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SUMMARY

Single-cell RNA sequencing (scRNA-seq) data are commonly affected by technical artifacts 

known as “doublets,” which limit cell throughput and lead to spurious biological conclusions. 

Here, we present a computational doublet detection tool—Doublet-Finder—that identifies 

doublets using only gene expression data. DoubletFinder predicts doublets according to each real 

cell’s proximity in gene expression space to artificial doublets created by averaging the 

transcriptional profile of randomly chosen cell pairs. We first use scRNA-seq datasets where the 

identity of doublets is known to show that DoubletFinder identifies doublets formed from 

transcriptionally distinct cells. When these doublets are removed, the identification of 

differentially expressed genes is enhanced. Second, we provide a method for estimating 

DoubletFinder input parameters, allowing its application across scRNA-seq datasets with diverse 

distributions of cell types. Lastly, we present “best practices” for DoubletFinder applications and 

illustrate that DoubletFinder is insensitive to an experimentally validated kidney cell type with 

“hybrid” expression features.
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In Brief

scRNA-seq data interpretation is confounded by technical artifacts known as doublets—single-cell 

transcriptome data representing more than one cell. Moreover, scRNA-seq cellular throughput is 

purposefully limited to minimize doublet formation rates. By identifying cells sharing expression 

features with simulated doublets, DoubletFinder detects many real doublets and mitigates these 

two limitations.

INTRODUCTION

High-throughput single-cell RNA sequencing (scRNA-seq) has evolved into a powerful and 

scalable assay through the development of combinatorial cell indexing techniques (Cao et 

al., 2017; Rosenberg et al., 2018) and cellular isolation strategies that utilize nanowells 

(Gierahn et al., 2017) and droplet microfluidics (Macosko et al., 2015; Klein et al., 2015; 

Zheng et al., 2017). In droplet microfluidics and nanowell-based scRNA-seq modalities, 

Poisson loading is used to co-encapsulate individual cells and mRNA capture beads in 

emulsion oil droplets where the cells are lysed, mRNA is captured on the bead, and 

transcripts are barcoded by reverse transcription. Since cells are randomly apportioned into 

droplets, the frequency at which droplets are filled with two cells—forming technical 

artifacts known as “doublets”—varies according to the input cell concentration with a 

frequency that follows Poisson statistics (Bloom, 2018). Doublets are known to confound 

scRNA-seq data analysis (Stegle et al., 2015; Ilicic et al., 2016), and it is common practice to 
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mitigate these effects by sequencing far fewer cells than is theoretically possible in order to 

minimize doublet formation rates. For this reason, doublet formation fundamentally limits 

scRNA-seq cell throughput.

Recently developed sample multiplexing approaches can overcome this limitation in some 

circumstances. For example, genomic (Kang et al., 2018; Guo et al., 2018; Shin et al., 2018) 

and cellular sample multiplexing techniques (Stoeckius et al., 2018; Gehring et al., 2018; 

McGinnis et al., 2018; Gaublomme et al., 2018) directly detect most doublets in scRNA-seq 

data by identifying cells associated with orthogonal sample barcodes or single nucleotide 

polymorphisms (SNPs). By identifying and removing doublets, these techniques minimize 

technical artifacts while enabling users to “super-load” droplet microfluidics devices for 

increased scRNA-seq cell throughput. However, sample multiplexing techniques have 

limitations in the context of doublet detection. For instance, doublets formed from cells 

associated with identical sample indices or SNPs cannot be detected. Moreover, sample 

multiplexing cannot be applied retroactively to existing scRNA-seq datasets.

To address these limitations, we developed DoubletFinder: a computational doublet 

detection tool that relies solely on gene expression data. DoubletFinder begins by simulating 

artificial doublets and incorporating these “cells” into existing scRNA-seq data that has been 

processed using the popular “Seurat” analysis pipeline (Box 1; Satija et al., 2015; Butler et 

al., 2018). DoubletFinder then distinguishes real doublets from singlets by identifying real 

cells with high proportions of artificial neighbors in gene expression space. In this study, we 

describe development and validation of DoubletFinder in three parts. In the first part, we 

benchmark DoubletFinder against “ground-truth” scRNA-seq datasets where doublets are 

empirically defined by the sample multiplexing approaches Demuxlet (Kang et al., 2018) 

and Cell Hashing (Stoeckius et al., 2018). These comparisons reveal that DoubletFinder 

detects ground-truth false negatives and improves downstream differential gene expression 

analyses. Moreover, ground-truth comparisons illustrate that DoubletFinder predominantly 

detects doublets derived from transcriptionally distinct cells—referred to here as 

“heterotypic” doublets—and is less sensitive to “homotypic” doublets formed from 

transcriptionally similar cells. In the second part, we leverage scRNA-seq data simulations to 

demonstrate that DoubletFinder input parameters must be tailored to data with different 

numbers of cell types and magnitudes of transcriptional heterogeneity. These analyses 

facilitated the development of a parameter estimation strategy for datasets without ground-

truth while also revealing that DoubletFinder is most accurately applied to scRNA-seq data 

with well-resolved clusters in gene expression space.

In the third part, we apply DoubletFinder to “real-world” data lacking ground-truth doublet 

labels. Specifically, we test DoubletFinder on an existing mouse kidney scRNA-seq dataset 

(Park et al., 2018) containing an experimentally validated intermediate cell state that shares 

gene expression features with two other kidney cell types. We chose this dataset in order to 

explicitly test whether this strategy for artificial doublet generation (i.e., averaging of 

expression profiles) leads to DoubletFinder false positives in context with bona fide “hybrid” 

cell states. DoubletFinder correctly classifies this “hybrid” cell state as singlets, which 

suggests that DoubletFinder can be broadly applied to scRNA-seq data describing cell-state 

transitions. This case study also illustrates “best practices” for DoubletFinder application 
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and emphasizes how results should be interpreted with methodological limitations in mind 

(e.g., undetectable doublets and poor performance on homogeneous data).

