6.45 kV, VAC =
4.3 kV and VD = 240 V with the initial gap to the output electrodes be-
ing g0 = 2.2 µm, and the initial gap between the input electrodes and the
disk being 6 µm. With this load there will be no contact with the output
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electrodes as the displacement does not sufficiently ramp up. We monitor
the displacement and velocity of the top-end node of the disk in Fig. 8(top).
One observes that a steady state is reached after about 40 cycles, with the
displacement of −0.5± 12.5 nm, and a velocity of 0.05± 1.15 m/s.

Case 2 : If we now excite the disk at a load VDC = 6.45 kV, VAC =
4.3 kV and VD = 240 V but with the initial gap to the output electrodes
being g0 = 9.6 nm, and the initial gap between the input electrodes and the
disk being 6 µm, then as the output electrodes are closer to the disk, the
disk impacts the output electrodes after about 5 cycles. In Fig. 8(bottom)
we monitor the displacement and velocity of the top-end node of the disk.
After 40 cycles, we observe the displacement and velocity reach steady state
contact, where the displacement oscillates in [−11.9, 9.6] nm and the velocity
in [−1.1, 1.4] m/s. In this example one observes about 15% persistent contact
during one loading cycle.

4.3.2 CSS method: Reso-Switch

We now employ Alg. 1 in order to find solutions to (34) directly. As with
the FTS solution we employ the explicit time-stepper. We find the initial
conditions X0 according to Alg. 1, and then we evolve equations (21) and
(22) with these initial conditions over one period T in order to compare the
results to the FTS solution. In Fig. 8(column 3), we monitor the top-disk-
node displacement and velocity for Case 1 and 2 respectively. As in the
previous example, the direct solution via Alg. 1 shows an equally excellent
agreement when compared to the full time-stepping through the transient
phase from zero initial conditions. In this plot we have labeled various time-
instants 1 − 5 in the steady state displacement [Fig. 8(third column)], as
well as in the phase portrait [Fig. 8(fourth column)]. Note in particular that
the CSS algorithm is capable of handling highly nonlinear electro-mechanical
impact response at steady state.

Again we have tracked the residual (39) for the transient as well as the
CSS solution. In Fig. 9 we plot the residual for Case 1 in black (no contact),
and for Case 2 in red (contact). We observe a slightly slower convergence
for Case 2, about 5 additional cycles, to reach a steady contact state during
the transient solution when compared to Case 1, where no contact occurs
[Fig. 9(left)]. This is also observed in Fig. 9(right) for the CSS solution,
where convergence is reached after 7 iterations for Case 2 involving impact,
and convergence is reached after 4 iterations for Case 1 without impact. The
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Figure 9: Reso-switch example: convergence of the residual (39) for Case 1
in black (no contact), and for Case 2 in red (contact) during (left) the full
transient solution from zero initial conditions, and (right) the direct cyclic
steady state solution (CSS) via Alg. 1.

observed speed-up in this example is S = 6.2 for Case 1, and slightly lower
S = 4.1 for Case 2.

