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Extreme rainfall events are of particular importance due to their severe impacts on the economy, the
environment and the society. Characterization and quantification of extremes and their spatial dependence
structure may lead to a better understanding of extreme events. An important concept in statistical modeling
is the tail dependence coefficient (TDC) that describes the degree of association between concurrent rainfall
extremes at different locations. Accurate knowledge of the spatial characteristics of the TDC can help
improve on the existing models of the occurrence probability of extreme storms. In this study, efficient
estimation of the TDC in rainfall is investigated using a dense network of rain gauges located in south
Louisiana, USA. The inter-gauge distances in this network range from about 1 km to 9 km. Four different
nonparametric TDC estimators are implemented on samples of the rain gauge data and their advantages and
disadvantages are discussed. Three averaging time-scales are considered: 1 h, 2 h and 3 h. The results
indicate that a significant tail dependency may exist that cannot be ignored for realistic modeling of
multivariate rainfall fields. Presence of a strong dependence among extremes contradicts with the
assumption of joint normality, commonly used in hydrologic applications.
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1. Introduction

Extreme precipitation events are of particular importance due to
their impacts on economy, environment and human life. Character-
ization and quantification of extremes and their spatial dependence
structure may lead to better estimates of probability occurrence of
rare events. Most commonly used measures of dependence such as
the Pearson linear correlation and Spearman [39] correlation are not
able to correctly describe the dependence of extremes [25]. While the
Spearman correlation always exists, the Pearson linear correlation
may not exist for random variables above a certain extreme threshold
[9]. In general, most measures of dependence are based on the
association of the entire distributions of multiple variables. However,
the degree of association (dependence) between extreme values may
be significantly different [11] than that of the mid-range values (e.g.,
the dependence of extremes may be stronger than the mid-range
values or vice versa).

An important concept in extreme value analysis is the tail
dependence coefficient (TDC) which describes the dependence in
the tail of a multivariate distribution [15,33]. [37] introduced the TDC
as the degree of association in the upper-right quadrant and lower-
left quadrant of a bivariate distribution. In a bivariate distribution
function, the tail dependence describes the limiting proportion that
one marginal distribution exceeds a given threshold conditioned on
the fact that the other margin has already exceeded that threshold.
Fig. 1 depicts the concept of upper tail dependence for two simulated
uniform random variables with the same Pearson correlation
coefficient (≈ 0.7). Fig. 1(a) is generated using the bivariate Gaussian
distribution, while Fig. 1(b) is simulated using the bivariate t-
distribution (variables are transformed to 0–1). As shown, both
pairs (X1−Y1 and X2−Y2) exhibit positive linear correlation
coefficient. However, the upper right corner (above both dotted
lines) is different in Fig. 1(a) and (b). The first pair (X1−Y1, Fig. 1(a))
does not show local correlation in the upper right corner. The figure
indicates that the extreme values of X1 and Y1 (Fig. 1(a)) are
independent, while the extremes of X2 and Y2 (Fig. 1(b)) seem to be
locally correlated (compare the upper right corners of both panels).
The figure indicates that the probability occurrence of X2 above a
certain extreme threshold (e.g., dotted line in the figure) assuming Y2
exceeds the same threshold is higher than the probability exceedance
of X1 and Y1 above the same extreme threshold. For additional
information and graphical examples, the interested reader is referred
to [13,1].

In univariate extreme value analysis, parametric methods are
frequently used for practical applications (see [14,18] for details).
Contrary to univariate setting, multivariate extreme value analysis
considers the joint probabilities of multiple variables which includes
probability occurrence (risk) of each variable (based on univariate
marginal distribution) and dependence of multiple probability
occurrences. Therefore, a parametric model may not be sufficient to
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Fig. 1. (a): Upper tail values of X1 and Y1 are locally independent; (b): Upper tail values of X2 and Y2 seem to be locally correlated (see the upper right quadrant - above dotted lines).
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capture the characteristics of joint extremes. So far, several parametric
and nonparametric approaches have been developed for estimation of
the TDC [27,31,34,28]. The tail dependence models are mostly
implemented for financial risk management and evaluation of the
dependence between extreme assets [11,15,33] and references
therein). [32] investigated the usefulness of the Gaussian copula in
extreme value analysis. Using four case studies over a relatively large
spatial scale, [32] concluded that the Gaussian copula can be
reasonably used for extreme value analysis. However, the authors
point out that the low probabilities (risk) can be underestimated
significantly if asymptotically dependent variables are described using
an asymptotically independent model (e.g., Gaussian copula). This
study intends to investigate whether asymptotic dependence among
extremes may exist in smaller spatial scales (here, less than 10 km).