RESULTS

Overview of DoubletFinder and Characterization of Its Performance When Ground-Truth 
Doublet Labels Are Available

DoubletFinder predicts doublets in a fashion that can be split into five distinct steps (Figure 

1A). First, DoubletFinder simulates artificial doublets from existing scRNA-seq data by 

averaging the gene expression profiles of random pairs of cells. Simulating doublets in this 

fashion preserves cell composition while recapitulating the intermixing of mRNAs from two 

cells that occurs during doublet formation. Second, DoubletFinder merges and pre-processes 

real and artificial data using the “Seurat” single-cell analysis pipeline (Satija et al., 2015; 

Butler et al., 2018). Notably, pre-processing parameters are held constant between the 

original and merged real-artificial datasets. Third, DoubletFinder performs dimensionality 

reduction on the merged real-artificial data using principal-component analysis (PCA), 

producing a low-dimensional space that describes the similarity between real and artificial 

cells. Fourth, DoubletFinder detects the k nearest neighbors for every real cell in principal 

component (PC) space, and this information is used to compute each cell’s proportion of 

artificial nearest neighbors (pANN). Finally, building on the assumption that real and 

artificial doublets co-localize in PC space, DoubletFinder predicts real doublets as cells with 

the top n pANN values, where n is set to the total number of expected doublets (see STAR 

Methods).

DoubletFinder requires three input parameters expressed as proportions of the merged real-

artificial dataset: the number of expected real doublets, the number of artificial doublets 

(pN) and the neighborhood size (pK) used to compute the number of artificial nearest 

neighbors. For example, in a dataset with 15,000 real cells, a pN of 0.25 would represent the 

integration of 5,000 artificial doublets, and a pK of 0.01 would represent a pK of 200 cells. 

To explore how parameter variation influences DoubletFinder performance, we used existing 

datasets of peripheral blood mononuclear cells (PBMCs) generated using sample 

multiplexing techniques (Demuxlet and Cell Hashing). Demuxlet identifies cells belonging 

to each sample group according to sample-specific SNPs and identifies doublets as cell 

barcodes associated with mutually exclusive sets of SNPs (Kang et al., 2018). Cell Hashing 

identifies doublets using a conceptually analogous strategy, except sample-specific SNPs are 

replaced by sample-specific DNA barcodes that are linked to cells by conjugation to 

antibodies targeting cell-surface proteins (Stoeckius et al., 2018). Notably, neither method 

can detect doublets formed from cells associated with the same SNPs or sample barcodes.

We selected these two datasets because they are currently the only publicly available 

datasets where within-species doublets are directly measured. Moreover, since each dataset 

was sequenced at variable depths (Demuxlet = 2,438 unique molecular identifiers [UMIs], 

Cell Hashing = 676 UMIs), we could assess whether sequencing depth influenced 

DoubletFinder performance. We compared the predictive capacity of DoubletFinder outputs 

(i.e., a vector of every real cell’s pANN) across a sweep of pN (0.05–0.3) and pK (5e 4–0.3) 

values using receiver operating characteristic curve (ROC) analysis (Figure 1B). Comparing 
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the relative areas under the curve (AUCs) demonstrates that DoubletFinder performance is 

largely invariant of pN (Figure 1C). Moreover, optimal parameter regimes are similar for 

each dataset, which suggests that DoubletFinder performance is insensitive to sequencing 

depth. These observations demonstrate that pK is the main parameter that must be tuned 

when applying DoubletFinder to different scRNA-seq data. Therefore, we set pN to 0.25 for 

all DoubletFinder applications and optimized pK for each dataset.

Using pK values with the highest AUC from Demuxlet and Cell Hashing ROC analysis (pK 

= 0.01 for both datasets), we next benchmarked DoubletFinder against a commonly used 

feature for doublet identification in real-world scRNA-seq data—the number of UMIs 

(nUMIs; Islam et al., 2014; Ziegenhain et al., 2017). UMIs are uniquely associated with 

individual mRNA transcripts via reverse transcription and enable PCR amplification bias 

correction as UMIs link each sequenced molecule back to its original mRNA. Since droplets 

associated with two cells often have more total mRNA molecules than droplets associated 

with single cells, doublets are commonly removed by setting an upper nUMI threshold. 

However, this approach has well-established limitations (Kang et al., 2018), as it does not 

consider technical variability in mRNA capture efficiency or biological variability in cellular 

RNA content.

To compare the relative predictive capacities of DoubletFinder and nUMIs for doublet 

detection, we first randomly split the Demuxlet and Cell Hashing datasets into evenly sized 

test and training sets. Next, we used ROC analysis to compare logistic regression models 

trained using DoubletFinder alone (i.e., pANN values for every cell), nUMI alone, or a 

linear combination of both features. DoubletFinder-based models outperformed nUMI-based 

models for predicting ground-truth doublets in both the Demuxlet (Figure 1D) and Cell 

Hashing data (Figure S1A). Moreover, models trained with both DoubletFinder and nUMIs 

performed nearly indistinguishably to DoubletFinder-alone models, demonstrating that the 

method captures all of the doublet-specific information inherent to nUMIs in this context.

Although DoubletFinder predicts doublets better than nUMIs, it remained unclear whether 

DoubletFinder results accurately recapitulated the ground-truth doublet labels provided by 

Demuxlet or Cell Hashing sample classifications. To make these comparisons, we needed to 

convert the DoubletFinder output (i.e., pANN values for every cell) into a list of singlet and 

doublet labels. To generate this list, we assigned doublet labels to cells in the Demuxlet and 

Cell Hashing datasets with the top n pANN values, where n was set to the total number of 

doublets expected from the empirical sample multiplexing results. For example, since 6,045 

doublets were defined by Demuxlet SNP profiling of 8 individuals, and because doublets 

formed from cells with the same SNPs are classified as singlets by Demuxlet, we estimated 

that 12.5% of real doublets (864 cells) remained unclassified. To account for both the 

ground-truth false negatives and the true, Demuxlet-identified doublets, we assigned doublet 

labels to cells with the top 6,909 pANN values. A similar list was made for the Cell Hashing 

dataset (see STAR Methods).

