
UC Berkeley
UC Berkeley Previously Published Works

Title
Robust online monitoring of signal temporal logic

Permalink
https://escholarship.org/uc/item/5dw5k0xp

Journal
Formal Methods in System Design, 51(1)

ISSN
0925-9856

Authors
Deshmukh, Jyotirmoy V
Donzé, Alexandre
Ghosh, Shromona
et al.

Publication Date
2017-08-01

DOI
10.1007/s10703-017-0286-7
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5dw5k0xp
https://escholarship.org/uc/item/5dw5k0xp#author
https://escholarship.org
http://www.cdlib.org/


Form Methods Syst Des (2017) 51:5–30
DOI 10.1007/s10703-017-0286-7

Robust online monitoring of signal temporal logic

Jyotirmoy V. Deshmukh1 · Alexandre Donzé2 · Shromona Ghosh3 ·
Xiaoqing Jin1 · Garvit Juniwal3 · Sanjit A. Seshia3

Published online: 27 July 2017
© Springer Science+Business Media, LLC 2017

Abstract Signal temporal logic (STL) is a formalism used to rigorously specify require-
ments of cyberphysical systems (CPS), i.e., systems mixing digital or discrete components in
interaction with a continuous environment or analog components. STL is naturally equipped
with a quantitative semantics which can be used for various purposes: from assessing the
robustness of a specification to guiding searches over the input and parameter space with the
goal of falsifying the given property over system behaviors. Algorithms have been proposed
and implemented for offline computation of such quantitative semantics, but only few meth-
ods exist for an online setting, where one would want to monitor the satisfaction of a formula
during simulation. In this paper, we formalize a semantics for robust online monitoring of
partial traces, i.e., traces for which there might not be enough data to decide the Boolean
satisfaction (and to compute its quantitative counterpart). We propose an efficient algorithm
to compute it and demonstrate its usage on two large scale real-world case studies coming
from the automotive domain and from CPS education in a Massively Open Online Course
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setting. We show that savings in computationally expensive simulations far outweigh any
overheads incurred by an online approach.

Keywords Cyberphysical systems · Runtime verification · Online monitoring · Signal
temporal logic · Quantitative semantics

1 Introduction

Design engineers for embedded control software typically validate their designs by inspecting
concrete observations of system behavior. For instance, in the model-based development
(MBD) paradigm, designers have access to numerical simulation tools to obtain traces from
models of systems. An important problem is then to be able to efficiently test whether some
logical property ϕ holds for a given simulation trace. It is increasingly common [2,9,12,15,
17] to specify such properties using a real-time temporal logic such as Signal temporal logic
(STL) [7] or Metric Temporal Logic (MTL) [10]. An offline monitoring approach involves
performing an a posteriori analysis on complete simulation traces (i.e., traces starting at time
0, and lasting till a user-specified time horizon). Theoretical and practical results for offline
monitoring [5,7,10,19] focus on the efficiency of monitoring as a function of the length of
the trace, and the size of the formula representing the property ϕ.

There are a number of situations where offline monitoring is unsuitable. Consider the
case where the monitor is to be deployed in an actual system to detect erroneous behavior.
As embedded software is typically resource constrained, offline monitoring—which requires
storing the entire observed trace—is impractical.Also,when amonitor is used in a simulation-
based validation tool, a single simulation may run for several minutes or even hours. If we
wish to monitor a safety property over the simulation, a better use of resources is to abort the
simulation whenever a violation is detected. Such situations demand an online monitoring
algorithm, which hasmarkedly different requirements. In particular, a good onlinemonitoring
algorithm must: (1) be able to generate intermediate estimates of property satisfaction based
on partial signals, (2) use minimal amount of data storage, and (3) be able to run fast enough
in a real-time setting.

Most works on online monitoring algorithms for logics such as Linear Temporal Logic
(LTL) or Metric Temporal Logic (MTL) have focussed on the Boolean satisfaction of
properties by partial signals [8,11,21]. However, recent work has shown that by assign-
ing quantitative semantics to real-time logics such as MTL and STL, problems such as
bug-finding, parameter synthesis, and robustness analysis can be solved using powerful off-
the-shelf optimization tools [1,4]. A robust satisfaction value is a functionmapping a property
ϕ and a trace x(t) to a real number. A large positive value suggests that x(t) easily satisfies ϕ,
a positive value close to zero suggests that x(t) is close to violating ϕ, and a negative value
indicates a violation of ϕ. While the recursive definitions of quantitative semantics naturally
define offline monitoring algorithms to compute robust satisfaction values [5,7,10], there is
limited work on an online monitoring algorithm to do the same [3].

The main technical and theoretical challenge of online monitoring lies in the definition
of a practical semantics for a temporal logic formula over a partial signal, i.e., a signal trace
with incomplete data which cannot yet validate or invalidate ϕ. Past work [8] has identified
three views for the satisfaction of a LTL property ϕ over a partial trace τ : (1) a weak view
where the truth value of ϕ over τ is assigned to true if there is some suffix of τ that satisfies
ϕ, (2) a strong view when it is defined to be false when some suffix of τ does not satisfy ϕ
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and (3) a neutral view when the truth value is defined using a truncated semantics of LTL
restricted to finite paths. In [11], the authors extend the truncated semantics to MTL, and in
[3], the authors introduce the notion of a predictor, which works as an oracle to complete
the partial trace and provide an estimated satisfaction value. However, such a value cannot
be formally trusted in general as long as the data is incomplete.

We now outline our major contributions in this paper. In Sect. 3, we present robust interval
semantics for an STL property ϕ on a partial trace τ that unifies the different semantic views
of real-time logics on truncated paths. Informally, the robust interval semantics map a trace
x(t) and an STL property ϕ to an interval (�, υ), with the interpretation that for any suffix
u(t), � is the greatest lower bound on the quantitative semantics of the trace x(t), and υ is the
corresponding lowest upper bound. There is a natural correspondence between the interval
semantics and three-valued semantics: (1) the truth value of ϕ is false according to the weak
view iff υ is negative, and true otherwise; (2) the truth value is true according to the strong
view iff � is positive, and false otherwise; and (3) a neutral semantics, e.g., based on some
predictor, can be defined when � < 0 < υ, i.e., when there exist both suffixes that can violate
or satisfy ϕ.

In Sect. 4, we present an efficient online algorithm to compute the robust interval semantics
for bounded horizon formulas. Our approach is based on the offline algorithm of [5] extended
towork in a fashion similar to the incremental Booleanmonitoring of STL implemented in the
tool AMT [21]. A key feature of our algorithm is that it imposes minimal runtime overhead
with respect to the offline algorithm, while being able to compute robust satisfaction intervals
on partial traces. In Sect. 5, we examine the case of unbounded horizon formulas, and present
a proof that we can always design a robust online monitor using only a bounded amount of
memory.

Finally, we present an implementation and illustrate it with a model of a fuel control
system for gasoline engines proposed as industrial benchmark for the verification of Cyber-
Physical Systems (CPS) in [14]. We then provide experimental results on two large-scale
case studies: (i) industrial-scale Simulink models from the automotive domain in Sect. 6, and
(ii) an automatic grading system used in a massive online education initiative on CPS [16].
Since the online algorithm can abort simulation as soon as the truth value of the property
is determined, we see a consistent 10–20% savings in simulation time (which is typically
several hours) in a majority of experiments, with negligible overhead (<1%). In general, our
results indicate that the benefits of our online monitoring algorithm over the offline approach
far outweigh any overheads.

2 Background

2.1 Interval arithmetic

We make extensive use of simple interval arithmetic operations which we review next. An
interval I is a convex subset of R. A singular interval [a, a] contains exactly one point.
Intervals (a, a), [a, a), (a, a], and∅ denote empty intervals.We enumerate interval operations
below assuming open intervals. Similar operations can be defined for closed, open–closed,
and closed–open intervals. In what follows, let I j = (a j , b j ).

− I1 = (−b1,−a1)

c + I1 = (c + a1, c + b1)
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I1 ⊕ I2 = (a1 + a2, b1 + b2)

I1 ∩ I2 =
{∅ if min(b1, b2) < max(a1, a2)

(max(a1, a2),min(b1, b2)) otherwise.

min
j

(I j ) = (min j (a j ),min j (b j ))

max
j

(I j ) = (max j (a j ),max j (b j )) (2.1)

Definition 1 (Signal) A time domain T is a finite or infinite set of time instants such that
T ⊆ R

≥0 with 0 ∈ T . A signal x is a function from T to X ⊆ R
m where m is the dimension

of the signal. Given a time domain T , a partial signal is any signal defined on a time domain
T ′ ⊆ T

We remark that we consider the signal-value domainX to be some compact (bounded and
closed) subset ofRm . This is so becausewe assume that signals are obtained from simulations
of physical systems or sensor measurements from a real-world system. In either case, it is
reasonable to assume that the signal values come from a bounded set, as physical quantities
(e.g., temperature, pressure, velocity) are either inherently bounded, or are limited to the
resolution offered by the measurement systems.

Simulation frameworks typically provide signal values at discrete time instants, usually
this is a by-product of using a numerical technique to solve the differential equations in the
underlying system. These discrete-time solutions are assumed to be sampled versions of the
actual signal, which can be reconstructed using some form of interpolation. In this paper,
we assume constant interpolation to reconstruct the signal x(t), i.e., given a sequence of
time-value pairs (t0, x0), . . . , (tn, xn), for all t ∈ [t0, tn), we define x(t) = xi if t ∈ [ti , ti+1),
and x(tn) = xn . Further, let Tn ⊆ T represent the finite subset of time instants at which the
signal values are given.

