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Abstract

Motivation: Haplotype models enjoy a wide range of applications in population inference and dis-

ease gene discovery. The hidden Markov models traditionally used for haplotypes are hindered by

the dubious assumption that dependencies occur only between consecutive pairs of variants. In this

article, we apply the multivariate Bernoulli (MVB) distribution to model haplotype data. The MVB

distribution relies on interactions among all sets of variants, thus allowing for the detection and ex-

ploitation of long-range and higher-order interactions. We discuss penalized estimation and present

an efficient algorithm for fitting sparse versions of the MVB distribution to haplotype data. Finally,

we showcase the benefits of the MVB model in predicting DNaseI hypersensitivity (DH) status—an

epigenetic mark describing chromatin accessibility—from population-scale haplotype data.

Results: We fit the MVB model to real data from 59 individuals on whom both haplotypes and DH

status in lymphoblastoid cell lines are publicly available. The model allows prediction of DH status

from genetic data (prediction R2 ¼ 0:12 in cross-validations). Comparisons of prediction under the

MVB model with prediction under linear regression (best linear unbiased prediction) and logistic

regression demonstrate that the MVB model achieves about 10% higher prediction R2 than the two

competing methods in empirical data.

Availability and implementation: Software implementing the method described can be down-

loaded at http://bogdan.bioinformatics.ucla.edu/software/.

Contact: shihuwenbo@ucla.edu or pasaniuc@ucla.edu

1 Introduction

Accidents of history and variable recombination rates have divided

the human genome into blocks of shared recent ancestry (1000

Genomes Project Consortium et al., 2010; Daly et al., 2001; Gibbs

et al., 2003). Ancestry sharing manifests itself in complex haplotype

patterns and strong dependencies among variants. [Recall that a

haplotype summarizes the sequence of alleles displayed by the

sampled markers in a narrow genomic region of a particular chromo-

some (Kruglyak, 1999).] Therefore, modeling haplotype data is of

paramount importance for a wide range of problems in population

genetics and disease gene discovery (Chung et al., 2013; Howie et al.,

2012, 2009; Lawson et al., 2012; Li et al., 2010; Lohmueller et al.,

2009; Marchini et al., 2007; Morris, 2006; Pasaniuc et al., 2009; Pool

et al., 2010; Price et al., 2009; Savage et al., 2013; Templeton, 2005).

Haplotypes have been traditionally analyzed by hidden Markov

models (HMMs) (Li and Stephens, 2003; Yang et al., 2014), with

emissions corresponding to observed genotypes and transitions to re-

combination events. Although HMMs for haplotypes undergird

many efficient and accurate algorithms for haplotype phasing (Scheet

and Stephens, 2006), genotype imputation (Browning and Browning,
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2007; Howie et al., 2009; Li et al., 2010) and identity-by-descent de-

tection (Browning and Browning, 2011), they suffer from the draw-

back of modeling only dependencies between consecutive variants.

This assumption leads to the unrealistic conclusion that the previous

variant and the next variant are independent given the current vari-

ant. Ignoring dependencies among non-consecutive markers makes it

difficult to detect and exploit long range correlations and higher-

order interactions among variants. These complex dependencies def-

initely exist in the human genome and are important factors in gen-

etic studies (Price et al., 2008; Wall and Pritchard, 2003).

This article applies the multivariate Bernoulli (MVB) distribution

to haplotype data. The MVB distribution captures the entire spec-

trum of dependencies among the entries of random binary vectors of

length N (Dai et al., 2013). The observed haplotypes at N nearby sin-

gle-nucleotide polymorphisms (SNPs) can be thought of as realiza-

tions of such a process. Since there are 2N possible haplotypes for N

SNPs, the MVB distribution requires an unsustainable exponential

number of parameters. Vast amounts of training data or clever algo-

rithms cannot compensate for this combinatorial explosion. Here, we

investigate a Poisson re-parameterization of the MVB distribution

and impose an ‘1-norm penalty to enforce sparsity in parameter esti-

mation. These steps allow us to devise an efficient coordinate ascent

algorithm for learning the MVB parameters from haplotype data

while restricting the number of parameters to a manageable level.

We showcase the utility of the MVB model by predicting an indi-

vidual’s DNaseI hypersensitivity (DH) status from haplotypes

observed near known DH sites. DH status is a mark of open chro-

matin and flags genomic regions where the DNA is accessible to the

DNaseI enzyme. These regions, such as transcription start sites, cor-

relate with active DNA regulation. DH status is usually assayed

through DNase-Seq, a genome-wide high-throughput technology

that sequences genomic regions sensitive to DNaseI (Madrigal and

Krajewski, 2012). Recent research (Degner et al., 2012) suggests

that genetic variants control this epigenetic mark. Since DH status

can be naturally encoded as a binary variable, the MVB model offers

a natural way to integrate DH status and local haplotype data. In

predicting DH status from haplotypes, the MVB model allows all al-

lelic sets to contribute regardless of the order of the participating

SNPs and the physical distances separating them.