Running DoubletFinder on the same data and visualizing doublets on identical t-stochastic 

neighbor embedding (t-SNE) plots revealed that Demuxlet (Figure 1E), Cell Hashing 

(Figure S1B), and DoubletFinder doublet classifications were generally concordant, with 
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DoubletFinder identifying few false positives relative to ground-truth (Demuxlet specificity 

= 0.91, Cell Hashing = 0.91). However, DoubletFinder was insensitive to many ground-truth 

doublets exhibiting similar gene expression profiles to singlets (Demuxlet sensitivity = 0.73, 

Figure 1E, orange inset, gold dots; Cell Hashing = 0.64). We hypothesized that these cells 

represented homotypic doublets—i.e., doublets formed from transcriptionally similar cells 

that cluster among their composite cell-type singlets in gene expression space. Since 

DoubletFinder requires putative doublets to cluster separately from singlets in PC space, we 

did not expect DoubletFinder to robustly detect homotypic doublets. Supporting this 

hypothesis, DoubletFinder sensitivity was increased when homotypic doublets were 

identified (Figures 1F, S2A, and S2B; see STAR Methods) and excluded from this analysis 

(Demuxlet sensitivity = 0.93, Cell Hashing = 0.82), while specificity remained unchanged. 

Notably, the magnitude of transcriptional divergence necessary for DoubletFinder detection 

did not always match established cell-type nomenclature, as DoubletFinder identified 

doublets formed from subsets of CD4+ T cells (Figure S2C). Collectively, these results 

illustrate that DoubletFinder primarily detects heterotypic doublets—i.e., doublets formed 

from transcriptionally distinct cells.

DoubletFinder additionally identified a set of doublets left unclassified by Cell Hashing and 

Demuxlet (Figure 1E, red inset, red dots). As described above, we had estimated that 12.5% 

of real doublets were formed from cells with the same SNPs. Thus, these doublets would 

have remained unclassified by Demuxlet but should be detected efficiently by 

DoubletFinder. If these apparent DoubletFinder false-positive cells (labeled red in Figure 

1E) were in fact Demuxlet false negatives, two predictions would follow. First, if putative 

Demuxlet false negatives were real doublets, then these cells should exhibit enriched nUMIs 

relative to singlets. Second, Demuxlet false negatives should express marker genes 

associated with multiple distinct cell states. In line with these predictions, putative false 

negatives had nUMI levels indistinguishable from true-positive Demuxlet doublets 

(Wilcoxon rank-sum test, p = 0.4) and were enriched relative to singlets (p < 2e 16, Figure 

1G). Equivalent analyses were carried out on the Cell Hashing data with the same result 

(Figure S1C). Moreover, these ground-truth false negatives expressed marker genes 

associated with hematopoietic cell types that do not share a common progenitor in peripheral 

blood (Figure 1H, Demuxlet data; Figure S1D, Cell Hashing data). Collectively, these results 

suggest that DoubletFinder recapitulates heterotypic doublet classifications made by 

Demuxlet and Cell Hashing and accurately predicts sample multiplexing false negatives 

formed from cells associated with identical SNPs or sample barcodes.

A common application of scRNA-seq is to discover genes that are differentially expressed 

among distinct cell types that are obscured in bulk transcriptomic assays (Satija et al., 2015; 

Butler et al., 2018; Park et al., 2018). Doublets hinder differential gene expression analyses 

because doublets often cluster separately in gene expression space while sharing 

transcriptional features with the cell types from which they are derived. To demonstrate this 

effect, we compared differential gene expression analysis results between Demuxlet and Cell 

Hashing datasets before and after removing doublets. Doublet removal results in pronounced 

increases in the total number of differentially expressed genes (Demuxlet with and without 

doublets = 2,567 and 4,339; Cell Hashing = 2,185 and 5,598) across nearly every PBMC cell 

type (Figure 1I). Importantly, many newly identified differentially expressed genes are 
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PBMC cell-type marker genes supported in the literature (Figure 1J; Satija et al., 2015; 

Butler et al., 2018; Clark et al., 2012; Ancuta et al., 2009; Zhao et al., 2010; Jeevan-Raj et 

al., 2017; Stoeckle et al., 2009). These results illustrate how doublet detection and removal 

improves scRNA-seq analysis workflows.

Defining the Relationship between the Parameter pK and the Structure of scRNA-Seq Data

DoubletFinder performance is demonstrably sensitive to changes in the input parameter 

specifying pK used to compute each cell’s pANN (Figures 1B and 1C). To understand the 

relationship between scRNA-seq data structure and DoubletFinder performance, we used the 

“splatter” R package (Zappia et al., 2017) to generate simulated scRNA-seq datasets with 3–

8 distinct cell clusters that ranged from being intermixed to completely separated in gene 

expression space (Figure 2A). Real doublets were simulated by adding the gene expression 

profiles of randomly selected cells such that 10% of the final data was doublets. We 

visualized parameter performance by finding the mean AUC for each pK value across all pN 

since pK selection was previously shown to dominate DoubletFinder performance.

For most simulations, mean AUC distributions featured an inflection point representing the 

point at which pKs became too large to enable accurate doublet prediction (Figure 2B). 

Mean AUC inflection point positions differed for simulations with variable numbers of cell 

states, suggesting that pK parameter selection is sensitive to the inherent diversity of 

scRNA-seq data (Figure 2B, top). Moreover, among simulations with the same number of 

cell-state clusters but varying degrees of cluster separation, mean AUC inflection points 

were only observed for simulations with well-separated clusters (Figure 2B, bottom). This 

observation suggests that DoubletFinder performance suffers as a whole when applied to 

data describing transcriptionally homogeneous cell states. This decrease in performance is 

common to other computational doublet detection strategies that utilize transcriptomic 

information alone (Wolock et al., 2018, this issue of Cell Systems) and illustrates a key 

methodological limitation that should be carefully considered by all prospective users.

