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Abstract

Mechanistic Mathematical Models for Understanding The Evolution and Epidemiology of
Infectious Diseases

by

Graham Northrup

Doctor of Philosophy in Computational Biology

University of California, Berkeley

Professor Mike Boots, Chair

Mathematical and statistical models of the biological world are powerful tools for working
with these complex systems and distilling them down to interpretable phenomenon which
we can use to develop our understanding of the dynamics at play. In this dissertation I put
forward a pair of mathematical models, which advance our understanding of two crucial in-
fectious disease systems. Firstly, I present a mathematical model of hyperparasitism, that is
parasitism of a parasite, that allows us to understand guiding principles behind the evolution
of these hyperparasites in nature. Among the results, I critically show that the proportion of
hyperparasitized hosts that transmit both their parasite and hyperparasite has a core impact
on the evolutionary outcomes of the system. This probability of co-transmitting or ”hitch-
hiking” by the hyperparasite is central to the dynamics of a hyperparasite system. Second, I
present a mathematical framework for more accurately modeling the way in which immunity
from vaccination wanes over time in a host. With it I am able to derive an analytical rela-
tionship between this waning process and the ability of a population to prevent infections
via population level immunity. With this relationship I show that we must measure more
precisely both the waning process and the immunity remaining after the waning process, in
order to create better vaccine control strategies for infectious disease. Finally, this motivates
the creation of a new non-parametric estimation method for naturally acquired immunity
from infection. I use a negative control design and show we can create a new odds ratio esti-
mator for the reduction in susceptibility associated with infection and show that for certain
conditions it is unbiased and is robust to individual heterogeneity in susceptibility. I then
compare it to other methods for estimating this quantity, and apply it to cohort data for
rotavirus infection.
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Chapter 1

Evolutionary Dynamics of
Hyperparasites

The work of this dissertation focuses on the use of mathematical and statistical ap-
proaches to improve the way we understand infectious disease biology systems. Infectious
diseases span a great diversity of taxonomic categories, geographic regions, and effects on
their hosts. As such, the methods used to approach these systems are similarly diverse with
different systems and questions requiring different models and approaches. The first appli-
cation of mathematical models for infectious disease epidemiology and evolution I present
in this dissertation comes from the study of hyperparasites, or parasites of parasites. Their
unique biology makes them an interesting study system with dynamics not seen in simple
two species models. As you will see below, we can use a concise mathematical framework
to describe the dynamics of these three species systems. This new model incorporates the
specific biology of hyperparasites and allows for a more generalized approach than previ-
ous models. With this model I make predictions about the evolutionary outcomes of the
hyperparasite.

1.1 Introduction

Evolutionary theory is well developed for simple pairwise examples of evolution such as
predator/prey [1], host/mutualist [4] and in particular host/parasite [24] interactions. This
theory only rarely considers interactions within communities of interacting species [131, 28].
The coevolution of hosts and pathogens is well studied both theoretically [124, 11, 24, 25]
and empirically [27, 43, 73, 50, 55], providing a solid framework for understanding of the key
evolutionary drivers of their life history such as virulence, resistance and recovery [35]. How-
ever, far less is known about how host-parasite interaction traits evolve when we account
for the biotic community they are embedded in [5, 100, 59]. There are clearly analytical
and conceptual challenges to moving beyond pairwise interactions, but one important and
tractable multi-parasite interaction is hyperparasitism [104]. Hyperparasites are parasites
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that infect hosts which are themselves a parasite of another host, they are widespread, and
diverse in nature [104] and as such they represent an important but understudied three-way
interaction. In this chapter, I develop a general evolutionary framework for hyperparasites
referring throughout to the three players in this system as the host, the parasite, and the
hyperparasite.
Modeling of hyperparasite systems is motivated not only by our general interest in under-
standing evolution beyond pairwise interactions, but also due to the number of diverse and
impactful hyperparasitic systems in nature [103, 33, 135]. Hyperparasites exist across a
diversity of systems and types of hosts in nature. A well-known example is the chestnut
blight fungus, Cryphonectria parasitica, a parasite of chestnut trees that also plays host
to the hyperparasitic CHV-1 mycovirus which has been shown to reduce the virulence in
chestnut trees caused by C. parasitica [33]. There are other fungal hyperparasites such as
Ampelomyces quisqualis which parasitizes powdery mildews [68] and of course a wide range
of bacteriophage hyperparasites of bacterial pathogens [36]. In addition, there is considerable
interest in the application of hyperparasites in biocontrol. In particular, phage therapy has
already been used to treat antibiotic resistant (AMR) infections in several cases, including
in particular in cystic fibrosis patients [72], and the hyperparasitic mycovirus has been suc-
cessfully used to control chestnut blight [112]. More generally, it is now thought that the
diversity of hyperparasites may be an important component of observed pathogen virulence
patterns [103]. Understanding the ecological and evolutionary dynamics of these systems
is therefore important both due to their role in natural systems and their potential use in
therapeutics [142].
Current hyperparasite theory has often been focused on specific systems and therefore makes
system specific assumptions about the impact of the hyperparasite on its host [128, 94] al-
though Sandhu et al. 2021 has recently pursued more general results[123]. Here we focus
on the unique characteristics of a hyperparasite. A hyperparasite decreases the fitness of its
own host (a parasite), a hyperparasite has the potential to impact the effect of the parasite
on its host, including changing the parasite’s virulence, and a hyperparasite may increase
the death rate of the parasite (hyperparasite virulence). It is important to understand that
in this context hyperparasite virulence essentially clears the parasitic infection and leads to
an uninfected host. This is a critical difference for hyperparasite systems compared to a
parasite in a traditional host parasite system where virulence is the increased death rate of
the host. In some sense hyperparasite virulence is more closely related to host recovery in
traditional host parasite systems . In addition, understanding the conditions under which a
hyperparasite may evolve to reduce virulence of their parasite host is of particular interest.
This will elucidate the effects of hyperparasites in nature or when they are introduced as
biocontrol agents. Importantly, we examine the impact of the hyperparasite’s ability to be
transmitted along with the parasite when it infects a new host (hitchhiking).
Holt and Hochberg (1998) proposed a hyperparasite model with a focus on how this impor-
tant tritrophic interaction impacts the ecological stability of communities [62]. The model
assumed the same death rates in parasitized and hyperparasitized hosts (cα = 1 in our
general framework defined below) and no hyperparasite virulence, meaning that hyperpara-
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sitized hosts do not recover to be fully susceptible. This means there is effectively no damage
from hyperparasite infection to the parasite. Their models do not allow direct hyperinfection
of a susceptible host from a hyperinfected host (i.e. they assume 0% hitchhiking, p=0 in our
general framework) and their obligate hyperparasite model also does not allow transmission
of hyperinfected parasites (cβ = 0 in our general framework). Their model predicts that
hyperparasitism should select for higher parasite virulence [62], which is equivalent to the
prediction of the related co-infection model [88]. Taylor et al. (1998) examine the evolution
of virulence reduction in a model focused on the C. parasitica and CHV-1 system [128]. They
assume 100% hitchhiking, meaning that an infection event between a susceptible host and a
hyperinfected host will always transmit both pathogens to the new host, but assume reduced
transmission of a hyperparasitized parasite ( cβ < 1 in our general framework) and have a
parameter which measures the difference in transmissibility that occurs through hitchhiking
(in our general framework this is an S and H contact, and this is called vertical transmis-
sion in Taylor et al. 1998). Recently, Sandhu et al. (2021) examined the coevolution of
hyperparasites and parasites with an explicit adaptive dynamical model. They predict that
hyperparasites will always select for higher parasite virulence in their host, although they can
still act as excellent biocontrol agents as they reduce parasite prevalence, and also show the
interesting possibility of evolutionary suicide. This work assumes there is no recovery from
hyperparasitized to susceptible hosts as a result of hyperparasites exploiting and killing the
parasite (their ‘host’) and therefore, they did not examine hyperparasite virulence directly
and furthermore, they assumed 100% hitchhiking. As such we lack a general understanding
of the evolution of hyperparasites as existing theory has not focused on key traits such as
the role of hyperparasite virulence and variation in the degrees of hyperparasite hitchhiking.
We build on this previous work, by creating a general framework for the evolution of hy-
perparasites, incorporating virulence of the hyperparasite on the parasite, and in particular
specifically examining how the assumption of hyperparasite hitchhiking affects evolutionary
outcomes. While previous general evolutionary theory has concentrated on the impact of the
hyperparasite on parasite evolution, we explicitly model the evolution of key hyperparasite
traits including its virulence. We also include parameters which allow us to understand the
extent to which a hyperparasite reducing the growth rate of the parasite within the host
may also influence hyperparasite traits and evolutionary trajectories. Lastly, we emphasize
that the degree of hitchhiking is a key characteristic of any particular hyperparasite system
as an additional transmission pathway with fundamental implications to the evolutionary
outcome.