Our analysis of data from the 1000 Genomes project

(1000 Genomes Project Consortium et al., 2010) demonstrates the

superiority of the sparse MVB distribution in model fitting. In prac-

tice, interactions beyond order three play little role in determining

haplotype frequencies in these data. Our new cyclic coordinate des-

cent algorithm for estimating the MVB interaction parameters con-

verges quickly and reliably. The MVB model also turns out to

be pertinent to predicting DH status from haplotype data at

known DH sites (de los Campos et al., 2013). On a sample of just

59 subjects, cross-validation under the MVB yields a prediction R2

of 0.12 for dichotomized DH levels. As expected, the accuracy of

DH prediction decreases as extraneous predictors are added. Finally,

prediction under the MVB achieves about 10% better accuracy than

prediction by linear regression (best unbiased linear predictor or

BLUP) and logistic regression. Thus, the MVB model is recom-

mended for prediction of binary epigenetic status from local haplo-

type data.

2 Methods

2.1 The MVB distribution as a model for haplotype data
The MVB distribution extends the univariate Bernoulli distribution

to binary vectors of fixed length N (Dai et al., 2013). The density

PrðY ¼ yÞ ¼ pðy1 ; ... ;yNÞ of such a discrete random vector Y depends

on 2N probabilities pð0;0; ... ;0Þ; pð0;0; ... ;1Þ; . . . ; pð1;1 ... ;1Þ specific to

the different realizations of Y. For example, the bivariate Bernoulli

distribution consists of four realizations (0, 0), (0, 1), (1, 0) and (1,

1) specified by four probabilities pð0;0Þ; pð0;1Þ; pð1;0Þ and pð1;1Þ. By

definition, the conditional distribution of a subvector, say

ðY1;Y2; . . . ;YkÞ, given the complementary subvector, say

ðYkþ1; . . . ;YNÞ, is also MVB. In the bivariate case, conditioning on

either Y1 or Y2, produces a standard univariate Bernoulli distribu-

tion. There is an alternative parameterization that captures inter-

actions and is conducive to parsimony. This parameterization

substitutes subsets of f1; . . . ;Ng for binary vectors. To the realiza-

tion y, we correspond the index set A ¼ fi : yi ¼ 1g. The natural

parameters fC of the MVB model are indexed by interaction subsets

C, and the density function PrðY ¼ yÞ is written as the ratio

PrðAÞ ¼
exp

X
C�A

fC

 !

X
B

exp
X
C�B

fC

 ! ¼ exp SAð ÞX
B

exp SBð Þ
; (1)

where we define SA ¼
P

C�A fC for notational simplicity. The de-

nominator
P

B expðSBÞ is the appropriate normalizing constant.

The haplotypes spanning N bi-allelic SNPs can be represented

as binary vectors of length N. We adopt the convention that yi¼0

indicates the major allele and yi¼1 indicates the minor allele at

SNP i. One can obviously model the distribution of haplotypes in

a population as MVB. The major advantage of the MVB is its

ability to incorporate interactions in the recovery of haplotype

frequencies. The number of parameters in both the naive and inter-

action parameterizations grows exponentially fast in N. However,

the interaction parameterization organizes interactions by level

and suggests limiting model complexity by imposing an upper

bound on interaction level. The next section introduces a lasso pen-

alty that in combination with maximum likelihood estimation elim-

inates superfluous interactions and keeps the number of levels in

check.

2.2 Estimating MVB parameters from haplotype data
To estimate haplotype frequencies and ultimately infer missing

haplotypes, one can randomly sample a population and count the

number XA of haplotypes of each type A. For a fixed sample size M,

the XA jointly follow a multinomial distribution with M total counts

and the count probabilities PrðAÞ displayed in Equation (1).