Defining “Best Practices” for Real-World DoubletFinder Applications

To identify optimal pK values for real-world scRNA-seq data when ground-truth doublet 

information is not known (precluding ROC analysis and AUC maximization for pK 

selection), we suggest that DoubletFinder users calculate the mean-variance-normalized 

bimodality coefficient (BCMVN; Pfister et al., 2013; Figure S3A; see STAR Methods) of 

pANN distributions produced during pN-pK parameter sweeps of their data. BCMVN can be 

used to identify the pK that separates singlets and doublets effectively, without being 

sensitive to local density differences in gene expression space (Figures S3B and S3C). To 

demonstrate the utility of BCMVN for DoubletFinder parameter selection, we benchmarked 

BCMVN against the previously computed ROC results for Demuxlet and Cell Hashing data, 

as well as two scRNA-seq datasets generated without sample multiplexing (Park et al., 2018; 

Byrnes et al., 2018). Across all datasets tested, BCMVN distributions featured a single 

maximum that for the Cell Hashing and Demuxlet datasets, coincided with the pK range 

maximizing AUC (Figure 2C). Therefore, we propose that BCMVN maximization selects a 

near-optimal DoubletFinder parameter across a range of scRNA-seq datasets.
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We next sought to demonstrate DoubletFinder’s capabilities in a real-world context where 

ground-truth doublets are not known and BCMVN maximization must be used to determine a 

reasonable pK. To this end, we applied DoubletFinder to a previously published scRNA-seq 

dataset describing the mouse kidney. In this study, the authors discover and experimentally 

validate the existence of a novel cell type—collecting duct transitional cells (CDTCs)—

which expresses genes characteristic of two other kidney cell types: collecting duct principal 

cells (CDPCs) and collecting duct intercalated cells (CDICs) (Park et al., 2018). This dataset 

represented an intriguing “challenge-case” for DoubletFinder, as we reasoned that legitimate 

cell types with “hybrid” gene expression profiles may resemble artificial doublets, triggering 

DoubletFinder false positives.

Beginning with a pre-processed Seurat object (Figure 2D), we first used BCMVN 

maximization to identify a suitable pK value for these data (pK = 0.09, Figure 2C, top right). 

We then applied DoubletFinder to the full dataset and classified doublets as cells with the 

top n pANN values. Initially, n was set according to the Poisson doublet formation rate, as 

specified for the particular cell-loading density used in the study (Park et al., 2018). This 

resulted in 913 total doublet predictions, which were highly enriched for nUMIs (Figure 2E) 

and included a region of heterotypic doublets characterized by the co-expression of proximal 

tubule and distal convoluted tubule marker genes (Figure 2F). Upon doublet removal, 

differential gene expression analysis was improved (Figure 2G).

DoubletFinder correctly identified 64% of CDTCs as singlets, despite CDTCs having 

exceptionally high nUMIs (Figure S4A) and co-expressing both CDPC and CDIC marker 

genes (Figure S4B). However, these initial results represented an overestimation of the true 

number of detectable doublets as DoubletFinder was applied without taking homotypic 

doublets into account. We therefore adjusted the expected doublet number to account for 

homotypic doublets. Specifically, we grouped cells according to literature-supported cell-

type annotations and estimated the proportion of homotypic doublets as the sum of squared 

cell-type frequencies (Figure S4C; see STAR Methods). This strategy assumes (1) that a cell 

type’s frequency in the final dataset reflects that cell type’s contribution to the doublet pool, 

and (2) that user-defined cell-type groups approximate the magnitude of transcriptional 

divergence necessary to make a detectable heterotypic doublet. In contexts where such 

annotations are inaccurate or unavailable, unsupervised clustering results should be used 

instead. This analysis resulted in a revised 473 total heterotypic doublet predictions and 

allowed us to identify 97% of CDTCs as singlets. This result suggests that DoubletFinder 

can be insensitive to legitimate cell states with intermediate expression profiles. We suggest 

that the heterotypic doublet frequency and Poisson doublet formation rates be used as lower 

and upper bounds for estimating the number of detectable doublets, respectively. We urge 

DoubletFinder users to interrogate the results of each thresholding strategy against the 

known biology of the system under study.

DISCUSSION

DoubletFinder is a computational doublet detection method that integrates artificial doublets 

into existing scRNA-seq data and identifies real doublets as cells enriched for artificial 

nearest neighbors in gene expression space. DoubletFinder is implemented in the R 

McGinnis et al. Page 8

Cell Syst. Author manuscript; available in PMC 2019 November 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



programming language and is written to interface with the popular Seurat scRNA-seq 

analysis package (Satija et al., 2015; Butler et al., 2018). However, DoubletFinder is 

prospectively generalizable to scRNA-seq data analyzed using alternative pipelines as well. 

In this study, we benchmarked DoubletFinder against ground-truth scRNA-seq data where 

doublets are directly measured using sample multiplexing techniques such as Demuxlet 

(Kang et al., 2018) and Cell Hashing (Stoeckius et al., 2018). We leveraged these results to 

define “best practices” for how DoubletFinder should be applied to real-world scRNA-seq 

data without ground-truth doublet labels. We then successfully demonstrated these practices 

on mouse kidney data featuring an experimentally validated cell state that could trigger 

DoubletFinder false positives (Park et al., 2018).

Ground-truth comparisons revealed a number of DoubletFinder strengths and limitations. 

For example, DoubletFinder outperforms nUMI thresholding in these data and accurately 

predicts heterotypic doublets with >90% sensitivity. In contrast, DoubletFinder is insensitive 

to homotypic doublets, as these cells do not diverge significantly from real singlets in gene 

expression space. DoubletFinder also identifies false negatives in the Demuxlet and Cell 

Hashing datasets that are formed from cells associated with identical sample barcodes. For 

this reason, we view DoubletFinder and sample multiplexing as complementary doublet 

removal approaches, especially in experimental contexts with relatively low sample 

numbers. When used in concert, sample multiplexing and computational doublet detection 

techniques provide an effective solution to the issue of doublets in scRNA-seq data, enabling 

users to “super-load” droplet microfluidic devices and thereby further increase scRNA-seq 

cell throughput.

In contexts where sample multiplexing information is unavailable, DoubletFinder detects 

and removes the preponderance of heterotypic doublets while homotypic doublets remain. 

The presence of homotypic doublets is unlikely to negatively influence cell-type 

classification and differential gene expression analysis, as homotypic doublets cluster 

together with bona fide cell singlets. In fact, simply removing heterotypic doublets improved 

differential gene expression analysis results in every dataset tested in this study. However, 

certain scRNA-seq analyses may also benefit from the removal of homotypic doublets. For 

example, imputation uses the average gene expression profiles of transcriptionally similar 

cells to infer missing values caused by transcript dropout events (Huang et al., 2018; van 

Dijk et al., 2018). It is possible that the structure of missing values in singlets and homotypic 

doublets is distinct, and thus, it remains unclear how the presence of homotypic doublets 

influences imputation performance.

