UC Irvine
ICS Technical Reports

Title
A data structure with movable fingers and deletions

Permalink
https://escholarship.org/uc/item/5dw2m?2d1

Authors

Harel, Dov
Lueker, George

Publication Date
1979

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/5dw2m2d1
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law

(Title 17 U.S.C.)

A DATA STRUCTURE
WITH MOVABLE FINGERS AND DELETIONS

Dov Harel and George Lueker

University of California, Irvine

Irvine, CA 92717

Technical Report #7145
December 1979

Keywords: Fingers, bounded balance trees, range queries, threads,

iterated logarithms, approximate algorithms.
CR categories: 3.73, 3.74, 4.34, 5.25,

This research was supported by National Science Foundation grants
MCST7-04410 and MCS79-04997.



A DATA STRUCTURE WITH MOVABLE FINGERS AND DELETIONS

Dov Harel and George Lueker

Abstract

A finger is a point in a file near which updates and searches
can be conducted particularly éfficiently. We present a data
structure which supports insertions, deletions, searches, and
approximate range queries. In each case both a finger f and a key k
are specified as arguments to the appropriate algorithm. The total
time bound for n updates (insertions or deletions) in an initially
empty data structure is the sum over all updates of 0(log d+log%n),
where d is the linear distance (i.e., the distance in the linear
list being represented) from f to k. By an approximate range query,
we mean a query of the form "How many keys lie between the finger f
and the key k?'", where a predétermined percentage of error is
allowed in the number returned. The time for each individual search

or range query is 0O(log d).

1.0 Introduction

Recently data structures which allow fingers have attracted attention. A
finger is a point in a file near which updates and searches can be performed
especially efficiently. Two major papers have appeared recently on the
subject of data structures which support fingers. The first [GMPR77]
discussed a data structure which allowed insertions and deletions to be
performed in O(f+log d) time, where d was the linear distance (i.e., the
distance in the linear list being represented) from the finger to the key
involved, and f was the number of fingers present; searches from a finger had
a cost of 0(log d). This structure had the disadvantage, however, that it did
not allow the fingers to be moved very easily; moreover, if many fingers were
present, the time complexity became excessive. A second paper [BT78] allowed
any key to serve as a finger, once that key was located. The time for an
insertion or search from a finger was O0(log d). This new approach had two

disadvantages:



Page 2
a) the time bound was not guaranteed if deletions were present, and

b) the time bound was not valid for each individual operation, but rather

only over a string of operations. The total cost of a string of

insertions could be bounded by summing 0(log d) over all of the
insertions, even though some individual insertion might take much more

than O0(log d) time.

In section 2 we present a data structure which overcomes problem (a); it is
possible to modify the algorithm to overcome problem (b) as well, although we
do not present the details in this paper; they are presented in [Ha79]. The
structure also has another interesting feature: define an approximate range
query to be a question of the form "How many keys lie between the finger f and
the key k?" where a predetermined percentage of error is allowed in the

answer. Our structure will answer such queries in O0(log d) time.

There is a slight cost for these improvements. Let n be the number of
keys which are present, and d be the distance from the finger to the key. The
time complexity of an update in our structure (when averaged over a string of
operations) is O(log d + lOg*n), rather than 0(log d). (Here 1og*n denotes

the iterated logarithm function.)

Note: quite recently Scott Huddleston [Hu79] has observed that if we
only wish to overcome problem (a), a time bound of O(log d) is possible,

through the use of 2-3-4 trees.

2.0 Threads and balance
2.1 Conventions

Throughout this paper, we will assume that all keys in the data file are
distinet. We will also assume that we are using a slightly modified form of
binary search tree in which all data is stored at the leaves, and each node
has zero or two children. (This is done in order to simplify the algorithm;
we suspect that the details could all be worked out for the more conventional
arrangement in which all nodes contain data.) In addition, each node has a
pointer to its parent. We do not store any field in internal nodes telling
the value of some key; instead, we will use threads to guide searches in a

manner to be mentioned below.