Alternatively, one can adopt a Poisson rather than a multinomial

sampling framework. The two share the assumption of independent

samples but differ in whether the total sample size is random

(Poisson) or fixed (multinomial). The law of small numbers justifies

the equivalence of the two frameworks. The Poisson setting invokes

a mean sample size l, which is estimated by the observed sample

size
P

A XA. One can show (Lange, 2010) that the random variables

XA are independent and Poisson distributed with means

lA ¼ lPrðAÞ.
In the Poisson framework, it is easier to work with the inter-

action parameters by setting lA ¼ expðSAÞ ¼ expð
P

B�A fBÞ and

ignoring l and the normalizing constant
P

B expðSBÞ. In effect, these

are absorbed into the empty set parameter f;. Independence of the

XA now yields the likelihood

LðfjXÞ ¼
Y
A

ðlAÞXA

XA!
expð�lAÞ; (2)
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where X ¼ ðXAÞ and f ¼ ðfAÞ are the vectors of haplotype counts

and interaction parameters, respectively. Taking logarithms pro-

duces the log likelihood

‘ðfjXÞ ¼
X

A

fA

X
B�A

XB �
X

A

expðSAÞ �
X

A

logXA!: (3)

It is natural to estimate the MVB parameter vector f ¼ ðfAÞ by maxi-

mizing ‘ðfjXÞ.
Unless N is small and the sample size M is large, estimating all

2N MVB parameters is an exercise in over-fitting. To achieve parsi-

mony, we append an ‘1-norm (lasso) penalty to the log likelihood.

Any reasonable model should include the low-order parameters fA
with jAj �1, where jAj denotes the cardinality of the set A. Hence,

we maximize the penalized log likelihood

FðfÞ ¼
X

A

fA

X
B�A

XB �
X

A

expðSAÞ � k
X
jAj �2

jfAj: (4)

Here, k is a tuning constant determining the strength of the pen-

alty. Increasing k increases the sparsity of the estimated parameter

vector. The analogy with lasso-guided regression is obvious. The

new objective function FðfÞ is concave and directionally differenti-

able. It has kinks introduced by the terms jfAj. We recommend maxi-

mization by coordinate ascent.

2.3 Coordinate ascent algorithm
Coordinate ascent maximizes the objective function one parameter

at a time holding other parameters fixed. Cycling through the par-

ameters continues until the objective value converges or a maximum

number of iterations is reached. Algorithm 1 outlines the coordinate

ascent algorithm for estimating model parameters.

Algorithm 1 coordinate ascent algorithm for fitting the MVB

1: Let C be the collection of possible haplotypes of length N

2: Initialize fA to 0 for all A 2 C
3: while stop condition fails do

4: for A in C do

5: fA ¼ arg maxfA
FðfÞ

6: end for

7: end while

Line 5 of Algorithm 1 requires finding arg maxfA
FðfÞ. To update

fA when jAj �1, we set the partial derivative of FðfÞ

@

@fA
FðfÞ ¼

X
B�A

XB � efA

X
B�A

e

P
C�B;C 6¼A fC (5)

with respect to fA equal to 0. This yields the update

fA ¼ ln

X
B�A

XB

X
B�A

e

P
C�B;C 6¼A fC

: (6)

When jAj �2, the supergradient

@

@fA
FðfÞ ¼

X
B�A

XB � efA

X
B�A

e

P
C�B;C 6¼A fC

�k

1 if fA > 0

½�1;1� if fA ¼ 0

�1 if fA < 0

8>>>><
>>>>:

(7)

must contain 0 (Lange, 2013). Equating it to 0 yields the update

fA ¼

0 jcj � k

ln

P
B�A XB � kP

B�A e

P
C�B;C 6¼A fC

c > k

ln

P
B�A XB þ kP

B�A e

P
C�B;C 6¼A fC

c < �k

8>>>>>>>><
>>>>>>>>:

(8)

for the criterion c ¼
P

B�A XB �
P

B�A e

P
C�B;C 6¼A fC .

In view of the summations over B � A in the denominators of

Equations (6) and (8), each coordinate ascent update takes nearly

Oð2NÞ operations. This computational load restricts estimation to

MVB models with small N, say N�15. Once parameters are esti-

mated, prediction under the MVB is relatively straightforward. The

normalizing constant in formula (1) must be calculated, but this can

be done once and the result stored.

2.4 Best linear unbiased predictor
Part of our evaluation of the MVB involves comparison of DH pre-

diction on simulated data. The simulated DH status yi of an individ-

ual i was constructed as a linear combination of individual i’s SNP

alleles and SNP pairwise interactions weighted by effect sizes bj and

bjk. In symbols

yi ¼
X

j

bjhij þ
X
fj;kg

bjkhijhik þ ei; (9)

where hij is the SNP predictor (standardized version of 0 or 1) of in-

dividual i at SNP j, hijhik is the SNP interaction of individual i for

the pair of SNPs j and k and ei is an independent normally distrib-

uted error term. Simplified versions of the model ignore the pairwise

interactions and take all bjk ¼ 0.

