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This dissertation consists of six distinct research studies that are broadly classified into 

two parts. The first part is concerned with the application of emerging data analysis tools rooted 

in causal inference, nonlinear chaotic dynamical systems, and information theory to detect 

associations and characterize patterns of interaction in complex hydrometeorological systems. 

This part is motivated by the rapid accumulation of hydrometeorological data records in the form 

of in-situ, remotely sensed observations and climatological reconstructions in addition to the 

significant advancements in data mining tools that facilitate discovery of interaction patterns solely 

from observational datasets.  More specifically, I present four studies that utilize observational 

datasets to elucidate patterns of interaction and subsequently improve predictive understanding of 

the underlying processes. First, I evaluate the performance of four causal inference methods in 

recovering the causal structure underlying a hydrologic conceptual model and utilize causal 
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analysis to formulate hypothesis on the differential impact of environmental variables in regulating 

evapotranspiration. Second, methods rooted in the theory of chaotic dynamical systems are used 

to examine the dynamical properties of 400 hydrologic basins across the contiguous United States 

(CONUS) with the aim of developing a catchment classification framework. Third, I propose an 

algorithm that utilizes causal inference to extend methods of univariate state space forecasting to 

account for multivariate predictors. The algorithm is applied for daily streamflow forecasting in 

nine hydrologic basins across CONUS, and the results are compared to that of deep learning 

models. Finally, concepts of information theory are used to diagnose the complex, nonlinear, 

space-time varying relationship between infrared brightness temperature and precipitation across 

different seasons and spatiotemporal scales.  

 

The second part of the dissertation focuses on the use of long historical records of satellite-

based precipitation datasets in hydroclimatic research, and it consists of two studies that utilize 

Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks – 

Climate Data Record (PERSIANN-CDR) dataset. The first study proposes a framework for 

developing Intensity Duration Frequency (IDF) curves from satellite-based precipitation datasets. 

The framework accounts for the inherent biases in the estimates of PERSIANN-CDR, and it is 

used to develop IDF curves over CONUS with evaluation based on in-situ estimates of NOAA 

Atlas 14. The second study utilizes PERSIANN-CDR dataset over the Nile river basin to constrain 

future projections of precipitation obtained from climate models. More specifically, a Bayesian 

Model Averaging (BMA) approach is adopted to constrain future projections of 20 Global Climate 

Models (GCMs) from phase six of the Coupled Model Intercomparison Project (CMIP6). The 

results show that annual precipitation is projected to decrease in the upper White Nile basin, 
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whereas projected change in the Blue Nile basin is highly uncertain both in magnitude and sign of 

change.   
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Precipitation, Intensity-Duration-Frequency (IDF) curves, Infrared Brightness Temperature, 

Future Projections of Precipitation, Climate Change. 
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Chapter 1 

 

1. Introduction  

1.1 Thesis Overview  

This dissertation is comprised of six distinct studies that broadly fall within two general 

research themes. The first and primary theme explores the application of emerging methods of 

causal inference, nonlinear dynamics and information theory in addressing a variety of research 

questions in hydrometeorology, whereas the second theme investigates the utility of integrating 

satellite-based precipitation datasets in decision-making, planning and design of infrastructure in 

a changing climate. The dissertation is, therefore, structured in alignment with this classification, 

and it consists of two main parts. Part I includes four chapters (chapters 2 to 5) each of which 

presents an application of a data-driven method that is either rooted in the theory of causal 

inference, chaotic dynamics, or information theory. On the other hand, Part II is comprised of two 

studies (chapters 6 and 7) that illustrate the utility of satellite-based precipitation records in 

deriving design rainfalls and constraining future projections of precipitation.  

 

Chapter 2 of this dissertation presents a review of four general methods of causal inference, 

evaluates their performance in recovering the causal structure of hydrometeorological systems, 

and investigates the impact of sample length, process noise, and observational noise in the 

performance of these methods. Subsequently, a causal inference method is then used to develop a 

hypothesis on the differential impact of environmental variables (e.g. net radiation, vapor pressure 

deficit, soil moisture …etc.) in regulating evapotranspiration using observational timeseries from 
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a FLUXNET tower site in Arizona. Finally, the results are compared to what would have been 

obtained using classical analysis of correlation, and the hypothesis is interpreted based on our 

understanding of canopy seasonal dynamics and evapotranspiration processes.  

 

The next two chapters of the dissertation (chapters 3 and 4) are closely related as they 

introduce the application of methods rooted in the theory of chaotic dynamical systems in analysis 

of hydrologic timeseries. More specifically, chapter 3 utilizes the theory of phase space 

reconstruction based on time-delayed univariate time series along with daily streamflow 

observations to examine the properties of dynamical behavior in hydrologic basins. The analysis 

is carried out over approximately 400 hydrologic basins across the contiguous United States 

(CONUS). Next, an attempt is made to relate the properties of dynamical behavior with the 

physical properties of basins (e.g.  Area, Slope, Elevation, Vegetation Cover …etc.) where we 

found coherent relationships that link basin dynamical behavior to its physical properties. Overall, 

the results form the basis of a catchment classification framework, and they bear significance for 

improved streamflow forecasting and rainfall-runoff modelling in ungauged hydrologic basins. 

Chapter 4 follows along the same lines presented in chapter 3 and utilizes the theory of phase space 

reconstruction for streamflow forecasting. More specifically, we present an extension of state-

space forecasting based on univariate timeseries to the case of multivariate predictors. We propose 

a search algorithm that uses causal inference to navigate the search space of possible embedding 

coordinates and converge to the optimum set of embedding coordinates which is then used for 

forecasting. The algorithm is applied in a case study that consists of 9 hydrologic basins across 

CONUS, and the results are compared with deep learning approaches of Long Short-Term 

Memory (LSTM) networks.  
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Chapter 5 brings the first part of the dissertation to a conclusion. In particular, the chapter 

presents the results of an analysis that utilizes information-theoretic methods in diagnosing the 

relationship between Infrared (IR) brightness temperature and surface precipitation rate. This study 

is motivated by the need to understand the spatial, temporal, and seasonal variability in the 

complex, indirect relationship between IR and precipitation. IR is generally a good proxy of the 

properties of cloud tops, and it is often used in operational algorithms of satellite-based 

precipitation estimation. However, the relationship is complex, nonlinear and exhibits significant 

variability across time and space scales as well as over different seasons. Therefore, in this study, 

we used an information-theoretic measure named Maximal Information Coefficient (MIC) to 

diagnose this complex relationship. We argue that this analysis provides insights that cannot be 

obtained by evaluation of satellite-based precipitation estimates against in-situ observations 

because in such a case the errors resulting from the inherent dependence are inextricable from 

those induced by the assumptions encoded in the estimation algorithms. 

 

Part II of the dissertation consists of two studies that demonstrate the utility of using long, 

historical records of satellite-based precipitation in derivation of infrastructure design rainfalls and 

constraining future projections of precipitation. In both studies, the dataset used is Precipitation 

Estimation from Remotely Sensed Information using Artificial Neural Networks – Climate Data 

Record (PERSIANN-CDR). Specifically, chapter 6 presents a methodological framework to 

derive Intensity-Duration-Frequency (IDF) curves from satellite-based precipitation observations. 

The framework accounts for the inherent biases in the estimates of extreme precipitation obtained 

from PERISANN-CDR, namely elevation-dependent underestimation bias and areal to point 
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estimation biases. We then use the framework to develop daily IDF curves over CONUS and 

evaluate the results using NOAA Atlas 14 of IDF curves estimated from in-situ observations. We 

also discuss issues related to uncertainty and the potential of extending the application of the 

framework to other regions of the world—especially developing countries.  

 

In chapter 7, we present the application of Bayesian Model Averaging (BMA) to constrain 

future projections of precipitation in the Nile River basin. The study is motivated by the current 

intense debate on the future of water availability in the Nile river amongst the geopolitical tensions 

resulting from transboundary water management and the mega dams being built in the basin. 

Specifically, we use the outputs of 20 Global Circulation Models (GCMs) from phase six of the 

Coupled Model Intercomparison Project (CMIP6) together with a long historical record of 

precipitation from PERSIANN-CDR (1983 – 2014). The obtained results provide a more 

informative estimate of future projections than the ensemble mean as well as providing probability 

distributions of future projections instead of a single value. Our results show that annual 

precipitation is more likely to decrease in the White Nile river basin, whereas projected change in 

the Blue Nile is highly uncertain both in magnitude and sign of change.    

 

Finally, Chapter 8 of the dissertation provides concluding remarks and future directions 

regarding the application of data-driven exploration methods in hydrometeorological systems. 

More specifically, the chapter summarizes the main findings of the six studies and provides a brief 

discussion on the possibility of extending the application of the presented methods to address some 

of the important research questions in hydrologic research.  
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1.2 Contributions  

Five of the six studies that constitute this dissertation have been published in peer-reviewed 

articles as follows: 

 

• Chapter 2: Ombadi et al., 2020, Evaluation of methods for causal discovery in 

hydrometeorological systems, Water Resources Research. 

 

• Chapter 3: Ombadi et al., 2021a, Complexity of hydrologic basins: A chaotic dynamics 

perspective. Journal of Hydrology. 

 

• Chapter 5: Ombadi et al., 2021b, How much Information on Precipitation is Contained 

in Satellite Infrared Imagery? Atmospheric Research. 

 

• Chapter 6: Ombadi et al., 2018, Developing Intensity‐Duration‐Frequency (IDF) 

Curves From Satellite‐Based Precipitation: Methodology and Evaluation, Water 

Resources Research. 
 

• Chapter 7: Ombadi et al., 2021c, Retrospective Analysis and Bayesian Model 

Averaging of CMIP6 Precipitation in the Nile River Basin, Journal of 

Hydrometeorology.  
 

The sixth study which represents the fourth chapter of the dissertation is currently under-

review. In addition to these peer-reviewed articles, the studies reported in the dissertation have 

been presented in several conferences including the American Geophysical Union (AGU) Fall 
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Meeting and the American Meteorological Society (AMS) Annual Meeting. Furthermore, the 

results reported in chapter 3 of the dissertation have been awarded an AGU Outstanding Student 

Presentation Award (OSPA) for an oral talk at the 2020 AGU Fall Meeting.    

 

1.3 Motivation  

The primary research theme in this dissertation, namely using data-driven methods to 

understand scale-dependent interactions in hydrometeorological systems is, on one hand, 

motivated by the unprecedented availability of observational data records in the form of in-situ, 

remotely sensed observations and climatological reconstructions. On the other hand, it is aimed to 

address the gap of knowledge in hydrological systems regarding the change in dynamical behavior 

of hydrological systems across the hierarchy of space and time scales, and to satisfy the need for 

establishing scale-dependent relationships that take into account the emergent behavior of such 

systems at the macroscale level. In particular, it has long been argued that significant advances in 

hydrology are hindered due to the current status of hydrological research which focuses on 

incorporating heterogeneity in highly calibrated, sophisticated, distributed hydrological models 

rather than seeking organizing principles and laws that govern the variability in heterogeneity and 

control the macroscopic behavior of the watersheds (Klemeš, 1983; Dooge, 1986; McDonnell et 

al., 2007). A recent hydrologic community initiative that involved a large number of researchers 

in the field of hydrology has identified twenty-three unsolved problems in hydrology, and 

explicitly acknowledged the importance of scale (time and space) in formulating hydrologic laws 

and relationships (Blöschl et al., 2019). 
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In this dissertation, we argue that methods of causal inference rooted in networks, chaos 

and information theories (as will be discussed in chapter 2) provide a strong basis for a framework 

to discover patterns and regularities in hydrological systems at the macroscale level. These patterns 

can subsequently be utilized to improve our predictive understanding of hydrometeorological 

systems. More specifically, in chapter 2, we show an example of using causal inference methods 

to understand the relative contributions of environmental variables in regulating 

evapotranspiration. In chapter 3, we present another example of using observational datasets of 

streamflow to detect macroscale patterns of dynamical behavior in hydrologic basins across the 

contiguous United States. Chapter 4 presents a case study of using observational data solely to 

improve our capacity of streamflow forecasting using data-driven methods. This latter case 

illustrates how improved understanding of scale-dependent interactions can translate to enhanced 

capacity of forecasting and prediction of system behavior.  

 

The second theme of the dissertation focuses on the use of long historical records of 

satellite-based precipitation for planning and design of infrastructure as well as for constraining 

the projections of future precipitation obtained from climate models. This chapter is motivated by 

the increasing availability of satellite-based precipitation datasets and the significant advancement 

in remote sensing of precipitation. While research in remote sensing of precipitation in the recent 

two decades have mostly focused on improving algorithms for estimation of precipitation rate from 

infrared brightness temperature and passive microwave observations, it is important to conduct 

research on the inherent biases of the datasets and the possibility of integrating the long historical 

records in engineering applications of immense socioeconomic value. This has been the impetus 

behind the two research studies in part II of the dissertation.          
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1.4 Table of Datasets  

Several datasets have been used in the six studies that constitute this dissertation. Table 

A.1 in the appendix lists all the datasets used in this dissertation and provides link to repositories 

for data download. Moreover, Table A.2 in the appendix provides a list of datasets that were 

generated in some of the studies with links to repositories for data download.   

 

 

 

1.5 Table of Symbols  

For each chapter of the dissertation (chapters 2 to 7), a table is provided in the appendix 

with symbols and notations used in the chapter. These tables are numbered in the appendix (Table 

A.3 to A.8); please refer to these tables for the definition of any given symbol.  
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Part I: Causal Inference, Nonlinear Dynamics, and 

Information Theory  
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Chapter 2 

2. Causal Inference in Hydrometeorological Systems  

“This chapter is extracted from Ombadi et al. (2020) with few edits incorporated for brevity and 

clarity”  

 

2.1 Introduction  

In hydrometeorology, as in other branches of natural sciences, causal inference plays a 

central role in the acquisition of objective scientific knowledge. Arguably, most questions 

encountered in hydrometeorology can be framed in the context of cause and effect. Causal 

questions in the form of hypothesis formulation and validation regarding the interaction of 

variables and processes are ubiquitous in the literature of hydrology and climate. Most notable are 

studies concerned with understanding the impact of climate change on the hydrologic cycle (e.g., 

Barnett et al., 2005; Held & Soden, 2006; Milliman et al., 2008; Piao et al., 2010), resolving 

ambiguities in the interactions of the coupled Land‐Ocean‐Atmosphere system (e.g., Charney, 

1975; Eltahir, 1998; Entekhabi et al., 1996; Koster et al., 2004) and understanding the impact of 

land cover and anthropogenic land‐use on atmospheric circulations (e.g., de Noblet‐Ducoudré et 

al., 2012; Findell et al., 2017). The underlying question among all these studies is a causal one, 

and the aim is to understand how a specific variable will change as a result of an intervention in 

the system. It is important to distinguish causal interactions from associations; the latter 

characterize the dependence between variables as in standard statistical analysis (regression and 

correlation), while the former extends the analysis by identification of variables in dependence 
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relationships as cause and effect. In order to identify causal interactions, all causal inference 

methods rest on different sets of assumptions that identify invariant relationships in systems under 

intervention (Pearl, 2009a). Such a distinction between causality and association in hydrological 

systems has been pointed out by Klemes (1982), while discussing the relationships obtained by 

empirical analysis “The relationships initially discovered are of necessity simple …. They 

generally tell us what change in one observed quantity correspond to a change in another … they 

tell us what happens but do not derive the outcome from the dynamic mechanisms governing the 

process.” 

 

Although experimental research, manipulation, and controlled testing provide a framework 

to understand causal processes, using such an approach in hydrometeorology is infeasible (e.g., 

manipulating global or regional climate), costly (e.g., experimental catchments), or inaccurate 

(e.g., using numerical models for controlled experiments). With these considerations in mind, 

causal inference from observations is an alternative avenue. Simply stated, the goal of all causal 

inference methods is to extract information regarding causal interactions among variables in a 

given system utilizing time series measurements with prior knowledge incorporated in the 

selection of variables. The last few decades witnessed significant advancements in theories as well 

as algorithms needed for causal inference from observational data sets. The earliest significant 

work in empirical causal inference was proposed by Granger (1969). In a seminal paper, Granger 

formulated a statistical method for causality which states that variable X has a causal effect on 

variable Y if variable X provides statistically significant information about future values of 

variable Y (Granger, 1969). The original framework of Granger causality (GC) has later been 

extended by introducing concepts of information flow resulting in Transfer Entropy (TE) as a 
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measure of causality that is sensitive to both linear and nonlinear relationships (Schreiber, 2000). 

In addition to Granger framework, a fundamental work that influenced the field of causality was 

the introduction of probabilistic Graphical models (e.g., Bayesian Networks) and causal diagrams 

(Pearl, 1988, 1995, 2009b). Furthermore, almost simultaneously with the advances in causal 

discovery in the fields of statistics and machine learning, fundamental contributions in detecting 

causality from time series were conceived in the field of dynamical systems (Deyle & Sugihara, 

2011; Sugihara et al., 2012; Sugihara & May, 1990). These contributions were built on the theories 

of time‐delay embedding and reconstruction of attractors from time series (Takens, 1981). 

 

The application of causal inference methods in hydrology and climate research has been 

gaining attention in recent years. Ruddell and Kumar (2009a, 2009b) adapted TE to characterize 

process networks of ecohydrological systems from observational data sets. Similarly, Sharma and 

Mehrotra (2014) developed an information theoretic measure to be used in system identification 

of natural systems. Recently, TE concepts have been adopted to develop process networks taking 

into account the partitioning of information into synergistic, unique, and redundant (Goodwell & 

Kumar, 2017a, 2017b). On the other hand, methods of causal detection based on time‐delay 

embedding have been used to investigate the soil moisture—rainfall feedback (Wang et al., 2018). 

The outcomes of these studies are encouraging, and they highlight the potential of causal inference 

in improving identification of hydrometeorological systems from observational data sets. 

However, there exists a lack of comparative studies. Specifically, studies that compare the 

performance of different causal methods in the context of hydrometeorological systems; taking 

into consideration the challenges and practical limitations frequently encountered in such systems 
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such as nonlinearity (e.g., threshold behavior), sample size, process and observational noise, and 

synchronization due to seasonality. 

 

In view of the above discussion, the aim of the present study is three‐fold. First, to present 

briefly four main causal inference methods: GC, TE, Graph‐based casual methods (PC algorithm), 

and Convergent Cross Mapping (CCM) and discuss their theoretical underpinnings and 

assumptions. Second, to contrast the performance of these methods using synthetic data generated 

from a simple hydrological model yet representative of most features common to environmental 

systems and to investigate the impact of sample size and presence of noise on the performance of 

each method. Third, to use causal analysis in examining the significant environmental drivers of 

evapotranspiration in a shrubland region and to identify their relative contributions during summer 

and winter seasons.  

 

2.2 Methods of Causal Inference  

a. Granger Causality  

Granger Causality (GC) was developed in the late 60’s by Clive Granger (Granger, 1969), 

and it is perhaps the first practical method to test for causality. GC is defined in both time and 

frequency domains, and it relies primarily on a fundamental assumption that the cause precedes 

the effect in time (i.e. two variables occurring at the same time step can’t be causally related). 

Although this assumption may appear to be trivial and intuitive, it has significant implications 

because causality is interpreted based on the time ordering of events; hence, the original method 

(Granger, 1969) is unable to detect contemporaneous causality. In addition, two secondary 

assumptions underlie GC. First, the cause provides useful information for predicting the effect at 
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future time steps. Second, any variable in the system can be represented linearly by lagged values 

of system variables and an error term. That is, the system can be represented by a vector 

autoregressive (VAR) model. The latter condition implies that the underlying system is linear and 

stochastic, albeit some nonlinear processes can be modelled as VARs. It should be noted that the 

definition of causality in GC does not conform with more strict definitions of causality as in Pearl 

(2009b).   

   The assumptions underlying GC are encoded in its implementation which is conducted 

by constructing restricted and unrestricted regression models for each variable. Let’s first consider 

a matrix of stationary time series observations (𝓗) for a given system that consists of three 

variables X, Y and Z measured at times 𝑡 = 1, 2, … , 𝑙. Where 𝑙 is the length of the time series, then 

𝓗 is given as below: 

 

𝓗 = [
𝑿1 𝑿2 𝑿3

𝒀1 𝒀2 𝒀3 
𝒁1 𝒁2 𝒁3

 ⋯ 𝑿𝑙−1 𝑿𝑙

 ⋯ 𝒀𝑙−1 𝒀𝑙

  ⋯ 𝒁𝑙−1 𝒁𝑙

] 

 

    (2.1) 

 

To test the hypothesis that Y causes X, written 𝒀 ⟹ 𝑿, two pth order vector autoregressive 

(VAR) models are constructed as follows: 

 

𝑿𝑡 =  ∑ 𝑐𝑥𝑥𝑘 . 𝑿𝑡−𝑘 +

𝑝

𝑘=1

 ∑ 𝑐𝑥𝑦𝑘 . 𝒀𝑡−𝑘 +

𝑝

𝑘=1

 ∑ 𝑐𝑥𝑧𝑘 . 𝒁𝑡−𝑘

𝑝

𝑘=1

+  𝜀𝑥𝑡 

 

(2.2) 
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𝑿𝑡 =  ∑ 𝑐�̀�𝑥𝑘 . 𝑿𝑡−𝑘 +

𝑝

𝑘=1

  ∑ 𝑐�̀�𝑧𝑘 . 𝒁𝑡−𝑘

𝑝

𝑘=1

+  𝜀�̀�𝑡 

 

(2.3) 

 

Where 𝑐𝑥𝑥𝑘 and 𝑐�̀�𝑥𝑘 are the regression coefficients of 𝑿𝑡 regressed on 𝑿𝑡−𝑘 in the first 

and second model respectively. Similarly,𝑐𝑥𝑧𝑘 and �́�𝑥𝑧𝑘 are the regression coefficients of 𝑿𝑡 

regressed on 𝒁𝑡−𝑘 in the first and second model respectively. 𝑐𝑥𝑦𝑘 is the regression coefficient of 

𝑿𝑡 regressed on 𝒀𝑡−𝑘, while 𝜀𝑥𝑡 and 𝜀�̀�𝑡 are the residuals in the two models. The first model 

(equation 2.2) is unrestricted regression model that includes lags of variable 𝒀, while the second 

model (equation 2.3) is a restricted regression model. The Null hypothesis (𝐻0) that 𝒀 does not 

cause 𝑿 is rejected if it is shown that the first model improves estimation compared to the second 

model. That is, the difference between the residuals of the two models is statistically significant 

according to an F-test at a given significance level (𝛼).  

 

b. Transfer Entropy  

Transfer Entropy (TE) (Schreiber, 2000) can be understood as a nonparametric extension 

to the GC method; indeed, Barnett et al. (2009) showed that the two methods are equivalent for 

Gaussian processes. TE is based on conditional mutual information 𝕀(𝑿; 𝒀|𝒁), the amount of 

shared information between variables X and Y conditioned on variable Z, which is defined as 

follows: 
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        𝕀(𝑿; 𝒀|𝒁)  = 𝐻(𝒀|𝒁) − 𝐻(𝒀|𝑿, 𝒁) 

=  ∫ 𝑓𝑧(𝒛) ∬ 𝑓𝑥,𝑦|𝑧(𝒙, 𝒚|𝒛) log
𝑓𝑥,𝑦|𝑧(𝒙, 𝒚|𝒛)

𝑓𝑥|𝑧(𝒙|𝒛) . 𝑓𝑦|𝑧(𝒚|𝒛)
 𝑑𝑥 𝑑𝑦 𝑑𝑧  

 

(2.4) 

 

Where H is Shannon entropy (Shannon, 1948), 𝑓 denotes probability density function 

whereas x, y and z are single realizations of the variables X, Y and Z respectively. 

𝕀(𝑿; 𝒀|𝒁) measures the entropy reduction in variable Y when information of variable X is added 

conditioned on Z.  In the above formulation, if X and Y are independent conditioned on Z, the 

numerator can be decomposed into 𝑓𝑥,𝑦|𝑧(𝒙, 𝒚|𝒛) =  𝑓𝑥|𝑧(𝒙|𝒛) .  𝑓𝑦|𝑧(𝒚|𝒛) leading to 𝕀(𝑿; 𝒀|𝒁) = 

0. Thus, no information is gained about variable Y if variable X is known. 

 

Let’s consider the same notations used earlier and denote by �̅�𝑡−1, �̅�𝑡−1 and �̅�𝑡−1 the time 

series of variables X, Y and Z respectively as of time 𝑡 − 1; for example, �̅�𝑡−1 =

[𝑿𝑡−1, 𝑿𝑡−2, 𝑿𝑡−3 . . . ]. Similarly, �̅̅̅�𝑡−1 is the observations matrix as of time 𝑡 − 1. To evaluate the 

hypothesis 𝒀 ⟹ 𝑿, TE is defined as follows: 

 

𝑇𝐸(𝒀; 𝑿) = 𝕀(𝑿; �̅�𝑡−1| �̅̅̅�𝑡−1\ �̅�𝑡−1)  (2.5) 

 

�̅̅̅�𝑡−1\ �̅�𝑡−1 are all the values that belong to �̅̅̅�𝑡−1 and not to �̅�𝑡−1. Put simply, TE measures the 

shared information between X and the history of Y conditioned on the history of other observed 

variables. By contrasting the two definitions of GC and TE, one can comprehend the similarity of 

the two methods. Like GC, TE relies on the two assumptions that the cause precedes the effect, 

and the cause provides useful information for the prediction of the effect. However, unlike GC, 
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TE makes no assumptions about the underlying structure of the data; therefore, it can detect both 

linear and nonlinear relationships. TE and other measures based on information theory have been 

used in several studies in hydrometeorological research (e.g. Ruddell and Kumar, 2009a; Runge 

et al., 2014; 2015; Sharma; 2000).  

 

c. Graph-based Methods  

In Graph theory, a directed graph representation describes the causal relationships among 

variables in a given system. The representation consists of nodes representing variables, and 

directed edges between nodes representing direct casual influences (Dechter, 2013). Kinship 

terminology (parent, child, descendants …etc.) is commonly used to describe relations in a causal 

graph. If the graph encodes probabilistic information (i.e. each directed edge in the graph is 

quantified by the conditional probability distribution of the child given its parent), the causal graph 

is called a Bayesian network (Pearl, 1988; Darwiche, 2009). Graph-based causal algorithms utilize 

a set of graphical rules that govern the retrieval of system causal graphs from nonexperimental 

data. These rules include, among others, the “d-separation” criterion (Pearl, 1988) and Causal 

Markov condition (Pearl & Verma, 1991; Kiiveri et al., 1984). See (Pearl, 1995) for an in-depth 

discussion of graphical rules.  

 

The PC algorithm (Spirtes & Glymour, 1991) utilizes graphical rules to effectively recover 

causal relations among variables from observational data. Given time series of three variables X, 

Y and Z, lagged time series �̅�𝒕, �̅�𝒕−𝟏, �̅�𝒕−𝟐 … �̅�𝒕−𝒑 are first constructed. Similarly, lagged time 

series of variables Y and Z are constructed. The algorithm starts by considering a complete (fully 

connected) undirected graph containing all lagged time series variables as distinct variables. Then, 
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the algorithm iterates over all variables as target variables and uses conditional independencies of 

increasing order to exclude variables that are independent of the target variable. The result of this 

process is a graph that is commonly sparser than the original fully connected graph, and then the 

algorithm utilizes graphical rules to direct the links. 

 

d. Convergent Cross Mapping  

Unlike the three methods described in previous subsections, Convergent Cross Mapping 

(CCM) rests on a different paradigm of causality; namely, the theory of time-delay embedding 

(Takens, 1981). Based on this theory and under certain conditions, the manifold of a chaotic 

dynamical system can be reconstructed using time-lagged observations of a single variable (state). 

Let’s consider a chaotic dynamical system 𝓜 with the variables X, Y and Z. At any time 𝑡, the 

system is represented in the state space by the 3-dimensional point 𝓜𝒕 = {𝑿𝒕, 𝒀𝒕, 𝒁𝒕}. For a 

sequence of observations of length 𝑙, the trajectory of 𝓜𝒕 for 𝑡 = {1,2,3 … . 𝑙} in the state space 

constructs a manifold of the system 𝓜. Time-delay embedding theorem states that one can 

reconstruct the manifold using lagged time series of a single variable. For example, the trajectory 

of the point 𝓜𝒙𝒕 = {𝑿𝒕, 𝑿𝒕−𝟏, 𝑿𝒕−𝟐}  is called a shadow manifold, and it preserves certain 

topological properties of the original manifold. Similarly, shadow manifolds can be constructed 

from time series of variables Y and Z.  

 

Based on Takens’ theorem, Sugihara et al. (2012) developed CCM as a test for causality. 

To evaluate the hypothesis 𝒀 ⟹ 𝑿, shadow manifolds from variables X and Y are constructed 

from the trajectory of the points 𝓜𝒙𝒕 and 𝓜𝒚𝒕 respectively.  Where 𝓜𝒙𝒕 =

{𝑿𝑡, 𝑿𝑡−1, 𝑿𝑡−2 … 𝑿𝑡−𝐸} and 𝓜𝒚𝒕 = {𝒀𝑡, 𝒀𝑡−1, 𝒀𝑡−2 … 𝒀𝑡−𝐸} for 𝑡 = {1, 2 … 𝑙 }. Here 𝐸 is the 
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dimension of the manifold, also known as the embedding dimension. 𝑙  is the length of time series 

used to create the shadow manifolds which is a fraction of the total length of observations 𝑙. Next, 

the shadow manifold of variable 𝑿 is used to identify the nearest neighbors of the point 𝓜𝒙𝒕 for 

𝑡 = {𝑙 + 1, 𝑙 + 2, … , 𝑙} and their Euclidian distance from the point 𝓜𝒙𝒕. Finally, the nearest 

neighbors and their distances are used to identify contemporaneous points on the shadow manifold 

of 𝒀; consequently, values of 𝒀𝒕 for 𝑡 = {𝑙 + 1, 𝑙 + 2, … , 𝑙} are estimated. These estimated values 

are compared with the observed ones using a metric, often correlation coefficient. If the value of 

correlation coefficient is significant, the hypothesis 𝒀 ⟹ 𝑿 is accepted. 

 

2.3 Examining the Performance of Causal Inference Methods in Recovering 

the Causal Structure of a Hydrological Bucket Model  

a. Model Structure 

 In order to test the performance of the four causal methods in identification of causal 

relationships from time series, we resort to the use of a hydrological model. The purpose of using 

synthetic data generated from the model is that, unlike natural systems, the underlying causal 

relationships are well known. The model we use here, shown in Figure 2.1a, is a simple 

hydrological bucket model with four variables: rainfall R, soil storage S, interflow I, and runoff 

Q. This model simulates the process by which rainfall is transformed into runoff in a simplified 

manner. Essentially, the soil is represented as a bucket and the maximum amount of water it can 

store is defined by maximum storage (𝑆𝑚𝑎𝑥). An outgoing flux of water from the bucket represents 

interflow 𝑰, the lateral movement of water within the unsaturated zone. Whenever the bucket is 

full, rainfall will spill from the bucket and transform to runoff 𝑸.  
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In addition to the four variables R, S, I and Q, the model has four parameters: the maximum 

soil storage 𝑆𝑚𝑎𝑥, and three parameters 𝐾𝑠, 𝛿 and 𝜉 identifying the nonlinear storage-discharge 

relationship. The storage-discharge relationship employed here (equation 2.9) is nonlinear of 

concave type (i.e. Q as a function of S is a concave power law model). Botter et al. (2009) provides 

a detailed description of such relationships which has previously been employed in literature (e.g. 

Brutsaert & Nieber, 1977). In this relationship, 𝛿 is the soil moisture amount below which no 

interflow occurs, 𝜉 is an exponent between 0.5 and 1 (Botter et al., 2009) and 𝐾𝑠 characterizes how 

fast the bucket is depleted of water.     

 

 
Figure 2.1 (a) The 4-variables bucket model used in this study to generate synthetic data with the variables 

rainfall R, soil moisture S, interflow I and runoff Q; Smax is the maximum soil storage. (b) The causal graph 

of the same model in (a). (c)  Marginal probability distributions of the four variables (R, S, I and Q). The 

probability distributions are estimated from a simulation of the model with a sample size of 10,000 and 

signal to noise ratio SNR of 104. 
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The only forcing variable in the model, rainfall, is simulated as a stochastic process in 

two steps as described in Woolhiser (2011). First, the occurrence of rainfall is simulated with a 

binary variable �̀� (i.e. rain/no rain). The simulation is performed using a discrete-time first-order 

Markov chain model:   

    

𝑝𝑖,𝑗(𝑡) = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(�̀�𝑡 = 𝑗|�̀�𝑡−1 = 𝑖);       𝑖, 𝑗 = 0,1;      𝑡 > 1 (2.6) 

 

𝑝𝑖,𝑗 is the transition probability from the state 𝑖 to the state 𝑗; the state is binary (1 for rain, 0 for 

no rain). In this study, we used the following transition probabilities for the model: 

  

[
𝑝0,0 = 0.8 𝑝0,1 = 0.2

𝑝1,0 = 0.2 𝑝1,1 = 0.8
] 

(2.7) 

 

The chosen transition probabilities are symmetric such that the likelihood of a rainy day 

followed by a non-rainy day (𝑝1,0) is equivalent to a non-rainy day followed by a rainy day 

(𝑝0,1). Similarly, 𝑝0,0 and 𝑝1,1 are equivalent. We opted to choose a high value for 𝑝0,0 and 𝑝1,1 in 

order to increase persistency in the model as this presents a challenge for causal methods to 

detect causal interactions. Second, the amount of rainfall Y is simulated using a beta distribution 

𝒀 ~ 𝑩𝒆𝒕𝒂(𝐵𝑒𝑡𝑎𝛼, 𝐵𝑒𝑡𝑎𝛽); the parameters 𝐵𝑒𝑡𝑎𝛼 and 𝐵𝑒𝑡𝑎𝛽 are taken to be 9 [L/T] and 6 [L/T] 

respectively. Rainfall R is calculated as follows: 

 

𝑹(𝑡) = �̀�(𝑡). 𝒀(𝑡) (2.8) 
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The evolution of the model variables S, I and Q is based on the continuity equation for 

conservation of mass, and it is described by the following set of equations: 

   

 
𝑑 𝑺𝑡

𝑑𝑡
= 𝑹𝑡−1 − 𝑰𝑡−1 +  𝜼𝑠  

𝑰𝑡 =  𝐾𝑠 ∗ [𝑺𝑡−1 − 𝛿]𝝃 +  𝜼𝑰 

𝑄𝑡 =  {
𝑺𝑡−1 + 𝑹𝑡−1 − 𝑆𝑚𝑎𝑥 +  𝜼𝑸                   ;   𝑺𝑡 ≥ 𝑆𝑚𝑎𝑥

                               𝜼𝑸                                       ;      𝑺𝑡 < 𝑆𝑚𝑎𝑥  
 

 

     (2.9) 

 

Where 𝜼𝒔, 𝜼𝑰 and 𝜼𝑸 are zero mean, constant variance and serially correlated noise (i.e. red 

noise). 𝜼𝒔 is calculated as follows: 

𝜼𝒔(1) = 𝝎1  

𝜼𝒔(𝑡+1) = 𝑟. 𝜼𝒔(𝑡) + (1 − 𝑟2)
1

2 . 𝝎(𝑡+1)         𝑡 > 1        
(2.10) 

 

Where 𝑟 = 0.8, and 𝝎 ~ 𝑵(0, 𝜎2) is a white Gaussian noise, normally distributed with a zero 

mean and variance 𝜎2. The variance 𝜎2 is calculated as follows:  

 

𝜎2 =  
𝔼[𝑆2]

𝑆𝑁𝑅
 

 

(2.11) 

 

Where 𝔼 refers to the expected value of 𝑆, and 𝑆𝑁𝑅 is the signal to noise ratio which is added to 

the model to examine the performance of causal methods under presence of noise. Other noise 
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terms, 𝜂𝐼 and 𝜂𝑄, are calculated similarly by substituting 𝔼[𝐼2] and 𝔼[𝑄2] respectively in 

equation 2.11.  𝑆𝑁𝑅 is a measure of the noise level, and it takes values of 2, 3, 4, 5, 10, 20 and 

10,000. We also express the strength of noise in decibels 𝑑𝐵: 

 

𝑑𝐵 = 10 log10 𝑆𝑁𝑅     (2.12) 

 

In causal theory, a very common way to represent causal interactions in a given system is 

to use directed graphs. Each node in the graph represents a variable or a sub-process in the system, 

while directed edges represent causal links with the arrow pointing towards the effect. Figure 2.1b 

shows the directed graph representation of the bucket model in equation 2.9. Note that each 

variable is a child of the arguments of its function. For example, 𝑺 is a function of 𝑹 and 𝑰;  

therefore, the node 𝑺 has the two parents R and I. Since R is a forcing variable in the model, it has 

no parents in the causal graph of the model. In the remaining sections of this paper, we shall use 

graphical representations and kinship metaphors to discuss causal relations. Figure 2.1c shows the 

marginal probability distributions of the variables simulated by the model using process noise (dB 

[𝑆𝑁𝑅] = 40 [104]).  Clearly, all probability distributions have high density at zero. This is a key 

feature in many hydrological systems where considerable number of the fluxes observations are 

equal to zero.       

