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Abstract

Phylogenetic Inference for Biogeographic and Quantitative Trait Evolution

by

Michael Landis

Doctor of Philosophy in Integrative Biology

and the Designated Emphasis in Computational and Genomic Biology

University of California, Berkeley

Professor John P. Huelsenbeck, Chair

A fundamental goal of evolutionary biology is to characterize the processes by which
species traits evolve, and how those processes gave rise to the patterns of variation observed
between species. Since interspecific variation often arises over millions of years, the tempo
and mode of these processes cannot typically be observed directly or reproduced experimen-
tally. Instead, they may be studied through a statistical framework called the phylogenetic
comparative method. This dissertation focuses on phylogenetic models for two classes of
traits: species geographical distributions (or biogeographic traits) and quantitative traits.
The following contributions represent methodological advances that serve to render long-
standing theoretical questions vulnerable to statistical analysis.

Chapter 1 develops an inference method to efficiently estimate historical biogeographic
patterns using data augmented Markov chain Monte Carlo. This strategy increases the
feasible number of areas per analysis from the tens to the thousands. Taking advantage
of this increased resolution, the work introduces parameterizations for distance-dependent
dispersal effects to greatly reduce model complexity. Analyzing Malesian Vireya (subgenus
Rhododendron) biogeography, the method recovers Wallace’s Line and Lydekker’s Line as
important geographical dispersal barriers, as well as ancestral range estimates for the clade.

Chapter 2 presents a technique called biogeographic dating that leverages paleogeograph-
ical information to estimate speciation events in absolute time. To achieve this, I construct
a time-heterogeneous continuous-time Markov chain for the dispersal process, whose rate
matrix takes values that are empirically informed by paleocontinental adjacencies. For bio-
geographic evolution, the time-heterogeneous process restores rate-time identifiability, thus
enabling the estimation of absolute speciation times. Informed by the current paleogeo-
graphical literature, I construct an empirical dispersal graph using 25 areas and 26 epochs
between the Cambrian (540 Ma) and the present (0 Ma). Applying biogeographic dating to
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Testudines (crown turtles), I recover a root age concordant with fossil-based estimates (≈
205 Ma) to validate the efficacy of the method.

Chapter 3 introduces a class of models of continuous trait evolution that permit bursts
of evolutionary change (“jumps”). Darwin’s original conception of evolution proposed that
species evolve gradually over time, which is typically modeled as a Brownian motion. How-
ever, many evolutionary mechanisms produce bursts in trait variation as punctuated change
of large effect, such as rapid adaptation. I use Lévy processes to model these effects, which
are a flexible class of stochastic processes that produce gradual and/or punctuational pat-
terns of change. Applying a data augmented Bayesian method to primates, I show that
body mass and endocranial volume measurements both bear the signature of evolution with
jumps.



i

Contents

Contents i

1 Biogeography for large state spaces 1

2 Biogeographic dating of speciation times 30
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Chapter 1

Biogeography for large state spaces

1.1 Introduction

Historical biogeography—the study of the past geographic distribution of species and the
processes that influence species distribution—remains a difficult problem in evolutionary
biology. Inference of biogeographic history is made particularly challenging because of the
many factors that influence species range, including various geological, climatic, ecological,
and chance events. Both the diversity of factors influencing the geographic range of a species
and the uncertainty regarding their relative importance motivates pursuit of biogeographic
inference within a solid statistical framework. A statistical approach requires that the as-
sumptions of an analysis be explicitly stated through the construction of probabilistic models
that include parameters representing processes thought to impact the geographic distribu-
tion of species. This approach allows for the efficient estimation of model parameters and,
perhaps more importantly, the rigorous comparison of alternative biogeographic models.

Over the past decade, several promising methods have been proposed that cast biogeo-
graphic inference in a statistical modeling framework. Lemmon and Lemmon (2008) and
Lemey et al. (2009; 2010) proposed stochastic models that treat the distribution of species
as continuous variables. A few years earlier, Ree et al. (2005) and Ree and Smith (2008)
proposed stochastic models that treat the distribution of species as a discrete variable. For
both approaches—those treating space as a continuous or a discrete variable—parameters
are estimated using maximum likelihood or Bayesian inference.

The discrete-space model of Ree et al. (2005) is particularly intriguing because its basic
statistical flexibility has the potential to profoundly change biogeographic inference, but is
hampered by computational limitations. They modeled the colonization of and local extinc-
tion within a set of discrete areas as a continuous-time Markov process with a state space
consisting of all possible geographic-range configurations. The machinery for computing the
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likelihoods of discrete geographic ranges on phylogenetic trees is the same as that used to
calculate the likelihood of discrete characters (e.g., nucleotide sequences) on a tree; matrix
exponentiation is used to calculate the probability of transitions among states/ranges along
branches and the Felsenstein (1981) pruning algorithm (also see Gallager 1962) is used to
account for different ancestral configurations at the interior nodes of the tree. Together,
matrix exponentiation and the Felsenstein pruning algorithm allow the likelihood to account
for all possible histories of area colonization and local extinction that could have given rise
to the observed geographic distribution of species.

The conventional algorithms for calculating the likelihood, however, have practical lim-
itations. Both matrix exponentiation and the pruning algorithm become computationally
unmanageable when the number of areas becomes too large. Practically speaking, this means
that inference under a discrete-space model, such as that proposed by Ree et al. (2005), is
limited to about ten areas. With ten areas, there are a total of 210−1 = 1023 possible states
(geographic ranges) and the rate matrix of the continuous-time Markov model is 1023×1023
in dimension. A recent implementation of the Ree et al. (2005) method allows up to 20
areas to be considered, but at the expense of making some restrictive assumptions about
the number of areas that can be occupied concurrently per species (Webb and Ree 2012).
The usual method for working around the limitations of the Ree et al. (2005) approach is to
group areas together in such a way that the biologist considers no more than about ten ar-
eas. This solution, unfortunately, comes at a cost: hard earned species-distribution data are
lumped, limiting the spatial resolution of the inferred biogeographic history; the inference
of parameters suffers because fewer data are available for estimation; and the complexity of
the models that can be distinguished is limited by the small number of areas that can be
considered.

In this paper, we describe a computational method—referred to as ‘data augmentation’—
that allows the approach proposed by Ree et al. (2005) to be extended to hundreds or thou-
sands of areas. The approach is inspired by the method described by Robinson et al. (2003)
for the analysis of amino acid sequence data under complex models of non-independence,
which relies on Markov chain Monte Carlo (MCMC; Metropolis et al. 1953; Hastings 1970)
to carry out the tasks normally accomplished by means of matrix exponentiation and the
Felsenstein pruning algorithm. The biogeographic model described by Ree et al. (2005) ex-
plicitly considers various scenarios by which ancestral ranges may become subdivided during
speciation and inherited by daughter species. By contrast, the two biogeographic models
that we describe here both assume that ancestral ranges are inherited identically: the first
is a simple (null) model in which every area has an equal rate of colonization or extinc-
tion and a second model in which rates of colonization are distance dependent. We develop
this approach in a Bayesian statistical framework in which model parameters are estimated
using MCMC and candidate biogeographic models are compared using Bayes factors. We
explore the statistical behavior of this approach by means of simulation, and demonstrate its
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empirical application with an analysis of Malesian species within the flowering-plant clade,
Rhododendron sectionVireya.

1.2 Methods

Statistical Inference of Biogeographic History

We are interested in modeling the biogeographic distribution of M extant taxa over a geo-
graphic space that has been discretized into N areas, where each taxon occurs in at least
a single area. The evolutionary relationships among the M taxa are described by a rooted,
time-calibrated phylogenetic tree that in this paper is considered to be known without er-
ror. We label the tips of this tree to correspond to the observed species, 1, 2, . . . ,M ; the
interior nodes of the tree are labeled in postorder sequence M + 1,M + 2, . . . , 2M (Figure
1.1). The ancestor of node i is denoted σ(i). The most recent common ancestor of the M
observed species (the ‘root’ node) is labeled 2M − 1. We also consider both the branch
subtending the root node (the ‘stem’ branch) and its immediate ancestor (the ‘stem’ node),
which is labeled 2M . The times of the speciation events (nodes) on the tree are designated
t1, t2, . . . , t2M . Typically, the species at the tips are contemporaneous and extant, such that
t1 = t2 = . . . = tM = 0. The temporal duration of the branch below node i, typically in
terms of millions of years, can be calculated as Ti = tσ(i) − ti.

Our use of ‘geographic range’ refers to the pattern of presence and absence of a lineage
within the set of discrete geographic areas. For the models we will explore, all geographic
ranges in which at least one area is occupied are admissible (i.e., the case in which all areas
are unoccupied is precluded). The occurrence of the ith species in the jth area is denoted
xi,j, where xi,j is equal to 0 or 1. Although we model geographic ranges as bit vectors, we
represent them using bit strings (i.e., a sequence of zeros and ones) to simplify our notation.
For example, the bit string 101 corresponds to a geographic range for a species that is present
in areas 1 and 3 and absent in area 2. The biogeographic state space, S, includes the 2N − 1
geographic ranges for a model with N discrete areas. For example, all allowable geographic
ranges, S, for a model with N = 3 areas are

S = {001, 010, 100, 011, 101, 110, 111},

and the number of distinct configurations for this state space is n(S) = 23 − 1 = 7. We
designate the observed geographic range for the ith species as xi = (xi,1,xi,2, . . . ,xi,N), where
Xobs = (x1,x2, . . . ,xM), and designate ancestral geographic ranges at interior nodes of the
tree as xM+1, xM+2, . . . ,x2M .

The ‘states’ (geographic ranges) that we observe at the tips of the tree were generated
through a potentially complicated history of colonization and local extinction. Figure 1.1B–D
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depicts examples of biogeographic histories. A ‘biogeographic history’ is a specific sequence
of colonization and/or local extinction events that could have given rise to the observed
geographic ranges. An event of range expansion or contraction is denoted xi,j,k; each event
occurs on a specific branch (leading to node i) and involves a single area (j) at a point

in time (k, indicating the relative time of the kth event on branch i, τ
(i)
k ∈ τ (i), which we

describe in more detail below). The history of range expansion or local extinction on the
branch with index i involving area j is denoted xi,j = (xi,j,1, xi,j,2, . . . , xi,j,F ), where events
along branch i are ordered such that xi,j,1 is the oldest and xi,j,F is the most recent. The
collection of histories over all branches of the tree is denoted Xaug = (x1,x2, . . . ,x2M−1),
representing the data augmented biogeographic history. For example, there are 6, 6, and 12
biogeographic events for the histories shown in Figure 1.1B, C, and D, respectively.

The probability of a particular biogeographic history can be calculated in a straightfor-
ward manner by assuming that the events of colonization and local extinction occur according
to a continuous-time Markov chain (Ree et al. 2005). A continuous-time Markov chain is
fully described by a matrix containing the instantaneous rates of change between all pairs of
states (geographic ranges, in this case). This instantaneous-rate matrix, Q, has off-diagonal
elements that are all greater than or equal to zero and negative diagonal elements that are
specified such that each row of the matrix sums to zero. The elements of Q are param-
eterized by functions of θ, the parameter vector, according to some dispersal model, M.
The probability of a biogeographic history is obtained using the information on the position
of colonization/extinction events on the tree and information from the instantaneous-rate
matrix. Consider, for example, a case in which the process starts with a geographic range
of 001 at one end of a branch, with a subsequent colonization of area one at time t1 (i.e.,
changes from 001→ 101), and then remains in the geographic range 101 until the end of the
branch at time t2. The probability of this history is

−q001,001e−(−q001,001 t1)︸ ︷︷ ︸
Waiting time for colonization

× −q001,101
q001,001︸ ︷︷ ︸

Probability of colonization event

× e−(−q101,101 (t2−t1))︸ ︷︷ ︸
Probability of no further events

There are an infinite number of biogeographic histories that can explain the observed
geographic ranges. When calculating the probability of the observed geographic ranges at
the tips of the phylogenetic tree, it is unreasonable to condition on a specific history of
biogeographic change. After all, the past history of biogeographic change is not observable.
Instead, the usual approach is to marginalize over all possible histories of biogeographic
change that could give rise to the observed geographic ranges. The standard way to do this
is to assume that events of colonization or local extinction occur according to a continuous-
time Markov chain (Ree et al. 2005). Marginalizing over histories of biogeographic change is
accomplished using two procedures. First, exponentiation of the instantaneous-rate matrix,
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Figure 1.1: An example of a tree with M = 4 species. (A) Nodes on the tree are labeled such
that the tips of the tree have the labels 1, 2, . . . ,M whereas the interior nodes of the tree are
labeled M + 1,M + 2, . . . , 2M . Note that in this paper we also consider the “stem” branch
of the tree, which connects the root node (node 7) and its immediate common ancestor
(node 8). (B–D) Several possible biogeographic histories—comprising 6, 6, and 12 events,
respectively—that can explain the observed species ranges.

Q, gives the probability density of all possible biogeographic changes along a branch

p(y → z; t,Q) =
[
e−Qt

]
yz
,

where y is the ancestral geographic range, z is the current geographic range, and t is the
duration of the branch on the tree. The geographic-range transition probabilities obtained in
this way marginalize over all possible biogeographic histories along a single branch, but do not
account for the possible combinations of geographic ranges that can occur at internal nodes
of the phylogeny. The Felsenstein (1981) pruning algorithm is typically used to marginalize
over the different combinations of ‘states’ (ancestral geographic ranges) at the interior nodes
of the tree. Taken together, matrix exponentiation and the pruning algorithm comprise the
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conventional approach for calculating the probability of observing the geographic ranges at
the tips of the tree while accounting for all of the possible ways those observations could
have been generated under the model.

The dimensions of the instantaneous-rate matrix, Q, however, are n(S) × n(S), where
n(S) = 2N−1, so the size of Q grows exponentially with respect to the number of geographic
areas, N . Furthermore, computing the matrix exponential is of complexity O(n(S)3) (Golub
and Loan 1983). Thus, for values of N ≥ 20, the number of computations required to
exponentiate the rate matrix is quite large and computing the transition probabilities in this
manner is intractable (Ree and Sanmart́ın 2009).

Statistical phylogenetic models encounter an analogous problem when modeling nu-
cleotide evolution. As Felsenstein (1981) suggests, one might assume that each nucleotide site
evolves under mutual independence to keep the state space small and amenable to matrix ex-
ponentiation. For biogeographic inference, however, the assumption of mutual independence
would imply (implausibly) that the correlative effects between areas—such as geographic
distance—are irrelevant to dispersal processes, which renders this assumption suitable only
as a null model for testing the fitness of more plausible (e.g., distance-dependent dispersal)
biogeographic models.

Our primary motivation here is to remove the computational constraint that precludes
the elaboration of more complex (and realistic) biogeographic models. As a result of this
focus, we leave the rigorous comparison of inference across alternative models and methods
as an open topic for future study.

A Distance-Dependent Biogeographic Model

The instantaneous-rate matrix, Q, describes how the geographic range of a species can evolve
through time. As with the formulation of Ree et al. (2005), we assume that in an instant
of time only a single area can be gained or lost. In other words, each row of Q contains up
to N positive, non-zero entries, which correspond to the rates at which any one of the N
areas switches between absent and present (i.e., the N 0→ 1 and 1→ 0 positive entries of
the row). Additionally, each row contains a single element on the diagonal of the matrix,
defined as qi,i = −∑i 6=j qi,j, which ensures that each row of Q sums to zero. The remaining
entries in Q have a value of zero, as they entail an instantaneous change in geographic range
involving two or more areas. This process corresponds to a dispersal-extinction (DE) model,
which is somewhat simplified relative to the dispersal-extinction-cladogenesis (DEC) model
(Ree et al. 2005), in that ancestral ranges are inherited identically. However, the current
framework greatly expands the scope for the elaboration and inclusion of more diverse and
realistic speciation scenarios.

We define a distance-dependent dispersal model, MD, where the rate of gaining a par-
ticular area (0 → 1) depends on the relative proximity of available areas to those currently
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occupied by a lineage. That is, the rate of colonizing a nearby area just outside the perime-
ter of the current geographic range should be greater than the rate of colonizing a relatively
remote geographic area. The precise nature of the relationship between geographic dis-
tance and dispersal probability might be specified in numerous ways (see, e.g., Wallace 1887;
MacArthur and Wilson 1967; Hanski 1998). Our distance-dependent model specifies a simple
relationship in which the probability of dispersal between two areas is inversely related to
the geographic distance between them.

Let q
(a)
y,z be the rate of change from the geographic range y to the geographic range z,

where y and z differ only at the single area index a. Note that the rate function accepts any
pair of bit vectors as arguments, allowing us to later assign configurations from xi,•,k to y and

z, xi,•,k being the geographic range of species i at time τ
(i)
k . Also, let λ0 ∈ θ and λ1 ∈ θ be

the respective rates at which an individual area is lost or gained within a geographic range,
and η(y, z, a, β) be a dispersal-rate modifier that accounts for correlative distance effects.
We define the instantaneous dispersal rate as

q(a)y,z =





λ0 if za = 0

λ1η(y, z, a, β) if za = 1

0 if y and z differ at more than one area

0 if y = 00 . . . 0

(1.1)

and the distance-dependent dispersal rate modifier as

η(y, z, a, β) =

(
N∑

n=1

1{yn=1}d(Gn, Ga)
−β

)

×




∑N
m=1 1{zm=0}

∑N
m=1 1{zm=0}

(∑N
n=1 1{yn=1}d(Gn, Gm)−β

)


 (1.2)

where we define 1{x=y} as the indicator function that equals one when both arguments are
equal and zero otherwise, and d(·) as the Great Circle distance between two geographical
coordinates on the surface of a sphere, known by

d(Gn, Gm) = 2r sin−1

(√
sin2

(
Gm,φ −Gn,φ

2

)
+ cos(Gn,φ) cos(Gm,φ) sin2

(
Gm,λ −Gn,λ

2

))
,

where r is the radius of the sphere, and Gn is a vector with elements Gn,φ and Gn,λ that
correspond to the latitude and longitude of the the centroid of discrete area n. Here, we take
a sphere with r ≈ 6.37× 106 meters to approximate the size and shape of Earth.
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Figure 1.2 will help develop intuition for how we model distance-dependent dispersal. In
effect, the first term of η(·) computes the sum of inverse pairwise β-exponentiated geographic
distances between the dispersal target, a, and all currently occupied areas of the geographic
range. The second term normalizes the dispersal rate by the mean of all inverse pairwise
geographic distances between all occupied-unoccupied area pairs. This normalization ensures
that the sum of dispersal rates with or without the distance-dependence modifier are equal,
which helps identify and interpret parameters λ1 and β. If η(·) = 1 or β = 0, then the rate
of dispersal to area a equals the unmodified dispersal rate, λ1. If β > 0, then the rate of
dispersal to nearby areas is higher than that to more distant areas. Conversely, when β < 0,
the rate of dispersal to more distant areas is higher than that to nearby areas. Finally, model
MD is equivalent to M0 when β = 0.

Note that the rate of gain depends on the distance-dependent correlation function η(·),
but the rate of loss does not, so the distance-dependent dispersal model is not time reversible
when β 6= 0. This fact has implications for evaluating the stationary frequency of geographic
ranges at the root of the tree under this biogeographic model, which we detail below.

Sampling Biogeographic Histories

Our goal is to conduct inference under a dispersal model that captures the correlative ef-
fects of geographic distance between areas when N is large. For the computational reasons
cited above, we cannot use matrix exponentiation to compute the likelihood under such a
biogeographic model. Instead, we adapt a Bayesian data-augmentation approach that was
introduced by Robinson et al. (2003) to model site-dependent protein evolution. Rather than
analytically integrating over all possible biogeographic histories using matrix exponentiation,
we numerically integrate over possible histories using data augmentation and Markov chain
Monte Carlo.