In a recent work, [35] studied the dependence of rain gauge data
using the non-parametric Kendall's rank correlation and the upper
TDC. Based on the properties of the Kendall correlation and TDC, the
work suggests a copula-based mix model for modeling the depen-
dence structure and marginals. Various other studies are also devoted
to extremes of hydrologic variables [23,38,4,6,17]; however, they do
not address properties of the TDC estimators. In general, parametric
estimators are efficient if the joint distribution function of the data is
known. Nonparametric estimators avoid any assumption regarding
the distribution function but they are known to exhibit larger
estimation variance [34,15].

Previous studies show that the tail dependence coefficient may
strongly depend on the choice of estimation technique [15]. In order
to investigate this issue in more details, various nonparametric tail
dependence estimators are implemented to the rainfall time series
and their advantages and disadvantages are discussed. Different
aspects and issues including the choice of extreme value threshold
and variability of TDC estimators are addressed in this study.
Furthermore, instead of using a fixed thresholds, application of a
kernel plateau-finding algorithm in estimation of the TDC is discussed
and the results of both approaches are compared with each other. To
avoid possible confusion, we need to stress that the study presented
here is not a climatological analysis. These results concern the
problems of estimating the TDC based on limited data samples. It is
specifically focused on the behavior of different nonparametric
estimators of the TDC. The models implemented in this study include
four different nonparametric models based on the empirical copula.
Copulas are multivariate functions that can model the dependence
structure of multiple variables regardless of their marginal distribu-
tion. In recent years, copulas have been implemented in numerous
hydrologic applications [24,8,12,2,40,5,36,3].

The paper is organized into five sections. After the introduction,
the required theoretical background and tail dependence estimators
are discussed in detail. In the third section, the study area and data
resources are briefly introduced. The fourth section is devoted to the
implementation of the tail dependence estimators to rainfall data and
discussion. The last section summarizes the results and conclusions.

2. Methodology

For a bivariate distribution X(X1,X2), the upper tail (λup) is
described as [21,29]:

λup = lim
t→1−

PrðF1ðX1Þ N t jF2ðX2Þ N tÞ ð1Þ

where F1 and F2 are the cumulative distributions of the random
variables X1 and X2, and t is the extreme value threshold. Eq. (1)
indicates the probability (Pr) occurrence of extremes (above the
threshold t) in X1, conditioned on occurrence of extremes (above the
threshold t) in X2.

The bivariate distribution function is said to be upper tail
dependent if 0bλup≤1 and upper tail independent if λup=0. In Fig.
1(a), for example, λup≈0, while for Fig. 1(b) λup≈0.8. It is noted that
the bivariate Gaussian distribution is upper tail independent (λup≈0)
regardless of the correlation coefficient among variables [6,32]. There
are different statistical tests that can be used to evaluate the
significance of tail independence. The theoretical concept of tail
independence is beyond the scope of this work, and the interested
reader is referred to [10] and [20] for further details. As mentioned
earlier, in this study, various nonparametric tail dependence estima-
tors are considered. The first nonparametric approach is based on the
concept of bivariate empirical copula (Cm):

Cmðu;νÞ = FðmÞ F−1
ðmÞ1ðuÞ; F−1

ðmÞ2ðνÞ
� �

ð2Þ

where F(m) corresponds to the empirical distribution function of
variables. The tail dependence estimator λup