To make predictions under the linear model, we first estimate

the effect sizes bj and bjk from training dataset and then predict the

phenotype (DH status) of each individual in the test data, substitut-

ing estimated parameters for true parameters. For notational brev-

ity, let H ¼ ðHSNP;HINTÞ be the block matrix of single SNP and

interaction SNP predictors across the training set; for each subject i

and SNPs j and k, the matrix HSNP has entries ðhijÞ and the matrix

HINT has entries ðhijhikÞ. The effect sizes bj and bjk are estimated by

the least squares formula

b̂ ¼ ðHTHÞ�1HTy: (10)

Finally, the BLUP ŷi of DH status for an individual i is computed via

ŷi ¼
X

j

b̂ jhij þ
X
fj;kg

b̂jkhijhik: (11)

2.5 Logistic regression (LOGIT)
We also compared the MVB model with logistic regression

(LOGIT); unlike linear regression, logistic regression directly models

binary outcomes. Under logistic regression, the probability of the

DH status yi of individual i given his/her SNP alleles ðhijÞ and pair-

wise interactions ðhijhikÞ is

Prðyi ¼ yÞ ¼ eci

1þ eci

� �y 1

1þ eci

� �1�y

; (12)

where ci ¼ a0 þ
P

j ajhij þ
P
fj;kg ajkhijhik. Here the a’s are the re-

gression coefficients in logistic regression. As with linear regression,

one can simplify the model by ignoring pairwise interactions and
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taking all ajk ¼ 0. To estimate the parameters of the model, one

maximizes the likelihood

Y
fi:yi¼1g

eci

1þ eci

Y
fi:yi¼0g

1

1þ eci
: (13)

over the entire sample. Prediction of the DH status of individual i

relies on the predicted probability

ŷi ¼
eĉi

1þ eĉi
; (14)

of yi¼1, where ĉ i is the same as ci except for substitution of esti-

mated regression coefficients for true coefficients.

2.6 HMM for haplotypes
An HMM views a haplotype h of length N as a mosaic of haplotypes

from a set H of R reference haplotypes (Li and Stephens, 2003). The

N�R HMM states (i, j) capture the particular reference haplotype j

occurring at SNP i. A transition matrix K models recombination

events and controls how switches occur between haplotypes in mei-

osis. The entries K½ðijÞ; ðklÞ� of the transition matrix are 0 unless

k ¼ iþ 1. For neighboring SNPs, the entries depend on the distance

between the SNPs. Thus, the larger the distance, the larger the tran-

sition probability for j 6¼ l. The emission probabilities PrðhijðijÞÞ
allow for mistyping and occasional mutation events. Inferences

based on HMM are achieved efficiently through the forward, back-

ward and Viterbi algorithms, all of which have complexity OðNR2Þ.
We adopt the latest IMPUTE2 (Howie et al., 2009, 2012) imple-

mentation of HMM for comparison purposes.

3 Results

3.1 Assessment of MVB on 1000 genome haplotypes
In an initial set of experiments, we used the 1000 Genomes EUR

(European) haplotypes (505 individuals) to investigate the perform-

ance of the MVB model and our coordinate descent algorithm for

fitting it to data. We randomly selected 50 regions on chromosome

1, each containing 15 SNPs and fit the MVB under various settings.

The first setting imposed no constraint on the maximum order

(max jAj) of the interaction sets A. Thus, in effect, we estimated all

215 ¼ 32 768 parameters. Figure 1 shows that the regularization

constant k has a significant effect on the magnitude of parameters,

especially for fA’s where jAj �4. For example, as k increases from

0.0 to 0.5, the sum
P
jAj¼4 jfAj of estimated parameters decreases

from 87.5 to 30 for interaction sets with jAj ¼ 4. Furthermore,

Figure 2 indicates that the average value of jfAj converges to 0 as jAj
tends to N¼15. Thus, we conclude that the lower-order inter-

actions fA predominate in determining haplotype frequencies.

Next we investigated how well the MVB fits the selected 1000

Genomes haplotypes using just lower-order interactions. To meas-

ure goodness of fit, we computed the Euclidean distance between

the haplotype frequencies recovered by the MVB model as given in

Equation (1) and the haplotype frequencies observed in the data.

Table 1 demonstrates that the MVB model requires only the lower-

order interactions terms to accurately fit typical data. Because k
¼ 0:25 attains the best fit across interaction level bounds (jAj �bÞ,
we set k to 0.25 in all future experiments.

We also recorded the number of iterations until convergence of

the coordinate descent algorithm. The algorithm invariably con-

verges within 20–30 iterations. See Figure 3 for typical results.