We use the stochastic character-mapping algorithm described by Nielsen (2002) to sam-
ple biogeographic histories under the mutual-independence model, M0. This works by first
sampling a set of geographic ranges for all internal nodes of the phylogeny and then sam-
pling intermediate ranges over each of the branches connecting pairs of ancestor-descendant
nodes. Upon completion, each branch is associated with a biogeographic history: the events
comprising this history on each branch are ordered chronologically from past to present.
Examples of such biogeographic histories are depicted in Figure 1.1B–D. We describe the
process of sampling biogeographic histories in more detail below.

We first sample a set of geographic ranges for all M internal nodes from the joint posterior
probability distribution of geographic-range configurations at the nodes. For tip nodes, we
simply assign the observed species ranges. Next, we visit each individual branch in a pre-
order traversal (moving from the root to the tips) of the tree. For each branch, we simulate
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η(y = 1100, z = 1101, a = 4,β) =

(
d(G1, G4)

−β + d(G2, G4)
−β

)
︸ ︷︷ ︸

× 2

d(G1, G3)
−β + d(G2, G3)

−β
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−β + d(G2, G4)
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Figure 1.2: Cartoon of the computation of the distance-dependent dispersal-rate modifier,
η(·). Here, we are interested in computing the rate of y = 1100 transitioning to z = 1101.
The first term computes the sum of inverse distances raised to the power β between the area
of interest (i.e., 4) and all currently occupied areas (i.e., areas 1 and 2). The second term
then normalizes this quantity by dividing by the sum of inverse distances raised to the power
β between all occupied-unoccupied area-pairs (i.e., the denominator), then multiplying by
number of currently unoccupied areas (i.e., 2, the numerator).

a sequence of intermediate geographic ranges from the ancestral to the descendant node
using rejection sampling; that is, the biogeographic history simulated along a branch must
be consistent with the geographic ranges sampled/specified for the ancestor and descendant
nodes of that branch. To do so, we first identify the initial geographic range at the the
ancestral node, the final geographic range at the descendant node, and the duration of the
branch separating these two nodes. We then sample a history of dispersal events for each
area under the mutual-independence model, M0, under a simple instantaneous-rate matrix
for a single area

Q∗ =

(
−λ∗0 λ∗0
λ∗1 −λ∗1

)
,
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where λ∗0 and λ∗1 are the per-area rate of loss/local extinction (1→ 0) and gain/colonization
(0 → 1), respectively. To iteratively sample the biogeographic history for each area, j ∈
{1, . . . , N}, we initialize δ0 = tσ(i) and k = 1. Each iteration moves the process further along
the branch by sampling a new event time δ from Q∗, updating δ0 = δ0 − δ, incrementing k,
and inserting δ0 into τ (i) in sorted order as we go. Each event results in the state for area j
changing to its complement (i.e., 0 → 1, or 1 → 0), which we record in the branch history,
xi,j,k. We continue to sample dispersal events until the time of the next event is younger than

the age of the end of branch, δ0 < ti, whereupon we record the final event time as τ
(i)
F = ti.

Since time is exponentially distributed, the probability that any two areas undergo dispersal
events at precisely the same instant occurs with probability zero, which is consistent with
the one-change-at-a-time assumption of the model.

When the biogeographic history for area j is sampled, we check to make sure it matches
the geographic ranges sampled at the nodes. Inconsistent histories are rejected and resam-
pled for each area. Additionally, we reject and resample events that induce the forbidden
extinction configuration. For models in which the per-site (per-area) state space is large,
rejection sampling path histories can be computationally inefficient (c.f., Minin and Suchard
2007). This is not a concern in the present case, however, as the per-area state space is
binary (i.e., 1 or 0 for presence/absence of a species in an area), so we opt for the simpler
algorithm.

We iterate this process of simulating branch-specific biogeographic histories for the re-
maining branches, which we visit in a pre-order sequence. This results in τ (i) for each
branch, an ordered vector of event times across all N areas, enabling us to compute the
model likelihood given a sampled biogeographic history.

Computing the Likelihood of Biogeographic Histories

Since we can compute the rate at which any area is gained or lost given the current geographic
range, we can compute the likelihood of a sampled biogeographic history by adopting a
‘mechanistic’ interpretation of the instantaneous-rate matrix, Q. In general, waiting times
between events in a continuous-time Markov process are exponentially distributed: when
the process is in state i, the next event will occur with an exponentially distributed waiting
time, where the rate of the exponential is equal to the overall rate of leaving state i: qi,i =
−∑j 6=i qi,j. Moreover, the nature of the change at the next event is also specified by the
instantaneous rate matrix: the relative probability that the next event entails a change from
state i to state j is p(i → j) =

qi,j
−

∑
j 6=i qi,j

. Accordingly, the probability that the next event

entails a change from state i to state j at time t is simply equal to the probability of any
event occurring at time t times the relative probability that the event is a change from i to
j.
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In the present case, we let xi,•,k = (xi,1,k, xi,2,k, . . . , xi,N,k) be the state (sampled range)

for lineage i at time τ
(i)
k . Then, the probability that the next event is a the state change

y→ z at time t is the product of probability of the next sampled event occurring first among
all possible events and the probability of any event occurring at time t, given as

p (y→ z; t,θ,M) = − qy,z
qy,y

(−qy,y) e−(−qy,y)t

= qy,ze
qy,yt, (1.3)

and the probability that no event occurs in time t is given as

p (y→ y; t,θ,M) = eqy,yt. (1.4)

Note that the distance-dependent dispersal model defined in (1.1) depends on the superscript,
(a), which indicates the single area that differs between ranges y and z. Here, we suppress
the superscript in the interest of simplifying the notation. Changes between between ranges
that differ by more than one area have a transition rate of zero (they are prohibited under
the one-change-at-a-time model), so this summation requires only N computations.

The likelihood of the biogeographic history over all branches of the phylogeny is then
simply calculated as the product of all stepwise likelihoods (Figure 1.3),

L(Xobs,Xaug;θ,M) =



∏

i




Fi−1∏

k=2

p
(
xi,•,k−1 → xi,•,k; ∆τ

(i)
k ,θ,M

)

︸ ︷︷ ︸
stepwise changes




× p
(
xi,•,Fi → xi,•,Fi ; ∆τ

(i)
Fi
,θ,M

)

︸ ︷︷ ︸
no change


 ,

where Fi = n
(
τ (i)
)

is the number of events on branch i, ∆τ
(i)
k =

(
τ
(i)
k−1 − τ

(i)
k

)
is the temporal

interval between events, and Xobs are the ranges observed at the tips.

Markov Chain Monte Carlo

We can compute the posterior probability of a single sampled biogeographic history as

p(θ,Xaug |Xobs,MD) ∝ L(Xobs,Xaug;θ,MD)p(θ).
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Figure 1.3: Cartoon of the likelihood terms. The biogeographic history for lineage i includes
the lineage start at time τ

(i)
1 , an extinction event at area 2 at time τ

(i)
2 , a dispersal event

into area 3 at time τ
(i)
3 , and the lineage end at time τ

(i)
F , with all events laying within the

time interval (3.2, 9.3). The probability of a sampled geographic range at the start of the
branch is conditioned on the previous (ancestral) geographic range and the time separating

the geographic ranges, ∆τ
(i)
k = τ

(i)
k−1− τ

(i)
k . The likelihood is the product of the probabilities

corresponding to each interval accounting for an area loss at time τ
(i)
2 , an area gain at time

τ
(i)
3 , and no further changes occurring before the lineage terminates.

We approximate the joint posterior probability density of the biogeographic model pa-
rameters numerically using a Markov chain Monte Carlo (MCMC) algorithm. The general
idea is to construct a Markov chain with a state space comprising the possible values for the
model parameters and a stationary probability distribution that is the target distribution of
interest (i.e., the joint posterior probability distribution of the model parameters). Draws
from the Markov chain at stationarity are valid, albeit dependent, samples from the posterior
probability distribution of the biogeographic parameters (Tierney 1994). Accordingly, pa-
rameter estimates are based on the frequency of samples drawn from the stationary Markov
chain.
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By repeatedly sampling dispersal histories via MCMC, we numerically integrate over H,

p(θ |Xobs,MD) ∝
∫

Xaug

p(θ,Xaug |Xobs,MD).

To generate samples from this posterior, we rely on the Metropolis-Hastings algorithm
(Metropolis et al. 1953; Hastings 1970). Below, we describe our MCMC proposals for an
audience whom we assume has some familiarity with MCMC.

Proposing parameters

Our method has two pairs of parameters for each area governing the rate at which it is
added to or removed from the current biogeographic range: λ0 and λ1, which are used when
computing the likelihood under the distance-dependent model; and λ∗0 and λ∗1, which are used
to sample biogeographic histories under the simpler mutual-independence model. All four
rates must take on values greater than 0 and are distributed by half-Cauchy(0, 1) priors. We
propose changes to the dispersal-rate parameters by first randomly selecting one of the four
rates (uniformly with P = 0.25), then propose a new value for the selected rate parameter,
x′ = xeψ(u−0.5), where x is the current dispersal rate, x′ is the proposed dispersal rate, ψ is
a tuning parameter, and u ∼ Uniform(0, 1). The probability of accepting a proposed change
to the dispersal-rate parameters, λ0 and λ1, under the distance-dependent model, MD, is
calculated using the Metropolis-Hastings ratio

R = min

{
1,
L(Xobs,Xaug;θ

′,MD)

L(Xobs,Xaug;θ,MD)
× p(θ′)

p(θ)
× λ′

λ

}
,

where first term is the ratio of the likelihoods of the proposed and current states, the second
term is the ratio of the prior probabilities of the proposed and current states, and the final
term is the simplified Hastings ratio that describes the ratio of the proposal probabilities for
the proposed and current states.

To improve acceptance rates for proposed dispersal histories under the mutual-independence
model, M0, we infer (λ∗0, λ

∗
1) ∈ θ∗ by conditioning the likelihood on M0 instead of MD,

yielding the Metropolis-Hastings ratio

R = min

{
1,
L(Xobs,Xaug;θ

∗′,M0)

L(Xobs,Xaug;θ
∗,M0)

× p(θ∗′)

p(θ∗)
× λ∗′

λ∗

}
.

We specify a Cauchy(0, 1) prior for the distance-power parameter, β, and propose new
values β′ = N (β, ψ), where ψ is a tuning parameter. The Metropolis-Hastings ratio to
update β is

R = min

{
1,
L(Xobs,Xaug;θ

′,MD)

L(Xobs,Xaug;θ,MD)
× p(θ′)

p(θ)
× 1

}
,
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where the Hastings ratio simplifies to 1 owing to the symmetry of the normal distribution. We
used the Cauchy and half-Cauchy distributions as priors because they are weakly informative
and fat-tailed, causing our inference to prefer parameter values near zero while permitting
parameters to take on large values should the data prove informative.

Proposing biogeographic histories

To update biogeographic histories, we sample an internal node uniformly at random and
a set of areas, S, uniformly at random. We then propose a new biogeographic history by
resampling the biogeographic histories for areas S for incident branches using the stochastic-
mapping approach described earlier.

The Metropolis-Hastings ratio for this proposal is

R = min

{
1,
L(Xobs,X

′
aug;θ,MD)

L(Xobs,Xaug;θ,MD)
× p(θ)

p(θ)
× L(Xobs,Xaug;θ

∗,M0)

L(Xobs,X′aug;θ
∗,M0)

}
,

where the first term is the likelihood ratio under the full model, MD, and the second term
is the proposal-density ratio that accounts for the probability of sampling the proposed
biogeographic histories under the sampling model, M0, using the sampling parameters, θ∗.
The parameters are not updated as part of this proposal, thus the ratio of prior probabilities
may be safely omitted as it always equals 1.

Typically, the prior probability of each state (geographic range) at the root is equal to
the corresponding stationary frequencies of the model. As mentioned above, our distance-
dependent dispersal model is not time reversible, so we cannot approximate the stationary
distribution by conventional means (c.f., Robinson et al. 2003). Instead, we leverage the fact
that the stationary frequencies of states (geographic ranges) of a model can be approximated
by simulating the continuous-time Markov process over a sufficiently long branch. Accord-
ingly, we append a long stem branch to the root node, sample an ancestral “consensus”
configuration as the ancestral state at the stem node, then simulate a biogeographic history
along the stem branch that is consistent with the states at the beginning (stem node) and
end (root node) of the stem branch. Thus, we simulate into the stationary distribution of
geographic ranges under the distance-dependent dispersal model along the stem branch, and
then sample from the approximated stationary distribution at the root node using the same
proposal machinery as is used for any internal node.

Model Selection

The mutual-independence model, M0, is equivalent to the distance-dependent dispersal
model, MD, when β = 0. Since M0 ⊆ MD, we compute Bayes factors for these nested
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models using the Savage-Dickey ratio (Dickey 1971; Verdinelli and Wasserman 1995), defined
as

BD,0 =
P0(β = 0 |MD)

P (β = 0 |λ0, λ1,xobs,MD)
,

where P0(β = 0 |MD) is the prior probability and P (β = 0 |λ0, λ1,xobs,MD) is the pos-
terior probability under the more general distance-dependent dispersal model, MD, at the
restriction point β = 0, whereMD is equivalent to the simpler mutual-independence model,
M0. If the posterior probability under MD at β = 0 is significantly greater than the
corresponding prior probability, then the Bayes factor supports MD (i.e., MD provides a
better fit to the data). Since there is no analytical expression for the posterior probabil-
ity, P (β = 0 |λ0, λ1,xobs,MD), we approximate its distribution using the non-parametric
Gaussian kernel density estimation method provided by default in R (R Core Team 2012).

Data Analysis

Simulation study

We simulated 50 dispersal datasets for each of eight values of β: 0, 0.25, 0.5, 1, 2, 3, 4, and 6.
These data were simulated upon a geography with 20× 30 = 600 uniformly spaced discrete
areas positioned over the Bay Area, California. Phylogenies were simulated under a pure
birth process with rate 1, then scaled to have a height comparable to our empirical study
phylogeny. Dispersal and extinction rates were also chosen to resemble the rates inferred
from the empirical analysis, but scaled to account for the increased number of areas. We
then ran independent MCMC analyses for each dataset under the distance-dependent model.
To identify the values of β that are indistinguishable from the mutual-independence model,
we computed Bayes factors using the Savage-Dickey ratio for all posteriors inferred under
the distance-dependent model.

We then quantified how well the posterior probabilities of dispersal histories correspond
to the true biogeographic history known from the simulation. To do so, we compute the
posterior probability of each area being occupied by each internal node for each analysis,
then compute the sum of squared difference between each probability (0 ≤ p ≤ 1) and the
corresponding true history (p = 0 or 1) recorded from the simulation. As this error term
increases, the inferred ancestral ranges at nodes may be interpreted as less accurate.

Empirical study

We applied our method to 65 species of the plant clade Rhododendron section Vireya, which
are distributed throughout the Malesian Archipelago. We used the species distributions
and 20 discrete areas of endemism reported by Brown et al. (2006), and the time-calibrated
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phylogeny reported by Webb and Ree (2012). To compute distances between areas, we used a
single representative coordinate per area (depicted in Figure 1.8a). To simplify the analysis,
we hold the geography to be constant throughout time.

Software configuration

Each MCMC analysis of the simulated data ran for 106 cycles, sampling parameters and
node biogeographic histories every 103 cycles. For the empirical data, we ran five indepen-
dent MCMC analyses, each set to run for 109 cycles, sampling every 104 cycles. To verify
MCMC analyses converged to the same posterior distribution, we applied the Gelman di-
agnostic (Gelman and Rubin 1992) provided through the coda package (Plummer et al.
2006). Results from a single MCMC analysis are presented. The methods described here
have been implemented in BayArea, for which C++ source code is available for download at
http://code.google.com/p/bayarea.

1.3 Results

Simulation

For 50 phylogenies of 20 tips and a fixed geography of 600 areas (see Methods), we simulated
50 presence-absence data matrices for eight values of β: 0, 0.25, 0.5, 1, 2, 3, 4, and 6.
Distributions of the mean posterior parameter values for the 8 × 50 MCMC analyses are
shown in Figure 1.4. For β ≤ 3, the model was able to retrieve the true simulation parameters
accurately, but this accuracy degraded for β ≥ 4 (see Discussion).

Figure 1.5 shows that Bayes factors consistently selected the correct model when data
were simulated for β ≥ 1 and for β = 0. For data simulated when 0 < β < 1, we observed
the greatest variance in the Bayes factor credible intervals. Data simulated under condi-
tions in which distance had a weak effect on dispersal, i.e., β ≤ 0.25, were typically (and
appropriately) indistinguishable from the mutual-independence model.

We then compared the true biogeographic history of each simulation to the corresponding
posterior distribution of the sampled biogeographic histories. The sum of squared differences
between posterior (estimated) and true (simulated) dispersal histories varied little for values
of β ≤ 3, with slight elevation in error for β ≥ 4 (Figure 1.6). The elevated error for large
values of the distance-power parameter, β, may be caused by the underestimated parameter
values, or it may be an artifact of our error metric; it carries an independence assumption,
so it over-penalizes distance-dependent dispersal histories that contain an excess of “near
misses” relative to “wild misses”.
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Figure 1.4: Distributions of means of posteriors of simulation study. Fifty datasets were
simulated for each value of β ∈ {0, 0.25, 0.5, 1, 2, 3, 4, 6} while λ0 = 0.05 and λ1 = 0.005 were
held constant. For each set of 50 datasets, the mean of the posterior of each parameter was
computed under the distance-dependent dispersal model. Distribution means are given by a
bold line, while the 25th and 75th percentiles are given by the lower and upper edges of each
box, called Q1 and Q3, respectively. The upper and lower whiskers indicate Q1 - IQR and
Q3 + IQR, where IQR = 1.5 × (Q3 - Q1), and circles indicate outliers. The true parameter
values are given by (A,B) the horizontal dashed line, and (C) the red squares.
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Figure 1.5: Distributions of Bayes factors for the simulation study. Fifty datasets were
simulated for each value of β ∈ {0, 0.25, 0.5, 1, 2, 3, 4, 6} while λ0 = 0.05 and λ1 = 0.005
were held constant. Columns display the frequencies of strengths of support in favor of the
distance-dispendent dispersal model, where strengths of support correspond to the intervals
suggested by Jeffreys (1961): Favors M0 on (−∞, 1); Insubstantial on [1, 3); Substantial
on [3, 10); Strong on [10, 30); Very strong on [30, 100); Decisive on [100,∞). Each column
corresponds to the strengths of support per 50 β-valued simulations. Bayes factors generally
select the correct underlying model except for β = 0.25.

Empirical: Vireya

Bayes factors strongly favor the distance-dependent dispersal model over the mutual in-
dependence model to explain the biogeographic history of 65 rhododendron species in the
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Figure 1.6: Errors for inferred dispersal histories of simulation study. The sum of squared
differences between the posterior probability (i.e., 0 < p < 1) and the true history (i.e.,
p = 0 or p = 1) for each area and each internal node were computed per simulated dataset.
The box plots show the distribution of these sums for each batch of 50 simulated datasets
per value of β ∈ {0, 0.25, 0.5, 1, 2, 3, 4, 6}. Distribution means are given by a bold line, while
the 25th and 75th percentiles are given by the lower and upper edges of each box, called
Q1 and Q3, respectively. The upper and lower whiskers indicate Q1 - IQR and Q3 + IQR,
where IQR = 1.5 × (Q3 - Q1), and circles indicate outliers.

section Vireya over 20 biogeographical areas throughout Malesia. The estimated maximum
a posteriori (MAP) value of the rate of area loss was λ0 = 0.13, the rate of area gain was
λ1 = 0.013, and the distance power was β = 2.65 (Figure 1.7). Gelman-Rubin convergence
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values for λ0, λ1, and β between all pairs of MCMC analyses were less than 1.1, which is
consistent with all independent MCMC runs converging to the same posterior.

0.10 0.15 0.20 0.25

Rate of area loss, 0

0.005 0.015 0.025

Rate of area gain, 1

-4 -2 0 2 4

Distance power, 

Figure 1.7: Marginal posterior densities for dispersal parameters from the Malesian Rhodo-
dendron dataset. Maximum a posteriori values (dashed gray line) for the distance-dependent
dispersal model parameters are (A) λ0 = 0.13, (B) λ1 = 0.013, (C) β = 2.65. The dotted
black line corresponds to the prior, β ∼ Cauchy(0, 1). Note that the posterior probability
of β = 0 is approximately zero, resulting in “Decisive” support (c.f., Jeffreys 1961) for the
distance-dependent dispersal model over the mutual-independence model.