1.2 Model Design

In order to understand the evolutionary dynamics and outcomes of hyperparasites, we
build a general modelling framework consisting of three ordinary differential equations that
capture the infection-status of a host population. The system of equations describes the
dynamics of uninfected hosts (S), hosts infected with a parasite (I), and hyperinfected hosts
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(H). Hyperinfected hosts are those that are infected by the intermediate parasite which is
itself infected with the hyperparasite (see Figure 1.1). Here we consider obligate hyperpar-
asites only, which require the parasite present in the host.

dS

dt
= (b(1− qN)− d)S − βISI − cββISH + γII + (cγγI + αH)H (1.1)

dI

dt
= βISI + (1− p)cββISH + γHH − βHIH − (αI + γI + d)I (1.2)

dR

dt
= pcββISH + βHIH − (cααI + cγγI + d+ αH + γH)H (1.3)

S I H
βI + (1 − p)cββI

γI

b

d d + αI

pcββI

cγγI + αH

γH

βH

d + cααI

Susceptible 
Hosts

Infected Hosts: 
Host + Parasite

Hyperinfected Hosts: 
Host + Parasite + 

Hyperparasite

Hyperparasite virulence 

clears the parasite, 


taking hosts from H to S

Hitchhiking hyperparasites

take a host from S to H

Hyperparasites may 

reduce parasite virulence in


hyperinfected hosts

Figure 1.1: Diagram of model for hyperparasite system representing susceptible hosts, S,
singly infected hosts. I, and hyperinfected hosts, H. The parameters αI and αH describe
the virulence of the parasite and hyperparasite respectively. βI and βH are the transmission
coefficients for the parasite and hyperparasite respectively. γI and γH are the recovery
rates for the parasite and hyperparasite respectively. The parameter p is the hitchhiking
probability, the probability a hyperinfected parasite brings its hyperinfection to a susceptible
host. The parameters cα ,cβ, and cγ are the hyperparasite effects on parasite virulence,
transmission, and recovery, respectively.

In this system we have representing susceptible hosts, S, singly infected hosts. I, and
hyperinfected hosts, H. The parameters αI and αH describe the virulence of the parasite and
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hyperparasite respectively.βI and βH are the transmission coefficients for the parasite and
hyperparasite respectively.γI and γH are the recovery rates for the parasite and hyperparasite
respectively. The parameter p is the hitchhiking probability, the probability a hyperinfected
parasite brings its hyperinfection to a susceptible host. The parameters cα, cβ and cγ are
the hyperparasite effects on parasite virulence, transmission, and recovery, respectively. All
of these parameters default values are listed in Table 1.1

Parameters Default Values Interpretation
b, d, q 1, 0.1, 0.0005 Host demographics

αI , βI , γI 0.05, 0.1, 1 Parasite life history
αH , βH , γH (under selection), (under selection), 1 Hyperparasite life history
cα, cβ, cβ 1, 1, 1 Hyperparasite effects on parasite

p 0.5 Hitchhiking

Table 1.1: Parameter default values and definitions

Susceptible hosts experience density dependent growth, with b as the growth rate and q as
the crowding term. All hosts experience a natural death rate d, regardless of infection status.
Susceptible hosts can become infected by contact with infected hosts at rate βI . They can
also become infected by hyperinfected hosts, leaving the hyperparasite behind during trans-
mission, at rate (1−p)cββI reflecting the hyperparasite’s ability to affect parasite fitness, cβ,
and the probability, 1 − p, a susceptible host interacting with a hyperinfected host creates
an infected host (rather than becoming a hyperinfected host that occurs with probability,
p). Infected hosts can also become hyperinfected through contact with hyperinfected hosts
at rate βH . Infected and hyperinfected hosts can die due to parasite virulence at rate αI

and cααI respectively with cα representing how the hyperparasite affects parasite virulence.
Infected hosts recover, returning to the susceptible class, at rate γI while hyperinfected hosts
recover and return to the infected class at rate γH and to the susceptible class at rate cγγI
(recovering from the parasite also de facto clears the hyperparasite from the host). In this
same sense hyperinfected hosts can also ‘recover’ to the susceptible class by virtue of the
hyperparasites virulence against the parasite.
An important concept in this model is that hyperparasite virulence, αH , takes host individu-
als from H to S, ‘killing’ the parasite but not the host. This is because when the hyperparasite
kills its ‘host’, the parasite, it functionally clears the ‘base’ host of its original parasite in-
fection. In this way hyperparasite virulence, αH , increases the recovery rate of the host in
addition to natural recovery, γI , where the host clears the parasite. Therefore, while the
standard parasite virulence, αI , increases the mortality of its host, hyperparasite virulence
αH decreases the mortality of the base host. Hyperparasite virulence, αH , takes individuals
out of H, thus in an equivalent way to αI it reduces the duration of the hyperparasite in-
fection, but crucially it doesn’t remove hosts from the population and instead allows them
to recover. The recognition of hyperparasite virulence as a process by which hyperparasites
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exploit intermediate parasites, rather that the base host (as might occur in superinfection),
is a key, unique, feature of hyperparasites that has not been included in previous model
studies [123].
A further key feature of our model framework is the introduction of the parameter p, to cap-
ture the propensity for exposure to hyperinfected hosts to infect the susceptible host with
both the parasite and the hyperparasite. When hyperparasitized hosts come into contact
with susceptible hosts, a proportion p become hyperparasitized (they contract the parasite as
well as the hyperparasite) while a proportion 1− p lose the hyperparasite and only contract
the parasite. This parameter is important as it can fundamentally change the structure of
the interaction and emphasizes that there is an important distinction between hyperparasites
that “hitchhike” along primary infections by the parasite and those that are not transmitted
along with the parasite. The degree to which a hyperparasite is able to be transmitted with
its parasite is a crucial characteristic of the hyperparasite. With p = 0 the hyperparasite
transmission is decoupled from that of its parasite host, but once there is significant hitch-
hiking there is a fundamentally different relationship between the fitness of the hyperparasite
and parasite.
The parameters cα,cβ and cγ give us considerable flexibility to parameterize this model for
a wide variety of host-parasite-hyperparasite systems since they describe the effect of hy-
perparasites on their parasite hosts’ key life histories. Different hyperparasites can affect
their hosts’ life histories in various ways, and this general modeling approach allows us to
incorporate multiple types of effects of hyperparasites on their parasite hosts. These key
traits are cβ (parasite transmission modification), cα (parasite virulence modification), cγ
(parasite recovery modification). Each of these traits reflect the cost to the parasite of being
infected with the hyperparasite which has the potential to make them less able to transmit
cβ and easier to recover from cγ and potentially less impactful on their host cα. One simple
way in which these effects can be understood is that the hyperparasite reduces the growth
rate of the parasite within its host. Clearly not all hyperparasites will impact each of these
traits, but in principle they are all processes where the hyperparasite reduces the parasites
fitness. It is important to note that this impact on the fitness of the parasite is the key
assumption that defines the hyperparasite – it is a parasite because it reduces the fitness of
its host, which is also a parasite. If a hyperparasite did not impact its parasite host fitness,
through one or more of these modification terms or virulence αH , it would be more similar
to a mutualist or commensal for the parasite.
An important driver of the evolution of antagonist ecological systems is the feedbacks be-
tween ecological and evolutionary dynamics [56, 125, 18, 26]. In order to understand the
evolutionary implications of our model, in response to ecological feedbacks, we made use of
adaptive dynamics to investigate how mutant hyperparasites with a small change in a trait
of interest may or may not outcompete the wild type hyperparasite. To do this we generate
a function for the fitness of a hyperparasite in the system, which we can then work with to
identify the hyperparasite traits which optimize this fitness.
We introduce two tradeoff schemes, the first being a standard virulence transmission tradeoff
where βH = (αH)

(23) [35]. Note that this function has accelerating costs (it is saturating)
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meaning as hyperparasite exploitation of the parasite increases, the level of transmission
begins to level off as it is also influenced by other factors such as contact rate. This choice
allows us to make guarantees about convergence stability later, as well as conveniently com-
paring well to our understanding of transmission (once a parasite load is sufficiently high,
creation of more parasites doesn’t do much to increase onward transmission as the infected
host is already infecting most or all of the susceptible hosts it contacts). We add further
tradeoffs by assuming the parameters cα, cβ, cγ are functions of parasite ‘host’ exploitation
by the hyperparasite. We assume cα = 1 − αH

αHmax
and cβ = 1 − αH

αHmax
which both decrease

as host exploitation increases cγ = 1+ αH

αHmax
which increases as host exploitation increased.

These trade off functions are all simple linear functions with respect to αH , normalized in
order to ensure they stay in the proper domains. As αH increases the parasite will have a
decreased ability to exploit the host, and as such parasite transmission and virulence will
be modulated down by cα and cβ being less than 1. Similarly host recovery will be mod-
ulated up by cγ being larger than 1. We opted for a simple linear tradeoff here due to its
mathematical simplicity and the lack of a concrete biological motivation for something more
complex. In this way we can understand how effects such as the reduction in virulence of
the intermediate host might be adaptive. We examine a wide range of scenarios to develop
a general theory of the evolution of hyperparasites.