(1) is then defined as [34]:

λð1Þ
up =

T
k
Cm ð1− k

T
;1� × ð1− k

T
;1�

� �
ð3Þ

=
1
k

XT
j = 1

IðRj
1 N T−k;Rj

2 N T−kÞ

where :

T = sample size
k = threshold rank
R1
j = rank of u j

R 2
j = rank of ν j

I = indicator function
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Notice that Eq. (3) is the empirical copula of the interval
ð1−k

T
;1� × ð1−k

T
;1�. In other words, λup

(1) is based on the empirical
tail-copula introduced by [16]. Based on the concept of copulas and
the extreme value theory, [19] proposed another tail dependence
estimator as:

λð2Þ
up = 2− T

k
1−Cm 1− k

T
;1− k

T

� �� �

= 2−1
k

XT
j = 1

IðR j
1 N T−k or Rj

2 N T−kÞ

ð4Þ

The third nonparametric tail dependence estimator, selected for
the analysis, is the nonparametric form of a parametric estimator
suggested by [7]. The estimator is expressed as [15]:

λð3Þ
up = 2−

logCm T−k
T

;
T−k
T

� �
log T−k

T

� � ð5Þ

where

Cmðu;νÞ = 1
T

XT
j = 1

I
R j
1
T
≤u;

Rj
2
T
≤ν

 !
ð6Þ

The last nonparametric estimator λup
(4) is proposed by [22] as:

λð4Þ
up = 2−

1−Cm T−k
T

;
T−k
T

� �
1−T−k

T

ð7Þ

where the term Cm is as described in Eq. (6). In the following, the
estimated upper tail dependence using the above nonparametric
models are referred to as λ1, λ2, λ3 and λ4, respectively.

3. Data resources

The network of rain gauges, used in this study, consists of 13 rain
gauge sites across the Isaac Verot watershed, located in southern
Louisiana, USA. The network is operated and maintained by the
Department of Civil Engineering, University of Louisiana at Lafayette.
The study area is frequently subject to tropical cyclones and frontal
systems, with a mean annual rainfall of approximately 1500 mm.
Fig. 2 shows the spatial configuration of the rain gauge sites
throughout the Isaac Verot watershed. As shown, the inter-gauge
distances range from approximately 1 km to 9 km. Each station
includes two rain gauge tipping buckets that operate with tip
resolution of 0.254 mm (0.01 in.). The rain gauges are monitored on
Fig. 2. Location of the rain gauge stations across
a monthly basis to ensure the quality of measurements. Furthermore,
the dual setup in each site helps to achieve more accurate and reliable
rainfall measurements. The rain gauge data from September 2004 to
December 2006 are retrieved and aggregated to 1 h, 2 h and 3 h for
tail dependence analysis. Table 1 lists the summary statistics of the
lumped rainfall accumulations for different temporal durations.
4. Results and discussion

The tail dependence coefficients are estimated for all 78 pairs of
gauge data (n×(n−1)/2, where n=13) using the nonparametric
methods introduced earlier. In order to demonstrate the effect of
threshold on the estimated tail dependence, three thresholds of 75, 90
and 95 percentiles are considered. Fig. 3 shows the bivariate tail
dependence coefficients, in which each point represents pairwise
estimates of tail dependence for two rainfall stations. Fig. 3 (a) to (c),
(d) to (f) and (g) to (i) present the estimated coefficients for 1 h, 2 h and
3 h rainfall data, respectively. One can see that the TDCs reduce with
distance regardless of the choice of the estimator, and threshold. The
figures also indicate that the TDCs of long duration rainfall time series
(2- and 3 h) are higher. For example, Fig. 3(a) and (g) display that the
lower bound of the TDCs increased by approximately 0.2 when the
duration of rainfall data is increased from 1 h to 3 h. Considering
different extreme value thresholds (75, 90 and 95 percentile) and time
durations, the figures show that λ(3) offers the least values (lower
bounds) of the estimated TDC. Notice that by increasing the extreme
value threshold (e.g., from 75 to 90 percentile), the sample size shrinks
significantly, whichmay affect the estimated TDC.While the estimators
seem to be stable with respect to the choice of threshold, λ(1) exhibits
more variability with the threshold than the other estimators (e.g.,
compare Fig. 3 (a) and (b) where the lower bound of λ(1) drops by
approximately 0.2). A comparison between the left, middle and right
columns of panels (Fig. 3(a) to (i)) reveals that the TDCs drop down
fairly similarly for all the other estimators as the threshold increases.
This implies that the effect of sample size on the estimated TDC is almost
similar for the methods used in this study.