2.2 Signal temporal logic

We use signal temporal logic (STL) [7] to analyze time-varying behaviors of signals.We now
present its syntax and semantics. A signal predicate μ is a formula of the form f (x) > 0,
where x is a variable that takes values from X , and f is a function from X to R. The syntax
of an STL formula ϕ is defined as follows:

ϕ ::=μ | ¬ϕ | ϕ ∧ ϕ | �Iϕ | ♦Iϕ | ϕUIϕ | ϕRIϕ (2.2)

Quantitative semantics for timed-temporal logics have been proposed for STL in [7]; we
include the definition below.

Definition 2 (Robust satisfaction value) The robust satisfaction value is a function ρ map-
ping ϕ, the signal x, and a time τ ∈ T as follows:

ρ ( f (x)>0, x, τ ) = f (x(τ ))

ρ (¬ϕ, x, τ ) = −ρ(ϕ, x, τ )

ρ (ϕ1 ∧ ϕ2, x, τ ) = min (ρ(ϕ1, x, τ ), ρ(ϕ2, x, τ ))

ρ (�Iϕ, x, τ ) = inf
τ ′∈τ+I

ρ(ϕ, x, τ ′)

ρ (♦Iϕ, x, τ ) = sup
τ ′∈τ+I

ρ(ϕ, x, τ ′)

ρ (ϕUIψ, x, τ ) = sup
τ1∈τ+I

min

(
ρ(ψ, x, τ1), inf

τ2∈[τ,τ1]
ρ(ϕ, x, τ2)

)
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ρ (ϕRIψ, x, τ ) = inf
τ1∈τ+I

max

(
ρ(ψ, x, τ1), sup

τ2∈[τ,τ1]
ρ(ϕ, x, τ2)

)
(2.3)

Here, the translation from quantitative semantics to the usual Boolean satisfaction seman-
tics is that a signal x satisfies an STL formula ϕ at a time τ iff the robust satisfaction value
ρ(ϕ, x, τ ) ≥ 0. We say a signal x satisfies ϕ iff ρ(ϕ, x) = ρ(ϕ, x, 0) ≥ 0, i.e., it satisfies ϕ

at time 0.

Remark 1 The semantics presented here and in [7,19] have a technical difference from the
ones used in the conventional definition used for Linear Temporal Logic andMetric Temporal
Logic (such as in [11]). The difference lies in the definition of U, where for the formula
ϕUψ , we require ϕ to hold at the time-point at which ψ holds, while previous approaches
do require it. (Similarly for the R operator).

3 Robust interval semantics

In what follows, we assume that we wish to monitor the robust satisfaction value of a signal
over a finite time-horizon TH . We assume that the signal is obtained by applying piecewise
constant interpolation to a sampled signal defined over time-instants {t0, t1, . . . , tN }, such
that tN = TH . In an online monitoring context, at any time ti , only the partial signal over time
instants {t0, . . . , ti } is available, and the rest of the signal becomes available in discrete time
increments.We define robust satisfaction semantics of STL formulas over such partial signals
using an interval-based semantics. Such a robust satisfaction interval (RoSI) includes all
possible robust satisfaction values corresponding to the suffixes of the partial signal. In this
section, we formalize the recursive definitions for the robust satisfaction interval of an STL
formula with respect to a partial signal, and in the next section we will discuss an efficient
algorithm to compute and maintain these intervals.

Definition 3 (Prefix, completions) Let {t0, . . . , ti } be a finite set of time instants such that
ti ≤ TH , and let x[0,i] be a partial signal over the time domain [t0, ti ]. We say that x[0,i] is a
prefix of a signal x if for all t ≤ ti , x(t) = x[0,i](t). The set of completions of a partial signal
x[0,i] (denoted by C(x[0,i])) is defined as the set {x | x[0,i]is a prefix of x}.
Definition 4 (Robust satisfaction interval (RoSI)) The robust satisfaction interval of an STL
formula ϕ on a partial signal x[0,i] at a time τ ∈ [t0, tN ] is an interval I such that:

inf(I ) = inf
x∈C(x[0,i])

ρ(ϕ, x, τ )

sup(I ) = sup
x∈C(x[0,i])

ρ(ϕ, x, τ ) (3.1)

Definition 5 We now define a recursive function [ρ] that maps a given formula ϕ, a partial
signal x[0,i] and a time τ ∈ T to an interval [ρ](ϕ, x[0,i], τ ). We use the notation finf and fsup
to respectively denote the infimal and supremal value of the function f (x) over the signal
domain X .

[ρ] (
f (x[0,i])≥0, x[0,i], τ

) =
{ [ f (x[0,i](τ )), f (x[0,i](τ ))] τ ∈ [t0, ti ]

[ finf, fsup] otherwise.

[ρ] (¬ϕ, x[0,i], τ
) = −[ρ](ϕ, x[0,i], τ )

[ρ] (
ϕ1 ∧ ϕ2, x[0,i], τ

) = min([ρ](ϕ1, x[0,i], τ ), [ρ](ϕ2, x[0,i], τ ))
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[ρ] (
�Iϕ, x[0,i], τ

) = inf
τ ′∈τ+I

([ρ](ϕ, x[0,i], τ ′)
)

[ρ] (
♦Iϕ, x[0,i], τ

) = sup
τ ′∈τ+I

([ρ](ϕ, x[0,i], τ ′)
)

[ρ] (ϕ1UIϕ2, x[0,i], τ
) = sup

τ1∈τ+I
min

( [ρ](ϕ2, x[0,i], τ1),
inf

τ2∈[τ,τ1]
[ρ](ϕ1, x[0,i], τ2)

)

[ρ] (ϕ1RIϕ2, x[0,i], τ
) = inf

τ1∈τ+I
max

( [ρ](ϕ2, x[0,i], τ1),
sup

τ2∈[τ,τ1]
[ρ](ϕ1, x[0,i], τ2)

)
(3.2)

The following lemma shows that the interval obtained by applying the recursive definition
for [ρ] is indeed the robust satisfaction interval as defined in Definition 4.

Lemma 1 For any STL formulaϕ, the function [ρ](ϕ, x[0,i], τ ) defines the robust satisfaction
interval for the formula ϕ over the signal x[0,i] at time τ .

Proof We prove by induction on the formula structure. The base case is when ϕ is μ. If
τ ∈ [t0, ti ] then [ρ](ϕ, y, τ ) = [ f (y(τ )), f (y(τ ))]. Let x be any completion of y. If τ ∈
[t0, ti ] then x(τ ) = y(τ ), and hence, infx∈C(y) ρ(ϕ, x, τ ) (resp. sup) is equal to f (y(τ )). If
τ > ti , then [ρ](ϕ, y, τ ) = [ finf, fsup]. By definition of finf and fsup, for any completion x,
f (x(τ )) ∈ [ finf, fsup].
We proceed by structural induction on the formula structure. Assume [ρ](ϕ, y, τ ) is

a RoSI, i.e., for any completion x of y, ρ(ϕ, x, τ ) ∈ [ρ](ϕ, y, τ ). As ρ(¬ϕ, x, τ ) =
−ρ(ϕ, x, τ ), it follows that if ρ(ϕ, x, τ ) ∈ [ρ](ϕ, y, τ ), then −ρ(ϕ, x, τ ) ∈ −[ρ](ϕ, y, τ ),
by interval arithmetic. For all the remaining operators, we can make a similar argument, and
the results follow by the properties of interval arithmetic. ��

4 Online algorithm

Donzé et al. [5] present an offline algorithm for monitoring STL formulas over (piecewise)
linearly interpolated signals. A naïve implementation of an online algorithm is as follows:
at time ti , use a modification of the offline monitoring algorithm to recursively compute the
robust satisfaction intervals as defined by Def. 5 to the signal x[0,i]. We observe that such a
procedure does many repeated computations that can be avoided by maintaining the results
of intermediate computations. Furthermore, the naïve procedure requires storing the signal
values over the entire time horizon, which makes it memory-intensive. In this section, we
present a basic online algorithm for a bounded-horizon fragment of STL.

As in the offlinemonitoring algorithm in [5], an essential ingredient of the online algorithm
is Lemire’s running maximum filter algorithm [18]. The problem this algorithm addresses is
the following: given a sequence of values a1, . . . , an , find the maximum over all windows of
size w, i.e., for all j , maxi∈[ j, j+w) ai . We briefly review an extension of Lemire’s algorithm
over piecewise-constant signals with variable time steps, given as Algorithm 1. The main
observation in Lemire’s algorithm is that it is sufficient to maintain a descending monotonic
edge (noted F in Algorithm 1) to compute the sliding maxima, in order to achieve an optimal
procedure, measured in terms of the number of comparisons between elements. The first
element of F at time t is the sliding maximum at time t . As F slides forward in time and
the window hits a new value xi+1 (Line 6 in Algorithm 1), F is updated by removing every
element indexed by the tail of F that are smaller than xi+1 (Line 7–8), then i + 1 becomes
the tail. It can be shown that with this mechanism, the total number of comparisons between
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Algorithm 1: SlidingMax((t0, x0), . . . , (tN , xN ), [a, b]).
Output: Sliding maximum y(t) over times in [t0, tN ]

1 F := {0} // F is the set of times representing the monotonic edge
2 i := 0; s, t := t0 − b
3 while t + a < tN do
4 if F = ∅ then t := min(tmin(F) − a, ti+1 − b)
5 else t := ti+1 − b
6 if t = ti+1 − b then
7 while xi+1 ≥ xmax(F) ∧ F = ∅ do
8 F:= F − max(F)

9 F:= F ∪ {i + 1}, i := i + 1
10 else // Slide window to the right
11 if s > t0 then y(s) := xmin(F)

12 else y(t0) := xmin(F)

13 F:= F − min(F), s := t

elements is linear in the total number of values. Algorithm 1 extends [18] in that it deals with
timed values (or piecewise constant signals) instead of a simple discrete array and is slightly
simpler than the one in [5] which considers piecewise linear signals, i.e., linear interpolation
between values.