Beyond exposing DoubletFinder strengths and limitations, ground-truth benchmarking 

revealed three methodological features that should be considered as users apply 

DoubletFinder to scRNA-seq data lacking ground-truth doublet labels. First, applying 

DoubletFinder to simulated scRNA-seq data with poorly resolved clusters demonstrates that 

DoubletFinder cannot be accurately applied to scRNA-seq data describing transcriptionally 

similar cells. DoubletFinder users should therefore carefully consider the diversity of their 

dataset prior to using the method. Second, DoubletFinder input parameters (e.g., pK) must 

be tuned to datasets with variable numbers of cell states. We predicted pK for ground-truth 

scRNA-seq data using ROC analysis, which is not possible for real-world data. Instead, we 
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developed a ground-truth-agnostic parameter selection strategy—termed BCMVN 

maximization—which finds the pK value that optimally separates singlet and doublet pANN 

distributions. Third, since DoubletFinder is insensitive to homotypic doublets, thresholding 

DoubletFinder results according to the total number of doublets estimated via Poisson 

loading statistics will necessarily result in false positives. To account for this issue, we 

describe how the proportion of homotypic doublets can be estimated from cell-type 

frequencies described using existing annotations or unsupervised clustering. Using this 

strategy, one can threshold DoubletFinder results in a fashion that accounts for homotypic 

doublets and thereby limits false positives.

STAR★METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources should be directed to and will be fulfilled by 

the Lead Contact, Zev J. Gartner (zev.gartner@ucsf.edu).

METHOD DETAILS

Seurat Pre-processing Pipeline—DoubletFinder was implemented in the R 

programming language in a fashion that purposefully interfaces with the Seurat analysis 

package. The DoubletFinder workflow and how it specifically interfaces with Seurat is 

outlined in Box 1. DoubletFinder takes as an input a Seurat object that has been pre-

processed using the standard Seurat analysis pipeline. Briefly, raw RNA UMI counts are 

normalized (e.g., log2-transform), centered, and scaled before regression is used to remove 

undesired sources of variability (e.g., total nUMI). In the standard Seurat workflow, variably 

expressed genes are then defined via dispersion and mean expression thresholds. In this 

study, thresholds were chosen that identified ~2000 total genes, as described previously 

(Satija et al., 2015; Butler et al., 2018). PCA is then performed using this set of variably 

expressed genes, and statistically-significant PCs are selected (e.g., via inflection point 

estimation on PC elbow plots). These are the minimum pre-processing requirements prior to 

running DoubletFinder, although further dimensionality reduction (e.g., t-SNE) and 

unsupervised clustering were also utilized in this study. Notably, any set of user-defined 

Seurat pre-processing parameters is compatible with DoubletFinder. Seurat parameters used 

in this study:

Seurat Pre-processing Parameters

Data REF PCs
Variable gene
dispersion 
threshold

Variable gene
expression 
threshold

pN pK # of doublet 
predictions

Demuxlet Kang et al., 2018 10 0.85 0.05 0.25 0.01 6909 cells

Cell Hashing Stoeckius et al., 
2018 10 0.65 0.025 0.25 0.01 2687 cells

Kidney Park et al., 2018 10 0.25 0.0125 0.25 0.09 913, 473 cells

DoubletFinder overview—The DoubletFinder workflow begins with a pre-processed 

Seurat object, prepared as described above. Artificial doublets are then generated from raw 
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UMI count matrices by averaging the gene expression profiles of cell pairs selected via 

random sampling with replacement. Sufficient artificial doublets are then generated to 

comprise 25% of the resulting merged data (pN = 0.25). Next, real and artificial data are 

merged and pre-processed using the same normalization, scaling, and variable gene 

definition parameters employed during the original data analysis workflow. Notably, nUMI 

regression is not performed during merged real-artificial dataset pre-processing in order to 

preserve differences between singlets and doublets. Using the same number of statistically-

significant PCs selected during original data pre-processing, PC cell embeddings are then 

converted into a Euclidean distance matrix using the ‘rdist’ function from the ‘fields’ R 

package (Nychka et al., 2017). Each cell’s nearest neighbors are then defined from this 

distance matrix, and the proportion of artificial nearest neighbors (pANN) is computed for 

every real cell by dividing its number of artificial neighbors by the neighborhood size (pK). 

Final doublet classifications are then assigned to the cells with the n highest pANN, where n 
was set to the total number of expected doublets with or without homotypic doublet 

adjustment (see ‘Real-World Applications’ below).

Ground-Truth Benchmarking

Optimizing pK Using ROC Analysis: For Cell Hashing and Demuxlet scRNA-seq data, 

optimal parameters were selected by maximizing the AUC from ROC analysis of pN-pK 

parameter sweeps. Specifically, Cell Hashing and Demuxlet datasets were first randomly 

sub-sampled to 10,000 cells in order to maximize computational efficiency during the 

parameter sweep. Second, artificial doublets were integrated at varying proportions (pN = 

0.05–0.30), and merged real-artificial data was pre-processed as described above. Third, the 

proportion of artificial nearest neighbors was computed for varying neighborhood sizes (pK 

= 0.0001–0.3) for each real cell. This produced a list of pANN vectors corresponding to 

each pN-pK combination. Fourth, ground-truth doublet labels and pANN vectors were then 

evenly split into test and training sets via random sampling without replacement. Fifth, 

logistic regression models were fit on training cells using the ‘glm’ R function with the 

‘family’ and ‘link’ arguments set to ‘binomial’ and ‘logit’, respectively. Logistic regression 

was used because this technique specifically models the binary nature of singlet/doublet 

classifications. Sixth, models were applied to test cells and the predictive capacity of each 

model was compared by computing AUC during ROC analysis, as implemented in the 

‘ROCR’ (Sing et al., 2005) and ‘pROC’ (Robin et al., 2011) R packages.

Comparing DoubletFinder and nUMIs: DoubletFinder parameters optimized for the Cell 

Hashing and Demuxlet datasets using ROC analysis were then used to benchmark the 

method against nUMI thresholding. Test and training sets were defined as described above, 

and logistic regression models were fit using DoubletFinder alone, nUMI alone, or a linear 

combination of both features. Trained models were then applied to test cells, and ROC 

analysis was used to compare each of the three models.