1.3 Results

We first investigated the existence and nature of the evolutionarily stable strategy (ESS)
of virulence. By considering a mutant hyperparasite strain, with parameters αHm and βHm

(initially assuming that cα, cβ, cγ are constants) we can write the mutant fitness function,
rm, as

rm = pcββIS + βHmI − (cααI + cγγI + d+ αHm+ γH) (1.4)

where S and I are the steady state densities for the endemic resident strain (with parameters
αH and βH). This is done by dividing a mutant version of 1.3 by Hm and rearranging the
terms, which gives us a per capita growth rate of the mutant (e.g. change in Hm divided by
the size of the Hm class). The higher this per capita growth rate is, the more fit a mutant will
be. Using the theory of adaptive dynamics [51] evolution will occur in the positive direction
of the local fitness gradient, which when we include the tradeoff function, β = f(α), is
defined as

∂rm
∂αHm

= f
′
(αHm)I − 1 (1.5)

An evolutionarily stable (ES) point, α∗
H , occurs when the fitness gradient is zero, which is

defined as

f
′
(α∗

H) =
1

I∗
(1.6)
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where I∗ is the steady state value of I at α∗
H and ’ refers to differentiation with respect

to αH . When we choose an accelerating tradeoff function, such as βH = (αH)
2/3, we can

interpret 1.6 as a monotonic relationship between the equilibrium parasite density, I∗, and
the evolutionarily stable hyperparasite virulence. As I∗ increases, the value of f

′
(α∗

H) must
decrease meaning α∗

H increases. When the parameters cα, cβ, cγ are functions of αH the
mutant fitness expression is more complicated, and can be written as follows:

rm = pcβmβIS + βHmI − (cαmαI + cγmγI + d+ αHm + γH) (1.7)

This expression is more complicated in the sense that more of the parameters are a function of
the mutant virulence αHm, noted with a subscript m. These functions must be differentiated
when we optimize the fitness below. Then, the evolutionary stable (ES) point, α∗

H , occurs
when

pβIS
∗(c∗β)

′
+ f

′
(α∗

H)I
∗ − (c∗α)

′
αI − (c∗γ)

′γI − 1 = 0 (1.8)

where * refers to values determined at α∗
H and ’ refers to differentiation with respect to

αH . We can use equations 1.6 and 1.8 to determine the value of α∗
H for different parameter

combinations. To ensure that α∗
H is a continuously stable strategy, CSS, (an end point of

evolution) we must also ensure that it is evolutionary stable and convergence stable (Geritz
et al. 1998). We select a tradeoff that ensures that α∗

H is a CSS (Bowers et al. 2005).
A key insight is that p has a critical impact on the evolutionary stable virulence, α∗

H , for
the hyperparasite (Figure 1.2A). Therefore whether the hyperparasite is able to hitchhike
with the parasite at infection is critical to the evolutionary outcome. Fundamentally, as the
value of p decreases, the ES virulence (α∗

H) increases. At the maximum value of p = 1, when
the hyperparasite perfectly hitchhikes, the model selects for avirulence of the hyperparasite
(α∗

H = 0). This can be understood because as p approaches 1, more arrivals to the hyper-
infected class arrive through the SHβI transmission term, rather than passing through the
infected class first. Basically, as new parasite infections occur, they come “pre-hyperinfected”
similar to a vertical transmission model. Conversely as p approaches 0, and the hyperpara-
sites stop hitchhiking as frequently, individuals must pass through the infected category to
reach the hyperinfected category, thus increasing the relative importance of higher βH values
and thus also higher levels of virulence at the ESS. This result is key to understanding how
the fundamental nature of hyperparasite transmission will affect the ESS, as the interplay
between p and βH can exert significant control over the system. In particular, hyperparasites
will be selected to reduce their own transmission to very low levels when they can hitchhike
and become mutualistic with their parasites – leading to commensalism/mutualism.
We examine the model results when we implement a broader tradeoff to include the pa-
rameters cα, cβ, cγ all as functions of host exploitation (Figure 1.2). We implement all three
tradeoff functions of hyperparasite virulence to create the most extreme case of hyperpara-
site infection impairing the parasites natural life history. Results indicate that p still exerts
strong control over the ES virulence of the hyperparasite (Figure 1.2A). Again with p = 1
the hyperparasite is selected towards hypermutualism and not impacting the parasite fitness.
We also examined the importance of the parasite’s life history parameters, to understand



CHAPTER 1. EVOLUTIONARY DYNAMICS OF HYPERPARASITES 9

how this may influence the evolutionary properties of the hyperparasite). In particular, in-
creasing values of αI corresponds to an increase in α∗

H (Figure 1.2B). Meaning if the parasite
is deadly, its hyperparasite will evolve to become more virulent in turn. Similarly, when in-
creasing the host recovery rate from the parasite, γI , this causes an increase in hyperparasite
virulence (Figure 1.2C). As host recovery rate or parasite virulence increases, the effective
lifespan of the hyperparasite (duration of parasite infection) decreases. This then selects for
more virulent, faster replicating hyperparasites. When hyperparasite evolution can change
parasite life history traits, the hyperparasite evolves to lower levels of virulence compared
to when hyperparasite has neutral effects on parasite traits (compare the dotted and solid
line in Figure 1.2). This is because an increase in hyperparasite virulence now reduces par-
asite fitness through multiple modes and therefore reduces the need for the hyperparasite to
compensate with higher levels of transmission and associated virulence.

Figure 1.2: Plots of the evolved level of hyperparasite virulence, α∗
H , against (A) hitching

hiking probability, p, (B) parasite virulence, αI and (C) host recovery rate, γI . When not
varied in the figures the parameter values are b = 1, d = 0.1, q = 0.0005, αI = 0.05, βI =
0.01, γI = 1, p = 0.5, γH = 0.01 and we assume a tradeoff βH = α

(2/3)
H . The dotted line

represents the case where cα = 1, cβ = 1, cγ = 1 which is consistent with a hyperparasite
that has neutral effects on the life history traits of the parasite. The solid line represents the
case where cα = 1− (αH/αmax), cβ = 1− (αH/αmax), cγ = 1 + (αH/αmax), where αmax = 5,
in which hyperparasite virulence also effects the interaction between the hyperparasite and
the parasite.
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Figure 1.3: Plots of evolutionarily stable parasite virulence modifier, cα(α
∗
H), against (A)

hitching hiking probability, p, (B) parasite virulence, αI and (C) host recovery rate, γI .
When not varied in the figures the parameter values are b = 1, d = 0.1, q = 0.0005, αI =
0.05, βI = 0.01, γI = 1, p = 0.5, γH = 0.01 and we assume a tradeoff βH = α

(2/3)
H . We assume

that cα = 1 − (αH/αmax), cβ = 1 − (αH/αmax), cγ = 1 + (αH/αmax), where αmax = 5, in
which hyperparasite virulence also effects the interaction between the hyperparasite and the
parasite.

We can also explore the consequences of hyperparasite trait evolution on the parasite’s life
history through lens of cα, the effect of the hyperparasite on parasite virulence αI (Figure 1.3).
This is of interest in the context of parasite virulence evolution as well as possible biocontrol
uses for certain hyperparasites. As shown in Figure 1.2B and 1.3B we can see that increasing
the virulence of their host will select for hyperparasites with higher virulence and therefore
this causes a stronger reduction in parasite virulence. This is because the hyperparasite
will need to exploit its host more, a reduction in the value of cα under the tradeoff scheme.
A similar effect is seen when increasing host recovery rate, γI . The opposite effect is seen
when increasing p, where cα values will increase as the ESS shifts accordingly with decreased
host exploitation in line with the decreasing virulence and transmission previously discussed,
according to the hypothesized tradeoff where cα grows as host exploitation decreases.
Finally, we examine how host traits impact the selection on hyperparasite traits. In particular
longer-lived hosts selected for less virulent hyperparasites (Figure 1.4). This is consistent
with our understanding of virulence selection as increasing the host death rate would reduce
the duration of hyperinfection. This in turn provides selection pressure for more rapid growth
and reproduction of the hyperparasite, the source of virulence under our assumptions.
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Figure 1.4: Plot of evolutionarily stable hyperparasite virulence, α∗
H , against host lifespan

defined as 1/d. When not varied in the figures the parameter values are b = 1, d = 0.1, q =

0.0005, αI = 0.05, βI = 0.01, γI = 1, p = 0.5, γH = 0.01 and we assume a tradeoff βH = α
(2/3)
H .

The dotted line represents the case where cα = 1, cβ = 1, cγ = 1 which is consistent with a
hyperparasite that has neutral effects on the life history traits of the parasite. The solid line
represents the case where cα = 1 − (αH/αmax), cβ = 1 − (αH/αmax), cγ = 1 + (αH/αmax),
where αmax = 5, in which hyperparasite virulence also effects the interaction between the
hyperparasite and the parasite.