4.1 Stipulation on time-step

As in the offline algorithm, we stipulate that the signal being monitored has finite variability.
We formalize this in terms of a minimum time-step in the signal. Given a signal x(t) as a
sequence of time-value pairs (t0, x0), . . . , (tn, xn), we require n to be a finite integer, and we
require that there exist a known Δ ∈ R

>0, such for any i ≥ 0, ti+1 − ti > Δ.
We observe that the knowledge of such a “minimum time-step” Δ known a priori is

a reasonable assumption for most real-time monitoring scenarios. This is so because, it is
physically impossible for a monitoring routine to samples the actual dense-time signal at an
infinite resolution, i.e., some time must pass between consecutive samples in the signal.

We now present the algorithm for the fragment of STL where each temporal operator is
bounded by a time-interval I such that sup(I ) is finite. The procedure for online monitoring
is an algorithm that maintains in memory the syntax tree of the formula ϕ to be monitored,
augmented with some book-keeping information. First, we formalize some notation. For a
given formula ϕ, let Tϕ represent the syntax tree of ϕ, and let root(Tϕ) denote the root of the
tree. Each node in the syntax tree (other than a leaf node) corresponds to an STL operator
¬,∨,∧,�I or ♦I . We omit the case of UI here for clarity of the presentation - simply note
that the rewriting approach of [5] can also be adapted and was implemented in our tool. We
will use HI to denote any temporal operator bounded by interval I . For a given node v, let
op(v) denote the operator for that node. For any node v in Tϕ (except the root node), let
parent(v) denote the unique parent of v.

Algorithm 2 does the online RoSI computation. Like the offline algorithm, it is a dynamic
programming algorithm operating on the syntax tree of the given STL formula, i.e., com-
putation of the RoSI of a formula combines the RoSIs for its constituent sub-formulas in
a bottom-up fashion. As computing the RoSI at a node v requires the RoSIs at the child-
nodes, this computation has to be delayed till the RoSIs at the children of v in a certain
time-interval are available. We call this time-interval the time horizon of v (denoted hor(v)),
and define it recursively in Eq. (4.1).
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Fig. 1 Syntax tree Tϕ for ϕ

[given in (4.2)] with each node v

annotated with hor(v) [0,a]

[0] [0, a]

¬
[0, a]

[b,c]

[0, a]

y > 0

[0, a]

x > 0

[b, a+c]

hor(v) =
⎧⎨
⎩

[0] if v = root(Tϕ)

I ⊕ hor(parent(v)) if v = root(Tϕ) and op(parent(v)) = HI

hor(parent(v)) otherwise.
(4.1)

We illustrate the working of the algorithm using a small example then give a brief sketch of
the various steps in the algorithm.

Example 1 Consider formula (4.2). We show Tϕ and hor(v) for each node v in Tϕ in Fig. 1.
In rest of the paper, we use ϕ as a running example.1

ϕ � �[0,a]
(¬(y > 0) ∨ ♦[b,c](x > 0)

)
(4.2)

The algorithm augments each node v of Tϕ with a double-ended queue, that we denote
worklist[v]. Let ψ be the subformula denoted by the tree rooted at v. For the partial signal
x[0,i], the algorithmmaintains inworklist[v], the RoSI [ρ](ψ, x[0,i], t) for each t ∈ hor(v)∩
[t0, ti ]. We denote by worklist[v](t) the entry corresponding to time t in worklist[v]. When
a new data-point xi+1 corresponding to the time ti+1 is available, the monitoring procedure
updates each [ρ](ψ, x[0,i], t) in worklist[v] to [ρ](ψ, x[0,i+1], t)(Fig. 2).

In Fig. 3, we give an example of a run of the algorithm on the plots shown in Fig. 2. We
assume that the algorithm starts in a state where it has processed the partial signal x[0,2], and
show the effect of receiving data at time-points t3, t4 and t5. The figure shows the states of the
worklists at each node of Tϕ at these times when monitoring the STL formula ϕ presented
in Eq. (4.2). Each row in the table adjacent to a node shows the state of the worklist after the
algorithm processes the value at the time indicated in the first column.

The first row of the table shows the snapshot of the worklists at time t2. Observe that in the
worklists for the subformula y > 0, ¬y > 0, because a < b, the data required to compute
the RoSI at t0, t1 and the time a, is available, and hence each of the RoSIs is singular. On
the other hand, for the subformula x > 0, the time horizon is [b, a + c], and no signal value
is available at any time in this interval. Thus, at time t2, all elements of worklist[vx>0] are
(xinf, xsup) corresponding to the greatest lower bound and lowest upper bound on x .

To compute the values of ♦[b,c](x > 0) at any time t , we take the supremum over values
from times t + b to t + c. As the time horizon for the node corresponding to ♦[b,c](x > 0)
is [0, a], t ranges over [0, a]. In other words, we wish to perform the sliding maximum over
the interval [0 + b, a + c], with a window of length c − b. We can use the algorithm for
computing the sliding window maximum as discussed earlier in this section. One caveat is
that we need to store separate monotonic edges for the upper and lower bounds of the RoSIs.
The algorithm then proceeds upward on the syntax tree, only updating the worklist of a node
only when there is an update to the worklists of its children.

The second row in each table is the effect of obtaining a new time point (at time t3)
for both signals. Note that this does not affect worklist[vy>0] or worklist[v¬y>0], as all

1 We remark that ϕ is equivalent to �[0,a]
(
(y > 0) �⇒ ♦[b,c](x > 0)

)
, which is a common formula used

to express a timed causal relation between two signals.
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x

t

−2

−1

0

1

2

t0

t3 − b

t1

t4 − c

a

t2

b

t3

c

t4

a+ c
t5

y

t

−2

−1

0

1

2

t0

t3 − b

t1

t4 − c

a

t2

b

t3

c

t4

a+ c
t5

Fig. 2 These plots show the signals x(t) and y(t). Each signal begins at time t0 = 0, and we consider
three partial signals: x[0,3] (black +blue), and x[0,4] (x[0,3] + green), and x[0,5] (x[0,4] + red). (Color figure
online)

[0,a]

¬[b,c]

y > 0x > 0

t0 = 0 t1 a

t2 [-1, -1] [2, 2] [2, 2]
t3 [-1, -1] [2, 2] [2, 2]
t4 [-1, -1] [2, 2] [2, 2]
t5 [-1, -1] [2, 2] [2, 2]

b t3 t4 a+c

t2 (xinf, xsup) -- -- (xinf,xsup)
t3 [-1, -1] [-2, -2] -- (xinf,xsup)
t4 [-1, -1] [-2, -2] [2, 2] (xinf,xsup)
t5 [-1, -1] [-2, -2] [2, 2] [2, 2]

t0 = 0 t1 a

t2 [1, 1] [-2, -2] [-2, -2]
t3 [1, 1] [-2, -2] [-2, -2]
t4 [1, 1] [-2, -2] [-2, -2]
t5 [1, 1] [-2, -2] [-2, -2]

t0 = 0 t3-b t4-c a

t2 (xinf, xsup) -- -- (xinf,xsup)
t3 [-1,xsup] [-2,xsup] -- (xinf,xsup)
t4 [-1, -1] [-2, -2] [2, 2] [2,xsup]
t5 [-1, -1] [-2, -2] [2, 2] [2, 2]

t0 = 0 t3-b t1 t4-c a

t2 [1,xsup] -- [−2,xsup] -- [−2,xsup]
t3 [1,xsup] [1,xsup] [−2,xsup] -- [−2,xsup]
t4 [1, 1] [1, 1] [-2, -2] [2, 2] [2,xsup]
t5 [1, 1] [1, 1] [-2, -2] [2, 2] [2, 2]

t0 = 0
t2 [−2,xsup]
t3 [−2,xsup]
t4 [−2,−2]
t5 [−2,−2]

Fig. 3 We show a snapshot of the worklist[v] maintained by the algorithm for four different (incremental)
partial traces of the signals x(t) and y(t). Each row indicates the state of worklist[v] at the time indicated in
the first column. An entry marked -- indicates that the corresponding element did not exist in worklist[v] at
that time. Each colored entry indicates that the entry was affected by availability of a signal fragment of the
corresponding color. (Color figure online)

RoSIs are already singular, but does update the RoSI values for the node vx>0. The algo-
rithm then invokes Algorithm 1 on worklist[vx>0] to update worklist[v♦[b,c](x>0)]. Note
that in the invocation on the second row (corresponding to time t3), there is an addi-
tional value in the worklist, at time t3. This leads Algorithm 1 to produce a new value of
SlidingMax (worklist[vx>0], [b, c]) (t3 − b), which is then inserted in worklist[v♦[b,c]x>0].
This leads to additional points appearing in worklists at the ancestors of this node.

Finally, we remark that the run of this algorithm shows that at time t4, the RoSI for the
formula ϕ is [−2,−2], which yields a negative upper bound, showing that the formula is not
satisfied irrespective of the suffixes of x and y. In other words, the satisfaction of ϕ is known
before we have all the data required by hor(ϕ).