Figure 1.8 shows a summary of the inferred biogeographic history (Supplementary Figure
1 shows the full history and observed ranges). The per-area posterior probabilities of the
ancestral ranges strongly favor migration eastward into the Malesian Archipelago originating
from Southeast Asia. The inferred biogeographic scenario — multiple independent dispersal
events from the Sunda Shelf across Wallace’s Line into Wallacea — is favored over that of
a single dispersal event followed by pervasive extinction events (Figure 1.8b). Lydekker’s
Line appears to be less permeable, with only a single lineage dispersing eastward from
Wallacea across it onto the Sahul Shelf (Figure 1.8c). An interactive animation of the
ancestral range reconstruction is hosted at http://mlandis.github.com/phylowood/?url=
examples/vireya.nhx.

Readers might naturally wonder how inferences under the current method compare to
those based on alternative statistical biogeographic methods, such as the DEC model of
Ree et al. (2005). Despite their superficial similarities — both are likelihood-based methods
that rely on continuous-time Markov models to describe the evolution of species geographic
range — the methods differ to an extent that makes it difficult to draw any meaningful
comparisons. Specifically, the two methods invoke models that differ in many respects (see

http://mlandis.github.com/phylowood/?url=examples/vireya.nhx
http://mlandis.github.com/phylowood/?url=examples/vireya.nhx


CHAPTER 1. BIOGEOGRAPHY FOR LARGE STATE SPACES 22

x

x x

x

x

x

x

x
x

x

x

x

x
x

x

x
x

x

x

x

Wallace’s Line (B)

Sahul Shelf

Lydekker’s Line (C)

Wallacea

A)

Sunda Shelf

Figure 1.8: Biogeographic history of Malesian Rhododendron. (A) The region was parsed
into 20 discrete geographic areas following Brown et al. (2006), which straddle two important
biotic boundaries — Wallace’s and Lydekker’s Lines. Each circle corresponds to a discrete
area. Distances between these areas are based on a single coordinate for each area, indicated
by an ‘x’. Posterior probability of being present in an area is proportional to the opacity
of the circle. Occupied areas with posterior probabilities less than 0.12 are masked to ease
interpretation. Circles are colored according to their position relative to Wallace’s Line (B)
or Lydekker’s Line (C). Branches are colored by a gradient representing the sum of posterior
probabilities of being present per area for descendant-ancestor pairs. We infer a continental
Asian origin for Malesian rhododendrons with multiple dispersal events across Wallace’s Line
(B) and a single dispersal event across Lydekker’s Line (C).

Discussion), and are implemented in different statistical frameworks (maximum likelihood
vs. Bayesian inference).
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1.4 Discussion

Historical biogeography has begun the transition to explicitly model-based statistical infer-
ence (Ree and Sanmart́ın 2009; Ronquist and Sanmart́ın 2011). These methods describe
the biogeographic process by means of continuous-time Markov chain that models the col-
onization of—and extinction within—a set of discrete geographic areas, and calculate the
likelihood of the observed species geographic ranges at the tips of the tree using matrix ex-
ponentiation (to integrate over possible biogeographic histories along branches) and Felsen-
stein’s pruning algorithm (to integrate over possible ancestral ranges at the interior nodes of
the tree). Although this is a vigorous area of research, reliance on matrix exponentiation ul-
timately entails serious computational constraints that limit both our ability to develop more
elaborate and realistic biogeographic models and to apply these methods to more complex
and typical empirical problems.

We offer a Bayesian solution to this constraint that relies on data augmentation and
MCMC to numerically integrate over biogeographic histories to estimate the joint posterior
probability of the parameters given the data. The primary implication of this approach
is a substantial increase in the number of discrete areas that can be accommodated — by
approximately two orders of magnitude. Moreover, we propose a simple distance-dependent
dispersal model in which rates of area colonization are a function of geographic distance.
The nature and strength of the distance effect on rates of colonization are governed by the
distance-power parameter, β. When β > 0, dispersal events over long distances are penalized,
whereas long-distance dispersal events are favored when β < 0. Importantly, when β = 0,
the distance-dependent dispersal model collapses to the simpler mutual-independence model,
and so M0 ⊆ MD. Because the models are nested, we can use the Savage-Dickey density
ratio to compute Bayes factors for robust model selection.

In the remainder of this section, we attempt to develop an intuition regarding the behavior
of this new biogeographic approach, describe some of the benefits and limitations of the
current implementation, and consider how this approach might be profitably extended.

Exploring the behavior of the Bayesian biogeographic framework

We explored the statistical behavior of our biogeographic model and inference framework
via analyses of simulated and empirical data. The simulation study comprised 50 dispersal
datasets for 20 taxa and 600 areas that were simulated under each of eight strengths of
distance effects, β: 0, 0.25, 0.5, 1, 2, 3, 4, and 6. For β ≤ 3, we were generally able
to infer the true parameters. However, estimation accuracy begins to suffer when β ≥ 4,
resulting in all parameters being slightly underestimated. Estimation accuracy is also high
for inferences based on data simulated under large β values, so the poor accuracy appears to
emerge from the phylogenetic structure underlying the data. Although values of β ≥ 4 are
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greater than those we have inferred from empirical data, we advise increased caution should
one’s inference lie in this range of parameters. Using the Savage-Dickey ratio to compute
Bayes factors, we found our ability to select the correct model was largely determined by
the strength of β (Figure 1.5). Future simulation studies should be extended to evaluate the
effects of the phylogeny on inference (tree size, shape, uncertainty, etc.), the sensitivity of
the model to various priors, and whether extreme parameter values introduce greater errors
in ancestral geographic-range estimates.

As currently specified, the distance-dependent dispersal rate modifier, η(·), only changes
the dispersal rate per area, but not the summed rates of colonization and extinction over the
geographic range. Accordingly, the equilibrium number of occupied or unoccupied areas for
the geographic range is largely determined by the ratio of λ1 and λ0 (the per-area rates of
colonization and extinction, respectively). When the geographic range involves occupation of
a relatively small fraction of available areas — as occurs when the number of areas increases
— the area colonization/extinction rate ratio becomes small in order to explain the low
observed frequencies of area occupancy at the tips of the tree. In such situations, these
relatively simple parameters may fail to fit the data well. Moreover, the size of inferred
ancestral geographic ranges (in terms of the number of occupied areas) tends to be larger
than those observed at the tips of the tree. This phenomenon is also characteristic of other
parsimony- and likelihood-based biogeographic methods (e.g., Ronquist 1997; Ree et al.
2005; Clark et al. 2008; Buerki et al. 2011). One solution to both problems would be to
favor sampled biogeographic histories with range sizes most similar to a carrying-capacity
or range-size parameter.

We demonstrated the empirical application of our method with an analysis of the biogeo-
graphic history of 65 Vireya species distributed over 20 geographic areas across the Malesian
Archipelago (Brown et al. 2006). Bayes factors strongly favored the distance-dependent
model, with a maximum a posteriori estimate of β = 2.65 (see Figure 1.7). Brown et al.
offered two hypotheses for the origin of Rhododendron: as an old genus that arose in Aus-
tralia, or as a young genus that arose in Asia. Under our model, the posterior of sampled
biogeographic histories at the root of the tree suggests that Asia is the most probable point
from which the genus entered the Malesian archipelago (see Figure 1.8).

The inferred biogeographic history of Vireya involves several episodes of dispersal across
Wallace’s Line and a single episode of dispersal across Lydekker’s Line (see Figure 1.8b,c).
We note two points regarding these dispersal events. First, the earliest dispersal across
Wallace’s Line and the single dispersal across Lydekker’s Line appear to have occurred at
approximately the same time. Adopting 55Mya as the crown age of the Rhododendron phy-
logeny (Webb and Ree 2012) implies that these dispersal events occurred in the Late Eocene
(∼ 40Mya). At that time, many of the discrete areas in the western part of the Male-
sian Archipelago collectively formed a contiguous, emergent terrestrial region, Sundaland
(Lohman et al. 2011), which may have facilitated the easterly dispersal of Vireya species
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from their ancestral range in continental Asia across Sundaland. Moreover, the eastern bor-
der of Sundaland was not yet bounded by a contiguous deep oceanic trench, which may have
facilitated the continued easterly dispersal from Sundaland into Wallacea (across Wallace’s
Line) and eastward out of Wallacea (across Lydekker’s Line) into the eastern region of the
Malesian Archipelago.

The second point pertains to the apparent prevalence of dispersal events across Wal-
lace’s line. The origin of Vireya in continental Asia may have permitted the accumulation
of greater species diversity throughout Sundaland, west of Wallacea. This would have es-
tablished a greater species-diversity gradient across Wallace’s line than that for Lydekker’s
line. Consequently, there may have been more opportunity for species to disperse across the
western boundary (Wallace’s line) into Wallacea than there has been for species to disperse
across the eastern boundary (Lydekker’s line) out of Wallacea.

Advantages and limitations of the Bayesian biogeographic method

Increasing the number of areas offers several benefits. The most obvious, of course, is the
ability to increase the geographic resolution of biogeographic inference. As we increase the
number of areas, discrete biogeography better represents the continuous features of Earth.
As an example, for a clade of terrestrial species that collectively share a global distribution,
a statistical biogeographic analysis would want to discretize the (approximately) 1.5 × 108

km2 of terrestrial space into a meaningful number of areas. With approximately 15 areas
(the previous limit), the average area would be comparable in size to Canada (≈ 107 km2);
for approximately 1500 areas (manageable under the current approach), the average area
would be comparable to the size of Ohio (≈ 105 km2).

Second, biogeographic areas have traditionally been defined on the basis of empirical
analysis. For systems that do not have well-defined biogeographic areas, our method al-
lows the biogeographer to agnostically define areas according to a grid, as was done in our
simulation study. By studying the congruence between posteriors of dispersal histories for
alternatively discretized geographies, one could determine the optimal discretization for a
particular system, including both the number and shapes of areas. For example, a researcher
with intimate knowledge of a study system may derive a geographic discretization that pro-
duces radically different ancestral-range estimates than those based on a uniformly gridded
discretization. Such a scenario suggests that one of the two discretizations does not prop-
erly “weight” the importance of certain geographic areas when inferring the biogeographic
history.

Although it has benefits, the ability to increase the geographic resolution also raises
new issues. At highly resolved spatial scales, for example, it may become more difficult to
accurately specify the occupancy of species within individual cells of the geographic grid.
Inference under our model conditions on the biogeographic ranges of species at the tips of the
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tree, and errors in specifying these ranges are likely to lead inference astray. One solution
to this issue would be to use species-distribution models to first predict the geographic
ranges of species, and then treat these estimated ranges as the observed species’ geographic
ranges (analogous to the conventional practice of treating a multiple-sequence alignment—an
inference predicted from the raw data—as the observations used to infer phylogeny).

Extending the Bayesian biogeographic method

The real benefit of the Bayesian framework is the tremendous extensibility that it affords.
The current implementation makes various restrictive assumptions. For example, we assume
a fixed (and known) tree, a static geological history, and a homogeneous environment. Below
we touch briefly on three extensions that permit the approach to accommodate phylogenetic
uncertainty, dynamic geological history, and environmental heterogeneity.

Our implementation assumes the phylogeny is known without error, a luxury that ex-
ists only under simulation. The most natural way to account for phylogenetic uncertainty
would be to exploit a distribution of time-calibrated trees (estimated separately) as input
for biogeographic inference. This approach is straightforward for methods that analytically
integrate over biogeographic histories: simply define an MCMC proposal to draw a new tree
from the marginal distribution of phylogenies. However, our model entails sampling biogeo-
graphic histories for a specific phylogeny. Accordingly, this extension will require the use of
joint proposals for both biogeographic history and phylogeny that maintain good mixing of
the MCMC (i.e., that ensure reasonable acceptance probabilities). This will be a challenging
task.

It is important to emphasize that our empirical analysis was conducted under the as-
sumption of a static geological history: we explicitly ignore the substantial effects of tectonic
drift, changes in sea level, the formation of islands, etc. This greatly simplifies the analysis,
of course, since biogeographic likelihoods are computed by conditioning on a single, static set
of geographic distances. Ideally, paleogeographic reconstructions would inform the changing
proximity of areas through time, and biogeographic inference would be computed by condi-
tioning on a temporally dynamic geography. For example, consider the scenario in which two
continents drift apart as time advances, which may be characterized as a time-ordered vector
of maps, each map corresponding to the geography appropriate to each interval of geological
time. Since our phylogeny is also measured in units of absolute time, the rates of gain and
loss could easily be modified to condition on the relevant set of geographical coordinates. In
the above scenario, distances between areas between continents would increase with time, so
dispersal events between continents would become increasingly unlikely.

By adopting a DEC-like approach wherein cladogenesis events differ in pattern from ana-
genic dispersal and extinction events, our model would have to define transition probabilities
between larger numbers of configurations; it is trivial to compute the model likelihood with
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a model that accounts for cladogenic events by conditioning on a single biogeographic his-
tory, but to numerically integrate over all possible cladogenic events via MCMC will require
sophisticated proposal distributions.

Finally, we can incorporate other features of areas beyond their latitude and longitude—
such as altitude, climate, and ecology—that may affect dispersal rates. Morphological evo-
lution also has a noted role in biogeography—Bergmann’s Rule (Freckleton et al. 2003),
traits that effect long-distance dispersal ability (Carlquist 1966), etc.—and could be jointly
inferred along with dispersal patterns (Lartillot and Poujol 2011). These factors could vari-
ously be incorporated as parameters to construct a suite of candidate biogeographic models.
As we demonstrated for exploring the effect of geographic distance, marginal likelihoods
under different biogeographic models could then be computed and Bayes factors used to
identify biogeographically important model components.

Noting the simplicity of their biogeographic model, Ree et al. (2005) drew an analogy
to the earliest work on probabilistic models of molecular evolution—the Jukes and Cantor
(1969) model. Although it admittedly offered a rudimentary description of the process, this
first model nevertheless provided a critical proof of concept that the problem could be prof-
itably pursued in a statistical framework. To extend this analogy, we believe the current
contribution resembles the subsequent paper by Felsenstein (1981), in which he proposed
the pruning algorithm that—by virtue of conferring a tremendous increase in computational
efficiency—heralded an era of progress in developing stochastic models for the analysis of
DNA and amino acid sequence data that has been one of the great success stories in evolu-
tionary biology. We are hopeful that the small steps made here will precipitate a similar era
of productivity in the field of biogeographic inference that will enhance our ability to make
progress on this important problem.
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Chapter 2

Biogeographic dating of speciation
times

2.1 Introduction

Time is a simple and fundamental axis of evolution. Knowing the order and timing of
evolutionary events grants us insight into how vying evolutionary processes interact. With
a perfectly accurate catalog of geologically-dated speciation times, many macroevolutionary
questions would yield to simple interrogation, such as whether one clade exploded with
diversity before or after a niche-analogous clade went extinct, or whether some number of
contemporaneous biota were eradicated simultaneously by the same mass extinction event.
Only rarely does the fossil record give audience to the exact history of evolutionary events:
it is infamously irregular across time, space, and species, so biologists generally resort to
inference to estimate when, where, and what happened to fill those gaps. That said, we have
not yet found a perfect character or model to infer dates for divergence times, so advances
in dating strategies are urgently needed. A brief survey of the field reveals why.

The molecular clock hypothesis of Zuckerkandl and Pauling (1962) states that if substi-
tutions arise (i.e. alleles fix) at a constant rate, the expected number of substitutions is the
product of the substitution rate and the time the substitution process has been operating.
With data from extant taxa, we only observe the outcome of the evolutionary process for an
unknown rate and an unknown amount of time. As such, rate and time are non-identifiable
under standard models of molecular substitution, so inferred amounts of evolutionary change
are often reported as a compound parameter, the product of rate and time, called length.
If all species’ shared the same substitution rate, a phylogeny with branches measured in
lengths would give relative divergence times, i.e. proportional to absolute divergence times.
While it is reasonable to say species’ evolution shares a basis in time, substitution rates
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differ between species and over macroevolutionary timescales (Wolfe et al. 1987; Martin and
Palumbi 1993). Even when imposing a model of rate heterogeneity (Thorne et al. 1998;
Drummond et al. 2006), only relative times may be estimated. Extrinsic information, i.e. a
dated calibration point, is needed to establish an absolute time scaling, and typically takes
form as a fossil occurrence or paleogeographical event.

When fossils are available, they currently provide the most accurate inroad to calibrate
divergence events to geological timescales, largely because each fossil is associated with a
geological occurrence time. Fossil ages may be used in several ways to calibrate divergence
times. The simplest method is the fossil node calibration, whereby the fossil is associated
with a clade and constrains its time of origin (Ho and Phillips 2009; Parham et al. 2011).
Node calibrations are empirical priors, not data-dependent stochastic processes, so they de-
pend entirely on experts’ abilities to quantify the distribution of plausible ages for the given
node. That is, node calibrations do not arise from a generative evolutionary process. Since
molecular phylogenies cannot identify rate from time, then the time scaling is entirely deter-
mined by the prior, i.e. the posterior is perfectly prior-sensitive for rates and times. Rather
than using prior node calibrations, fossil tip dating (Pyron 2011; Ronquist et al. 2012a) treats
fossil occurrences as terminal taxa with morphological characters as part of any standard
phylogenetic analysis. In this case, the model of character evolution, tree prior, and fossil
ages generate the distribution of clade ages, relying on the fossil ages and a morphological
clock to induce time calibrations. To provide a generative process of fossilization, Heath et al.
(2014) introduced the fossilized birth-death process, by which lineages speciate, go extinct,
or produce fossil observations. Using fossil tip dating with the fossilized birth-death process,
Gavryushkina et al. (2015) demonstrated multiple calibration techniques may be used jointly
in a theoretically consistent framework (i.e. without introducing model violation).

Of course, fossil calibrations require fossils, but many clades leave few to no known fos-
sils due to taphonomic processes, which filter out species with too soft or too fragile of
tissues, or with tissues that were buried in substrates that were too humid, too arid, or
too rocky; or due to sampling biases, such as geographical or political biases imbalancing
collection efforts (Behrensmeyer et al. 2000; Kidwell and Holland 2002). Although these
biases do not prohibitively obscure the record for widespread species with robust mineral-
ized skeletons—namely, large vertebrates and marine invertebrates—fossil-free calibration
methods are desperately needed to date the remaining majority of nodes in the tree of life.

In this direction, analogous to fossil node dating, node dates may be calibrated using pa-
leobiogeographic scenarios (Heads 2005; Renner 2005). For example, an ornithologist might
reasonably argue that a bird known as endemic to a young island may have speciated only
after the island was created, thus providing a maximum age of origination. Using this sce-
nario as a calibration point excludes the possibility of alternative historical biogeographic
explanations, e.g. the bird might have speciated off-island before the island surfaced and
migrated there afterwards. See Heads (2005; 2011), Kodandaramaiah (2011), and Ho et al.
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(2015) for discussion on the uses and pitfalls of biogeographic node calibrations. Like fossil
node calibrations, biogeographic node calibrations fundamentally rely on some prior distri-
bution of divergence times, opinions may vary from expert to expert, making results difficult
to compare from a modeling perspective. Worsening matters, the time and context of bio-
geographic events are never directly observed, so asserting that a particular dispersal event
into an island system resulted in a speciation event to calibrate a node fails to account for
the uncertainty that the assumed evolutionary scenario took place at all. Ideally, all possible
biogeographic and diversification scenarios would be considered, with each scenario given
credence in proportion to its probability.