Page 3

2.2 Bounded balance trees

Bounded balance trees [NR73] will be useful in our algorithm. Let T be a

binary search tree. If x is a node in T, let the rank of x, written r(x), be

one more than the number of descendants of x; the rank of an empty subtree is
considered to be 1. (Also, we will always consider x to be a descendant of
itself.) Define the balance of a node, written p(x), to be the ratio of the
rank of the left child of x to the rank of x. Say x is x-balanced if p(x)

is in [x,1-x]. T is said to be a bounded balance tree with parameter «, or
more briefly a BB(ax) tree, if each node in T is «~balanced. Such trees are
guaranteed to have 0(log n) height, and have O(log n)-time update and search
algorithms; these are based on the rotations shown in Figure 1 [NR73]. In
[BM78] it is shown, in fact, that the average number of rebalancings per

update can be made to be 0(1).

Bounded balance trees have a very useful property: it is easy to show
that the change in p(x) due to a single update below x is, before rotations,
inversely proportional to the rank of x. This fact, combined with the
following lemma, enables us to show that nodes high in the tree are
infrequently in need of rebalancing. Let T(x) denote the subtree rooted at x.
Also, say that a node w actively participates in a rotation if either of its

child pointers is changed.

Lemma 1. (This is a slight modification of a lemma used in [BM78, L79,
W78].) There exist «, «', and e, with «'<x, and a slightly modified

rotation algorithm, which make the following true.

a) To perform a rebalance at a node, we do not need to know the exact
value of its rank or balance. Rather, the rank can have a relative
error of e, and the balancdes may be calculated based on this slightly

incorrect value.

b) Assume that every node in T(x) is «'-balanced and x is not
x=balanced. Then after a rebalancing at node x, all of the nodes

which actively participated in the rotation will be a=balanced.

Assume now that we have chosen a set of values for the parameters
mentioned in Lemma 1. Nodes which are a'-balanced but not o-balanced will

be of special interest, To discuss their balance more easily, we let /3(x) be



Page U

(=x")"" times the distance on the real line from p(x) to the interval
[x,1-ax]; it is then not hard to verify that x is s-balanced iff A(x)=0,
and a'-balanced iff /3(x)<1. Further, one may show that the change in /3(x)

due to a single insertion or deletion is inversely proportional to r{x).
2.3 Threads

In order to make searches efficient in balanced trees, we will introduce
certain special fields which we will call threads; these are very similar to
the threads used in [GMPR77], although our search procedure is considerably
different, requiring no neighbor pointers. If a node x has a right child,
define its right thread, written RTHREAD(x), to be its rightmost descendant,
that is, the last node we visit if we repeatedly follow right links from x.

If node x has no right child, define RTHREAD(x) to be its lowest right
ancestor, that is, its successor in inorder; if x is the last node in inorder
(i.e., x has the largest key in the tree), then RTHREAD(x) is the null
pointer. The left thread of x is defined symmetrically. Note that with these
threads we can easily compute a number of other quantities in 0(1) time. For
example, let RIGHTMOST(x) (resp. LEFTMOST(x)) be the rightmost (resp.
leftmost) descendant of x. Then RIGHTMOST(x) could be calculated as

if RIGHT(x) = null then x else RTHREAD(x);
We will say that a node x subtends a key k (not necessarily in the tree) if
KEY (LEFTMOST (x)) < k and KEY(RIGHTMOST(x)) > k.

from this it is'clear that the threads could be used to guide a search through
the tree for a given key in a manner similar to the conventional binary tree
search. Also, we could write a procedure to determine whether x was a

descendant of y by simply returning

KEY (LEFTMOST (x)) > KEY(LEFTMOST(y)) and
KEY (RIGHTMOST (x)) < KEY(RIGHTMOST (y)).

Finally, let LRA(x) (resp. LLA(x)) denote the lowest right (resp. left)

ancestor of x. Note that this could be computed in 0(1) time as
RTHREAD (RIGHTMOST (x) )

The following two lemmas show that introduction of these threads will not make

updates significantly more difficult.