1.4 Discussion

We have presented a general model of hyperparasitic interactions that can be applied to
a range of specific systems and gives us broad insights into the evolutionary dynamics of
hyperparasites. The model makes explicit the unique evolutionary dynamics resulting from
the interaction between two pathogens, one playing host to another, and sharing a base
host. Understanding the evolution of the hyperparasite, and specifically the evolution of the
effect of the hyperparasite on the parasite’s traits, is key to understanding these systems
more generally. We are only just beginning to uncover the true diversity of hyperparasites in
natural populations and to date, little is known about the ecological and evolutionary con-
sequences of hyperparasitism in nature. Our model can guide empirical work by identifying
key life-history traits and hypotheses to be tested.
We have shown that the virulence of hyperparasites (and accordingly, their effects on the par-
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asite’s (their host) natural history parameters) are sensitive to changes in parasite and host
parameters as well as the key characteristics of the hyperparasitic interaction. Importantly,
the extent to which hyperparasites are transmitted with their parasites – hitchhiking – is
critical to the evolutionary dynamics in the hyperparasite. Our key result is that increased
proportions of hitchhiking, p, by a hyperparasite causes selection for lower levels of hyperpar-
asite virulence (αH), all the way to when p = 1 (hitchhiking every time) when avirulence is
selected for. This makes intuitive sense when considering the virulence transmission tradeoff
implemented in the model. We expect both virulence and transmission to be functions of
host exploitation, with lower virulence and higher transmission being favorable (hence the
tradeoff, as virulence decreases, so does transmission). However, when a hyperparasite is able
to hitchhike, this leads to a different transmission pathway for the hyperparasite that is not
subject to the virulence transmission tradeoff and therefore ‘cost free’. This intuition about
an alternate transmission pathway is similar to what we see in models of vertical transmis-
sion. Effectively as hitchhiking increases, the fitness of the parasite and the hyperparasite are
more tightly linked with both invested in parasite transmission. As hitchhiking increases the
hyperparasite is less and less constrained by its own classical virulence-transmission trade
off, ultimately resulting in the avirulence shown (which the hyperparasite can tolerate as it
is still transmitting to new hosts via hitchhiking). It is worth noting that the hyperpara-
site could still be incurring costs that we aren’t considering in this model even with lots of
hitchhiking, such as the negative impact of the hyperparasite on its parasite host may take
place during life-history stages that take place between transmission seasons [132]. Here we
do not examine hitchhiking as an evolvable trait as we believe it is most likely a consequence
of the nature of a particular system (i.e. type of parasite, hyperparasite, specific biology),
but our models emphasize that it is absolutely the critical trait determining the evolution
of hyperparasite systems. The proportion of hyperparasite infections that hitchhike at par-
asite transmission events should therefore be a key trait that is estimated in the field when
studying a natural hyperparasite system.
We examined the impact of the evolution of the hyperparasite on its parasitic host assum-
ing that there are tradeoffs imposed on hyperparasite traits as a function of exploitation.
This is in line with the classic assumption of the tradeoff theory of parasite virulence and
transmission [11, 6]. The conceptual basis of these tradeoffs is that the growth of the hyper-
parasite in the parasite causes harm that could reduce the growth rate of the parasite in the
host and therefore reducing its virulence (decreasing cα to between 0 and 1) transmission
(decreasing cβ to between 0 and 1) and making it easier for the host to clear (increasing
cγ above 1). This is the same conceptual basis to the classic tradeoff assumption for which
there is mounting empirical evidence in general host parasite systems [2, 19]. In particular,
we focused on values of cα, the parasites reduction in virulence as a result of hyperinfection.
The idea that hyperparasites can reduce virulence in their hosts has been the subject of con-
siderable attention in specific systems [33, 91] but here we examine the general conditions
under which it is likely to be found. Selection for this reduction in parasite virulence by a
hyperparasite increases in strength as parasite virulence on its host increases and as such, we
expect this evolution in hyperparasites of highly virulent parasites. This is also selected for
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when hyperparasites cannot hitchhike, as there is selection for higher levels of hyperparasite
virulence and transmission in this case (and therefore also values of cα that are smaller).
Parasites with chronic infections (low recovery rates) in our model also select for a similar
reduction in hyperparasite virulence. Hyperparasitic biocontrol agents aimed at reducing
the virulence of the parasites would therefore be most likely to be found for non-hitchhiking,
chronic parasites. In natural communities, a virulence reducing hyperparasite could promote
host-parasite coexistence by attenuating parasite virulence [144].
The traits of the parasites are also important in selecting their hyperparasites. In particular,
we show that in chronic parasites, where the host is less able to clear infection, will select for
decreased hyperparasite virulence. When the duration of hyperparasite infection is longer
(due to slow host recovery), hyperparasites do not need to prioritize fast replicating, high
virulence strategies. Using similar logic, parasites with higher virulence select for hyperpar-
asites of higher virulence as they prioritize transmission given the shorter lifetime (infectious
period) of their parasite host.
We have also shown how host traits can also influence selection pressures on the hyperpar-
asite. Despite not being the hyperparasite‘s direct host, the parasite-hyperparasite interac-
tions occur in the context of the base host. We show that if this host is particularly long
lived this may result in selection for lower levels of virulence in the hyperparasite. It is
therefore important to not only consider the parasite and hyperparasite traits as important
for selection but to look at the tripartite system in its entirety. It follows that a knowledge of
the host life history can improve our ability to make predictions of the nature of the parasite-
hyperparasite interaction. These predictions may allow the identification of systems which
may be susceptible to hyperparasitic invasion or candidates for biocontrol of a parasite [112].
Although there is limited data, we are able to compare our predictions to what we see in
hyperparasitic systems in nature. It is important to note that we cannot say anything about
precise values of these parameters as the exact tradeoff functions or parameter values are
not well known. But our models emphasize that determining whether a hyperparasite is a
hitchhiking hyperparasite allows us to make several predictions about what we should see
about the other parameter values of interest.
Interest in C. parasitica and CHV-1 stems primarily from the observation that CHV-1 can
reduce the virulence of C. parasitica in its host the chestnut tree [33]. Our model would
predict that this will occur in CHV-1 in a system where p is close to 1, and if C. parasitica
is highly virulent. There has been previous work investigating how not all strains of CHV-1
may reduce virulence in C. parasitica and can be the result of be a combination of biological
factors [91]. Further it has been shown that in some cases, virulence reducing strains of
CHV-1 can be outcompeted by other strains [29]. While there is strong evidence to suggest
there is variation amongst CHV-1 strains in transmission [39, 40], there have been no studies
done on variation of hitchhiking ability between strains. What is clear when examining the
C. parasitica and CHV-1 system is that C. parasitica can be highly virulent in natural set-
tings [106], and it has been shown that naturally occurring CHV-1 may have been a factor
in differences in outcome at the population level [30]. As discussed previously our model
shows that the high virulence of C. parasitica provides pressure to drive the system towards
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the strategy employed by CHV-1 in natural settings. Overall, it is not surprising to find
that the effect of hyperparasites is not perfectly consistent across space and time, as these
interactions may be strongly mediated by the local environment [146].
Other prominent examples of hyperparasitic systems suggest that the conclusions derived
from this model hold in multiple systems. For example, fungal hyperparasites tend to have
low p and therefore select for higher values of αH [8], including members of the Ampelomyces
genus [132, 103]. This is similar to lytic bacteriophage systems which we would also expect p
to be low but observed virulence can be extremely high [36, 72]. Given that they are obligate
killers, meaning they must kill their host cell in order to release the burst of viral particles,
it is unclear if this high virulence has anything to do with the low hitchhiking observed but
the relationship between hitchhiking and virulence is certainly present. These observations
taken with the CHV-1 system make a compelling case for the relationship between hitch-
hiking and hyperparasite virulence as described in our model. The hyperparasite effects on
parasite life history traits are less clearly matched to our model predictions, and it is unclear
if this may be due to näıve assumptions on behalf of the model, specific ecologies or biological
mechanisms involved etc. For example, lysogenic phages in contrast are often transmitted
with their bacterial hosts and we would therefore predict very different impacts of the lyso-
genic compared with lytic phage. Adapting our modelling framework to explore the range of
phage-bacteria systems is likely to reveal further nuances of coevolutionary dynamics. There
is a great diversity of hyperparasites in nature, but relatively little is known about the key
parameters we have identified as important for understanding host-parasite-hyperparasite
evolution. This chapter provides motivation for studies to estimate more of these parame-
ters in natural systems. In particular there is a critical need to measure the probability of
hitchhiking, which our models have shown to have fundamental effect on resulting selection.
In summary, we have presented a general model of the evolution of hyperparasites using
adaptive dynamics. We showed that the ability of the hyperparasite to hitchhike with a
primary infection can have dramatic effects of the ES levels of virulence and transmission
of the hyperparasite. We also show how the life history traits of the intermediate parasite
can exert effects over selection on the hyperparasite showing how hyperparasite systems can
have very different evolutionary behavior despite having a similar, tri-species, hierarchical
structure. Ultimately these results can inform the conditions under which we might expect
reductions in virulence by a hyperparasite, with implications for biocontrol.
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Chapter 2

Shape of Waning Immunity

As seen in chapter one, mathematical models can be a powerful tool for understanding
the evolutionary outcomes of highly nonlinear systems such as those seen in infectious dis-
ease biology. In this chapter however, I focus on the ecological or epidemiological insights
that mechanistic models can provide. Taken together these chapters can paint a clear pic-
ture of the variety of insights into these systems that can be taken from straightforward
mathematical modeling approaches.