 

b. Overall Performance  

We use three metrics to evaluate the efficiency of causal inference methods in recovering 

the underlying structure of the hydrological model. These include the True Positives Rate (TPR), 

False Positives Rate (FPR) and the Detection Rate (DR). Let 𝑛𝑠𝑖𝑚 denote the number of 
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simulations generated from the bucket model, then TPR is defined as the ratio of the number of 

correctly identified causal links by the algorithm to the actual number of causal links in the model, 

averaged across simulations. 

 

𝑇𝑃𝑅 =  
1

𝑛𝑠𝑖𝑚
  ∑   

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑐𝑎𝑢𝑠𝑎𝑙 𝑙𝑖𝑛𝑘𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑢𝑠𝑎𝑙 𝑙𝑖𝑛𝑘𝑠

𝑛𝑠𝑖𝑚

𝑖=1

 

 

(2.13) 

 

Similarly, FPR is defined as the ratio of mistakenly identified links to the number of actual 

causal links in the model, averaged across simulations. 

 

𝐹𝑃𝑅 =  
1

𝑛𝑠𝑖𝑚
  ∑   

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑠𝑡𝑎𝑘𝑒𝑛𝑙𝑦 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑐𝑎𝑢𝑠𝑎𝑙 𝑙𝑖𝑛𝑘𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓𝑐𝑎𝑢𝑠𝑎𝑙 𝑙𝑖𝑛𝑘𝑠

𝑛𝑠𝑖𝑚

𝑖=1

 

 

(2.14) 

 

In equations 2.13 and 2.14, the denominator refers to the actual number of causal links in 

the model which is equal to 5; see Figure 2.1b. The metrics of TPR and FPR measure the efficiency 

of the algorithms in retrieving the whole causal structure of the system. However, the detection 

rate (DR) measures the efficiency of retrieving each causal link separately. It is defined as the 

percentage ratio of the number of times a causal link was detected by the algorithm to the total 

number of simulations. 

𝐷𝑅 (%) =  
𝑛𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛

𝑛𝑠𝑖𝑚
 ∗ 100 (2.15) 
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Where 𝑛𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 refers to the number of times a causal link was either correctly or 

mistakenly identified by the algorithm. 

 

Figure 2.2 shows the retrieved causal structure using each of the causal discovery 

algorithms (GC, TE, PC and CCM). The results in Figure 2.2 summarize the mean behavior of the 

algorithms across 100 simulations; that is, a causal link exists only if it has been identified by the 

algorithm in more than 50% of the simulations. By comparing the retrieved causal structure using 

GC (Figure 2.2a) and the true causal structure of the model (Figure 2.1b), all the true causal links 

were correctly identified by GC (blue links in Figure 2.2a). However, GC mistakenly identifies 

three causal links (𝑹 ⟹ 𝑰,  𝑸 ⟹ 𝑰 and 𝑰 ⟹ 𝑸) (red links in Figure 2.2a). These false detections 

are attributed to the inability of the GC method to control for mediation and confounding of 

nonlinear relationships. For the link 𝑹 ⟹ 𝑰, the relationship between 𝑹 and 𝑰 is mediated by 𝑺 , 

that is, 𝑹 ⟹ 𝑺 ⇒ 𝑰. As for the relationship between 𝑸 and 𝑰, the two variables share a common 

confounder which is 𝑺, that is, 𝑸 ⇐ 𝑺 ⟹ 𝑰. The three links would not be mistakenly identified if 

the GC method conditions properly on variable 𝑺. Although GC conditions on variable 𝑺, the 

nonlinearity of these relationships violate the assumption of linearity in GC method; therefore, 

resulting in false detection.   
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Figure 2.2 Causal structure of the hydrological model in Figure 2.1a retrieved from 100 simulations of 

time series each with a length of 3000 using: (a) Granger Causality (GC), (b) Transfer Entropy (TE), (c) 

PC algorithm and (d) Convergent Cross Mapping (CCM). Blue links indicate causal links correctly 

identified by the algorithm (true positives). Red links indicate causal links falsely identified by the algorithm 

(false positives).    

 

By comparing the results of GC with the causal structures retrieved from TE (Figure 2.2b) 

and PC (Figure 2.2c), one can see that both TE and PC rule out the links mistakenly identified by 

GC. This is because both TE and PC are nonparametric methods; thus, they are able to detect 

nonlinear relationships. However, the two algorithms fail to detect the causal link 𝑰 ⟹ 𝑺; this 

causal link is in fact a feedback link such that variable S causes variable I which in turn feedback 

and impact variable S. The reason behind under-detection of this link is that both algorithms accept 

the null hypothesis of the independence test 𝕀(𝑺; 𝑰| 𝑹); that is, variable S is independent of variable 

I conditioned on variable R. Specifically, variable I negatively impact variable S while variable R 

has a positive impact on variable S, and both effects negate each other to maintain the mass balance 
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𝒅 𝑺

𝒅𝒕
= 𝑹 − 𝑰 . This type of relationships is a typical example for violations of the causal faithfulness 

assumption which states that “there are no precisely counterbalanced causal relationships in the 

system that would result in a probabilistic independence between two variables that are actually 

causally connected” (Andersen, 2013). For TE method, in addition to its inability to detect the 

causal link 𝑰 ⟹ 𝑺, the algorithm also fails to detect the link 𝑺 ⟹ 𝑸. In evaluation of this causal 

link, the TE method examines the independence relationship 𝕀(𝑺; 𝑸| {𝑰𝒕−𝟏, �̅�𝒕−𝟏,  �̅̅̅�𝒕−𝟏}); that is, 

whether the variables 𝑺 and 𝑸 are independent given the history of variables 𝑰, 𝑹 and 𝑸. Because 

the number of conditioning variables (i.e. 𝑰𝒕−𝟏, �̅�𝒕−𝟏,  �̅̅̅�𝒕−𝟏)  is relatively large, and the relationship 

𝑺 ⟹ 𝑸 is a weak causal relationship, the detection rate of this link is low. Therefore, the link can 

only be detected for large sample size; see Figure 6 of Ombadi et al. (2020a).  

 

Like GC, CCM mistakenly identifies the three links: 𝑹 ⟹ 𝑰,  𝑸 ⟹ 𝑰 and 𝑰 ⟹ 𝑸 (see 

Figure 2.2d). This is because CCM does not control for confounding and mediation. Additionally, 

CCM mistakenly identifies the relationship in the pairs (𝑺, 𝑸) and (𝑹, 𝑺) as bidirectional causality 

rather than unidirectional. This points out to a limitation of CCM that when two variables are 

strongly coupled (synchronized), CCM identifies unidirectional causality as bidirectional. 

Sugihara et al. (2012) reported that in the case of extremely strong forcing, CCM will result in 

bidirectional causality between variables. 

 

c. Impact of Sample Length  

Here we analyze the sensitivity of each algorithm to changes in sample size; we perform 

the analysis over sample size of 100, 300, 500, 1000, 2000 and 3000. Each analysis is performed 
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with a number of simulations (𝑛𝑠𝑖𝑚 = 100).  Figures 2.3a and 2.3b show the TPR and FPR 

respectively for each of the four algorithms. As can be seen in Figure 2.3a, TPR consistently 

increases with increasing sample length. At the limit of large sample length (𝑙 = 3000), both CCM 

and GC approach a TPR equal to 1 (i.e. all causal links are correctly detected by the algorithms). 

On the contrary, PC and TE approach a TPR < 0.8; this is because the feedback link 𝑰 ⟹ 𝑺 is not 

detected as illustrated in the previous section. The most important finding to note in Figure 2.3a is 

the insensitivity of CCM to sample length regarding the TPR. It shows that a sample size as small 

as 100 is sufficient for the CCM to identify all causal links in the model. On the other hand, GC, 

TE and PC show sensitivity to sample size; this is not surprising since the three methods are based 

on a probabilistic framework, and the statistical estimation improves as the sample size increases.          

 

As for the false positives in Figure 2.3b, the results might seem counterintuitive as one 

would expect the FPR to consistently decrease with sample size. However, this is not necessarily 

the case when the false detection is not related to sample size. For example, both CCM and GC 

show increasing FPR with the increase in sample size. This is because the mistakenly identified 

links result from the limitations of the algorithms in controlling for confounding and mediation. 

These types of false detection increase as the sample size increases. 
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Figure 2.3 (a) True positives rate (TPR) for each of the four causal algorithms (GC, TE, PC and CCM) for 

sample length of 100, 300, 500, 1000, 2000 and 3000; each averaged across 100 simulations. (b) same as 

in (a) but for the false positives rate (FPR). 

 

d. Presence of Noise  

To assess the sensitivity of performance to presence of noise, we first analyze the 

sensitivity of performance to process noise. Unlike observational noise that is associated with 

errors in measurements, process noise means that there is a stochastic component in the underlying 

system. In the hydrologic model (equation 2.9), if the variance of 𝜼𝑰, 𝜼𝒔 and 𝜼𝑸 is zero, the model 

is completely deterministic and there is no process noise. As the variance takes values larger than 

zero, the model incorporates a stochastic component. In hydrometeorological systems, process 

noise can arise even in well-defined deterministic systems because of heterogeneity. For example, 

the rainfall-runoff process in catchments is not entirely deterministic as it has some stochastic 

component due to heterogeneity associated with land properties. Figures 2.4a and 2.4b show the 

TPR and FPR for dB[SNR] of 3[2], 4.8[3], 6[4], 7[5], 10[10], 13[20] and 40[104]; each is averaged 
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across 40 simulations with a sample length of 1000. The model specifications of parameters and 

initial states are as shown in Table 2.1. As can be seen in Figure 2.4a, process noise has a minimal 

impact on the performance of the three methods (GC, TE and PC) with a slight increase in TPR as 

the level of noise is increased. This is because process noise is part of the dynamics, and variables 

remain stochastically coupled as the noise level increases. As a result, GC, TE and PC which 

assume the underlying system to be of stochastic nature, are able to maintain their performances 

as the noise increases. On the contrary, TPR of CCM decreases significantly for noise levels (dB 

< 4.8). The discernible decrease in performance of CCM in presence of process noise is expected 

since the method is based on an assumption of deterministic systems. However, the results also 

suggest that CCM can tolerate process noise up to 4.8 dB. Figure 2.4b shows that FPR for all the 

methods decreases as the noise level increases (i.e. lower dB). While this can be justified for the 

methods of GC, TE and PC due to their probabilistic framework, the results appear to be 

counterintuitive regarding CCM. However, the reason behind this is that as the process noise 

increases (lower dB), all variables in the system no longer contain dynamic information about each 

other. Consequently, the cross-mapping ability of CCM diminish leading to a decrease in both 

TPR and FPR.   

 

Table 2.1 Specifications of the model for the analysis in subsection b, c and d. 

Maximum soil storage (𝑆𝑚𝑎𝑥)   [L] 80 

Storage-discharge parameter 1 (𝐾𝑠) [1/T] 2.3 

Storage-discharge parameter 2 (𝛿) [L] 10 

Storage-discharge parameter 3 (𝜉)  0.6 

Process noise (dB [SNR]) 40 [104] 

Initial soil storage (𝑺0) [L] 40 
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The second part of the analysis is examining the sensitivity of performance to presence of 

observational noise. For observational noise, time series are simulated from the model (equation 

2.9) with a small process noise (SNR= 104; dB= 40). Then, observational noise is added after the 

time series are simulated from the model with noise levels in dB[SNR] of 3[2], 4.8[3], 6[4], 7[5], 

10[10], 13[20] and 40[104]. This type of noise represents measurement error where the noise is 

not a result of the underlying system, but it is associated with the devices measuring the data. 

Figures 2.4c and 2.4d show TPR and FPR for different levels of noise each averaged across 40 

simulations with a sample length of 1000. The model specifications of parameters and initial states 

are as shown in Table 2.1. Unlike in the case of process noise where the three methods of GC, TE 

and PC are insensitive to changes in noise level, the results here show that these methods in 

addition to CCM are all sensitive to presence of observational noise. Specifically, the performance 

of GC, TE and PC deteriorates as evidenced by a decrease in TPR (Figure 2.4c) and an increase in 

FPR (Figure 2.4d). As for CCM, both TPR and FPR decrease consistently with the increase in 

observational noise. This is because as the noise increases, causally related variables in the system 

no longer contain information signature of each other; thus, the efficiency of cross mapping 

degrades.         
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Figure 2.4 Sensitivity of the causal algorithms (GC, TE, PC and CCM) to presence of noise with noise 

levels expressed as decibels (dB): 3, 4.8, 6, 7, 10, 13 and 40. Noise levels are also expressed in SNR: 2, 3, 

4, 5, 10, 20 and 10^4. The plotted values are averaged across 40 simulations for each noise level. (a) True 

positives rate (TPR) under presence of process noise. (b) False positives rate (FPR) under presence of 

process noise. (c) True positives rate (TPR) under presence of observational noise. (d) False positives rate 

(FPR) under presence of observational noise. 

 

2.4  Causal Analysis of Environmental Drivers of Evapotranspiration  

Evapotranspiration 𝑬𝑻 plays a central role in the Earth’s water and energy cycles, and it is 

the primary process in the biosphere-atmosphere coupling. Several factors can potentially regulate 

evapotranspiration rate; these include net radiation 𝑹𝒏, vapor pressure deficit 𝑽𝑷𝑫, soil water 

content 𝑺𝑾𝑪, air temperature 𝑻𝒂, soil temperatures 𝑻𝒔 and wind speed 𝑾𝑺. 𝑹𝒏, VPD and SWC 

are considered as direct drivers of ET, while other variables (Ta, Ts and WS) affect ET primarily 

through their regulation of canopy stomatal conductance. Several models with wide range of 

complexity exist to understand and simulate evapotranspiration process; however, modelling 
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large-scale evapotranspiration remains a major source of uncertainty (Sivapalan et al., 2003; 

Mackay et al., 2007). Therefore, analysis of observational data is important to assess the 

significance of environmental controls on evapotranspiration and their seasonal and regional 

variations. Observational datasets were used by Vrugt et al. (2002) along with artificial neural 

networks to identify controlling factors of transpiration in a forested region, while Mackay et al. 

(2007) used observational data to quantify the differential impact of net radiation and vapor 

pressure deficit in regulating evapotranspiration in upland and wetland regions. In this section, we 

use the PC algorithm to identify the forcing environmental variables that control 

evapotranspiration rate and their relative contributions during summer and winter seasons in a 

shrubland region. 

 

Observational dataset used in our analysis is obtained from Santa Rita Mesquite (US-SRM) 

FluxNet site. This site is located in southeastern Arizona (31.82N, 110.87W) at an elevation of 

1118 m above sea level. The Koeppen climate classification of the site is Arid Steppe cold (BSk). 

The land cover is broadleaf vegetation shrublands, and it consists primarily of mesquite (Prosopis 

velutina) trees. Mean annual precipitation and temperature are 333 mm and 19C respectively. 

Hourly time series were obtained by accumulating and averaging the native 30-minutes 

observations for the following variables:  ET, 𝑹𝒏, VPD, SWC, Ta, Ts and WS. Table 2.2 shows the 

statistics of mean and standard deviation of each variable for the summer and winter seasons. 

Anomalies of hourly observations were calculated by subtracting the seasonal mean to remove 

effects of diurnal cycle. Time series were then tested for stationarity (monotonic trend) using Mann 

Kendall test; Table 2.2 shows p-values for each time series. When the null hypothesis of no trend 

was rejected at a significance level of 0.05, we removed a linear trend from the time series. The 
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sample length for the summer season (JJA) and the winter season (DJF) is 24,288 and 23,832 

observations respectively. They represent hourly observations at the US-SRM FluxNet site during 

the period 2004 -2014. We used the PC algorithm to infer the environmental drivers controlling 

evapotranspiration because, according to the results in the preceding section, it controls FPR 

(almost similar to that of TE) when the sample length is sufficient while achieving a higher TPR 

value than that of TE.  

 

 
Figure 2.5 Causal networks retrieved from the PC algorithm using hourly time series of the variables (ET, 

Rn, VPD, SWC, Ta, Ts and WS). Labels of the edges represent the strength of the causal links as determined 

by the values of conditional mutual information. The thickness of the edges between the nodes is 

proportional to the strength of the causal links. (a) Causal network of ET environmental drivers during the 

summer season (June, July and August). (b) Causal network of ET environmental drivers during the winter 

season (December, January and February).    

 

Figures 2.5a and 2.5b show the two causal networks obtained from the PC algorithm using 

hourly observations during summer and winter seasons. During the summer season (JJA) (Figure 

2.5a), evapotranspiration rate is regulated by, in order of importance, net radiation and soil water 

content (equally important), vapor pressure deficit and soil temperature. The two remaining 

variables, wind speed and air temperature, are not causally related to evapotranspiration at a 

statistical significance level of 0.05. On the other hand, evapotranspiration during the winter 
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season (DJF) (Figure 2.5b) is controlled by, in order of importance, net radiation and wind speed 

(equally important), soil water content and vapor pressure deficit. In order to understand the 

physics underlying these results, it is important to examine the dynamics of the vegetation cover 

on the site. Figure 2.6a shows the monthly variability in Gross Primary Production (GPP) averaged 

over the period (2004-2014). Clearly, GPP peaks during the summer because Mesquite trees which 

dominate the land cover at the site bloom and grow during the summer. On the contrary, GPP is 

very low during the winter. This means that during the winter season, bare soil evaporation is the 

predominant portion of evapotranspiration due to the limited vegetation cover. However, in the 

summer, transpiration represents a large portion of evapotranspiration. This provides an 

interpretation of the results that soil temperature is a causal factor only during the summer season 

because of its impact on regulating water uptake in plants, whereas it has no discernible impact on 

bare soil evaporation during the winter. Effect of soil temperature on water uptake and stomatal 

opening in plants was previously reported in Kramer (1940) and Feldhake & Boyer (1986) among 

others.  

Table 2.2 Mean and standard deviation for the hourly time series of the seven variables used in this analysis during 

summer (June, July and August) and winter (December, January and February). The p-vlaues of Mann Kendall trend 

test are also shown; the null hypothesis of no trend is rejected if the p-value is smaller than the significance level 

(0.05). 

 Summer (JJA) Winter (DJF) 

 Mean Standard 

Deviation 

p-value 

(Mann-

Kendall) 

Mean Standard 

Deviation 

p-value 

(Mann-

Kendall) 

ET (mm) 0.07 0.09 0 0.02 0.03 0 

Ta (°C) 27 4.7 0.01 10.5 5.6 0.01 

WS (m/s) 2.29 1.22 0.85 2.51 1.52 0 

Ts (°C) 32.2 6.2 0.07 12.54 4.7 0.31 

VPD (hPa) 24.3 13.5 0.04 8.82 5.6 0.23 

SWC (%) 4.56 2.77 0 5.82 2.15 0.07 

Rn (W/m2) 283.11 391.24 0.09 100 245.61 0.36 
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Figure 2.5b shows that wind speed plays a major role in controlling evapotranspiration in 

the winter season. Given that the primary effect of wind speed is to clear the air of humidity 

produced by evapotranspiration, it might be plausible that wind speed is not a significant causal 

factor during the summer because the advected air is humid. Advection of moisture during the 

summer at low levels of the atmosphere (geopotential heights greater than 800 mb) towards 

southwestern US is a key feature of the North American Monsoon, and it has been reported in 

several studies (e.g. Adams & Comrie, 1997).  Furthermore, Figures 2.6b and 2.6c show the diurnal 

cycle of wind speed during summer and winter seasons respectively. Clearly, in the summer, 

maximum wind is in late afternoon (5 pm) lagged by several hours from the peak of 

evapotranspiration (noon). However, during winter season (Figure 2.6c), the lag time is shorter; 

thus, wind speed and evapotranspiration are nearly in-phase. Consequently, wind speed can clear 

the air of humidity and regulate evapotranspiration rate. It should also be noted that wind speed 

during the winter has larger variability (standard deviation = 1.52 m/s) compared to the summer 

(standard deviation = 1.22 m/s); See Table 2.2.   
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Figure 2.6 (a) Monthly variability in Gross Primary Production (GPP) averaged over the period (2004-

2014). Line plot shows the mean monthly GPP, while the vertical bars indicate the standard deviation of 

monthly GPP. GPP data used in this figure represents Gross Primary Production from Nighttime 

partitioning method. (b) Diurnal cycles of ET (red) and wind speed WS (cyan) during the summer season. 

(c) Diurnal cycles of ET (red) and wind speed WS (cyan) during the winter season.  

 

2.5  Conclusions  

This study examined the efficiency of four causal inference methods (GC, TE, PC and 

CCM) in retrieving the causal structure from simulated time series of a hydrological model used 

as the “ground truth”. The hydrological model consists of four variables linked by relationships 

commonly found in hydrometeorological systems. Despite the low number of variables in the 

model, it represents a challenging task due to the large causal search space. Specifically, for each 

pair of variables (a, b), there are four possibilities: no causal relation, bidirectional causality, 

unidirectional causality from a to b, or unidirectional causality from b to a. This leads to 4(4
2) = 
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4096 possible causal structures to explain the time series simulated from the model. Based on the 

results of this study, it is found that several factors can guide the selection of a causal discovery 

algorithm as follows: 

 

• Sample length: CCM is the least sensitive method to changes in sample length. The results 

demonstrate that a sample size as small as 100 is sufficient for CCM to identify all causal 

relationships in the model. On the contrary, the performance of GC, TE and PC improves 

as the sample length increases. This is attributed to the fact that they are based on a 

probabilistic framework; thus, statistical estimation improves as the sample size increases.   

  

• Nonlinearity: among the four methods used in this study, GC is the only method that 

assumes a linear vector autoregressive (VAR) model for the underlying system. Despite 

this assumption, the results show that GC was able to detect nonlinear interactions; for 

example, the causal links 𝑺 ⟹ 𝑰 and 𝑺 ⟹ 𝑸 (see Figure 2.2a). This may support the 

argument that many nonlinear processes can be modelled as VARs (Barnett & Seth, 2014). 

However, the results show that the assumption of modelling the system as a linear model 

while has no impact in detecting causal links, it leads to an increase in false positives.  

 

 

• Stochastic vs Deterministic systems: While CCM assumes the underlying system to be 

deterministic, the three methods of GC, TE and PC are based on assumption of stochastic 

systems. In this study, the system is inherently deterministic, and the evolution of its 

variables is described through dynamical equations. However, we examined the 
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performance of the algorithms by adding different levels of process noise which adds a 

stochastic component to the system. The results demonstrate that CCM can tolerate process 

noise up to 4.8 dB (𝑆𝑁𝑅 = 3).     

 

• Presence of counterbalanced relationships:  Attention must be paid when the system 

under study is expected to maintain counterbalanced interactions to fulfill physical laws 

such as conservation of mass, momentum and energy. These types of relationships are 

typical in hydrometeorological systems, and they represent a violation of the faithfulness 

assumption. Methods based on conditional independence, PC and TE, are unable to detect 

such relationships as evidenced by their inability to detect the causal link 𝑰 ⟹ 𝑺 (see 

Figures 2.2b and 2.2c).  

 

 

• Presence of observational noise: As expected, presence of observational noise degrades 

the performance of all causal discovery methods. Specifically, the impact is more 

significant in the case of CCM in which the cross-mapping efficiency between variables 

diminish as the observational noise increases.  

 

• Confirmatory vs Exploratory studies: The results indicate the existence of a tradeoff 

between TPR and FPR (see Figure 2.3). Therefore, If the purpose of a given study is 

exploratory, e.g. searching for climatic teleconnections of a certain phenomenon, then one 

might consider using GC or CCM due to their high TPR compared to TE and PC. On the 

contrary, if a study is confirmatory, e.g. selecting significant climatic teleconnections from 
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a set of predefined teleconnections, then using TE and PC is more appropriate as they 

minimize the false detection.   

 

 

A secondary aim of this study was to examine environmental drivers of evapotranspiration 

and their relative contributions during summer and winter seasons. The PC algorithm was applied 

as a causal discovery algorithm along with observational time series of the following variables: 

ET, Rn, VPD, SWC, Ta, Ts and WS. The results show that environmental drivers are dependent on 

season. While Rn, VPD and SWC are key drivers in regulating evapotranspiration in both seasons, 

the results demonstrate that Ts is a significant driver only in summer season, and WS controls 

evapotranspiration in winter season. The obtained results from causal analysis represents a 

hypothesis which can either be refuted or confirmed through further investigation. We provided 

an interpretation of the results based on the canopy seasonal dynamics and basic understanding of 

the evapotranspiration process. Hydrologic models commonly use a single relationship to estimate 

ET using a specific set of environmental drivers without prior information on which variables are 

dominant and significant in regulating ET. The results presented in this study highlight the 

importance of selecting ET models that are sensitive to the key drivers in each season. Similar 

causal analysis can be applied to investigate the differential impact of environmental drivers on 

evapotranspiration in sites across a range of climate conditions. 
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Chapter 3 

3 Hydrologic Complexity: A Chaotic Dynamics Perspective   

 

“This chapter is extracted from Ombadi et al. (2021a) with few edits incorporated for brevity and 

clarity”  

 

3.1 Introduction 

The movement and storage of water within hydrologic basins are regulated by a multitude 

of processes operating at various spatiotemporal scales; they include, among others, flow of water 

along hill slopes, subsurface flow through porous media, water uptake by plants and snowmelt. In 

addition to the inherent nonlinearity of these processes, their intricacy is further aggravated by the 

heterogeneity in landscape, drainage network, soil moisture, vegetation as well as the variability 

of precipitation and net radiation. The interplay among the aforementioned processes leads to 

emergent properties at the macroscale. Such properties essentially encapsulate the salient features 

of hydrological processes within the basin, and they provide a parsimonious description of basin 

behavior. The notion of basin complexity which refers to the number of dominant variables and 

the nonlinearity of processes governing watershed dynamics is often discussed as an element of a 

generic framework that seeks to characterize the essential signatures of watershed dynamics. Such 

a viewpoint, so-called “top-down” or “downward” approach, espoused by several hydrologists 

(Gupta et al., 2008; Klemes, 1983; McDonnell et al., 2007; Sivapalan et al., 2003) is considered to 

be useful to overcome the challenges facing watershed hydrology.  The interest in basin complexity 
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stems primarily from its usefulness in catchment classification as it facilitates and provides a 

framework for transferring models and prediction in ungauged basins. Additionally, it provides a 

basis for selection of models with appropriate complexity to resolve watershed dynamics. In this 

latter regard, basin complexity is closely tied to concepts of model parsimony, parameters 

identifiability and criteria of model selection (Bai et al., 2009; Beven, 2006; Butts et al., 2004).  

 

Previous work on basin complexity has attempted to identify hydrologic complexity by 

extracting signatures from univariate or bivariate time series, either observed or simulated. For 

example, Jakeman and Hornberger (1993) interpreted basin complexity as the number of 

parameters in a model that can be supported by the information contained in rainfall and 

streamflow observations. Alternatively, Castillo et al. (2015) proposed an information-theoretic 

entropy measure that characterizes the spatial variability of soil moisture within the basin as a 

complexity index. They argued that soil moisture has first-order control over the basin behavior as 

it modulates the indirect effects of other variables. Recently, Pande and Moayeri (2018) used a 

statistical measure of complexity (Vapnik-Chervonenkis dimension) along with streamflow 

observations to identify the complexity of 412 watersheds across the Contiguous United States 

(CONUS). More related to the study presented here, Sivakumar and Singh (2012) and Vignesh et 

al. (2015) utilized theories of chaotic dynamical systems, namely time-delay embedding and phase 

space reconstruction, to identify the dimensionality of basins. The former examined basin 

complexity at 117 gauging stations in the western United States, and the latter identified basin 

dimensionality at 639 stations in CONUS. In the present study, we also rely on the theories of 

chaotic dynamical systems to identify complexity of hydrologic basins. 
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    Chaotic dynamical systems are characterized by an apparently random and erratic 

behavior, despite being governed by nonlinear deterministic interactions. Although the concept of 

chaos dates back to the 1960’s, it was only until the late 1980’s that chaos theory was applied to 

the analysis of time series in environmental sciences. This can be ascribed to the development of 

the time-delay embedding theorem (Takens, 1981) which facilitated the reconstruction of system 

dynamics in multidimensional phase space using solely time series of a single variable. The idea 

that clues on the multivariate behavior of a system can be obtained from a one-dimensional time 

series has led to a surge in chaotic analysis of hydrologic time series (e.g. Elshorbagy et al., 2002; 

Lall et al., 1996; Porporato & Ridolfi, 1996; Rodriguez‐Iturbe et al., 1989). This early research 

was guided by two motives: first, searching for the presence of chaotic determinism in system 

dynamics; second, utilizing chaotic determinism as a practical tool for prediction and estimation.  

 

3.2 Data 

The Model Parameter Estimation Project (MOPEX) dataset (Duan et al., 2006; Schaake et 

al., 2006) was assembled to provide hydrometeorological data from a large number of basins for 

parameterization of hydrologic and land surface models. The dataset provides high quality 

hydrometeorological observations of key variables (e.g. streamflow, precipitation, maximum and 

minimum daily temperature …etc.) as well as basin characteristics for 431 catchments in CONUS. 

MOPEX daily streamflow observations, the primary data used in this study, are a subset of USGS 

hydro-climatic data network (HCDN) streamflow observations. This dataset is suitable for climatic 

studies since it only consists of basins free from upstream flow regulations such as artificial 

diversions and storage. Here, we exclude stations with a record length less than 30 years; the 

remaining basins span a wide range of hydrologic, climatic and land surface characteristics. In 
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addition to the streamflow observations, MOPEX dataset provides several climatic, topographic 

and geomorphologic characteristics of basins. Table 3.1 shows the basin characteristics used in 

this study for the purpose of investigating their control on dynamic complexity.          

 

3.3 Methods 

Let’s consider an m-dimensional dynamical system; that is, the system dynamics arise from 

a set of m variables. This set is denoted by {𝑋𝑘}, where 𝑘 = 1, 2, … 𝑚.  At any time 𝑡, the system 

can be represented in the phase space by the m-dimensional point: 

𝒙(𝑡) = {𝑥1(𝑡),  𝑥2(𝑡), … 𝑥𝑚(𝑡)} (3.1) 

 

Note that we use uppercase letter 𝑋𝑘 to denote the entire time series of variable k, lowercase 

letter 𝑥𝑘(𝑡) to denote a single observation of 𝑋𝑘 at time t, and bold lowercase letter 𝒙(𝑡) to denote 

a single observation in the phase space at time t. In the case where only a single variable is 

observed, e.g. 𝑋1, the theory of time-delay embedding (Takens, 1981; see also Packard et al., 1980) 

demonstrates that the topological features of the system manifold in the phase space is preserved 

if the system is represented by the time series of variable 𝑋1 and its values shifted by a fixed delay 

time 𝜏. For convenience, we shall remove the subscript in 𝑋1 hereafter since only a single variable 

is considered; therefore, at any time 𝑡, the system is represented by the E-dimensional point: 

𝒙(𝑡) = {𝑥(𝑡), 𝑥(𝑡 − 𝜏), 𝑥(𝑡 − 2𝜏), … 𝑥(𝑡 − (𝐸 − 1)𝜏)} (3.2) 
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In the above equation, 𝐸 is the Embedding dimension. Note that 𝐸 is not necessarily equal 

to the true dimension of the system 𝑚. Also, the delay time 𝜏 is a multiple of the sampling time 

step ∆𝑡; thus, the smallest value of 𝜏 is ∆𝑡. In the present study, the observed variable 𝑋 is 

streamflow, whereas the remaining 𝑚 − 1 variables are unobserved (these variables correspond to 

rainfall, soil moisture, air temperature …etc.). Therefore, we consider hereafter the phase space 

representation given by equation 3.2. Our two measures of dynamic complexity of hydrological 

basins are estimated from two methods generally categorized as nonlinear prediction methods. 

Essentially, nonlinear prediction entails that there exists a function in the E-dimensional phase 

space that describes the evolution of the system as follows: 

𝒙(𝑡 + 𝑇) = 𝑓𝑇[𝒙(𝑡)] (3.3) 

 

Where 𝑇 is the prediction horizon (i.e. how far ahead) and 𝑓𝑇 is a function that maps the 

phase space representation of the system at time 𝑡 to the future state at time 𝑡 + 𝑇. It is possible 

that an approximation of the function 𝑓𝑇 can be computed from the samples to predict the future 

state of 𝒙(𝑡) as follows: 

�̂�(𝑡 + 𝑇) = 𝑓𝑇  [𝒙(𝑡)] (3.4) 

The function 𝑓�̂� is local (i.e. depends on the location of 𝒙(𝑡) in the phase space) and 

nonlinear, hence the name “nonlinear prediction”. Within the field of chaos theory, several 

methods have been proposed to approximate 𝑓𝑇. Here, we consider two methods, namely the 

simplex nonlinear prediction method (Sugihara & May, 1990) and the sequential locally weighted 

global linear maps “S-map” (Sugihara, 1994). By means of these methods, two complexity 

measures can be identified; one is a proxy of the system dimensionality (i.e. active degrees of 
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freedom) and the other is an indicator of the strength of nonlinearity. The two following 

subsections will briefly describe the two nonlinear prediction methods and the corresponding 

complexity indices.  

 

a.  Simplex method and identification of optimum embedding dimension  

As discussed above, the objective of Simplex method (Sugihara & May, 1990) is to 

approximate the function 𝑓𝑇 in equation 3.4. In doing so, the simplex method starts by constructing 

the manifold in the phase space using equation 3.2. Specifically, the manifold is constructed using 

the trajectory of the E-dimensional point 𝒙(𝑡) for time series of length 𝑙. An example of such a 

manifold is shown in Figure 3.1a which is constructed from streamflow observations at gauging 

station (ID 01560000). Note that in this case, the phase space is 3 dimensional (𝐸 = 3). If 𝒙(𝑙 +

𝑇) is to be predicted, the E-dimensional point 𝒙(𝑙) is located in the phase space, and then its 𝐸 + 1 

nearest neighbors are identified. Next, the locations of the 𝐸 + 1 points on the phase space after 𝑇 

time steps are identified. Finally, 𝒙(𝑙 + 𝑇) is obtained by calculating a weighted average of these 

locations. The weights are exponential based on the distances of nearest neighbors from the point 

𝒙(𝑙). The intuition here is that the future system state can be predicted from the behavior of past 

values that are similar to the current state, with similarity being defined as closeness in the phase 

space.  

 

 The Simplex method can be used to estimate an optimum embedding dimension hereafter 

referred to as 𝐸𝑜𝑝𝑡. This is done by iteratively selecting an 𝐸 value (𝐸 = 1, 2, 3 …) and using a 

subset of the observed time series to predict the remaining values. For each 𝐸 value, the predicted 
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and observed values are compared using correlation coefficient 𝜌. The value of 𝐸 that achieves 

best prediction (maximum 𝜌) is the optimum embedding dimension. Simply, 𝐸𝑜𝑝𝑡 is the dimension 

that effectively unfolds system dynamics in the phase space as it eliminates singularities and 

trajectory crossings. It is, therefore, an indicator of the true system dimensionality 𝑚. Formally, 

Whitney embedding theorem (Whitney, 1944) gives the following inequality: 𝐸𝑜𝑝𝑡 > 2𝑚 − 1. 

This means that 𝐸𝑜𝑝𝑡 provides an upper bound on the true system dimensionality. However, 

because the time series we use in this study are finite and not noise-free, 𝐸𝑜𝑝𝑡 is only regarded to 

be proportional to 𝑚, not a strict upper bound on 𝑚. Figure 3.1b shows prediction accuracy for a 

range of 𝐸 values using the same streamflow time series in Figure 3.1a. In this case, the optimum 

embedding dimension is 3.     