Inspired by advents in fossil dating models (Pyron 2011; Ronquist et al. 2012a; Heath
et al. 2014), which have matured from phenomenological towards mechanistic approaches
(Rodrigue and Philippe 2010), I present an explicitly data-dependent and process-based
biogeographic method for divergence time dating to formalize the intuition underlying bio-
geographic node calibrations. Analogous to fossil tip dating, the goal is to allow the observed
biogeographic states at the “tips” of the tree induce a posterior distribution of dated specia-
tion times by way of an evolutionary process. By modeling dispersal rates between areas as
subject to time-calibrated paleogeographical information, such as the merging and splitting
of continental adjacencies due to tectonic drift, particular dispersal events between area-
pairs are expected to occur with higher probability during certain geological time intervals
than during others. For example, the dispersal rate between South America and Africa was
likely higher when they were joined as West Gondwana (ca 120 Ma) than when separated as
they are today. If the absolute timing of dispersal events on a phylogeny matters, then so
must the absolute timing of divergence events. Unlike fossil tip dating, biogeographic dating
should, in principle, be able to date speciation times only using extant taxa.

To illustrate how this is possible, I construct a toy biogeographic example to demonstrate
when paleogeography may date divergence times, then follow with a more formal descrip-
tion of the model. By performing joint inference with molecular and biogeographic data, I
demonstrate the effectiveness of biogeographic dating by applying it to simulated and empir-
ical scenarios, showing rate and time are identifiable. While researchers have accounted for
phylogenetic uncertainty in biogeographic analyses (Nylander et al. 2008; Lemey et al. 2009;
Beaulieu et al. 2013), I am unaware of work demonstrating how paleogeographic calibrations
may be leveraged to date divergence times via a biogeographic process. For the empirical
analysis, I date the divergence times for Testudines using biogeographic dating, first without
any fossils, then using a fossil root node calibration. Finally, I discuss the strengths and
weaknesses of my method, and how it may be improved in future work.
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2.2 Model

The anatomy of biogeographic dating

Briefly, I will introduce an example of how time-calibrated paleogeographical events may
impart information through a biogeographic process to date speciation times, then later
develop the details underlying the strategy, which I call biogeographic dating. Throughout
the manuscript, I assume a rooted phylogeny, Ψ, with known topology but with unknown
divergence times that I wish to estimate. Time is measured in geological units and as
time until present, with t = 0 being the present, t < 0 being the past, and age being the
negative amount of time until present. To keep the model of biogeographic evolution simple,
the observed taxon occurrence matrix, Z, is assumed to be generated by a discrete-valued
dispersal process where each taxon is present in only a single area at a time (Sanmart́ın et al.
2008). For example, taxon T1 might be coded to be found in Area A or Area B but not both
simultaneously. Although basic, this model is sufficient to make use of paleogeographical
information, suggesting more realistic models will fare better.

Consider two areas, A and B, that drift into and out of contact over time. When in
contact, dispersal is possible; when not, impossible. Represented as a graph, A and B
are vertices, and the edge (A,B) exists only during time intervals when A and B are in
contact. The addition and removal of dispersal routes demarcate time intervals, or epochs,
each corresponding to some epoch index, k ∈ {1, . . . , K}. To define how dispersal rates
vary with k, I use an epoch-valued continuous-time Markov chain (CTMC) (Ree et al. 2005;
Ree and Smith 2008; Bielejec et al. 2014). The adjacency matrix for the kth time interval’s
graph is used to populate the elements of an instantaneous rate matrix for an epoch’s CTMC
such that the dispersal rate is equal to 1 when the indexed areas are adjacent and equals
0 otherwise. For a time-homogeneous CTMC, the transition probability matrix is typically
written as P(t), which assumes the rate matrix, Q, has been rescaled by some clock rate,
µ, and applied to a branch of some length, t. For a time-heterogeneous CTMC, the value of
the rate matrix changes as a function of the underlying time interval, Q(k). The transition
probability matrix for the time-heterogeneous process, P(s, t), is the matrix-product of the
constituent epochs’ time-homogeneous transition probability matrices, and takes a value
determined by the absolute time and order of paleogeographical events contained between
the start time, s, and end time, t. Under this construction, certain types of dispersal events
are more likely to occur during certain absolute (not relative) time intervals, which potentially
influences probabilities of divergence times in absolute units.

Below, I give examples of when a key divergence time is likely to precede a split event
(Figure 2.1) or to follow a merge event (Figure 2.2). To simplify the argument, I assume a
single change must occur on a certain branch given the topology and tip states, though the
logic holds in general.
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Figure 2.1: Effects of a paleogeographical split on divergence times. Area A splits
from Area B at time τ . T1 and T2 have state A and the transition A → B most parsi-
moniously explains how T3 has state B. The transition probabilty for P = [P(s, t)]AB is
non-zero before the paleogeographical split event at time τ , and is zero afterwards. Two
possible divergence and dispersal times are given: A) T3 originates before the split when
the transition A → B has non-zero probability. B) T3 originates after the split when the
transition A→ B has probability zero.

In the first scenario (Figure 2.1), sister taxa T2 and T3 are found in Areas A and
B, respectively. The divergence time, s, is a random variable to be inferred. At time τ ,
the dispersal route (A,B) is destroyed, inducing the transition probability [P(s, t)]AB = 0
between times τ and 0. Since T2 and T3 are found in different areas, at least one dispersal
event must have occurred during an interval of non-zero dispersal probability. Then, the
divergence event that gave rise to T2 an T3 must have also pre-dated τ , with at least one
dispersal event occuring before the split event (Figure 2.1A). If T2 and T3 diverge after τ , a
dispersal event from A to B is necessary to explain the observations (Figure 2.1B), but the
model disfavors that divergence time because the required transition has probability zero.
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In this case, the creation of a dispersal barrier informs the latest possible divergence time, a
bound after which divergence between T2 and T3 is distinctly less probable if not impossible.
It is also worth considering that a more complex process modeling vicariant speciation would
provide tight bounds centered on τ (see Discussion).
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Figure 2.2: Effects of paleogeographical merge on divergence times. Area A merges
with Area B at time τ . T1 and T2 have the state A and the transition A → B on the
lineage leading to (T3, T4) most parsimoniously explains how T3 and T4 have state B. The
transition probabilty for P = [P(s, t)]AB is zero before the paleogeographical merge event at
time τ , and only non-zero afterwards. Two possible divergence and dispersal times are given:
A) T3 and T4 originate after the merge when the transition A→ B has non-zero probability.
B) T3 and T4 originate before the merge when the transition A→ B has probability zero.

In the second scenario (Figure 2.2), the removal of a dispersal barrier is capable of creating
a maximum divergence time threshold, pushing divergence times towards the present. To
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demonstrate this, say the ingroup sister taxa T3 and T4 both inhabit Area B and the root
state is Area A. Before the areas merge, the rate of dispersal between A and B as zero, and
non-zero afterwards. When speciation happens after the areas merge, then the ancestor of
(T3, T4) may disperse from A to B, allowing T3 and T4 to inherit state B (Figure 2.2A).
Alternatively, if T3 and T4 originate before the areas merge, then the same dispersal event
on the branch ancestral to (T3, T4) has probability zero (Figure 2.2B).

Paleogeography, graphs, and Markov chains

How biogeography may date speciation times depends critically on the assumptions of the
biogeographic model. The above examples depend on the notion of reachability, that two
vertices (areas) are connected by some ordered set of edges (dispersal routes) of any length.
In the adjacent-area dispersal model used here, one area might not be reachable from an-
other area during some time interval, during which the corresponding transition probability
is zero. That is, no path of any number of edges (series of dispersal events) may be con-
structed to connect the two areas. The concept of reachability may be extended to sets of
partitioned areas: in graph theory, sets of vertices (areas) that are mutually reachable are
called (connected) components. In terms of a graphically structured continuous time Markov
chain, each component forms a communicating class : a set of states with positive transition
probabilities only to other states in the set, and zero transition probabilities to other states
(or communicating classes) in the state space. To avoid confusion with the “generic” bio-
geographical concept of components (Passalacqua 2015), and to emphasize the interaction
of these partitioned states with respect to the underlying stochastic process, I hereafter refer
to these sets of areas as communicating classes.

Taking terrestrial biogeography as an example, areas exclusive to Gondwana or Laurasia
may each reasonably form communicating classes upon the break-up of Pangaea (Figure 2.3),
meaning species are free to disperse within these paleocontinents, but not between them. For
example, the set of communication classses is S = {{Afr}, {As}, {Ind}} at t = −100, i.e.
there are |S| = 3 communicating classes because no areas share edges (Figure 2.3C), while
at t = −10 there is |S| = 1 communicating class since a path exists between all three pairs
of areas (Figure 2.3E).

Specifying communicating classes is partly difficult because we do not know the ease of
dispersal between areas for most species throughout space and time. Encoding zero-valued
dispersal rates directly into the model should be avoided given the apparent prevalence
of long distance dispersal, sweepstakes dispersal, etc. across dispersal barriers (Carlquist
1966). Moreover, zero-valued rates imply that dispersal events between certain areas are
not simply improbable but completely impossible, creating troughs of zero likelihood in the
likelihood surface for certain dated-phylogeny-character patterns (Buerki et al. 2011). In
a biogeographic dating framework, this might unintentionally eliminate large numbers of
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Figure 2.3: Biogeographic communicating classes. Dispersal routes shared by Africa
(Afr), Asia (As), and India (Ind) are depicted for each time interval, t, over the past 300
Ma. Dispersal path lengths between areas i and j are given by di,j, with NA meaning there
is no route between areas (areas i and j are mutually unreachable). communicating classes
per interval are given by S and by the shared coloring of areas (vertices), with |S| being the
number of communicating classes.

speciation scenarios from the space of possible hypotheses, resulting in distorted estimates.
To avoid these problems, I take the dispersal graph as the weighted average of three distinct
dispersal graphs assuming short, medium, or long distance dispersal modes, each with their
own set of communicating classes (see Section 2.2).

Fundamentally, biogeographic dating depends on how rapidly a species may disperse
between two areas, and how that dispersal rate changes over time. In one extreme case,
dispersals between mutually unreachable areas do not occur after infinite time, and hence
have zero probability. At the other extreme, when dispersal may occur between any pair
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of areas with equal probability over all time intervals, then paleogeography does not favor
nor disfavor dispersal events (nor divergence events, implicitly) to occur during particular
time intervals. In intermediate cases, so long as dispersal probabilities between areas vary
across time intervals, the dispersal process informs when and what dispersal (and divergence)
events occur. For instance, the transition probability of going from area i to j decreases as
the average path length between i and j increases. During some time intervals, the average
path length between two areas might be short, thus dispersal events occur more freely than
when the average path is long. Comparing Figures 2.3A and 2.3E, the minimum number of
events required to disperse from India to Africa is smaller during the Triassic (t = −250)
than during the present (t = 0), and thus would have a relatively higher probability given
the process operated for the same amount of time today (e.g. for a branch with the same
length).

The concepts of adjacency, reachability, components, and communicating classes are
not necessary to structure the rate matrix such that biogeographic events inform divergence
times, though their simplicity is attractive. One could yield similar effects by parameterizing
dispersal rates as functions of more complex area features, such as geographical distance
between areas (Landis et al. 2013) or the size of areas (Tagliacollo et al. 2015). In this study,
these concepts serve the practical purpose of summarizing perhaps the most salient feature of
global paleogeography—that continents were not always configured as they were today—but
also illuminate how time-heterogeneous dispersal rates produce transition probabilities that
depend on geological time, which in turn inform the dates of speciation times.

Time-heterogeneous dispersal process

Let Z be a vector reporting biogeographic states for M > 2 taxa. The objective is to con-
struct a time-heterogeneous CTMC where transition probabilities depend on time-calibrated
paleogeographical features. For simplicity, species ranges are assumed to be endemic on the
continental scale, so each taxon’s range may be encoded as an integer in Zi ∈ {1, 2, . . . , N},
where N is the number of areas.

The paleogeographical features that determine the dispersal process rates are assumed
to be a piecewise-constant model, sometimes called a stratified (Ree et al. 2005; Ree and
Smith 2008) or epoch model (Bielejec et al. 2014), where K − 1 breakpoints are dated in
geological time to create K time intervals. These breakpoint times populate the vector,
τ = (τ0 = −∞, τ1, τ2, . . . , τK−1, τK = 0), with the oldest interval spanning deep into the
past, and the youngest interval spanning to the present.

While a lineage exists during the kth time interval, its biogeographic characters evolve
according to that interval’s rate matrix, Q(k), whose rates are informed by paleogeographical
features present throughout time τk−1 ≤ t < τk. As a example of an paleogeographically-
informed matrix structure, take G(k) to be a adjacency matrix indicating 1 when dispersal
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may occur between two areas and 0 otherwise, during time interval k. This adjacency
matrix is equivalent to an undirected graph where areas are vertices and edges are dispersal
routes. Full examples of G = (G(1),G(2), . . . ,G(K)) describing Earth’s paleocontinental
adjacencies are given in detail later.
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P(−190,−189) =

Afr As Ind
Afr 0.68 0.00 0.32
As 0.00 1.00 0.00
Ind 0.32 0.00 0.68

Figure 2.4: Piecewise-constant dispersal rate matrices. Dispersal routes shared by
Africa (Afr), Asia (As), and India (Ind) are depicted for two time intervals, −300 ≤ t < −200
and −200 ≤ t < 180. Graphs and times correspond to those in Figure 2.3A,B. Transition
probabilities are computed for a unit time during different epochs with a time-homogeneous
biogeographic clock rate µ = 0.5. A) The three areas are connected and all transitions have
positive probability. B) As is unreachable from Afr and Ind, so transition probabilities into
and out of As are zero.

With the paleogeographical vector G, I define the transition rates of Q(k) as equal to
Gz(k). Similar rate matrices are constructed for all K time intervals that contain possible
supported root ages for the phylogeny, Ψ. Figure 2.4 gives a simple example for three areas,
where Asia shares positive dispersal rate with Africa when they are merged and no dispersal
while split.

For a piecewise-constant CTMC, the process’ transition probability matrix is the product
of transition probability matrices spanning m breakpoints. To simplify notation, let v be the
vector marking important times of events, beginning with the start time of the branch, s,
followed by the m breakpoints satisfying s < τk < t, ending the the end time of the branch,
t, such that v = (s, τk, τk+1, . . . , τk+m−1, t), and let u(vi, τ) be a “look-up” function that gives
the index k that satisfies τk−1 ≤ vi < τk. The transition probabilty matrix over the intervals



CHAPTER 2. BIOGEOGRAPHIC DATING OF SPECIATION TIMES 40

in v according to the piece-wise constant CTMC given by the vectors τ and Q is

Pτ (v, µ; τ,Q) =
m+1∏

i=1

eµ(vi+1−vi)Q(u(vi,τ))

The pruning algorithm (Felsenstein 1981) is agnostic as to how the transition probabilties
are computed per branch, so introducing the piecewise-constant CTMC does not prohibit
the efficient computation of phylogenetic model likelihoods. See Bielejec et al. (2014) for an
excellent review of piecewise-constant CTMCs as applied to phylogenetics.

In the above case, the times s and t are generally identifiable from µz so long as
Pτ (v, µ; τ,Q) 6= Pτ (v

′, µ′; τ,Q) for any supported values of v, µ, v′, and µ′. Note, I in-
clude µ as an explicit parameter in the transition probability matrix function for clarity,
though they are suppressed in standard CTMC notation when t equals the product of rate
and time, then the process effectively runs for the time, µ(t− s). For example, assume that
Q is a time-homogeneous Jukes-Cantor model with no paleogeographical constraints, i.e. all
transition rates are equal independent of k. The transition probability matrix for this model
is readily computed via matrix exponentiation

P(s, t, µ) = eµ(t−s)Q.

Note that P(s, t, µ) = Pτ (v, µ; τ,Q) when v = (s, t) – i.e. the time-heterogeneous process
spans no breakpoints when m = 0 and is equivalent to a time-homogeneous process for the
interval (s, t).

For a time-homogeneous model, multiplying the rate and dividing the branch length by
the same factor results in an identical transition probability matrix. In practice this means
the simple model provides no information for the absolute value of µ and the tree height
of Ψ, since all branch rates could likewise be multiplied by some constant while branch
lengths were divided by the same constant, i.e. P(s, t, 1) = P(sµ−1, tµ−1, µ). Similarly, since
P(s, t, µ) = P(s + c, t + c, µ) for c ≥ 0, the absolute time when the process begins does not
matter, only the amount of time that has elapsed. Extending a branch length by a factor of
c requires modifying other local branch lengths in kind to satisfy time tree constraints, so
the identifiability of the absolute time interval (s, t) depends on how “relaxed” (Drummond
et al. 2006) the assumed clock and divergence time priors are with respect to the magnutude
of c, which together induce some (often unanticipated) joint prior distribution on divergence
times and branch rates (Heled and Drummond 2012; Warnock et al. 2015). In either case,
rate and time estimates under the time-homogeneous process result from the induced prior
distributions rather than by informing the process directly.
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Adjacent-area terrestrial dispersal graph

I identifiedK = 26 times andN = 25 areas to capture the general features of continental drift
and its effects on terrestrial dispersal (Figure 2.5; for all graphs and a link to the animation,
see Supplemental Figure S1). All adjacencies were constructed visually, referencing Blakey
(2006) and GPlates (Boyden et al. 2011), then corroborated using various paleogeographical
sources (Table S2). The paleogeographical state per time interval is summarized as an
undirected graph, where areas are vertices and dispersal routes are edges.

To proceed, I treat the paleogeographical states over time as a vector of adjacency ma-
trices, where G•(k)i,j = 1 if areas i and j share an edge at time interval k, and G•(k)i,j = 0
otherwise. Temporarily, I suppress the time index, k, for the rate matrix Q(k), since all
time intervals’ rate matrices are constructed in a similar manner. To mitigate the effects of
model misspecification, Q is determined by a weighted average of three geological adjacency
matrices

Gz = bsGs + bmGm + blGl (2.1)

where s, m, and l correspond to short distance, medium distance, and long distance mode
parameters.

Short, medium, and long distance dispersal processes encode strong, weak, and no
geographical constraint, respectively. As distance-constrained mode weights bs and bm
increase, the dispersal process grows more informative of the process’ previous state or
communicating class (Figure 2.6). The vector of short distance dispersal graphs, Gs =
(Gs(1),Gs(2), . . . ,Gs(K)), marks adjacencies for pairs of areas allowing terrestrial disper-
sal without travelling through intermediate areas (Figure 2.6A). Medium distance disper-
sal graphs, Gm, include all adjacencies in Gs in addition to adjacencies for areas sepa-
rated by lesser bodies of water, such as throughout the Malay Archipelago, while excluding
transoceanic adjacencies, such as between South America and Africa (Figure 2.6B). Finally,
long distance dispersal graphs, Gl, allow dispersal events to occur between any pair of areas,
regardless of potential barrier (Figure 2.6C).

To average over the three dispersal modes, bs, bm, and bl are constrained to sum to 1,
causing all elements in Gz to take values from 0 to 1 (Eqn 2.1). Importantly, adjacen-
cies specified by Gs always equal 1, since those adjacencies are also found in Gm and Gl.
This means Q is a Jukes-Cantor rate matrix only when bl = 1, but becomes increasingly
paleogeographically-structured as bl → 0. Non-diagonal elements of Q equal those of Gz,
but are rescaled such that the average number of transitions per unit time equals 1, and
diagonal elements of Q equal the negative sum of the remaining row elements. To compute
transition probabilities, Q is later rescaled by a biogeographic clock rate, µ, prior to matrix
exponentiation. The effects of the weights bs, bm, and bl on dispersal rates between areas are
shown in Figure 2.7.
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N. America (NW)

N. America (SW)

N. America (NE)
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S. America (N)

S. America (E)
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Europe
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Figure 2.5: Dispersal graph for Epoch 14, 110–100Ma: India and Madagascar
separate from Australia and Antarctica. A gplates (Gurnis et al. 2012) screenshot
of Epoch 14 of 26 is displayed. Areas are marked by black vertices. Black edges indicate
both short- and medium distance dispersal routes. Gray edges indicate exclusively medium
distance dispersal routes. Long distance dispersal routes are not shown, but are implied
to exist between all area-pairs. The short, medium, and long dispersal graphs have 8, 1,
and 1 communicating classes, respectively. India and Madagascar each have only one short
distance dispersal route, which they share. Both areas maintain medium distance dispersal
routes with various Gondwanan continents during this epoch. The expansion of the Tethys
Sea impedes dispersal into and out of Europe.