Algorithm 2 is essentially a procedure that recursively visits each node in the syntax tree
Tϕ of the STL formula ϕ that we wish to monitor. Line 4 corresponds to the base case of
the recursion, i.e. when the algorithm visits a leaf of Tϕ or an atomic predicates of the form
f (x) > 0. Here, the algorithm inserts the pair (ti+1, xi+1) in worklist[v f (x)>0] if ti+1 lies
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Algorithm 2: updateWorkList(vψ , ti+1, xi+1)

// vψ is a node in the syntax tree, (ti+1, xi+1) is a new signal
time-point

1 switch ψ do
2 case f (x) > 0
3 if ti+1 ∈ hor(vψ ) then
4 worklist[vψ ](ti+1) := [ f (xi+1), f (xi+1)]
5 case ¬ϕ

6 updateWorkList(vϕ , ti+1, xi+1) ;
7 worklist[vψ ] := −worklist[vϕ ]
8 case ϕ1 ∧ ϕ2
9 updateWorkList(vϕ1 , ti+1, xi+1) ;

10 updateWorkList(vϕ2 , ti+1, xi+1) ;
11 worklist[vψ ] := min(worklist[vϕ1 ],worklist[vϕ2 ])
12 case �I ϕ
13 updateWorkList(vϕ , ti+1, xi+1) ;
14 worklist[vψ ] := −SlidingMax(−worklist[vϕ ], I )
15 case ♦I ϕ
16 updateWorkList(vϕ , ti+1, xi+1) ;
17 worklist[vψ ] := SlidingMax(worklist[vϕ ], I )

inside hor(v f (x)>0). In other words, it only tracks a value if it is useful for the computing the
robust satisfaction interval of some ancestor node.

For a node corresponding to a Boolean operation, the algorithm first updates the worklists
at the children, and then uses them to update the worklist at the node. If the current node
represents¬ϕ (Line 5), the algorithmflips the sign of each entry inworklist[vϕ]; this operation
is denoted as −worklist[vϕ]. Consider the case where the current node vψ is a conjunction
ϕ1 ∧ ϕ2. The sequence of upper bounds and the sequence of lower bounds of the entries
in worklist[vϕ1 ] and worklist[vϕ1 ] can be each thought of as a piecewise-constant signal
(likewise for worklist[vϕ2 ]). In Line 11, the algorithm computes a pointwise-minimum over
piecewise-constant signals representing the upper and lower bounds of the RoSIs of its
arguments. Note that for i = 1, 2, if worklist[vϕi ] has Ni entries, then the pointwise-min
would have to be performed at most N1 + N2 distinct time-points. Thus, worklist[vϕ1∧ϕ2 ]
has at most N1+N2 entries. A similar phenomenon can be seen in Fig. 3, where computing a
max over the worklists of v♦[b,c](x>0) and v¬(y>0) leads to an increase in the number of entries
in the worklist of the disjunction.

For nodes corresponding to temporal operators, e.g., ♦Iϕ or �Iϕ, the algorithm
first updates worklist[vϕ]. It then applies Algorithm 1 to compute the sliding maximum
over worklist[vϕ] for ♦I . For �I , the expression −SlidingMax(−worklist[vϕ], I ) effec-
tively computes the sliding minimum by reusing the SlidingMax algorithm. Note that if
worklist[vϕ] contains N entries, so does worklist[v♦I ϕ] or worklist[v�I ϕ]. We note that
the minimum time-step stipulation enforces that all the worklists have a finite number of
elements.

A further optimization can be implemented on top of this basic scheme. For a node v

corresponding to the subformula HIϕ, the first few entries of worklist[v] (say up to time
u) could become singular intervals once the required RoSIs for worklist[vϕ] are available.
The optimization is to only compute SlidingMax overworklist[vϕ] starting from u+ inf(I ).
We omit the pseudo-code for brevity. Finally, we remark that the robust satisfaction interval
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shrinks (or stays the same) with every new time-point in the signal that becomes available,
and never grows.

5 Nominal semantics and monitoring untimed formulas

In the previous section,wepresented amonitoring algorithm for STL formulaswith a bounded
time-horizon. In this section, we consider STL formulas that may have temporal operators
with an unbounded time-horizon. We first make the observation that the robust interval
semantics for a large class of unbounded-horizon STL formulas such as �♦( f (x) > 0), or
�(ϕ �⇒ ♦ψ) is trivially [ finf, fsup].

Clearly, considering robust interval semantics for unbounded horizon STL formulas is
thus trivial and not useful, as it does not give any information. In this section, we define
nominal robust semantics for the purpose of online monitoring.

5.1 Nominal semantics

The nominal semantics of an STL formula can be described in terms of the recursive function
ρnom that maps a given formula ϕ, a partial signal x[0,i] and a time τ ∈ T to a value
ρnom(ϕ, x[0,i], τ ).

ρnom
(
f (x[0,i]) > 0, x[0,i], τ

) = f (x[0,i](τ ))

ρnom (¬ϕ) = −ρnom(ϕ, x[0,i], τ )

ρnom
(
ϕ1 ∧ ϕ2, x[0,i], τ

) = min(ρnom(ϕ1, x[0,i], τ ), ρnom(ϕ2, x[0,i], τ ))

ρnom
(
�Iϕ, x[0,i], τ

) = inf
τ ′∈(τ+I∩[0,ti ])

(
ρnom(ϕ, x[0,i], τ ′)

)

ρnom
(
♦Iϕ, x[0,i], τ

) = sup
τ ′∈(τ+I∩[0,ti ])

(
ρnom(ϕ, x[0,i], τ ′)

)

ρnom
(
ϕ1UIϕ2, x[0,i], τ

) = sup
τ2∈(τ+I∩[0,ti ])

min

(
ρnom(ϕ2, x[0,i], τ2),
inf

τ1∈[τ,τ2]
ρnom(ϕ1, x[0,i], τ1)

)

ρnom
(
ϕ1RIϕ2, x[0,i], τ

) = inf
τ2∈(τ+I∩[0,ti ])

max

(
ρnom(ϕ2, x[0,i], τ2),
sup

τ1∈[τ,τ2]
ρnom(ϕ1, x[0,i], τ1)

)
(5.1)

Observe that the nominal robust satisfaction value closely matches the usual definition for
the robust satisfaction value, except that for the unbounded temporal operators, the robustness
computation is restricted to the signal values available at time ti .

Note that the algorithm to compute robust interval satisfaction could be used to compute
the nominal robust satisfaction, but a direct application of Algorithm 2 requires every node
in the sub-tree rooted at the untimed operator to have a time horizon that is equal to the time
horizon for the trace. In other words, for all such nodes, the algorithm would have to keep
track of every value over arbitrarily long intervals. In what follows, we show that we can
monitor arbitrary STL formulas using amount of memory that is trace-length independent,
such that the bound is exponential in the size of the formula. We first establish this result for
a fragment of STL (denoted STLu) that does not contain any bounded time-horizon temporal
operators, and then indicate how it can be generalized to entire STL.

In what follows, we assume that the domain of signals is a compact set, and replace inf
and sup by min and max respectively. The syntax of a formula ϕ in STLu is as defined in
(5.2). Here, μ indicates a predicate over signals, same as the one defined for STL in (2.2).
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Note that in STLu we assume that all negations are pushed to the μ atoms using standard
rewrite rules for STL.

ϕ ::= μ | ϕ ∧ ϕ | ϕ ∨ ϕ | �ϕ | ♦ϕ | ϕUϕϕRϕ (5.2)

Proposition 1 For ti ∈ [t0, tn−1], we can always rewrite the nominal robustness of a STLu
formula as an expression of the following form:

ρnom(φ, x[0,n], ti ) = max

⎛
⎜⎜⎜⎝

α(n),

min
(
β1(n), ρnom(ζ1, x[0,n−1], ti )

)
...

min
(
βk(n), ρnom(ζk, x[0,n−1], ti )

)

⎞
⎟⎟⎟⎠ (5.3)

We prove this proposition using structural induction on STLu formulas. We use the fol-
lowing expression as an abbrevication for the expression in Eq. (5.3):

E (ti , α(n), (β1(n), ζ1), . . . , (βk(n), ζk)) .

Note that the values α(n) or β�(n), � ∈ [1, k], could be −∞ or +∞. Further, if a β�(n) value
is −∞, then this term can be dropped from the expression, and if an α(n) value is +∞, then
the whole expression evaluates to+∞ (possibly indicating that the formula being monitored
is a tautology).

5.2 Intuition for computing memory bounds

In the above expression, α(n) and β j (n) are meant to represent concrete numeric values
evaluate that are computed from the formula to be monitored using trace-values only for
time tn . The ζ j formulas are some STLu formulas related to the original formula. This
relation will become clearer from the proofs of the lemmata to follow. Each of the expression
ρnom(ζ�, x[0,n−1], ti ) represents a variable that stores the nominal robustness of the formula
ζ� over the partial signal x[0,n−1]. In other words, each such formula represents a summary
of the computation till time tn−1. Thus, for any given formula, the number of the ζ terms
in the expression to compute the nominal robustness of that formula determines how many
variables required. Thus, if the number of ζ terms is finite, i.e., dependent only on the length
of the formula, and independent of the trace-length, then we can monitor the robust nominal
robustness over unbounded horizon temporal formulas with finite memory.

5.3 Intuition for the inductive hypothesis

The main intuition for the inductive hypothesis is that for any STLu formula, the expression
for the nominal robustness can always be rewritten as a “sum of products” form, i.e., as a
max of (1) a specific numeric value obtained only from the signal value at time tn , and (2)
expressions representing the min of a summary variable representing computation over the
signal values from time t0 to tn−1 with a specific numeric value computed only using the data
at time tn .