Page 5

single rotation

double rotation

Figure 1. Rebalancing operations for trees of bounded balance [NR73].

!

@) . | (b)

Figure 2. Insertion.

Figure 3. Déletion.



Page 6

Lemma 2. If we do an insertion or deletion in a binary search tree, but

no rotations, we may update the threads appropriately in 0(1) time.

Proof. We present algorithms to perform the insertion or deletion. At
first it may appear that many thread fields will need to be updated; for
example, if the node p in Figure 2a has many ancestors along a right-leaning
path, when p obtains a new right child we might expect to have to change many
RTHREAD fields in these ancestors. A standard trick can be used to avoid
this; we let move data in such a way as to make it possible for the node p to
continue to be the rightmost descendant, even though its data might change.

An algorithm is given below.

procedure INSERT(p,y);

begin comment insert y as a child of p. We assume that the node y has

already beén created, and that its KEY field haé been set;

wlog assume p is a right child;

create a new node x and update the LEFT, RIGHT, and PARENT fields to
replace the situation in Figure 2a by that in Figure 2b;

comment note that no nodes above x have experienced a change in
either their leftmost or rightmost descendant;

LTHREAD (y) PARENT(x); RTHREAD(y) := x;

LTHREAD(x) := y; RTHREAD(x) := p;

LTHREAD(p) := x; comment RTHREAD(p) is unchanged;

Af KEY(y) < KEY(p)

then KEY(y) :=: KEY(p); comment swap the keys;
end;

The deletion procedure is similar and is illustrated in Figure 3.



Page 7

procedure DELETE(y);

begin comment delete the key in node y;

p := the parent of y;
wlog assume that p is a right child;
k :

the key in the sibling of y;
LEFT(p); =z := RIGHT(p);
rearrange the LEFT, RIGHT, and PARENT fields to replace Figure 3a by

X 3

Figure 3b;
comment again, notice that no node above z has experienced a change
in either its leftmost or rightmost descendant;
LTHREAD(z) := PARENT(z); comment RTHREAD(z) is unchanged;
KEY(z) := k;
end; (]

ArAAr I

Lemma 3. For any rotation we do in a bounded balance tree, we may update

the threads appropriately in 0(1) time.

Proof sketech. Suppose we do a single or double rotation rooted at x.
Let the 'situation before the rotation be as in Figure 4; in degenerate cases
one may need to eliminate parts of the figure, or condense serveral items iﬁ
the figure into a single node. Note that even in degenerate cases, the
leftmost and rightmost node in the subtree rooted at x will not change during
‘the rotation; thus we need not change any LTHREAD and RTHREAD fields of
proper ancestors of x. In fact, it is not hard to see that the nodes
represented by circles are the only nodes for which a change in LTHREAD or
RTHREAD can take place. Moreover, one can determine that all of the new
values to be placed in these fields are contained in the set of circles of the
figure. Finally, using the thread fields we may locate all of the cirecles in
the figure in 0(1) time. From these observations it follows that all updating

could be done in 0(1) time. (]
Henceforth we will not explicitly refer to the updating of these threads.

Lemma 4. In a bounded balance tree with threads, one may search for a
key k, starting from a finger £, in time proportional to the log of the linear
distance from f to k. Moreover, if each node in the tree contains a field
telling the abprqximate number of descendants of that node with a maximum

relative error of S, then we may also return the number of keys between f and



Page 8

lowest left and right
ancestor of x

/\

o‘. | ‘o 0“0 o‘o

Figure 4. Rotation. Here a curvy line denotes an arbitrary path.

|



Page 9

k, with a maximum relative error of 8, in the same time bound. .(In Section 3
we will show that the required information about the number of descendants of

each node can be efficiently maintained.)