By the argument of that continental break-up (i.e. the creation of new communicating
classes; Figure 2.1) introduces a bound on the minimum age of divergence, and that conti-
nental joining (i.e. unifying existing communicating classes; Figure 2.2) introduces a bound
on the maximum age of divergence, then the paleogeographical model I constructed has the
greatest potential to provide both upper and lower bounds on divergence times when the
number of communicating classes is large, then small, then large again. This coincides with
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A) B)

C) D)

E) F)

Figure 2.6: Sample paths for paleogeographically informed biogeographic process.
The top, middle, and bottom panels show dispersal histories simulated by the pure short
(A,B), medium (C,D), and long (E,F) distance process components. All processes originate
in one of the four North American areas 250 Ma. The left column shows 10 of 2000 sample
paths. Color indicates the area the lineage is found in the present (A,C,E). Colors for areas
match those in Figure 2.8. The right column heatmap reports the sample frequencies for
any of the 2000 dispersal process being in that state at that time (B,D,F).
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As

Ind

Afr

bs + bm + bl = 1.0

qAfr,Ind = 0.7 + 0.2 + 0.1 = 1.0
qAfr,As = 0.2 + 0.1 = 0.3
qAs,Ind = 0.1 = 0.1

Q =




- 0.3 1.0
0.3 - 0.1
1.0 0.1 -




Figure 2.7: Example mode-weighted dispersal matrix. Short, medium, and long dis-
tance dispersal edges are represented by solid black, dashed black, and solid gray lines, re-
spectively. Short, medium, and long distance dispersal weights are (bs, bm, bl) = (0.7, 0.2, 0.1).
The resulting mode-weighted dispersal matrix, Q, is computed with areas (states) ordered
as (Afr, As, Ind). Afr and Ind share a short distance dispersal edge, therefore the dispersal
weight is bs + bm + bl = 1.0. Afr and As share a medium distance edge with dispersal weight
bm + bl = 0.3. Dispersal between As and Ind is only by long distance with weight bl = 0.1.

the formation of Pangaea, dropping from 8 to 3 communicating classes at 280 Ma, followed
by the fragmentation of Pangaea, increasing from 3 to 11 communicating classes between
170 Ma and 100 Ma (Figure 2.8). It is important to consider this bottleneck in the number
of communicating classes will be informative of root age only for fortuitous combinations
of species range and species phylogeny. Just as some clades lack a fossil record, others are
bound to lack a biogeographic record that is informative of origination times.

2.3 Analysis

All posterior densities were estimated using Markov chain Monte Carlo (MCMC) as imple-
mented in RevBayes, available at revbayes.com (Höhna et al. 2014). Data and analysis
scripts are available at github.com/mlandis/biogeo_dating. Datasets are also available
on Dryad at datadryad.org/XXX. Analyses were performed on the XSEDE supercomputing
cluster (Towns et al. 2014).

revbayes.com
github.com/mlandis/biogeo_dating
datadryad.org/XXX
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Figure 2.8: Dispersal graph properties summarized over time. communicating classes
of short distance dispersal graph (A) and medium distance dispersal graph (B) are shown.
Each of 25 areas is represented by one line. Colors of areas match those listed in Figure
2.6. Grouped lines indicate areas in one communicating class during an interval of time.
Vertical lines indicate transitions of areas joining or leaving communication clases, i.e. due
to paleogeographical events. When no transition event occurs for an area entering a new
epoch, the line is interrupted with gap. (C) Number of communicating classes: the black
line corresponds to the short distance dispersal graph (A), the dotted line corresponds to
medium distance dispersal graph (B), and the gray line corresponds to the long distance
dispersal graph, which always has one communicating class.

Simulation

Through simulation I tested whether biogeographic dating identifies rate from time. To
do so, I designed the analysis so divergence times are informed solely from the molecular
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and biogeographic data and their underlying processes (Table 2.1). As a convention, I use
the subscript x to refer to molecular parameters and z to refer to biogeographic parameters.
Specifically, I defined the molecular clock rate as µx = e/r, where e gives the expected number
of molecular substitutions per site and r gives the tree height. Both e and r are distributed
independently by uniform priors on (0, 1000). Biogeographic events occur with rate, µz =
µx10sz where sz has a uniform prior distribution on (−3, 3). To further subdue effects from
the prior on posterior parameter estimates, the tree prior assigns equal probability to all
node age distributions. No node calibrations were used. Each dataset was analyzed with
(+G) and without (–G) the paleogeographic-dependent dispersal process.

Two further assumptions were made to simplify the analyses. First, although divergence
times were free to vary, the tree topology was assumed to be known. Second, molecular and
biogeographic characters evolve by strict global clocks. In principle, inferring the topology
or using relaxed clock models should increase the variance in posterior divergence time
estimates, but not greatly distort the performance of –G relative to +G.

Phylogenies with M = 50 extant taxa were simulated using a birth-death process with
birth rate, λ = 0.25, and death rate, µ = 0.15, then rescaled so the root age equaled 250
Ma. Each dataset contained 500 nucleotides and 1 biogeographic character. Biogeographic
characters were simulated under +G, where Gz is defined as piecewise-constant over 25
areas and 26 time intervals in the manner described in Section 2.2. In total, I simulated 100
datasets under the parameter values given in Table 2.1, where these values were chosen to
reflect possible empirical estimates. Each dataset was analyzed under each of two models,
then analyzed a second time to verify convergence (Gelman and Rubin 1992; Plummer et al.
2006). When summarizing posterior results, posterior mean-of-median and 95% highest
posterior density (HPD95%) values were presented.

As expected, the results show the –G model extracts no information regarding the root
age, so its posterior distribution equals its prior distribution, mean-of-median ≈ 499 (Figure
2.9A). In contrast, the +G model infers the mean-of-median root age 243 with a HPD95%
interval width of 436, improving accuracy and precision in general.

Estimated divergence time accuracy was assessed with the statistic

d =
∑

i

ai − a(true)i

a
(true)
i

(2.2)

where a is a posterior sample of the node age vector and atrue is the true node age vector
known through simulation. When a perfectly estimates a(true) for all node ages, d = 0.
When estimated node ages are too young (on average), d < 0, and when too old, d > 0.
Inference under +G infers an mean d = 0.19 with a HPD95% interval width of ≈ 1.26,
while –G performs substantially worse with d = 0.92 and width ≈ 2.75 (Figure 2.9B).
Posterior estimates generally favored short over medium and long distance dispersal as
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A) B) C)

root age

+G

−G

age estimate error (d)
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short
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Figure 2.9: Posterior estimates for simulated data. A) Posterior estimates of root
age. The true root age for all simulations is 250 Ma (dotted vertical line). B) Posterior
estimates of relative node age error (Eqn 2.2). The true error term equals zero. Both A and
B) –G analyses are on the top half, +G analyses are on the bottom. Each square marks
the posterior mean root age estimate with the HPD95% credible interval. If the credible
interval contains the true value, the square is filled. C) Posterior estimates of dispersal mode
proportions for the +G simulations projected onto the unit 2-simplex. The filled circle gives
the posterior median-of-medians, and the empty circles give posterior medians.

was assumed under simulation (Figure 2.9C). Dispersal mode parameter estimates were
(bs, bm, bl) = (0.766, 0.229, 0.003), respectively, summarized as median-of-medians across sim-
ulated replicates.
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Empirical: Testudines

To assess the accuracy of the method, I performed a biogeographic dating analysis on extant
turtle species (Testudines). Extant turtles fall into two clades, Pleurodira, found in the
Southern hemisphere, and Cryptodira, found predominantly in the Northern hemisphere.
Their modern distribution shadows their biogeographic history, where Testudines are thought
to be Gondwanan in origin with the ancestor to cryptodires dispersing into Laurasia during
the Jurassic (Crawford et al. 2015). Since turtles preserve so readily in the fossil record,
estimates of their phylogeny and divergence times have been profitably analyzed and re-
analyzed by various researchers (Joyce 2007; Hugall et al. 2007; Danilov and Parham 2008;
Alfaro et al. 2009; Dornburg et al. 2011; Joyce et al. 2013; Sterli et al. 2013; Warnock et al.
2015). This makes them ideal to assess the efficacy of biogeographic dating, which makes
no use of their replete fossil record: if both biogeography-based and fossil-based methods
generate similar results, they co-validate each others’ correctness (assuming they are not
both biased in the same manner).

To proceed, I assembled a moderately sized dataset. First, I aligned cytochrome B
sequences for 185 turtle species (155 cryptodires, 30 pleurodires) using MUSCLE 3.8.31
(Edgar 2004) under the default settings. Assuming the 25-area model presented in Section
2.2, I consulted GBIF (gbif.org) and IUCN Red List (iucnredlist.org) to record the
area(s) in which each species was found. Species occupying multiple areas were assigned
ambiguous tip states for those areas. Missing data entries were assigned to the six sea
turtle species used in this study to effectively eliminate their influence on the (terrestrial)
biogeographic process. To simplify the analysis, I assumed the species tree topology was
fixed according to Guillon et al. (2012), which was chosen for species coverage, pruning away
unused taxa. All speciation times were considered random variables to be estimated. The
tree topology and biogeographic states are shown in Supplemental Figure S2. All data are
recorded on datadryad.org/XXX.

Like the simulation study, my aim is to show that the paleogeographically-aware +G
model identifies the root age in units of absolute time. To reiterate, the posterior root age
should be identical to the prior root age when the model cannot inform the root age. If
the prior and posterior differ, then the data under the model are informative. The root
age was constrained to Uniform(0, 540), forbidding the existence of Precambrian turtles.
To improve biological realism, I further relaxed assumptions about rate variability for the
molecular model of evolution, both among sites (Yang 1994) and across branches (Lepage
et al. 2007; Drummond et al. 2006) (Table 2.1).

Biogeographic dating infers a posterior median root age of 201 with HPD95% credible
interval of (115, 339) (Figure 2.10A). This is consistent current root age estimates informed
from the fossil record (Figure 2.11). The posterior mode of dispersal mode is (bs, bm, bl) =
(0.47, 0.51, 0.02), with short and medium distance dispersal occurring at approximately equal

gbif.org
iucnredlist.org
datadryad.org/XXX


CHAPTER 2. BIOGEOGRAPHIC DATING OF SPECIATION TIMES 50

A) B)

0 100 200 300 400 500

0.
00
0

0.
00
2

0.
00
4

0.
00
6

0.
00
8

0.
01
0

No root calibration

root age

P
ro

b(
ro

ot
 a

ge
)

160 180 200 220 240
0.
00
0

0.
00
5

0.
01
0

0.
01
5

0.
02
0

With root fossil calibration

root age

P
ro

b(
ro

ot
 a

ge
)

Figure 2.10: Posterior root age of turtles by biogeographic dating. Six root age
posterior estimates were computed using biogeographic dating, each using variations on
flat or short-biased priors for key parameters. Figure A assumes no knowledge of fossils
with Uniform(0, 540) root age prior. Figure B follows Joyce et al. (2013) and assumes
Uniform(151.7, 251.4) as a root node age calibration. The black solid posterior density
assumes a flat prior on dispersal mode. The black dotted posterior density assumes an
short-biased prior Dirichlet(100, 10, 1) on dispersal mode. The gray solid posterior density
ignores paleogeography.

rates and long distance dispersal being rare by comparison. Biogeographic events occurred at
a ratio of about 6:1 when compared to molecular events (posterior means: µx = 1.9E−3, µz =
1.1E−2). The posterior mode tree height measured in expected number of dispersal events
is 2.3 with HPD95% (1.5, 3.0), i.e. as a treewide average, the current location of each taxon
is the result of about two dispersal events.

The flat prior distribution for competing dispersal modes is Dirichlet(1, 1, 1) and does not
capture the intuition that short distance dispersal should be far more common than long dis-
tance dispersal. I encoded this intuition in the dispersal mode prior, setting the distribution
to Dirichlet(100, 10, 1), which induces expected proportion of 100:10:1 short:medium:long
dispersal events. After re-analyzing the data with the short-biased dispersal prior, the poste-
rior median and HPD95% credible interval were estimated to be, respectively, 204 (96, 290)
(Figure 2.10A).
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Figure 2.11: Root age comparison. Root age estimates are presented both for analysis
conducted for this manuscript and as reported in existing publications. Existing estimates
are as reported in Sterli et al. (2013) and supplemented recently reported results. Points
and whiskers correspond to the point estimates and estimate confidence, which varies across
analyses. The six left estimates were computed using biogeographic dating, each using
variations on flat or short-biased priors for key parameters. Two of these analyses ignore
paleogeography (–G) so the posterior root age is the uniform prior root age, whose mode
(not shown) equals all values supported by the prior. Hugall et al. (2007) reports ages for
analyses using amino acids (aa) and nucleotides (nt). Warnock et al. (2015) reports many
estimates while exploring prior sensitivity, but only uniform prior results are shown here.

Biogeographic dating is compatible with fossil dating methods, so I repeated the analysis
for both flat and informative prior dispersal modes while substituting the Uniform(0, 540)
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prior on root age calibration for Uniform(151.7, 251.4) (Joyce et al. 2013). When taking
biogeography into account, the model more strongly disfavors post-Pangaean origins for the
clade than when biogeography is ignored, but the effect is mild. Posterior distributions of
root age was relatively insensitive to the flat and short-biased dispersal mode priors, with
posterior medians and credible intervals of 203 (161, 250) and 208 (159, 250), respectively.
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Figure 2.12: Root state estimates. A) Posterior probabilities of root state are given for
the six empirical analyses. B) Joint-marginal posterior probabilities of root age and root
state are given for the empirical analysis without a root calibration and with a flat dispersal
mode prior. Root ages are binned into intervals of width 20.

All posterior root state estimates favored South America (N) for the paleogeographically-
informed analyses (Figure 2.12A). Although this is in accord with the root node calibration
adopted from Joyce et al. (2013)—Caribemys oxfordiensis, sampled from Cuba, and the
oldest accepted crown group testudine—the fossil is described as a marine turtle, so the
accordance may simply be coincidence. In contrast, the paleogeographically-naive models
support Southeast Asian origin of Testudines, where, incidentally, Southeast Asia is the most
frequently inhabited area among the 185 testudines. For the analysis with a flat dispersal
mode prior and no root age calibration, all root states with high posterior probability appear
to concur on the posterior root age density (Figure 2.12B), i.e. regardless of conditioning
on South America (N), North America (SE), or North America (SW) as a root state, the
posterior root age density is roughly equal.
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2.4 Discussion

The major obstacle preventing the probabilistic union of paleogeographical knowledge, bio-
geographic inference, and divergence time estimation has been methodological, which I have
attempted to redress in this manuscript. The intuition justifying prior-based fossil calibra-
tions (Parham et al. 2011), i.e. that fossil occurrences should somehow inform divergence
times, has recently been formalized into several models (Pyron 2011; Ronquist et al. 2012a;
Heath et al. 2014). Here I present an analogous treatment for prior-based biogeographic
calibrations, i.e. that biogeographic patterns of modern species echo time-calibrated paleo-
biogeographic events, by describing how epoch models (Ree et al. 2005; Ree and Smith 2008;
Bielejec et al. 2014) are informative of absolute divergence times. Briefly, I accomplished
this using a simple time-heterogeneous dispersal process (Sanmart́ın et al. 2008), where
dispersal rates are piecewise-constant, and determined by a graph-based paleogeographical
model (Section 2.2). The paleogeographical model itself was constructed by translating var-
ious published paleogeographical reconstructions (Figure 2.5) into a time-calibrated vector
of dispersal graphs.

Through simulation, I showed biogeographic dating identifies tree height from the rates
of molecular and biogeographic character change. This simulation framework could easily be
extended to investigate for what phylogenetic, paleogeographic, and biogeographic conditions
one is able to reliably extract information for the root age. For example, a clade with taxa
invariant for some biogeographic state would contain little to no information about root age,
provided the area has always existed and had a constant number of dispersal edges over
time. At the other extreme, a clade with a very high dispersal rate or with a proclivity
towards long distance dispersal might provide little due to signal saturation (Figure 2.6C).
The breadth of applicability of biogeographic dating will depend critically on such factors,
but because we do not expect to see closely related species uniformly distributed about Earth
nor in complete sympatry, that breadth may not be so narrow, especially in comparison to
the fossil record.

The majority of groups have poor fossil records, and biogeographic dating provides a
second hope for dating divergence times. Since biogeographic dating does not rely on any
fossilization process or data directly, it is readily compatible with existing fossil-based dat-
ing methods (Figure 2.10B). When fossils with geographical information are available, re-
searchers have shown fossil taxa improve biogeographical analyses (Moore et al. 2008; Wood
et al. 2012). In principle, the biogeographic process should guide placement of fossils on
the phylogeny, and the age of the fossils should improve the certainty in estimates of an-
cestral biogeographic states (Slater et al. 2012), on which biogeographic dating relies. Joint
inference of divergence times, biogeography, and fossilization stands to resolve recent paleo-
biogeographic conundrums that may arise when considering inferences separately (Beaulieu
et al. 2013; Wilf and Escapa 2014).
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Because time calibration through biogeographic inferences comes primarily from the pa-
leogeographical record, not the fossil record, divergence times may be estimated from exclu-
sively extant taxa under certain biogeographical and phylogenetic conditions. When fossils
are available, however, biogeographic dating is compatible with other fossil-based dating
methods (e.g. node calibrations, fossil tip dating, fossilized birth-death). As a proof of con-
cept, I assumed a flat root age calibration prior for the origin time of turtles: the posterior
root age was also flat when paleogeography was ignored, but Pangaean times of origin were
strongly preferred when dispersal rates conditioned on paleogeography (Figure 2.10). Under
the uninformative prior distributions on root age, biogeographic dating estimated turtles
originated between the Mississipian (339 Ma) and Early Cretaceous (115 Ma) periods, with
a median age of 201 Ma. Under an ignorance prior where short, medium, and long dis-
tance dispersal events have equal prior rates, short and medium distance dispersal modes
are strongly favored over long distance dispersal. Posterior estimates changed little by in-
forming the prior to strongly prefer short distance dispersal. Both with and without root
age calibrations, and with flat and biased dispersal mode priors, biogeographic dating placed
the posterior mode origin time of turtles at approximately 210–200 Ma, which is consistent
with fossil-based estimates (Figure 2.11).

Model inadequacies and future extensions

The simulated and empirical studies demonstrate biogeographic dating improves divergence
time estimates, with and without fossil calibrations, but many shortcomings in the model
remain to be addressed. When any model is misspecified, inference is expected to produce
uncertain, or worse, spurious results (Lemmon and Moriarty 2004), and biogeographic models
are not exempted. I discuss some of the most apparent model misspecifications below.

Anagenetic range evolution models that properly allow species inhabit multiple areas
should improve the informativeness of biogeographic data. Imagine taxa T1 and T2 inhabit
areas ABCDE and FGHIJ , respectively. Under the simple model assumed in this paper,
the tip states are ambiguous with respect to their ranges, and for each ambiguous state only
a single dispersal event is needed to reconcile their ranges. Under a pure anagenetic range
evolution model (Ree et al. 2005), at least five dispersal events are needed for reconciliation.
Additionally, some extant taxon ranges may span ancient barriers, such as a terrestrial
species spanning both north and south of the Isthmus of Panama. This situation almost
certainly requires a dispersal event to have occurred after the isthmus was formed when
multiple-area ranges are used. For single-area species ranges coded as ambiguous states,
the model is incapable of evaluating the likelihood that the species is found in both areas
simultaneously, so additional information about the effects of the paleogeographical event
on divergence times is potentially lost.
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Any model where the diversification process and paleogeographical states (and events)
are correlated will obviously improve divergence time estimates so long as that relationship
is biogeographically realistic. Although the repertoire of cladogenetic models is expanding
in terms of types of transition events, they do not yet account for geographical features,
such as continental adjacency or geographical distance. Incorporating paleogeographical
structure into cladogenetic models of geographically-isolated speciation, such as vicariance
(Ronquist 1997), allopatric speciation (Ree et al. 2005; Goldberg et al. 2011), and jump
dispersal (Matzke 2014), is crucial not only to generate information for biogeographic dating
analyses, but also to improve the accuracy of ancestral range estimates. Ultimately, cladoge-
netic events are state-dependent speciation events, so the desired process would model range
evolution jointly with the birth-death process (Maddison et al. 2007; Goldberg et al. 2011),
but inference under these models for large state spaces is currently infeasible. Regardless,
any cladogenetic range-division event requires a widespread range, which in turn implies it
was preceeded by dispersal (range expansion) events. Thus, if we accept that paleogeogra-
phy constrains the dispersal process, even a simple dispersal-only model will extract dating
information when describing a far more complex evolutionary process.