 

b. S-map method and identification of nonlinearity index 

The essential idea of the S-map method (Sugihara, 1994) for the prediction of 𝑥(𝑡 + 𝑇) is 

to utilize a regression function that maps the E+1 dimensional vector �̃�(𝑡) to the one dimensional 

point 𝑥(𝑡 + 𝑇) (i.e. ℝ𝐸+1  →  ℝ1) using the following equation: 

 

𝑥(𝑡 + 𝑇) = ∑ 𝑐𝑘

𝐸+1

𝑘=1

 �̃�𝑘(𝑡) 

(3.5) 

 

Here, �̃�(𝑡) is equivalent to the E-dimensional point 𝒙(𝑡) augmented by adding a constant 

term. Specifically, 𝒙1(𝑡) = 1 and 𝒙𝑘(𝑡) for 𝑘 = 2, 3, … 𝐸 + 1 is equivalent to the point 𝒙(𝑡). The 

coefficient values 𝑐𝑘 in equation 3.5 are estimated from the constructed phase space. In particular, 
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if the phase space is constructed using a streamflow time series of length 𝑙, and the streamflow 

𝑥(𝑙 + 𝑇) is to be predicted, we can re-write equation 3.5 in matrix format with a slight modification 

as follows: 

𝑩[𝑛×1] = 𝑨[𝑛×(𝐸+1)] × 𝑪[(𝐸+1)×1] (3.6) 

 

 Where: 

 

𝑩 =  𝑤(‖𝒙(𝑡) − 𝒙(𝑙)‖) ∗ 𝑥(𝑡 + 𝑇)  
(3.7) 

𝑨 = 𝑤(‖𝒙(𝑡) − 𝒙(𝑙)‖) ∗ �̃�(𝑡) 
(3.8) 

 

𝑪 in equation 3.6 is the vector of coefficients 𝑐𝑘. Note that the number of rows in both 𝑨 and 𝑩 is 

denoted by 𝑛 which is equal to the number of 𝒙(𝑡) points that don’t share coordinates with the 

point 𝒙(𝑙). Equation 3.6 is modified from equation 3.5 by introducing a weighting factor 𝑤; this 

factor depends on the Euclidean distances in the phase space ‖𝒙(𝑡) − 𝒙(𝑙)‖, and it is calculated as 

follows:   

𝑤(𝑑) =  𝑒−𝜃𝑑/�̅� (3.9) 

 

Here, 𝑑 is the distance ‖𝒙(𝑡) − 𝒙(𝑙)‖ and �̅� is the average of distances for all values of 𝑡. 

The parameter 𝜃 takes values in the range [0, ∞). If the value of 𝜃 is zero, 𝑤(𝑑) = 1 regardless of 

the distance. In other words, all points in the phase space are assigned equal weights; this is 

equivalent to fitting a global linear map on all points 𝒙(𝑡) in the phase space. On the contrary, if 

𝜃 is large, points in the neighborhood of 𝒙(𝑙) (i.e. smaller 𝑑) are assigned larger weights, and the 
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weights decreases exponentially as a function of the distance. Put simply, as 𝜃 takes larger values, 

the function 𝑓𝑇 becomes more local and nonlinear.  

 

An indicator of the system nonlinearity can be estimated using S-map. Specifically, 

successive values of 𝜃 starting from zero are chosen, and prediction accuracy (𝜌) for each value is 

calculated. The value that maximizes prediction which is denoted here by 𝜃𝑜𝑝𝑡 is identified and 

considered to be a measure of the system nonlinearity. Values of 𝜃𝑜𝑝𝑡 near zero indicates that the 

behavior of the system is linear whereas larger values of 𝜃𝑜𝑝𝑡 means that more accurate prediction 

can be achieved by considering local neighborhood as opposed to the global phase space. This 

latter case clearly indicates the existence of state-dependent nonlinear behavior. It should be noted 

that S-map has previously been used to identify systems nonlinearity (Sugihara, 1994). Figure 3.1c 

shows prediction accuracy as a function of 𝜃 where the value of 𝜃𝑜𝑝𝑡 is 3. The fundamental 

interpretation of 𝜃𝑜𝑝𝑡 as a nonlinearity index is more precise than the general definition of 

nonlinear systems as systems in which output changes are not proportional to input changes. 

Nonlinearity in such a broad sense might stem from a variety of forms (e.g. polynomials of degrees 

higher than one, exponential …etc.); however, 𝜃𝑜𝑝𝑡 is closely tied to state-dependent behavior. 

Essentially, it is a parameter of equation 3.4, and it is obtained by optimizing the function in 

equation 3.4 to yield best predictions. Therefore, a low value of 𝜃𝑜𝑝𝑡 (e.g. 𝜃𝑜𝑝𝑡 = 0) means that a 

single function of 𝑓𝑇 in equation 3.4 is valid to represent streamflow regardless of the basin 

dynamical state. On the contrary, a high value of 𝜃𝑜𝑝𝑡 indicate that 𝑓𝑇 is highly sensitive to the 

basin dynamical state.     
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Figure 3.1(a) The 3-dimensional phase space representation of streamflow time series from USGS gauging 

station (ID 01560000) located in Pennsylvania. Delay time τ is taken to be equal to the sampling time step 

of 1 day. (b) Prediction accuracy (correlation coefficient of observed and predicted streamflow) of the 

Simplex method for a range of E values; E=[1,2,3…20]. (c) Prediction accuracy of the S-maps method for 

a range of θ values; θ=[0,0.05,0.075,0.1,0.15,0.2,0.4,0.8,1,2,3,4,5,6,7,8,9,10,15]. In both (b) and (c), 

prediction is for 1 day ahead (T=1).     

 

c. Testing for statistical significance using surrogates  

In order to obtain confidence on the values of complexity indices and to ensure that the 

process is indeed a form of chaotic determinism, we resort to the use of surrogates. The essential 

idea of testing for statistical significance using surrogates is to first define a null hypothesis on the 

underlying process that generated the observed time series. Surrogates are then generated in 

accordance with the null hypothesis, and a discriminating metric is computed from both the 

original time series and surrogates. Finally, the null hypothesis is rejected if the value of the metric 

is different from its distribution in the surrogate time series. A hierarchy of null hypotheses can be 
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adopted for testing the significance of nonlinear dynamics; the simplest of which is to assume that 

the observed time series is the result of independent and identically distributed (i.i.d) random 

variable. However, under many circumstances, this hypothesis is insufficient, and a stricter null 

hypothesis is required. Several methods have been proposed in the literature to generate surrogate 

data consistent with different null hypotheses (e.g. Kugiumtzis, 2000; Schreiber & Schmitz, 1996; 

Theiler et al., 1992). Here, we use an algorithm that randomizes the phases of the Fourier transform 

of the original timeseries, and it preserves the mean, variance and autocorrelation (i.e. Fourier 

spectrum). This algorithm is described in Theiler et al. (1992); see also Osborne et al., 1986. 

Essentially, the original timeseries is transformed to the frequency domain, then the phases at all 

frequencies are randomized in a symmetrical manner for positive and negative frequencies. 

Finally, surrogate timeseries is obtained by transforming the phase randomized Fourier spectrum 

back to the time domain; see Theiler et al. (1992) for detailed description.  

 

In the present study, we generate 100 surrogates for each timeseries of streamflow. 

Throughout our analysis, we compute any metric of interest for both the original timeseries and 

the 100 surrogates. There are three metrics that are considered in this study: (1) the accuracy of 

nonlinear prediction expressed as correlation coefficient 𝜌; (2) the optimum embedding dimension 

𝐸𝑜𝑝𝑡; and (3) the optimum nonlinearity index 𝜃𝑜𝑝𝑡. Let 𝑄 denote any of these three metrics 

computed for the original timeseries whereas 𝜇𝑄 and 𝜎𝑞 are the mean and standard deviation of 

the metric computed from the 100 surrogates. The statistical significance is then computed as 

follows: 

𝑆 =  
|𝑄 − 𝜇𝑄|

𝜎𝑄
 

(3.10) 
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𝑆 indicates how distant the metric 𝑄 is from 𝜇𝑄 in terms of units of standard deviation 𝜎𝑄. 

The distribution of 𝑄 in the surrogates is assumed to be gaussian, and a simple one-sided p-value 

can be computed to evaluate the statistical significance of any metric 𝑄.  

 

3.4 Results and Discussion  

a. Presence of chaotic dynamics  

Simplex and S-map methods were applied on each streamflow timeseries of the 413 

MOPEX basins. Before we report the results on hydrologic complexity, an analysis is conducted 

to examine the presence of chaotic behavior in each streamflow timeseries. The analysis is 

performed by computing prediction accuracy (𝜌) for both the original timeseries and surrogates. 

The statistical significance is then computed according to section 3.3; a basin is considered to 

exhibit chaotic dynamics if the prediction accuracy of the original timeseries is greater than that 

of the surrogate distribution with a p-value less than the statistical significance level 𝛼 of 0.05. A 

statistically significant p-value means that the phase space representation provides useful 

information for prediction beyond what is contained in the autocorrelation. In other words, there 

exists an underlying dynamical attractor with coherent structure such that it can be exploited to 

achieve better prediction. On the contrary, if the basin behavior is not controlled by chaotic 

dynamics, the obtained prediction accuracy 𝜌 of the original timeseries will be within the 

distribution of 𝜌 in the surrogates. This latter case will result in a high p-value and the null 

hypothesis is accepted. It is worth mentioning that this analysis is not a conclusive test for the 

presence of chaotic dynamics which, as noted by Porporato and Ridolfi (1997), can only be 

achieved by applying a variety of techniques complementary to each other. It is nonetheless useful 
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to pinpoint the existence of a weakest component of chaotic dynamics, and it allows us to account 

for autocorrelation effects in the timeseries.  

 

Figure 3.2a shows a part of the 1-day ahead streamflow forecasts at USGS gauging station 

(ID 1631000) located in Virginia. We use 70% of the observations to construct the phase-space, 

and then validate the accuracy of nonlinear prediction in the remaining 30% of the record; Figure 

3.2b shows the scatterplot of observed and forecasted streamflow with correlation coefficient 𝜌 of 

0.78. Figure 3.2c shows the histogram of forecast accuracy obtained for the 100 surrogates; their 

mean and standard deviation are 0.73 and 0.004 respectively. By assuming a gaussian distribution 

with these values for mean and standard deviation (shown in black in Figure 3.2c), a p-value can 

be computed which in this case is equal to 3 ×  10−36; therefore, the basin is considered to exhibit 

chaotic behavior.     
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Figure 3.2 (a) Daily observed streamflow (black points) and 1-day ahead forecasts (cyan line) for USGS 

gauging station (ID 1631000) located in Virginia for the period extending from late March 1987 to early 

August 1988. (b) scatterplot for observed and forecasted streamflow; correlation coefficient ρ=0.78; the 

optimum embedding dimension Eopt= 6. (c) The histogram of forecast accuracy obtained from the surrogate 

time series is shown in gray. A Gaussian distribution centered at the mean of histogram values ρ=0.73 with 

a standard deviation of 0.004 shown in black. The estimate of forecast accuracy for the original timeseries 

is shown as dashed cyan line ρ=0.78.   
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b. Hydrologic complexity and its variability  

Simplex and S-map were applied to the 268 basins that showed evidence of chaotic 

dynamics. In order to estimate 𝐸𝑜𝑝𝑡, values of 𝐸 in the range [1, 20] were iteratively selected to 

compute accuracy of prediction for a prediction horizon of 1 day (𝑇 = 1). As for the nonlinearity 

index 𝜃𝑜𝑝𝑡, 𝜃 was iteratively selected from the values {0, 0.05, 0.075, 0.1, 0.15, 0.2, 0.4, 0.8, 1, 2, 

3, 4, 5, 6, 7, 8, 9, 10, 15}. In order to obtain statistical confidence on the values of 𝐸𝑜𝑝𝑡 and 𝜃𝑜𝑝𝑡, 

we computed their statistical significance according to the surrogate test. Because we seek to 

identify low-dimensional nonlinear chaotic behavior, any given value of 𝐸𝑜𝑝𝑡 is considered 

statistically significant if it is smaller than its surrogate distribution at a significance level of 0.05. 

Conversely, 𝜃𝑜𝑝𝑡 is considered statically significant if its value is larger than its surrogate 

distribution. Figure 3.3 shows the joint and marginal distributions of 𝐸𝑜𝑝𝑡 and 𝜃𝑜𝑝𝑡; basins shown 

in dark blue are the ones where both complexity indices are statistically significant. Also, the 

histograms in Figure 3.3 show the marginal distribution of statistically significant  𝐸𝑜𝑝𝑡 and 𝜃𝑜𝑝𝑡. 

The following observations may be made: (1) There is a large variability in basin complexity with 

𝐸𝑜𝑝𝑡 and 𝜃𝑜𝑝𝑡 in the ranges 1 - 12 and 0 - 15 respectively. (2) A tradeoff between 𝐸𝑜𝑝𝑡 and 𝜃𝑜𝑝𝑡 

exists; consequently, very few basins exhibit both high number of active degrees of freedom and 

extreme nonlinearity. This is demonstrated by the negative slope of the joint density contour lines. 

(3) The dynamics in a large number of basins has a small number of active degrees of freedom. 

This can be seen from the positively skewed distribution of 𝐸𝑜𝑝𝑡 with a median ≈ 4 (black dashed 

line). (4) Similarly, the distribution of 𝜃𝑜𝑝𝑡 is positively skewed with a long right tail and a median 

approximately equal to 4, suggesting that dynamics in most basins is moderately nonlinear, and 

very few basins exhibit highly nonlinear dynamics. 
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Figure 3.3 Scatterplot of Eopt and θopt values for the 268 basins that were identified to exhibit chaotic 

dynamics; basins where both complexity indices are statistically significant at α = 0.05 are shown in dark 

blue whereas other basins are shown in light blue. Red contour lines represent the joint bivariate 

distribution. Top panel shows the histogram of statistically significant Eopt values (black dashed line 

indicates the median). Right panel shows the histogram of statistically significant θopt values with black 

dashed line indicating the median. Basins with larger distance from the origin along the diagonal are more 

complex (high number of active degrees of freedom and increased nonlinearity). 
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c. Impact of basin characteristics on hydrologic complexity 

 Here we examine the impact of basin characteristics on the value of the two complexity 

indices 𝐸𝑜𝑝𝑡 and 𝜃𝑜𝑝𝑡. The total number of basin characteristics is 15 which includes topographic, 

climatic and land surface properties. Table 3.1 shows the spearman correlation coefficient 𝑟𝑠 

between each of the 15 basin characteristics and the two complexity indices; only basins where 

both complexity indices are statistically significant were considered for this analysis. Clearly, 𝐸𝑜𝑝𝑡 

is primarily related to topographic properties of the basin such as area, elevation, slope, stream 

length and drainage density (i.e. p-value of 𝑟𝑠 < 0.05). The most significant relationship is with 

basin area (𝑟𝑠 = - 0.33) which is shown in Figure 3.4a; specifically, basins with larger areas tend 

to have lower dimensionality (i.e. low active degrees of freedom). This can be attributed to the fact 

that large basins are more effective in filtering out the random behavior induced by basin 

heterogeneities and rainfall variability. As a result, multiple degrees of freedom are subdued, and 

the dynamics reduce to very few dimensions. This is also in agreement with previous findings that 

streamflow forecasting in larger basins is more accurate than in small basins (Parajka et al., 2013; 

Zalenski et al., 2017) which might be attributed to the low number of active degrees of freedom in 

large basins. In particular, the smoothing effect of large basins has long been hypothesized as the 

reason of why hydrologic models tend to perform better in large basins (e.g. Nester et al., 2011); 

however, empirical observations that link the size of basin area to dynamics dimensionality 

remained to be elusive in most studies (e.g. Liu et al., 1998).     

 

In addition to the impact of basin area on 𝐸𝑜𝑝𝑡, there are also significant correlations with 

channel slope and stream length with 𝑟𝑠 values of 0.32 and -0.29 respectively; see Figures 3.4b and 

3.4c. The relationship regarding stream length can be viewed as a result of the strong covariance 
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between stream length and basin area; particularly, larger basins will most likely be associated 

with longer stream length. Indeed, the Spearman correlation coefficient between basin area and 

stream length is 0.89. On the other hand, the positive correlation between 𝐸𝑜𝑝𝑡 and channel slope 

indicate that flashier basins have large dimensionality of dynamics. In other words, holding all 

other variables constant, an increase in channel slope means that the runoff response to rainfall is 

more direct, the basin is flashier, and the dimensionality of dynamics is large. If one is to relate 

high values of 𝐸𝑜𝑝𝑡 to low performance of models, then several studies have previously indicated 

that the difficulty of modelling catchments increases with flashiness (e.g. Lidén & Harlin, 2000; 

Yatheendradas et al., 2008) although the flashiness was attributed to climate properties and not to 

channel slope. It is noteworthy that Pande and Moayeri (2018) reported an opposite relationship 

that high slope is associated with lower complexity; however, they also highlighted that this 

relationship is only evident within a specific group of steep basins in their case study (i.e. it is not 

a general pattern).     

 

Lastly, 𝐸𝑜𝑝𝑡 has significant correlations with elevation and drainage density 𝐷𝑑. These 

two relationships might be viewed as a result of covariation with basin area, stream length and 

channel slope. In particular, elevation and channel slope are correlated with 𝑟𝑠 = 0.62;  𝐷𝑑 on the 

other hand covaries with basin area as it is defined as the ratio of stream length to basin area. 

Moreover, the positive correlation between 𝐷𝑑 and 𝐸𝑜𝑝𝑡 can be interpreted based on the fact that 

𝐷𝑑 is an indicator of the interaction between groundwater and surface water at the basin scale. 

More specifically, a higher value of 𝐷𝑑 indicates less permeability of the surface and flashier 

response of the basin; thus, increasing the dynamic dimensionality. For instance, Le Moine (2008) 

shows that there is a significant correlation between 𝐷𝑑 and high flows (i.e. flashier response). The 
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upshot of the results regarding the impact of basin properties on 𝐸𝑜𝑝𝑡 is that low dimensional 

dynamics are present in large basins that filter out and smooth heterogeneities whereas basins with 

higher slope, smaller size and flashier behavior are governed by large degrees of freedom.  It is 

worth mentioning that the relationship with basin size was observed in the work of Vignesh et al. 

(2015). Furthermore, other studies that reported the presence of low-dimensional chaotic dynamics 

in streamflow were mostly limited to large basins; for instance, the Aosta Valley basin with an 

area of 3313 𝑘𝑚2 (Porporato & Ridolfi, 1997). It is also important to note that there is a wide 

scatter in all relationships, and the values of 𝐸𝑜𝑝𝑡 are not fully explained by the size and slope of 

basins. This is, however, expected since the dynamics dimensionality arises from the interplay of 

several factors, and it is far more complex than to be explained by a single variable.  

 
Table 3.1 Relationship between 15 basin characteristics (topographic, climatic and land surface) and the 

two complexity indices 𝐸𝑜𝑝𝑡 and 𝜃𝑜𝑝𝑡 expressed as spearman correlation coefficient (𝑟𝑠); p-values of 𝑟𝑠 are 

also shown. The values of 𝑟𝑠 shown in bold font with an asterisk are statistically significant at 0.05 

significance level. All values of 𝑟𝑠 and p-value are rounded to two decimals.  

Basin Characteristic 𝐸𝑜𝑝𝑡 𝜃𝑜𝑝𝑡 

𝑟𝑠 p-value 𝑟𝑠 p-value 

A -0.33 * 0.00 0.02 0.89 

Elevation 0.17 * 0.02 -0.04 0.77 

Slope 0.32 * 0.00 -0.05 0.71 

Stream length -0.29 * 0.00 0.05 0.73 

𝐷𝑑 0.24 * 0.00 -0.04 0.78 

𝐷𝐼 -0.01 0.93 -0.17  0.14 

𝑃𝑆𝐼 -0.02 0.79 -0.15  0.21 

𝑄𝑆𝐼 0.02 0.73 0.19 0.10 

Snow fraction 0.04 0.48 -0.05 0.68 

𝐽𝑎𝑛 𝑇𝑚𝑖𝑛 -0.01 0.89 0.20 0.09 

𝜆 0.02 0.73 -0.04 0.78 

𝑓𝑠 -0.05 0.57 0.08 0.65 

Greenness 0.07 0.23 0.15 0.19 

IGBP -0.01 0.91 -0.27 * 0.02 

Soil texture 0.07 0.28 -0.14 0.23 
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Unlike 𝐸𝑜𝑝𝑡 which is primarily modulated by topographic properties of the basin, 

presence of nonlinearity indicated by the value of 𝜃𝑜𝑝𝑡 is only correlated at 𝛼 = 0.05 with the type 

of vegetation cover (𝑟𝑠 = -0.27). Figure 3.4d shows the relationship between the nonlinearity index 

𝜃𝑜𝑝𝑡 and the dominating International Geosphere-Biosphere Programme (IGBP) land cover class. 

There are 17 IGBP land cover classes ranging from evergreen forests (classes 1 and 2) to built-up 

land and water bodies (classes 13 and 17). The IGBP land cover in the basins used for the analysis 

in this section are almost limited to classes 1 through 13. The gradient of IGBP classes from low 

(class 1) to high (class 13) represents the gradient in spatial and temporal extent of canopy cover 

from evergreen forests to built-up lands. Therefore, the negative correlation shown in Figure 3.4d 

indicates that basins with no or very limited canopy cover (i.e. classes 11 – 13) tend to behave 

more linearly whereas extensive vegetation is associated with more nonlinear dynamics.       

  

It is plausible to interpret these results in terms of the complex impact of canopy cover 

on evapotranspiration, infiltration and interception storage. The nonlinearity indicated by the index 

𝜃𝑜𝑝𝑡 is particularly related to state-dependent behavior; essentially a high value of 𝜃𝑜𝑝𝑡 indicates 

that the temporal evolution of streamflow is highly sensitive to the dynamical state of the basin. In 

light of this fundamental understanding, the relationship between 𝜃𝑜𝑝𝑡 and vegetation cover can 

be explained through the sponge-effect hypothesis (Bruijnzeel et al., 2004). Generally, this 

hypothesis highlights the nonlinear state-dependent behavior of watersheds dominated by 

extensive vegetation cover (i.e. forests), and it postulates that the existence of forests reduces 

runoff peaks and annual runoff, but it enhances infiltration leading to increased streamflow during 

the dry season. There are several studies that examined this hypothesis using a paired catchment 

methodology, showed evidences of the sponge-effect hypothesis. The relationship with vegetation 
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cover is also consistent with previous studies that linked higher basin complexity to vegetation 

with more storage capacity (Pande & Moayeri, 2018). Although that there is not an extensive 

literature on the explicit impact of vegetation cover on complexity of dynamics, it appears to be 

intuitive that more vegetation cover aggravates the nonlinearity of basins through its complex 

impact on evapotranspiration, infiltration and interception.        

 

 
Figure 3.4 (a) Boxplots for the values of basin area (km2) corresponding to each Eopt group (1 to 12). (b) 

Boxplots for the values of stream length (km) corresponding to each Eopt group (1 to 12). (c) Boxplots for 

the values of main channel slope (m/km) for each Eopt group (1 to 12). (d) Boxplots for IGBP classes for 

each θ_opt group (1 to 15). In all plots, the black line is the least squares regression line with the shaded 

area showing the 95% confidence intervals. 
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3.5 Conclusions   

This study attempted to examine the qualitative character of watershed dynamics by 

applying techniques of chaotic dynamical systems, namely phase space reconstruction and 

nonlinear prediction. Their main advantage is that they are nonparametric and data-driven; thus, 

they are independent of structural assumptions in hydrologic models. While previous studies that 

used techniques of chaotic dynamical systems interpreted dynamic complexity in terms of a single 

measure indicating system dimensionality, we provided two measures of dynamic complexity. The 

first measure, 𝐸𝑜𝑝𝑡, provides an estimation of system dimensionality (i.e. number of active degrees 

of freedom) whereas the second measure, 𝜃𝑜𝑝𝑡, is a proxy for the strength of dynamics nonlinearity. 

An analysis on 408 basins, from the MOPEX dataset, representing a wide range of climatic, 

topographic and land surface characteristics was conducted, and the main findings are as follows: 

 

• Based on surrogate test to identify whether a component of deterministic chaos exists, it 

was found that 268 of the 408 basins exhibit chaotic dynamics. Further investigation 

revealed that snow fraction and rainfall seasonality (𝑃𝑆𝐼) exert first order control on the 

presence of chaotic dynamics. Specifically, rainfed (i.e. low snow fraction) basins with 

lower 𝑃𝑆𝐼 (i.e. more uniform rainfall) tend to exhibit chaotic behavior.    

 

• Values of complexity measures for the 268 basins show a wide range of variability with 

𝐸𝑜𝑝𝑡 and 𝜃𝑜𝑝𝑡 in the range of (1 - 12) and (0 - 15) respectively. However, the distribution 

of both measures is positively skewed with 50% of basins having a value of 𝐸𝑜𝑝𝑡 and 𝜃𝑜𝑝𝑡 

below 4. This means that the dynamics in most basins is moderately nonlinear and have a 

low number of active degrees of freedom. 
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• The dynamic dimensionality (number of active degrees of freedom), as estimated by 𝐸𝑜𝑝𝑡, 

is found to be primarily related to basin area. Specifically, larger basins tend to have lower 

dimensionality. This is attributed to the impact of large basins in filtering out 

heterogeneities within the basin. 𝐸𝑜𝑝𝑡 is also positively correlated with channel slope 

indicating that flashier basins have large dimensionality.  

 

• Unlike dynamic dimensionality, the nonlinearity of dynamics is found to be regulated by 

the type of vegetation cover in the basin. Specifically, basins with year-round, extensive 

vegetation cover are associated with nonlinear dynamics. 

 

• Preliminary results show that grouping of basins in terms of the value of 𝐸𝑜𝑝𝑡 and 𝜃𝑜𝑝𝑡 

provides insights on prediction accuracy of daily streamflow for prediction horizons of 1 

day up to 2 weeks. In particular, it is shown that low-dimensional, nonlinear dynamics lead 

to higher prediction accuracy.      

 

The results presented here have implications and potential relevance to several 

applications as it provides a basis for catchment classification based on similarity of dynamic 

complexity. This is particularly useful because the approach we used is data-driven, and it is not 

limited by our ability to represent and model hydrologic processes; this property is often preferred 

in catchment classification systems (Beven, 2011; Wagener et al., 2007). The findings that relate 

basin characteristics to the dynamic complexity measures presented in this study can be useful in 

obtaining a proxy for the complexity of system dynamics in ungauged basins. Consequently, this 

allows making informative decisions regarding extrapolation of hydrologic model parameters to 
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ungauged basins and selection of reference streamflow gauges (Archfield & Vogel, 2010). 

Arguably, this is more advantageous compared to commonly used approaches of spatial proximity 

to extrapolate parameters to ungauged basins. Moreover, since the measures presented in this study 

estimate both dynamic dimensionality and nonlinearity separately, they potentially have 

implications in model selection. Specifically, to guide the selection of models with appropriate 

complexity, both in terms of strength of nonlinearity and number of active degrees of freedom, 

that is well suited to resolve watershed dynamics. Finally, we also note that the results presented 

here may have implications and guide the application of data-driven (e.g. deep learning) 

approaches to streamflow forecasting.        
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Chapter 4 

4 Multivariate State-space Forecasting of Streamflow   

 

4.1 Introduction 

A major focus of surface hydrology revolves around streamflow forecasting in the short-

range to mid-range with lead times of hours to seasons respectively. Over the years, an enormous 

body of research was placed on developing techniques for reliable streamflow forecasting. These 

techniques range from sophisticated, physically based models that attempt to explicitly 

characterize the heterogenous hydrologic processes within the watershed to purely data-driven, 

model-free techniques.  

 

Data-driven techniques for streamflow forecasting attempt either to learn statistical 

patterns in time series or to model the dependence between streamflow and climatic 

teleconnections such as the El Nino Southern Oscillation (ENSO) (e.g. Piechota et al., 1998; 

Hidalgo‐Muñoz et al., 2015). In both cases, a variety of empirical models have previously been 

used; these include regression analysis (e.g. Kothyari & Garde, 1991), Markov Chain (Yapo et al., 

1993), independent component analysis (Westra et al., 2008), model trees (Solomatine & Dulal, 

2003), artificial neural networks (ANNs) (e.g. Hsu et al., 1995; 2002; Minns & Hall, 1996; 

Thirumalaiah & Deo, 1998; Tokar & Johnson, 1999; Birikundavyi et al., 2002; Moradkhani et al., 

2004) and phase space nonlinear prediction (e.g. Porporato & Ridolfi, 1997; Sivakumar et al., 

2002). The forecasting method in the present study belongs to this last class of empirical models 
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commonly referred to as phase space nonlinear prediction or empirical dynamical modelling 

(EDM).  

 

Broadly speaking, EDM utilizes a multi-dimensional phase (state) space representation of 

historical observations to obtain forecasts; the coordinates of this phase space are represented by 

lagged time series of streamflow. This reconstruction of phase space is theoretically grounded 

based on Takens theorem (Takens, 1981; see also Packard et al., 1980). The central idea in making 

forecasts from a given system state using this phase space representation is to utilize our 

knowledge on the dynamical evolution of historical system states that are similar to the current 

one. Therefore, EDM, in spirit, is an “analogues” approach with a unique definition of similarity 

based on the closeness of system states in the phase space. Although less popular than ANNs, this 

approach received its fair share of attention in streamflow forecasting. For instance, it has been 

used by Porporato & Ridolfi (1997) to provide 12-hour and 24-hour lead time streamflow forecasts 

in the Aosta Valley river basin. Their results demonstrated the utility of EDM in providing reliable 

short-range streamflow forecasts with correlation coefficients > 0.95.  Sivakumar et al. (2002) 

compared EDM and a multilayer perceptron artificial neural network for daily streamflow 

forecasting at 1-day and 7-day lead times in the Chao Phraya River basin in Thailand. While both 

approaches achieved reasonable forecast accuracy (correlation coefficient > 0.85), it was found 

that EDM outperforms the neural network model especially at long lead time (7-days). 

Additionally, a handful of other studies demonstrated the benefits attained by EDM for streamflow 

forecasting (Jayawardena & Lai, 1994; Jayawardena & Gurung, 2000; Sivakumar et al., 2001).  
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In spite of the encouraging results reported by previous studies in using EDM for 

streamflow forecasting, a major limitation of EDM is that it utilizes only a one-dimensional time 

series and leaves aside information on other variables that could potentially improve forecasting. 

While it seems that adding time series of variables such as precipitation, evaporation and 

temperature to the phase space is an intuitive and straightforward extension to conventional EDM, 

such an approach has not been adopted in streamflow forecasting. One reason behind this is the 

lack of theoretical principles for multivariate embedding, unlike univariate embedding which is 

rooted in Takens theorem. Another reason is the difficulty that lies in the selection of the optimum 

embedding coordinates; for instance, to construct a 5-dimensional multivariate embedding from a 

set of four variables and a maximum lag time of 10, there are 575,757 distinct possible 

embeddings. However, the significant advancements in the field of dynamical systems in recent 

years provide a remedy for both issues. Regarding the former, Takens theorem was recently 

extended to general multivariate embeddings by Deyle and Sugihara (2011). As for the latter, we 

present in this study an efficient algorithm that is guaranteed to converge to the optimum 

embedding coordinates. This algorithm builds on recent developments in causal inference; 

specifically, the method of convergent cross mapping (Sugihara et al., 2012).   

 

To this end, the objective of this study is to present an efficient algorithm that extends 

univariate EDM to multivariate EDM, hereafter referred to as m-EDM, and examines its utility for 

daily streamflow forecasting. Furthermore, we compare the performance of m-EDM to state-of-

the-art recurrent neural networks; specifically, Long short-term memory (LSTM). LSTMs 

(Hochreiter & Schmidhuber,1997) are particularly adept at learning statistical patterns in time 

series that have long lag time dependencies; thus, they are considered to be state-of-the-art ANNs 
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in modelling sequences (e.g. speeches, handwriting and time series), and they have recently been 

applied in hydrology for various tasks (e.g. Fang et al., 2017; Kratzert et al., 2018). LSTMs should, 

therefore, be a reasonable model against which to compare the utility of m-EDM. m-EDM allows 

us to leverage information from other variables that could potentially improve forecasting. In the 

present study, time series of precipitation (𝑷), potential evapotranspiration (𝑷𝑬𝑻), daily maximum 

temperature (𝑻𝒎𝒂𝒙) and streamflow (𝑸) are used for m-EDM. The experiment is conducted on a 

set of 9 hydrologic basins from the Model Parameter Estimation Project (MOPEX) dataset. This 

set of basins is selected such that it encompasses basins with wide variability in their sizes and 

climatic properties.  

 

4.2 Data 

a. General Characteristics  

A set of nine catchments in the contiguous United State (CONUS) were selected for this 

study; see Figure 4.1. These catchments are part of the Model Parameter Estimation Project 

(MOPEX) dataset (Schaake et al., 2006; Duan et al., 2006) which was developed for the purpose 

of providing sufficient, high-quality observations for parameterization of hydrological models. 

The 9 catchments were selected on two bases. First, representing variability in catchment size; 

thus, catchments were selected from three categories: small (size < 200 𝑘𝑚2), medium (500 𝑘𝑚2 

< size < 1000 𝑘𝑚2) and large (size > 4000 𝑘𝑚2). The thresholds selected for grouping catchments 

into these three categories are rather subjective and depends on the range of catchment size 

available in the MOPEX dataset; for instance, the smallest catchment size in MOPEX dataset is 

67 𝑘𝑚2. Second, for each of the three categories, three catchments are selected to represent the 

spectrum of climatic properties. Precisely, we use the Dryness Index (DI), defined as the ratio of 
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mean annual potential evapotranspiration to mean annual precipitation, as a basis for selection. 

Accordingly, for each category of catchment size, three basins are selected that are: relatively 

humid (𝐷𝐼 ≤ 0.55), temperate (0.6 < 𝐷𝐼 < 0.75) and arid (𝐷𝐼 > 1.4). Figure 4.1 shows the location 

of the USGS gauging stations at the 9 selected catchments. Basic attributes of the catchments are 

shown in Table 4.1. Apart from representing variability in catchment size and 𝐷𝐼, the catchments 

span a wide range of elevation (283 – 1195 𝑚).    

 

 
Figure 4.1 Location of USGS gauging stations at the 9 catchments selected for this study. The size of 

symbols is proportional to catchment size with their values shown in Table 4.1. Symbols color indicates the 

value of the Dryness Index (𝐷𝐼) in the basin. Labels show the USGS gauging station IDs.    
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Table 4.1 The 9 MOPEX catchments selected for this study and their attributes.  

USGS 

gauge ID 

Site name Area 

(𝒌𝒎𝟐) 

Dryness 

Index 

(𝑫𝑰) 

Elevation 

(m a.s.l) 

Annual 

Precipitation 

(mm) 

Record 

length 

(years) 

07163000 Council Creek near Stillwater, 

OK 
80 1.50 - 892 46 

03504000 Nantahala River near Rainbow 

Springs, NC 
135 0.39 1195 1960 55 

02143500 Indian Creek near Laboratory, 

NC 
179 0.75 290 1219 52 

02118000 South Yadkin River near 

Mocksville, NC 
793 0.73 317 1195 55 

06888500 Mill Creek near Paxico, KS 818 1.41 399 875 50 

12144500 Snoqualmie River Near 

Snoqualmie, WA 
971 0.26 1006 2513 45 

02414500 Tallapoosa River at Wadley, AL 4338 0.71 283 1376 54 

03455000 French Broad River near 

Newport, TN 
4812 0.55 - 1404 55 

13351000 Palouse River at Hooper, WA 6475 1.96 735 525 52 

                

b. Sample Split for Calibration and Validation 

Table 4.1 shows that the time series length at the 9 catchments is equal to, or longer than, 

45 years. For each catchment, we utilize 70% of the record length for calibration, and the remaining 

30% for validation. These correspond to a minimum of 31.5 and 13.5 years for calibration and 

validation respectively. Therefore, they are expected to encompass streamflow variability at 

interannual and multi-year time scales. In the case of m-EDM, the calibration sample (70% of the 

total record) is further divided into two parts. The first (60% of the total record) is used to build 

the forecasting model whereas the second (10% of the total record) is used to select an optimum 

model among different competing models.     
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4.3 Methods  

a. Problem Statement  

Our goal in this study is to use time series of three predictor variables: precipitation (P), 

potential evapotranspiration (PET) and daily maximum temperature (𝑻𝒎𝒂𝒙) as well as streamflow 

time series (Q) to predict streamflow T time steps ahead. Mathematically, this is formulated as 

follows: 

𝑄𝑡+𝑇 = 𝒈[ 𝑄𝑡, 𝑄𝑡−1 … 𝑄𝑡−𝜏∗ , 𝑃𝑡  … 𝑃𝑡−𝜏∗ , 𝑃𝐸𝑇𝑡  … 𝑃𝐸𝑇𝑡−𝜏∗ , 𝑇𝑚𝑎𝑥𝑡 … 𝑇𝑚𝑎𝑥𝑡−𝜏∗] (4.1) 

 

Where T is the prediction horizon (i.e. how far ahead) and 𝜏∗ is the maximum lag time to 

be considered as an input. Note that we use the notation of uppercase letters (not bold) to refer to 

single values; for instance, 𝑄𝑡−1 denotes a single streamflow observation at time (𝑡 − 1). The 

function 𝒈 maps the inputs available at time t to streamflow at time (𝑡 + 𝑇). The approach 

presented in this study of m-EDM as well as the LSTM are approximations of the function 𝒈. The 

two following subsections discusses in detail the m-EDM approach and the design of LSTM.        