Proof. First we prove the statement about the search time. Consider the

following algorithm.

procedure SEARCH(f,k);
Eggig comment search for key k from the finger node f, which is
‘assumed to be a leaf;
Aif k = KEY(F) then return f;
assume without loss of generality that k>KEY(f);
PHASE1: while f#null and f does not subtend k do
f := LRA(f);
iﬁ f = null‘EBEE‘return a failure indicator; comment this occurs if
the PHASE1 loop went off the top of the tree;
f := LEFTMOST(RIGHT(F));

PHASE2: while f does not subtend k do f := PARENT(f);
PAAAAA A
PHASE3: perform a conventional search for k in the tree rooted at
£;

end;

PAAASA

See Figure 5. It is not hard to see that this search procedure will find k if
it is in the tree; we will show that it uses O0(log d) time, where d is the
linear distance from f to k. First consider PHASE1. Assuming that at least
one iteration of the while-loop was performed, let fo be the last value of f
that did not subtend k. Then since all leaves of the right subtree of fo lie

between f and k, the number of iterations can be seen to be

O(height of f3) = 0(log(r(fy))) = 0(log d).

For PHASE?2, again assume that at least one iteration is performed, and

let f1 be the last value of f during these iterations that did not subtend k.
Then all leaves of the subtree rooted at f1 lie between f and k, so the number

of iterations is

O(height of £1) = 0(log(r(f,)) = 0(log d).

The time in PHASE3 is also bounded above by the height of f1, so the total
time is 0(log d).



Page 10

L PP 7"
-
) P
.
——
- -

original f:
Curvy lines here denocte

Figure 5. A search from a finger f to a key k.
Arrows with dotted lines

arbitrary left-leaning or right-leaning paths.

denote the movement of the search.




Page 11

Now consider the second part of the lemma, which deals with finding the
approximate number of keys between f and k. It is not hard to see that we can
obtain the desired result without increasing the asymptotic search time; the

central idea of the algorithm is to sum the fields giving approximate

“descendant counts, over an appropriate set of nodes chosen as the search

algorithm proceeds. We omit the details. (]

Note that the problems of searching and updating are largely independent
[Br78]. (We are grateful to [R79] for discussing this separation with us.)

Since the tree is threaded, searching from a finger is efficient. We must now

.determine how to update a tree once we know where an insertion or deletion is

to occur. This appears to give rise to a question of interest in its own
right, namely, how much time is required to update a tree once we know where
the insertion/deletion is to take place. Some classes of structures require
only é small number of changes to the tree. For example, an AVL tree can
always be restored to balance by a single rotation after an insertion. On the
other hand, locating the point at which the rotation should take place may
require @(log n) time; moreover, deletions may require 8(log n) rotations
[K73]. It is known that for bounded balance trees, a string of n insertions
and‘deletions in an initially empty tree can be dohe 80 as to require only
O0(n) rotations [BM76]; however, one may again need to spend a lot of time
deciding where to perform these rotations. For 2-3 trees, a string of n
insertions in an -initially empty tree requires only 0(n) total time if we are
given the positions at which the insertions are to take place. However, a
single insertion may require 6(log n) time; moreover, even if we only
consider total time for n operations, if we allow insertions and deletions to
be interspersed it is no longer O(n) [BT78]. In this paper we describe a
structure in which a string of n insertions and deletions may be performed in
G(n log*n) time, provided we are given the positions of the insertions and
deletions. In [Ha79)] the first author shows how to guarantee O(log%n) times
for individual operations, by further exploiting the concepts in the current
paper. (Recently Scott Huddleston [Hu79] has shown how 2-3-4 trees can
support a sequence of n insertions and deletions with total time of O(n), but

individual operations may require 0(log n) time.)



Page 12

3.0 The update algorithm

3.1 The algorithm

Unfortunately, there are two fundamental problems we encounter when we
try to use threaded bounded balance trees to come up with an efficient data

structure with fingers.

a) Since our desired time bounds do not allow us to scan the entire path
from the root to the inserted node, how can we locate the nodes to be

rebalanced?

b) Even if we could quickly locate candidates for rebalancing, how would
we maintain the field which tells the rank of the node? A single

insertion will change this value for 0(log n) nodes.