Finally, Table 2 lists that the bulk of computational time is taken in

estimating MVB parameters; once model parameters are estimated,

applying the model to making predictions is relatively trivial.

3.2 Prediction of DH status in simulations
To simulate binary DH data, we took the 1010 EUR (European)

haplotypes of the 1000 Genome project (1000 Genomes Project

Consortium et al., 2010) and simulated 20 000 haploid individuals

at 200 randomly selected 20 kb regions on chromosome 1 (Su et al.,

2011). From each region, we selected 15 SNPs with minor allele fre-

quency above 1%. From the 15 chosen SNPs, we randomly selected
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Fig. 1. Sum of jfAj’s averaged over 50 regions as a function of jAj

Table 1. Euclidean distance between haplotype frequencies re-

covered by the MVB model and haplotype frequencies observed in

data for different values of max jAj and k

Max jAj No. param. k

0.0 0.25 0.5 0.75 1.0

1 16 0.348 0.348 0.348 0.348 0.348

2 121 0.137 0.072 0.073 0.074 0.075

3 576 0.120 0.054 0.055 0.056 0.056

4 1941 0.120 0.055 0.056 0.057 0.058

Bold values indicates the column attaining the best fit for the MVB model.
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Fig. 2. Mean of jfAj’s averaged over 50 loci as a function of jAj
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m causal SNPs and n pairs of interaction SNPs and simulated con-

tinuous DH values according to the linear model sketched in Section

2.4. Prior to simulation, we standardized the SNP predictors hij and

hijhik to have mean 0 and variance 1. The regression coefficients for

the causal SNPs and SNP pairs were sampled as bj 	 Nð0;h2=mÞ
and bjk 	 Nð0;h2

int=nÞ and the noise for each DH variable as

ei 	 Nð0;1� ðh2 þ h2
intÞÞ, where h2 and h2

int denote the variance of

DH values explained by single variants and interactions, respect-

ively. Finally, we converted the continuous DH values to binary DH

values by imposing a threshold chosen so that 20% of the binary

DH values were elevated (status 1 rather than status 0).

For testing under the MVB model, we constructed binary vectors

of length 16 by concatenating each 15-SNP haplotype and a corres-

ponding simulated binary DH status. Given the tuning constant

k ¼ 0:25, this allows us to estimate the fA parameters. To predict

DH status given observed SNP haplotypes, one simply computes a

conditional probability under the MVB model. In one set of MVB

trials, we limited the interaction level to jAj �2, for a total of 137

parameters. In a second set of trials, we limited the interaction level

jAj �3, for a total of 697 parameters. One can compare MVB pre-

diction to BLUP and LOGIT prediction based on the same SNP

haplotypes and interaction model. For BLUP and LOGIT, we also

tested a model involving SNPs and interactions between adjacent

SNPs.

In linear regression, Equation (10) supplies effect sizes, and

Equation (11) supplies predicted values. In logistic regression,

Equation (14) supplies predicted values. For estimation and predic-

tion under HMM, we concatenated DH status as a pseudo SNP at

the end of each 15-SNP haplotype to avoid changing the SNP inter-

actions in the original haplotype. We also set the physical distance

between the pseudo SNP and the last SNP to be the average distance

between consecutive pairs of SNPs in the original 15-SNP haplotype.

We employed half of the simulated individuals as reference panel

and ran HMM with IMPUTE2 default settings on the other half to

obtain predicted DH status. All 200 simulations summarized below

involve two causal SNPs (m¼2) and two causal SNP interactions

(n¼2) for 200 randomly sampled individuals. Of these 200 people,

100 served as training individuals and 100 as validation individuals.

We first investigated performance of MVB, BLUP, LOGIT and

HMM prediction for varying h2 for a fixed interaction h2
int of 0.1.

Figure 4 shows that prediction R2 achieved by all models increases

as h2 increases. However, the MVB model consistently achieves

higher prediction R2 than BLUP, LOGIT and HMM under both

settings, suggesting that the MVB model is capable of yielding more

accurate estimates of effect sizes for prediction. Notably as h2 in-

creases, the improvement in prediction R2 also increases. In other

words, as the effect of a single SNP increases, the comparative ad-

vantage of the MVB model over BLUP, LOGIT and HMM

increases.

Next we investigated the accuracy of these approaches at varying

h2
int values. Figure 5 demonstrates that for all pairs of h2 and h2

int, the

MVB model also achieves higher prediction R2 than BLUP, LOGIT

and HMM.