Note that for Case 1 and 2 we have assumed a damping value ξ = 5.6 ·
10−2. We now test the numerical solutions for VDC = 6.45 kV, VAC = 4.3 kV,
VD = 240 V and the initial gap to the output electrodes g0 = 2.2 µm as in
Case 1, but with varying damping values ξ ∈ {1.4 · 10−2, 2.8 · 10−2, 5.6 ·
10−2, 2.2 · 10−1}. As the damping value decreases, we have to adjust the
number of time-steps in order to achieve convergence of the residual due to
the higher accuracy requirements (see Section 4.1). In this study we have
used 2π/(ω∆tn) = 36 explicit steps per cycle for ξ = 2.2 · 10−1, 52 steps per
cycle for ξ = 5.6 · 10−2, 72 steps per cycle for ξ = 2.8 · 10−2, and 104 steps
per cycle for ξ = 1.4 · 10−2. Typical convergence plots for the FTS solution
are shown in Fig. 10(left), and for the CSS solution in Fig. 10(right). Similar
observations as with the nanotube vibration example are made: while the
transient solution requires significantly more cycles to reach a steady state
at lower damping values, the CSS solution is converged within 4 to 5 Newton
steps. Thus the observed speed-ups are higher at lower damping values. In
accordance with (41) we have measured S = 3.5 at ξ = 2.2 · 10−1, S = 6.2 at
ξ = 5.6 · 10−2, S = 11.2 at ξ = 2.8 · 10−2, and S = 16.7 at ξ = 1.4 · 10−2. We
summarize all performance tests done for the reso-switch example, as well as
for the nanotube vibration in the next section.
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Figure 10: Reso-switch example: (left) convergence of the residual for the
transient solution (black) at various damping ratios as indicated in the right
figure; (right) convergence of the residual of the direct cyclic steady state
solution (CSS) via Alg. 1 for various damping ratios ξ.

4.4 Performance of the GMRES algorithm and Com-
putational Speed-up

As we have noted in the nanotube vibration, as well as the reso-switch ex-
ample, the measured speed-ups are higher for lower damping values ξ. This
is mainly due to the increased number of cycles to reach a steady state for
the FTS solution, whereas the Newton algorithm via Alg. 1 has been demon-
strated to be relatively unaffected by ξ. In Fig. 11 we plot all speed-ups for
the various tests of the nanotube vibration and the reso-switch. We observe
power law computational speed-ups of the CSS solution in comparison to a
transient solution of the form

S = 0.6 · ξ−0.8 , (44)

where we have measured S according to (41) for the different test cases. As
mentioned in Section 3.1, we have investigated two ways to assemble the
tangent operator for the direct steady state solution. While the full tangent
assembly as in (38) will deliver most accurate results, the use of GMRES will
significantly speed-up the calculation during the iterative Newton solution.
In accordance with [6], we use the tolerance ||Ax−b||/||b|| < 10−3 in order to
determine the number of Arnoldi iterations for each Newton step. Note that
in our examples we observed that the number of Arnoldi iterations increases
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Figure 11: Speed-up of the direct cyclic steady state solution (CSS) via Alg. 1
versus a classical transient time-stepping from zero initial conditions.

for lower damping values (see Tab. 2), and thus the computational speed-up
shows only sub-linear growth.

5 Conclusion

We have presented a numerical method to efficiently find the cyclic steady
state response of electro-mechanical devices that are excited at resonance.
The method features a full-field simulation of the mechanical deformation
and the electrical field, incorporating dynamical impact. Whereas the me-
chanical motion is discretized by a Lagrangian finite element scheme, we
employ a fixed grid approach to solve for the electrical field in combination
with a higher-order immersed boundary method to track the mechanical mo-
tion. This approach reveals several advantages in comparison to traditional
Lagrangian or ALE methods – in particular there is no mesh-motion or re-
meshing required during large deformations or the closing of gaps during
contact. The proposed direct method to solve for cyclic steady states has
been demonstrated for two NEMS/MEMS examples, including the vibration
of a carbon nanotube at ultra-high frequencies > 1 GHz, and the excita-
tion of a wine-glass disk resonator in forced vibration, as well as in dynamic
steady contact. For the presented examples, we show excellent agreement
of the direct solution of the cyclic steady state in comparison to the full
transient solution from zero initial conditions. The computational speed-up
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of the discussed examples scales inversely with the damping ξ according to
S = 0.6 · ξ−0.8, where we tested ξ > 10−3. In the presented examples we have
limited ourselves to ξ > 10−3 using second order accurate time-integration
schemes. For lower damping values ξ, the use of higher-order integration
schemes will become necessary to attain accurate results with a reasonable
number of time-steps. The development of such higher-order methods must
be done within in the context of energy-conserving impact algorithms for the
electro-mechanical problem, which is still a subject of current research.
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