To solve (a) we will devise a scanning strategy which enables us to scan
only O(lOS*n) nodes per insertion, and still detect nodes which are going out
of balance before they cause problems. To solve (b) we will not maintain the
rank of a node exactly; rather, each node will have a field r which contéins
an approximation to its rank. Each time we scan a node, we will update this
approximate value using the r values of its children; we will need to be |
sure to do this often enough so that the approximation is adequate. Below we }
sketeh a systematic way of scanning the nodes, which we will prove to be

sufficient.

Define a sequence bi by

(b. 1/3)
b, =2 o
The choice of bO will be deferred; assuming b0 is large enough, one_readily
verifies that min{i}bi>n}”1og*n. We will divide the tree. into 9(log*n) plies
by classifying nodes according to their rank in relation to the sequence b_,
The nodes which occur at the boundary between two plies will be called g;x%

boundary nodes. The ith ply boundary is defined as
B = {vinT | r(v) < b, < r(PARENT(v))}.

One easily establishes that each ply boundary is a cut in T. We may now

formally define the ith ply to be




Page 13

= {v | v has a descendant in B' and an ancestor in B1+1}

Note that it follows that ply boundary nodes occur in the plies both above and
below the boundary. (Note also that the plies used here are similar to the
rank groups employed in [AHUTY4] in a partial analysis of a UNION-FIND data
structure.) In order to obtain the time bounds we desire, we will not be able
to maintain the plies exactly as defined here. Rather we will maintain
approximate plies Pi and ply boundaries B,. These approximate ply boundaries
will also be cuts, and the nodes on these cuts will be at a distance of at
most 1 from a node in the exact ply boundary. Use of these approximate
boundaries allows us to wait a bit before adjusting the boundary as the data
structure changes. Just as we defined /3 earlier to measure how badly a node
needed rotation, we now define a function X to measure how badly a ply

boundary needs to be adjusted. If w is the parent of v, let

AML,Y) = max < (r(/b, 1) /(e - )
(1 - r(w)/bi) / ot

The proof of the following lemma is not difficult and will be omitted.

Lemma 5. Assume the tree is &' balanced. Then node v is on Bi iff
X(i,v) is zero; moreover, if X(i,v) is less than 1, v is at a distance of

at most one from Bi,

: Each node x in Bi will have a field SCANNER(x) which points to some

ancestor of x in Pi' The set of ancestors of x in P.l will be called the orbit

of x. Each time an operation involving x is done, we will move SCANNER(x) up
one step in its orbit. (When a scanner moves off the top of its orbit, it
returns to the bottom.) As the scanner circles around this orbit, it updates

r values and checks for nodes going out of balance.

The algorithm is presented in pidgin-Algol in the appendix. Some further
conventions are useful. For a node x in a ply Pi’ we will let INDEX(x) equal
i. If x is in boundary B., B ANCESTOR(x) will be the ancestor of x, if any,
in B 1) for nodes not on a boundary, B_ANCESTOR is undefined. We will let
B p, and X denote the values obtained for A3, p, and A if we base the
calculation on r rather than on r. Also, for convenience, we have suppressed
a-number of details in the algorithm. In particular, for all nodes of rank

less than bO’ the data structure is a conventional bounded balance tree.



Page 14

Since bO is a constant, this does not affect the asymptotic complexity. Also,
we have not given details on the process by which ply boundaries are created
and destroyed as the rank of the root passes through one of the bi values.
This process, and the analysis of its complexity, are similar to that for the

maintenance of the interior ply boundaries.
3.2 Correctness of the update algorithm

We now give a proof that the algorithm correctly maintains the data
structure. This proof is complicated somewhat by the fact that certain
assumptions interact. In particular, we wish to make sure that the r values
give good approximations to the true rank, in order to guarantee that the
rebalances are done appropriately; on the other hand, we need to assume that
the tree is balanced in order to prove a good bound on the errors in 9, In

order to state the argument clearly, we will define three sets of propositions

which will be involved in an irductive proof.