We now prove the validity of the proposition by structural induction over the formula
structure, i.e., assuming that the hypothesis holds for subformulas, we prove that the hypoth-
esis holds for the formula constructed using the subformulas. We start with the base case
where the STLu formula is an atomic proposition, and show that the induction hypothesis is
valid for this case.

123



Form Methods Syst Des (2017) 51:5–30 17

Lemma 2 (Base Case) The nominal robustness for a formula μ, where μ ≡ ( f (x) > 0) at
time ti ∈ [t0, tn−1] over the partial signal x[0,n] can be written as an expression of the form
in Eq. (5.3).

Proof As the nominal robustness for μ at time ti ∈ [t0, tn−1] is independent of x(tn), we
can see that ρnom(μ, x[0,n], ti ) is equivalent to ρnom(μ, x[0,n−1], ti ), which can be written as
max(−∞,min(∞, ρnom(μ, x[0,n−1], ti ))), i.e. E (ti ,−∞, (+∞, μ)). ��
We now establish Proposition 1 inductively for other kinds of STLu formulas.

Lemma 3 The nominal robustness of ϕ1 ∧ ϕ2 at time ti ∈ [t0, tn−1] over the partial signal
x[0,n] can be written as an expression of the form (5.3).

Proof By definition of nominal robustness,

ρnom(ϕ1 ∧ ϕ2, x[0,n], ti ) = min(ρnom(ϕ1, x[0,n], ti ), ρnom(ϕ2, x[0,n], ti )). (5.4)

Using the induction hypothesis, we can replace each argument of the min as follows:

min

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

max

⎛
⎜⎜⎜⎝

α1(n),

min
(
β1
1 (n), ρnom

(
ζ 1
1 , x[0,n−1], ti

))
,

. . .

min
(
β1
k1

(n), ρnom

(
ζ 1
k1

, x[0,n−1], ti
))

⎞
⎟⎟⎟⎠ ,

max

⎛
⎜⎜⎜⎝

α2(n),

min
(
β2
1 (n), ρnom

(
ζ 2
1 , x[0,n−1], ti

))
,

. . . ,

min
(
β2
k2

(n), ρnom

(
ζ 2
k2

, x[0,n−1], ti
))

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.5)

Using the rule min(max(a, b),max(c, d)) = max(min(a, c),min(a, d),min(b, c),
min(b, d)), we can rewrite the above formula as follows:

max

⎛
⎜⎜⎜⎜⎜⎝

min
(
α1(n), α2(n)

)
,

min
�∈[1,k1]

(
α1(n), β2

� (n), ρnom
(
ζ 2
� , x[0,n−1], ti

))
,

min
m∈[1,k2]

(
α2(n), β1

m(n), ρnom
(
ζ 1
m, x[0,n−1], ti

))
,

min
�∈[1,k1]

min
m∈[1,k2]

(
min

(
β1

� , β2
m, ρnom

(
ζ 1
� ∧ ζ 2

m, x[0,n−1], ti
)))

⎞
⎟⎟⎟⎟⎟⎠

(5.6)

Observe that the above formula is of the following form that preserves the induction
hypothesis:

E

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ti ,

min
(
α1(n), α2(n)

)
,(

min
(
α1(n), β2

1 (n)
)
, ζ 2

1

)
, . . . ,

(
min

(
α1(n), β2

k2
(n)

)
, ζ 2

k2

)
(
min

(
α2(n), β1

1 (n)
)
, ζ 2

1

)
, . . . ,

(
min

(
α2(n), β1

k1
(n)

)
, ζ 2

k1

)
,(

min
(
β1
1 (n), β2

1 (n)
)
, ζ 1

1 ∧ ζ 2
1 )

)
. . .

(
min

(
β1
1 (n), β2

k2
(n)

)
, ζ 1

1 ∧ ζ 2
k2

)
,

...
. . .

...(
min

(
β1
k1

(n), β2
1 (n)

)
, ζ 1

k1
∧ ζ 2

1

)
, . . . ,

(
min

(
β1
k1

(n), β2
k2

(n)
)

, ζ 1
k1

∧ ζ 2
k2

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.7)
We observe that if the expressions for ϕ1 and ϕ2 respectively have k1+1 and k2+1 terms,

then the expression for ϕ1 ∧ ϕ2 has (k1 + 1)(k2 + 1) terms. ��
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Lemma 4 The nominal robustness of ϕ1 ∨ ϕ2 at time ti ∈ [t0, tn−1] over the partial signal
x[0,n] can be written as an expression of the form (5.3).

Proof By definition of nominal robustness,

ρnom(ϕ1 ∨ ϕ2, x[0,n], ti ) = max(ρnom(ϕ1, x[0,n], ti ), ρnom(ϕ2, x[0,n], ti )). (5.8)

Using the induction hypothesis, we can replace each argument of the min as follows:

max

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

max

⎛
⎜⎜⎜⎝

α1(n),

min
(
β1
1 (n), ρnom

(
ζ 1
1 , x[0,n−1], ti

))
,

. . .

min
(
β1
k1

(n), ρnom

(
ζ 1
k1

, x[0,n−1], ti
))

⎞
⎟⎟⎟⎠ ,

max

⎛
⎜⎜⎜⎝

α2(n),

min
(
β2
1 (n), ρnom

(
ζ 2
1 , x[0,n−1], ti

))
,

. . . ,

min
(
β2
k2

(n), ρnom

(
ζ 2
k2

, x[0,n−1], ti
))

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.9)

Observe that the above formula is of the following form that preserves the induction
hypothesis:

E

⎛
⎜⎜⎝ti ,

max
(
α1(n), α2(n)

)
,(

β1
1 (n), ζ 1

1

)
, . . . ,

(
β1
k1

(n), ζ 1
k1

)
,(

β2
1 (n), ζ 2

1

)
, . . . ,

(
β2
k2

(n), ζ 2
k2

)

⎞
⎟⎟⎠ (5.10)

Observe that if ϕ1 and ϕ2 have k1 and k2 summary variables respectively, ϕ1 ∨ ϕ2 requires
k1 + k2 summary variables. ��

Lemma 5 The nominal robustness of ♦ϕ at time ti ∈ [t0, tn−1] over the partial signal x[0,n]
can be written as an expression of the form (5.3).

Proof By definition of nominal robustness of ♦ϕ,

ρnom(♦ϕ, x[0,n], ti ) = max
t j∈[ti ,tn ]

ρnom(ϕ, x[0,n], t j )

= max

(
ϕ(n), max

t j∈[ti ,tn−1]
ρnom(ϕ, x[0,n−1], t j )

) (5.11)

The above is obtained by splitting the outer max into a term over time points between ti and
tn−1 and a second term containing the evaluation of the nominal robustness of the formula ϕ

at time tn . Note that for any formula ϕ, the nominal robustness at time tn is a concrete value
that can be computed using the recursive semantics. We call this value ϕ(n). We now use the
inductive hypothesis (Eq. (5.3)) for ρnom(ϕ, x[0,n], t j ):

max

(
ϕ(n), max

t j∈[ti ,tn−1]

(
α(n), max

�∈[1,k]min
(
β�(n), ρnom(ζ�, x[0,n−1], t j )

)))
(5.12)

Grouping the α(n) term,

= max

(
α(n), ϕ(n), max

t j∈[ti ,tn ]
max

�∈[1,k]
(
min

(
β1(n), ρnom(ζ1, x[0,n−1], t j )

)))
(5.13)
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Distributing the inner max over individual time points t j ∈ [ti , tn]:

= max

⎛
⎜⎜⎜⎜⎝α(n), ϕ(n),max

⎛
⎜⎜⎜⎜⎝

max
�∈[1,k]min

(
β�(n), ρnom(ζ�, x[0,n−1], ti )

)
,

max
�∈[1,k]min

(
β�(n), ρnom(ζ�, x[0,n−1], ti+1)

)
,

. . . ,

max
�∈[1,k]min

(
β�(n), ρnom(ζ�, x[0,n−1], tn−1)

)

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠ . (5.14)

Observe that for each � ∈ [1, k], we can use the following rule to group expressions
containing β�(n) terms: max(min(a, b),min(a, c)) =min(a,max(b, c)). Furthermore, based
on the definition of ♦, we can have that maxt j∈[ti ,tn−1] ρnom(ζ�, x[0,n−1], t j ) is equivalent to
ρnom(♦ζ�, x[0,n−1], ti ).

= max

⎛
⎜⎜⎝
max(α(n), ϕ(n))

min(β1(n), ρnom(♦ζ1, x[0,n−1], ti )),
. . . ,

min(βk(n), ρnom(♦ζk, x[0,n−1], ti ))

⎞
⎟⎟⎠ (5.15)

The above expression is of the following form, which matches the inductive hypothesis
specified in Eq. (5.3): E (ti ,max(ϕ(n), α(n)), (β1(n), ♦ζ1) , . . . , (βk, ♦ζk)). Furthermore,
observe that if ϕ requires k summary variables, ♦ϕ also requires k summary variables. ��
Lemma 6 The nominal robustness of �ϕ at time ti ∈ [t0, tn−1] for the partial signal x[0,n]
can be written as an expression of the form (5.3).