 

b. Multivariate Empirical Dynamical Modelling (m-EDM) Framework  

Identifying the optimum embedding dimension  

The first step in any empirical dynamical modelling method is to identify the optimum 

embedding dimension (𝐸𝑜𝑝𝑡); that is, the number of phase space coordinates. Commonly, 𝐸𝑜𝑝𝑡 is 

defined by iteratively selecting an E value from a set of values {1, 2, …  𝐸𝑚𝑎𝑥}, and computing 

the forecast accuracy of each embedding. 𝐸𝑜𝑝𝑡 is then defined as the embedding dimension that 

yields the best forecast accuracy. In this study, we use univariate embedding of streamflow 
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timeseries (i.e. lagged time series of streamflow) and a set of E values in the range {1, 2, … 20} 

to define the optimum embedding dimension. Figure 4.2a shows a 3-dimensional embedding of 

streamflow at catchment (ID 02118000); this is constructed from streamflow time series 𝑸𝑡 and 

its values lagged by time steps of 1 and 2 (i.e. 𝑸𝑡−1 and 𝑸𝑡−2) using the first section of calibration 

data (60% of the total record). Note that uppercase bold letters refer to entire time series, not a 

single value. For each value of E in the range {1, 2, … 20}, the phase space of streamflow is 

reconstructed. Next, forecasts are made using the phase space for the second section of calibration 

data (10% of the total record), and their accuracy (correlation coefficient) is computed. Figure 4.2b 

shows the forecasts accuracy as a function of E in the range {1, 2, … 20}; the accuracy increases 

significantly as the value of E increases from 1 to 4, and it decreases beyond a value of E = 4. 

Thus, the optimum embedding dimension (𝐸𝑜𝑝𝑡) for this catchment is equal to 4. The forecasts 

from the phase space are carried out using the Simplex method which is analogous to the K-nearest 

neighbor approach. For detailed information on the Simplex method for phase space forecasting, 

interested readers should refer to Sugihara and May (1990). This first step in m-EDM framework 

is equivalent to the conventional univariate embedding that was previously used in several studies 

for streamflow forecasting.           
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Figure 4.2 (a) A 3-dimensional univariate embedding of the streamflow time series at catchment (ID 

02118000). The coordinates of the embedding are the streamflow timeseries 𝑸𝑡 and its values lagged by 

time steps of 1 and 2 (i.e. 𝑸𝑡−1 and 𝑸𝑡−2). (b) The forecast accuracy, indicated by correlation coefficient, 

as a function of embedding dimension (E) for the same time series in (a). (c) The causal strength of each 

predictor variable with respect to the target variable 𝑸𝑡; these values are calculated using the method of 

convergent cross mapping. (d) The predictor variables ranked based on their causal strength values in (c). 

(e) A segment of observed (black dots) and predicted (red line) streamflow. Forecasts are made using a 

multivariate embedding that resulted from the algorithm. (f) Scatter plot of observed and forecasted 

streamflow values; correlation coefficient is 0.78.  

 

Identifying the embedding coordinates  

After identifying the optimum embedding dimension, the embedding coordinates must be 

selected from a large number of possible combinations. Here, we assume that the maximum time 

lag to be considered for coordinates is equivalent to 𝐸𝑜𝑝𝑡 in order to minimize the number of 

possible combinations. Despite of this assumption, the number of possible combinations is 

enormous. For the time series in Figures 4.2a and 4.2b (𝐸𝑜𝑝𝑡 = 4), the number of possible 
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combinations is (
(4∗4)−1

(4−1)
) =  (15

3
) =  

15!

3! (15−3)!
= 455. It is very expensive, computational-wise, 

and impractical to iterate over all possible embeddings. This becomes almost impossible as the 

value of 𝐸𝑜𝑝𝑡 increases because the number of possible combinations grows super-exponentially 

as a function of 𝐸𝑜𝑝𝑡. 

 

Here, we circumvent the aforementioned issue by resorting to recent advances in causal 

inference. Specifically, we use the method of convergent cross mapping (CCM; Sugihara et al., 

2012) to compute the causal strength of each variable in the set 

{𝑸𝑡−1 … 𝑸𝑡−𝐸𝑜𝑝𝑡
, 𝑷𝑡−1  … 𝑷𝑡−𝐸𝑜𝑝𝑡

, 𝑷𝑬𝑻𝑡−1  … 𝑷𝑬𝑻𝑡−𝐸𝑜𝑝𝑡
, 𝑻𝒎𝒂𝒙𝑡−1 … 𝑻𝒎𝒂𝒙𝑡−𝐸𝑜𝑝𝑡

} with respect 

to the target variable 𝑸𝑡. CCM is an efficient method that utilizes concepts of phase space 

reconstruction to establish causal relations; See Sugihara et al. (2012) for detailed information on 

CCM and Ombadi et al. (2020) for information on the use of CCM for reconstructing causal 

relations in hydrometeorological systems. Figure 4.2c shows the causal strength of each lagged 

variable for the time series in Figures 4.2a and 4.2b. These values can be interpreted as causal 

relations of the predictor variables: P, PET and 𝑻𝒎𝒂𝒙. On the contrary, the values for 

𝑸𝑡−1 … 𝑸𝑡−𝐸𝑜𝑝𝑡
 do not represent causal relations per se; however, they are the result of 

autocorrelation in the time series of streamflow. Next, these variables are ranked according to their 

causal strength (Figure 4.2d). Our algorithm, shown in Figure 4.3, starts by taking the highest (𝐸𝑜𝑝𝑡 

– 1) variables as an initial guess of embedding coordinates. It only considers (𝐸𝑜𝑝𝑡 – 1) coordinates 

because one embedding coordinate is already defined which is 𝑸𝑡. This initial guess of embedding 

coordinates will yield the best forecasts if the variables are independent of each other. That is, each 

variable provides unique information for the prediction of variable 𝑸𝑡; however, this seldom 

occurs. In practice, the initial guess of embedding coordinates will most likely result in lagged 
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time series of streamflow as it is the case in Figure 4.2d. Consequently, the embedding coordinates 

are not independent of each other, and their information is redundant.        

 

In order to converge to the optimum embedding coordinates, our algorithm employs a 

heuristic that is asymptotically guaranteed to reach convergence; Figure 4.3 shows a pseudocode 

of the algorithm. The algorithm starts from the initial guess of embedding coordinates (𝔼0) to 

compute forecasts. Next, at each iteration, the algorithm replaces the variable with lower causal 

strength with one of the variables that were not originally considered in the initial embedding. In 

all iterations, the replacement is guided using the values of causal strength. That is, the variable 

with the lower causal strength is removed, and the one with the highest causal strength from the 

set of variables that were originally not included in the initial embedding is added. At each 

iteration, the algorithm computes the forecast accuracy, and it updates the embedding coordinates 

if a forecast accuracy larger than the current one is achieved. This procedure continues for a 

maximum number of iterations (B); B is a hyperparameter that is specified for the algorithm and 

is set to be 100 in this study. Clearly, if B is set to be equal to the possible number of embedding 

combinations, then the algorithm will yield the optimum embedding coordinate. Furthermore, 

because the algorithm only updates the embedding when a better forecasts accuracy is attained, it 

is not possible for the accuracy to decrease with iterations. Therefore, asymptotic convergence of 

the algorithm is guaranteed.      
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Figure 4.3 Pseudocode shows the algorithm used in this study to select an embedding coordinate given an 

input vector of variables and their lagged time series by time lag (𝜏) of 1, 2 …𝐸𝑜𝑝𝑡. Where 𝐸𝑜𝑝𝑡 is the 

optimum embedding dimension. The algorithm has one hyperparameter, B, which sets the maximum 

number of iterations for the algorithm.    

 

The Forecast Model  

The final step in the m-EDM approach is to use the embedding coordinates obtained from 

the algorithm in Figure 4.3 to compute streamflow forecasts. The previous sections use only the 

first part of the calibration data (60% of the total record) to build the model, and the remaining 
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calibration data (10% of the total record) to select between competing models. However, in this 

final step, the entire calibration data (70% of the total record) is used to build the model, and the 

validation data (30% of the total record) is used to compute forecasts accuracy. Forecasts are made 

from the phase space using the method of sequential locally weighted global linear maps “S-map” 

(Sugihara, 1994). As its name states, this method approximates the phase space by fitting maps in 

the phase space that are weighted locally. This is achieved mathematically by solving a singular 

value decomposition (SVD) problem; see Sugihara (1994) for detailed information on the S-map 

method. The forecasts of the time series shown in Figures 4.2a and 4.2b and their accuracy made 

using S-map are shown in Figures 4.2e and 4.2f.        

 

c. Long short-term memory (LSTM) 

LSTM networks are a specific type of recurrent neural networks that was developed by 

Hochreiter and Schmidhuber (1997), and its unique architectural design enables it to model 

temporal sequences that have long lag time dependencies. They have been applied successfully in 

several hydrometeorological applications including short-term precipitation forecast (Akbari 

Asanjan et al., 2018), prediction of satellite-based soil moisture (Fang et al., 2017) and rainfall-

runoff modelling (Kratzert et al., 2018). Several variants of LSTMs exist; for instance, the variants 

introduced in Gers et al. (1999), Gers and Schmidhuber (2000) and Cho et al. (2014). The LSTM 

used in this study is shown in Figure 4.4, and it is described in equations 4.1 to 4.6. 

 

The framework we use here consists of two LSTM layers followed by a dense output layer. 

Figure 4.4a shows the architectural design of the network; specifically, it shows the two LSTMs 

unrolled through time. The first LSTM layer takes an observations matrix of four variables (𝑷, 



 78 

 

𝑷𝑬𝑻, 𝑻𝒎𝒂𝒙 and 𝑸) as input; the number of rows in the matrix is equivalent to the batch size. 

Meanwhile, the second LSTM layer takes the output of the first layer as an input. Finally, the last 

output from the second LSTM layer is mapped using a dense layer to streamflow vector 𝒀. The 

internals of the LSTM shown in Figure 4.4c consists of three gates: input gate (𝒊𝒕), forget gate (𝒇𝒕) 

and output gate (𝒐𝒕). Each of these gates takes an input (𝒙𝒕) and a hidden state from the previous 

time step (𝒉𝒕−𝟏) according to the following equations:      

 

𝒊𝒕 =  𝜎(𝑾𝒊 𝒙𝒕 + 𝑼𝒊 𝒉𝒕−𝟏 + 𝒃𝒊) (4.2) 

 

𝒇𝒕 =  𝜎(𝑾𝒇 𝒙𝒕 + 𝑼𝒇 𝒉𝒕−𝟏 + 𝒃𝒇) (4.3) 

 

𝒐𝒕 =  𝜎(𝑾𝒐 𝒙𝒕 + 𝑼𝒐 𝒉𝒕−𝟏 + 𝒃𝒐) (4.4) 

 

Where 𝑾 and 𝑼 are the input and hidden weight matrices respectively, and 𝒃 is the bias 

vector for each gate. Whereas 𝜎(. ) is the sigmoid function. Next, the values of the input and forget 

gates are used to update the memory cell (𝒄𝒕) of the LSTM according to the following equation:  

 

𝒄𝒕 = 𝒇𝒕 ⨀𝒄𝒕−𝟏 + 𝒊𝒕⨀ 𝑡𝑎𝑛ℎ(𝑾𝒄 𝒙𝒕 + 𝑼𝒄 𝒉𝒕−𝟏 + 𝒃𝒄) (4.5) 

 

Where 𝑾, 𝑼 and 𝒃 are as defined before, ⨀ is the inner product, and 𝑡𝑎𝑛ℎ(. ) is the 

hyperbolic tangent function. Finally, the memory cell value is combined with the output gate to 

compute a new hidden state as follows:   
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𝒉𝒕 = tanh(𝒄𝒕) ⨀𝒐𝒕 (4.6) 

 

The procedure in equations (4.2) to (4.6) is carried out at the first and second LSTM layers. 

Then, the final hidden layer of the second LSTM is used as an input to a dense neural network 

layer with linear activation unit, see Figure 4.4c, as follows: 

𝒀 = 𝑾𝒅 𝒉𝒕−𝝉∗ + 𝒃𝒅  
 (4.7) 

 

Where 𝑾 and 𝒃 are the weight matrix and bias vector respectively. 𝒀 is the vector of 

streamflow forecasts that correspond to the input batch.  

 

The remaining hyper-parameters of the LSTM are defined as follows: the number of units 

= 32, batch size = 730 (i.e. 2 years), maximum lag time (𝜏∗) = 30, and number of epochs = 20. 

These values were the result of testing different values of each parameter in forecasting streamflow 

at the catchment (USGS ID 02118000).  In training, the batch is drawn at random without 

replacement from the calibration data; and each epoch covers the entire calibration data. The 

objective function used to train the LSTM network is the mean squared error.  
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Figure 4.4  (a) Architecture of the LSTM framework used in this study which consists of two LSTM layers 

(blue rectangles connected with yellow arrows), and a dense feedforward neural network layer (green 

rectangle). The two LSTMs are unrolled in time for convenient representation. The input matrices for each 

time step are shown in gray. (b) A dense layer with 32 input nodes and a linear activation unit to transform 

the last output of the second LSTM to streamflow. (c) The internal structure of the LSTM consists of three 

gates: input gate (𝒊), forget gate (𝒇) and output gate (𝒐) as well as memory cell (𝒄) and hidden state (𝒉). 

See equations and main text for detailed description.   

 

4.4  Results and Discussion  

a. Overall Performance  

In the following subsections, we present the results of streamflow forecasts obtained by the 

m-EDM approach and compare them to LSTM forecasts, for prediction horizon of 1 day (𝑇 = 1 

day). In order to evaluate streamflow forecasts, we use three metrics: correlation coefficient (corr), 

Nash-Sutcliffe efficiency (NSE) and root mean squared error (RMSE). Denoting the streamflow 

forecasts at time t by 𝑌𝑡, these metrics are calculated as follows  
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𝜌(𝑄, 𝑌) =  
𝑚𝑒𝑎𝑛[ (𝑄𝑡 − �̅�) (𝑌𝑡 − �̅�)]

𝜎𝑄 𝜎𝑌
 

(4.8) 

 

𝑅𝑀𝑆𝐸(𝑄, 𝑌) =  √
∑ (𝑄𝑡 − 𝑌𝑡)2 𝑛

𝑡=1

𝑛
   

(4.9) 

 

𝑁𝑆𝐸 (𝑄, 𝑌) =  1 −  
∑ (𝑄𝑡 − 𝑌𝑡)2 𝑛

𝑡=1

∑ (𝑄𝑡 − �̅�𝑡)2 𝑛
𝑡=1

   
(4.10) 

 

Where  �̅� and �̅� are the mean values of observations and forecasts respectively. Similarly, 𝜎𝑄 and 

𝜎𝑌 are the standard deviations of observations and forecasts respectively. 𝑛 is the length of time 

series.  

 

Figure 4.5 shows the 1-day ahead streamflow forecasts obtained from the m-EDM and 

LSTM methods for catchment (ID 03504000); see Table 4.1. Figure 4.5a shows a segment of the 

streamflow time series from mid-April to late July of the hydrological year 1987. Overall, the two 

methods appear to capture the observed streamflow patterns adequately; in particular, the recession 

limb from mid-April to early May. However, discrepancies between forecasts and observations 

are apparent in the fluctuations of streamflow in the period of late June to early July (i.e. the sudden 

spikes in streamflow). Figures 4.5b and 4.5c show scatterplots of observed streamflow against 

forecasts obtained from m-EDM and LSTM for the entire calibration period. Clearly, the scatter 

of points away from the 45° degrees line is more significant at high values of streamflow. This is 
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specifically apparent in the LSTM forecasts (Figure 4.5c). Overall, 𝜌 of forecasted streamflow 

from m-EDM is 0.91 compared to 0.85 of LSTM. Table 4.2 shows the values of 𝜌 as well as NSE 

and RMSE at the 9 catchments.  

 

 
Figure 4.5 (a). Segment of streamflow time series at catchment (ID 03504000): observed (black dots), 

forecasted from m-EDM (red) and forecasted from LSTM (cyan). The forecast time series shown are for 

one day ahead (𝑇 = 1). (b) Scatter plot of observed streamflow (x-axis) and forecasts of m-EDM (y-axis). 

(c) Same as in (b), but for forecasts of LSTM.  
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Figure 4.6 shows boxplots of 𝜌 and NSE (at different thresholds) for streamflow forecasts 

of m-EDM and LSTM at the 9 catchments. By examining the boxplots of 𝜌 and NSE (entire 

record), one immediately infers that the accuracy of forecasts is nearly equivalent for both methods 

with a 𝜌 median of 0.865 and 0.869, and an NSE median of 0.749 and 0.749 for m-EDM and 

LSTM respectively. LSTM appears to provide better overall performance as evident by higher 

values of 𝜌 and NSE at the 25th percentile (i.e. bottom line of the boxplots). However, the utility 

of the m-EDM approach is clearly shown when we examine the forecast accuracy for streamflow 

observations above certain thresholds. Figure 4.6 shows NSE values for streamflow observations 

above 75th, 85th and 95th percentiles. Remarkably, m-EDM shows a median of 0.87, 0.87 and 0.81 

compared to LSTM medians of 0.52, 0.44 and 0.17 for the three thresholds respectively. This last 

result motivates us to examine the performance of m-EDM in forecasting extreme streamflow as 

well as low flows which will be shown in the next subsection.    
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Figure 4.6 Boxplots show the forecast (1 day ahead) accuracy for m-EDM (red) and LSTM (cyan) in terms 

of correlation coefficient (𝜌), Nash-Sutcliffe efficiency (NSE), and NSE for streamflow above thresholds of 

75th , 85th  and 95th percentiles.     
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Table 4. 2 The statistics of streamflow forecast accuracy at the 9 catchments, namely correlation coefficient 

(𝜌),  Nash-Sutcliffe efficiency (NSE) and root mean squared error (RMSE).  

Site ID 𝝆 NSE RMSE (mm) 

m-EDM LSTM m-EDM LSTM m-EDM LSTM 

02118000 0.78 0.93 0.61 0.86 0.78 0.48 

02143500 0.70 0.75 0.49 0.56 1.28 1.2 

02414500 0.87 0.87 0.75 0.75 0.88 0.93 

03455000 0.88 0.88 0.78 0.78 0.57 0.57 

03504000 0.91 0.85 0.84 0.72 1.20 1.63 

06888500 0.58 0.67 0.32 0.41 1.97 1.83 

07163000 0.27 0.46 0.07 0.20 2.11 3.10 

12144500 0.88 0.87 0.78 0.75 3.25 3.44 

13351000 0.95 0.94 0.90 0.88 0.12 0.14 

 

 

b. Performance in extreme and low flows 

Here, we evaluate the performance of m-EDM in forecasting extreme and low streamflow 

events. The two measures chosen for these events are annual maximum series of streamflow and 

annual minimum 7-days streamflow. The former is commonly used in frequency analysis of 

streamflow to develop flow duration curves, whereas the latter is a commonly used measure for 

low flows that is used in determining the waste load in streams, and safe withdrawal of water from 

streams.  Both time series are extracted from each hydrological year (Oct 1st – Sep 30th). The 

minimum 7-day streamflow in a given year is identified by first computing a running average with 

a window of 7 days, then extracting the minimum value.  

 

Figure 4.7a shows boxplots of the RMSE for annual maximum series of streamflow. The 

median of RMSE for m-EDM is 8.4 mm, and it is lower than that of LSTM (10.5 mm). Figure 

4.7b shows boxplots of the RMSE for annual minimum 7-days flow; the RMSE for m-EDM (0.03 

mm) is significantly lower than that of LSTM (0.14 mm). These results are consistent with the 

observations in the previous subsection, and they corroborate the finding that m-EDM is superior 
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to LSTM in forecasting extreme and low flows. We speculate that the reason behind this is that 

LSTM, like other ANNs, is trained by minimizing an objective function; here, the objective 

function is mean squared error. Thus, LSTM will minimize the objective function at the expense 

of extreme events at the tail of the distribution (i.e. there are few extreme events, and their total 

contribution to the objective function is insignificant). Similarly, low flow events will be 

overlooked in the optimization because their values are small, and their combined contribution to 

the objective function is negligible. On the contrary, the framework of m-EDM is not based on 

minimizing an objective function which is an advantage of m-EDM over regression techniques, 

including neural networks (e.g. LSTM).         

 

 
Figure 4.7 (a) Boxplots of root mean squared error (RMSE) for annual maximum series of streamflow 

forecasted from m-EDM (red) and LSTM (cyan). (b) Same as in (a), but for annual time series of minimum 

7-day streamflow.  In both (a) and (b), circles show the values of RMSE for each catchment. 
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4.5  Concluding Remarks  

This study presented a novel algorithm that builds on recent developments in causal 

inference to extend univariate empirical dynamical modelling to the multivariate setting. 

Consequently, this allows us to leverage information from variables such as precipitation, potential 

evapotranspiration and daily maximum temperature to obtain streamflow forecasts. Convergence 

of the algorithm to the optimum embedding coordinates is guaranteed asymptotically. Next, we 

examined the performance of the algorithm in streamflow forecasts at 9 catchments in the 

contiguous United States that span a wide range of basin size and climate. The results are compared 

against the forecasts obtained from a Long short-term memory (LSTM) network. Our rationale 

behind the selection of LSTM as a benchmark model is the remarkable strength of LSTM in 

forecasting sequences such as time series which has been shown in several studies including a 

handful in hydrometeorology.    

 

It is shown that while both approaches achieve an adequate and comparable performance 

with a median NSE of 0.75, m-EDM is significantly superior in forecasting extreme and low flow 

events. This is demonstrated by a median NSE (for events above 75th percentile) of 0.87 compared 

to 0.52 form LSTM. Moreover, the RMSE values of annual maximum streamflow (8.4 mm) and 

minimum 7-days flow (0.03 mm) obtained from m-EDM are significantly lower than that of 

LSTM, 10.5 mm and 0.14 mm respectively. We attribute the reamrkable differences between the 

two methods in forecasting extreme and low flow events to the inherent learning process in each 

method. On one hand, the training of LSTM is carried out by minimizing an objective function 

which in this study is mean squared error. As a result, the algorithm will be tailored to capture the 

mean behaviour, paying little attention to extreme events at the tail of the distribution and low flow 
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events due to their minimal contribution to the objective function. On the other hand, the learning 

process in m-EDM is not based on minimizing an objective function. In fact, the m-EDM approach 

utilizes a non-uniform and state-dependnt functions to transform inputs into streamflow forecasts. 

This dichotomy in training m-EDM and LSTM is not limited to these two particular methods but 

extends to their general classes of empirical models, namely phase space prediction and regression 

methods respectively. It is plausible that the objective function in training LSTM can be 

manipulated to favour extreme or low flow events; perhaps, by implementation of regularization 

techinques. This will, however, be at the expense of decreasing overall forecasts accuracy. On the 

contrary, m-EDM does not suffer from this tradeoff which is a main advantage of the algorithm. 

 

Although we only presented daily streamflow forecasts in this study, the m-EDM approach 

can seamlessly be applied at other temporal scales (e.g. hourly and sub-daily). The asuumption we 

adopted here that the maximum lag time is euqialvent to the embeding dimension will most likely 

need to be relaxed. Specifically, an educated guess of the maximum lag time based on expert 

knowledge might be preferable.         
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Chapter 5 

5 Information-theoretic Diagnosis of Infrared Brightness 

Temperature and Precipitation Relationship  

 

“This chapter is extracted from Ombadi et al. (2021b) with few edits incorporated for brevity and 

clarity”  

 

5.1 Introduction 

Precipitation is a vital component of the hydrologic cycle, and its accurate measurement 

across spatiotemporal scales provides indispensable information for management of water 

resources, design of resilient infrastructure and monitoring the functioning of ecosystems. In recent 

decades, satellite-based precipitation estimation proved to be effective and complementary to 

conventional precipitation measurement techniques of in-situ gauges and radars. Satellites provide 

near-global coverage over both land and oceans at high spatiotemporal resolutions, and they are 

not prone to instrumentation damage resulting from extreme weather conditions — an issue that 

limits the effectiveness of in-situ rainfall gauges. They are also not susceptible to issues of 

mountain blockage that often limits the spatial coverage of radars. Both geostationary Earth 

orbiting (GEO) and low Earth orbiting (LEO) satellites provide useful information for the 

estimation of precipitation rates. The former provides imagery in multiple spectral bands within 

the visible and Infrared (IR) wavelengths that can be used to infer cloud-top characteristics whereas 

the latter deploy passive microwave (PMW) sensors to provide information on the atmosphere 
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column.  While both sources are used to derive precipitation, IR imagery due to its high temporal 

resolution (5 – 30 mins) is the primary input data used by several operational algorithms such as 

the PERSIANN algorithms (Hsu et al., 1997; Sorooshian et al, 2000; Nguyen et al., 2018) and 

Hydro-Estimator (Scofield & Kuligowski, 2003). Moreover, IR data is often used in tandem with 

PMW information to provide precipitation rates by algorithms such as the Tropical Rainfall 

Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA; Huffman et al., 

2007). The essential idea of using IR imagery to estimate precipitation rates relies on the empirical 

evidences that clouds with cold brightness temperature are strongly correlated with precipitation 

amount; similarly, the spatial extent of cold clouds is associated with that of surface precipitation. 

These empirical findings reflect the complex and indirect physical relationship between surface 

precipitation rate and the characteristics of cloud tops.  

 

Broadly speaking, IR-based precipitation estimation algorithms can be categorized into 

two classes. First, algorithms that relate precipitation rate at a given spatial grid to the 

corresponding IR brightness temperature at the same grid. The prototypical algorithm of this class 

is the Geostationary Operational Environmental Satellite (GOES) Precipitation Index (GPI; Arkin 

& Meisner, 1987). GPI assigns a constant precipitation rate of 3 𝑚𝑚 ℎ−1 for all spatial grids with 

brightness temperature lower than 235 𝐾. Other variants of the GPI algorithm have also been 

proposed, and they include the Adjusted GPI algorithm (Adler et al., 1994) and the Threshold-

Matched Precipitation Index (TMPI; Huffman et al., 2001). The former holds the 235 𝐾 threshold 

constant while allowing the precipitation rate to vary in space and time, whereas the latter allows 

both the brightness temperature threshold and the precipitation rate to vary locally by month. 

Second, there are algorithms that attempt to extract information from IR brightness temperature at 
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neighboring spatial grids to better characterize the properties of clouds. These include among 

others the method proposed by Griffith et al. (1978), the PERSIANN algorithm (Hsu et al., 1997) 

and the PERSIANN – Cloud Classification System (PERSIANN-CCS; Hong et al., 2004). The 

latter algorithm classifies clouds into different groups and fits a distinct exponential function for 

each group to describe the relationship between IR brightness temperature and precipitation.  

 

Several qualitative statements were previously made about the advantages and limitations 

of using IR brightness temperature to estimate precipitation. Most notable is the strong (low) 

association between IR data and convective (non-convective) precipitation — an assertion 

supported by both empirical evidences (e.g. Arkin & Meisner, 1987) and physical reasoning. This 

is because IR brightness temperature is strongly correlated with the height of clouds, and hence, 

the depth and strength of convection; on the contrary, it is not clear how IR relates to non-

convective precipitation. Another limitation of using IR imagery to estimate precipitation is the 

inability of IR brightness temperature to satisfactorily resolve regional precipitation patterns 

caused by complex terrain (Arkin & Meisner, 1987; Dinko et al., 2008; Nguyen et al., 2020). 

Moreover, IR imagery is generally not efficient in distinguishing between non-precipitating cold 

cirrus clouds and convective clouds (Hong et al., 2007) although some empirical methods were 

relatively successful in separating convective and cirrus clouds (e.g. Adler & Negri, 1988). Apart 

from these limitations, IR data suffers from issues related to the viewing geometry of 

geosynchronous satellites at higher, extratropical latitudes (Wark et al., 1962; Huffman et al., 

2001). It is, therefore, important to carry out studies with the aim of investigating the significance 

of the foregoing statements and developing novel hypotheses on the inherent relationship between 

IR and precipitation. Such studies can potentially pinpoint spatial domains and temporal scales at 
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which IR imagery is not an appropriate proxy for estimating precipitation and hence must be 

supplemented with ancillary data sources to obtain reliable precipitation estimates. Additionally, 

diagnosis studies can highlight regions at which dependence between IR and precipitation is 

stronger than currently reported by IR-based operational algorithms, indicating the potential for 

further development of these algorithms.          

 

Although some of the early studies related to Infrared-based rainfall estimation (e.g. Stout 

et al., 1979; Arkin, 1979; Richards & Arkin, 1981) were mostly concerned with diagnosing the 

relationship between IR brightness temperature and precipitation at different temporal and spatial 

scales, the focus since then has been shifted to address the more practical question of acquiring 

reliable precipitation estimates from IR imagery. As a result, little attention, if any, has been 

directed towards further diagnosis of the IR and precipitation inherent relationship despite the 

numerous benefits that may be gained from such an investigation. Most of the early results 

obtained on the relationship between Infrared brightness temperature and precipitation were based 

on correlation analysis of data from the Global Atmospheric Research Program (GARP) Atlantic 

Tropical Experiment (GATE; Hudlow, 1979) collected from a period of 3 months over a small 

spatial domain in the Atlantic Ocean. It should also be emphasized that the common practice in 

recent years of evaluating satellite-based precipitation estimates with respect to measurements of 

in-situ rainfall gauges is not an alternative to diagnosis studies. This is because the outcomes of 

evaluation studies can only be interpreted within the limited context of the specific algorithm used 

to obtain the precipitation estimates. In other words, it is unknown whether the observed errors in 

satellite estimates of precipitation should be attributed to the inherent information content of IR 
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imagery, the assumptions and adequacy of the algorithm used to obtain the estimates or a 

combination of both.   

 

To this end, the objective of this study is to diagnose the inherent relationship between IR 

imagery and precipitation using state-of-the-art information-theoretic techniques along with 

extensive dataset of more than 1.3 × 109 pairs of IR and precipitation observations. Specifically, 

we address the following questions: (1) What are the regional patterns of dependence between IR 

brightness temperature and precipitation? (2) Which factors exert a first-order impact on these 

regional patterns? (3) How do the dependence relationships change across the hierarchy of time 

and space scales? The novelty of the present study lies in the following. First, we use an 

information-theoretic measure capable of detecting a wide range of dependence relationships; thus, 

it is suitable to investigate the nonlinear, space-time varying relationship between IR and 

precipitation that was previously explored using only linear measures (i.e. correlation). Second, 

our approach is free of specific assumptions on IR brightness temperature thresholds commonly 

adopted in IR-based precipitation estimation algorithms; therefore, the outcomes of the study are 

generalizable and of benefit to all algorithms that utilize IR brightness temperature to estimate 

precipitation. Finally, the study area we consider here, namely the contiguous United States 

(CONUS), encompasses a wide range of precipitation regimes and to our knowledge is the largest 

study area to be examined for such analysis.  
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5.2 Data and Study Area 

a. NCEP STAGE IV Precipitation  

STAGE IV precipitation dataset provides hourly multi-sensor observations at a spatial 

resolution of 4 km. It is produced by the National Center for Environmental Prediction (NCEP) at 

the National Oceanic and Atmospheric Administration (NOAA), and it combines observations 

from automated rain gauges with those obtained from the national network of Weather 

Surveillance Radar – 1988 Doppler (WSR-88D). Specifically, the precipitation estimates obtained 

by radars are bias adjusted using observations from approximately 3000 rain gauges (Lin and 

Mitchell, 2005). In this study, we use STAGE IV hourly precipitation observations for the entire 

year of 2010. The rationale behind the selection of the year 2010 is that it represents a normal year 

of precipitation activity in CONUS. That is, it is neither a year of strong El Niño nor is it a part of 

the multiyear drought that hit California in the years 2011 – 2015 (Seager et al., 2015; Luo et al., 

2017). More specifically, annual precipitation of the year 2010 represents the 55th percentile of the 

distribution of annual precipitation for the period (2002 – 2019). STAGE IV dataset covers the 

entire contiguous United States at the daily scale; however, the hourly dataset used in the present 

study exhibits missing observations in the Pacific Northwest of CONUS and parts of Nevada (the 

unshaded region within CONUS in Figure 5.1a). It is worthwhile to mention that STAGE IV 

precipitation observations are free of any satellite-based rainfall estimates; thus, they are 

independent of Infrared brightness temperature data.   
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b. Infrared (IR) Data 

The IR brightness temperature dataset used in the present study is provided by NCEP 

(Janowiak et al., 2001). This dataset merges Infrared data from five geostationary satellites: GMS, 

Meteosat-7, Meteosat-5, GOES-8 and GOES-10 to provide uniform observations at a spatial 

resolution of 4 km and half hourly temporal resolution. The peak frequency of IR channels for the 

five satellites ranges between 10.7 and 11.5 microns. Specifically, the peak frequencies in microns 

for each satellite are as follows: GMS (11.0), Meteosat-7 (11.5), Meteosat-5 (11.5), GOES-8 (10.7) 

and GOES-10 (10.7). The biases resulting from differences in the peak frequency of IR channels 

are corrected using a calibration strategy (Janowiak et al., 2001). Moreover, an adjustment 

algorithm is utilized to correct for viweing geometry effects. This is because the IR brightness 

temperature at spatial grids far from satellite nadir will be colder than if they were directly at the 

nadir. In particular, the correction methods of Joyce et al. (2001) and Joyce and Arkin (1997) are 

employed to correct for viewing angle effects. This dataset is available from November 1998 at 

quasi-global coverage (60°N - 60°S), and it is the primary IR data used by operational satellite-

based precipitaiton estimation algorithms. In the present study, we only use IR data at the same 

spatial extent of STAGE IV precipitation data (gray shaded region in Figure 5.1a).          

 

c. Data Pre-processing  

Both STAGE IV precipitation and IR datasets are available at spatial resolution of 0.04° x 

0.04°. In this study, we examine the dependence between the two variables at different spatial 

resolutions (0.04° x 0.04°, 0.1° x 0.1°, 0.25° x 0.25° and 1° x 1°); therefore, whenever it is needed, 

we resample the dataset from its native spatial resolution to the target one by averaging values of 

all the fine grids contained within a coarse grid. The resampling throughout this study is 
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exclusively an upscaling (i.e. fine to coarse spatial resolution). Another pre-processing step is 

needed in order to match the temporal resolution of the two datasets. Specifically, STAGE IV 

dataset is available at an hourly temporal resolution reporting an accumulated amount, whereas IR 

data has 30-minutes native resolution representing instantaneous observations. Therefore, we 

average the two instantaneous IR observations within each hour and use the resulting value in 

direct correspondence to that of STAGE IV precipitation at the same hour.      

 

d. Study Area 

In the present study, we consider the part of CONUS covered by STAGE IV hourly 

precipitation dataset (gray shaded region in Figure 5.1a) as the primary study area. In order to 

thoroughly investigate the impact of regional precipitation regimes on the dependence between IR 

brightness temperature and precipitation, we divide CONUS into 8 distinct climatic divisions. 

These climatic divisions, indicated by numbers in Figure 5.1a, are named as follows: (1) Northeast, 

(2) Upper Midwest, (3) Ohio Valley, (4) Southeast, (5) South, (6) Northern Rockies and Plains, 

(7) West and (8) Monsoonal Southwest. The first six divisions conform with the US climate 

regions defined by the National Centers for Environmental Information (Karl & Koss, 1984). 