In Fig. 3, the estimated TDCs are threshold-dependent (the
coefficients are estimated for fixed thresholds). In order to further
investigate the characteristics of the TDC independent of thresholds, a
kernel plateau-finding algorithm [30,15] is used to estimate the tail
dependence based on the so-called optimal threshold. A detailed
description of the approach is provided in [30] and [15]; however, for
the sake of completeness a brief overview is given here. Consider Fig. 4
as a typical variability of theTDCversus threshold. Theoptimal plateau is
selected according to the following steps: (a) A box kernel is selected
with a bandwidth of b (here b= int(0.05n)); (b) the means of the
the Isaac Verot watershed, Louisiana, USA.

image of Fig.�2


Table 1
Summary statistics of the lumped rainfall accumulations for different temporal
durations.

Temporal Mean Standard 75 percentile 90 percentile 95 percentile
Duration [mm] Deviation [mm] [mm] [mm] [mm]

1 h 3.4 6.1 3.8 9.0 14.2
2 h 4.6 8.2 5.1 13.5 19.6
3 h 5.4 9.5 6.2 15.0 24.1
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coefficients that fall within each box leads to n−2b new λ values; (c) a
moving plateau with a length of l =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n−2b

p
is defined and the

corresponding λ values are calculated (λk,…,λk+ l+1 where k=1,...,
Fig. 3. Tail dependence coefficient for 75, 90 and 95 percentile thresholds using different es
of panels).
n−2b−m+1); (d) the optimal plateau is the first one that fulfills the
following condition:

Xk+ l−1
i=k+1

jλi−λk j≤2σ ð8Þ

where σ denotes the standard deviation of the λi values. The optimal
tail dependence coefficient is then defined as:

λ =
1
T

XT
i = 1

λk + i−1 ð9Þ

Using this approach, for each pair of gauge data the TDC is
estimated based on an optimal threshold that satisfies the above
timators for 1 h (upper row of panels), 2 h (middle row of panels) and 3 h (lower row

image of Fig.�3


Fig. 4. Variability of the tail dependence coefficient with respect to threshold.

Table 2
Variance of the estimated tail dependence coefficients (threshold based approach, Fig. 3.

Estimator 1 h 2 h 3 h

75 90 95 75 90 95 75 90 95

λ(1) 0.05 0.10 0.13 0.06 0.12 0.12 0.06 0.10 0.13
λ(2) 0.12 0.10 0.13 0.11 0.11 0.14 0.10 0.10 0.13
λ(3) 0.11 0.11 0.14 0.11 0.10 0.12 0.12 0.11 0.13
λ(4) 0.11 0.10 0.13 0.12 0.11 0.12 0.12 0.10 0.13
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condition. In Fig. 4, for example, the box shows the plateau that
satisfies the above condition and its corresponding TDC (the box size
in Fig. 4 is not scaled). Fig. 5(a), (b) and (c) plot the estimated TDCs
respectively for 1 h, 2 h and 3 h data using the concept of optimal
threshold. Unlike the previous commonly used approach (Fig. 3), this
method of tail dependence representation independent of a fixed
threshold offers valuable advantages. Worth to mention is the fact
Fig. 5. Tail dependence coefficients based on the concept of optimal threshold: (a) 1 h;
(b) 2 h; (c) 3 h data.
that this algorithm needs no additional decision regarding the
threshold which is known to be trivial [15]. The approach utilizes
the homogeneity property of TDCwhich corresponds to a balancing of
the variance-bias problem [34].