Q(k) will denote the proposition that at the end of the k' ypdate, and
at all previous points in time, the tree was (x'/2)-balanced and all
A values were less than 3. Note that this is a weaker condition than
that which we ultimately wish to prove about the tree; however, it is
strong enough to guarantee that the height of a node varies
‘logarithmically with its rank, and that all ply boundaries are

maintained within a distance of 0(1) of their correct position.

R(k) will denote that propoéition that at all times through the end of
the k8 operation, the relative error !r(x)-r(x)!/r(x) is O(b0_1/3)
for all nodes x in the tree. (The implied constants in O-notation
will be independent not only of n, but also of bO; the constant is
not independent of o. Thus this proposition says that we may choose

bO large enough to make the relative error as small as we like.)

S{k) will denote the proposition that at all times through the end of the

Kth operation, the 3 and A values remain léss than 1. Note that

this is just a stronger version of Q(k).

Lemma 6. For large enough bO’ Q(k)==>R(k). Thus, if the balances and

boundaries are maintained even approximately, we can make the relative error

in P ag small as we like by choosing bO to be large enough.




Page 15

Proof. First consider nodes on some ply Pi‘ Let ry be the smallest
possible rank of a node on this ply; note that Ty is g(bi), Let x be some
node on this ply. Let m be the number of cperations involving x which have
been performed since the last time that E(x) was updated. Then it must be
the case that during the last m operations, x has not been scanned, and has
not actively participated in a rotation in a way which changed its set of
descendants. (This is true by inspection of the SCAN and REBALANCE
procedures.) Note that x has O(r(x)/b.) descendants on B;, and each of these
has a scanner whose orbit is of length O(bi1/3)' Note also that these
scanners have been advanced a total of at least m steps since x was scanned.

Using a pidgeon-hole type of argument, we may conclude that

m = 0(r(x) bi'2/3). (1)

Now let e(r) be the maximum value of the relative error (i.e.,

I;(x)—r(x)}/r(x)) of a node x of rank r. Note that r(x) can be inaccurate

for two reasons:

a) When r(x) was updated, the approximate values in its children were
used. Since the maximum possible rank of x at this point was r(x)+m,
the rank of its children was at most (1-x'/2)(r(x)+m). Thus the
absolute error at this point was bounded by

(r(x) +m) e((1-x'/2) (r(x) + m))
Assuming e(r)<1, this is bounded by
ri{x) e((t-x'/2) (r(x) + m)) + m. (2)

Using (1), if we let p be half way between 1 and (1—&'/2)_1, we can
N choose bO so that (2) is bounded by

r(x) e(r(x)/p) + m.

b) The value of r(x) has changed, by at most m, since r was last
updated. The absolute error due to.this change is, of course, at most

m.
In view of (1), (a), and (b), we may now bound the relative error by

e(r) <

e(r/p) + O(b£2/3),

which implies that




Page 16

e(r) S_e(ro) + O(b£2/3) logp (r/ro)
= elry) + 67273 00, 13) = etry) + 0(v,713).

Thus the increase in the relative error over a single ply P, is O(b._1/3). If

i
we sum for i running from 0 to infinity, this converges to O(b '1/3), Our

0
earlier assumption that e(r)<1 is now justified. (This is, of course, not a

circular argument; rather, it is an implicit simple induction.) (]

Lemma 7. If we choose bO large enough, then R(k)==>S(k). Thus, assuming
the relative errors in r are small enough, the tree remains balanced and the

boundaries remain within a distance of 1 of their exact positions.