That said, the simple paleogeographical model described herein (Section 2.2) has many
shortcomings itself. It is only designed for terrestrial species originating in the last 540
Ma. Rates of dispersal between areas are classified into short, medium, and long distances,
but with subjective criteria. The number of epochs and areas was limited by my ability to
comb the literature for well-supported paleogeological events, while constrained by compu-
tational considerations. The timing of events was assumed to be known perfectly, despite
the literature reporting ranges of estimates. Certainly factors such as global temperature,
precipitation, ecoregion type, etc. affect dispersal rates between areas, but were ignored. All
of these factors can and should be handled more rigorously in future studies by modeling
these uncertainties as part of a joint Bayesian analysis (Höhna et al. 2014).

Despite these flaws, defining the paleogeographical model serves as an excercise to identify
what features allow a biogeographic process to inform speciation times. Dispersal barriers are
clearly clade-dependent, e.g. benthic marine species dispersal would be poorly modeled by
the terrestrial graph. Since dispersal routes for the terrestrial graph might serve as dispersal
barriers for a marine graph, there is potential for learning about mutually exclusive dispersal
corridor use in a multi-clade analysis (Sanmart́ın et al. 2008). Classifying dispersal edges
into dispersal mode classes may be made rigorous using clustering algorithms informed by
paleogeographical features, or even abandoned in favor of modeling rates directly as functions
of paleogeographical features like distance. Identifying significant areas and epochs remains
challenging, where presumably more areas and epochs are better to approximate continu-
ous space and time, but this is not without computational challenges (Ree and Sanmart́ın
2009; Webb and Ree 2012; Landis et al. 2013). Rather than fixing epoch event times to
point estimates, one might assign empirical prior distributions based on collected estimates.
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Ideally, paleogeographical event times and features would be estimated jointly with phyloge-
netic evidence, which would require interfacing phylogenetic inference with paleogeographical
inference. This would be a profitable, but substantial, interdisciplinary undertaking.

Conclusion

Historical biogeography is undergoing a probabilistic renaissance, owing to the abundance
of georeferenced biodiversity data now hosted online and the explosion of newly published
biogeographic models and methods (Ree et al. 2005; Ree and Smith 2008; Sanmart́ın et al.
2008; Lemmon and Lemmon 2008; Lemey et al. 2010; Goldberg et al. 2011; Webb and
Ree 2012; Landis et al. 2013; Matzke 2014; Tagliacollo et al. 2015). Making use of these
advances, I have shown how patterns latent in biogeographic characters, when viewed with
a paleogeographic perspective, provide information about the geological timing of speciation
events. The method conditions directly on biogeographic observations to induce dated node
age distributions, rather than imposing (potentially incorrect) beliefs about speciation times
using node calibration densities, which are data-independent prior densities. Biogeographic
dating may present new opportunities for dating phylogenies for fossil-poor clades since
the technique requires no fossils. This establishes that historical biogeography has untapped
practical use for statistical phylogenetic inference, and should not be considered of secondary
interest, only to be analysed after the species tree is estimated.
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Chapter 3

Lévy processes: evolution with jumps

3.1 Introduction

Morphological variation in continuous characters, such the body mass of therapods or the
height of kelp, is one of the most visible examples of the diversity of life on Earth. A number
of theoretical frameworks have been put forth to explain this variety of sizes and shapes seen
in the natural world (Darwin 1859; Simpson 1953; Eldredge and Gould 1972; Stanley 1975).
Gaussian processes – a class of stochastic processes which includes Brownian motion and the
Ornstein-Uhlenbeck process – have been used extensively to model continuous trait evolution,
e.g. body mass evolution (Freckleton et al. 2003) or gene expression level evolution (Brawand
et al. 2011). These processes are a natural model for continuous character evolution because
they are the continuum limit of a broad range of discrete-time character evolution models
(Cavalli-Sforza and Edwards 1967; Lande 1976; Felsenstein 1985).

However, not all discrete-time models have a Gaussian process as their limit; many
evolutionary processes may result in changes in a continuous character too abrupt to be
accounted for by any Gaussian process. For example, rapid changes in population size can
dramatically affect rates of allele fixation, and thus introduce abrupt changes in quantitative
traits (Lande 1976). The ecological release of selective constraints may induce an adaptive
radiation that increases disparity unevenly across a clade (Simpson 1953; Stanley 1975).
Through cladogenesis under a punctuated equilibrium model of trait evolution, divergence
events are paired with sudden trait change (Eldredge and Gould 1972). If cladogenetic
evolutionary processes are present, continuous trait patterns seen in extant taxa may mislead
inference due to speciation events “hidden” by extinction events (Bokma 2002).

Two main routes have been taken to account for the extra variation that these micro- and
macro-evolutionary processes produce. One approach pioneered by O’Meara et al. (2006)
is to allow for shifts in the rate of Brownian motion in different places on the phylogeny.
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This method is similar in spirit to models of rate shifts in molecular evolution (Thorne et al.
1998; Huelsenbeck et al. 2000; Drummond and Suchard 2010). A number of refinements have
since been proposed, such as the use of reversible jump Markov chain Monte Carlo (MCMC)
to infer the timing and intensity of rate shifts (Eastman et al. 2011), which identified rate
shifts in the evolution of primate body mass. Harmon et al. (2010) introduced an “early-
burst” process to model rapid trait evolution following cladogenesis in which the rate of
Brownian motion decreases exponentially along a branch, such that the rate of change is
fastest immediately when a new lineage diverges and then decreases as the lineage grows
older. For size and shape data across 49 clades of animals, they reported their early-burst
model was favored in two datasets over Brownian motion and Ornstein-Uhlenbeck processes.
While these models relax the time-homogeneity assumption of Gaussian process models, they
remain fundamentally gradual, in the sense that the changes in traits cannot be too large in
a short period of time. This results in the existence of intermediate forms, the hallmark of
gradualism.

The other route explicitly models non-gradual evolution by augmenting Brownian motion
with a process of “jumps”. In a seminal work on models of continuous trait evolution,
Hansen and Martins (1996) compared the covariance structure of models of punctuated
equilibrium to other models of phenotypic trait evolution and found that one could not
distinguish between punctuational models and Brownian motion models from covariance
alone. Bokma (2008) described a method to identify punctuated evolution by modeling
continuous trait evolution as the sum of Brownian motion and normally distributed jumps
resulting from speciation events. The Bokma model accounts for hidden speciation events
by first estimating the speciation and extinction rates, then conditioning on the rates as part
of a Bayesian MCMC analysis. In a study on mammalian body mass evolution, this model
inferred that cladogenetic, rather than anagenetic, processes produced the majority of trait
diversity we see today (Mattila and Bokma 2008).

However, jumps in trait evolution may not be linked directly to cladogenesis. Using a
pure-jump model, Uyeda et al. (2011) identified a once-per-million-year jump periodicity in
vertebrate evolution by modeling trait evolution as the sum of white noise and normally
distributed jumps drawn at the times of a Poisson process. Such pure-jump models may
be appropriate for traits that are thought to have weak or no gradual evolution component,
such as gene expression, which may depend only on the discrete events of transcription factor
binding site recruitment and degradation. Khaitovich et al. (2005) introduced a pure-jump
model of evolution in which gene expression levels evolve via jumps drawn from a skewed
normal distribution at the times of a Poisson process. They reported evidence of skewness
in primate gene expression evolution, a biologically interesting signal that could not have
been explained by simple Brownian motion models (also see Chaix et al. (2008)).

This evidence of jumps motivates us to introduce a class of models to account for the wide
range of modes of non-gradual evolution. Both Brownian motion and the compound Poisson
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processes of Khaitovich et al. (2005); Uyeda et al. (2011) (but not the Ornstein-Uhlenbeck
process) are members of a broader class of stochastic processes whose motion may be thought
of as “drift and diffusion with jumps”, viz. the class of Lévy processes. A Lévy process is the
sum of three components: a directional drift (also called trend in the biology literature, not
to be confused with genetic drift), a Brownian motion, and a pure-jump process. The last
component allows Lévy processes to have jumps in their sample paths and, in the context
of continuous trait evolution, account for abrupt shifts in continuous characters that pure
diffusion models cannot easily explain. Qualitatively, these jumps give the distribution of
trait change “fat tails”, reflecting that there is a higher probability of larger amounts of
trait change than under a Brownian motion. In the mathematical finance literature, Lévy
processes have been successfully used to capture the “fat-tailed” behavior of stock prices (Li
et al. 2008). We developed a Bayesian method that determines whether a Lévy process with
jumps explains the data better than a single-rate Brownian motion and effectively infers the
parameters of that Lévy process.

3.2 Model

Lévy processes

Stochastic processes with stationary and independent increments whose sample paths are
right-continuous with left limits are called Lévy processes. We will highlight the key prop-
erties of this class of processes and state some important results. Kallenberg (2010; Ch. 15)
provides a more detailed and technical exposition.

Let {Xt, t > 0} be a Lévy process. There are two equivalent ways of characterizing Xt,
by its transition density P(Xt = y |X0 = x), or by its characteristic function, given by

φ(k; t) = E
(
eikXt |X0 = 0

)
, (3.1)

where i =
√
−1 is the imaginary unit and E(·) is the expected value. Note that k is the

variable on which the characteristic function acts. As an example, the transition density of
a Brownian motion is

P(Xt = y |X0 = x) =
1√

2πσ2t
e−

(y−x)2

2σ2t , (3.2)

so the corresponding characteristic function is given by

φ(k; t) =

∫ ∞

−∞

1√
2πσ2t

e−
y2

2σ2t eikydy

= e−t
1
2
σ2k. (3.3)
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A result known as the Lévy-Khinchine representation asserts that all Lévy processes have
characteristic functions of the form

φ(k; t) = exp

{
t

(
aik − 1

2
σ2k2 +

∫ (
eikj − 1− ikjI|j|<1

)
ν(dj)

)}
, (3.4)

where a and σ2 are constants and ν(·) is the so-called Lévy measure. Intuitively, the Lévy-
Khinchine representation provides a mathematical decomposition of a Lévy process into its
three constituent parts:

1. A constant directional drift (or trend) with rate a

2. A Brownian motion with rate σ2

3. A pure-jump process that draws jumps from the Lévy measure ν(·).

The processes we consider have no long-term directional trend, so a = 0. To get a better
understanding of the Lévy measure, one can imagine that the process has probability ν(dj)dt
of making a jump of size j during the time dt. If there are no jumps, then ν is identically
0 and (3.4) becomes (3.3). This shows that the only Lévy process with continuous sample
paths is a single-rate Brownian motion.

Using the Lévy-Khinchine formula, it is possible to compute the moments of a Lévy
process, assuming that they exist. Because we will only consider symmetric Lévy processes,
we are only interested in the process’ variance and excess kurtosis, the latter of which is
a measure of the relative frequency of large evolutionary changes compared to a Brownian
motion. These two moments are given by

V (t) = E(X2
t ) = −φ(2)(0; t) (3.5)

and

K(t) =
E(X4

t )

V (t)2
− 3 =

φ(4)(0; t)

V (t)2
− 3, (3.6)

where φ(n) is the nth derivative of φ.

Three examples of Lévy processes

In addition to a single-rate Brownian motion (BM), we implemented three different models
that are representative of the range of behavior possible with Lévy processes. These models
are a compound Poisson process with normally distributed jumps (jump normal, abbreviated
JN), the variance gamma process (VG), and the α-stable process (AS). To gain an intuition
for the behavior of each process, Figure 3.1 shows representative pure-jump sample paths
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and the corresponding jump measures for JN, VG and AS, whose properties we examine in
turn. Note, to accentuate the flavor of each jump measure under each parameterization in
Figure 3.1, the Brownian motion rate was assigned to σ = 0. Parameters of each model are
summarized in Table 3.1.
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Figure 3.1: Sample paths of Lévy processes without Brownian motion (left panel) and their
corresponding Lévy measures (right panel). Compound Poisson process with normally dis-
tributed jumps (JN; 1a) paths were sampled with parameters λ = 2, and δ = 1 (solid line)
and λ = 20, and δ = .3 (dashed line). Variance gamma (VG; 1b) paths were sampled with
parameters κ = .1, and τ = .2 (solid line) and κ = 1, and τ = .6 (dashed line). α-stable
(AS; 1C) paths were sampled with parameters α = 1.5, and β = .1 (solid line) and α = .9,
and β = .005 (dashed line).

The compound Poisson process

The JN model has Lévy measure

ν(dj) = λ
1√

2πδ2
e−

j2

2δ2 dj.

With rate λ, the process makes jumps with values drawn from a centered normal distri-
bution with standard deviation δ. As Figure 3.1a shows, the paths of the JN process are
characterized by periods of stasis interrupted by bursts of rapid change. Looking at the Lévy
measure, a process with more jumps will have a taller Lévy measure while a process with
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Model Parameter Interpretation
Brownian motion (BM) σ rate of Brownian motion

σ rate of Brownian motion
Jump normal (JN) λ rate of jumps

δ standard deviation of jump size
σ rate of Brownian motion

Variance gamma (VG) κ relative rate of large jumps
τ size of jumps
σ rate of Brownian motion

α-stable (AS) α relative rate of small jumps
β size of jumps

Table 3.1: Model parameters and interpretations for all implemented models

larger jumps will have a fatter Lévy measure. The transition density of the JN process with
no Brownian motion is known and is given by

P(Jt = j | J0 = 0, δ, λ) =
∞∑

n=0

(λt)n

n!
e−λt

1√
2πnδ2

e−
j2

2nδ2 . (3.7)

The variance and excess kurtosis of a process with both BM, with rate σ2, and JN motion
are

V (t) = (σ2 + λδ2)t (3.8)

and

K(t) =
3λδ4

(σ2 + λδ2)2t
, (3.9)

respectively.

The variance gamma process

The VG model has Lévy measure

ν(dj) =
1

κ|j|e
−
√

2
κτ2
|j|
dj.

Here, τ controls the size of jumps while κ controls the relative probability of large versus
small jumps. The Lévy measure has infinite mass, and thus the VG process is infinitely
active, meaning that in any finite period of time, the process makes infinitely many jumps.
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However, as can be seen in Figure 3.1b most of those jumps are arbitrarily small. When κ
is large, the VG process only makes very large or very small jumps.

Like the JN process, the transition density of the VG process with no Brownian motion
is known analytically,

P(Jt = j | J0 = 0, τ, κ) =
2

2t−3κ
4κ κ−

2t+κ
4κ

Γ(t/κ)
√
πτ 2

(
τ 2

j2

)−2t+κ
4κ

K|t/κ−1/2|

(√
2j2

κτ 2

)
, (3.10)

where Γ(·) is the gamma function and Kε(·) is the modified Bessel function of the second
kind with index ε (Abramowitz and Stegun 1964; Ch. 9,10).

The variance and excess kurtosis of a process with both BM and VG motion are

V (t) = (σ2 + τ 2)t (3.11)

and

K(t) =
3κτ 4

(σ2 + τ 2)2t
(3.12)

respectively.

The α-stable process

The AS model has Lévy measure

ν(dj) =
βα

|j|1+αdj,

where β is a scale parameter, controlling the magnitude of jumps taken and 0 ≤ α ≤ 2 is the
so-called stability parameter. For every α < 2, the Lévy measure has infinite mass, so the AS
process is infinitely active. However, Figure 3.1c shows that the behavior of the AS process
is quite different from the VG process. In particular, the AS process does not experience
as strong a trade-off between small and large jumps as the VG process does. As α → 0,
the tails of the Lévy measure become heavier and heavier, but the relative proportion of
probability for medium sized jumps remains nearly constant, as opposed to the VG process.
This is manifested in the fact that the AS process has infinite pth moment for p > α when
α < 2; thus, the variance and the excess kurtosis of the process do not exist for α < 2.
In addition, unlike the JN and VG processes, the transition density is not known in closed
form. However, the characteristic function of the AS process without Brownian motion is
known to be

φ(k; t) = et|βk|
α

, (3.13)
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and so we can make use of the Fourier inversion theorem to numerically compute the tran-
sition density of the AS process without Brownian motion,

P(Jt = j | J0 = 0, β, α) =
1

2π

∫ ∞

−∞
e−ikjφ(k; t)dk

=
1

2π

∫ ∞

−∞
cos(kj)φ(k; t)dk, (3.14)

where the second equality follows because φ(k; t) is real and even.

3.3 Methods

Inference of Lévy processes

We use a Bayesian framework to analyze Lévy processes evolving on a phylogeny. Let p(θ) be
the prior density for the parameters of the Lévy process model and L(D | θ) be the likelihood
of the observed data given the parameters. We want to compute the posterior density,

p(θ |D) ∝ L(D | θ)p(θ). (3.15)

To compute the likelihood of a Lévy process on a phylogeny, we use Felsenstein’s pruning
algorithm (Felsenstein 1981). To calculate Li(yi), the likelihood of the data observed in all
species that are descended from node i, given that the trait value at node i equals yi, we
use the likelihood at the descendent nodes j and k. Letting {Xt, t > 0} be the Lévy process
under consideration,

Li(yi | θ) =

(∫
P(Xtj = yj |X0 = yi)Lj(yj | θ)dyj

)(∫
P(Xtk = yk |X0 = yi)Lk(yk | θ)dyk

)
,

(3.16)
where tj and tk are the branch lengths leading to nodes j and k, respectively. At the root
(node 0), we assume an improper uniform prior for the trait value y0, and we integrate over
all possible values of the root node to obtain

L(D | θ) =

∫ ∞

−∞
L0(y0 | θ)dy0. (3.17)

However, the integrals in (3.16) and (3.17) are intractable for most Lévy processes. To get
around this, we exploit the fact that if X is a Lévy process consisting of a Brownian motion
with no directional drift and diffusion rate σ2, and a pure-jump process, the Lèvy-Khinchine
representation guarantees that X = B + J , where B is a Brownian motion and J is the
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pure-jump process, and B and J are independent. Then conditional on J = j, the transition
density of X is given by

P(Xt = y |X0 = x, J = j) =
1√

2πσ2t
e−

((y−j)−x)2

2σ2t . (3.18)

This follows because the Brownian motion has to get to y − j and then the jump process
will do the rest. Thus, conditioned on all the jumps on the branch leading up to a node, J
= {J (n), . . . , J (1)} for a tree with n non-root nodes, L(D | θ,J) is the likelihood of the data
under Brownian motion where branch i has branch specific offset J (i). Then,

p(θ,J |D) ∝ L(D | θ,J)p(J | θ)p(θ), (3.19)

where
p(J | θ) =

∏

i

P(J
(i)
ti = j(i) | J0 = 0, θ)

is the joint probability of the jumps along each branch (determined by the specific jump
model adopted). We want to integrate over the jumps to get

p(θ |D) =

∫
p(θ,J |D)dJ, (3.20)

but this integral remains intractable. Instead, we approximate the integral by using MCMC
to obtain samples from the joint posterior distribution of the parameters and the jumps.
Marginalizing over the sampled jumps approximates the integral in the right-hand side of
(3.20).