Classifying Doublets According to Sample Multiplexing Results: For Demuxlet and Cell 

Hashing data, cells with the n highest pANN values were classified as doublets, where n was 

defined as the number of ground-truth doublets adjusted according to the expected ground-

truth false-negative rate. Notably, we utilized this strategy prior to discovering that 
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DoubletFinder is insensitive to homotypic doublets. Thus, we suggest users interpret 

DoubletFinder results using the Poisson doublet formation rate with and without adjustment 

for homotypic doublet proportions (see ‘Real-World Applications’ below).

Defining Homotypic Doublets: To illustrate that DoubletFinder is predominantly sensitive 

to heterotypic doublets, we sought a strategy to directly distinguish homotypic and 

heterotypic doublets within ground-truth doublet classifications. Specifically, since 

homotypic and heterotypic doublets respectively co-localize with singlets and doublets in 

gene expression space, we reasoned that the two doublet types could be discerned according 

to the proportion of nearest neighbors that were real doublets. We computed this proportion 

for each real cell using the pK value optimized by ROC analysis (pK = 0.01). We then 

visualized the density distributions of doublet neighborhood proportions for real doublets 

and singlets. We then used the intersection of these distributions as a threshold to split real 

doublets into homotypic and heterotypic subsets, following the assumption that homotypic 

doublets and real singlets would have similar doublet neighborhood proportions (Figures 1F 

and S2A). Homotypic doublets identified using this strategy localize amongst singlets in 

gene expression space, as expected (Figures 1F and S2B).

Tracking Doublet Composition from Cell Type Annotations: DoubletFinder is insensitive 

to doublets formed from transcriptionally-similar cells. However, objective criteria 

describing the magnitude of transcriptional dissimilarity needed to produce a detectable 

doublet remain unclear. We tested whether literature-supported cell type annotations 

reflected this magnitude of dissimilarity in the following way. First, we applied 

DoubletFinder to the Demuxlet dataset while tracking the cell type annotations of every cell 

pair during artificial doublet generation (Figure S2C, top). Second, for each predicted 

doublet, we computed the proportion of nearest neighbors that were artificial doublets 

formed from cells with the same or different cell type annotations. Third, we identified the 

doublets where > 50% of their neighbors corresponded to artificial doublets formed from 

cells with the same annotation. We speculated that these doublets were most likely to be real 

homotypic doublets. Upon visualizing these cells in gene expression space, we observed that 

many localized amongst the CD4+ T-cell cluster (Figure S2C, bottom left). These doublets 

also express high levels of CD4+ T-cell markers and do not express marker genes for other 

PBMCs (Figure S2C, bottom right). Collectively, these results suggest that our analysis 

successfully distinguished homotypic and heterotypic doublets. Moreover, these results 

suggest that some cells sharing a single literature-supported cell state annotation may still 

have sufficient transcriptional heterogeneity to produce doublets that DoubletFinder can 

detect.

scRNA-Seq Data Simulation: scRNA-seq data was simulated using the ‘splatter’ R 

package (Zappia et al., 2017), as in (Wolock et al., 2018). Datasets were simulated with 3–8 

equally-proportioned cell states, and cluster separation in gene expression space was 

controlled using the ‘de.prob’ parameter (0.005–0.1) of the ‘splatSimulate’ R function. 

Simulated doublets were added to these data by adding the UMI counts for random pairs of 

cells such that 10% of the final data were doublets. Simulated datasets containing doublets 

were then pre-processed using ‘Seurat’ as described previously, with the number of 
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statistically-significant PCs set to the total number of cell states. Following pre-processing, 

parameter sweeps, logistic regression modeling, and ROC analysis were performed on each 

simulated dataset, as described above. Since pK is the main parameter requiring adjustment 

in different contexts, we visualized our results by finding the mean AUC across all pN 

values for each pK.

Real-World Applications—Applying DoubletFinder to real-world data lacking ground-

truth doublet labels requires two analytical steps that were not performed during 

benchmarking against Cell Hashing, Demuxlet, and simulated data. First, when ground-truth 

doublets labels are unavailable, DoubletFinder parameters must be selected using a ground-

truth-agnostic strategy called mean-variance-normalized bimodality coefficient (BCMVN) 

maximization. Second, since DoubletFinder is insensitive to homotypic doublets, 

thresholding results based on the Poisson doublet formation rate will necessarily result in 

false-positives. Thus, DoubletFinder results can be interpreted after adjusting the number of 

expected doublets to account for the estimated proportion of homotypic doublets in the data. 

These two processes are described below.

Optimizing pK with BCMVN Maximization: The bimodality coefficient (BC) measures 

deviations from unimodality in data distributions (Pfister et al., 2013). For DoubletFinder 

parameter fitting, we reasoned that parameter sets that produced non-unimodal pANN 

distributions would optimally separate singlets from doublets and, as a result, would perform 

the best. Thus, for the Demuxlet (Kang et al., 2018), Cell Hashing (Stoeckius et al., 2018), 

mouse kidney (Park et al., 2018), and mouse pancreas (Byrnes et al., 2018) scRNA-seq 

datasets, we tested every pANN distribution generated during pN-pK parameter sweeps to 

find those with elevated BC values. Specifically, we computed BC as is implemented in the 

‘bimodality_coefficient’ function in the ‘modes’ R package (Deevi, 2016), which is 

formalized as:

BC = γ2 + 1

κ + 3(n − 1)2
(n − 2)(n − 3)

,

Where γ is the pANN distribution skewness (i.e., peak width), k is the kurtosis (i.e., peak 

sharpness), and n is the sample size. We then measured the BC mean and variance for each 

pK across all pN values tested, as it was previously shown that DoubletFinder performance 

is not influenced by the number of generated artificial doublets.