Proof By definition of nominal robustness of �ϕ,

ρnom(�ϕ, x[0,n], ti ) = min
t j∈[ti ,tn ]

ρnom(ϕ, x[0,n], t j )

= min

(
ϕ(n), min

t j∈[ti ,tn−1]
ρnom(ϕ, x[0,n], t j )

) (5.16)

As before, we use the inductive hypothesis for ρnom(ϕ, x[0,n], t j ):

= min

(
ϕ(n), min

t j∈[ti ,tn−1]
max

(
α(n), max

�∈[1,k]min
(
β�(n), ρnom(ζ�, x[0,n−1], t j )

)))
(5.17)

Grouping the α(n) terms:

= min(ϕ(n),max

(
α(n), min

t j∈[ti ,tn ]
max

�∈[1,k]min(β�(n), ρnom(ζ�, x[0,n−1], t j ))
)

(5.18)

Let ζ
j

� be the shorthand for ρnom(ζ�, x[0,n−1], t j ). We can rewrite the underlined term in
Eq. (5.18) as follows:

min
t j∈[ti ,tn−1]

⎛
⎜⎜⎜⎜⎝

max
(
min

(
β1, ζ

i
1

)
, . . . ,min

(
βk, ζ

i
k

))
,

max
(
min

(
β1, ζ

i+1
1

)
, . . . ,min

(
βk, ζ

i+1
k

))
,

. . .

max
(
min

(
β1, ζ

n−1
1

)
, . . . ,min

(
βk, ζ

n−1
k

))

⎞
⎟⎟⎟⎟⎠ (5.19)

Since min and max are distributive over each other, we can now repeatedly apply the rule
min(max(a, b),max(c, d)) = max(min(a, c),min(a, d),min(b, c),min(b, d)) to the above
expression.Observe that thiswill lead to an expression representing amax over an exponential
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number of terms. What will these terms look like? There will be
(k
1

)
terms of the form

min(β�, ζ
i
� , ζ

i+1
� , ζ n−1

� ). This is equivalent to min(β�, ρnom(�(ζ�), x[0,n−1], ti )). Then, there
will be

(k
2

)
terms of the form:

min

⎛
⎝β�, βm, max

A∈n−1
j=1{ζ j

� ,ζ
j
m }
min A

⎞
⎠ .

In the above expression the set A is an element of the n−i-fold Cartesian product of {ζ j
� , ζ

j
m}.

Note that there are 2n−i elements in the Cartesian product. The reader can verify that this
expression is actually equivalent to min(β�, βm, min

j∈[i,n−1]max(ζ j
� , ζ

j
m)). This in turn simpli-

fies to min(β�, βm, ρnom(�(ζ� ∨ζm), x[0,n−1], ti )). We can continue this process considering
terms that group threeβ values together, fourβ values, and so on.We can show that this results
in expression (5.20) below. In this expression, K denotes [1, k] (i.e., the set {1, . . . , k}). For
convenience, let

(K
�

)
denote the set of all � element combinations of the set K . E.g., if k = 3,

i.e., K = {1, 2, 3}, (K2 )
= {(1, 2), (2, 3), (3, 1)}.

max
m∈K max

L∈(Km)
min

((
min
�∈L β�

)
, ρnom

(
�

(∨
�∈L

ζ�

)
, x[0,n−1], ti

))
(5.20)

We can now substitute expression (5.20) in Eq. (5.18) and using the rule min(a,max(b, c))
= max(min(a, b),min(a, c)), we get an expression that is of the form specified in Eq. (5.3):

E

⎛
⎜⎝
ti ,min(ϕ(n), α(n)),(
min
�∈L min(ϕ(n), β�(n)),

�
(∨

�∈L ζ�

)
)

∀L∈(K1)
, . . . ,

(
min
�∈L min(ϕ(n), β�(n)),

�
(∨

�∈L ζ�

)
)

∀L∈(Kk )

⎞
⎟⎠ . (5.21)

The total number of terms in the above expression is
∑k

m=1

( k
m

)
, i.e., 2k . Thus, if the expression

for ϕ has k summary variables, the expression for�ϕ can require up to 2k summary variables.
��

Example 2 As the formula for �ϕ is hard to parse, consider the following example for
the expression corresponding to (5.20) for the case when k = 3, i.e., when the exression
representing the nominal robustness of ϕ has three (β, ζ ) pairs:

max

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

min(β1(n), ρnom(�ζ1, x[0,n−1], ti )),
min(β2(n), ρnom(�ζ2, x[0,n−1], ti )),
min(β3(n), ρnom(�ζ3, x[0,n−1], ti )),
min(min(β1(n), β2(n)), ρnom(�(ζ1 ∨ ζ2), x[0,n−1], ti )),
min(min(β1(n), β3(n)), ρnom(�(ζ1 ∨ ζ3), x[0,n−1], ti )),
min(min(β2(n), β3(n)), ρnom(�(ζ2 ∨ ζ3), x[0,n−1], ti )),
min(min(β1(n), β2(n), β3(n)), ρnom(�(ζ1 ∨ ζ2 ∨ ζ3), x[0,n−1], ti ))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.22)

Lemma 7 The nominal robustness of ϕUϕ2 at time ti ∈ [t0, tn−1] for the partial signal x[0,n]
can be written as an expression of the form (5.3).

Proof By the definition of nominal robustness:

ρnom(ϕ1Uϕ2, x[0,n], ti ) = max
t j∈[ti ,tn ]

min

(
min

th∈[ti ,t j ]
ρnom(ϕ1, x[0,n], th),

ρnom(ϕ2, x[0,n], t j )

)
(5.23)
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Separating the computation for time tn in the outermost max operation:

= max

⎛
⎜⎜⎜⎜⎝
min

(
ϕ2(n), ϕ1(n), min

th∈[ti ,tn−1]
ρnom(ϕ1, x[0,n], th)

)
,

max
t j∈[ti ,tn−1]

min

(
min

th∈[ti ,t j ]
ρnom(ϕ1, x[0,n], th),

ρnom(ϕ2, x[0,n], t j )

)

⎞
⎟⎟⎟⎟⎠ (5.24)

Observe that the underlined term in the above expression, is equivalent toρnom(�ϕ1, x[0,n−1],
ti ). We now analyze term in the second line of the above expression, i.e.,

max
t j∈[ti ,tn−1]

min

(
ρnom(ϕ2, x[0,n], t j ),
min

th∈[ti ,t j ]
ρnom(ϕ1, x[0,n], th)

)
. (5.25)

From the inductive hypothesis, we can write ρnom(ϕ1, x[0,n], th) = max(α1(n), Ah), where:

Ah = max
�∈[1,k1]

min
(
β1

� (n), ρnom
(
ζ 1
� , x[0,n−1], th

))

Similarly, we can write ρnom(ϕ2, x[0,n], t j ) = max(α2(n), Bj ). Then, expression (5.25) can
be written as:

max

⎛
⎝min

(
max

(
α2(n), Bi

)
,max

(
α1(n), Ai

))
,

min
(
max

(
α2(n), Bi+1

)
,max

(
α1(n), Ai

)
,max

(
α1(n), Ai+1

))
,

min
(
max

(
α2(n), Bn−1

)
,min

(
max

(
α1(n), Ai

)
, . . . ,max

(
α1(n), An−1

)))
⎞
⎠
(5.26)

We can rewrite the hth row of expression (5.26) as follows:

min

(
max

(
α2(n), Bj

)
,max

(
α1(n), min

h∈[i, j] Ah

))
. (5.27)

We use the equivalence min
h∈[i, j]max

(
α1, Ah

) = max
(
α1,min j∈[i,n] Ah

)
for the above rewrit-

ing. Distributing the min operation over the max operations in expression (5.27), we get:

max

⎛
⎜⎜⎝
min

(
α2(n), α1(n)

)
, min

(
α2(n), min

h∈[i, j] Ah

)
,

min
(
Bj , α

1(n)
)
, min

(
Bj , min

h∈[i, j] Ah

)
⎞
⎟⎟⎠ . (5.28)

Substituting the above in Eq. (5.26), and grouping similar terms together, we get:

max

⎛
⎜⎜⎜⎝
min

(
α2(n), α1(n)

)
, min

(
α2(n), max

j∈[i,n−1] min
h∈[i, j] Ah

)
,

min

(
α1(n), max

j∈[i,n−1] Bj

)
�������������������

, max
j∈[i,n−1]min

(
Bj , min

h∈[i, j] Ah

)
.

⎞
⎟⎟⎟⎠ (5.29)

The underlined expression above is equivalent to Ai . The expression with the squiggly under-
line reduces to the following expression:

max
m∈[1,k2]

(
min

(
α1(n), β2

m(n), ρnom
(
♦ζ 2

m, x[0,n−1], ti
)) )

. (5.30)
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We are then left with the term that has the dashed underline. Substituting the expressions
for Bj and Ah , we get:

max
j∈[i,n−1]min

⎛
⎜⎝

max
m∈[1,k2]

min
(
β2
m(n), ζ

2, j
m

)
,

min
h∈[i, j] max

�∈[1,k1]
min

(
β1

� (n), ζ
1,h
�

)
⎞
⎟⎠ (5.31)

We can expand this formula over the outermost j index, and start grouping terms in a fashion
similar to the technique in the proof of Lemma (6). We can show that we get an expression
of the following form:

max

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

max
m∈[1,k2]
�∈[1,k1]

min
(
β2
m(n), β1

� (n), ρnom
(
ζ 1
� Uζ 2

m, x[0,n−1], ti
))

,

max
m∈[1,k2]
�1∈[1,k1]
�2∈[1,k1]

min
(
β2
m(n), β1

�1
(n), β1

�2
(n), ρnom

((
ζ 1
�1

∨ ζ 1
�2

)
Uζ 2

m, x[0,n−1], ti
))

,

. . . , . . . ,

max
m∈[1,k2]

min

⎛
⎝β2

m(n), min
�∈[1,k1]

β1
� (n), ρnom

⎛
⎝

⎛
⎝ ∨

�∈[1,k1]
ζ 1
�

⎞
⎠ Uζ 2

m, x[0,n−1]

⎞
⎠

⎞
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5.32)

We can now substitute expressions (5.30) and (5.32) in expression (5.29), and then substitute
the second term in Eq. (5.24) with the resulting expression, we get the following expression
for the nominal robustness for ϕ1Uϕ2:

E

⎛
⎜⎜⎜⎝
ti ,min

(
α1(n), α2(n)

)
,

(ϕ2(n), �ϕ1) ,(
min

(
β2
m(n), α1(n)

)
, ♦ζ 2

m

)
m∈[1,k2] ,(

min
(
β2
m(n),min�∈L β1

� (n)
)
,

(∨
�∈L ζ 1

�

)
Uζ 2

m

)
{L∈(K1r )|r∈K1},m∈[1,k2]

⎞
⎟⎟⎟⎠ (5.33)

Observe that if ϕ1 and ϕ2 have respectively k1 and k2 summary variables, then the nominal
robustness for ϕ1Uϕ2 needs k2 + k2 · 2k1 summary variables. ��

Lemma 8 The nominal robustness of ϕRϕ2 at time ti ∈ [t0, tn−1] for the partial signal x[0,n]
can be written as an expression of the form (5.3).