However, the 7th and 8th climate divisions in this study, namely West and Monsoonal Southwest, 

deviate from the conventional division. Specifically, we separate the states of Arizona and New 

Mexico from the remaining states in Southwestern CONUS and define them as the 8th climate 

division. This is because precipitation in these two states is mostly dominated by the North 

American Monsoon, and it differs from that of the neighboring states. Figure 5.1a, 5.1b and 5.1c 

show the boundaries of the eight climatic divisions, mean precipitation of the year 2010 (mm/day) 

and number of no-rain days in 2010, respectively. It is clear from Figures 5.1b and 5.1c that there 
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is an east to west gradient in annual precipitation amounts and number of no-rain days. For 

instance, some regions within climate division 1 show more than 150 rainy days per year, whereas 

the semi-arid part of climate division 7 averages less than 30 rainy days per year. Both figures also 

show the effect of topography in precipitation amounts and number of rainy days; for instance, the 

bands of higher annual precipitation and number of rainy days along the Sierra Nevada and Rocky 

Mountains.            

 

 

 
 

Figure 5.1 (a) The contiguous United States (CONUS) considered in the present study is divided into 8 

climatic divisions: (1) Northeast, (2) Upper Midwest, (3) Ohio Valley, (4) Southeast, (5) South, (6) Northern 

Rockies and Plains, (7) West and (8) Monsoonal Southwest. The gray shading indicates the spatial extent 
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of the hourly Stage IV dataset used in the present study. (b) Annual precipitation of the year 2010 computed 

from STAGE IV data and expressed in units of mm/day. (c) Number of rainy days in the year 2010 computed 

from STAGE IV data; a threshold of 1 mm is used to filter no-rain days. 

 

5.3 Methods  

In order to satisfactorily characterize the dependence between IR brightness temperature 

and precipitation, a measure of dependence with the following desirable properties is needed. First, 

it must be able to detect a wide range of relationships — both functional and non-functional, linear 

and nonlinear. Second, its value should be bounded from both ends (i.e. upper and lower bounds) 

to facilitate interpretability across time and space scales. The first property is important because 

the relationship between IR and precipitation is not entirely linear and certainly exhibits some 

nonlinearities, whereas the second property allows us to compare the dependence relationships at 

different regions and distinct seasons. While all information-theoretic measures satisfy the first 

property to some extent, the second one is difficult to achieve with the traditional information-

theoretic measures. Fortunately, however, the maximal information coefficient (MIC) proposed 

by Reshef et al. (2011) satisfy both properties in addition to several other desirable ones. It was, 

therefore, selected in the present study to examine the dependence relationship between IR and 

precipitation. In the following two subsections, we first discuss briefly the fundamentals of 

information theory and then describe the MIC measure.           

 

a. Information Theory 

The early work of Claude Shannon (1948) laid the foundation of information theory which 

has been applied since then in numerous fields — more recently in environmental and hydrological 
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sciences (e.g. Singh, 1997; Sharma, 2000; Ombadi et al., 2020). The most fundamental concept of 

information theory is the entropy (𝐻) which quantifies the uncertainty in the distribution of a 

random variable. In particular, the entropy of a continuous random variable 𝑋 can be estimated as 

follows: 

𝐻(𝑋) =  ∫ 𝑓𝑥(𝑥) log𝑏

1

𝑓𝑥(𝑥)
 𝑑𝑥 

(5.1) 

 

Here, 𝑓𝑥(𝑥) is the marginal distribution of the variable 𝑋, and 𝑏 is the base of the logarithm 

which is taken to be 2. If one is interested to quantify the dependence between two random 

variables 𝑋 and 𝑌, the entropy in equation 5.1 can be extended to define a dependence measure 

known as mutual information (𝑀𝐼) defined as follows: 

𝑀𝐼(𝑋, 𝑌) =  ∬ 𝑓𝑥𝑦(𝑥, 𝑦)  𝑙𝑜𝑔
𝑓𝑥𝑦(𝑥, 𝑦)

𝑓𝑥(𝑥)𝑓𝑦(𝑦)
 𝑑𝑥 𝑑𝑦 

(5.2) 

 

In equation 5.2, 𝑓𝑥𝑦 is the joint distribution of variables 𝑋 and 𝑌, whereas 𝑓𝑥 and 𝑓𝑦 are the 

marginal distributions of variables 𝑋 and 𝑌 respectively. Mutual information possesses several 

useful traits, and thus it is often used as a measure of dependence in a wide range of applications. 

Specifically, 𝑀𝐼 is free of assumptions on the underlying functional form of dependence; thus, it 

is capable of characterizing both linear and nonlinear dependence. Moreover, 𝑀𝐼 has a lower 

bound of zero which indicates independence of random variables. This can easily be inferred from 

equation 5.2; specifically, if the two random variables 𝑋 and 𝑌 are independent, then the numerator 

of the 𝑙𝑜𝑔 can be decomposed into 𝑓𝑥𝑦(𝑥, 𝑦) = 𝑓𝑥(𝑥) 𝑓𝑦(𝑦) which leads to 𝑀𝐼 = 0. Despite these 

useful properties, 𝑀𝐼 is not adequate to characterize the dependence between IR and precipitation. 
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This is because 𝑀𝐼 is only lower-bounded, and thus it is not possible to contrast its values across 

spatial extents. In the following subsection, we will describe an information-theoretic measure that 

share the same roots of 𝑀𝐼, but it overcomes the foregoing limitations.    

 

b. Maximal Information Coefficient (MIC)  

The fundamental idea underlying the Maximal Information Coefficient (MIC) (Reshef et 

al., 2011) is that for any bivariate dependence relationship, there exists a grid to partition the data 

such that the dependency is fully captured. Thus, the procedure to obtain MIC is initialized by 

partitioning the bivariate data into grids of different size. Let G denotes a grid defined by (𝑔𝑋 , 𝑔𝑦) 

where 𝑔𝑋 and 𝑔𝑦 refer to the number of bins (partitions) in x and y coordinates, respectively. The 

possible integer values of 𝑔𝑋 and 𝑔𝑦 are defined based on the sample size n; in particular, only the 

integer values of 𝑔𝑋 and 𝑔𝑦 satisfying the inequality (𝑔𝑥 . 𝑔𝑦) < 𝑛0.6 are considered. For a given 

grid G, the mutual information (MI) of equation 5.2 is calculated over all possible layouts of the 

grid, and the maximum value denoted by max {𝑀𝐼𝐺} is identified. This step is repeated over all 

possible grids of G, and a matrix that consists of the elements max {𝑀𝐼𝐺} is constructed. The 

values of these elements are normalized by dividing each value by the corresponding value of 

log(min {𝑔𝑥, 𝑔𝑦}). This last step normalizes the variation resulting from the different resolution 

of the grids, and it ensures that the values of all elements are bounded between 0 and 1. Finally, 

MIC is obtained as the maximum value across all elements of the matrix. Using the foregoing 

notations, MIC is formally defined as follows: 

MIC = max
(𝑔𝑥.𝑔𝑦<𝑛0.6)

  
𝑀𝐼𝐺

log (min{𝑔𝑥, 𝑔𝑦})
 

(5.3) 
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MIC satisfies the two desirable properties mentioned earlier as it was proven to be capable 

of detecting association in linear, nonlinear and periodic functions as well as non-functional 

dependence (Reshef et al., 2011). Its value is bounded between 0 and 1 and is approximately 

equivalent to the coefficient of determination 𝑹𝟐 only for functional relationships. These two 

properties allow us to diagnose the dependence between IR brightness temperature and 

precipitation across different regions with clear interpretability of MIC.  In addition to these 

properties, MIC also accounts for sample length because the possible resolutions of grids G given 

by 𝑔𝑋 and 𝑔𝑦 are a function of sample length n. This last point ensures that we can utilize MIC 

values to compare relationships at different temporal scales (i.e. different sample length) without 

any loss of interpretability.  

 

In order to illustrate the robustness of MIC in measuring the dependence between IR and 

precipitation, we generate a synthetic time series using the following equation:  

𝑃 = 4 exp (
−(𝑇𝐵 − 215)

20
) 

(5.4) 

 

Where 𝑃 and 𝑇𝐵 refer to precipitation (𝑚𝑚 ℎ𝑟−1) and infrared brightness temperature (𝐾), 

respectively. This equation describes an idealized exponential relationship of the type often 

assumed in algorithms estimating precipitation from IR data (e.g. Hong et al., 2004; Nguyen et al., 

2020). It should be noted that the coefficients used in this equation are only used for illustration 

purposes, and that the value of such coefficients often depends on the region and season of 

precipitation, for instance, Nguyen et al. (2020) show how such curves are adjusted for different 

regions and seasons to obtain precipitation estimates from IR brightness temperature. The top 
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panel of Figure 5.2 shows scatterplots for data generated from equation 5.4 with length 𝑛 of 1000. 

The leftmost figure in the top panel shows data free of noise, whereas the two figures to the right 

show the data diluted with gaussian noise with zero mean and a standard deviation 𝜎 = 𝑐 ∗  𝜎𝑝. 

Where 𝜎𝑝 is the standard deviation of the noise-free precipitation data generated from equation 

5.4, and 𝑐 is a factor with values of 0.1 and 0.4. The bottom panel shows the same relationships as 

the top one except that the sample length 𝑛 is taken to be 500. For each scatterplot, the value of 

MIC is computed and shown in Figure 5.2. Clearly, the results demonstrate that for noise-free 

exponential relationship, MIC equals 1 which highlight its generality to detect nonlinear 

relationships. As the noise level increases with 𝑐 = 0.1 and 0.4, MIC decreases with values of 

0.92 and 0.64, respectively for the top panel. Finally, by comparing MIC values for the top and 

bottom panels, it can be seen that the differences are not substantial. This highlights that MIC 

accounts for differences in sample length, and it provides an approximately equal values for the 

same relationships even when the sample length is halved.  
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Figure 5.2  Scatterplots for data generated from equation 5.4. The top panel shows data with sample length 

(𝑛 = 1000) and noise levels (𝑐 = 0, 0.1 and 0.4) from left to right. The bottom panel shows data with 

sample length (𝑛 = 500) and noise levels (𝑐 = 0, 0.1 and 0.4) from left to right. MIC values are also shown 

for each scatterplot. 

 

5.4  Results and Discussion  

a. General and Regional Patterns  

We start our analysis by exploring the regional patterns of dependence between IR 

brightness temperature and precipitation with both temporal and spatial resolution of the data being 

held constant. Specifically, the two datasets are considered at their highest temporal resolution of 

1-hour and the native spatial resolution of 0.04° x 0.04°. The implicit assumption throughout our 

analysis is that information on precipitation at any given spatial grid is only carried by IR 

brightness temperature at the same grid. In this study, the issue of spatial aggregation itself is under 
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investigation; therefore, the foregoing assumption is not only justified, but it is even necessary in 

order to assess the impact of spatial aggregation on the relationship between IR and precipitation.    

 

Figure 5.3 shows the spatial distribution of MIC values for the entire year of 2010 as well 

as the four seasons: March, April and May (MAM); June, July and August (JJA); September, 

October and November (SON) and December, January and February (DJF). In general, the values 

of MIC ranges from a minimum of 0.03 to a maximum of 0.37. At the annual scale, Figure 5.3a 

shows that parts of the Upper Midwest and Ohio Valley (i.e. climate divisions 2 and 3 respectively) 

have higher MIC values with respect to other climatic divisions. By comparing Figure 5.3a to 

Figures 5.3b, 5.3c, 5.3d and 5.3e, it can be shown that there is only moderate variability in the 

spatial patterns of dependence at the annual scale compared to that of seasonal scales. This is 

because the combination of all hourly observations during the year obscures the differences 

resulting from distinct precipitation regimes. It is, thus, important to examine the spatial patterns 

of dependence for each season separately in order to obtain a more detailed view. Figures 5.3b to 

5.3e show the values of MIC calculated for each season separately. Generally, there are prominent 

spatial features of dependence in each season as well as clear distinction between seasonal patterns 

of dependence. Figures 5.3b and 5.3c show that IR is highly associated with precipitation in the 

eastern two thirds of CONUS during MAM and exclusively in the Upper Midwest and Northern 

Rockies during JJA. This can be related to the strong association between IR brightness 

temperature and convective precipitation (Arkin & Meisner, 1987). In particular, mesoscale 

convective systems (MCS) are the dominant precipitation regime over parts of CONUS east of the 

continental divide, and they are responsible for more than half of annual precipitation and the 

majority of warm season (May – August) precipitation (Haberlie & Ashley, 2019). The strong 
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dependence between IR and precipitation over parts of CONUS east of the continental divide 

during MAM and JJA is consistent with previous empirical findings; for instance, Arkin and 

Meisner (1987) showed that warm season monthly precipitation and IR are strongly correlated 

over this region with correlation coefficients exceeding 0.75.  

 

 
Figure 5.3 Spatial patterns of Maximal Information Coefficient (MIC) computed from IR brightness 

temperature and Stage IV precipitation, at spatial grids of 0.04° x 0.04° and hourly time resolution, for: (a) 

the entire year of 2010; (b) March, April and May (MAM); (c) June, July and August (JJA); (d) September, 

October and November (SON); and (e) December, January and February (DJF).    

 

  Figures 5.3d and 5.3e show the values of MIC for the two seasons of SON and DJF 

respectively. A main feature during both seasons is that high values of MIC are mostly observed 

over the Northeast and Southeast (i.e. climate divisions 1 and 4 respectively). Contrary to warm 

season, precipitation in the Midwest (climate divisions 2, 3, 5 and 6) during SON and DJF is not 
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strongly associated with IR brightness temperature mainly because of the lack of convective 

storms. The high values of MIC observed in Northeast, and to a lesser extent in Southeast, during 

SON might reflect the activity of Atlantic hurricanes during the season. This is because the type 

of clouds associated with hurricanes are mostly of the cumulus and cumulonimbus type, and they 

share similarities with those of MCS (Houze, 2014). Figure 5.4 shows the mean values of MIC 

averaged over all spatial grids within each of the 8 climatic divisions of CONUS. These results 

further highlight the foregoing observations; for instance, the two divisions of Upper Midwest and 

Northern Rockies and Plains have the highest MIC values during JJA due to the activity of 

convective precipitation. As for SON and DJF, it is the Northeast and Southeast respectively that 

show the highest value of MIC.         

 

 
Figure 5.4 Mean values of MIC for the entire year of 2010 (Annual), MAM, JJA, SON and DJF averaged 

over the 8 climatic divisions of contiguous United States (CONUS) considered in this study.  

 

Interestingly, Western United States (climate division 7) shows considerable seasonal 

variability in the values of MIC ranging from extremely low association during JJA (Figure 5.3c) 

to high MIC during SON (Figure 5.3d). In particular, the mean values of MIC for JJA and SON 
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are 0.09 and 0.15 respectively; see Figure 5.4. The mean value during SON, however, obscures 

the spatial patterns shown in Figure 5.3d since it averages the high MIC values over western part 

of climate division 7 with the extremely low values over the arid part. In order to infer the potential 

reason behind the pronounced seasonal variability of dependence between IR and precipitation 

over the West, it is important to point out a crucial aspect of the dependence relationships captured 

by MIC in the present study. MIC encapsulates two types of dependence: first, the association 

between IR brightness temperature and the amount of precipitation; second, the adequacy of using 

IR brightness temperature to identify no rain instances. The latter reflects the ability of identifying 

no rain instances using only IR brightness temperature. If we exclude the area of climate division 

7 covered by mountain ranges (Rocky and Sierra Nevada), the remaining part is mostly arid with 

extremely few precipitation occurrences. For instance, Southern California averages only 35 days 

of rain throughout the year (see Figure 5.1c). It is, therefore, plausible to hypothesize that the low 

MIC values during JJA, MAM and to a lesser extent DJF as well as the pronounced seasonal 

variability of MIC is caused by the low number of precipitation occurrences. This hypothesis is 

examined in Figure 5.5a which shows the bivariate relationship between MIC and the number of 

no rain hourly instances for each spatial grid over CONUS during the entire year of 2010. Clearly, 

there is a coherent relationship whereby MIC is low for spatial grids that have high number of no 

rain instances, and it increases consistently as the number of hourly no rain instances decreases. 

Precisely, the correlation between MIC and the number of no-rain observations is quite significant 

with a value of -0.73 (p-value < 2.2 x 10-16). This observation provides supporting evidences to 

the foregoing hypothesis and explains MIC patterns in Western United States. Put simply, Figure 

5.5a indicates that, on average, the information content of IR brightness temperature is lower for 

regions with higher frequency of no-rain instances.  
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Figure 5.5 Density plots for the relationship of MIC (horizontal axis) with: (a) number of hourly 

no-rain observations, (b) latitude and (c) elevation in meters above sea level. The plots show all 

0.04° x 0.04° spatial grids within the spatial extent of Stage IV. The color coding represents the 

density of points in the bivariate distirbution with brighter colors indicating higher density. 

 

The relationship shown in Figure 5.5a is quite robust for the entire spatial domain of 

CONUS, and it is perhaps the result of complex interplay of the inefficiency of IR data in 

separating convective clouds form non-precipitating cirrus clouds and the effects of ground 

temperature in detecting clear skies. In order to investigate this relationship more thoroughly, we 

narrow down our analysis to climate division 5 (South). Because the frequency of occurrence of 

cirrus clouds over this region is extremely low (Sassen et al., 2008), it is feasible to assess 

separately the impact of ground temperature on the relationship between IR information content 

and number of no-rain observations. Figure 5.6 shows scatterplots of this relationship during the 

warm season (JJA) and the cold season (DJF) along with least square regression lines. Clearly, the 

relationship is stronger during the cold season (DJF) with a correlation coefficient of -0.89 (p-

value < 2.2 x 10-16) compared to a warm season correlation of -0.3 (p-value < 2.2 x 10-16). This 
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indicates that, over this region, IR brightness temperature is more effective in identifying no-rain 

instances in the warm season because of high ground temperatures; however, this effectiveness is 

reduced in the cold season, leading to the strong relationship between no-rain observations and 

MIC (red regression line in Figure 5.6). These results highlight that while the strong relationship 

between no-rain observations and IR information content is robust at the annual scale across 

CONUS, there is significant variability in this relationship both regionally and seasonally.   

    

 
 

Figure 5.6 Scatterplots of the relationship between MIC and number of hourly no-rain observations for 

JJA (cyan) and DJF (red). The plots show all 0.04° x 0.04° spatial grids within the spatial extent of climate 

division 5 (South). Least squares regression lines are drawn in cyan and red for JJA and DJF, respectivley, 

with the values of correlation coefficients shown in the plot. 
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Apart from the regional patterns observed in Figures 5.3 and 5.4, there might be variability 

in MIC at small spatial scales resulting from complex terrain and orographic rainfall. Figure 5.5c 

shows the bivariate relationship between annual MIC and the elevation at each spatial grid in 

CONUS; the value of Pearson correlation coefficient is -0.53 (p-value < 2.2 x 10-16). As expected, 

higher values of MIC are associated with regions of low elevation because of the absence of 

orographic rainfall in these regions. In other words, IR brightness temperature is less informative 

in estimating precipitation at high elevations where orographic rainfall dominates. This affirms the 

numerous observations reported by previous studies on the difficulty of estimating orographic 

rainfall over complex terrain using IR brightness temperature. For instance, Ombadi et al. (2018) 

and Miao et al. (2015) showed that PERSIANN-CDR, an IR-based precipitation dataset, tends to 

underestimate precipitation at high elevation regions. Similar observations were also reported for 

another precipitation dataset that utilizes IR brightness temperature and PMW, namely TRMM 

3B43 (Hashemi et al., 2017). Finally, we also assess the potential impact of the satellite viewing 

angle (i.e. the accuracy of IR data far from satellite nadir) on the MIC values. Figure 5.5b shows 

that there is no relationship between MIC and latitude since high values of MIC seem to exist both 

at low and high latitudes. Specifically, Pearson correlation coefficient between MIC and latitude 

is -0.01 (p-value = 0.25). It is, thus, plausible to conclude that the corrections employed in the IR 

dataset (Janowiak et al. 2001) mitigated the biases in the data at spatial grids far from satellite 

nadir.  

       

b. Temporal Aggregation  

We now turn our analysis to examine the impact of temporal aggregation on the 

dependence relationship between IR brightness temperature and precipitation. While the foregoing 
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analysis was performed at the native temporal resolution of 1 hr, here we analyze the data across 

a hierarchy of temporal scales (∆t) given in hours by ∆t = {1, 3, 6, 12, 24}. The IR brightness 

temperature data at each time scale is obtained by averaging the data from the native temporal 

resolution, whereas STAGE IV precipitation data is obtained by accumulating the total amount of 

precipitation from the native resolution. The MIC values are then computed at each spatial grid 

(0.04° x 0.04°) for the entire year of 2010 as well as for each individual season of MAM, JJA, 

SON and DJF. In the following discussion, the mean value of MIC is calculated for each temporal 

aggregation and season by taking the arithmetic average of all the corresponding values of MIC 

over CONUS. 

 

Figure 5.7a shows the mean values of MIC computed from the four seasons as a function 

of temporal aggregation. Several interesting observations can be made from the figure. First, it 

appears that regardless of seasons, the dependence between IR and precipitation becomes stronger 

as the temporal aggregation increases. This is somewhat expected since the effect of aggregation 

in time will average the random errors present at fine temporal scales. Second, the rate of 

improvement in MIC gained by temporal aggregation seems to be more significant at first (e.g. 

from 1 to 3 hr), but it decreases consistently as the temporal aggregation increases. This behavior 

of diminishing returns is rather interesting and will be discussed in detail in the following 

paragraph. Third, across all temporal aggregations, MIC is higher in JJA (orange line) followed 

by MAM (black line). These observations reflect the patterns we discussed in section 4.1; 

specifically, IR is strongly correlated with precipitation over most parts of CONUS during JJA and 

MAM due to the high activity of convective storms.                    
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Figure 5.7 (a) Mean values of MIC for the four seasons (MAM, JJA, SON and DJF) as a function 

of temporal aggregations in hours given by ∆𝑡 = {1, 3, 6, 12, 24}. (b) The slope of the curves in 

(a) computed between each two sucessive temporal aggregations. MIC is considered 

dimensionless; thus, the slopes are shown in units of ℎ𝑟−1. 

 

The interesting behavior of diminishing returns observed in Figure 5.7a is worthy of further 

investigation. Thus, Figure 5.7b shows the rate of improvement obtained through temporal 

aggregations ∆𝑡[𝑖] → ∆𝑡[𝑖 + 1] for 𝑖 = 1, 2, 3 and 4. In other words, the values in the vertical axis 

of Figure 5.7b are the slopes of the curves in Figure 5.7a with units of hr−1 because MIC is unitless. 

Figure 5.7b shows that the rate of improvement in MIC as a result of temporal aggregation 

decreases persistently as we move toward coarse temporal scales. For instance, MIC during JJA 

increases by 0.044 for each hour as we aggregate from 1 to 3 hr; however, this rate drops to 0.007 

as we aggregate from 12 to 24 hr. This pattern is consistent for the remaining seasons, namely 

MAM, SON and DJF. More interestingly, Figure 5.7b shows that the rate of improvement resulting 

from temporal aggregation is higher during JJA (orange line) than any other season. Given that the 

dominant precipitation regime during JJA in most parts of CONUS is convective, the results of 
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Figure 5.7 do not only indicate that IR is strongly associated with convective precipitation but also 

highlight that IR and precipitation dependence increases more significantly with temporal 

aggregation for this specific type of precipitation. 

 

There are very few studies that have explicitly examined the impact of temporal 

aggregation on the dependence between IR and precipitation. Most notable is the work of Richards 

and Arkin (1981) who examined the impact of temporal averaging on the relationship between IR 

and precipitation. Their study was limited to 3 months of hourly data obtained from the GATE 

experiment over a small spatial domain in the eastern Atlantic Ocean, and they found that temporal 

averaging has negligible impact on the IR-precipitation relationship. Their analysis was based on 

spatial grids of 2.5° which is significantly coarser than the 0.04° we used for the analysis in Figure 

5.7. It is, therefore, plausible that the discrepancy of the results stems from the difference in spatial 

resolutions. In other words, it seems that at large spatial scales of approximately 2.5°, the temporal 

averaging is no longer important and does not lead to improvement of dependence between IR and 

precipitation. We speculate that the interesting observations inferred from Figure 5.7, namely the 

diminishing returns behavior, is closely associated with the so-called life-cycle effect (Griffith et 

al., 1978; Stout et al., 1979; Richards & Arkin, 1981). This effect describes the behavior of 

convective clouds whereby most of the precipitation occurs during the growing and mature stages 

of clouds, whereas the dissipating stage produces little or no rain resulting in time lagged 

dependence between IR brightness temperature and precipitation. These time lag effects are almost 

entirely subdued when aggregating at fine temporal scales (e.g. 1 to 3 hr) because the life cycle of 

convective storms is typically less than 2 hours. Therefore, further aggregation at larger time scales 

will not be equally effective in improving the dependence between IR and precipitation. 
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c. Spatial Aggregation 

In this section, we examine briefly the impact of spatial aggregation on the dependence 

between IR brightness temperature and precipitation. Five different spatial scales, namely 0.04°, 

0.1, 0.25°, 0.5° and 1° are used to examine the impact of spatial averaging. Figure 5.8 shows the 

mean values of MIC averaged over the study area for the four seasons of MAM, JJA, SON and 

DJF. This mean value of MIC is calculated by taking the arithmetic average of all MIC values for 

grids within the domain of STAGE IV observations (gray shaded region in Figure 5.1a). The 

results show that the impact of spatial averaging is almost identical to that of temporal averaging. 

Specifically, it can be seen from Figure 5.8a that spatial aggregation results in stronger dependence 

between IR and precipitation. Also, the dependence is stronger during JJA (orange line), followed 

by MAM (black line). Moreover, Figure 5.8b shows that the impact of spatial aggregation on IR 

and precipitation dependence exhibits a diminishing returns behavior. Specifically, the rate of 

increase in dependence obtained from spatial aggregation during JJA is 0.29 per degree when 

aggregating from 0.1° to 0.25°; however, this value decreases to only 0.075 per degree as we 

aggregate from 0.5° to 1.0°. Similar to temporal aggregation, this can be attributed to the life-cycle 

effect of clouds because the different stages of a storm (growing, mature and dissipation) exhibits 

changes in the size of clouds; thus, spatial averaging will mitigate these differences. Spatial 

aggregation is also shown to be more effective in improving the dependence between IR and 

precipitation during JJA. This is consistent with the results in Figure 5.7, and it indicates that both 

temporal and spatial averaging have significant impact on the dependence between IR and 

precipitation with respect to convective precipitation.       
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Figure 5.8 (a) Mean values of MIC for the four seasons (MAM, JJA, SON and DJF) as a function of spatial 

aggregations given by ∆𝑠 = {0.04°, 0.1°, 0.25°, 0.5°, 1°}. (b) The slope of the curves in (a) computed 

between each two sucessive spatial aggregations. MIC is considered dimensionless; thus, the slopes have 

units of 1/degree. 

 

d. Spatiotemporal Aggregation  

The previous two subsections examined the impact of spatial and temporal aggregation on 

the dependence between IR and precipitation by changing time or spatial scale while holding the 

other constant. However, it is important to examine the impact of bivariate (spatiotemporal) 

aggregation in order to acquire a complete picture on the variability of dependence across time and 

space scales. Figure 5.9 shows contour maps of MIC values averaged over CONUS and computed 

for the four seasons across spatial scales of 0.1, 0.25°, 0.5° and 1°, and temporal scales of 1, 3, 6, 

12 and 24 hours. Generally, Figure 5.9 reflects the results in Figures 5.7 and 5.8 with increasing 

MIC values across the main diagonal (i.e. consistent increase in MIC as we move rightward and 
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upward in the horizontal and vertical axes respectively). The negative slope of contour lines is a 

reflection of the relationships shown in Figures 5.7 and 5.8. The values of MIC during JJA (Figure 

5.9b) are higher than other seasons which reinforces the observations in the previous two 

subsections; namely, the dependence between IR and precipitation over CONUS is stronger in JJA 

across all time and space scales due to the high activity of convective storms. Furthermore, the 

diminishing returns behavior of increased dependence as a result of spatiotemporal aggregation 

can be inferred from the steep gradient of contours at fine spatiotemporal scales (bottom left corner 

in Figures 5.9a, 5.9b, 5.9c and 5.9d) and the dispersed contours at coarse scales (upper right corner 

in Figures 5.9a, 5.9b, 5.9c and 5.9d). Also, the gradient of MIC contours is more significant in JJA 

(Figure 5.9b) which reflects the results shown in Figures 5.7b and 5.8b.  
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Figure 5.9 Mean values of MIC as a function of both spatial aggregation (degrees) and temporal 

aggregation (hours) for: (a) MAM, (b) JJA, (c) SON and (d) DJF. The surfaces are estimated from values 

of MIC at spatial resolutions of 0.04°, 0.1°, 0.25°, 0.5° and 1° and temporal resolutions of 1, 3, 6, 12 and 

24 hours. Bright colours indicate higher values of MIC. For improved visulaization, the colorbar is 

adjusted for each panel seperately with the values of MIC shown as contour labels.   
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5.5 Diagnosis of IR-based precipitation estimation algorithms  

One of the practical applications of the analysis presented in this study is to utilize 

information on the inherent dependence between IR and precipitation, as measured by MIC, to 

diagnose IR-based precipitation estimation algorithms. Here, we show an example of diagnosing 

the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks 

(PERSIANN) algorithm. PERSIANN is an IR-based precipitation estimation algorithm developed 

by Hsu et al. (1997), and it represents the backbone of the PERSIANN family of satellite-based 

precipitation datasets (Nguyen et al., 2018). Specifically, PERSIANN is an artificial neural 

network (ANN) model that operates in two steps: first, infrared imagery (10.2 – 11.2 𝜇𝑚) are 

clustered and mapped to a hidden layer; second, the data is mapped from the hidden layer to the 

output space of rainfall rate. The ANN model is trained (i.e. estimation of parameters) by using 

information from Passive microwave observations.  

 

The fundamental idea in diagnosing PERSIANN is to first examine its accuracy in 

estimating precipitation using a benchmark dataset. Then, the accuracy of the algorithm can be 

compared to the inherent dependence between IR and precipitation. This comparison will allow us 

to identify regions where the algorithm does not perform as accurate as indicated by the inherent 

dependence. Similarly, we can identify regions where the algorithm is not responsible for bad 

performance (i.e. regions where the inherent dependence is extremely low). Figures 5.10a and 

5.10d show the value of Pearson correlation coefficient between PERSIANN and Stage IV hourly 

observations during the 2010 MAM and DJF seasons, respectively. Clearly, PERSIANN performs 

poorly during MAM over southwestern United States, namely the states of Arizona, Utah, Nevada 

and California. During DJF season, PERSIANN conspicuously underperforms over Northern 
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Rockies and plains (climate division 6) and parts of California and Nevada. Diagnosis of the 

PERSIANN algorithm will allow us to identify whether the poor performance of PERSIANN over 

these regions should be attributed to the algorithm or the inherent dependence between IR and 

precipitation. In order to compare the accuracy of PERSIANN estimates (as measured by 

correlation coefficient) and the inherent dependence (as measured by MIC), we need to scale the 

values of correlation and MIC. Let 𝜌 denotes the correlation coefficient between PERSIANN and 

Stage IV, then the scaled correlation coefficient �̅� is given by: 

 

�̅� =  
𝜌 −  min {𝜌}

max{𝜌} − min {𝜌}
 

(5.5) 

 

Where min {𝜌} and max {𝜌} are the minimum and maximum values of correlation, 

respectively, over all spatial grids within the CONUS domain. Similarly, the scaled values of MIC 

can be obtained using the following equation: 

 

𝑀𝐼𝐶̅̅ ̅̅ ̅̅ =  
𝑀𝐼𝐶 −  min {𝑀𝐼𝐶}

max{𝑀𝐼𝐶} − min {𝑀𝐼𝐶}
 

(5.6) 

 

Where min {𝑀𝐼𝐶} and max {𝑀𝐼𝐶} are the minimum and maximum values of MIC, 

respectively, over all spatial grids within the CONUS domain. The values obtained from equations 

5.5 and 5.6 fall within the range of 0 to 1 which allows us to account for the difference in units 

between the two measures of  𝜌 and MIC.  
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Figure 5.10 (a) Pearson correlation coefficient (𝜌) between hourly precipitaiton observations of 

PERSIANN and Stage IV during the months of March, April and May (MAM) of the year 2010. (b) The 

value of �̅�/ 𝑀𝐼𝐶̅̅ ̅̅ ̅̅  for hourly precipitation during the 2010 MAM season. (c) Scatterplot for the values of 

𝑀𝐼𝐶̅̅ ̅̅ ̅̅  and �̅� for all spatial grids (0.25 × 0.25) within the CONUS domain; the color coding corresponds 

to that of the map in (b). Figures (d), (e) and (f) in the lower panel are the same as the ones in the upper 

panel, but they correspond to the months of December, January and February (DJF) of the year 2010.  

 

Figures 5.10c and 5.10f show scatterplots of all spatial grids within the study spatial 

domain; the horizontal axis shows the value of 𝑀𝐼𝐶̅̅ ̅̅ ̅̅ , whereas the vertical axis shows the value of 

�̅�. By assuming a linear relationship between 𝑀𝐼𝐶̅̅ ̅̅ ̅̅  and �̅�, all the points that fall above the one-to-

one line (blue points) indicate that the accuracy of the PERSIANN algorithm (�̅�) is higher than 

what would be expected from the inherent dependence (𝑀𝐼𝐶̅̅ ̅̅ ̅̅ ). Conversely, the points that fall 

below the one-to-one line (red points) indicate that the performance of the PERSIANN algorithm 

is not as accurate as that indicated by the inherent dependence. This latter case highlights regions 

where the algorithm is not efficiently utilizing the entire information content of IR imagery. 

Figures 5.10b and 5.10e show spatial maps of the values of �̅� divided by 𝑀𝐼𝐶̅̅ ̅̅ ̅̅  with the color coding 
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of the maps corresponding to that of the scatterplots. Grids shown in red color in the two maps are 

regions where the PERSIANN algorithm underutilizes the information content provided by IR 

imagery. For instance, Figures 5.10b and 5.10c pinpoint that the PERSIANN algorithm 

underutilizes the IR information content over Arizona and Southern California in MAM season 

and over Northern Rockies and Plains in DJF season. Furthermore, by comparing the two maps in 

Figures 5.10d and 5.10e, one can infer that the poor performance of PERSIANN over western US 

(dark red grids in Figure 5.10d) is attributed to the inherent information content of IR imagery, 

because the corresponding value of 
�̅�

𝑀𝐼𝐶̅̅ ̅̅ ̅̅
 shown in Figure 5.10e over the region is close to 1. This 

result is in agreement with recent findings made by Nguyen et al. (2020) which highlight that IR-

based precipitation estimation over western US can be improved by incorporating ancillary data 

in the form of precipitation climatology to support IR data.   

 

Similar analysis to the foregoing one may provide insights into the performance of IR-

based precipitation estimation algorithms. However, it should be noted that this analysis is based 

primarily on two assumptions. First, there is a linear relationship between the skill of the algorithm, 

expressed as correlation coefficient, and the value of MIC. Second, correlation coefficient and 

MIC adequately represents the rain estimation skill and the IR information content, respectively. 

Therefore, the results obtained from such analysis should be interpreted within the context of these 

assumptions. For instance, the second assumption does not account for other measures of rain 

estimation skill (e.g. root mean squared error, bias …etc.). Such measures are important to be 

considered in order to obtain a complete view of the performance of any precipitation estimation 

algorithm. Overall, the foregoing analysis can be useful in obtaining insights on the performance 
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of any IR-based precipitation estimation algorithm; however, caution must be exercised when 

interpreting the results.      

      

5.6 Conclusions 

This study was motivated by the following questions: (1) What are the regional patterns of 

dependence between IR brightness temperature and precipitation? (2) Which factors exert a first-

order impact on these regional patterns? (3) How do the dependence relationships change across 

the hierarchy of time and space scales? The findings of our analysis can be classified into two 

categories: first, results that corroborate assertions and validate hypotheses previously reported in 

the literature; second, new observations that, to the best of our knowledge, were not reported in 

previous studies. Regarding the former, we show in this study that spatial patterns of dependence 

between IR and precipitation are mostly contingent upon the type of precipitation. Specifically, 

the dependence is stronger at spatial domains (e.g. parts of CONUS east of the continental divide) 

and time periods (e.g. the warm season) at which convective precipitation is dominant. This 

observation affirms the well-known, strong association between IR and convective precipitation. 