We documented the results of this workflow when applied to the Cell Hashing data as a 

representative example (Figure S3). When pK values are too high (e.g., pK > 0.1), singlets 

and doublets have similar proportions of artificial nearest neighbors, and the resulting pANN 

distributions are associated with low BC and AUC (Figure S3B). In contrast, when pK 

values are too low (e.g., pK = 5e-4), DoubletFinder performance suffers because 

neighborhoods in gene expression space are dominated by local effects that result in 

multimodal pANN distributions (Figure S3A, top left). Since these distributions are not 

unimodal, they are associated with high BC. However, local effects are sensitive to the 

number of artificial doublets integrated into the dataset (pN), resulting in elevated BC 

McGinnis et al. Page 13

Cell Syst. Author manuscript; available in PMC 2019 November 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



variance for the associated pK values (Figure S3B, pink). Finally, ideal pK values (e.g., pK = 

0.01) generate long-tailed pANN distributions (Figure S3A, mid left) that are characterized 

by high AUC and high BC with low variance (Figure S3B, red). Since high BC values with 

low-variance predicted high AUC parameter sets in the Cell Hashing data, we leveraged 

these observations to devise a new metric for pK parameter selection – BCMVN – formalized 

as:

BCMVN =
μBC

σBC
2 ,

Where μBC and σBC
2  are the BC mean and variance, respectively, for each pK across pN 

values. BCMVN distributions feature a single, visually-discernible maximum for the four 

datasets tested in this study (Figure 2D). For ground-truth datasets, this maximum 

corresponds with the ideal pK value identified via ROC analysis.

Estimating Homotypic Doublet Proportions: In this study, homotypic doublet proportions 

were modeled as the sum of squared cell state frequencies. For example, consider a scRNA-

seq dataset with five unique cell states present at the following proportions:

pCi  =   0.40,  0.25,  0.15,  0.1, 0.1 ,

Where pCi is the proportion of cell state i. The proportion of homotypic doublets present in 

this data is then estimated as:

pHomo= Σ(pC12 + pC22 + pC32 + pC42 + pC52) = 0.265.

The final number of detectable (i.e., heterotypic) doublets is then defined by adjusting the 

total number of doublets (i.e., as determined by the Poisson doublet formation rate) by the 

homotypic doublet proportion:

DDR  =  pHomo * TDR,

Where DDR and TDR are the detectable and total doublet rates, respectively. This strategy 

follows the assumption that, during droplet microfluidics-based cell capture, the probability 

that an emulsion oil droplet is filled with a cell from state i matches the proportion of cell 

state i in the final scRNA-seq dataset. This assumption does not consider differential doublet 

formation propensities between cell types (e.g., due to adhesive properties, cell size, etc.).

Notably, the accuracy of this strategy depends on whether cell state annotations accurately 

group cells with transcriptional profiles that are sufficiently similar to preclude formation of 

a heterotypic doublet. This magnitude of transcriptional similarity is difficult to define and is 

likely dataset-dependent. For example, since DoubletFinder detected doublets formed from 

subsets of CD4+ T-cells, this specific annotation would not be ideal for homotypic doublet 

estimation. However, unsupervised clustering results and/or literature-supported cell state 
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annotations from existing scRNA-seq data are the best approximations, and represent a 

lower bound for the total number of doublets.

For the mouse kidney data with which this strategy was implemented, we assigned doublet 

labels to cells with the top n pANN values, where n was set to the Poisson doublet formation 

rate with and without homotypic doublet adjustment. This strategy results in two sets of 

doublet predictions associated with varying stringencies. With the unadjusted Poisson 

threshold, DoubletFinder users can be confident that all heterotypic doublets were removed, 

albeit along with a subset of real singlets. In contrast, the homotypic-adjusted threshold 

preserves the most existing data while potentially leaving real doublets remaining.

QUANTIFICATION AND STATISTICAL ANALYSIS

nUMI Statistical Analysis—Statistically-significant differences between nUMIs in 

Demuxlet and Cell Hashing singlets and doublets were defined using the Wilcoxon rank sum 

test implemented with the ‘pairwisewilcox.test’ R function. Multiple comparison correction 

was performed using the Benjamini-Hochberg procedure. In this context, n represents the 

total nUMIs associated with one cell (Demuxlet n = 33,328; Cell Hashing n = 15,178).

Sensitivity and Specificity—Sensitivity and specificity were computed for ground-truth 

scRNA-seq data before and after homotypic doublet definition, as described above. 

Sensitivity and specific calculations were performed using the ‘caret’ R package (Kuhn, 

2008).

Differential Gene Expression Analysis—Differential gene expression analysis 

comparisons between scRNA-seq datasets before and after doublet removal was performed 

with the ‘FindMarkers’ function in ‘Seurat’. Statistical significance was tested using the 

likelihood-ratio test for single-cell gene expression (McDavid et al., 2013), and marker 

genes were defined as statistically-significant genes with 3-fold expression enrichment. For 

the Cell Hashing and Demuxlet datasets, doublet removal included all doublets classified 

either by sample-multiplexing or DoubletFinder. For mouse kidney scRNA-seq data, only 

DoubletFinder-defined doublets were removed.

DATA AND SOFTWARE AVAILABILITY

Cell Hashing (GEO: GSE108313), Demuxlet (GEO: GSE96583), mouse kidney (GEO: 

GSE107585), and mouse pancreas (GEO: GSE101099) UMI count matrices were 

downloaded from the Gene Expression Omnibus. DoubletFinder is implemented as a fast, 

easy-to-use R package that interfaces with Seurat version 2.0 and higher. DoubletFinder can 

be downloaded from GitHub (https://github.com/chris-mcginnis-ucsf/DoubletFinder) and is 

available as an executable Compute Capsule on Code Ocean (DOI: https://doi.org/

10.24433/CO.4902498.v1).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Box 1.

DoubletFinder “Real-World” Workflow Interfaces with Seurat

Seurat workflow (green) begins with gene and cell filtering and log2-normalization of 

filtered raw RNA UMI count matrices. Normalized data are then centered and scaled 

prior to regression of the undesirable sources of variation. Genes that are abundantly and 

variably expressed are then defined and used as input for PCA and unsupervised 

clustering and subsequent literature annotation. These results can then be applied to 

miscellaneous downstream analyses. DoubletFinder workflow (blue) is split into two 

stages: parameter selection and doublet classification. During parameter selection, 

variable numbers of artificial doublets (pN) are generated from filtered raw RNA UMI 

count matrices. Artificial doublets are then incorporated into existing scRNA-seq data, 

which are processed using Seurat until after PCA. pANN values are then computed 

across variable PC space neighborhood sizes (pK). This process is repeated for each pN 

and pK value, creating a list of pANN values. Optimal pK is then selected using BCmvn 

maximization, and this pK is applied to the full dataset. Following parameter selection, 

doublet classification begins by estimating the number of total and heterotypic doublets 

from the Poisson doublet formation rate with and without homotypic doublet adjustment. 