As mentioned, one of the key reasons to be interested in hyperparasites and hyperparasitic
systems is their potential use as biocontrol agents, that is, biological tools to control infectious
disease transmission. While there is growing interesting in their use in human infectious
disease control, vaccines are currently a much more common and powerful tool for control
infectious disease burden in human populations. In this chapter I create a mathematical
framework for understanding how the precise way in which a host loses their immunity after
a vaccination can have large population level implications for disease control.

2.1 Introduction

The COVID-19 pandemic highlighted the importance of waning immunity on epidemi-
ological dynamics and public health interventions (e.g. [71, 41, 69, 120]) not least in the
context of proposed nonpharmaceutical interventions that hinge on individual immune sta-
tus, such as ’shield immunity’ [143, 81]. The watershed moment during the COVID-19 pan-
demic was the development and deployment of safe vaccines [111, 20, 139] and while current
formulations of COVID-19 vaccines only transiently prevent infection, effective transmission-
blocking vaccines can result in pathogen control (see e.g. [9, 10, 122]). However, for SARS-
CoV-2 and other pathogens, protective immunity from vaccinations is known to wane over
time [130, 46]. There have been important recent efforts to generate pan-coronavirus/pan-
sarbecovirus vaccines that would provide broad immunological protection (see e.g. [85, 102,
22, 31]). and similarly, the development of ‘Universal Influenza Vaccines (UIVs)’ has been an
important focus (see e.g. [116, 17, 13, 14, 108, 16]).. Such broadly-protective vaccines will be
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crucial to prevent the next pandemic and given the current situation with H5N1 influenza,
it is important for us to better understand the epidemiological dynamics of vaccination in
the context of waning immunity (see e.g. [66]).

Clearly, whether community immunity prevents pathogen establishment (or whether
elimination is achieved if vaccination begins after establishment) crucially hinges on the
strength and duration of vaccinal immunity. Furthermore, it may depend on the way in
which immunity is lost through time, i.e. the shape of waning immunity. Thus, an impor-
tant question is how immunity wanes, in addition to the rate at which it is lost. For example,
does it matter if immunity remains relatively high and then falls off rapidly (an accelerating
loss of immunity), or if there an initial loss followed by a slow decline (a decelerating loss)?
It seems clear that the duration and shape of waning immunity are likely to be important
to epidemiological dynamics and control through vaccination.

Classic susceptible-infected-recovered-susceptible (SIRS) models capture waning immu-
nity by using a single waning rate or immunity period, after which the host is susceptible
fully again [21]. As such they assume individuals are either fully susceptible or fully immune,
but it is clear that individuals may never return to full susceptibility, even if they lose their
(initial) immunity against all infection. To capture this effect, Morris et al. [95] developed a
model with buffered susceptibility, where individuals wane to a different, but also susceptible,
class. Recent work has leveraged simple mathematical models with buffered susceptibility
to investigate the impacts of immune uncertainties on potential future SARS-CoV-2 trajec-
tories [120, 119, 141, 121] and have showed that the characteristics of buffered immunity
can lead to a large range of future immuno-epidemiological outcomes. In other work, El
Khalifi and Britton [44, 45] have examined gradual waning (i.e. regaining progressively
stronger partial susceptibility during waning) in a variety of contexts. To model gradual
waning in an SIRS model, they considered individuals flowing through a series of partial
immune (and thus partially susceptible) classes until returning to complete susceptibility,
and they compared linear and exponential waning with classical assumptions [44]. As a cal-
ibration method, they assumed that the cumulative immunity was constant. In subsequent
work [45], these authors further developed this framework to include heterogeneity. While
El Khalifi and Britton [44, 45] showed the effects of gradual waning in SIRS frameworks,
and Saad-Roy, Wagner et al. [120] examined the case where individuals wane to a partially
susceptible class (i.e. ‘buffered susceptibility), the effects of the shape of immunity with
buffered susceptibility remains unknown.

In this chapter, I develop a framework to examine the effects of the shape of waning vac-
cinal immunity on pathogen control. We use a buffered susceptible approach and consider
multiple susceptible classes, each with their own relative susceptibility to infection, with the
last (fully-waned) state (potentially) preserving some immunity (i.e. having lower suscepti-
bility to infection than a never-exposed individual, see [95, 120, 122, 141, 121]). Thus, our
mathematical model consists of a series of partially susceptible classes, which extends (and
generalizes) previous analyses with two ‘susceptible’ classes (see [120]). We capture waning
immunity with different shapes and examine how this impacts epidemiological dynamics and
in particular pathogen control through vaccination. Furthermore, while El Khalifi and Brit-
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ton [44, 45] calibrated their model based on cumulative immunity, we assume here that the
duration until individuals are fully-waned is the same, and vary the relative susceptibility
as they progress through multiple partially immune states. Thus, the cumulative immunity
for particular schemes may vary, and future work should examine the effects of keeping this
constant in a buffered susceptibility framework.

2.2 Model framework

We extend the model of Saad-Roy, Wagner et al. [120] to include multiple partially
susceptible classes. However, to focus on the waning process, we ignore characteristics of
infections in priorly-immune individuals (which was modelled in [120]). Thus, in our model,
S0 is the class of completely naive hosts, S1 describes the class of vaccinated individuals
where immunity has fully waned so that the relative susceptibility to infection is ε0 (e.g.
ε0 = 1 describes a vaccine where immunity is eventually completely lost). For j = 2, ..., n,
Sj describes vaccinated hosts that flow from Sj+1, where Sn consists of individuals that have
been most recently vaccinated. Finally, I represents the infected class of hosts. We denote µ
as the birth/death rate of the host, ν as the vaccination rate of the host population (i.e. we
assume that vaccination occurs at random), ω as the waning rate of the immunity (i.e. 1

ω
is

the average time to get from Sn to S1), β as the transmission rate, and γ as the recovery rate.
Furthermore, ε(j) denotes the relative susceptibility of individuals in Sj, i.e. this represents
the degree of waning that has occurred. Thus, the function ε(j) is the ‘shape of waning
immunity’. The model equations are therefore

dS0

dt
= µ− (µ+ ν)S0 − βS0I, (2.1)

dS1

dt
= mωS2 − (µ+ ν)S1 − βε(1)S1I, (2.2)

dSi

dt
= mωSi+1 − (µ+ ν +mω)Si − βε(i)SiI (1 < i < n), (2.3)

dSn

dt
= γI + ν

m∑
j=0

Sj − (µ+mω)Sn, (2.4)

dI

dt
= βS0I + β

m∑
j=1

ε(j)SjI − (µ+ γ)I, (2.5)

where m = n− 1.

Derivation of equilibrium values

In this chapter, we examine the effect of the shape of waning immunity on potential
pathogen invasion. Thus, we focus on the disease free equilibrium (P0, where I0 = 0), and
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the vaccination required so that it is stable. At the disease free equilibrium, I = 0. Since
the other differential equations are also set to 0 as well, solving these gives S∗

0 immediately

S∗
0 =

µ

µ+ ν
(2.6)

To get S∗
n, we start with the dSn

dt
equation where it is set equal to 0 and I = 0.

0 = ν

m∑
j=0

Sj − (µ+mω)Sn (2.7)

If we add and subtract νSn, and use the fact that because I = 0 the remaining classes S0 to
Sn must sum to 1 we get the following

0 = ν
m∑
j=0

Sj − (µ+mω)Sn (2.8)

0 = ν
m∑
j=0

Sj − (µ+mω)Sn + νSn − νSn (2.9)

0 = ν
n∑

j=0

Sj − (µ+ ν +mω+)Sn (2.10)

0 = ν − (µ+ ν +mω+)Sn (2.11)

S∗
n =

ν

µ+ ν +mω
(2.12)

Next we can see there is a recurrence relation for the susceptible classes between 1 and n

S∗
i =

mω

µ+ ν +mω
S∗
i+1 (2.13)

Then we can use this recurrence relation to get an expression for S∗
i as a function of Sn

which we already know

S∗
i = (

mω

µ+ ν +mω
)n−iS∗

n (2.14)

S∗
i = (

mω

µ+ ν +mω
)

ν

µ+ ν +mω
(2.15)

We can get S∗
1 by remembering the classes S0 to Sn sum to 1 at the disease free equilibrium

S∗
1 = 1− S0 −

n∑
i=2

S∗
i (2.16)

(2.17)
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The sum here is a geometric sum so we can use a substitution trick to make progress

S∗
1 = 1− µ

µ+ ν
− ν

µ+ ν +mω
(
1− ( mω

µ+ν+mω
)m

1− mω
µ+ν+mω

) (2.18)

= 1− µ

µ+ ν
− ν

µ+ ν +mω
(
1− ( mω

µ+ν+mω
)m

µ+ν
µ+ν+mω

) (2.19)

= 1− µ

µ+ ν
− ν

µ+ ν +mω

µ+ ν +mω

µ+ ν
(1− (

mω

µ+ ν +mω
)m) (2.20)

= 1− µ

µ+ ν
− ν

µ+ ν
(1− (

mω

µ+ ν +mω
)m) (2.21)

= 1− µ

µ+ ν
− ν

µ+ ν
+

ν

µ+ ν
(

mω

µ+ ν +mω
)m (2.22)

S∗
1 =

ν

µ+ ν
(

mω

µ+ ν +mω
)m (2.23)

Which gives us the complete set of equilibrium values

S∗
0 =

µ

µ+ ν

S∗
1 =

ν

µ+ ν
(

mω

µ+ ν +mω
)m

S∗
i = (

mω

µ+ ν +mω
)n−i ν

µ+ ν +mω
(1 < i < n)

S∗
n =

ν

µ+ ν +mω

Rinv and Forms of waning

In the absence of vaccination, the basic reproduction number is that of the classic SIR
model, i.e.