Also, our results corroborate the numerous statements reported in literature on the inadequacy of 

IR brightness temperature for estimating warm, orographic rainfall. Moreover, our results provide 

quantitative evidences to support the intuition that both temporal and spatial averaging lead to 

improved dependence between IR and precipitation. Finally, we also showed that effects of 

geostationary satellites viewing geometry are well accounted for in the IR dataset produced by 

NCEP which is the main input used by IR-based precipitation estimation algorithms.     
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More interestingly, the analysis presented in this study highlights several observations that, 

to the best of our knowledge, were not previously reported in the literature. These observations 

can be summarized as follows:  

 

I. The information content of Infrared brightness temperature is low for regions with higher 

frequency of no rain instances. However, this relationship exhibits variability regionally 

and seasonally with more significance during the cold season. 

II. Although temporal aggregation leads to stronger dependence between IR and precipitation, 

the relationship shows a diminishing returns behavior whereby temporal aggregation at 

fine time scales is much more effective than at coarse scales. 

III. The strong association between IR and precipitation resulting from temporal aggregation 

is dependent on seasons, and hence the precipitation regime. In particular, it is shown that 

temporal aggregation is much more effective in JJA than any other season, most likely due 

to the dominance of convective precipitation during the season. 

IV. The effect of spatial aggregation leads to strong dependence between IR and precipitation 

with a diminishing returns behavior. This is hypothesized to be the result of the life-cycle 

effect.     

The results presented here have several far-reaching consequences. These observations are 

quite useful in guiding the development of operational algorithms that utilize IR for estimating 

precipitation. For instance, the first of the abovementioned observations indicates that ancillary 

variable such as information provided by satellite water vapor channels (5.2 𝜇𝑚 – 8.5 𝜇𝑚) or 

passive microwave (PMW) observations might be needed specifically to support IR data in 

identifying no rain instances. We also note that the findings of this study have important 
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implications for the development of multi-source precipitation datasets. The development of such 

datasets often requires decisions on the weighting factors of different sources (e.g. IR-based 

precipitation, radars, in-situ …etc.). Thus, the findings presented here can provide an objective 

scheme that assign higher weights to IR-based precipitation when the inherent dependence is 

stronger, and vice versa.  

 

Most importantly, the analysis presented in section 5 exemplifies the potential of using 

information-theoretic analysis of dependence to diagnose satellite-based precipitation estimation 

algorithms. Specifically, such an analysis facilitates identifying which parts of the errors are 

attributed to the algorithm as opposed to the inherent information content of IR. Thus, the analysis 

in section 5 provides a methodology to diagnose IR-based precipitation estimation algorithms over 

distinct spatial and temporal scales. Furthermore, the analysis can seamlessly be extended to 

diagnose algorithms for estimating precipitation from satellite PMW observations. 
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Part II: Hydroclimatic Applications of Satellite-based 

Precipitation   
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Chapter 6 

6 Developing Intensity-Duration-Frequency (IDF) Curves 

from Satellite-based Precipitation  

 

“This chapter is extracted from Ombadi et al. (2018) with few edits incorporated for brevity and 

clarity”  

 

6.1  Introduction 

Engineering design of infrastructure requires information about runoff magnitudes for 

which the structures will be designed to withstand during their lifetime. In order to estimate these 

magnitudes, Intensity (Depth) Duration Frequency – IDF (DDF) - curves are the typical input to 

hydrological models used by hydrologists and civil engineers for design purposes. They represent 

a mathematical relationship between frequency, duration and intensity (depth) of rainfall events. 

Their accuracy is contingent upon input data quality and statistical inference methods. The concept 

of the IDF dates back to the efforts of Bernard (1932) and since then many studies have focused 

on improving statistical inference methods used in IDF development. Most notable are the studies 

of Hosking and Wallis (1997) of introducing L-moments estimation (see also Hosking, 1990), the 

use of probability weighted moments estimation (Greenwood et al., 1979; Landwehr et al., 1979), 

parametric formulation of IDF relationships (Koutsoyiannis et al., 1998) and implementing 

regionalization methods such as the Index Flood method (Dalrymple, 1960; Hosking and Wallis, 

1993; Wallis, 1982). Today, atlases of IDF curves have already been developed for several 
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developed countries; an example of such efforts is NOAA Atlas 14 developed by the National 

Weather Service (NWS) at National Oceanic and Atmospheric Administration (NOAA) (Bonnin 

et al., 2006, 2011; Perica et al., 2011, 2013a, 2013b) which succeeded NOAA Atlas 2 developed 

in 1973.  

 

Despite the aforementioned methodological advancements in IDF formulation, 

construction of IDF curves for most countries around the world remains a major challenge. This 

is mainly because of the limited availability of long rainfall records with adequate spatial 

distribution to reflect temporal variation and spatial heterogeneity of precipitation. As has been 

stated earlier, the accuracy of IDF curves is dependent on both input data quality and statistical 

inference methods. While considerable research focus has been given to the latter, only a handful 

of studies examined the former. Some of these studies investigated the use of alternative sources 

of rainfall measurements such as radar (Eldardiry et al., 2015; Marra et al., 2017; Marra & Morin, 

2015; Overeem et al., 2008), satellite-based precipitation or downscaled global climate model’s 

simulations of precipitation (DeGaetano & Castellano, 2017). Regarding the use of satellite-based 

precipitation, Endreny and Imbeah (2009) utilized Tropical Rainfall Measuring Mission (TRMM) 

rainfall dataset in combination with rainfall data from ground gauges to construct IDF curves over 

Ghana. Similarly, Awadallah et al. (2011) investigated the use of TRMM and ground-based 

rainfall data to develop IDF curves over a region in Northwestern Angola. Recently, Gado et al. 

(2017) used the PERSIANN-CDR dataset to develop IDF curves in ungauged sites by combining 

ground gauge data from neighboring sites in two basins in Colorado and California. Meanwhile, 

Marra et al. (2017) used CMORPH data to develop IDF curves over the eastern Mediterranean and 
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compared them to IDF derived from radar data. Overall, these studies highlighted the benefit of 

using satellite-retrieved precipitation as an alternative source, particularly in partially gauged sites. 

 However, several reasons limit the adequacy of these studies and the extension of their 

application to other regions. Firstly, the methods used in most of these studies strongly rely on the 

partial availability of rainfall datasets with sufficient record length from ground gauges in the site 

of interest or in their neighboring sites which is not satisfied in many regions. Secondly, they 

approached the use of satellite-based precipitation in IDF development from a case-study 

perspective and focused on small scale regions, therefore, it is uncertain whether these methods 

will provide adequate results in regions with different climatic and precipitation regimes. Finally, 

and most importantly, the results of these studies were either not evaluated or evaluated in a small-

scale domain. In other words, it is unknown whether these results underestimate or overestimate 

IDF curves that would ideally be derived from a dense network of rainfall gauges data.        

 

In light of the aforementioned issues associated with previous studies on the use of satellite-

based precipitation to develop IDF curves, this study provides a methodological framework for 

developing IDF curves from satellite-based precipitation. This is achieved by, firstly, considering 

and analyzing the systematic error component (i.e. bias) in extreme satellite-retrieved 

precipitation, secondly, considering the necessary transformation of satellite-based precipitation 

from an area averaged to point rainfall and finally, the application of commonly used 

regionalization methods to derive IDF curves. The area-to-point transformation implied in this 

framework is based on previous research studies that focused on the reverse transformation (i.e. 

point-to-area). The framework is then applied to develop IDF curves of durations 1, 2 and 3 days 

over the contiguous United States (CONUS). While this research was motivated by the potential 
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of using satellite-based precipitation to develop IDF curves in data-scarce regions, CONUS has 

been chosen as a testbed because of the availability of rigorous IDF estimates from ground gauges 

provided by NOAA Atlas 14. Therefore, IDF curves derived from satellite-based precipitation are 

evaluated and compared to NOAA Atlas 14 to assess the performance of the framework.  

 

6.2  Data and Case Study  

a. PERSIANN-CDR 

The satellite-based precipitation dataset used in this study to derive IDF curves is Precipitation 

Estimation from Remotely Sensed Information using Artificial Neural Networks–Climate Data 

Record (PERSIANN-CDR) (Ashouri et al., 2015). This dataset has daily temporal resolution, 

spatial resolution of (0.25° x 0.25°) and near global coverage (60° S - 60° N) for the period (1983 

– delayed present). PERSIANN-CDR is based on infrared (IR) imagery from geostationary 

satellites and it is a unique dataset because of its relatively long record (1983 – delayed present) 

compared to other satellite-based precipitation products. Other satellite-based precipitation 

products that can potentially be utilized for the development of IDF curves include the Climate 

Prediction Center morphing method (CMORPH) (Joyce et al., 2004) and Tropical Rainfall 

Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) (Huffman et al., 2007). 

Both products have high temporal resolution of 3 hours and a spatial resolution of (0.25° x 0.25°). 

CMORPH record covers the period (2002 – present) meanwhile TMPA is available for the period 

(1998 – 2015). In this study, we opted to select PERSIANN-CDR primarily because of its 

relatively long record.  
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Although in this study IDF curves have been solely derived from PERSIANN-CDR, two 

secondary datasets were used. Firstly, CPC Unified Gauge-Based Analysis of Daily Precipitation 

over CONUS, hereafter referred to as CPC, has been used to estimate parameters of the bias 

adjustment model. Secondly, the NOAA Atlas 14 dataset has been used as a basis for the evaluation 

of IDF curves derived from satellite-based precipitation.  

 

b. CPC Unified Gauge-Based Analysis of Daily Precipitation over CONUS 

CPC dataset was developed by NOAA’s Climate Prediction Center. It covers the period (1948 – 

Present) and has a similar spatial resolution to PERSIANN-CDR (0.25° x 0.25°). However, in this 

study, only CPC record in the period (1983 – Present) (i.e. same time coverage as PERSIANN-

CDR) has been used. CPC dataset was produced from a dense gauge network over the CONUS 

with approximately 8500 stations and a mean station-to-station distance of ~30km (Chen et al., 

2008). The interpolation algorithm used to develop the products is the Optimal Interpolation (OI) 

method (Gandin, 1965); this method proved to be reliable and provides results with high 

correlation in several studies (Chen et al., 2008; see also Bussières & Hogg, 1989; Creutin & 

Obled, 1982).  

 

c. NOAA Atlas 14 

NOAA Atlas 14 dataset was developed by NOAA’s National Weather Service (NWS) (Bonnin et 

al., 2006, 2011; Perica et al., 2011, 2013a, 2013b) and it is not yet available for the states of Texas, 

Oregon, Washington, Idaho, Montana and Wyoming. NOAA Atlas 14 over CONUS is divided 

into 5 geographic regions as shown in Figure 6.1; these geographic regions have been adopted in 

this study for evaluation purposes since they represent, to some extent, regions with distinct 
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climatic and precipitation regimes. NOAA Atlas 14 is derived from a dense network of rainfall 

gauges with an average record length range of (54 – 68) years (Bonnin et al., 2006, 2011; Perica 

et al., 2011, 2013a, 2013b).  

 

 
Figure 6.1 Geographic regions of CONUS according to NOAA-Atlas 14 volumes (Volume 1 and 6: Semiarid 

Southwest and California, Volume 2: Ohio River Basin and Surrounding States, Volume 8: Midwestern States, Volume 

9: Southeastern States and Volume 10: Northeastern States). Updating IDF curves for Texas is in progress while 

updated IDF curves are unavailable for the states of Washington, Oregon, Idaho, Montana and Wyoming.    
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6.3  Methodology 

a. Bias in Satellite-based Extreme Precipitation    

In recent decades, a multitude of studies have been devoted to the evaluation of satellite-

retrieved precipitation (e.g. AghaKouchak et al., 2011; Behrangi et al., 2011; Dinko et al., 2008; 

Ebert et al., 2007; Sorooshian et al., 2000). While these evaluation studies differ from each other 

in many aspects, such as geographic location over which the evaluation is performed, temporal 

scale (e.g. daily, monthly) and evaluation metrics, the consensus is that satellite-based precipitation 

exhibits errors, both random and systematic. Moreover, satellite-based precipitation products have 

lower skill in detecting heavy rainfall (Mehran & AghaKouchak, 2014). Therefore, it is necessary 

to examine errors in satellite-based precipitation prior to their use in IDF development. 

 

As far as IDF studies are concerned, only extreme rainfall events, defined as events higher 

than the 99th percentile of the distribution of rainfall totals accumulated over a specific duration, 

are of importance. This is because both approaches commonly used to sample extreme events, 

namely Annual Maximum Series (AMS) and Partial Duration Series (PDS), contain rainfall values 

that are typically higher than the 99th percentile. Hence, in this study, analysis of errors in 

PERSIANN-CDR is carried out as follows. Firstly, AMS is extracted from both ground-based 

precipitation (CPC) and satellite-based precipitation (PERSIANN-CDR) datasets for each grid 

(0.25° x 0.25°); the AMS length is 33 years and it is extracted from the period of hydrological 

years (1984 – 2016). Secondly, an adjustment factor (𝜁) is defined as the ratio of ground-based 

(CPC) to satellite-based precipitation (PERSIANN-CDR), that is: 
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𝜁 (𝑥,𝑦,𝑘) =  
𝑅𝐺 (𝑥,𝑦,𝑘)

𝑅𝑆 (𝑥,𝑦,𝑘)
 

(6.1) 

 

Where: 𝜁 (𝑥,𝑦,𝑘) is the adjustment factor for the kth event in the AMS at location (x,y),  

𝑅𝐺 (𝑥,𝑦,𝑘) is the kth ground-based rainfall event in the AMS at location (x,y) and 𝑅𝑆 (𝑥,𝑦,𝑘) is the 

kth Satellite-based rainfall event in the AMS at location (x,y). Next, at each grid location the 

average adjustment factor 𝜁 ̅(𝑥,𝑦) of values in equation 6.1 is calculated; this factor represents the 

systematic error (i.e. bias) in extreme satellite-based precipitation.  

 

Figure 6.2 shows the relationship between elevation and 𝜁 ̅(𝑥,𝑦). It can be clearly seen that 

the bias is significantly correlated with elevation as indicated by Pearson’s correlation coefficient 

value of 0.54. This indicates that 29% (0.542) of the variability in the bias can be explained linearly 

by elevation. Hence, it can be concluded that, in general, satellite-based precipitation 

(PERSAINN-CDR) tends to have higher bias, particularly underestimation bias, in high altitude 

regions. Presence of this relationship in PERSIANN-CDR as well as other satellite-based 

precipitation products has been observed in previous studies (e.g. Miao, 2015; Hashemi, 2017). 

This is due to the fact that warm orographic rainfall over high altitude regions poses a challenge 

to satellite-based precipitation retrieval algorithms based on IR imagery (Dinko et al., 2008).  

 



 134 

 

 
Figure 6.2 Relationship between Elevation (meters) and the adjustment factor defined in equation (6.1) for annual 

maximum series of 1 day. Red dots represent observations while the blue line represent the adjustment model 

calculated from equation (6.2) with the values of parameters given in Table 6.1.  

 

b. Bias Adjustment Model  

Based on the previous analysis, the following model is proposed as a new approach to 

adjust extreme satellite-retrieved precipitation; the model utilizes elevation as the only explanatory 

variable.  

 

𝜁(̅𝑥,𝑦) = 𝛼 ∗ 𝑒𝛽𝐸(𝑥,𝑦) (6.2) 

 

   

Where E is elevation in meters; 𝛼 and 𝛽 are parameters; and 𝜁 ̅(𝑥,𝑦) is defined as before.  
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Figure 6.2 (blue curve) shows the estimated adjustment factors based on the model for 1-

day annual maximum series. Estimation of the model parameters can be carried out in a simple 

manner by recognizing that the model can be solved analytically by linearization. This can be 

performed by taking the natural logarithm of both sides in equation 6.2, then solving for the values 

of the parameters 𝑙𝑛 (𝛼) and 𝛽 using ordinary least squares solution. It should be noted that the 

parameters 𝛼 and 𝛽 are estimated for each duration of interest (i.e. 1-day, 2-days and 3-days) 

separately. Table 6.1 lists the values of parameters and their 95% confidence intervals for each 

duration of interest. 

 
Table 6.1 Values of the bias adjustment model parameters for annual maximum series of durations 1, 2 and 

3 days. Values in blue are the 95% confidence intervals for the parameters estimates. 

 1 day 2 days 3 days 

𝜶 1.308 1.2557 1.2180 

 (1.3019 – 1.3142) (1.2497 – 1.2616) (1.2123 – 1.2238) 

𝜷 1.6627 x 10-4 1.7978 x 10-4 1.7865 x 10-4 

 (1.6186 – 1.7068) 

x 10-4 

(1.7531 – 1.8424) 

x 10-4 

(1.7418 – 1.8313) 

x 10-4 

 

 

 

c. Transformation of Areal Rainfall to Point Rainfall 

An important issue to be considered when developing IDF curves from satellite-based 

precipitation, is the areal nature of the data, since all products of satellite-based precipitation 

estimate the average precipitation depth over a grid area, which is in the case of PERSIANN-CDR 

is (25 km x 25 km = 625 km2). Areal rainfall distribution has both a lower mean and variance 

compared to the distribution of point rainfall; this follows directly from the fact that the former is 
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an averaged random process of the latter. It is widely stated in the literature that in general the 

difference between the areal and point distributions increases with decrease in the total rainfall 

depth (Eagleson, 1970; Rodriguez-Iturbe & Mejia, 1974a). This is mainly because events that 

produce low amounts of rainfall tend to be more localized. This relationship is significantly present 

in satellite-based precipitation as shown in Figure 6.3. It can be clearly seen that high quantiles of 

rainfall depths correspond to low quantiles of bias (i.e. systematic error) with a Pearson’s 

correlation coefficient value of - 0.38.  

 

 
Figure 6.3 Density plot for the joint distribution of 1-day annual maximum series rainfall quantiles and 

error quantiles; quantiles are calculated using the Weibull plotting position. Data used to plot the density 

include all grids over the CONUS.  

 

Considerable research attention has been assigned to the development of methods that 

transform point IDF curves to areal IDF curves; such a transformation requires reduction factors 

commonly known as Areal Reduction Factors (ARFs). Methods of developing ARFs fall into two 



 137 

 

categories: firstly, empirical methods which utilize rainfall time series data from gauge network in 

a specific region to develop relationships between point and area-averaged rainfall (e.g. U.S. 

Weather Bureau, 1957; 1958), secondly, theory-based methods which are based on the stochastic 

representation of rainfall fields in space and time. In this study, we adopt a theory-based approach 

to derive ARFs which was proposed by Sivapalan and Bloschl (1998) and is based on the spatial 

correlation structure of the rainfall field. It should be noted that contrary to the common use of 

ARFs, we are interested in transforming areal to point rainfall; thus, we will use the reciprocals of 

ARFs. The methodology consists of firstly assuming an isotropic correlogram (i.e. spatial 

correlation structure) of point rainfall of the following exponential form: 

 

𝜌(𝑟) = exp (−𝑟 𝜆⁄ ) (6.3) 

 

 

Where 𝜌 is correlation, r is the Euclidean distance between two points and 𝜆 is a parameter 

that specifies the decay in correlation. To estimate the parameter 𝜆, equation 6.3 has to be fitted to 

preserve the mean observed correlation at a distance known as the characteristic distance �̿�𝐴 

(Rodriguez-Iturbe & Mejia, 1974a, 1974b); this distance is a function of the shape and size of the 

area under consideration. The characteristic distance (�̿�𝐴) is defined as the mean distance between 

two randomly chosen points in the region of interest and its distribution was provided by Ghosh 

(1951). Matern (1960) used the distribution to compute the ratio of the characteristic to the 

maximum distances for unit areas with standard shapes (e.g. square, circle …etc.). The following 

result was found for a square unit area (A): 

` 
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�̿�𝐴 = 0.7374 ∗ diagonal (A) (6.4) 

 

Applying this result on the grids of PERSIANN-CDR (25 km x 25km) will result in a 

characteristic distance of 26.07 km. However, because the distances between the grids centers for 

which equation (6.3) can be computed can only take multiples of 25 km (i.e. 25, 50, 75 …etc.), we 

have taken �̿�𝐴 to be 25 km. Then, the average observed cross-correlation between the annual 

maximum series at distances of 25 km was calculated for each of the geographic sections shown 

in Figure 6.1. Finally, equation 6.3 is fitted to the values of observed correlations to estimate the 

value of parameter 𝜆. Additionally, in order to evaluate the bias resulted from assigning a value of 

25 km instead of 26.07 km to the characteristic distance, the sensitivity of the parameter 𝜆 to 

changes in the characteristic distance have been investigated. The results (not shown here) 

demonstrate that the sensitivity is different in each geographic region depending on the 

precipitation mechanism. However, the average sensitivity is in the order of 7.5% for a change of 

25 km in the characteristic distance and it increases consistently with more significant changes in 

the characteristic distance. Therefore, the bias in the parameter 𝜆 resulted from assigning a value 

of 25 km instead of 26.07 km is on average significantly less than 7.5%.   

 

After estimating the parameter 𝜆, the variance reduction factor 𝜅2, defined as the 

expectation of the correlation between any two random points within the region under 

consideration, can be calculated according to the following equation (Rodriguez-Iturbe & Mejía, 

1974a; Sivapalan & Bloschl, 1998): 

 

𝜅2 = 𝐸[𝜌 (𝑥1 − 𝑥2)] (6.5) 



 139 

 

 

Furthermore, Rodriguez-Iturbe and Mejía (1974a) showed that equation 6.5 can be 

simplified by integrating the product of the probability density function of variable r and the 

correlation function according to the following equation:  

  

𝜅2 =  ∫ 𝜌 (𝑟)  𝑓𝑅(𝑟).  𝑑𝑟
𝑑𝑖𝑎𝑔(𝐴)

0

 
 

(6.6) 

 

Where 𝜌  and r is defined as above and 𝑓𝑅(𝑟) is the probability density function of the 

random variable r. For a square area with side length a (e.g. in the case of PERSIANN-CDR, a = 

25 km), Ghosh (1951) has derived the distribution of r (i.e. 𝑓𝑅(𝑟) ). 

 

𝑓𝑅(𝑟) =  {

4𝑟
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(𝑟2 + 2𝑎2)} , 𝑎 ≤ 𝑟 ≤ √2𝑎

 

 

 

(6.7) 

 

The final step is to use the variance reduction factor estimated from equation 6.6 to adjust 

the parameters of the GEV probability distribution that will be fitted to the data according to 

equations 6.8 and 6.9.  These equations have been derived by Sivapalan and Blöschl (1998) by 

matching the parameters of areal and point extreme rainfall distributions in the particular case of 

zero area. See (Sivapalan and Blöschl, 1998) for detailed derivation of equations 6.8 and 6.9.   
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𝜇𝑝 =  
𝜇𝐴

𝜅2 (0.39 + 0.61𝜅−1.6)
  

(6.8) 

 

𝛼𝑝 =  
 𝛼𝐴 (1 − 0.17 ln(𝜅−2))

𝜅2
 

 

(6.9) 

 

 

Where 𝜇𝑝 and 𝜇𝐴 are the point and areal GEV distribution location parameters respectively, 

similarly 𝛼𝑝 and 𝛼𝐴 are the point and areal scale parameters respectively. 

 

This theory-based approach to derive area-to-point transformation factors has been 

validated in Sivapalan and Blöschl (1998). The validation was performed by comparing the ARFs 

derived by this method to ARFs observed in actual storms. In this study, we investigated the 

validity of the methodology by examining an extreme rainfall event over Texas on August 27, 

2017 associated with hurricane Harvey. Total 24-hr rainfall was obtained from NCEP Stage IV 

multi-sensor (i.e. radar and gauges) precipitation data, then the observed ARFs were calculated 

(red line with markers in Figure 6.4). Next, using 1-day IDF estimates for that region reported in 

Cleveland et al. (2015), the observed ARFs were matched through the selection of appropriate 

correlation length 𝜆. Figure 6.4 demonstrates that the two enveloping curves for the observed ARFs 

correspond to correlation lengths of 120 km and 160 km. Since the correlation length reflects 

information about the rainfall generating mechanism, these large values of correlation length are 

consistent with the large synoptic scale event that produced this storm. It should be noted that this 
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is an approximate validation since the observed ARFs are storm-centered (i.e. specific to storm) 

meanwhile the simulated ARFs are fixed-area ARFs. 

 

 

Figure 6.4 Observed Area Reduction Factors (ARFs) (Red line with markers) and estimated ARFs by the 

proposed methodology (Blue lines) for an extreme rainfall event on August 27, 2018 over Texas associated 

with hurricane Harvey.   

 

d. Developing IDF Curves 

After adjusting the bias in the annual maximum series extracted from PERSIANN-CDR 

using the model described earlier, the process of developing IDF curves is carried out in several 

steps illustrated in Figure 6.5. Firstly, regionalization is applied to improve the statistical inference 
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by increasing the number of samples. This is achieved by creating homogenous regions using the 

k-means algorithm to cluster grids. This step starts with input data to the algorithm that constitute 

latitude, longitude, elevation and mean annual precipitation; these data to a certain extent define 

different climatic divisions. Next, the output clusters from the k-means algorithm are tested 

statistically for homogeneity using the method described in Hosking and Wallis (1993). In this 

method the within-cluster variation in L-CV (i.e. the ratio of second to first L-moments) is 

compared with what would be expected by simulations from a general probability distribution; in 

this study the Wakeby distribution (Houghton, 1978; see also Hosking & Wallis, 1997) was used. 

If clusters are not satisfactory according to the homogeneity check, clustering is repeated with 

increasing the number of groups. It should be noted that clustering might be different for each 

duration of interest (e.g. 1 day, 2 days …etc.) since it depends on L-CV values of each AMS.          

 

Following the identification of homogenous regions, the AMS at each grid is normalized 

by dividing it by the mean AMS value. Then, the AMSs in each homogenous region are combined 

and fitted to a Generalized Extreme Value (GEV) distribution. The choice of the GEV distribution 

to model the extreme rainfall process was validated using the Kolmogorov–Smirnov test (Massey, 

1951); results showed that GEV is an adequate distribution to represent the annual maximum 

series. The location and scale parameters of the distribution are then adjusted to account for the 

transformation of areal to point rainfall using the approach described in section 3.3.   

 

Finally, precipitation quantiles corresponding to return periods (2, 5, 10, 25, 50 and 100) 

years are calculated using the index flood procedure (Hosking & Wallis, 1997). In this approach, 

the quantiles for each homogenous region, also known as the regional growth factors, are 
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estimated. Next, to account for normalization, the quantiles in each grid cell are calculated by 

multiplying the mean AMS value at the cell by the growth factor according to the following 

equation: 

 

𝑞(𝑥,𝑦) =  𝜇(𝑥,𝑦) ∗ �̂� (6.10) 

 

   

Where 𝑞(𝑥,𝑦) is the quantile at grid (x,y), 𝜇(𝑥,𝑦) is the mean of AMS at grid (x,y) and �̂� is the 

regional growth factor for the homogenous region of interest. 
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Figure 6.5 Flowchart illustrates the process of developing intensity-duration-frequency (IDF) curves from 

satellite-based precipitation. Processes in green illustrate generally the process of estimating confidence 

intervals.  

 

e. Estimation of Confidence Intervals  

Confidence intervals are estimated using Monte Carlo bootstrapping, the method consists 

of three steps. Firstly, the at-site empirical cumulative distribution function (cdf) is estimated at 

each grid cell center using Kernel density estimation (Parzen, 1962; Rosenblatt, 1956). Secondly, 

samples of AMS are extracted from the empirical distribution with the same length of record as 

the original AMS. The sampling is performed by drawing a uniform random variable in the range 
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(0,1), then the empirical cdf is used to estimate the corresponding quantile. It should be noted that 

Monte Carlo sampling is implemented 1000 times to approximate the asymptotic properties of the 

population distribution. In the final step, the quantiles are estimated using the method described in 

section 3.4, then the 5th and 95th percentiles are computed from the data to obtain the 90% 

confidence interval. 

 

6.4  Results and Discussion 

a. Bias Adjustment 

Figure 6.6 illustrates the impact of the bias adjustment at a high-altitude location (a) and a 

low-altitude location (b). Clearly, the results suggest that: Firstly, PERSIANN-CDR before 

adjustment and CPC (red dots) follow an identical distribution since the quantiles lie almost 

perfectly on a straight line. Secondly, the bias in the case of high-altitude regions (Figure 6.6a) is 

more significant than the bias in low-altitude regions (Figure 6.6b). This provides further 

demonstration to the analysis presented earlier regarding the significant correlation between 

elevation and bias. Finally, the bias adjustment model removes a sizeable portion of the systematic 

error as can be seen from the close alignment of the quantiles after adjustment (blue dots) with the 

45° line (gray dotted line). However, it should be noted that the remaining bias, illustrated by the 

blue dots falling below the 45° line, will be accounted for by the areal to point transformation. 

Furthermore, it can be discerned from Figure 6.6 that the bias adjustment results in an 

overestimation for the largest event in the AMS. This is primarily because the average bias 

adjustment factor estimated for all values in the AMS is higher than the actual bias in the highest 

AMS value; this result is consistent with the analysis shown in Figure 6.3.  
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Although the bias adjustment model presented in this study is effective in removing bias, 

it can be seen from Figure 6.2 that for a given elevation, there is a range of values for the adjustment 

factor. In other words, the elevation is not a satisfactory and/or sufficient explanatory variable in 

some locations. Results of further analysis (not shown here) demonstrate that the multiplicative 

bias in the adjusted AMS from PERSIANN-CDR is considerable over the California Central 

Valley, northern parts of California, Oregon and Washington. In particular, the bias over these 

regions is mostly an overestimation bias. This analysis highlights that while the model is effective 

in removing bias over most regions in CONUS, it has limitations regarding the adjustment of 

overestimation bias.   

 

Figure 6.6 Q-Q plot comparing the quantiles of AMS extracted from CPC (horizontal axis) and AMS extracted from 

PERSIANN-CDR (vertical axis) at (a) (37.625° N, 119.375° W), California, altitude= 3272m and (b) (37.625° N, 

78.125° W), Virginia , altitude= 96 m. Red dots and line represent the quantiles before adjustment and its linear fit. 

Similarly, Blue dots and line represent the quantiles after adjustment and its linear fit. Gray dotted line represents the 

equality line (x=y).  
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b. Areal to Point Rainfall Transformation  

Figure 6.7a shows the contribution of area-to-point transformation in reducing the relative 

error of IDF estimates compared to that of the bias correction. Clearly, the bias adjustment is the 

prime factor in improving IDF estimates, however, areal-to-point transformation plays a 

considerable role in reducing the relative error of IDF estimates. A decreasing trend for the 

contribution of area-to-point transformation as the duration of IDF increases can be discerned from 

Figure 6.7a. Further evidence to support this conclusion is demonstrated in Figure 6.7b which 

shows the relationship between the transformation factor, duration and return period. The inverse 

relationship of the transformation factor and duration is consistent with previous studies (e.g. 

Mineo et al., 2018; Asquith & Famiglietti, 2000) and it is justified by rainfall behavior since short-

duration events are primarily associated with small areal extent and convective rainfall, 

meanwhile, long-duration events are distributed over a large area (Mineo et al., 2018; Sivapalan 

& Blöschl, 1998). On the other hand, the transformation factors increase with return period as 

shown in Figure 6.7b. This relationship shows that the transformation method is not independent 

of return period and it is consistent with previous studies (e.g. Veneziano & Langousis, 2005). 

This is because the transformation is applied to both the location and scale parameters of the 

distribution. Sivapalan and Blöschl, (1998) showed that this transformation method results in a 

decrease of the coefficient of variation as the area increases unlike transformation methods that 

assume independence of return period resulting in a constant coefficient of variation.        
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Figure 6.7 (a) Reduction in mean relative error of IDF curves derived from PERSIANN-CDR compared to NOAA 

Atlas 14 for durations of 1,2 and 3 days and return periods of 2, 25 and 100 years. Solid color bars represent the 

contribution of area-to-point transformation and hatched bars represent the contribution of bias adjustment. Black 

bars represent the standard deviation of the reduction in relative error. (b)Relationship between the mean values of 

the inverse Area Reduction Factor (e.g. 1/ARF), durations of 1,2 and 3 days and return periods of 2, 25 and 100 years.   
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c. IDF Curves Evaluation  

IDF curves derived from PERSIANN-CDR are evaluated against NOAA-Atlas 14 

precipitation frequency estimates. The evaluation is performed over the contiguous United States 

(CONUS) except the states of Washington, Oregon, Idaho, Montana, Wyoming and Texas because 

of unavailability of NOAA-Atlas 14 estimates in these states as shown in Figure 6.1. The 

evaluation is performed for IDF with durations 1, 2 and 3 days and return periods 2, 5, 10, 25, 50 

and 100 years. The main metric used for evaluation of IDF estimates derived form PERSIANN-

CDR is the percentage relative error which is defined as follows: 

 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐸𝑟𝑟𝑜𝑟 (%) = ( 
𝐼𝐷𝐹𝑃𝐸𝑅𝑆𝐼𝐴𝑁𝑁−𝐶𝐷𝑅 −   𝐼𝐷𝐹𝑁𝑂𝐴𝐴−𝐴𝑡𝑙𝑎𝑠14 

𝐼𝐷𝐹𝑁𝑂𝐴𝐴−𝐴𝑡𝑙𝑎𝑠14
) ∗ 100 % 

(6.11) 

 

This is an adequate performance metric since it is normalized and therefore not sensitive to the 

absolute values of rainfall. This allows us to examine the performance of IDF estimates over the 

whole spatial domain regardless of variations in climate 

 

Figure 6.8 shows the relative error of IDF curves over the whole spatial domain of NOAA 

Atlas 14 (see Figure 6.1) for durations 1, 2 and 3 days and return periods 2, 5, 10, 25, 50 and 100 

years. While the errors are considerable for 1-day duration with the median errors in the range (-

17% –  -22%) for return periods (2 – 100 years), the errors are less significant in longer durations. 

For example, in the case of 2 days IDF, the median errors range is (-6% –  -12%) meanwhile for 3 

days IDF, the median errors range is (-3% –  -8%). This trend of improved performance with larger 

durations is due to the increased accuracy of satellite-based precipitation over long time scales as 

well as the temporal mismatch comparing remotely sensed and gauged rainfall over short periods. 
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It should also be noted that the errors are more pronounced in high return periods, and this is 

attributed to the relatively short record of PERSIANN-CDR (~30 years) compared to the length of 

record used to derive NOAA Atlas 14 which on average ranges from 54 to 68 years (Bonnin et al., 

2006, 2011; Perica et al., 2011, 2013a, 2013b). Overall, IDF relationships derived from 

PERSIANN-CDR tend to underestimate the amount of precipitation, however, the errors are not 

significant in durations of 2 days and larger.  

 

Since the previous analysis only reveals information about the aggregate performance over 

the whole NOAA Atlas 14 spatial domain, it is important to examine the accuracy of IDF curves 

over different geographic regions. Therefore, IDF curves have been evaluated separately over each 

of the geographic sections shown in Figure 6.1. While the average relative errors over all 

geographic regions are comparable and do not indicate large differences as shown in Figure 6.9a, 

the percentages of IDF curves that lie within the confidence interval of NOAA Atlas 14 clearly 

highlight that the accuracy of IDF curves derived from PERSIANN-CDR varies significantly. As 

can be seen from Figure 6.9b, the accuracy is higher over the Northeastern States since 77%, 86% 

and 84% of 1-day, 2-days and 3-days IDF curves respectively lie within the 90% confidence 

interval. It is followed by the Southeastern States where approximately 43%, 79% and 86% of 1-

day, 2-days and 3-days IDF curves lie within the confidence interval. The poorest accuracy is 

observed over the Southwestern States where only 20% of 1-day IDF curves lie within the 

confidence interval.  
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Figure 6.8 Boxplots of satellite-based IDF relative error for durations of (1, 2 and 3) days. (a) Return 

periods of 2, 5 and 10 years. (b) Return periods of 25, 50 and 100 years. Thick lines inside boxes indicate 

the median value, boxes indicate the interquartile range and dashed lines indicate the range. 
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Figure 6.9 (a) Average relative error in satellite-based IDF with return period of 25 years for the five 

CONUS divisions defined in Figure 6.1 (SW: Semiarid Southwest, SE: Southeastern states, NE: 

Northeastern states, ORB: Ohio River Basin and MW: Midwestern States).  (b) Percentage of satellite-

based IDF estimates that falls within the 90% confidence intervals, return period is 25 years.   
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In order to understand the sources of observed errors in PERSIANN-CDR IDF curves, we 

compare IDF curves from the original PERSIANN-CDR (i.e. without adjustment and area-to-point 

transformation) and from the CPC record (1984 -2015); the results are shown in Figure 6.10. By 

comparing IDF curves derived from CPC (black dotted lines) and NOAA Atlas 14 (black lines), it 

can be clearly seen that IDFs from CPC exhibit underestimation errors. Since the data used to 

derive NOAA Atlas 14 is identical to CPC data, the observed differences are primarily due to the 

length of record as we have used CPC record of approximately 30 years long. This highlights that 

while the observed errors can potentially be attributed to several sources such as the difference in 

spatial scale, it is important to consider the relatively short length of record as the main source of 

underestimation. 