To obtain posterior samples of the jumps, we serially update each branch in a post-order
traversal of tree by proposing a new value J (i)′ from a normal distribution centered at the
current sampled J (i) and with variance 0.5. This variance lead to good mixing for the data
we considered, but should be specified by the user as appropriate. We then accept or reject
the proposed jump update using the Metropolis-Hastings ratio,

P(Accept J (i)′) =
L(D | θ,J′)
L(D | θ,J)

p(J′ | θ)
p(J | θ) ,

where J′ = {J (n), . . . , J (i+1), J (i)′, J (i−1), . . . , J (1)} is the vector of jumps with only one branch
updated. Note that the proposal ratio is equal to 1 because of the symmetry of the normal
distribution and the prior ratio is equal to 1 because no parameters are updated. This
method is similar to the path sampling method of Robinson et al. (2003), in that we use
MCMC to sample and integrate over hidden states (the unobserved jumps).

During the MCMC run, we randomly choose to update either the jumps or the model
parameters. When we choose to update a model parameter, we randomly choose a model
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parameter to update. All parameters except for α from the AS process are positive and
real and so were assigned scaling proposal distributions. Because 0 < α < 2, we use a
truncated normal proposal distribution to update α. Parameter updates are accepted or
rejected according to the Metroplis-Hastings ratio,

P(Accept θ′) =
L(D | θ′,J)

L(D | θ,J)

p(J | θ′)
p(J | θ′)

p(θ′)

p(θ)

q(θ | θ′)
q(θ′ | θ) ,

where θ is the randomly selected parameter, θ′ is the proposed update, and q(· | ·) is the
proposal distribution.

Data

We log-transformed the male-female means of body mass, endocranial volume (ECV), and
mass-to-ECV ratio data reported in Isler et al. (2008). The branches of the phylogeny
provided by Isler et al. (2008) were measured in increments of half-million years. In favor
of higher resolution of branch lengths, we substituted the Isler et al. phylogeny with the
Redding et al. (2010) primate phylogeny included in the R package auteur (Eastman et al.
2011). We intersected the Isler et al. dataset with the Redding et al. phylogeny, which
resulted in 126 taxa with data present in the phylogeny. This phylogeny has 1267 myr of
total branch and a root height of 65 myr. The resulting phylogeny was used for all analyses
and simulations reported in this paper.

Software configuration

The software used in this study was programmed in C++, borrowing code from GNU Scien-
tific Library (Contributors 2010) and MrBayes (Ronquist et al. 2012b). The source code may
be found at http://github.com/mlandis/creepy-jerk. With one exception, all parame-
ters were assigned half-Cauchy distributions with scale parameters of 1 as prior densities.
Under the AS processs, 0 ≤ α ≤ 2, so we used a uniform distribution on [0, 2] as its prior.
Each posterior distribution was computed by running MCMC for 2 × 106 cycles, sampling
every 103 cycles, where the first 105 cycles were discarded as part of the burn-in. The R
package coda (Plummer et al. 2006) was used to verify MCMC convergence. For the BM,
JN, VG, and AS models, one MCMC run took 0.5, 8, 6, and 48 hours, respectively. This
discrepancy results from the fact that, while the JN and VG models have analytical solutions
for their jump densities, we had to approximate the AS jump density using time-consuming
numerical integration.
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Analysis

We characterized how Lévy processes perform in the context of phylogenetic inference for
both simulated data and real data. We used simulated data to test the accuracy of parameter
inference and quantify the power to reject BM when the true model is a Lévy process with
jumps. We then analyzed the primate data set to both estimate parameters and determine
if a BM model is rejected in favor of a Lévy process with jumps in biological data. Our
analysis examines the aforementioned four Lévy processes: BM, JN, VG, and AS.

To test the BM model, we performed a 3-step procedure similar to a parametric bootstrap.
First, data was analyzed under a pure BM model, resulting in an estimate of the BM rate, σ2.
Then, 20 “jump-absent” datasets were simulated under BM with the inferred rate. Finally,
each simulated dataset was analyzed using a “jump-present” model, and the average posterior
distributions of either the variance and excess kurtosis (for JN and VG) or the parameter α
(for AS) were compared to the posterior distribution of those parameters inferred from the
original data. Note that the variance, excess kurtosis and α calculated here do not describe
the data observed at the tips, but rather their expected values as a function of time, see
equations (3.8), (3.9), (3.11), and (3.12).

By inspecting the posterior distribution of the variance and excess kurtosis for JN and
VG between data and the Brownian motion simulations, we determined whether there was
evidence for non-Gaussian evolution. Under the BM model, the expected excess kurtosis is 0,
so if the posterior of the excess kurtosis placed significant mass away from 0, we interpreted
that as strong evidence for non-Gaussian evolution. For the AS model, these moments are
not defined; however, when α = 2 the AS process is equivalent to BM, so if the posterior
distribution of α placed significant mass away from 2, we took that as evidence for non-
Gaussian evolution.

When we were able to reject BM in favor of a Lévy process with jumps, we characterized
the amount of trait change attributable to those jumps by computing the signal-to-noise
ratio, defined as the ratio of the mean to standard deviation, of the posterior distributions
of the sampled jumps for each branch in the phylogeny. To normalize for branch-length
effects, we further divided all signal-to-noise ratios by their respective branch lengths. When
the signal-to-noise ratio equals zero, the Brownian motion component of the model alone is
capable of producing the observed trait changes along that branch. A non-zero signal-to-
noise ratio was interpreted as evidence that traits along the branch evolved faster than could
be explained by the model’s Brownian motion component.
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3.4 Results

Simulated data

We simulated 20 datasets for each model (JN, VG, and AS) on the primate phylogeny (see
Methods) and computed posterior distributions under the true model for each simulated
dataset. Figure 3.2 presents boxplots of the maximum a posteriori estimates for each sim-
ulation, with the horizontal line indicating the true parameter value. Inference under the
JN and AS model recovered the true parameters with minor error. Inference under the VG
model recovered σ and τ reasonably well while underestimating κ by an order of magnitude.
The mean and root mean square errors of the posteriors are recorded in Supplemental Table
1.

We then applied our method to test for the presence of jumps to the simulated datasets.
The results are shown in Figure 3.3. When the true model is either JN or VG, the inferred
variance was approximately equal between the jump-present and BM simulations, but the
excess kurtosis was different. For the AS model, the inferred α deviated significantly from
2 only in the jump-present data. The maximum a posteriori estimates and 95% highest
posterior density intervals may be found in Supplemental Table 2.

Empirical: Primates

Next, we computed the posterior distributions for body mass, ECV, and mass-to-ECV ratios
for the BM, JN, VG, and AS models. The maximum a posteriori estimates and 95% highest
posterior density intervals for each dataset are provided in Supplemental Table 3. We applied
our test to detect evolution that cannot be explained by BM to each data set. For the sake
of brevity, we only present results for body mass under the JN model (Figure 3.4) and
ECV under the AS model (Figure 3.5), although several models showed evidence of non-
Gaussianity in the evolution of these traits. For the mass-to-ECV data, no Lévy process
with jumps was preferred over BM (Figure 3.6). Supplemental Table 4 has more detailed
numbers, including parameter estimates for each model.

For body mass under the JN model, the estimates of both the jump rate λ and the
jump size δ are non-zero. This is seen when comparing the posterior estimates of the excess
kurtosis, which are qualitatively different between the BM simulations and the real data
(Figure 3.4). In addition, the posterior estimates of the variance of the process were nearly
identical between the BM simulations and the real data. Together, these provided evidence
that the evolution of primate body mass is not well-explained by BM alone.

For ECV under the AS model, the posterior density of α inferred from the ECV data
placed extremely little mass on 2, while the BM simulations consistently resulted in maximum
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a posteriori estimates of α = 2.0 (Figure 3.5), evidence of non-Gaussian evolution of primate
ECV.

For the mass-to-ECV ratio, we found no remarkable deviation from Brownian motion
(Figure 3.6). This is reflected in the fact that the posteriors of the kurtosis for the JN and
VG models, as well as the posterior of α for the AS model, were extremely close to the
posteriors inferred from the BM simulations.

Figure 7 shows the primate phylogeny with branches colored according to their branch-
normalized signal-to-noise ratios. Since we rejected the BM in favor of a Lévy process with
jumps in the body mass and ECV data, non-zero signal-to-noise ratios are possibly explained
by jumps in trait evolution.

3.5 Discussion

Darwin (1859) first proposed that what is now called continuous character evolution occurs
gradually, with species changing very little over short time periods. Since then, some (Simp-
son 1953; Eldredge and Gould 1972; Stanley 1975) have suggested that evolution occasionally
happens more quickly, with rapid changes in characters occurring over short periods of evolu-
tionary time. However, most studies of continuous trait evolution that use comparative data
rely on a Brownian motion model. Because the path of a Brownian motion is continuous; i.e,
the value of the trait at the next moment in time is necessarily very close to the value of the
trait at the current moment, the most natural interpretation of these models excludes the
possibility of saltational change. Moreover, even though some saltational processes can pro-
duce the same distribution of tip-data as a Brownian motion, these are highly restricted–for
example, if jumps occur only at nodes in the tree that lead to extant taxa.

A natural generalization of Brownian motion that allows for paths that are not strictly
continuous is the class of Lévy processes. The discontinuities in the path can be thought of
as “jumps”, in which the character changes instantly without any intermediate forms. These
jumps approximate rapid changes in character value over a short time-scale and result in
distributions of character change that have “fat tails”; in statistical literature, distributions
with fat tails are said to be leptokurtic.

We examined three specific Lévy processes: a compound Poisson with normally dis-
tributed jumps (JN), variance gamma (VG), and α-stable (AS). All processes also include a
Brownian motion component, and hence can be interpreted as modeling gradual evolution
punctuated by large, sudden changes in trait value. The JN process waits an exponentially
distributed amount of time with rate λ before making a jump whose size is drawn from
a normal distribution with standard deviation δ. The VG and AS processes are so-called
infinitely active processes that jump infinitely often. However, most of the jumps are arbi-
trarily small, and so the processes are well-behaved. An important difference between the
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VG and AS processes is that the AS process is much more likely to take extremely large
jumps, compared to the VG process (as reflected in the fact that the variance of the AS
process is infinite). For the VG process, the parameter κ corresponds to the rate of very
large jumps and the parameter τ controls the variance of the jumps that are taken. In the
AS process, the parameter α is confined between 0 and 2. As α approaches 2, the process
converges in distribution to a Brownian motion, while as it approaches 0 the process makes
larger jumps more frequently. The parameter β controls the scale of jumps that are taken.

These processes can be interpreted in a biological context. The JN process reflects the
classic idea of stasis punctuated by rapid character change, and has some history in the
literature (Hansen and Martins 1996; Bokma 2008; Uyeda et al. 2011). VG and AS are more
exotic models; however, they may capture certain aspects of evolution that would otherwise
be impossible to model. For example, in the Lande (1976) description of the impact of
genetic drift on quantitative traits, trait evolution is a Brownian motion on a time scale
determined by the effective population size: evolution works more slowly in large population
and more quickly in small populations. Because the VG process arises as a time-change
of a Brownian motion (Madan and Carr 1998), it can capture the impact of fluctuating
population size on continuous character evolution. The AS process, on the other hand, is a
natural generalization of BM that has many of the same features, but allows for fatter tails
and erratic sample paths.

Because analytic computation of the likelihood using Felsenstein’s pruning algorithm is
not possible for the Lévy processes that we considered, we developed a MCMC method
to estimate the parameters of a Lévy process. The MCMC algorithm samples possible
jump histories along each branch of the phylogeny. Using data augmentation for ancestral
states, similar in spirit to that of Robinson et al. (2003), we numerically integrate over the
history of jumps. Because any Lévy process can be split into a Brownian motion and pure-
jump components, our method is applicable to any Lévy process outside of the examples we
considered here.

To determine whether a phylogeny contains sufficient information to reject single-rate
Brownian motion in favor of a more general Lévy process, we conducted simulation studies
using each of the models that we implemented. Figure 3.2 shows that we were able to recover
the parameters of the JN and AS processes with high accuracy. However, for the VG process,
τ , which controls the variance of the jumps, was well estimated, but the rate of large jumps,
κ, is underestimated. We are uncertain why κ is consistently underestimated but suspect
that tree shape plays an important role.

We then made use of the fact that non-Brownian Lévy processes have more frequent large
deviations in short time periods than BM. This large deviation is manifested as excess kur-
tosis. Using the characteristic function of a Lévy process (i.e. the Lévy-Khinchine formula),
we calculated the posterior distribution of the variance and excess kurtosis per unit time.
Because the Gaussian distribution has zero excess kurtosis, this posterior estimate should be
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close to zero when BM is a good model for trait evolution and have significant mass away
from zero when the trait evolution is non-Gaussian. In the case of the α-stable process,
the excess kurtosis is not defined and so we focused our attention on the parameter α. As
α → 2, the α-stable process becomes a BM; thus, if the posterior distribution of α was not
very close to 2, the evolution of the continuous character was inferred to be non-Brownian.

We applied our MCMC method to data from 126 primate species (Isler et al. 2008;
Eastman et al. 2011) to uncover evidence of non-Gaussian evolution in a large group of
mammals. For each species, we obtained measurements of body mass, endocranial volume
(ECV) and also examined the ratio of mass-to-ECV. For the body mass and ECV data, we
found evidence supporting Lévy process with jumps over BM and highlighted results under
the JN and AS models, respectively, while the mass-to-ECV ratio appeared to evolve as a
Brownian motion. The parameters inferred for body mass suggest that there is a burst of
body size evolution equivalent to 5 to 6 million years of gradual evolution approximately
once every 4 million years, which is within the same order of magnitude of jump periodicity
as reported by Uyeda et al. (2011). ECV evolution was fit by an α-stable process, with
an intermediate value of α = 1.7, consistent with a mode of evolution in which character
changes are mostly gradual but punctuated by infrequent, extremely large jumps.

We also obtained a posterior distribution on the amount of trait change in excess to the
Brownian motion component of the Lévy process on every branch of the phylogeny. Using
this data, we identified branches of the primate phylogeny that showed evidence for evolution
that was faster than the Brownian motion component of the Lévy process could explain. In
Figure 7, we colored the branches of the primate phylogeny according to the signal-to-noise
ratio of the jump size on that branch, normalized by the branch length. Because the jumps
account for the “extra” distance that the Brownian motion component of the model cannot
explain, large magnitudes of this ratio correspond to branches where there is relatively strong
evidence for trait evolution faster than the average BM rate on the tree. This signal weakens
deep in the tree, as well as for long branches, although it is interesting to note that some
deep branches show excess evolution relative to their branch length (e.g. body mass in the
common ancestor of old world monkeys and apes). We identified several clades that showed
strong evidence of unexpectedly rapid evolution prior to diversification. For example, the
ancestor of the great apes (indicated by an arrow) shows evidence of unexpectedly rapid
evolution in both body mass and ECV, while evolution in the ancestors of the Old World
and New World monkeys is well explained by the average rate of Brownian motion.

While our method is able to discriminate between Gaussian and non-Gaussian evolution-
ary models, we were not able to find a test statistic that could discriminate between the
different jump processes. Bayesian methods of model testing, such as Bayes factors, require
computing the marginal likelihood. However, because of the stochastic nature of our method
for integrating over the large number of possible jump histories using MCMC, many methods
for estimating the marginal likelihood of a model are unstable or require an unfeasibly large
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number of MCMC cycles. Moreover, since the method we present does not compute the
marginal likelihood of the parameters alone (with the jumps integrated out), we cannot use
information criteria such as the Akaike Information Criterion to conduct model fitness tests.
In future work, we plan to implement a Bayesian reversible-jump MCMC method to distin-
guish between different jump models. This will help to identify how much signal the data
contains to single out any particular Lévy process model of evolution. While the method
presented in this paper conducts inference under time-homogeneous Lévy processes, noth-
ing prevents the model from being implemented in a rate-shifting framework (see O’Meara
et al. (2006); Eastman et al. (2011)). This will further help to distinguish jump events from
rate-shifting events.

Previous methods describing inference of Lévy processes in the mathematical finance
literature have shown that it is possible to precisely infer parameters and accurately choose
models with time-series data. However, the correlation structure of a phylogeny complicates
inference. As noted by Ané (2008), phylogenetic inference of trait evolution is strongly
affected by tree shape, and proposed an effective sample size to gauge how powerful a given
topology is for the inference of model parameters. Boettiger et al. (2012) explored the impact
of tree shape on the ability for model tests to distinguish Brownian motion models from
Ornstein-Uhlenbeck models of continuous trait evolution. Further examination of how tree
shape affects inference will become particularly important as increasingly complex models of
continuous character evolution are put forward (Khaitovich et al. 2005; Bokma 2008; Harmon
et al. 2010; Eastman et al. 2011).

We face two other problems owing to the nature of the phylogeny and the data being
analyzed. To illustrate these problems, consider that the clearest signal of excess kurtosis that
our model captures lies in terminal sister nodes, where one lineage has evolved as expected
under Brownian motion, but the other lineage has experienced an abnormally large jump
in trait change. First, assigning data with measurement or sampling error to the tips could
introduce (or mask) an excess of trait change, and lead to the false inference of the presence
of jumps in trait evolution for the phylogeny. If this is a concern, tips may be modeled with
noise at the potential price of losing power to reject Brownian motion in favor of a Lévy
process with jumps. Second, the phylogeny is assumed to be fully resolved with errorless
branch lengths. If a trait truly evolved by single-rate Brownian motion but exhibits an excess
of trait change for the specified branch length, it is possible that that branch’s trait evolution
is simply an outlier among realizable evolution histories, but it is also possible that the true
branch length is longer than indicated. A potential solution is to include posterior samples
of the branch length from a Bayesian phylogenetic analysis.

When fitting models of evolution to comparative data, it is important to keep in mind
the distinction between the model of evolutionary change and the joint distribution of trait
values at the tips that such a model produces. This mapping is not one-to-one; many different
models can result in the same joint distribution at the tips and are therefore indistinguishable
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from the data alone. To choose between these otherwise equivalent models, scientists must
look beyond comparative data, e.g. to the fossil record and mechanistic biological models.
Here, we have used BM as a representative process that results in a multivariate normal
distribution with a particular covariance structure. Other processes that produce this same
joint distribution exist. Similarly, though we fit models with jumps, there are many gradual
processes that can produce the exact same distribution at the tips as a jump model, such
as models which use Brownian motion with random rate shifts (although these models may
not have straight-forward or desirable biological interpretations).