Finally, we investigated the number of samples required for ac-

curate prediction. Figure 6 shows that although the MVB model re-

quires more parameters than BLUP, LOGIT and HMM, it is able to

outperform these models even if the training sample size is small.

This suggests that the MVB model is less sensitive to noise. Notably,

HMM under-performs both MVB and LOGIT in most simulation

settings, suggesting that HMM is less capable of detecting long

range interactions for reasonable sample sizes. Across all simulated

datasets, we observe no major difference in prediction R2 between

the two MVB settings. This is to be expected since only pairwise

interactions are simulated.

3.3 Predicting DH status in empirical data
We now turn to real data on DH status and reach similar conclu-

sions. The dataset in question (Degner et al., 2012) contains normal-

ized DH scores for 70 YRI (Yorubas in Ibadan, Nigeria) individuals

at 1.5 million 100-bp genomic windows. These windows cover the

0 10 20 30 40 50
1000
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3500
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4500

iteration

ob
je

ct
iv

e 
va

lu
e

Fig. 3. Objective value averaged over 50 loci at each iteration of the coordin-

ate ascent algorithm for different values of max jAj

Table 2. Learning time (second per iteration) and prediction time

(second per prediction), averaged over 50 loci

Max jAj Learning (sec/iter) Prediction (sec/pred)

1 0.2 <0.01

2 1.1 <0.01

3 4.4 0.01

4 13.7 0.02

Fig. 4. Prediction R2 across 100 validation individuals averaged over 200

regions for MVB, BLUP, LOGIT and HMM as a function of h2 when h2
int is

fixed at 0.1
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5% of the human genome with the highest DNaseI sensitivity.

About half of the windows are expected to be truly sensitive to

DNaseI (Boyle et al., 2008); 8902 windows have associated dsQTLs

[SNPs showing significant correlations with DH scores across indi-

viduals (Degner et al., 2012)]. We dichotomized DH scores by plac-

ing scores above the threshold of 0.0 in one category and scores

below the threshold of 0.0 in the complementary category. Among

the 70 YRI individuals in the sample, 59 are also in the 1000

Genome project (1000 Genomes Project Consortium et al., 2010)

and have fully phased haplotypes. We accordingly used the haplo-

types and the binary DH status of these 59 individuals to evaluate

the MVB model. For computational reasons, we selected one haplo-

type for each individual and restricted our analysis to 250 random

DH sites and the 377 DH sites with associated dsQTLs on chromo-

some 22.

In genomic windows with associated dsQTLs, the dsQTLs are

on average about 8000 base pairs (10 SNPs) away from their win-

dows. This action at a distance renders it difficult for HMMs to ac-

curately capture interactions between dsQTLs and their genomic

windows. Because sequence order is an important factor for HMMs,

the question also arises of where to place binary DH status (a

pseudo SNP) in the haplotype. For this reason, we excluded HMM

from comparisons on real data.

To avoid over-fitting, we assessed prediction accuracy by leave-

one-out cross-validation. Thus, we estimated parameters using data

from 58 (all but one) training individuals and predicted DH status

for the remaining validation individual. Repeating this process

across all 59 individuals allowed us to compare predicted and true

DH status. The results can be summarized in a squared Pearson cor-

relation (prediction R2). Prior to parameter estimation in each of the

59 folds, we selected a small number of relevant SNP predictors by

linear regression and forward selection. Our selection procedure

excluded SNPs with minor allele frequency below 1% or at a dis-

tance of 1 Mb or greater from the center of the window. Each suc-

cessive SNP entering the candidate list provided the greatest

reduction of the current residual sum of squares.

Given a candidate set of SNP predictors P in the MVB model,

we created binary haplotype vectors of length jPj þ 1 from the

SNPs and the binary DH status. We considered at most second-

order interactions and set the penalty constant k to 0.25. For BLUP

and LOGIT, we considered three models, one limited to single

SNPs, one involving both single SNPs and two-way interactions and

one involving single SNPs and only interactions between adjacent

SNPs.

Figure 7a shows the prediction R2 obtained through leave-one-

out cross-validation averaged over the 250 randomly selected win-

dows. Because of overfitting and our small sample size, the average

prediction R2 decreases for all methods as the number of predictors j
Pj increases. The MVB model achieves higher prediction R2 than

BLUP and LOGIT over both settings. We repeated the same experi-

ment on the 377 windows with associated dsQTLs. Again the MVB

model consistently achieves higher prediction R2 than BLUP and

LOGIT (Fig. 7b). Figure 7c and d depict the distribution of predic-

tion R2’s under each model. It is clear that the MVB models achieve

more high prediction R2’s (greater than 0.2) than BLUP and LOGIT.