R0 =
β

µ+ α + γ
(2.24)

With vaccination, i.e. ν > 0, the control reproduction number RC can be determined using
the linearization of the dI

dt
equation at the disease-free equilibrium (see [134] for a generalized

approach), i.e.,

(2.25)RC =
∂

∂I

dI

dt

∣∣∣∣
P0

= R0

(
S∗
0 +

m∑
j=1

ε(j)S∗
j

)
.

Thus, when 1
S∗
0+

∑m
i=1 ε(i)S

∗
i
is less than R0, the pathogen can invade a population that

is undergoing vaccination at rate ν, with the shape of immunity ε(i) and rate of waning
immunity ω. We denote the value of R0 required to invade a population being vaccinated
under such a scheme to be Rinv or the ”R invasion”. Thus, we can compute this quantity
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Rinv for any formulation of ε(i). Clearly Rinv depends on the particular shape of waning. To
illustrate a variety of cases, we use two different waning schemes. Both of which, facilitate
the waning from fully immune individuals, ε(n) = 0, to fully waned individuals ε(1) = ε0.
The first is a simple exponential-like decelerating or accelerating function where more waning
happens early or late in the waning period (Figure 2.1B), i.e.

(2.26)ε(i) = ε0

(
n− i

n− 1

)p

.

The second scheme we use is a Hill function, to model ’threshold’-like waning (Figure 2.1C-
D), i.e.,

(2.27)ε(i) = ε0
(n− i)p

kp + (n− i)p

(
kp + (n− 1)p

(n− 1)p

)
.

Note that the factor
(

kp+(n−1)p

(n−1)p

)
is so that ε(1) = ε0.
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Figure 2.1: A) shows a schematic of population vaccination and immunity waning pro-
cess. Subplot B-D shows possible variation in the multiplier of ε0. B) shows accelerat-
ing/decelerating waning when p = 0.5, 1, 2. C) Shows a hill-like function for fixed k = 50
and p = 1, 3, 5. D) Shows the hill-like function fixed for p = 3 and k = 25, 50, 75

2.3 Results and Discussion

We begin by visualizing Rinv over a variety of vaccination rates, waning rates, and over
various waning schemes. In Figure 2.2, we illustrate the dependence of Rinv on the duration
of immunity and vaccination rate. For a particular parameter pair, we see that changing the
waning scheme can dramatically alter how the protection of a population. For example, a
comparison of the early and late waning schemes (Figure 2.2, comparing the top row and
bottom row respectively) for the same vaccination rate and duration of immunity, reveals
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that the Rinv can be more than four times greater if waning happens later. This is a massive
difference, and has important implications for population level pathogen prevention.
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Figure 2.2: Rinv calculated for the combination of duration of immunity, vaccination rate,
immunity remaining after waning, and the shape parameter of the waning function.

So far, we have assumed that the shape of waning immunity is exponential-like, and
thus is either concave-up or concave-down. In reality, waning is likely more complex, with
changes in concavity in the relative susceptibility to infection. To explore this, we use a
Hill-like function to describe the shape of waning immunity. In Figure 2.3, we plot Rinv (as
in Figure 2.2), but we now varying the two waning shape parameters of the Hill-like function.
In particular, we find that as p increases there is some increase in Rinv. However, the effect
size is much larger if the relatively susceptibility after waning (ε0) is changed. This is due
in part to each form of the Hill-like waning function ultimately waning to ε0 regardless of
shape, so fully waned individuals are still contributing to population level protection more if
ε0 is smaller. As such, these two parameters combine to explain the protection experienced
by the population. In Figure 2.3B, we adjust k instead, showing it can also have a significant
impact on the resultingRinv. As expected, we find that when individuals lose their immunity
earlier in the waning period (when k is smaller), the population is overall more susceptible,
and thus the Rinv is lower (Note that this is akin to our findings in 2.2).

In both situations that we have examined, it is clear that ε0 and the shape of vaccinal wan-
ing can have a major effect on the resulting values of Rinv. Importantly, as more immunity
is preserved after the waning period (i.e., as ε0 is decreased), the potential for progressively
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larger inv values becomes possible. Additionally, waning curves that preserve immunity
early in the waning process provide higher levels of population protection. Therefore, our
results illustrate the importance of including both the shape of waning and this endpoint
level of immunity in epidemiological models. In particular, such granularity enables more
precise predictions about the Rinv for a particular population. Furthermore, increases in
vaccination rates can alleviate pessimistic outcomes. Thus, quantifying the shape of waning
vaccinal immunity is paramount, especially for emerging broadly-protective vaccines.
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Figure 2.3: Rinv calculated for the combination of duration of immunity, vaccination rate,
immunity remaining after waning, and the shape parameter of the waning function.

In Figure 2.4, we illustrate the fold change in Rinv for a particular shape parameter and
relative susceptibility after waning for both shape functions. These changes are with respect
to a baseline assumption about the shape of the waning function, where ε0 = 1 and p = 1
(e.g. simple linear waning all the way to fully susceptible, see Figure 2.1B) for the simple
accelerating/decelerating waning function or ε0 = 1, p = 3, and k = 50 (e.g. a parameter
set where p and k both can exert control over the shape of the curve), see Figure 2.1C-D)
for the Hill-like function type waning.
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Figure 2.4: Shows the Rinv fold change with respect to a baseline waning shape where ε0
for the A) accelerating/decelerating waning function where the baseline is p = 1, or the B)
hill-like function for fixed k = n/2 or for C) fixed p = 3 where the baseline is k = 50 and
p = 3

We can again here see the importance of understanding how waning happens in an
individual. The change in Rinv across the range of even this modest set of choices can be
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more than double, or even result in a decrease in the Rinv for a given choice compared to
the baseline. When we look at specifically threshold type waning, we see that the relative
susceptibility after waning (ε0) exerts much more control over this change than p. But when
we allow k to vary we can see a very large range of outcomes for Rinv.

The shape of the waning process clearly has large implications for the population level
dynamics, as even for the same exact vaccination strategy and duration of immunity we
can see populations can be protected against pathogens with R0 up to four times another
population with a different waning process. In particular, the amount of immunity that
is lost early in the waning period and the relative susceptibility after waning (ε0) matter
significantly to population level susceptibility. As more immunity is preserved later into and
after the waning period, a population is comparatively much more protected. This improved
protection is true for multiple for forms of waning functions, showing that what matters is
the host susceptibility rather than any particular functional form.

2.4 Caveats and Future Work

To examine the effect of the shape of waning vaccinal immunity on community immu-
nity, our modelling framework has many simplifying assumptions, and we have omitted other
important characteristic. Furthemore, and perhaps most importantly, we have ignored epi-
demiological dynamics and focused on community immunity. However, in the absence of
such protection, pathogen invasion would be possible, and it would be particularly salient
to explore the resulting medium- and long-term dynamics in our model. Classical work
has shown that sustained epidemiological oscillations can occur if there are more than two
fully immune compartments in an SIRS-like model [61]. Thus, our model may also exhibit
such periodicity, and investigating this possibility would be important to guide vaccination
policies for ongoing epidemics.

Second, our model assumes that individuals are vaccinated randomly. However, non-
random vaccination, e.g., vaccinating individuals who have gone the longest without receiving
a vaccination, could cause increases in Rinv. Furthermore, heterogeneities in vaccine uptake,
or in age structure [74] or transmission [75, 7], could also affect Rinv. For example, May
and Anderson [87] examined the effect of heterogeneities in space on optimal vaccination.
Furthermore, both the duration and the shape of waning vaccinal immunity may themselves
be age-dependent. Thus, the interplay of these factors with the shape of waning vaccinal
immunity are important areas for future research.

Third, we have focused on transmission-blocking immunity, but clinical severity of infec-
tions as vaccinal immunity wanes may be epidemiologically important, and may crucially
shape policy. Relatedly, we have ignored the economics of vaccination in our model. How-
ever, these will likely hinge on clinical severity, and can affect decision-making regarding
vaccine development and deployment[70, 17]. Thus, extending our model to include clinical
immunity in addition to economic considerations would be fruitful avenues to explore.
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Additionally, social dynamics and adherence to (pharmaceutical or nonpharmaceutical)
interventions can influence pathogen dynamics, and vice-versa (see e.g. [23, 133, 118]).
Furthermore, vaccine hesitancy and refusal may shape population susceptibility [140, 42].
For example, the synergistic effects of multiple family members being vaccinated together or
social groups refusing vaccines can be important factors for pathogen control via community
immunity.