 

An important point to be concluded from Figure 6.10 is that the bias adjustment and the 

area-to-point transformation are important, and they improve the results significantly. This can be 

clearly seen by comparing the original PERSIANN-CDR IDFs (red dotted line) and IDFs derived 

after adjustment and transformation (red lines). For example, in both Figures 6.10a and 6.10b, 

IDFs derived from adjusted PERSIANN-CDR lie within the confidence interval of NOAA Atlas 

14 meanwhile IDFs before adjustment are considerably underestimated and lie out of the 

confidence interval. Figure 6.10c shows an example of an IDF where bias adjustment and area to 

point transformation improves the results yet not sufficiently as the obtained IDF (red line) lies 

outside the confidence interval. On the other hand, it can be seen from Figure 6.10d that IDF curves 

from the original PERSIANN CDR (red dotted line), that is, without adjustment and area-to-point 

transformation, are overestimating. Therefore, the framework used in this study to adjust the bias 

and account for the areal nature of satellite-retrieved precipitation exacerbates the errors leading 
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to an increased overestimation as shown by the red line in Figure 6.10d. This highlights that while 

the adjustments embedded in the methodology are essential for the development of accurate IDF 

curves, special attention should be paid in regions where satellite-based precipitation products 

show peculiar performance such as the case over the Central Valley of California.   

 

 

Figure 6.10 IDF curves for durations 1, 2 and 3 days and return period of 25 years. IDF curves from 

original PERSIANN-CDR, adjusted PERSIANN-CDR, CPC and NOAA Atlas 14 are plotted along with 

confidence intervals of NOAA Atlas 14. (a) (42.875°N, 72.125°W), Vermont. (b) (46.375°N, 101.375°W), 

North Dakota. (c) (27.375°N, 80.625°W), Florida. (d) (39.625°N, 122.125°W), Northern California.   
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d. Uncertainty and Impact of Regionalization  

The issue of uncertainty in satellite-based IDF curves is more difficult than when ground 

measurements are used to develop these curves. This is because there are several components of 

uncertainty to be considered. Firstly, uncertainty arises from the estimation process since satellites 

do not measure precipitation directly but rather utilize other information as a proxy for rainfall 

rate. Secondly, there are uncertainties induced by the methodological framework proposed in this 

study; these include the bias adjustment model and the transformation from areal to point rainfall. 

Finally, the commonly considered source of uncertainty, estimation of distribution parameters. 

 

In this section, we only discuss uncertainty that arises from the estimation of distribution 

parameters. Confidence intervals of IDF estimates are computed using Monte Carlo bootstrapping 

as described earlier. Firstly, we highlight the importance of regionalization in constraining the 

uncertainty to narrower limits. Figure 6.11a shows the coefficient of variation for the distribution 

of quantiles corresponding to 2, 5, 10, 25, 50 and 100 years for both cases of using regionalization 

and at-site (i.e. no regionalization) estimation. The distribution is obtained by extracting 1000 

samples, then estimating the quantiles. Meanwhile, the coefficient of variation (i.e. the ratio of the 

standard deviation to the mean) is used to assess uncertainty since it is a normalized measure and 

hence allows us to examine all regions regardless of variation in their climate. It can be seen that 

for lower quantiles such as those corresponding to 2 and 5 years return period, the impact of 

regionalization is barely noticeable. However, as higher quantiles are considered, the differences 

in the coefficient of variation are more significant with regionalization leading to lower 

coefficients of variation. This indicates the importance of regionalization in reducing the 

uncertainty, particularly for quantiles in the tail of the distribution. 
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Furthermore, regionalization in the case of satellite-based precipitation is more effective in 

reducing uncertainty since the amount of available data is immense. To illustrate, an arbitrary 

homogenous area of 6250 km2 that might be covered with 3 ground gauges with average record 

length of 50 years will generate (3*50 = 150 samples), while on the other hand, PERSIANN-CDR 

will provide (10 grids * 30 = 300 samples). The increased sample size will result in a decrease of 

the uncertainty range. As it can be seen from Figure 6.11b, uncertainty ranges in the case of IDFs 

derived from PERSIANN-CDR are smaller than those of NOAA Atlas 14. This highlights that 

implementing regionalization in the case of satellite-based precipitation is more effective.   
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Figure 6.11 (a) Coefficient of variation (CV) in the distribution of quantiles of 1-day IDF with return 

periods (2, 5, 10, 25, 50 and 100) years. Blue and red curves represent the values of CV for the case of 

regionalization and at-site estimation respectively. (b) Uncertainty ranges normalized by the mean for 

quantiles corresponding to (2, 5, 10, 25, 50 and 100) years. Values are averaged over the whole spatial 

domain of NOAA Atlas 14 shown in Figure 6.1.   
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6.5  Conclusions 

The goal of this study is to contribute and advocate for the development of methods that 

facilitate the use of satellite-retrieved precipitation in developing IDF curves. This is of particular 

interest to developing countries where existing networks of ground gauges do not provide 

sufficient spatial coverage or record length to develop IDF curves. Given the continuous 

advancement in remote sensing and the retrieval of precipitation from satellites, it is worthy of 

attention to dedicate more research efforts towards the development of methods that ensure the 

incorporation of satellite-based precipitation in the design, operation and planning of 

infrastructure. This study has attempted to examine this issue from a methodological point of view 

by considering and accounting for the characteristics of satellite-based precipitation. The 

methodology used in this study is different from previously reported studies on the use of satellite-

based precipitation in the development of IDF curves which approached this issue from a case 

study perspective. The ultimate aim of this study is to contribute in the development of general 

methodologies that can provide adequate results in the absence of in-situ rainfall measurements.   

 

While the main motivation for this research is the potential use of satellite-based 

precipitation to construct IDF curves for developing countries, it is important at this early stage of 

methodological research to examine the methods by evaluating them in regions with extensive 

networks of ground gauges with sufficient length of record. This has been the rationale behind the 

selection of CONUS as a testbed to evaluate the proposed methodology. It is important to 

emphasize that the methods proposed in this study are neither tailored to a specific region nor to a 

specific satellite-based precipitation product. Furthermore, we emphasize that estimating the 

adjustment model parameters is the only step in the proposed framework that requires the 
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availability of ground-based measurements. The question then arises, “Are these parameter 

estimates sufficiently robust such that they can be applied in other regions?”. The answer is 

twofold. Firstly, it is expected that these estimates are robust over most regions since data from all 

grids over CONUS, which represent a variety of climatic and precipitation regimes, have been 

used in the estimation process. Secondly, as has been shown in this study, the model has limitations 

in adjusting overestimation bias over specific locations such as the Central Valley of California. 

However, further studies are sorely needed to explore the bias in PERSIANN-CDR as well as other 

satellite-based precipitation products over different regions. It is also important to note that in 

regions with partial coverage of ground rainfall gauges, information from ground gauges may be 

incorporated to validate the bias adjustment model presented in this study which will lead to 

improved performance. We also acknowledge that the bias in other satellite-based precipitation 

products does not necessarily follow the same characteristics observed in PERSIANN-CDR. For 

example, Endreny and Imbeah (2009) reported that bias in TRMM rainfall depths over Ghana is 

primarily overestimation bias meanwhile in this study, PERSIANN-CDR mainly exhibits 

underestimation bias. Thus, an extensive analysis of bias is required in other satellite-based 

products prior to their use in IDF development.   

 

Overall, the results of this study highlight the potential of using satellite-based precipitation 

as an alternative source to the commonly used ground-based measurements in developing IDF 

curves. Through comparison with NOAA Atlas 14 estimates, which have been used as a 

benchmark, we found that the median relative errors in satellite-based IDFs over CONUS are in 

the range of (-17% - -22%), (-6% – -12%) and (-3% – -8%) for 1-day, 2-days and 3-days IDFs 

respectively. Furthermore, a significant percentage of satellite-based IDF curves fall within the 
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confidence interval of NOAA Atlas 14 for most geographic sections of CONUS with the best 

results over the Northeastern States with 77%, 86% and 84% of 1-day, 2-days and 3-days IDFs 

within the confidence interval. These promising results corroborate findings reported in Gado et 

al. (2017) which demonstrated that the use of satellite-based data with bias adjustment from local 

gauges provides accurate quantile estimates. The increase in IDF error with increase in the return 

period can be attributed to uncertainty associated with the short length of record; this relationship 

is consistent with uncertainty analysis of IDF derived from remotely-sensed observations (Marra 

et al., 2017). We also highlight that IDFs derived from PERSIANN-CDR in this study over the 

Central Valley of California exhibit higher errors since the original product is overestimating in 

this region. This emphasizes the importance of considering any peculiar performance of satellite-

based precipitation over specific regions prior to the development of IDF curves. It also pinpoints 

that elevation is not a satisfactory and/or sufficient explanatory variable in some locations to adjust 

bias in extreme satellite-based precipitation.  

 

Finally, there are several important questions regarding the use of satellite-based 

precipitation in IDF development that remain unanswered and in need of further investigation. 

Firstly, quantifying the different sources of uncertainty in satellite-based IDFs that arise from the 

estimation of rainfall rates, bias adjustment, transformation of areal to point rainfall and the 

estimation of distribution parameters. In this study, we only dealt with the uncertainty in the 

estimation of distribution parameters, however, other sources of uncertainty should not be ignored. 

A possible approach to deal with uncertainty from the estimation process is to consider several 

satellite-based precipitation products in an ensemble approach which will provide uncertainty 

limits for the random error component. With regard to bias adjustment, it might be beneficial to 
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estimate the parameters of the adjustment model using Bayesian regression to provide uncertainty 

bounds to the parameter estimates. Secondly, further research is needed to investigate the impact 

of the liquid/frozen precipitation partitioning since satellite-based precipitation provides estimates 

of the total precipitation while in the development of IDF curves usually only liquid precipitation 

is considered. This might only be of significance in regions that receive considerable amounts of 

frozen forms of precipitation (i.e. snow, ice and hail) during extreme precipitation events. Finally, 

as the results of this study have shown that regionalization of IDFs derived from satellite-based 

estimates is more effective in reducing the uncertainty in distribution parameters due to the 

availability of more information, it is important to develop regionalization methods that can exploit 

the information content of satellite-based precipitation datasets more efficiently.                
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Chapter 7 

7 Bayesian Model Averaging of Precipitation Projections in 

the Nile River Basin 

 

“This chapter is extracted from Ombadi et al. (2021c) with few edits incorporated for brevity and 

clarity”  

 

7.1 Introduction 

The Nile river basin constitutes approximately 10% of the African continent (Swain 

2008) extending across eleven countries. A total population of 462 million in these countries is 

growing at an annual growth rate of 2.5%, faster than the average global growth rate estimated at 

1.1%. Consequently, the population of these countries is projected to reach 836 million (81% 

increase) by the year 2050 (The World Bank 2018; 2020). A key challenge, therefore, that face 

these countries is to sustain the burgeoning food and energy demand of this growing population. 

Water lies at the heart of natural resources that play a pivotal role in securing this demand. 

Therefore, assessment of climate change impacts on precipitation is important due to its direct 

effect on water availability in headwaters countries as well as its impact on the Nile streamflow 

yield which is the main source of water for riparian countries, namely Sudan and Egypt.  

 

Several studies have been devoted to the assessment of climate change impacts on 

precipitation in the Nile River basin and its headwaters basins (e.g. Conway 1996, Yates and 
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Strzepek 1996, 1998, Kim and Kaluarachchi 2009, Elshamy et al 2009, Bhattacharjee and Zaitchik 

2015, Fenta Mekonnen and Disse 2018). Earlier studies found that general circulation models 

(GCMs) frequently show disagreement in the sign of change of annual precipitation projections. 

For instance, Conway (1996) used 3 GCMs to assess climate change impact on precipitation in the 

Blue Nile and Lake Victoria sub-basins; results showed that percentage change in precipitation 

ranges from -1.9% to 7.4% in the two sub-basins. More recently, Kim and Kaluarachchi (2009) 

showed that mean annual precipitation in the upper Blue Nile sub-basin is projected to increase by 

11% based on a weighted average of 6 GCMs outcomes. On the contrary, Elshamy (2009) reported 

the outcomes of 17 GCMs and showed that projected change in mean annual precipitation in the 

upper Blue Nile sub-basin ranges from -15% to +14% with more models reporting a decrease in 

precipitation. These results, among others, emphasize that there is a wide uncertainty and inter-

model differences in precipitation projections, and they indicate that a consensus on how climate 

change will impact water resources in the Nile basin is yet to be reached.  

 

Two different approaches are commonly adopted to treat uncertainty of GCMs. At one 

end of the spectrum is the ensemble mean which overlooks historical performance of the models 

and assigns equal weights to all models. At the other end, there is an approach that selects a number 

of best performing models and discards the remaining ones. The former is less accurate at regional 

scales and in cases where there is a spread in model projections (Schaller et al 2011) whereas the 

latter is highly dependent on the specific metrics chosen for performance evaluation (Schaller et 

al 2011, Bhattacharjee and Zaitchik 2015). Between these two extremes lies the approach of model 

averaging in which models are neither weighted equally nor some of them are discarded entirely. 

Specifically, model averaging methods take advantage of retrospective analysis of GCMs 
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simulations benchmarked against observations, and they assign weights to models according to 

their performance. A major issue, however, that lessen the effectiveness of such methods is the 

dearth of quality controlled, dense gauge precipitation observations in the Nile basin. Here, we 

surmount this issue by resorting to high spatial resolution and long record of historical observations 

provided from Precipitation Estimation from Remotely Sensed Information using Artificial Neural 

Networks - Climate Data Record (PERSIANN-CDR; Ashouri et al. 2015). PERSIANN-CDR is a 

high spatial resolution satellite-based dataset that is bias adjusted using gauge observations at the 

monthly scale; thus, providing a unique dataset for retrospective analysis of GCMs. To this end, 

the focus of the present study is to first evaluate the performance of 20 GCMs from the 6th Coupled 

Model Intercomparison Project (CMIP6) against PERSIANN-CDR over the Nile basin. Next, a 

model averaging approach, namely Bayesian Model Averaging (BMA; Raftery et al., 2005) is 

implemented to derive probability distributions of precipitation projections in the Nile basin for 

the future period (2015 – 2100).  

 

7.2 Data and Study Area  

a. CMIP6 

Many climate models participating in CMIP6 have reported their simulations for the 

different CMIP6 experiments. In the present study, two experiments are of concern: historical and 

the Shared Socioeconomic Pathways (SSP) SSP5-8.5. The historical experiment provides GCMs 

simulations for the period (1850-2014), and it is intended to be used for assessment of model 

performance in simulating historical observations. Here, we only use data from the period 1983 

onward to be consistent with the available record of observed precipitation from PERSIANN-
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CDR. SSP5-8.5 is the future scenario that corresponds to high greenhouse gas emissions, and it is 

the equivalent to RCP8.5 “business as usual” scenario in CMIP5. Currently, a set of 20 models 

have reported their simulations for both historical and SSP5-8.5 experiments. These models have 

been used in this study to examine climate change impact on precipitation in the Nile basin, and 

they are shown in Table A.9. For each model, we only consider the first ensemble member for 

future projections under SSP5-8.5. Also, we consider dataset at monthly temporal resolution for 

both historical and SSP5-8.5.  

 

b. PERSIANN-CDR 

PERSIANN-CDR (Ashouri et al. 2015, see also Nguyen et al. 2018) is a satellite-based 

precipitation dataset based on infrared (IR) imagery. It has near-global coverage (60S - 60N) 

with a spatial resolution of 0.25 x 0.25 and a daily temporal resolution. PERSIANN-CDR is 

suitable for climatic studies because of its long record of +37 years (1983 – delayed present). It is 

particularly advantageous because it is bias adjusted using Global Precipitation Climatology 

Project (GPCP) monthly 2.5 x 2.5 precipitation data (Adler et al. 2018). Therefore, it maintains 

monthly precipitation at 2.5 x 2.5 that is consistent with GPCP while capturing spatial rainfall 

variability at higher spatial resolution. This last point emphasizes that PERSIANN-CDR has 

sufficient credibility to be used as a baseline dataset for evaluation of CMIP6 GCMs. PERSIANN-

CDR is widely used for a range of hydrologic and hydroclimatic studies (e.g. Ombadi et al. 2018, 

Nguyen et al. 2020), and it has previously been used for evaluation of GCMs (Nguyen et al. 2017). 

Here, we use PERSIANN-CDR at monthly temporal accumulations. 
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c. Study Area  

In this study, we consider the entire Nile basin for our analysis (shown in Figure 7.1; gray 

lines). The analysis is performed at the grid scale (1 x 1) due to the wide variability of climate 

and precipitation regimes in the Nile basin. This variability is clearly shown in Figure 7.1 with the 

south-to-north gradient in precipitation which represents the variability in climate from tropical 

humid in the south to hyper arid in the north. Throughout this study, we carry out the analysis at 

the grid scale and then aggregate the results at the entire Nile basin as well as its headwaters basins, 

namely the Blue Nile and Upper White Nile basins (gray lines in Figure 7.1). We focus on these 

two sub-basins due to their significant contribution to the Nile streamflow yield.    
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Figure 7.1  The Nile river basin and its headwaters basins: the Blue Nile and Upper White Nile sub-basins 

(gray line). The Nile river and its tributaries are shown in solid balck line. Mean annual precipitation is 

computed from PERSIANN-CDR for the period (1983-2014). 
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7.3 Methods  

a. Bias Adjustment 

CMIP6 model simulations and PERSIANN-CDR data were first re-gridded to a common 

spatial resolution of (1 x 1) using bilinear interpolation. Bias adjustment coefficients were then 

calculated for each grid from the historical simulations (1983-2014) according to the following 

linear model: 

𝒚𝑯 = 𝑎 + 𝑏 ∗ 𝒇𝒌
𝐻 (7.1) 

Where 𝒚𝑯 is PERSIANN-CDR annual (or monthly) precipitation time series at a given grid for 

the period (1983-2014), and 𝒇𝒌
𝑯 is the corresponding annual (or monthly) precipitation from the 

kth GCM model; the superscript 𝑯 refers to “historical” whereas 𝑎 and 𝑏 are the bias adjustment 

coefficients. 

 

b. Bayesian Model Averaging (BMA) 

General description  

Bayesian model averaging (BMA; Raftery et al. 2005, see also Duan et al. 2007, Ajami et 

al. 2007) aims to reduce multi-model uncertainty by assigning weights to all models, with the 

weights representing posterior probabilities of the models given historical observations. BMA has 

previously been used to derive probability distributions of continental precipitation and 

temperature projections from a CMIP3 multi-model ensemble (Duan and Philips 2010). The BMA 

predictive distribution is a weighted sum of conditional probability distributions of individual 
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models. Let’s consider the same notations used earlier and denote by 𝒇𝒌 annual (or monthly) 

precipitation projections of the kth model. BMA yields the following predictive model: 

  

𝑝(𝒚|𝒇𝟏, 𝒇𝟐, … , 𝒇𝑲) =  ∑ 𝑤𝑘 𝑝𝑘(𝒚|𝒇𝒌

𝐾

𝑘=1

) 

(7.2) 

Where 𝒚 is the sought-after precipitation projections. The left-hand side represents the 

probability density function (pdf) of the BMA model which is equal to a weighted sum of the 

individual conditional pdfs of models 1, 2, …, K. As noted earlier, the weights 𝑤𝑘 represent 

posterior probabilities of models conditioned on historical observations; thus, they sum to 1. The 

pdfs 𝑝𝑘 for k = 1, 2, …, K are commonly assumed to be normal distributions which is the case in 

the present study. The weights 𝑤𝑘 are estimated by maximizing the log-likelihood function of the 

pdf in the left-hand side using historical observations. Put simply, 𝒚𝑯 and 𝒇𝒌
𝑯 are substituted for 𝒚 

and 𝒇𝒌 respectively in equation 7.2 in order to estimate 𝑤𝑘. Several techniques such as the 

expectation-maximization (EM) algorithm (Dempster et al. 1977) can be used to converge to a 

local maximum of the log-likelihood function. Here, we use a Differential Evolution – Markov 

Chain (DE-MC) algorithm (Ter Braak 2006) to find the optimum values of 𝑤𝑘.  

 

DE-MC Algorithm and estimation of BMA weights 

The DE-MC algorithm (Ter Braak 2006) combines the genetic algorithm variant of 

Differential Evolution (Storn and Price 1997) and the sampling techniques of Markov Chain Monte 

Carlo (MCMC) for optimization over real parameter space. The essential idea of DE-MC is that a 

large number of N chains, each consists of a randomly sampled vector of parameters, are run in 
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parallel. The N chains exchange information with each other according to the simple rules of DE, 

and they are updated sequentially to provide a new candidate solution at each step. This process 

continues for a number of T steps which is often referred to as the number of generations, in 

connection with the natural selection basis of genetic algorithms. Both N and T are 

hyperparameters specified for the algorithm, and they are chosen to be 500 and 10,000 respectively 

in the present study. The choice of hyperparameters can be judged tentatively by tracking the 

convergence rate of the algorithm across generations, and the chosen values of hyperparameters 

were found to be optimal in this study.  

 

At each generation of T, the algorithm evaluates the fitness of the N population members 

using an objective function. In the present study, the objective function is obtained from equation 

7.2 modified by substituting 𝒚𝑯 and 𝒇𝒌
𝑯 for 𝒚 and 𝒇𝒌 respectively. Specifically, the conditional 

probability distribution 𝑝𝑘(𝒚𝑯|𝒇𝒌
𝑯) of the kth model is assumed to be a normal distribution of the 

following form: 

𝑝𝑘(𝒚𝑯|𝒇 𝒌
𝑯) =  

1

√2𝜋𝜎2
 exp [−

1

2
 𝜎−2  (𝒚𝑯(𝑡) − 𝒇 𝒌

𝑯(𝑡))
2

]  
(7.3) 

 

Where 𝜎2 is the variance of the normal distribution and considered as a parameter to be optimized 

by the DE-MC, whereas  𝒚𝑯(𝑡) and 𝒇 𝒌
𝑯(𝑡) are the annual historical PERSIANN-CDR observations 

and simulations of the kth model respectively for the year t. For numerical stability, the objective 

function is considered as a log likelihood of the following form: 
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ℒ(𝒚𝑯|𝒇𝟏
𝑯, 𝒇𝟐

𝑯, … , 𝒇𝑲
𝑯) =  ∑ log {∑ 𝑤𝑘

𝐾

𝑘=1

𝑝𝑘(𝒚𝑯|𝒇𝒌
𝑯)}

𝑛

𝑡=1

   
(7.4) 

Where ℒ refers to the log likelihood of the distribution and n is the number of years in the historical 

period (1983 – 2014). The log likelihood in equation 7.4 is used as an objective function by the 

DE-MC algorithm to evaluate the fitness of the N population members at each generation. Each 

candidate solution consists of the vector of parameters 𝑤𝑘 in addition to the variance 𝜎2. It should 

be noted that all the foregoing steps are implemented for each spatial grid in the study area 

separately.   

 

Computation of BMA uncertainty range   

One of the main advantages of the BMA approach is offering a posterior distribution 

instead of a single expected value (i.e. mean). Consequently, this distribution can be sampled to 

obtain uncertainty ranges with regard to precipitation projections. Following the estimation of the 

parameters 𝑤𝑘 and 𝜎2 as illustrated in the previous section, the posterior distribution of 

precipitation projections is given by equation 7.2 after substituting the obtained values of 

parameters. In order to sample this posterior distribution, we follow two simple steps: first, a 

number in the range 1, 2, … K is drawn randomly with probabilities 𝑤1, 𝑤2 … 𝑤𝐾; second, a 

random sample is drawn from the distribution 𝑝𝑘(𝒚|𝒇𝒌). These two steps are repeated 1000 times 

to approximate the posterior distribution at each spatial grid.     

 

c. Evaluation Metrics  

In the present study, we first evaluate the performance of CMIP6 GCMs in simulating annual 

precipitation for the historical period (1983 – 2014). This is carried out using metrics of bias, 
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relative bias, seasonality and spatial correlations, coefficient of variability and rank histogram. 

Bias in this study is calculated as the difference given by mean annual precipitation of CMIP6 

GCM minus mean annual precipitation of PERSIANN-CDR. Thus, positive and negative values 

indicate overestimation and underestimation respectively. Relative bias is obtained by normalizing 

the bias; specifically, dividing by mean annual precipitation of PERSIANN-CDR. 

  

Seasonality correlation is computed as Pearson correlation coefficient between the climatology of 

monthly CMIP6 GCMs and PERSIANN-CDR precipitation whereas the spatial correlation is 

computed as Pearson correlation coefficient between mean annual precipitation of CMIP6 GCMs 

and PERSIANN-CDR for all spatial grids within a basin. The coefficient of variation for CMIP6 

GCMs and PERSIANN-CDR is computed as the ratio of the standard deviation of annual 

precipitation to its mean. Finally, the rank histogram (Hamill 2001) is an efficient and convenient 

method to assess the reliability of ensemble forecasts. Its fundamental idea is to keep track of the 

rank of observed precipitation with respect to forecasts of ensemble members at each time step of 

forecast; these ranks are then used to construct the histogram. If the ensemble range effectively 

captures uncertainty, then the histogram is expected to be uniform. On the other hand, if the 

ensemble range is too narrow (wide), the rank histogram will be concentrated near the ends 

(center). It should also be emphasized that in the evaluation of historical model performance as 

well as in future projections, we also examine the performance of ensemble mean of the 20 CMIP6 

GCMs. This ensemble mean is an arithmetic average of the 20 GCMs, and it should not be 

confused with the BMA mean. The latter is the mean of the posterior distribution obtained from 

Bayesian model averaging and is only used in future projections.  

   



 173 

 

7.4  Results and Discussion 

a. Evaluation of CMIP6 GCMs for the recent past (1983-2014) 

Bias in annual precipitation  

We first examine the performance of the different GCMs in simulating the mean value of 

annual precipitation for the baseline period (1983 – 2014). Figure 7.2 shows the bias in spatially 

averaged annual precipitation over the Nile, Blue Nile and Upper White Nile basins for each GCM 

as well as the ensemble mean with respect to PERSIANN-CDR. There is a clear spread between 

the models with a bias range of (-430 – 389 mm), (-619 – 661 mm) and (-738 – 791 mm) in the 

Nile, Blue Nile and Upper White Nile basins respectively; see Table 7.1. These biases are 

significant since they represent up to 64%, 61% and 64% of mean annual precipitation in the three 

basins respectively. Although the ensemble mean reduces the biases, it fails to outperform the best 

performing model in the three basins.  

 

 
Figure 7.2 Bar chart shows the bias in annual precipitation of the 20 CMIP6 GCMs and the ensemble 

mean with respect to PERSIANN-CDR in the period (1983 – 2014). Annual precipitation is spatially 
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averaged over (a) the entire Nile basin, (b) the Blue Nile basin and (c) the Upper White Nile basin. Black 

arrows point to ensemble mean.     

 

Figure 7.3 shows the biases proportional to mean annual precipitation (i.e. relative bias) 

of the 20 GCMs in addition to the ensemble mean for each grid (1° x 1°) in the Nile basin. Apart 

from inter-model differences in bias, Figure 7.3 shows that there is a considerable spatial 

variability in bias within individual models. The values of relative bias over large areas of the basin 

exceed ± 0.3 (stapled grids in Figure 7.3) which underscore the importance of bias adjustment of 

GCM outputs prior to evaluation of future projections. In addition to examining the ability of 

GCMs in simulating the amount of total precipitation in the basins, it is important to investigate 

their accuracy in simulating the spatial patterns of precipitation. Table 7.1 shows the spatial 

correlation coefficient of the 20 GCMs and the ensemble mean against PERSIANN-CDR. This 

reflects how well each model represents the spatial variability of annual precipitation within the 

Nile basin and its two headwaters basins. Clearly, all the models fairly represent the spatial 

variability of annual precipitation within the Nile basin as evidenced by correlation coefficients 

greater than 0.8. Furthermore, the ability of the models to represent spatial variability within the 

Blue Nile basin is quite reasonable with a minimum correlation coefficient of 0.58. However, the 

correlation of spatial variability within the Upper White Nile basin is drastically lower, with many 

models showing a negative correlation, and a maximum correlation coefficient of only 0.49. This 

highlights that while the GCMs performance in terms of bias is comparable in the Nile basin and 

its headwaters basins, the GCMs specifically underperform in the Upper White Nile basin with 

regard to representation of spatial variability. We speculate that the lower performance of GCMs 

in simulating the spatial variability of precipitation in the Upper White Nile basin is due to the 

complex rainfall regime in this region. In addition to mechanisms such as monsoonal winds that 
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modulate rainfall in East Africa (i.e. Blue Nile basin), this region is also affected by the interplay 

of several factors including the Intertropical Convergence Zone (ITCZ), the El Niño-Southern 

Oscillation (ENSO) and Quasi-biennial Oscillation (QBO) among others (Nicholson and Yin 

2002, Dezfuli 2017).                 

 

 
Figure 7.3 Maps show the relative bias of annual precipitation during the baseline period  (1983 – 2014) 

for each model of the 20 CMIP6 GCMs and the ensemble mean benchmarked against PERSIANN-CDR. 

Relative bias is calculated as the absolute bias (annual precipitation GCM – annual precipitation 

PERSIANN-CDR) normalized by annual precipitation PERSIANN-CDR. Blue and red colors show 

overestimation and underestimation bias respectively. Stapled grids indicate values of relative bias > 0.3 

or < -0.3.  
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Table 7.1 Evaluation of CMIP6 GCMs precipitation against PERSIANN-CDR over the entire Nile, Blue 

Nile (B Nile) and Upper White Nile (W Nile) basins. 

Model Bias (mm) Spatial correlation Seasonality correlation 

 Nile B Nile  W Nile Nile B Nile W Nile Nile B Nile W Nile 

ACCESS-CM2 -239 -615 -238 0.81 0.82 † 0.94 0.97 0.55 

ACCESS-

ESM1-5 
389 497 696 0.89 0.9 † 0.91 0.94 0.55 

BCC-CSM2-MR 157 -6 * 517 0.87 0.88 † 0.96 0.99 * 0.75 

CanESM5 63 -56 190 0.83 0.91 † 0.93 0.96 0.55 

CESM2-

WACCM 
61 205 163 0.91 0.9 0.11 0.91 0.96 0.68 

Earth3 -31 -65 61 0.9 0.79 0.49 * 0.88 0.99 * 0.5 

Earth3-Veg -68 -138 18 * 0.89 0.78 0.47 0.89 0.99 * 0.54 

FGOALS-f3-L -430 -619 -738 0.85 0.87 0.09 0.87 0.97 0.5 

FGOALS-g3 -261 -242 -446 0.68 0.58 † 0.81 0.95 0.54 

FIO-ESM-2-0 249 179 377 0.9 0.93 0 0.81 0.72 0.59 

INM-CM4-8 131 -98 688 0.86 0.83 0.27 0.88 0.95 0.72 

INM-CM5-0 90 -184 525 0.87 0.86 0.12 0.87 0.9 0.77 

IPSL-CM6A-LR 87 -30 315 0.86 0.85 † 0.9 0.94 0.63 

KAGE-1-0-G 1* -348 374 0.85 0.8 0.08 0.95 0.99 * 0.52 

MIROC6 326 661 791 0.87 0.73 0.18 0.98 * 0.98 0.71 

MPI-ESM1-2-

HR 
-198 -405 -193 0.85 0.84 0.22 0.9 0.93 0.76 

MPI-ESM1-2-

LR 
-210 -391 -349 0.91 0.95 * 0.19 0.95 0.96 0.7 

NESM3 -121 -235 -328 0.89 0.95 * † 0.96 0.97 0.76 

NorESM2-LM -94 -140 -266 0.84 0.9 † 0.95 0.97 0.68 

NorESM2-MM 5 118 21 0.92 0.9 0.27 0.98 * 0.99 * 0.93 * 

Ensemble Mean -5 -96 109 0.92 *  0.89 0.08 0.96 0.99 *  0.71 

* The best performing model according to the metric under consideration. † correlation 

coefficient is negative.   
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Interannual variability and uncertainty  

Figure 7.4a shows the annual precipitation coefficient of variation (ratio of standard 

deviation to mean) for the 20 GCMs and PERSIANN-CDR. Clearly, all models severely 

underestimate the interannual variability in the Nile basin and its headwaters basins. Specifically, 

the average coefficient of variation for the 20 GCMs is 4 to 7 times less than that of PERSIANN-

CDR. Consequently, the bias adjusted ensemble of GCMs is under-dispersive which entails that 

the ensemble does not represent the true uncertainty in annual precipitation. This is demonstrated 

in Figure 7.4b which shows the rank histogram of PERSIANN-CDR with respect to the bias-

adjusted GCMs ensemble for the period (1983 – 2014). If the ensemble truly captures the 

variability of annual precipitation, the rank histogram in the bins (2 - 19) should contain 19/21, or 

90.5%, of PERSIANN-CDR values. Instead, the ensemble only contains 25% of PERSIANN-

CDR observations. These results highlight that using bias adjusted GCMs will lead to 

underestimation in the uncertainty of precipitation projections. It will be shown later how this issue 

can be resolved using the Bayesian model averaging approach.  
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Figure 7.4 (a) Coefficient of variation of PERSIANN-CDR and the 20 GCMs annual precipitation for the 

period (1983-2014). (b) Rank histogram of PERSIANN-CDR annual precipitation for the period (1983-

2014) with respect to the 20 GCMs. 

 

Seasonal cycle  

Here we evaluate the performance of the GCMs in capturing the seasonal cycle of 

precipitation. This is particularly important from the standpoint of assessing the hydrological 

impacts of climate projections such as variability in the Nile river flow and reservoir operations. 

Figure 7.5 shows the observed climatology monthly precipitation (red line) as well as simulations 

of the 20 GCMs (black dashed lines) and their ensemble mean (solid black line). The two 

headwaters basins are characterized by distinct precipitation regimes; see Figures 7.5b and 7.5c. 

Specifically, precipitation in the Blue Nile sub-basin is monsoonal with pronounced seasonality 

(July – September) meanwhile Upper White Nile sub-basin experiences two rainy seasons (March 

– May, October – December) (Conway 2005). Specifically, the seasonal rainfall pattern in the 

Upper White Nile basin follows the seasonal migration of the Intertropical Convergence Zone 

(ITCZ) which leads to a bimodal seasonal cycle (Kizza et al 2012). The seasonal cycle over the 

entire Nile basin, thereby, is a reflection of the cycles at the two headwaters basins; specifically, 
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there is a major peak in (July – September) and a less pronounced one around (April – May). 

Despite overestimation and underestimation bias, the GCMs adequately capture the seasonal 

variability in precipitation. This is particularly apparent in the Nile and Blue Nile basins with the 

ensemble mean showing a correlation coefficient of 0.96 and 0.99 respectively in capturing the 

seasonal cycle; see Table 7.1. On the contrary, the GCMs are less capable of capturing the seasonal 

cycle over the Upper White Nile basin with a correlation coefficient of 0.71 for ensemble mean; 

in addition, the ensemble mean overestimates the second rainy season (October – December).    
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Figure 7.5 Climatology of monthly precipitation for the period (1983 – 2014) spatially averaged over: (a) 

the entire Nile basin, (b) the Blue Nile basin, and (c) the Upper White Nile basin. The 20 CMIP6 GCMs 

are shown in thin black dashed lines. The ensemble mean is shown in solid black line whereas the observed 

precipitation from PERSIANN-CDR is shown in red.   