In order to investigate the variability of the estimators, the
variance of the estimated TDCs are provided in Table 2 (threshold
based approach, Fig. 3) and Table 3 (optimal threshold technique,
Fig. 5). The variances are estimated using 50 random subsets of the
available data with sample sizes no less than 50% of the original
dataset. As shown in Table 2, the variance of λ(1) changes considerably
with threshold compared to the other estimators. As an example, for
1 h data the variance of λ(1) changes from 0.05 to 0.10 (100% increase)
for the thresholds of 75 and 90 percentiles. However, the variances of
the other estimators (mbda(2), λ(3) and λ(4)) change from 9 to 16
percent. For 2 h and 3 h data (longer durations), the variances of λ(2),
λ(3) and λ(4) stabilize and do not change with threshold anymore (see
the last three rows in Table 2). However, the estimator λ(1), shows
approximately similar changes in variance for longer temporal
durations (see row 1 columns 8 to 10 in Table 2). The results incicate
one should expect more variability in the estimated TDC when using
λ(1), which is consistent with the findings of Fig. 3. Table 3, which
summarizes the variances of the estimators based on the optimal
threshold approach, confirms that kernel plateau-finding algorithm
results in more stable variances for all time scales, even for λ(1). One
can see that the kernel plateau-finding algorithm is superior to the
threshold approachwith respect to the variance of estimated TDC. It is
worth mentioning that the above discussion is solely based on the
variability of TDC.

Figs. 3 and 5 showed that a strong tail dependence may exist that
cannot be ignored for practical applications (e.g., simulation of
multivariate rainfall fields). To account for the TDC, one may require
to characterize the TDC with respect to distance. In the following, the
relationship between the TDC and distance is approximated by fitting
the modified exponential function (f(x)=a.exp(−(x /b)c) where a,b
and c are the model parameters) to the available data. Before fitting
the exponential function, the available data are smoothed with a
moving-average window with a bandwidth of 0.5 km and 80%
overlap. For example, the available data shown in Fig. 6(a), (c), (e)
and (g) are smoothed as presented in Fig. 6(b), (d), (f) and (h). Figs. 7
and 8 graph similar figures for 2 h and 3 h rainfall data. The
parameters and root mean squared error (rmse) of the fitted modified
exponential functions are given in Table 4. As shown, the fitted
function is almost equally good for different time durations.
Furthermore, the rmse values of the fitted model to the smoothed
TDC are similar for different tail dependence estimators. It is worth
Table 3
Variance of the estimated tail dependence coefficients (optimal threshold technique,
Fig. 5).

Estimator 1 h 2 h 3 h

λ(1) 0.11 0.11 0.10
λ(2) 0.12 0.10 0.10
λ(3) 0.11 0.12 0.12
λ(4) 0.11 0.11 0.12

image of Fig.�4
image of Fig.�5


Fig. 6. 1 h data: fitted modified exponential function.
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pointing out that while the fitted model seems to reasonably describe
the relationship between TDC and distance, generalization of such
relationship requires extensive empirical investigation over different
temporal and spatial scales.

5. Summary and conclusion

The statistical analysis of rainfall extremes is of particular
importance in risk assessment and decision making. Several studies
Fig. 7. 2 h data: fitted modifi
highlight the importance of extreme rainfall events and their potential
significance on hydrologic processes (e.g., [26]. Additionally, extreme
events and their spatial dependencies are important for practical
hydrologic applications such as characterization of intense rainfall
events and simultaneous floods. The concept of tail dependence is
commonly used to describe the degree of association in the upper tail
of a multivariate distribution. This study surveys four nonparametric
tail dependence (λ(1),λ(2),λ(3) and λ(4)) approaches implemented
on rainfall time series with different temporal durations (1 h, 2 h and
ed exponential function.

image of Fig.�6
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Fig. 8. 3 h data: fitted modified exponential function.
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3 h). The nonparametric methods are defined based on the bivariate
empirical copula of pairs of variables (e.g., see Eqs. (6) and (5)). The
bivariate tail dependence coefficients are estimated using nonpara-
metric methods for all pairs of rainfall data from the available
observations. To avoid confusion, it has to be reiterated that this study
is not a climatological analysis. It is mainly concerned with the TDC
estimation problems based on limited data samples. The TDC
estimates provide spatiotemporal characteristics of rainfall that has
not been explored before. These estimates can be most naturally used
as the “reality check points” in developing quantitative models of the
rainfall processes.