Finally, while social dynamics could potentially complicate vaccination strategies, our
model could also be adapted to incorporate other biological features, such as maternal im-
munity of explicit vaccinal cross-immunity. For example, maternal antibodies present in
infants could be key for elimination of certain pathogens, and these wane over time [58].
Additionally, our framework could be adapted to examine strain-specific cross-protection,
which is key for understanding how UIVs may be employed [116, 17, 13, 14, 108, 16].

2.5 Conclusion

In the midst of the current circulation of H5N1 in cattle, the general pandemic risk
of influenza viruses has been underlined. In parallel, current circulation of SARS-CoV-
2, and the continued emergence of new variants, highlights the importance of community
immunity. To prevent pathogen invasion, such protection hinges on the characteristics of
vaccinal immunity. These include duration, strength (i.e. relative susceptibility after waning
is complete), and, importantly, how vaccinal immunity is lost. Thus, understanding the shape
of waning vaccinal immunity is central to control efforts.

In this chapter, I developed a modeling framework to investigate the interplay between
the shape of waning vaccinal immunity with buffered susceptibility. For general vaccination
and waning schemes, we analytically computed theR0 pathogens would require for successful
invasion. We then examined multiple potential waning functions, and we showed that the
relative susceptibility of a fully-waned host is a crucial determinant of invasion potential.
Furthermore, we illustrated that a simple change regarding how much immunity wanes early
after infection versus later in the waning period could result in more than four times the
population-level protection.

Overall, this work highlights the importance of a potential Global Immunological Ob-
servatory [90, 89, 92] and large cohort studies [117] to determine the shape of vaccinal
immunity for a number of emerging and circulating pathogens. Furthermore, these data
would be particularly relevant in the context of the development and deployment of pan-
coronavirus/pan-sarbecovirus vaccines, in addition to broadly-protective influenza vaccines,
and could inform policy on repeat vaccinations.
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Chapter 3

Inference of Naturally Acquired
Immunity

While chapters one and two both present new mathematical frameworks for understand-
ing evolutionary and epidemiological questions related to infectious disease, it is important
to know what to do with these new insights. Specifically, chapter two motivates an important
question; how do we identify infectious diseases which may make good vaccine candidates?
Clearly it is important that a pathogen elicits an adaptive immune response, which we want
to identify from data. In this final chapter, I present a new method of identifying the level of
immunity conferred by a natural infection which makes use of a negative control design that
allows the estimation to be robust to individual differences in susceptibility. Taken together
with chapter two, these chapters provide a clearer understanding of naturally acquired and
vaccine conferred immune landscape.

3.1 Introduction

Host adaptive immune responses may protect against infection or disease when a pathogen
is repeatedly encountered. The hazard ratio of infection or disease, given previous infection,
is typically sought to estimate the strength of protective immunity. However, variation
in individual exposure or susceptibility to infection may introduce frailty bias, whereby a
tendency for infections to recur among individuals with greater risk confounds the causal
association between previous infection and susceptibility. We introduce a self-matched “case-
only” inference method to control for unmeasured individual heterogeneity, making use of
negative-control endpoints not attributable to the pathogen of interest. To control for con-
founding, this method compares event times for endpoints due to the pathogen of interest and
negative-control endpoints during counterfactual risk periods, defined according to individu-
als’ infection history. We derive a standard Mantel-Haenszel (matched) odds ratio conveying
the effect of prior infection on time to recurrence. We compare performance of this approach
to several proportional hazards modeling frameworks, and estimate statistical power of the
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proposed strategy under various conditions. In an example application, we use the proposed
method to re-estimate naturally-acquired protection against rotavirus gastroenteritis using
data from previously-published cohort studies. This self-matched negative-control design
may present a flexible alternative to existing approaches for analyzing naturally-acquired
immunity, as well as other exposures affecting the distribution of recurrent event times.

Host adaptive immune responses often protect against infection or disease when a pathogen
is repeatedly encountered. Vaccines aim to exploit this mechanism of protection by expos-
ing hosts to an attenuated infection, or to immunizing subunits of a pathogen. As such,
evidence of protective naturally-acquired immunity provides strong rationale for vaccine de-
velopment[80]. Quantitative estimates of the strength of naturally-acquired protection also
inform the interpretation of epidemiologic data, for instance providing a baseline against
which vaccine performance can be evaluated[105]. These estimates are further sought to
parameterize mathematical models of pathogen transmission[60].

Naturally-acquired immunity is often estimated via the hazard ratio of infection or dis-
ease, comparing counterfactual periods representing person-time at risk in the presence and
absence of prior infection[137, 52, 115, 67, 12, 64, 113]. Thus, inference centers on the
distribution of recurrent event times. Unmeasured heterogeneity in individuals’ hazards of
infection or disease presents a challenge in such analyses, originally termed a problem of
“varying liabilities” by Greenwood and Yule[57] and subsequently addressed as “accident-
proneness”[15] or “frailty”.[136] The tendency for events to recur among certain individuals
must be accounted for in statistical analyses[54]. In studies of naturally-acquired immu-
nity, recurrence of infection or disease among individuals with the greatest susceptibility or
exposure to a pathogen, irrespective of previous infection, may bias estimates of naturally-
acquired protection[76].

This consideration may have relevance to several diseases against which immune responses
are thought to generate imperfect protection. Tuberculosis presents a notable example, where
despite evidence of protective cell-mediated and humoral immunity[3], several epidemiologic
studies have reported higher rates of new-onset infection or disease among persons pre-
viously treated successfully for active tuberculosis, as compared to those without history
of tuberculosis[138, 86, 32, 53]. Similar conflict about the consequences of prior infection
has arisen in epidemiologic studies of gonorrhea[48, 110]. In recent analyses of a multi-site
pediatric cohort study addressing enteric disease, previous infection predicted higher rates
of recurrent infection or disease associated with several pathogens, including Shigella spp.,
Campylobacter spp., and various diarrheagenic Escherichia coli strains[114]. Evidence sup-
porting the feasibility of protective vaccines against many of these pathogens suggests a need
to revisit the impacts of naturally-acquired immunity[127, 107, 82]. Similar causal inference
challenges arise in the relationship between chronic inflammation and repeated infection in
conditions such as cystic fibrosis[38, 109], otitis media[37, 63], and environmental enteric
dysfunction[65].

Formalizing unmeasured heterogeneity as a problem of confounding suggests potential
strategies to identify naturally-acquired protection. Terming Y1 and Y2 as primary and re-
current infection or disease outcomes, respectively, and U as the constellation of unmeasured
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individual factors influencing exposure or susceptibility to a pathogen of interest, a directed
acyclic graph (Figure ) reveals that Y1← U→ Y2 may introduce bias into estimation of the
causal relationship of interest, Y1→Y2, the effect of primary infection on recurrence. Condi-
tioning on unmeasured individual factors by comparing observations during counterfactual
risk periods from the same individual (Y1← U → Y2) permits unbiased inference of the
effect of Y1. This intuition provides the basis for numerous self-matched designs (e.g. case-
crossover, case-time control, and self-controlled case series), which have garnered increasing
interest in epidemiology[97].

U

Y1 Y2

U

Y1 Y2

A. B.

Figure 3.1: Directed acyclic graph addressing unmeasured confounding. We illustrate a
causal framework wherein the effect of previous infection on time to subsequent infection
(Y1→Y2) is of interest for analysis. One or more unmeasured confounding factors (U)
creates a backdoor path (A) which can be blocked by conditioning on U (B).

In this chapter, we present an adaptation of these methods harnessing data from “negative
control” events to permit causal inference in the presence of heterogeneous individual frailty.
We derive a matched (Mantel-Haenszel) odds ratio (ORMH)[34, 84] estimator for the hazard
ratio of infection or disease, given previous infection. We conduct simulations to compare
this approach against alternative methods based on proportional hazards models common
in the analysis of longitudinal data, and to assess statistical power under varying conditions.
Last, we use the proposed method to reassess protective effects of rotavirus infection in data
from previously-published birth-cohort studies[137, 52].
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3.2 Approach

Self-matched negative control design

Parameter Definition
λPi Rate at which individual i experiences the ”outcome of interest”,

without naturally-acquired immunity
λNi Rate at which individual i experiences a negative-control outcome
θ Hazard ratio for the outcome of interest, owing to naturally-

acquired protection
βPi(1)
βPi(0)

Hazard ratio for the outcome of interest after primary infection, for
individual i, due to all (confounding) factors other than naturally-
acquired protection

βNi(1)
βNi(0)

Hazard ratio for the negative control outcome after primary infec-
tion, for individual i

Table 3.1: Parameters and Definitions

Consider an outcome such as acquisition of a pathogen of interest, or onset of disease due
to this pathogen (Table 3.1). The proposed design only includes individuals who experience
recurrent episodes of this outcome of interest (case-only). Define Yi and Xi as variables
indicating outcome and exposure status for individual i at each observation, with Yi = 1
indicating infection or disease with the pathogen of interest and Yi = 0 indicating a negative-
control outcome. Consideration of negative-control observations is of interest for studies
involving event-based data capture (e.g. episodes of acute illness), and provides a basis
for a competing risks estimation framework as we detail below. Last, let Xi = 1 indicate
an individual has previously experienced infection with the pathogen of interest, and with
Xi = 0 indicating the individual has no history of infection with the pathogen of interest.