 

Overall, there are numerous observations to be drawn from the retrospective analysis of 

GCMs simulations; however, two key findings are particularly worthy of consideration. First, the 
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notion of a best performing model is very sensitive to the specific metric used for evaluation as 

well as the spatial domain of analysis. Table 2 shows the best performing model with respect to 

each metric (in bold font and an asterisk). Clearly, a different “best performing” model can be 

selected according to each metric and spatial domain. For instance, KAGE-1-0-G is the best 

performing model in terms of bias in annual precipitation over the entire Nile basin (bias= 1 mm) 

whereas NorESM2-MM is the best performing model in capturing the seasonal cycle of 

precipitation in the three basins. Second, although the ensemble mean provides adequate 

performance, it does not outperform all individual models as clearly shown in Table 7.1. This 

pinpoints that the ensemble mean is sensitive to ensemble members at the end of the performance 

spectrum. It also underlines that analysis of future projections can benefit from advanced model 

averaging schemes that consider retrospective model performance to provide a superior estimate 

to that of individual models. 

 

b. Precipitation Projections for the period (2015-2100)  

BMA mean precipitation projections   

Here, we analyze mean precipitation projections obtained from the BMA model for the 

period (2015 - 2100) with respect to PERSIANN-CDR for the baseline period (1983 – 2014). 

Annual precipitation series of the 20 GCMs for the period (2015 – 2100) were first bias adjusted 

using the coefficients estimated from equation 7.1. Next, the BMA weights and their 

corresponding BMA precipitation projections were computed. These calculations were performed 

at the grid scale as opposed to the entire spatial domain due to the wide climatic variability and the 

different precipitation regimes in the Nile basin.  
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Figure 7.6a shows the projected changes in mean annual precipitation spatially averaged 

over the entire Nile basin from the 20 GCMs, ensemble mean and BMA. There is a spread in model 

projections with 14 models indicating an increase in mean annual precipitation and 6 models 

showing a decrease. Overall, percentage change in mean annual precipitation ranges from -1.7 % 

to 3.2 %. The BMA shows a statistically insignificant increase of 1.34 % (p-value = 0.2) (see 

Figure 7.6a and Table 2) compared to 0.82% from the ensemble mean. Figure 7.6b shows the 

percentage change in mean annual precipitation projected from BMA for the period (2015 – 2100) 

with respect to the baseline period (1983 – 2014). Clearly, there is spatial variability both in the 

sign and magnitude of change. A slight decrease in precipitation is observed in southern regions 

(the Upper White Nile sub-basin) whereas the eastern regions (Blue Nile sub-basin) show both an 

increase and a decrease in precipitation. The statistically significant changes in precipitation, at a 

significance level of 0.05, are observed over the riparian arid regions (stapled grids in Figure 7.6b) 

which have almost no impact on Nile streamflow. Specifically, there is a significant increase in 

precipitation in Northern Sudan (15°N - 20°N), and a precipitation decrease to the northward. 

Furthermore, Figure 7.6c shows the number of models that agree in the sign of change with BMA 

projections out of the 20 GCMs used in this study. It appears that spatial grids in which the 

projected BMA change is significant (stapled grids in Figure 7.6b) are grids in which a large 

number of the 20 GCMs agree in the sign of change.  
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Figure 7.6 (a) Percentage change of spatially averaged annual precipitation projected from 20 bias 

adjusted GCMs, ensemble mean and BMA model. Spatial averaging is carried out over the entire Nile river 

basin. Black arrows point to ensemble mean and BMA. (b) Percentage change of annual precipitation 

projected from the BMA model for the period (2015 – 2100) with respect to the baseline period (1983 – 

2014) at spatial grids of 1 x 1. Stapled grids indicate a statistically significant change at α= 0.05. (c) The 

number of models that agree on the sign of change of the BMA model out of the 20 GCMs used in this study. 

 

It is important to narrow the analysis down to regional scales of unified precipitation 

regimes. Here we focus on headwaters basins, namely the Blue Nile and Upper White Nile sub-

basins (see Figure 7.1). These basins are characterized by distinct precipitation regimes as shown 

in Figure 7.5. Figure 7.7a shows the decadal moving average of percentage change in projected 

annual precipitation at the Blue Nile sub-basin. Inter-model differences are clearly present with a 

range of -5% to 5% (dashed thin black lines). BMA and ensemble mean are nearly equivalent, and 

they show no noticeable change in precipitation. Precisely, BMA shows a change of 0.03%, not 

statistically significant with p-value of 0.49 (see Table 7.2). At the Upper White Nile sub-basin 
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(Figure 7.7b), BMA deviates from ensemble mean, and it indicates a decrease of -1.65% in mean 

annual precipitation, p-value of 0.09 (see Table 7.2).          

 

In addition to precipitation projections of the BMA and ensemble mean, Figure 7.7 and 

Table 7.2 shows the projected change in precipitation in each basin from a selected subset of 3 

models. The selection criterion is to identify the 3 models with the least bias in the historical period 

(1983 – 2014); see Figure 7.1 and Table 7.1. In each basin, a subset of 3 models is selected, and 

its mean is calculated. Table 7.2 shows that the estimate of the best 3 models is consistently 

opposite in sign to the estimate of BMA and ensemble mean. However, their projected changes 

are small (< 1%) and statistically insignificant at 𝛼 = 0.05. We also examined precipitation 

projections for the rainy seasons in the Nile headwaters basins due to their impact on the variability 

of the Nile streamflow. The results are shown in Table 7.3, and they don’t show a statistically 

significant trend, whether decreasing or increasing. Of particular importance is the (June – August) 

rainy season in the Blue Nile basin since it contributes 60% of the annual Nile flow. Table 7.4 

shows that the projected change is statistically insignificant with a decrease of -0.09% (p-value = 

0.49).   
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Figure 7.7 10-years moving averages of percentage change in projected annual precipitaiton for the period 

(2015 – 2100) with respect to the baseline period (1983 – 2014). The horizontal axis shows the year at the 

end of the 10-years time window. Dashed thin black lines, thick black, red and blue lines indicate 

projections of the 20 GCMs, ensemble mean, BMA and “best 3 models” respectively. The pink shaded area 

represents 90% uncertainty bounds of the BMA model. (a) Spatially averged over the Blue Nile sub-basin. 

(b) Spatially averaged over the Upper White Nile sub-basin.   
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Table 7.2 Projected changes in mean annual precipitation in the Nile, Blue Nile and Upper White Nile 

basins. In parentheses are the p-values of the projected changes. 

Basin Ensemble 

mean 

Best 3 models BMA BMA 90% Confidence 

Interval 

Lower (%) Upper (%) 

Nile 0.82 % 

(0.3) 

-0.19% 

(0.45) 

1.34 % 

(0.2) 

-3.2 5.4 

 

Blue Nile 

 

0.43% 

(0.42) 

 

-0.92% 

(0.33) 

 

0.03% 

(0.49) 

 

-11.2 

 

16.3 

 

Upper 

White Nile 

 

-0.45% 

(0.36) 

 

0.17% 

(0.44) 

 

-1.65% 

(0.09) 

 

-9.0 

 

5.9 

 

 

Uncertainty in BMA precipitation projections   

As discussed earlier, the bias adjusted GCMs ensemble is under-dispersive; thus, it 

underestimates the uncertainty of precipitation. The BMA approach provides a remedy to this 

problem because it accounts for two types of variability. Specifically, the BMA total variability is 

decomposed into two components: between and within variability (Raftery et al. 2005). The former 

considers the spread of ensemble members whereas the latter accounts for the variability within 

the individual members. This is clearly shown in Figure 7.7 which shows the BMA 90% 

confidence interval (shaded pink area). While the spread of models (black dashed lines) is limited 

to a range of approximately (-5% — 5%) in the two basins, the BMA 90% confidence interval 

extends to approximately  ±20%. This extended uncertainty is the result of the BMA approach 

consideration of the within variability that is not accounted for in the multi-model ensemble.  
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Figure 7.8 shows the distributions of the BMA precipitation projections for the period 

(2015 – 2100) expressed as a percentage change with respect to the baseline period (1983 – 2014). 

The distributions also show the mean (black dashed line) and the 90% confidence interval limits 

(red dashed lines). The mean values are the same as those shown in Table 7.2. Figure 7.8a shows 

the distribution for the Nile basin; the 90% interval range is (-3.2% — 5.4%) with a width of 8.6%. 

This shows that the probability of an increase in precipitation is higher than that of a decrease. On 

the contrary, Figure 7.8c shows that the probability of a decrease in rainfall at the Upper White 

Nile basin is higher with a 90% confidence interval range of (-9% — 5.9%) with a width of 14.9%. 

As for the Blue Nile basin, the uncertainty range is wider; specifically, (-11.2% — 16.3%) with a 

width of 27.5%. Besides the wide range of uncertainty in the Blue Nile basin, Figure 7.8c shows 

that the distribution is more centered around 0%; thus, there is also increased uncertainty in the 

sign of change in precipitation projections.         
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Figure 7.8 The distirbution of BMA precipitation projections expressed as the mean percentage change 

with respect to baseline period (1983 – 2014). The distribution mean and 90% confidence bounds are 

shown in black and gray dashed lines respectively. Precipitation is spatially averaged over: (a) the Nile 

basin, (b) the Blue Nile basin and (c) the Upper White Nile basin. Fill colors of red and blue indicate 

decrease and increase respectively whereas white color indicates no change.  
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Table 7.3 BMA projected changes in seasonal precipitation in the Nile, Blue Nile and Upper White Nile 

basins.  

Basin June - August October - December March - May 

 Change 

in mean 

(%) 

p-value Change in 

mean (%) 

p-value Change in 

mean (%) 

p-value 

Blue Nile -0.09 0.49 -0.83 0.45 0.18 0.49 

 

Upper White 

Nile 

 

0.37 

 

0.48 

 

0.47 

 

0.45 

 

-0.09 

 

0.49 

 

 

 

 

7.5 Conclusions 

This study examined the performance of 20 CMIP6 GCMs in simulating precipitation 

for the period (1983 – 2014) over the Nile basin, and then used a Bayesian model averaging scheme 

to derive precipitation projections for the period (2015 – 2100). The main findings of retrospective 

analysis are as follows: 

 

• The bias in most GCMs simulations is significant (up to 64% of mean annual precipitation) 

which consequently pinpoints the importance of bias adjustment prior to analysis of 

precipitation projections. In addition, the spatial patterns of bias vary considerably within 

individual models both in the sign and value.  

 

• Although all models fairly represent spatial patterns and seasonal cycle of precipitation 

over most regions in the Nile basin, the results show that the performance of models is less 

accurate at the Upper White Nile basin. 
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• Selection of a “best performing model” is highly dependent on the specific metric chosen 

as a criterion. Moreover, the results show that the ensemble mean usually does not 

outperform all individual models.  

 

• All models severely underestimate the interannual variability as represented by the 

coefficient of variation. As a result, the ensemble range underestimates the uncertainty of 

precipitation.  

 

Bayesian model averaging show that projected changes in precipitation varies spatially 

across the Nile basin with clear regional patterns; in particular, a mild decrease of -1.65% in the 

Upper White Nile sub-basin, almost no change (0.03%) in the Blue Nile sub-basin, and significant 

changes (both increasing and decreasing) in the arid riparian Nile basin. Regarding the Blue Nile 

sub-basin, our results are similar to those reported by Elshamy et al. (2009) which showed no 

change in annual precipitation based on 17 CMIP3 GCMs. However, they are at odds with results 

in Kim and Kaluarachchi (2009), and Fenta Mekonnen and Disse (2018) which showed an increase 

of 11% and (2.1% — 43.8%) respectively. Generally, it is not possible to make a conclusive 

judgement on which study, among previous studies and including the present one, has more 

credibility because they differ significantly in the models, climate scenarios, future time period 

and geographical regions. Nonetheless, we argue that a strict and more cautious approach 

compared to previous ones has been adopted in this study.  Lastly, the BMA probability 

distributions show that the probability of a decrease in annual precipitation is more likely in the 

Upper White Nile basin. Moreover, the uncertainty in annual precipitation projections over the 

Blue Nile basin is higher both in terms of values and sign of change. 
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Part III: Conclusions 
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Chapter 8 

8 Conclusions and Future Directions  

8.1 Summary of findings  

As outlined in section 1.2, the results of the studies presented in the dissertation have 

been reported in several peer-reviewed publications. The main findings of each study can be 

summarized as follows: 

 

• Chapter 2: The experiment that was carried out to explore the performance of 

causal inference methods in recovering the causal structure of 

hydrometeorological systems revealed several insights into the advantages and 

disadvantages of each method. These insights are summarized in section 2.5, and 

they can potentially serve the hydrometeorological community as a guideline to 

the suitability of each causal inference method, and the selection of the most 

appropriate method to a given research problem. Furthermore, causal analysis of 

observational datasets with the aim of investigating the differential impact of 

environmental variables in regulating evapotranspiration resulted in several key 

findings. First, the results show that environmental drivers of evapotranspiration 

and their relative strength vary considerably from one season to another. Second, 

the results highlight the potential of causal inference methods in the unambiguous 

detection of interactions regarding the evapotranspiration process. These findings 

indicate that causal inference methods can potentially be used with observational 
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datasets across a large number of FLUXNET sites to examine the variability in 

drivers of evapotranspiration. Such an analysis will aid in the selection of models 

that are tailored and only sensitive to the dominant variables deriving 

evapotranspiration; thus, improving our simulation and predictive capacity of 

evapotranspiration mechanisms.      

  

• Chapter 3: This study utilized methods rooted in the theory of chaotic dynamical 

systems to examine the properties of dynamical behavior in hydrologic basins 

across the contiguous United States. The main findings of this study are the 

coherent relationships that were discovered between the properties of dynamical 

behavior and the physical characteristics of hydrologic basins. These include the 

statistically significant relationships between basin size and dynamic 

dimensionality, and the impact of vegetation cover on the presence of 

nonlinearity. These relationships indicate the possibility of formulating laws that 

govern the complexity of dynamical behavior in a hydrologic basin using 

information related to its physical characteristics. The implications of such 

findings are of immense importance to extrapolation of parameters and selection 

of rainfall-runoff models in ungauged hydrologic basins — an issue that is 

deemed to be one the grand challenges facing contemporary hydrology.    

 

• Chapter 4: The results of this study highlight the potential of using state-space 

forecasting in providing daily streamflow forecasts with an accuracy higher than 

that provided by state-of-the-art deep learning models. While the results 
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presented in this chapter is not intended to be a comprehensive comparison of 

state-space forecasting and deep learning models, the findings highlight that the 

paradigm of using the state-space to make forecasts of streamflow overcome 

some of the limitations that are present in deep learning models — e.g. bias of 

deep learning models toward the mean behavior, and lower forecast skill in 

capturing the extremes. These results also indicate the potential of integrating 

state-space models with deep learning to leverage the strength of both approaches.  

 

• Chapter 5: The results presented in this study demonstrate the potential of 

utilizing information-theoretic measures in revealing patterns of association in 

complex relationships such as the nonlinear relationship between infrared 

brightness temperature and precipitation. We report several interesting findings, 

some of which reaffirm observations that was previously reported in the literature, 

in addition to few novel observations. These latter observations include the 

relationship between the number of no-rain instances and the information content 

of IR imagery on precipitation as well as the diminishing returns behavior in the 

dependence between IR and precipitation that results from an increase in spatial 

and temporal scales. We also presented a case study of using this analysis to 

diagnose operational algorithms for estimating precipitation from IR brightness 

temperature. We argue that this approach of diagnosing the inherent dependence 

is quite useful in attributing the errors in satellite-based precipitation estimates to 

either the information content of IR imagery or the assumptions embedded in the 

algorithm used for estimation.       
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• Chapter 6: The results of this study show that by developing a framework to 

account for the inherent biases in satellite-based precipitation, one can obtain IDF 

curves estimates within an error range of (17% — 22%), (6% — 12%) and (3% 

— 8%) for 1-day, 2-days and 3-days IDFs, respectively, and return periods in the 

range of (2 — 100 years). More specifically, the framework we developed in this 

study account for two types of biases. First, the underestimation bias that was 

found to be well correlated with elevation in the estimates of PERSIANN-CDR. 

Second, the underestimation resulting from the areal estimate of satellites as 

opposed to the point estimate. This framework can potentially be applied in 

ungauged regions depending on the adequacy of the bias adjustment coefficients 

estimated over the contiguous United States (CONUS). We argue that these 

estimates might be representative of a wide range of climatic conditions because 

they were estimated using data from the entire spatial domain of CONUS which 

encompasses a wide range of climatic conditions. However, we also emphasize 

the importance of carrying out similar analysis using observational datasets from 

other regions to check and revise the estimates of coefficients in the bias 

adjustment model presented in the study.  

 

• Chapter 7: In this study, we used Bayesian Model Averaging (BMA) to constrain 

future projections of precipitation. We argue that this is a more informative 

approach to adopt than the commonly used approach of ensemble mean. We 

utilized a long historical record of satellite-based precipitation observations from 

PERSIANN-CDR to examine future changes in precipitation over the Nile river 
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basin in a warmer climate. We found that projected change in the upper White 

Nile river basin indicate a slight decrease of precipitation (statistically significant 

at the 0.1 significance level), whereas projected change in the Blue Nile river 

basin is highly uncertain both in magnitude and sign of change. These results are 

of interest and relevance to the current intense geopolitical debate on the 

availability of water resources in the Nile river basin amongst the completion and 

filling of the mega Ethiopian dam — the GERD.   

 

 

8.2 Future Directions  

Data-driven methods used in the first part of the dissertation possess a great potential in 

quantifying feedback mechanisms, unraveling the cause and effect relationships, and confronting 

models with observations. This potential stems primarily from the fact that these data-driven 

methods are tailored to detect multivariate, nonlinear interactions; contrary to traditional methods 

of data analysis in hydrometeorological systems that deals mostly with analysis of univariate and 

bivariate time series. We argue that discovering multivariate, nonlinear interactions that underly 

complex hydrometeorological systems is an important aspect to consider in expanding the frontiers 

of hydrologic sciences. This is of particular importance to address the challenges facing 

contemporary hydrologic research such as improving our understanding of scale-dependent 

behavior of hydrologic systems, unraveling patterns of emergent behavior in hydrologic systems, 

and extrapolating empirical knowledge to ungauged hydrologic basins. Each of these challenges 

require the formulation of macroscopic laws that describe under general conditions the behavior 

and response of hydrologic basins as well as the control of basin’s physical properties on its 

dynamic behavior.  
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The application of exploratory data-driven methods in hydrologic research is nothing 

but opportune due to the unprecedented availability of hydrometeorological data records in the 

form of in-situ and remotely sensed observations, field campaigns, climatological reconstructions, 

reanalysis datasets, and model simulations. We argue that more research along the lines of the 

studies presented in the first part of the dissertation, especially chapter 2, is sorely needed to 

advance the use of causal inference, nonlinear dynamics, and information theory in analysis of 

hydrometeorological systems. Furthermore, we anticipate that in the foreseeable future, 

researchers in the field of hydrology and climate will benefit significantly from the use of such 

data-driven methods.  

 

   While the studies presented here uses observations solely to detect patterns of 

interaction, we realize the potential of applying such data-driven exploratory methods in tandem 

with models. In such a case, there is a significant potential to diagnose model structural errors 

(epistemic errors) benefiting from juxtaposition of observations and models. We also point out that 

in an era where deep learning is exuberantly applied in hydrologic sciences, there is a potential of 

using exploratory data-driven methods to support interpretability of deep learning models and 

imposing physical constraints (e.g. conservation of mass, energy and momentum) on deep learning 

models to control their out-of-sample performance (e.g. projections of future climate).            
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Appendix 

Table A.1 Table of datasets used in the dissertation. 

Dataset Spatial Coverage or 

Location used in the 

study 

Dissertation 

Chapter 

Published 

Article 

Link to dataset 

repository 

FLUXNET US Santa Rita, 

Arizona FLUXNET 

site (US-SRM) 

Chapter 2 Ombadi et al. 

(2020a) 

[https] 

 

Hydrologic Bucket 

Model Simulations 

 

- 

 

Chapter 2 

Ombadi et al. 

(2020a) 

 

[https] 

The Model 

Parameter Estimation 

Project (MOPEX) 

All Sites Chapter 3 and 

Chapter 4 

Ombadi et al. 

(2021a) 

[https] 

NCEP STAGE IV Contiguous United 

States (CONUS) 

Chapter 5 Ombadi et al. 

(2021b) 

[https] 

NCEP IR Data CONUS Chapter 5 Ombadi et al. 

(2021b) 

[https] 

PERSIANN-CDR CONUS Chapter 6  Ombadi et al. 

(2018) 

[https] 

CPC Unified Gauge‐

Based Analysis of 

Daily Precipitation 

 

CONUS Chapter 6 Ombadi et al. 

(2018) 

[https] 

NOAA Atlas 14 CONUS Chapter 6 Ombadi et al. 

(2018) 

[https] 

Digital Elevation 

Model 

CONUS Chapter 6 Ombadi et al. 

(2018) 

[https] 

CMIP6 (20 models; 

historical and SSP585) 

The Nile River 

Basin 

Chapter 7 Ombadi et al. 

(2021c) 

[https] 

PERSIANN-CDR The Nile River 

Basin 

Chapter 7  Ombadi et al. 

(2021c) 

[https] 

 

 

  

https://fluxnet.fluxdata.org/
https://github.com/mombadi/Ombadi-et-al.-2020-Evaluation-of-methods-for-causal-discovery-in-hydrometerorlogical-systems-/tree/master/Synthetic-Data-_-Hydrologic-Bucket-Model
https://hydrology.nws.noaa.gov/pub/gcip/mopex/US_Data/
https://data.eol.ucar.edu/dataset/21.093
https://www.cpc.ncep.noaa.gov/products/global_precip/html/wpage.full_res.shtml
https://chrsdata.eng.uci.edu/
https://www.esrl.noaa.gov/psd
https://hdsc.nws.noaa.gov/hdsc/pfds/
https://hydrosheds.cr.usgs.gov./
https://esgf-node.llnl.gov/search/cmip6/
https://chrsdata.eng.uci.edu/
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Table A.2 Table of datasets generated in the dissertation. 

Dataset Spatial Coverage or 

Location used in the 

study 

Dissertation 

Chapter 

Published 

Article 

Link to dataset 

repository 

Hydrologic Bucket 

Model Simulations 

 

- 

 

Chapter 2 

Ombadi et al. 

(2020a) 

 

[https] 

Daily IDF curves for 

return periods of 2, 5, 

10, 25, 50 and 100 

years.  

CONUS Chapter 6 Ombadi et al. 

(2018) 

[https] 

Complexity Indices 

for MOPEX hydrologic 

basins 

CONUS Chapter 3 Ombadi et al. 

(2021a) 

[https] 

 

 

 

 

 

 

 

 

  

https://github.com/mombadi/Ombadi-et-al.-2020-Evaluation-of-methods-for-causal-discovery-in-hydrometerorlogical-systems-/tree/master/Synthetic-Data-_-Hydrologic-Bucket-Model
https://www.hydroshare.org/resource/fdc4218e94ce4f238ebf78bea877af08
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Table A.3 List of symbols and notations used in chapter 2.    

Symbol Definition 

𝑿 ⟹ 𝒀 Variable X causes Y; also used to denote causal links in the graph  

𝑙 Length of time series  

𝓗 Matrix of time series observations (size = number of variables ∗ 𝑙)   
X, Y and Z System variables   

𝑿𝒕, 𝒀𝒕 and 𝒁𝒕 A single observation at time 𝑡 for the variables X, Y and Z 

𝑐𝑥𝑥𝑘  Regression coefficient of 𝑿𝒕 regressed on 𝑿𝒕−𝒌 in the unrestricted model 

𝑐�̀�𝑥𝑘  Regression coefficient of 𝑿𝒕 regressed on 𝑿𝒕−𝒌 in the restricted model  
𝑐𝑥𝑧𝑘 Regression coefficient of 𝑿𝒕 regressed on 𝒁𝒕−𝒌 in the unrestricted model 

𝑐�̀�𝑧𝑘 Regression coefficient of 𝑿𝒕 regressed on 𝒁𝒕−𝒌 in the restricted model 

𝑐𝑥𝑦𝑘 Regression coefficient of 𝑿𝒕 regressed on 𝒀𝒕−𝒌 

𝜀𝑥𝑡 and 𝜀�̀�𝑡 Residuals in the unrestricted and restricted regression models, respectively  

𝛼 Significance level  

𝑝 Model order  

𝑯(𝒀|𝒁) Entropy of variable Y given information about variable Z 
𝕀(𝑿; 𝒀|𝒁) Conditional mutual information between variables (X, Y) conditioned on Z   

𝑓 Probability density function 

x, y and z Single realizations of the variables X, Y and Z 

�̅̅̅�𝑡−1 Observations matrix as of time 𝑡 − 1 

�̅�𝒕−𝟏,  �̅�𝒕−𝟏 and 
�̅�𝒕−𝟏 

Time series of variables X, Y and Z respectively as of time 𝑡 − 1 

𝒏𝒆(�̅�𝒕) Set of nodes connected to �̅�𝒕 in a causal graph  
𝕊 A subset of the nodes 𝒏𝒆(�̅�𝒕) 

𝓜 A chaotic dynamical system  

𝓜𝒕 Representation of system 𝓜 in the phase space at time t 

𝓜𝒙𝒕 Representation of system 𝓜 at time 𝑡 in the shadow manifold of X 

𝓜𝒚𝒕 Representation of system 𝓜 at time 𝑡 in the shadow manifold of Y 

𝑬 Embedding dimension in the CCM algorithm  

R Rainfall 

S Soil moisture  

I Interflow 

Q Runoff  

𝑆𝑚𝑎𝑥  Maximum soil storage  

𝐾𝑠 Storage-discharge parameter 1 

𝛿 Storage-discharge parameter 2  

𝜉 Storage-discharge parameter 3 

𝑝𝑖,𝑗 Transition probability from the state 𝑖 to the state 𝑗  

𝐵𝑒𝑡𝑎𝛼 , 𝐵𝑒𝑡𝑎𝛽  Beta distribution parameters   

�̀� A binary variable indicating whether the day is rainy or not  

𝒀 Simulated rainfall amount  

𝜼𝒔, 𝜼𝑰 and 𝜼𝑸 Red noise for the hydrological model equations. 

𝑟  Autocorrelation parameter of the red noise  

𝝎  White gaussian noise with variance 𝜎2 

𝑬𝑻 Evapotranspiration  

𝑹𝒏 Net radiation  

𝑽𝑷𝑫 Vapor pressure deficit  

𝑺𝑾𝑪 Soil water content  

𝑻𝒂 Air temperature  

Ts Soil temperature  
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Table A.4 List of symbols and notations used in chapter 3.  

Symbol Definition 

m Number of variables in a dynamical system. 

𝑋𝑘  Time series of the variable K.  

𝑥𝑘(𝑡) Single observation of the variable K at time t.   

𝒙(𝑡) Single observation in the phase space at time t. 

𝐸 Embedding dimension  

𝜏 Delay time  

𝑇 Prediction horizon  

𝑓𝑇 Function that the dynamical system state from current time to T steps ahead 

𝑓�̂� An approximation of the function 𝑓𝑇 

𝑙 Length of time series  

𝐸𝑜𝑝𝑡 Optimum embedding dimension  

𝜌 Correlation coefficient  

𝒙(𝑡) An augmentation of the vector 𝒙(𝑡) 

𝑐 Coefficients in the S-map equation  

A, B and C Matrix representation of the S-map method 

𝑤 A weighting factor function  

𝑑 Euclidean distance in the phase space  

�̅� Average of Euclidean distances in the phase space  

𝜃 Nonlinearity index  

𝜃𝑜𝑝𝑡 Optimum nonlinearity index 

𝑄 A discriminating metric for a chaotic dynamical system  

𝜇𝑄 Mean value of the discriminating metric computed from surrogates  

𝜎𝑄 Standard deviation value of the discriminating metric computed from surrogates 

𝑟𝑠 Spearman correlation coefficient  

𝐷𝑑 Drainage density  

𝐷𝐼 Dryness Index  

𝑃𝑆𝐼 Precipitation seasonality index  

𝑄𝑆𝐼 Streamflow seasonality index  

𝜆 Synchroneity of precipitation and potential evapotranspiration  

𝑓𝑠 Soil infiltration capacity  
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Table A.5 List of symbols and notations used in chapter 4. 

Symbol Definition 

n Length of time series  

𝑷 Precipitation time series [n ×1] 

𝑷𝑬𝑻 Potential Evapotranspiration time series [n ×1] 

𝑻 Daily maximum temperature time series [n ×1] 

𝑸 Streamflow time series [n ×1] 

t Time  

𝑃𝑡, 𝑃𝐸𝑇𝑡 , 𝑇𝑡 and 𝑄𝑡 A single observation at time 𝒕 for the variables P, PET,  
𝑻 and Q 

𝑌𝑡 Forecasted streamflow at time t 

𝜏 Lag time 

𝜏∗ Maximum lag time 

DI Dryness Index 

𝒈 General forecast function  

E Embedding Dimension 

𝐸𝑜𝑝𝑡 Optimum Embedding Dimension  

𝔼0 Initial embedding coordinates used in the algorithm 

𝜏𝑝 Prediction horizon  

𝐵 Maximum number of iterations in selection of embedding coordinates 

𝜌 Pearson correlation coefficient   

NSE Nash-Sutcliffe efficiency 

RMSE Root mean squared error 

𝑾 LSTM input weight matrices  

𝑼 LSTM hidden weight matrices  

𝒃 LSTM bias vector 

𝒊 LSTM input gate  

𝒇 LSTM forget gate 

𝒐 LSTM output gate 

𝒄 LSTM cell state 

𝒉 LSTM hidden state 

𝜎(. ) Sigmoid function 

𝑡𝑎𝑛ℎ(. ) Hyperbolic tangent function 
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Table A.6 List of symbols and notations used in chapter 5. 

Symbol Definition 

𝐻(𝑋) Shannon Entropy of a random variable X  

𝑓𝑥(𝑥) Marginal distribution of the random variable X   

𝑓𝑦(𝑦) Marginal distribution of the random variable Y   

𝑓𝑥𝑦(𝑥, 𝑦) Joint distribution of the two random variables X and Y 

𝑀𝐼(𝑋, 𝑌) Mutual information of the two random variables X and Y 

MIC Maximal Information Coefficient  

G A grid defined for the computation of MIC. 

𝑔𝑋 Number of bins (partitions) in the horizontal axis. 

𝑔𝑦 Number of bins (partitions) in the vertical axis. 

𝑀𝐼𝐺  Maximal Information Coefficient computed from the grid G.  

n Sample size. 

P Precipitation  

𝑇𝐵 Infrared (IR) Brightness Temperature  

c Coefficient in the range [0, 1] used to include gaussian noise. 

∆t Temporal scale of aggregation.  

∆𝑠 Spatial scale of aggregation. 

𝜌 Pearson correlation coefficient  

�̅� Normalized Pearson correlation coefficient  

𝑀𝐼𝐶̅̅ ̅̅ ̅̅  Normalized Maximal Information Coefficient  
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Table A.7 List of symbols and notations used in chapter 6. 

Symbol Definition 

𝜁 Adjustment factor for a single event in the annual maximum 

series of precipitation  

𝑅𝐺 (𝑥,𝑦,𝑘) Kth event of the annual maximum series of ground-based rainfall 

at location (x, y)  

𝑅𝑆 (𝑥,𝑦,𝑘) Kth event of the annual maximum series of satellite-based 

rainfall at location (x, y) 

𝜁 ̅(𝑥,𝑦) Mean value of adjustment factor for location (x,y) 

𝛼 and 𝛽  Parameters of the bias adjustment model 

𝐸(𝑥,𝑦) Elevation in meters of the grid (x, y)  

𝜌 Pearson correlation coefficient  

r Euclidean distance between two points  

𝜆 Parameter that specifies decay in correlation with distance 

�̿�𝐴 The characteristic distance   

A Square area used in the computation of �̿�𝐴 

𝜅2 Variance reduction factor  

𝑓𝑅(𝑟)  Probability density function of the random variable r   

𝜇𝑝 Location parameter of GEV for point rainfall 

𝛼𝑝 Scale parameter of GEV for point rainfall  

𝜇𝐴 Location parameter of GEV for areal rainfall 

𝛼𝐴 Scale parameter of GEV for areal rainfall  

𝑞(𝑥,𝑦) Quantile of extreme precipitation at location (x, y)  

𝜇(𝑥,𝑦) Mean value of annual maximum series at location (x, y)  

�̂� Regional growth factor for homogenous regions   

𝐼𝐷𝐹𝑃𝐸𝑅𝑆𝐼𝐴𝑁𝑁−𝐶𝐷𝑅  IDF curves estimated from PERSIANN-CDR 

𝐼𝐷𝐹𝑁𝑂𝐴𝐴−𝐴𝑡𝑙𝑎𝑠14 IDF curves estimated from NOAA Atlas 14 
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Table A.8 List of symbols and notations used in chapter 7.  

Symbol Definition 

𝒚𝑯 PERSIANN-CDR annual (or monthly) precipitation time series  

𝒇𝒌
𝑯 Annual (or monthly) precipitation time series from the kth GCM 

model 

𝑎 and 𝑏 Bias adjustment coefficients  

𝒚 Precipitation projections  

𝛼 and 𝛽  Parameters of the bias adjustment model 

𝑝𝑘(𝒚|𝒇𝒌) Conditional probability distribution of y given simulations of the 

model K 

𝑤𝑘 Weights of the Bayesian Model Averaging (BMA)  

𝜎2 Variance of the normal distribution assumed for conditional pdfs 

of 𝑝𝑘   

ℒ Log likelihood function of the BMA model 

n Number of years    

T Number of generations in the optimization algorithm  

N Number of chains in the optimization algorithm   
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Table A.9 CMIP6 models, and their spatial resolution, used in the study presented in chapter 7. 

Model Institute Resolution 

(Lat x Lon) 

Earth3 EC-Earth-Consortium, Europe  0.702 x 0.703 * 

Earth3-Veg EC-Earth-Consortium, Europe  0.702 x 0.703 * 

MPI-ESM1-2-

HR 

Max Planck Institute for Meteorology, Germany  0.935 x 0.9375 

* 

CESM2-

WACCM 

National Center for Atmospheric Research (NCAR), USA 0.942 x 1.25  

FIO-ESM-2-0 First Institute of Oceanography-Qingdao National Laboratory for 

Marine Science and Technology (FIO-QLNM), China 

0.942 x 1.25 

NorESM2-MM NorESM Climate modeling Consortium (NCC), Norway 0.942 x 1.25 

FGOALS-f3-L Chinese Academy of Sciences, China  1 x 1.25 

BCC-CSM2-MR Beijing Climate Center, China   1.121 x 1.125 * 

MIROC6 Japan Agency for Marine-Earth Science and Technology, Atmosphere 

and Ocean Research Institute, The University of Tokyo, National 

Institute for Environmental Studies, and RIKEN Center for 

Computational Science (MIROC), Japan 

1.4 x 1.406 * 

ACCESS-CM2 Commonwealth Scientific and Industrial Research Organisation-

Australian Research Council Centre of Excellence for Climate System 

Science (CSIRO-ARCCSS), Australia  

1.25 x 1.875 

ACCESS-

ESM1-5 

Commonwealth Scientific and Industrial Research Organisation, 

Australia  

1.25 x 1.875 

KAGE-1-0-G National Institute of Meteorological Sciences/Korea Meteorological 

Administration (NIMS-KMA), Republic of Korea  

1.25 x 1.875 

INM-CM4-8 Institute for Numerical Mathematics, Russia 1.5 x 2 

INM-CM5-0 Institute for Numerical Mathematics, Russia  1.5 x 2 

IPSL-CM6A-LR Institut Pierre Simon Laplace, France  1.268 x 2.5 

MPI-ESM1-2-

LR 

Max Planck Institute for Meteorology, Germany  1.865 x 1.875 * 

NESM3 Nanjing University of Information Science and Technology, China  1.865 x 1.875 * 

FGOALS-g3 Chinese Academy of Sciences, China  2.279 x 2 * 

NorESM2-LM NorESM Climate modeling Consortium (NCC), Norway 1.895 x 2.5 

CanESM5 Canadian Centre for Climate Modelling and Analysis, Canada  2.789 x 2.813 * 

       * Approximate resolution since the native resolution is not in regular grids. 

 

 

 

 