Proof The proof for the R operator is very similar to that of the U and the � operator. For
brevity, we omit the tedious steps required to show that the expression for nominal robustness
for ϕ1Rϕ2 can be written as:

E

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ti ,min
(
ϕ2(n), α2(n)

)
,(

min

(
ϕ2(n), min

m∈M β2
m(n)

)
, �

(∨
m∈M ζ 2

m

))
,(

min
m∈M β2

m(n), ♦ϕ1 ∧ �
( ∨
m∈M

ζ 2
m

))
,

(
min

(
min
m∈M β2

� (n),min
�∈L β1

� (n), ϕ2(n)

)
,

(∨
�∈L ζ 1

�

)
R

(∨
m∈M ζ 2

m

))
,(

min

(
min
m∈M β2

� (n),min
�∈L β1

� (n)

)
, ♦ϕ1 ∧ (∨

�∈L ζ 1
�

)
R

(∨
m∈M ζ 2

m

))
,

(ϕ2(n), ϕ1) , (+∞, ♦ϕ1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.34)
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In the above expression, for the second and third lines, M is an element of
(K2
r

)
, for every

r ∈ K2. For the fourth and fifth lines, M is an element of
(K2
r

)
, for every r in K2, and L

is an element of
(K1
r

)
for every r in K1. Observe that if ϕ1 and ϕ2 have respectively k1 and

k2 summary variables, then the nominal robustness for ϕ1Rϕ2 requires 2k1+k2 + 2k2 + 1
summary variables. ��
Theorem 1 The robust satisfaction interval for any formula ϕ belonging to the syntactic
fragment STLu can be monitored in an online fashion using a fixed amount of memory that
depends on a function of |ϕ| where |ϕ| indicates the length of ϕ, and independent of the trace
length.

Proof The proof follows from the proofs of Lemmata 2, 3, 4, 5, 6, 7 and 8. Substituting
ti = 0 in the expression for nominal robustness of the top-level formula. Note that any
subformula with top-level operators U or � requires memory that is exponential in the
number of variables required to monitor its subformulae. However, the memory required is
independent of trace-length, and dependent only on the size of the formula. ��

We now give a couple of examples to show how the lemmata in the above proof can be
applied to obtain an algorithmic procedure to monitor STLu formulae.

Example 3 Consider the formula �♦(x > 0). Applying Lemma 2, the nominal robustness
for x > 0 is:

E (ti ,−∞, (+∞, x > 0)) (5.35)

From Lemma 5, the nominal robustness for ♦(x > 0) is:

E (ti ,max(−∞, x(n)), (+∞,♦(x > 0)))

= E (ti , x(n),min(+∞,♦(x > 0))) (5.36)

From Lemma 6, we can write the nominal robustness for �♦(x > 0):

E

(
ti ,max(x(n), x(n)),

(min(x(n),+∞), �♦(x > 0))

)
(5.37)

We can see that above expression simplies to simply x(n). In other words, nominal robustness
of �♦(x > 0) depends only on the value of x(t) at time tn .

Example 4 Consider the formula� ((x > 0) ∨ ♦(y > 0)). Applying Lemma 2, the nominal
robustness for the formula (y > 0) is the following expression:

E (ti ,−∞, (+∞, y > 0)) (5.38)

From Lemma 5, we can write the nominal robustness for formula ♦(y > 0) as follows:

E (ti ,max(−∞, y(n)), (+∞,♦(y > 0)))

= E (ti , y(n),min(+∞,♦(y > 0))) (5.39)

Similar to (5.38), the nominal robustness for (x > 0) is E (ti ,−∞, (+∞, x))). From
Lemma 4, we can write the nominal robustness for (x > 0) ∨ ♦(y > 0) as:

E (ti ,max(−∞, y(n)), (+∞, x > 0), (+∞,♦(y > 0)))

= E (ti , y(n), (+∞, x > 0), (+∞,♦(y > 0))) (5.40)
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Finally, using Lemma (6), the nominal robustness for �((x > 0) ∨ ♦(y > 0)) at time 0 can
be written as:

E

⎛
⎜⎜⎝
0,min(max(x(n), y(n)), y(n)),

(min(+∞,max(x(n), y(n))), �(x > 0)) ,

(min(+∞,max(x(n), y(n))), �(♦(y > 0))) ,

(min(+∞,max(x(n), y(n))), �(x > 0 ∨ ♦(y > 0)))

⎞
⎟⎟⎠ (5.41)

From Example 3, we can see that ρnom(�(♦(y > 0)), x[0,n−1], 0) is y(n − 1), so the above
expression simplifies to:

max

⎛
⎝ y(n),min(max(x(n), y(n)), ρnom(�(x > 0), x[0,n−1], 0)),
min(max(x(n), y(n)), y(n − 1)),
min(max(x(n), y(n)), ρnom(�(x > 0 ∨ ♦(y > 0)), x[0,n−1], 0))

⎞
⎠ (5.42)

This shows that we can monitor the nominal robustness of �(x > 0∨ ♦(y > 0))) using two
variables (one for �(x > 0) and one for �(x > 0 ∨ ♦(y > 0))). In the case of this formula,
we can show that this can be further simplified to:

max(y(n),min(x(n), ρnom(�(x > 0 ∨ ♦(y > 0)), x[0,n−1], 0))). (5.43)

This allows us to monitor the formula with just one variable.

Example 5 Consider the formula ♦((x > 0) ∧ ♦(y > 0)). The expressions for nominal
robustness of ♦(y > 0) and x > 0 are as in (5.39) and (5.35) respectively. From Lemma (3),
the expression for (x > 0) ∧ ♦(y > 0) is:

E

⎛
⎜⎜⎝
ti ,min(−∞, y(n)),

(min(−∞,+∞), ♦(y > 0))
(min(y(n),+∞), x > 0)
(min(+∞,+∞), (x > 0) ∧ ♦(y > 0))

⎞
⎟⎟⎠ (5.44)

We can drop the second line in the above expression, as it corresponds to a min with −∞ as
an argument. The above expression then simplifies to:

E (ti ,−∞, (y(n), x > 0) , (+∞, (x > 0) ∧ ♦(y > 0))) . (5.45)

Now, applying Lemma 5 again, we get the following expression:

E

⎛
⎝ 0,−∞,

(y(n), ♦(x > 0)) ,

(+∞, ♦(x > 0 ∧ ♦(y > 0)))

⎞
⎠ (5.46)

This simplifies to the following expression:

max
(
min(y(n), ρnom(♦(x > 0), x[0,n−1], 0)), ρnom(♦((x > 0) ∧ ♦(y > 0)), x[0,n−1], 0)

)
.

Thus, the formula ♦(x > 0 ∧ ♦(y > 0)) can be monitored using two variables, one for the
value of ♦(x > 0) till time tn−1 and one for ♦((x > 0) ∧ ♦(y > 0)) till time tn−1.

5.4 Extension to full STL

To extend the results from STLu to STL, we need to perform certain steps. First, we recall a
result from [11], which shows that any Metric Temporal Logic formula can be rewritten as
a formula in which no unbounded time-horizon temporal operator appears in the scope of a
bounded horizon temporal operator.
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Example 6 Consider the formula ♦[0,2]�(x > 0). Following the rewrite rules from [11],
we can rewrite this formula as: (♦[0,2]�[0,2](x > 0)) ∧ �(x̃ > 0), where x̃ is the signal x
delayed by 2 time units.

We can now extend Theorem 1 to allow subformulae that are not just atomic predicates,
but timed temporal operators. The key idea is to use a syntax tree similar to that for online
monitoring of the bounded horizon STL formulae as in Sect. 4. For formulas containing
unbounded horizon STL formulas, a naïve version of the algorithm would require an infinite
number of elements to be stored in the worklists at each node in the tree. However, by
observing that we can summarize computation on partial signals in variables, we can monitor
STL formulas using a finite amount of memory.