Homotypic doublets are estimated as the sum of squared cell-type annotations or 

unsupervised clustering frequencies. Final doublet classifications are then made by 

thresholding pANN according to these doublet number predictions, and doublets are then 

removed prior to subsequent downstream analyses.
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Highlights

• DoubletFinder uses gene expression features to predict doublets in scRNA-

seq data

• DoubletFinder identifies doublets derived from transcriptionally distinct cells

• Doublet removal improves differential gene expression analysis performance

• DoubletFinder is insensitive to bona fide cells with “hybrid” expression 

profiles
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Figure 1. DoubletFinder Overview, nUMI Comparison, and Ground-Truth Benchmarking
(A) Schematic overview of DoubletFinder workflow. Doublet detection is necessary to 

correctly interpret intermediate cell states (blue, orange) in scRNA-seq data, which could 

represent developmental intermediates or technical artifacts. Starting with scRNA-seq data 

pre-processed using Seurat, DoubletFinder integrates artificial doublets (red) into the 

existing data at a defined proportion (pN). DoubletFinder then defines each cell’s 

neighborhood in gene expression space (pK, example neighborhood seed in bright blue). 

The proportion of artificial nearest neighbors (pANN) is then defined, and cells with the top 

pANN values are predicted as doublets. Doublet removal aids in scRNA-seq data 

interpretation—e.g., when discerning doublets from legitimate differentiation intermediates.
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(B) Schematic describing pN-pK parameter sweep. Increasing pN corresponds with 

increasing numbers of artificial doublets (red) relative to singlets (black). Increasing pK 

corresponds with larger neighborhood sizes (red dotted circle, neighbors highlighted in 

yellow) used during pANN computation.

(C) pN-pK parameter sweep AUC heatmap for Demuxlet and Cell Hashing data.

(D) ROC analysis of logistic regression models trained using DoubletFinder alone (blue), 

nUMIs alone (red), and both nUMIs and DoubletFinder (orange).

(E) t-SNE visualizations of Demuxlet and DoubletFinder doublets (black) among PBMC 

cell types. Inset regions exemplify two types of discordance. False-negative DoubletFinder 

classifications (gold) localize among singlets in gene expression space, while putative false-

positive DoubletFinder classifications (red) localize among heterotypic doublets. Mono, 

monocytes; NK, natural killer cells; MK, megakaryocytes; and DC, dendritic cells.

(F) Density plots describing the proportion of ground-truth doublet neighbors in gene 

expression space among ground-truth singlets and doublets (left). Singlets (gray) have low 

doublet neighbor proportions, whereas doublets (red) have widely variable doublet neighbor 

proportions. Homotypic (Hom.) and heterotypic (Het.) doublets were thresholded at the 

intersection of single and doublet densities (black dotted line). t-SNE visualization (right) 

demonstrates that homotypic doublets (red) localize among singlets (gray), unlike 

heterotypic doublets (black).

(G) RNA UMI boxplots for true-positive doublets (red), putative false-negative doublets 

(gold), and singlets (black). Data are represented as mean ± SEM.

***statistically significant (p < 2e–16); ns, not significant (p = 0.40).

(H) Marker gene heatmaps for true-positive doublets, false-negative doublets, B cells, and 

CD14 monocytes.

(I) Bar chart describing the number of additional differentially expressed genes identified 

following doublet removal.

(J) Heatmap of literature-supported immune cell marker genes identified as differentially 

expressed genes following doublet removal.
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Figure 2. BCMVN Maximization Estimates Ideal DoubletFinder Parameters for Real-World 
scRNA-Seq Data and Facilitates DoubletFinder Application to Mouse Kidney Data with 
“Hybrid” Cell States
(A) Schematic overview of data simulation strategy. scRNA-seq data including doublets 

(red) with different numbers of cell states (top) and extent of cluster separation in gene 

expression space (bottom) were simulated. pDE, probability of differential expression.(B) 

Simulated pN-pK parameter sweep results. Range of pK values coinciding with high mean 

AUC differ between simulated data with varying numbers of equally separated cell states 

(pDE, 10.0% for all simulations, top). DoubletFinder performance suffers on the whole 

when applied to simulated data with variable degrees of cluster separation (number of cell 

states = 8 for all simulations, bottom).(C) Comparison of BCMVN (teal) and mean AUC 

distributions (black) enables identification of high AUC pK values for Demuxlet and Cell 

Hashing data (left). BCMVN distributions for mouse kidney and pancreas data inform pK 

parameter selection (right). Red dotted lines denote optimal pK values based on peak 

BCMVN.

(D) t-SNE visualization of DoubletFinder doublet predictions (black) among mouse kidney 

cell types. DCT, distal convoluted tubule; PT, proximal tubule; Endo, endothelial; and LOH, 

loop of Henle.

(E) RNA UMI boxplots for doublets (red) and singlets (black). Data are represented as mean 

± SEM.

(F) Marker gene heatmaps for doublets, PT cells (beige), and DCT cells (pink).

(G) Bar chart describing the number of additional differentially expressed genes identified 

following doublet removal.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

soRNA-seq-UMI counts of PBMCs demultiplexed using 
Demuxlet Kang et al., 2018 GEO: GSE96583

scRNA-seq-UMI counts of PBMCs demultiplexed using 
Cell Hashing Stoeckius et al., 2018 GEO:GSE108313

scRNA-seq-UMI counts of mouse kidney cells Park et al., 2018 GEO: GSE107585

scRNA-seq-UMI counts of mouse pancreas cells Byrnes et al., 2018 GEO:GSE101099

Software and Algorithms

Seurat Satija et al., 2015
Butler et al., 2018

https://github.com/satijalab/seurat

Splatter Zappia et al., 2017 https://github.com/Oshlack/splatter

ROCR Sing et al., 2005 https://github.com/ipa-tys/ROCR

pROC Robin et al., 2011 https://github.com/xrobin/pROC

Caret Kuhn, 2008 https://cran.r-project.org/web/packages/caret/caret.pdf

Modes Deevi, 2016 https://cran.r-project.org/web/packages/modes/modes.pdf

Fields Nychka et al., 2017 https://cran.r-project.org/web/packages/fields/fields.pdf

DoubletFinder This paper https://github.com/chris-mcginnis-ucsf/DoubletFinder
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