The issue of the tail dependence and the choice of the extreme
value threshold is considered in this study. Comparing the estimators
for different fixed thresholds(here, 75, 90 and 95 percentiles) reveals
that unlike λ(2),λ(3) and λ(4), the estimator λ(1) varies significantly
with the choice of thresholds. Despite extensive studies on the issue of
extreme value threshold, the choice of threshold still warrants more
in-depth research. In order to compare the tail dependence models
independent of the extreme value threshold, a kernel plateau-finding
algorithm [30,15] is used to obtain TDCs independent of a fix
threshold. Using this method, for each pair of rainfall data the TDC
Table 4
Parameters and rmse of the fitted modified exponential model.

Estimator Duration a b c rmse

λ(1) 1 h 1.153 0.083 0.526 0.026
2 h 1.097 0.079 0.663 0.029
3 h 1.312 0.054 0.317 0.024

λ(2) 1 h 1.039 0.083 0.768 0.029
2 h 1.105 0.063 0.595 0.020
3 h 2.327 0.731 0.177 0.032

λ(3) 1 h 1.920 0.487 0.272 0.032
2 h 0.996 0.095 0.734 0.028
3 h 1.029 0.066 0.574 0.024

λ(4) 1 h 2.832 2.758 0.184 0.029
2 h 1.079 0.923 0.611 0.025
3 h 2.432 1.113 0.184 0.061
is estimated based on the so-called optimal threshold. To investigate
the variability of the nonparametric tail dependence estimators, the
variance of the estimators are compared to each other. The results
indicate that applying the kernel plateau-finding algorithm results in
more stable variances for all estimators over different temporal scales.
The results of kernel plateau-finding algorithm showed that estima-
tion of TDC independent of a fixed threshold is superior to the
threshold-based approach.

The analysis of TDC over different temporal durations (1 h, 2 h and
3 h), show that long duration data (2- and 3 h) exhibit higher TDC
compared to 1 h data, which is consistent with the findings of [35].
This property of the TDC is expected, since in long duration rainfall
accumulations, the event resulting in rainfall at one rain gauge
location, similarly affects the other gauges (e.g., with respect to the
rainfall amount). The performed inter-gauge rainfall analyses show
that significant tail dependency may exist that cannot be ignored.
However, numerous simulation models (e.g., Gaussian and meta-
Gaussian models) ignore the presence of tail dependence. Further in-
depth research over different temporal and spatial resolutions is
required to characterize the tail dependence coefficient for practical
applications. Such analysis require high resolution data both in space
and time. Unfortunately, most measurement networks with long
samples lack the spatial density that is of interest to this type of
analysis. On the other hand, research-oriented dense networks are
recent and lack enough records. It is hoped that in near future
remotely sensed rainfall estimates can be used to understand the
spatial characteristics of the tail dependence coefficient and to
evaluate its significance in multivariate modeling.

We need to point out that the above conclusions are based on
exploratory data analysis using available records of a research
network. The authors acknowledge that various issues including
sample size, diurnal, seasonal or annual cycles and sampling errors
may have affected the estimated tail dependence coefficients. A major
issue that is not addressed, and warrants future research, is
uncertainty and error bounds of tail dependence estimators. The
uncertainty of TDC estimators can be investigated using the bootstrap
technique or other resampling methods. The main reason that this

image of Fig.�8
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concept is not further researched is the limitation of available data in
small scales that are of our interest. Quantitative measures of TDC
estimators uncertainty require extensive empirical investigation
effort based on long-term data samples.
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