Proof. Suppose that the relative errors in r are within the e of
Lemma 1 and are small enough so that the absolute error inlé is at most
0.25. Now the only timeAé(z) changes 1s when r of z or of its left child

changes. But these can change under only two conditions:

a) We are in procedure SCAN. In this case we check whetherlé exceeds
0.5; this means that we will detect any node for which /3(z)>0.75.
Now 1if bO is large enough, a single insertion/deletion will change /3
by less than 0.25, so when we detect A(z) >0.5 we still have /3(z)<1.
Then, by Lemma 1 and the definition of A3, node z will be returned to

a state in which A3(z)=0.

b) We are in procedure REBALANCE. In this case, /3(z) will, again, be 0
after the call.

A somewhat similar proof holds for the X\ values. Al

Lemma 8. If we choose by large enough, S(k)==>Q(k+1). Informally, this
says that if the data structure is in a state of strict balance, it cannot

cease to be even roughly balanced after one insertion/deletion.

Proof. A single insertion or deletion can change the values of A(x) or
X(x) by an amount inversely proportional to the rank of x. Thus if bO is
large enough, the desired condition is easily established for nodes x which do
not participate in rotations or boundary adjustments. For nodes which do

participate in such activities, the affected A3 and X values become 0, so




Page 17

again the desired condition is enforced. {]

Theorem 1. If we pick bO large enough, then the tree is correctly
maintained. That is, R(k) and S(k) are true for all k.

Proof. This follows by an easy induction using the past three lemmas.
{

Theorem 2. If we choose bO large enough, the worst case time complexity

3*
of MAINTAIN, when averaged over the entire string of operations, is O(log n).

Proof sketch. The only difficult part is bounding the work done during
rebalancing and boundary movements. We use an accounting argument to show
that in fact this part of the work is 0(1). Define the quantity I(T) to be

the sum, over all x in T, of the following quantities:
a) B3(x)¥(r(x) / (log(r(x)))3 ).
b) 1f x is a boundary node, say in Bi’ and if A (i,x)>0.2, add in

OM(i,%)-0.25)#(r(x) / (log(r(x)))3 ).

This quantity I(T) will give a measure of how much work appears to be
necessary soon to balance nodes and adjust boundaries. Now it is not hard to
establish that a single insertion/deletion, before any rebalancing, can change
A(x) and A(x) for any node X by at most an amount inversely proportional to
r(x). Using this observation and the fact that ranks increase exponentially
as we traverse any path toward the root, we may easily conclude that a single

insertion or deletion increases I(T) by only 0(1). .

On the other hand, a rebalance or boundary adjustment requires an amount
of time proportional to the decrease in I(T). To see this, assume that b0 is
large enough so that the errors in /3 and X are at most 0.2. Now note that
a boundary movement decreases A from at least 0.5 to 0; thus X in this
part of the boundary will decrease from at least 0.3 to at most 0.2, so the
new contribution to I(T) is 0. When a rebalance is done, A(x) is at least
0.5, so A3(x) is at least 0.3, and /3(x) is decreased to O by the rebalance;
moreover, all nodes whose /3 value is affected by the rotation will have zero
/3 values afterwards, by Lemma 1 and the definition of /3. The factor

(r(x)/ 1n(r(x))3 ) used in defining I(T) is a bound on the size of the partial




Page 18

subtree which needs to be modified during a rebalance or boundary adjustment
at x; this follows by inspection of the algorithm, and by the manner in which

we defined the plies and the sequence bi' Thus the cost of the rebalance or

boundary adjustment is covered by the decrease in I(T). 0



Page 19
References

[aHUT4] Aho, A., Hoperoft, J., and Ullman, J., The Design and Analysis of
Computer Algorithms, Addison-Wesley, Reading, Mass., 1974.

[BMTB] O Blum; N., and Mehlhorn, K., "On the Average Number of Rebalancing
Operations in Weight-Balanced Trees," Universit#dt des Saarlandes,
A-78/06, June 1978.

[BT78] ¢ Brown, M. R., and Tarjan, R. E., "Design and Analysis of a Data
Struecture for Representing Sorted Lists," Technical Report
STAN-CS~-78-709, Computer Sciences Department, Stanford University,
December 1978.