Many other Lévy processes exist. We have only showcased a few, but our method can
be applied to any Lévy process with a known characteristic function. It will be interesting
to see whether different evolutionary processes, different clades, or different traits are best
modeled by certain types of Lévy processes, be it Brownian motion or the α-stable process.
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Figure 3.2: Box plots of maximum a posteriori model parameter estimates under JN (2a),
VG (2b), and AS (2c) for 20 replicates of jump-present data simulated under each model.
The horizontal line shows the true parameter value underlying the simulated data. The true
parameters for JN are σ = .05, λ = .111, and δ = .3. The true parameters for VG are σ = .1,
κ = 3, and τ = .4. The true parameters for AS are σ = .05, α = 1.5, and β = .05.
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Figure 3.3: Average posteriors of model summary statistics under JN (3a), VG (3b), and AS
(3c) upon simulated data. Solid lines indicate average posteriors from 20 replicates of jump-
present data simulated under the same model. Dashed lines indicate average posteriors from
20 replicates of jump-absent data simulated under pure Brownian motion parameterized with
equivalent variance per unit time (σ = .1118, σ = .4050, and σ = .2389 for analysis by JN,
VG, and AS, respectively).
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Figure 3.4: Posteriors of model summary statistics under JN upon primate body mass data.
Figures 4a, 4b, and 4c are the model parameters with maximum a posteriori estimates
σ̂ = .0596, λ̂ = .2497, and δ̂ = .2929, respectively. Figures 4d and 4e are the model variance
and kurtosis per unit time. Solid lines indicate posteriors from the empirical data. Dashed
lines indicate average posteriors from 20 replicates of jump-absent data simulated under pure
Brownian motion parameterized with equivalent variance per unit time (σ = .18).
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Figure 3.5: Posteriors of model summary statistics under AS upon primate endocranial
volume data. Figures 5a, 5b, and 5c are the model parameters with maximum a posteriori
estimates σ̂ = .1541, α̂ = 1.670, and β̂ = .0698, respectively. Solid lines indicate posteriors
from the empirical data. Dashed lines indicate average posteriors from 20 replicates of jump-
absent data simulated under pure Brownian motion parameterized with equivalent variance
per unit time (σ = .12).
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Figure 3.6: Posteriors of model summary statistics under JN (6a), VG (6b), and AS (6c)
upon primate body mass-to-endocranial volume ratio data. Solid lines indicate posteriors
from the empirical data. Dashed lines indicate average posteriors from 20 replicates of jump-
absent data simulated under pure Brownian motion parameterized with equivalent variance
per unit time (σ = .096).
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Figure 3.7: Branch-normalized signal-to-noise ratios of posterior jump distributions. The
primate phylogeny with inferred evolutionary histories for body mass under JN (Fig. 7A)
and for endocranial volume under AS (Fig. 7B) are shown. Branches are colored according
to the quantile containing their branch length-normalized signal-to-noise ratios. A value of
approximately zero indicates trait evolution explained predominantly by the Brownian mo-
tion component of the fitted model. Uncolored branches in light gray indicate the tendency
for the model to explain trait evolution with jumps valued according to the figure legend.
The arrow points to the most recent common ancestor of great apes.
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Appendix A

Appendix: Biogeographic dating

A.1 Paleogeographical dispersal graphs from

Cambrian to present (540–0 Ma)

To construct the instantaneous rate matrix for the epochal dispersal process described in
Landis (2015), I defined three dispersal graphs for short, medium, and long-distance dispersal
(Figure S2.5). To determine the timing and nature of epochs structuring the paleogeograph-
ical model, I first surveyed paleotectonic reconstructions published by Seton et al. (2012)
and Wright et al. (2013) available through gplates (Gurnis et al. 2012) and paleogeographic
maps published by Blakey (2008), then corroborated those findings with various independent
sources in the literature (Dietz and Holden 1970; Ziegler et al. 1979; Duque-Caro 1990; Elias
et al. 1996; Veevers 2004; Schettino and Scotese 2005; Algeo et al. 2007; Ali and Aitchison
2008; Fiorillo 2008; Lohman et al. 2011; McQuarrie and van Hinsbergen 2013; White et al.
2013; Nance et al. 2014). From this survey I identified twenty-five areas (Table A.1) and
twenty-six epochs (Table A.2) as sufficient to coarsely model Earth’s paleogeographic his-
tory from the Cambrian until the present. Note, each epoch does does not correspond to
a single event, i.e. the creation or destruction of a single dispersal edge, but rather some
group of events that are roughly coincident in time. This is done because the time required
to compute the epoch model likelihood increases approximately linearly with respect to the
number of epochs: the fewer the number of epochs, the faster the analysis. In practice, I
binned events into intervals of 5 Myr, then, since two epochs with identical rate matrices
is equivalent to a single epoch with the same rate matrix, I thinned the number of bins by
concatenating eventless bins to the next youngest eventful bin. Since the three youngest
epochs occur in the last 5 Myr, they were excluded from the binning-thinning procedure.
Event times are rounded point estimates without error: they serve only as a consensus across
sources to limit when dispersal events of different types might or might not plausibly occur.
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Classes of dispersal edges are defined as follows. Each short-distance dispersal edge
required areas be connected by land and immediately adjacent. Medium-distance dispersal
edges required areas be immediately adjacent and be connected by land or by short water
barriers, using the distance between Madagascar and Africa or throughout the Indoaustralian
archipelago as a rough measure. In addition, because major paleotectonic events typically
happen over tens of millions of years, medium-distance dispersal edges often preceded the
establishment of short-distance dispersal edges (i.e. when continents begin to merge) or
remained following the destruction of short-distance dispersal edges (i.e. when continents
begin to split). All pairs of areas per time interval shared edges for the long-distance dispersal
graph, i.e. the graph was fully connected. Strict criteria for presence or absence of an edge
were not used, so the presented model should be taken as summary of various sources rather
than a quantitative reconstruction.

The dispersal graph animation was generated using the gplates Markup Language (Qin
et al. 2012). The animation may be viewed here:

http://figshare.com/s/2a8329e06c6d11e587bd06ec4b8d1f61.

http://figshare.com/s/2a8329e06c6d11e587bd06ec4b8d1f61
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State Abbrev. Name
0 SAmN South America (N)
1 SAmE South America (E)
2 SAmS South America (S)
3 NAmNW North America (NW)
4 NAmNW North America (SE)
5 NAmNW North America (NE)
6 NAmNW North America (SW)
7 Grn Greenland
8 Eur Europe
9 AsC Asia (C)
A AsE Asia (E)
B AsSE Asia (SE)
C AsNE Asia (NE)
D AfrW Africa (W)
E AfrS Africa (S)
F AfrE Africa (E)
G AfrN Africa (N)
H AusNW Australia (NW)
I AusSE Australia (SE)
J Ind India
K Mdg Madgascar
L AntW Antarctica (W)
M AntE Antarctica (E)
N Mly Malaysian Archipelago
O NZ New Zealand

Table A.1: List of areas. Each row gives the full and abbreviated area names, plus the
corresponding state value used for the analysis.



A
P

P
E

N
D

IX
A

.
A

P
P

E
N

D
IX

:
B

IO
G

E
O

G
R

A
P

H
IC

D
A

T
IN

G
83

Index Interval (approx.) Start End Key events Add’l Refs.
1 Cambrian 540 450 Z79, V04
2 Ordovician 450 430 NAm, As, Eur approach each other Z79, V04
3 Silurian 430 400 NAm merges with Eur Z79, V04
4 Devonian 400 350 Mly, AsSE separates from Aus Z79, V04
5 Carboniferous 350 300 Mly, AsSE fully splits from Aus Z79, V04

NAm approaches SAm Z79, V04
6 Early–Mid Permian 300 280 AsC, AsE, AsNE assembles Z79, V04

NAm, SAm floods RR85, V04
7 Mid–Late Permian 280 240 Pangaea forms V04, SS05
8 Triassic 240 200 AfrN approaches Eur V04, SS05

AsE positions between AsC, AsNE and AsSE, Mly V04, SS05
9 Early Jurassic 200 170 Tethys Sea spreads between Laurasia and Gondwana V04, SS05
10 Mid Jurassic 170 160 Laurasia separates from Gondwana V04. SS05

Asia forms V04. SS05
11 Late Jurassic 160 150 Laurasia fully splits from Gondwana SS05, AA08

E.Gondwana separates from W.Gondwana SS05
12 Early Cretaceous 150 120 Laurasia fragments SS05

Tethys Sea forms SS05
13 Early Cretaceous 120 110 Afr separates from SAm DH70

NAmNW and AsNE near each other G03
14 Early Cretaceous 110 100 Ind, Mdg separates from Aus, Ant SS05
15 Late Cretaceous 100 90 W. Interior Seaway forms A07

Ind separates from Aus, Ant AA08
16 Late Cretaceous 90 85 Afr fully splits from SAm SS05

Ind fully splits from Aus, Ant AA08
Bering Land Bridge forms F08

17 Late Cretaceous 85 75 Aus separates from Ant SS05, W13
18 Late Cretaceous 75 65 Ind fully splits from Mdg AA08

Aus fully splits from Ant SS05, W13
19 Paleocene–Eocene 65 50 W. Interior Seaway removed A07

Bering Land Bridge removed F08
20 Eocene–Oligocene 50 30 Ind approaches with AsC, AsSE AA08
21 Oligocene 30 25 SAm separates from Ant W13

SAm approaches NAm D90
Ind merges with AsC, AsSE AA08

22 Oligocene–Miocene 25 20 Tethys Sea removed MH13
23 Miocene 20 13 Indoaustralian archipelago forms L11
24 Pliocene–Pleistocene 13 0.1 SAm merges with NAm D90, M15
25 Pleistocene 0.1 0.02 Bering Land Bridge forms E96
26 Pleistocene–Holocene 0.02 0 Modern Earth
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Table A.2: List of events. Each row identifies one epoch assumed in the dispersal model, including the time
interval, the key events, and supplemental references. All events and times were first established using Seton
et al. (2012) and Wright et al. (2013) using gplates (Gurnis et al. 2012) and Blakey (2008). When applicable,
events and times were supported by Supplemental References, given by the following abbreviations: DH70 =
Dietz and Holden (1970), Z79 = Ziegler et al. (1979), RR85 = Ross and Ross (1985), D90 = Duque-Caro
(1990), E96 = Elias et al. (1996), G03 = Golonka et al. (2003), V04 = Veevers (2004), SS05 = Schettino and
Scotese (2005), A07 = Algeo et al. (2007), AA08 = Ali and Aitchison (2008), F08 = Fiorillo (2008), L11 =
Lohman et al. (2011), MH13 = McQuarrie and van Hinsbergen (2013), W13 = White et al. (2013), N14 =
Nance et al. (2014), M15 = Montes et al. (2015). Area abbreviations are given in Table A.1.
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Figure A.1: Paleogeographical dispersal graph for Earth from Cambrian until
present. Dispersal graphs for 26 epochs and 25 areas are shown. Areas are marked by black
vertices. Modern continents share colors. Black edges indicate short- and medium-distance
dispersal routes. White edges indicate exclusively medium-distance dispersal routes. Long-
distance dispersal routes are not shown, but implied to exist between all area-pairs within
an epoch. All images were produced using gplates (Gurnis et al. 2012).

Epoch 1 of 26, 540–450Ma.

Epoch 2 of 26, 450–430Ma.
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Epoch 3 of 26, 430–400Ma.

Epoch 4 of 26, 400–350Ma.

Epoch 5 of 26, 350–300Ma.
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Epoch 6 of 26, 300–280Ma.

Epoch 7 of 26, 280–240Ma.

Epoch 8 of 26, 240–200Ma.
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Epoch 9 of 26, 200–170Ma.

Epoch 10 of 26, 170–160Ma.

Epoch 11 of 26, 160–150Ma.
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Epoch 12 of 26, 150–120Ma.

Epoch 13 of 26, 120–110Ma.

Epoch 14 of 26, 110–100Ma.
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Epoch 15 of 26, 100–90Ma.

Epoch 16 of 26, 90–85Ma.

Epoch 17 of 26, 85–75Ma.
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Epoch 18 of 26, 75–65Ma.

Epoch 19 of 26, 65–50Ma.

Epoch 20 of 26, 50–30Ma.
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Epoch 21 of 26, 30–25Ma.

Epoch 22 of 26, 25–20Ma.

Epoch 23 of 26, 20–13Ma.
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Epoch 24 of 26, 13–0.1Ma.

Epoch 25 of 26, 0.1–0.02Ma.

Epoch 26 of 26, 0.02–present.
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Figure A.2: Maximum clade credibility tree for +G without root contraints. Each
taxon is marked with an ‘X’ for the area it is found in. Node ages are summarized using
“Common Ancestor heights” using TreeAnnotator v2.3.0. Note, sea turtles are not assigned
any areas (see main text).
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Appendix B

Appendix: Lévy processess

Parameter σ
True 0.1118
Mean 0.1085
RMSE 0.0068

(a) BM

Parameter σ λ δ
True .0500 .1110 .3000
Mean .0506 .1271 .2194
RMSE .0081 .0527 .1004

(b) JN

Parameter σ κ τ
True .1000 3.000 .4000
Mean .0937 .7634 .3773
RMSE .0698 2.269 .0347

(c) VG

Parameter σ α β
True .0500 1.500 .0500
Mean .0684 1.430 .0392
RMSE .0220 .1277 .0131

(d) AS

Table B.1: Mean and root-mean-square error (RMSE) for inference under Brownian motion
(BM; 1A), compound Poisson with normally distributed jumps (JN; 1B), variance gamma
(VG; 1C), and α-stable (AS; 1D) upon data simulated under the same model.
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Simulation (JN) Simulation (BM)
V .0120 .0119

(.0085, .0176) (.0092, .0158)
K 2.960 .0828

(.7132, 9.067) (2.112e-05, 1.184)

(a) JN

Simulation (VG) Simulation (BM)
V .1549 .1713

(.1189, .2077) (.1337, .2243)
K .3451 .0124

(.0100, 1.953) (1.909e-07, .7089)

(b) VG

Simulation (AS) Simulation (BM)
α 1.454 1.822

(1.065, 1.748) (1.292, 1.994)

(c) AS

Table B.2: MAP (maximum a priori) and 95% HPD (highest posterior density; below MAP
in parentheses) for inference under JN (2A), VG (2B), and AS (2C) upon simulated data.
The first column lists results for inference upon jump-present data simulated under the same
model. The second column lists results for inference upon jump-absent data simulated under
pure Brownian motion with equivalent variance (σ = .1118, σ = .4050, and σ = .2389 for
analysis by JN, VG, and AS, respectively).
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BM JN AS VG
σ .1797 .0596 .1541 .0476

(.1592, .2088) (.0372, .1604) (.0224, .1862) (.0095, .1683)
λ - .2497 - -

- (.0079, 1.188) - -
δ - .2929 - -

- (.0758, .5389) - -
α - - 1.670 -

- - (1.213, 1.998) -
β - - .0698 -

- - (.0028, 0.1085) -
κ - - - .6394

- - - (.0051, 2.990)
τ - - - .1767

- - - (.0689, .2155)

(a) Body mass

BM JN AS VG
σ .1167 .0754 .0460 .0219

(.1029, .1344) (.0309, .1153) (.0050, .0927) (.0064, .1077)
λ - .0569 - -

- (.0057, 1.122) - -
δ - .1313 - -

- (.0244, .7425) - -
α - - 1.440 -

- - (1.098, 1.797) -
β - - .0344 -

- - (.0079, .0602) -
κ - - - .4100

- - - (.0035, 3.095)
τ - - - .1145

- - - (.0481, .1427)

(b) ECV
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BM JN AS VG
σ .0965 .0871 .0912 .0770

(.0853, .1111) (.0485, .1071) (.0304, .1070) (.0186, .1009)
λ - .2209 - -

- (.0001, 1.621) - -
δ - .0757 - -

- (.0107, .1420) - -
α - - 1.926 -

- - (1.269, 2.000) -
β - - .0076 -

- - (2e-06, .0624) -
κ - - - .1842

- - - (.0005, 1.570)
τ - - - .0818

- - - (.0261, .1041)

(c) Mass-to-ECV ratio

Table B.3: MAP and 95% HPD (below MAP in parentheses) of parameters inferred for
evolution of primate body mass (3A), endocranial volume (ECV; 3B), and mass-to-ratio
(3C). Results for BM, JN, VG, and AS listed per dataset.

Body mass (JN) Simulation (BM)
V .0345 .0346

(.0260, .0499) (.0268, .0457)
K 1.401 .0133

(1.030e-05, 4.796) (2.966e-07, 1.041)

(a) Body mass, JN

ECV (AS) Simulation (BM)
α 1.440 1.859

(1.098, 1.797) (1.278, 2.000)

(b) ECV, AS

Mass-to-ECV (JN) Simulation (BM)
V .0091 .0091

(.0072, .0123) (.0071, .0121)
K .1061 .0900

(2.166e-07, .8429) (2.535e-05, 1.275)

(c) Mass-to-ECV ratio, JN

Mass-to-ECV (VG) Simulation (BM)
V .0091 .0090

(.0071, .0122) (.0070, .0120)
K .0193 .0360

(5.552e-07, .6841) (3.643e-05, .8430)

(d) Mass-to-ECV ratio, VG

Mass-to-ECV (AS) Simulation (BM)
α 1.890 1.833

(1.175, 1.998) (1.280, 1.998)

(e) Mass-to-ECV-ratio, AS

Table B.4: MAP and 95% HPD (below MAP in parentheses) for inference under JN upon
body mass data (4A), AS upon ECV data (4B), JN upon ratio data (4C), VG upon ratio
data (4D), and AS upon ratio data (4E). The first column lists results for inference upon
the empirical data. The second column lists results for inference upon jump-absent data
simulated under pure Brownian motion with equivalent variance (σ = .18, σ = .12, and
σ = .096 for body mass, ECV, and ratio data, respectively).
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Euoticus pallidusEuoticus elegantulusGalago senegalensisGalago moholiOtolemur garnettiiOtolemur crassicaudatus
Perodicticus pottoArctocebus aureusArctocebus calabarensis
Loris tardigradusNycticebus pygmaeusNycticebus coucangDaubentonia madagascariensisLepilemur mustelinusLepilemur leucopusLemur catta
Hapalemur griseusVarecia variegataEulemur rubriventer
Eulemur mongozEulemur coronatusEulemur macacoEulemur fulvus
Avahi lanigerIndri indri
Propithecus diademaPropithecus verreauxiMicrocebus rufusMicrocebus murinus
Cheirogaleus mediusCheirogaleus majorTarsius syrichtaTarsius bancanus
Cacajao melanocephalusCacajao calvusPithecia pitheciaPithecia monachus

Callicebus caligatus

Alouatta palliataAlouatta carayaAlouatta pigraAlouatta seniculusAlouatta belzebul
Ateles paniscusAteles belzebuth
Ateles geoffroyiAteles fusciceps

Lagothrix lagotricha

Cebus olivaceus
Cebus apellaCebus capucinusCebus albifronsSaimiri sciureusSaimiri oerstediiAotus lemurinus
Aotus trivirgatusCallimico goeldiiCallithrix pygmaeaCallithrix argentataCallithrix penicillataCallithrix jacchusLeontopithecus rosalia
Saguinus oedipusSaguinus geoffroyi
Saguinus midas

Saguinus leucopusSaguinus mystaxSaguinus nigricollisSaguinus fuscicollisPongo pygmaeusGorilla gorillaPan troglodytesPan paniscusHylobates larHylobates agilisHylobates pileatusHylobates muelleriHylobates klossii
Trachypithecus geeiTrachypithecus cristatusTrachypithecus phayreiTrachypithecus obscurusPresbytis comataPresbytis frontataPresbytis femoralisPresbytis melalophosPresbytis rubicundaPresbytis thomasiTrachypithecus johniiTrachypithecus vetulus

Nasalis larvatus

Procolobus verusColobus satanas
Colobus angolensisColobus polykomosColobus guerezaMandrillus sphinxCercocebus torquatusLophocebus albigenaTheropithecus geladaPapio hamadryasMacaca sylvanusMacaca nigraMacaca silenusMacaca nemestrinaMacaca arctoidesMacaca radiataMacaca fascicularisMacaca fuscataMacaca mulatta
Allenopithecus nigroviridisErythrocebus patasChlorocebus aethiopsCercopithecus lhoestiCercopithecus neglectusCercopithecus monaCercopithecus campbelliCercopithecus wolfiCercopithecus pogonias

Cercopithecus erythrotisCercopithecus cephusCercopithecus ascanius

Cercopithecus petaurista

Cercopithecus nictitansCercopithecus mitis

Cercopithecus diana

-7.6681
-0.1747
-0.0846
-0.0364
0.0033
0.0416
0.089
0.1575
1.3291

(a) Body mass under JN
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Cercopithecus petaurista

Cercopithecus nictitansCercopithecus mitis

Cercopithecus diana

-3.0942
-0.2003
-0.083
-0.0312
-3e-04
0.037
0.0836
0.1864
2.7675

(b) ECV under AS

Figure B.1: Branch-normalized signal-to-noise ratios (SNR) of posterior jump distributions.
The primate phylogeny with inferred evolutionary histories for body mass under JN (Supp.
Fig. 1A) and for ECV under AS (Supp. Fig. 1B) are shown. Branches are colored according
to the quantile containing their branch length-normalized SNR ratios. A value of approx-
imately zero indicates trait evolution explained predominantly by pure Brownian motion.
Red and blue indicate the tendency for the model to explain trait evolution with positive
and negative valued jumps, respectively. Supplemental Figure 1 is identical to Figure 7 ex-
cept the tips are labeled with species names and the most recent common ancestor of great
apes is not marked.
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