One can legitimately conclude that the MVB model predicts DH sta-

tus better than BLUP and LOGIT. Table 3 summarizes the average

and standard error of prediction R2 for some representative

experiments.

4 Discussion

This article presents the MVB distribution as a vehicle for modeling

haplotype data. Because the number of distinct haplotypes observed

in a narrow genomic region tends to be small, the MVB model is

typically wildly over-parameterized. To achieve parsimony, we pro-

pose a lasso penalty within a Poisson sampling framework. The

penalized MVB model encourages the detection and exploitation of

higher-order interactions among the underlying SNPs. In contrast to

Markovian models, interactions extend beyond nearest neighbor

and pairwise interactions. The interaction parameterization adopted

here is more natural than the naive MVB parameterization implicitly

seen in BLUP and LOGIT. Empirically, the interaction parameter-

ization extracts more haplotype information and predicts with bet-

ter accuracy.

Our application of the MVB model to predict DH status from

observed haplotypes supports the utility of the model. We show that

the MVB model achieves better accuracy than BLUP and LOGIT in

predicting simulated DH status. The overall prediction R2 achieved

by MVB, BLUP and LOGIT on real DH status suggests substantial

heritability of this epigenetic signal.

Fig. 6. Prediction R2 across validation individuals averaged over 200 regions

for the MVB, BLUP, LOGIT and HMM as a function of training sample sizes

when h2 and h2
int are both fixed at 0.3

Fig. 5. Prediction R2 across 100 validation individuals averaged over 200 re-

gions for MVB, BLUP, LOGIT and HMM as a function of h2
int when h2 is fixed

at 0.1
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In likelihood evaluation and parameter estimation, the computa-

tional complexity of the MVB models scales like 2N for N SNPs.

This harsh reality limits the applicability of the model to a small

number of variants. Fortunately, even for small N, the MVB model

offers valuable insights into genomic data. The MVB model may

well be critical in predicting binary gene expression when a small

number of causal variants localize within a gene. In particular, MVB

profiles in cases and controls may help in fine mapping traits in gen-

ome-wide association studies. Overcoming the computational limits

of the MVB model limit is high on our research agenda. Once this

task is accomplished, it will be possible to apply the MVB model to

pre-phasing, a technique for improving genotype imputation by first

imputing haplotypes (Howie et al., 2012). We conjecture that

Monte Carlo methods will play a decisive role in extending the

range of the model to larger N. Finding an efficient sampling scheme

to approximate the normalization constant
P

B expðSBÞ is of para-

mount importance and doubtless the place to start in accelerating al-

gorithm performance.

Acknowledgements

We thank Nicholas Mancuso and Gleb Kichaev for helpful discussions that

improved the quality of our manuscript. We also thank the reviewers for their

helpful comments and suggestions.

Funding

This research was supported by NIH (United States Public Health Service)

grants GM53275 and HG006139.

Conflict of Interest: none declared.

References

1000 Genomes Project Consortium et al. (2010) A map of human genome

variation from population-scale sequencing. Nature, 467, 1061–1073.

Boyle,A.P. et al. (2008) High-resolution mapping and characterization of open

chromatin across the genome. Cell, 132, 311–322.

Fig. 7. Prediction R2 for MVB, BLUP and LOGIT. Here ‘SNP’ refers to the experiment involving only single SNPs, ‘SNP & INT’ refers to the experiment involving

both SNPs and all two-way interactions and ‘SNP & ADJ’ refers to the experiment involving both SNPs and only interactions between adjacent SNPs. (a and b)

The average prediction R2 over different windows as a function of the number of true predictors jP j. (c and d) The distribution of prediction R2 for the highest aver-

age prediction R2 overall jP j. For jP j ¼ 2, the experiments ‘SNP & INT’ and ‘SNP & ADJ’ are identical

Table 3. Average prediction R2 and standard error for jP j � 2 over

250 randomly selected windows (RANDOM) and 377 windows with

dsQTLs (dsQTL)

jPj MVB(jAj � 2) LOGIT BLUP

RANDOM 1 0.112 6 0.015 0.093 6 0.013 0.097 6 0.013

2 0.109 6 0.015 0.106 6 0.015 0.100 6 0.014

dsQTL 1 0.120 6 0.015 0.108 6 0.015 0.114 6 0.015

2 0.102 6 0.014 0.100 6 0.015 0.096 6 0.014

3520 H.Shi et al.

b
. 


Browning,B.L. and Browning,S.R. (2011) A fast, powerful method for detect-

ing identity by descent. Am. J. Hum. Genet., 88, 173–182.