For any unbounded horizon temporal formula, suppose the maximum time horizon of the
bounded horizon subformulas is h. Given a partial signal from time t0 to tn , we can use the
techniques from Theorem 1 without modification to monitor the nominal robustness till time
tn−h. For the last h time units, we cannot compute the exact robustness values of the bounded
horizon temporal formulas. For each time-point in the interval [tn −h, tn], we can maintain a
tree with worklists similar to Algorithm 2 to monitor the bounded horizon subformula. Note
that due to the minimum time-step stipulation, we need to maintain only a finite number of
such trees. Thus, unlike the case for STLu where the computation of nominal robustness over
the partial signal x[0,n] can be expressed in terms of a summary value over the partial signal
x[0,n−1], and the signal value at time tn , in case of full STL, the computation is expressed
as computation over the partial signal over [0, tn − h], and a finite number of trees for the
bounded horizon subformulae (which contain the signal values in [tn − h, tn]. We omit the
precise details for brevity.

6 Experimental results

We implemented Algorithm 2 as part of two independant tools: Breach [4], and CPSGrader
[16]. Breach is a Matlab toolbox with a strong focus on monitoring and analysis of Simulink
models [20], though simple wrappers can be used to make it usable with other simulators or
real time measured data. CPSGrader is a C++ library. Both tools support full STL specifica-
tions. In the following, we illustrate the use of online monitoring with the benchmark model
proposed in [14], then evaluate it on two case studies. We considered the following criteria:
(1) On an average, what fraction of simulation time can be saved by online monitoring?
(2) How much overhead does online monitoring add, and how does it compare to a naïve
implementation that at each step recomputes everything using an offline algorithm?

6.1 Fuel control model

The model presented in Fig. 4 is a subsystem of gasoline engine implemented in Simulink.
Its purpose is to control the engine air-fuel (AF) ratio so as to meet emissions targets, an
important control functionality in a gasoline engine. Themodel contains the air-fuel controller
and a mean value model of the engine dynamics, such as the throttle and intake manifold
air dynamics. Inputs of this system model are Pedal Angle and EngineSpeed . Outputs are
AF, AFref and controller Mode. Typical properties to verify and monitor are overshoot and
settling time.

To illustrate the use of online monitoring in Simulink, we augmented the test harness with
an STLmonitoring block available in Breach. The block, depicted in Fig. 5, accepts arbitrary
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Fig. 4 Abstract Fuel Control model test harness augmented with an online monitoring block. Details of the
model can be found in the given reference [14]

Fig. 5 Details of the online monitoring block for the Abstract Fuel Control model and formula 6.1

STL formulas on its input signals and outputs a two dimensional signals computing the
robust interval. It can be configured to stop simulation whenever the robust interval becomes
positive, negative or singular,i.e., when no uncertainty remain in the eventual value of robust
satisfaction.

We ran the model with the following formula:

ϕAFC = �[10,30](|AF − AFref| > 0.1 �⇒ (♦[0,5]|AF − AFref| < 0.1)) (6.1)

The resulting signals, AF, AFref and lower and upper robustness are depicted on Fig. 6. It
shows the reduction of robust interval as time advances, until the full determination of its
sign and value, before the expected horizon of the formula.

Next, we proceed with a more systematic evaluation of online monitoring performance
on two case studies.
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Fig. 6 Output of a simulation and online computation of lower and upper bounds of robustness for the fuel
control model. Note that in this example, we set the maximum interval robustness to [−0.5, 0.5]. In this run,
simulation could have been stopped early shortly after t = 30 s, when interval robustness becomes positive,
or at t = 33.5 s when the interval becomes singular, i.e., robust satisfaction is deterministically known. Note
that the horizon of the formula is 35 s. (Color figure online)

6.2 Diesel engine model (DEM)

The first case study is an industrial-sized Simulink®model of a prototype airpath system
in a diesel engine. The closed-loop model consists of a plant model describing the airpath
dynamics, and a controller implementing a proprietary control scheme. The model has more
than 3000 blocks,withmore than 20 lookup tables approximating high-dimensional nonlinear
functions. Due to the significant model complexity, the speed of simulation is about 5 times
slower, i.e., simulating 1 s of operation takes 5 s in Simulink®. As it is important to simulate
thismodel over a long time-horizon to characterize the airpath behavior over extended periods
of time, savings in simulation-time by early detection of requirement violations is very
beneficial. We selected two parameterized safety requirements after discussions with the
control designers, (shown in Eq. (6.2)–(6.3)). Due to proprietary concerns, we suppress the
actual values of the parameters used in the requirements.

ϕovershoot(p1) = �[a,b](x < c) (6.2)

ϕtransient(p2) = �[a,b](|x| > c �⇒ (♦[0,d]|x| < e)) (6.3)
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Table 1 Experimental results on
DEM

Requirement Num. Early Simulation time (h)

Traces Termination Offline Online

ϕovershoot(ν1) 1000 801 33.3803 26.1643

ϕovershoot(ν2) 1000 239 33.3805 30.5923

ϕovershoot(ν3) 1000 0 33.3808 33.4369

ϕtransient(ν4) 1000 595 33.3822 27.0405

ϕtransient(ν5) 1000 417 33.3823 30.6134

Property ϕovershoot with parameters p1 = (a, b, c) specifies that in the interval [a, b],
the overshoot on the signal x should remain below a certain threshold c. Property ϕtransient

with parameters p2 = (a, b, c, d, e) is a specification on the settling time of the signal x. It
specifies that in the time interval [a, b] if at some time t , |x| exceeds c then it settles to a
small region (|x| < e) before t + d . In Table 1, we consider three different valuations ν1, ν2,
ν3 for p1 in the requirement ϕovershoot(p1), and two different valuations ν4, ν5 for p2 in the
requirement ϕtransient(p2).

The main reason for the better performance of the online algorithm is that simulations
are time-consuming for this model. The online algorithm can terminate a simulation earlier
(either because it detected a violation or obtained a concrete robust satisfaction interval), thus
obtaining significant savings. For ϕovershoot(ν3), we choose the parameter values for a and
b such that the online algorithm has to process the entire signal trace, and is thus unable to
terminate earlier. Here we see that the total overhead (in terms of runtime) incurred by the
extra book-keeping by Algorithm 2 is negligible (about 0.1%).

6.3 CPSGrader

CPSGrader [6,16] is a publicly-available automatic grading and feedback generation tool
for online virtual labs in cyber-physical systems. It employs temporal logic based testers to
check for common fault patterns in student solutions for lab assignments. CPSGrader uses
the National Instruments Robotics Environment Simulator to generate traces from student
solutions and monitors STL properties (each corresponding to a particular faulty behavior)
on them. In the published version of CPSGrader [16], this is done in an offline fashion by
first running the complete simulation until a pre-defined cut-off and then monitoring the STL
properties on offline traces. At a step-size of 5ms, simulating 6 s of real-world operation of the
system takes 1 s for the simulator. When students use CPSGrader for active feedback genera-
tion and debugging, simulation constitutes the major chunk of the application response time.
Online monitoring helps in reducing the response time by avoiding unnecessary simulations,
giving the students feedback as soon as faulty behavior is detected.

We evaluated our onlinemonitoring algorithm, on the traces and STLproperties used in the
published version of CPSGrader [6,16]. These traces are the result of running actual student
submissions on a battery of tests. For lack of space, we refer the reader to [16] for details
about the tests and STL properties. As an illustrative example, we show the keep_bump
property in Eq. 6.4:

ϕkeep_bump = ♦[0,60]�[0,5] (bump_right(t) ∨ bump_left(t)) (6.4)

This formula encodes the behavior that less than 60 s from the beginning of the simulation,
either the right bump sensor or the left bump sensor stays on for at least 5 s, which indicates
that the robot is likely stuck against an obstacle.
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Table 2 Evaluation of online monitoring for CPSGrader

STL test bench Num. Early Sim. time (mins) Overhead (s)

Traces Termination Offline Online Naïve Algorithm 2

avoid_front 1776 466 296 258 553 9

avoid_left 1778 471 296 246 1347 30

avoid_right 1778 583 296 226 1355 30

hill_climb1 1777 19 395 394 919 11

hill_climb2 1556 176 259 238 423 7

hill_climb3 1556 124 259 248 397 7

filter 1451 78 242 236 336 6

keep_bump 1775 468 296 240 1.2 × 104 268

what_hill 1556 71 259 253 1.9 × 104 1.5 × 103

Each STL test bench has an associated STL property

For each STL property, Table 2 compares the total simulation time needed for both the
online and offline approaches, summed over all traces. For the offline approach, a suitable
simulation cut-off time of 60 s is chosen. At a step-size of 5 ms, each trace is roughly
of length 1000. For the online algorithm, simulation terminates before this cut-off if the
truth value of the property becomes known, otherwise it terminates at the cut-off. Table 2
also shows the monitoring overhead incurred by a naïve online algorithm that performs
complete recomputation at every step against the overhead incurred by Algorithm 2. Table 2
demonstrates that online monitoring ends up saving up to 24% simulation time (>10% in a
majority of cases). Themonitoring overhead of Algorithm 2 is negligible (<1%) as compared
to the simulation time and it is less than the overhead of the naïve online approach consistently
by a factor of 40–80x.

7 Conclusion

STL is a convenient andversatile specification language formonitoring complex requirements
or specifications for CPS. Its robust semantics provides information complementing the usual
Boolean Yes/No satisfaction answer that can be instrumental at the design, verification or
runtime phase. Being able to compute it online, i.e., as simulations or the actual system run, is
thus a highly desirable feature, for which this paper proposes an efficient and sound solution.
The key idea is the concept of interval robustness, which provides conservative bounds for
the robust satisfaction of a formula by a behavior at all time instants. We showed how robust
intervals can be computed efficiently and using only bounded memory. As future work, we
will propose and implement new algorithms for monitoring piecewise linear signals specified
and investigate other quantitative semantics, e.g., as in [22], and possible efficient hardware
implementations based on FPGA, in the spirit of [13].
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