[GMPRTT7]? Guibas, L. J., McCreight, E. M., Plass, M. F., and Roberts, J. R.,
"A New Representation for Linear Lists," Proc. Ninth Annual ACM
Symposium on Theory of Computing, (May 1977), pp. 49-60.

[Ha79] 9 Hafel, D., "A Finger Data Structure with Guaranteed Time Bounds per
Operation," draft.

[Hu79] ¢ Huddleston, S., private communication.

[K73] Knuth, D., The Art of Computer Programming, Vol. III: Sorting and
Searching, Addison-Wesley, 1973.

(L79] V Lueker, G. S., "A Transformation for Adding Range Restriction
Capability to Dynamic Data Structures for Decomposable Searching
Problems," Technical Report #129, University of California at
Irvine, February 1979.

[NR73} ¢ Nievergelt, J., Reingold, E. M., "Binary Search Trees of Bounded

Balance," SIAM J. Comput., 2:1 (1973), pp. 33-43.
(R79] Rodeh, M., private communication to Dov Harel, 1979.
[T751] Tarjan, R. E., "Efficiency of-a Good But Not Linear Set Union

Algorithm," JACM, 22:2 (April 1975), pp. 215-225,

[W78] Willard, D. E., Predicate-Oriented Database Search Algorithms, Ph.D.
thesis, Aiken Computation Laboratory, Harvard University, 1978;
available as technical report TR-20-78.




Page 20

Appendix: Pidgin-Algol for the tree maintenance procedures

procedure MAINTATIN(u);

begin comment assuming a node has been inserted or deleted, and that u is its

ancestor on BO’ do the necessary maintenance operations on the tree;

using the B_ANCESTOR fields, let uo,u1,...,ug be the ancestors of u which
lie on boundaries;
for i := 0 to g do

if ﬁ(i,ui) < 0.5
then SCAN(ui)

else

MOVE_BOUNDARY: begin

comment we must update the boundary. (Currently ui is at a
distance of 1 from the exact boundary);

make the necessary changes in the data structure toc move the ply
boundary up or down so that all >\ values of the new boundary
nodes are 0;

comment the above process is not described in detail since it is
clear that it can be done in O(bi/bi—1) time--the entire portion
of the tree consisting of the descendants of ui in Pi—1 contains
only O(bi/bi—1) nodes. (The major cost of this operation stems
from the fact that all descendants in Bi-1 of a new ply boundary
node u in Bi must have their B_ANCESTOR field set to point to

| u);

‘ for each new boundary node u do SCAN_ORBIT(u);

end

e

end

end;

—————

procedure SCAN_QORBIT(u);

B e

Degin comment scan the entire orbit of u, and set the SCANNER of u to point to

uj
SCANNER (u) := u;
repeat SCAN(u) until SCANNER(u) = u;

end;

MAAA




Page 21

procedure SCAN(u);

begin comment advance the scanner of u, and update the rank of the newly

scanned node;

i := INDEX(u); s := SCANNER(u);
s := SCANNER(u) := (if PARENT (s) is in Bi+1 then u else PARENT(s));
r(x) := r(LEFT(x)) + r(RIGHT(s));

e

if A(s) > 0.5 then REBALANCE(s);
if A(PARENT(s)) > 0.5 then REBALANCE(PARENT(s));

end;
procedure REBALANCE(x);
i 1= INDEX(x);
do the appropriate rotation to bring A3(x) back to 0;
for each node y, other than x, which actively participated in the rotation,
do
r(y) := r(LEFT(y)) + r(RIGHT(y));
comment the following loop is done to make sure that scanners remain in
their orbits;
PATCH_SCANNERS: for each node in the ply boundary just below x do
jﬁ;SCANNER(w) points to a node which actively participated in the rotation
‘then SCAN(w);
PATCH_BOUNDARIES: if any nodes which actively participated in the rotation
were boundary nodes or parents of boundary nodes, then
adjust the portion of the tree between x and Bi to guarantee that the
boundaries have A values of 0;
for each new boundary node u do SCAN_ORBIT(u);
end;

A

end

A~