Browning,S.R. and Browning,B.L. (2007) Rapid and accurate haplotype phas-

ing and missing-data inference for whole-genome association studies by use

of localized haplotype clustering. Am. J. Hum. Genet., 81, 1084–1097.

Chung,C.C. et al. (2013) Meta-analysis identifies four new loci associated

with testicular germ cell tumor. Nat. Genet., 45, 680–685.

Dai,B. et al. (2013) Multivariate Bernoulli distribution. Bernoulli, 19,

1465–1483.

Daly,M.J. et al. (2001) High-resolution haplotype structure in the human gen-

ome. Nat. Genet., 29, 229–232.

de los Campos,G. et al. (2013) Prediction of complex human traits using the

genomic best linear unbiased predictor. PLoS Genet., 9, e1003608.

Degner,J.F. et al. (2012) DNase I sensitivity QTLs are a major determinant of

human expression variation. Nature, 482, 390–394.

Gibbs,R.A. et al. (2003) The international hapmap project. Nature, 426, 789–796.

Howie,B.N. et al. (2009) A flexible and accurate genotype imputation method

for the next generation of genome-wide association studies. PLoS Genet., 5,

e1000529.

Howie,B. et al. (2012) Fast and accurate genotype imputation in genome-wide

association studies through pre-phasing. Nat. Genet., 44, 955–959.

Kruglyak,L. (1999) Prospects for whole-genome linkage disequilibrium map-

ping of common disease genes. Nat. Genet., 22, 139–144.

Lange,K. (2010) Applied Probability. Springer Texts in Statistics. Springer,

New York.

Lange,K. (2013) Optimization. Springer Texts in Statistics. Springer, New

York.

Lawson,D.J. et al. (2012) Inference of population structure using dense haplo-

type data. PLoS Genet., 8, e1002453.

Li,N. and Stephens,M. (2003) Modeling linkage disequilibrium and identify-

ing recombination hotspots using single-nucleotide polymorphism data.

Genetics, 165, 2213–2233.

Li,Y. et al. (2010) Mach: using sequence and genotype data to estimate haplo-

types and unobserved genotypes. Genet. Epidemiol., 34, 816–834.

Lohmueller,K.E. et al. (2009) Methods for human demographic inference

using haplotype patterns from genomewide single-nucleotide polymorphism

data. Genetics, 182, 217–231.

Madrigal,P. and Krajewski,P. (2012) Current bioinformatic approaches to

identify DNase I hypersensitive sites and genomic footprints from DNase-

seq data. Front. Genet., 3.

Marchini,J. et al. (2007) A new multipoint method for genome-wide associ-

ation studies by imputation of genotypes. Nat. Genet., 39, 906–913.

Morris,A.P. (2006) A flexible Bayesian framework for modeling haplotype as-

sociation with disease, allowing for dominance effects of the underlying

causative variants. Am. J. Hum. Genet., 79, 679–694.

Pasaniuc,B. et al. (2009) Inference of locus-specific ancestry in closely related

populations. Bioinformatics, 25, i213–i221.

Pool,J.E. et al. (2010) Population genetic inference from genomic sequence

variation. Genome Res., 20, 291–300.

Price,A.L. et al. (2008) Long-range ld can confound genome scans in admixed

populations. Am. J. Hum. Genet., 83, 132.

Price,A.L. et al. (2009) Sensitive detection of chromosomal segments of dis-

tinct ancestry in admixed populations. PLoS Genet., 5, e1000519.

Savage,S.A. et al. (2013) Genome-wide association study identifies two suscep-

tibility loci for osteosarcoma. Nat. Genet., 45, 799–803.

Scheet,P. and Stephens,M. (2006) A fast and flexible statistical model for

large-scale population genotype data: applications to inferring missing

genotypes and haplotypic phase. Am. J. Hum. Genet., 78, 629–644.

Su,Z., et al. (2011) Hapgen2: simulation of multiple disease SNPs.

Bioinformatics, 27, 2304–2305.

Templeton,A.R. (2005) Haplotype trees and modern human origins. Am. J.

Phys. Anthropol., 128, 33–59.

Wall,J.D. and Pritchard,J.K. (2003) Haplotype blocks and linkage disequilib-

rium in the human genome. Nat. Rev. Genet., 4, 587–597.

Yang,W.-Y. et al. (2014) A spatial-aware haplotype copying model with ap-

plications to genotype imputation. In: Sharan,R. (ed.), Research in

Computational Molecular Biology. Springer International Publishing,

Switzerland, pp. 371–384.

Multivariate Bernoulli haplotype model 3521


	btv397-TF1