Outcome of interest
(Yi = 1)

Negative control outcome
(Yi = 0)

Previously uninfected
(Xi = 0)

Ai ∼ exp(λPi) Bi ∼ exp(λNi)

Previously infected
(Xi = 1)

Ci ∼ exp(θλPi) Di ∼ exp(λNi)

Table 3.2: Contingency table for event time distributions, given prior infection.

Define Ai to Di as random variables indicating event times for observations of Yi = 1
and Yi = 0, conditioned on Xi, according to the contingency structure presented in Table
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3.2. Ai and Bi are the time to first occurrence of the outcome of interest and the negative
control outcome, respectively, for an individual with no history of infection (Xi = 0). Ci and
Di are the time to the first occurrence of the outcome of interest and the negative control
outcome, respectively, following infection with the pathogen of interest (such that Xi = 1;
Figure 3.2). Here we note that Bi and Di are censored if Ai < Bi and Ci < Di, respectively.

Observation Start

Negative Control Outcome

Outcome Due to

Pathogen of Interest

Ai: Time to first pathogen of interest outcome

Bi: Time to first negative control outcome

Ci: Time to second pathogen of interest outcome

Di: Time to second negative control outcome

Ai

Bi

Bi

Ai

Case
1

Case 2

Case 3

Case 4

Ci

Di

Di

Ci

Ci

Di

Di

Ci

Figure 3.2: Schematic presentation of potential outcomes. We illustrate potential outcomes
in terms of the sequence of events Ai-Di for a given individual. In cases 1 and 2, we observe
Ai < Bi (truncating observation of a negative-control event while Xi = 0). In cases 3 and 4,
we observe Bi < Ai, with the negative-control outcome preceding infection with the pathogen
of interest. We illustrate the corresponding potential outcomes for Ci and Di, when Xi = 1,
in the right-hand side of the figure.

Event time distributions

Define the hazard for the outcome of interest (P) for individual i as λPi , and define θ as
the hazard ratio of this outcome given previous infection (Table 3.1). Assuming events occur
independently and continuously during the follow up after conditioning on each individuals’
hazard and infection history, event times are exponentially distributed at the individual
level. We note this circumstance gives rise to a non-exponential event time distribution at
the population level, whose variance is augmented (relative to the pure exponential case) by
heterogeneity in individual frailty. The probability of the outcome by time t, for a previously-
uninfected individual, is 1− exp(−λPit), while the probability of the outcome by time t, had
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the same individual counterfactually been previously infected, is 1−exp(−θλPit). We discuss
alternative individual event time distributions in a later section.

Consider that data are collected from each individual for endpoints besides the primary
outcome of interest. Among these, suppose a negative control outcome (N) occurs at a rate
λNi for individual i. This rate should be unaffected by individuals’ prior exposure to the
pathogen of interest, according to the definition of a negative control in this context[79].
Under the same assumptions, the probability of experiencing the negative control outcome
by time t, for individual i, is 1− exp(−λNit.

Estimating the effect of naturally-acquired immunity

For an individual with no history of previous infection, consider the outcome of interest
and the negative-control outcome to be competing risks. The events Ei to Hi may be
defined to indicate the relative ordering of event times Ai to Di according to the contingency
structure presented in Table 3.3, for each individual i. Specifically, take Ei = Ai ≤ Bi and
Gi = Ci ≤ Di to indicate the outcome of interest precedes the negative-control outcome
during the periods with Xi = 0 and Xi = 1, respectively. Define Fi = Bi < Ai and
Hi = Di < Ci as complements to Ei and Gi. Assuming event times are exponentially
distributed after conditioning on each individual’s unique hazard, we may start the clock
for event times Ai and Bi from cohort entry or an alternative milestone (e.g. birth or
exposure onset); for Ci and Di we consider time from the most recent infection, although
any subsequent milestone is likewise appropriate.

Outcome of interest pre-
cedes negative control

Negative control outcome
precedes outcome of interest

Previously uninfected
(Xi = 0)

Ei = Ai < Bi Fi = Bi < Ai

Previously infected
(Xi = 1)

Gi = Ci < Di Hi = Di < Ci

Table 3.3: Contingency table for competing risks, given prior infection.

To derive the probabilities Pr(Ei), P r(Fi), P r(Gi), P r(Hi), consider two competing, in-
dependent event times τj and τk occuring at rates rj and rk, we may obtain the probability
for τj to precede τk from the improper integral

Pr(τj < τk) =

∫ ∞

0

Pr(τk > t)Pr(τj = t)dt (3.1)

Then with the assumption of exponentially-distributed event times,

Pr(τj < τk) =

∫ ∞

0

exp(−rkt)rjexp(−rjt)dt =
rj

rj + rk
(3.2)
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Using this we can now write the probabilities for our events Ei through Hi:

Pr(Ei) = Pr(Ai ≤ Bi) =
λPi

λPi + λNi

(3.3)

Pr(Fi) = Pr(Bi < Ai) =
λNi

λPi + λNi

(3.4)

Pr(Gi) = Pr(Ci ≤ Di) =
θλPi

θλPi + λNi

(3.5)

Pr(Hi) = Pr(Di < Ci) =
λNi

θλPi + λNi

(3.6)

Consider the Mantel-Haenszel odds ratio[34, 84] constructed from the competing risks of
Yi = 1 and Yi = 0, given Xi, matching observations from each individual i:

ORMH =

∑
i I(Fi)I(Gi)∑
i I(Ei)I(Hi)

(3.7)

such that the expectation of the odds ratio is

E(ORMH) =

∑
i Pr(Fi)Pr(Gi)∑
i Pr(Ei)Pr(Hi)

(3.8)

Using the above derivations of Pr(Ei) through Pr(Hi),

E(ORMH) =

∑
i(

λNi

λPi+λNi
· θλPi

θλPi+λNi
)∑

i(
λPi

λPi+λNi
· λNi

θλPi+λNi)

(3.9)

= θ

∑
i(

λNi

λPi+λNi
· λPi

θλPi+λNi
)∑

i(
λPi

λPi+λNi
· λNi

θλPi+λNi)

(3.10)

E(ORMH) = θ (3.11)

In the event that observations end at some finite time δ, which is more in line with real
world studies, equation 3.11 still holds. To see this consider the variation on 3.1 where we
integrate to δ rather than infinity:

Pr(τj < τk) =

∫ δ

0

Pr(τk > t)Pr(τj = t)dt =
rj(1− exp[−δ(rk + rj)])

rk + rj
(3.12)
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This then gives us new expressions

Pr(Ei) =
λPi(1− exp[−δ(λPi + λNi)])

λPi + λNi

(3.13)

Pr(Fi) =
λNi(1− exp[−δ(λPi + λNi)])

λPi + λNi

(3.14)

Pr(Gi) =
θλPi(1− exp[−δ(θλPi + λNi)])

θλPi + λNi

(3.15)

Pr(Hi) =
λNi(1− exp[−δ(θλPi + λNi)])

θλPi + λNi

(3.16)

where the additional terms still cancel out in the matched odds ratio formulation:

E(ORMH) =

∑
i Pr(Fi)Pr(Gi)∑
i Pr(Ei)Pr(Hi)

(3.17)

=

∑
i(

λNi(1−exp[−δ(λPi+λNi)])
λPi+λNi

· θλPi(1−exp[−δ(θλPi+λNi)])
θλPi+λNi

)∑
i(

λPi(1−exp[−δ(λPi+λNi)])
λPi+λNi

· λNi(1−exp[−δ(θλPi+λNi)])
θλPi+λNi)

(3.18)

E(ORMH) = θ (3.19)

Thus, in both the idealized case and under truncated observations, the ratio of the
matched odds for the outcome of interest to precede a negative-control outcome, given indi-
viduals’ unique hazards and history of prior infection, provides an unbiased estimate of the
effect of previous infection on time to recurrence of the outcome of interest.

3.3 Comparison to cohort design using proportional

hazards analysis

Simulation study

We conducted a simulation study across various underlying distributions of λPi and λNi to
test for bias of point estimates under the proposed approach and under alternative methods
often used in the analysis of cohort study data (without consideration of negative controls).
As comparisons, we considered several proportional hazards models which could be applied
to time-to-event data for recurrent observations of the outcome of interest. We considered
four approaches to control for differences in hazard among individuals:

1. “Näıve” proportional hazards model without inclusion of additional terms to account
for differences in event times among individuals. We define the hazard ratio estimated
via fitting this model as θNaive.
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2. Proportional hazards model accounting for variation in individual frailty via “random
effects”. Fitting this model estimates the hazard ratio θ̂RE for the effect of previous
infection, as well as σ̂2 representing the estimated variance in (log) individual-specific
event rates, assumed to represent independent draws from a Normal distribution with
mean 0[101, 129].

3. Proportional hazards model including Gamma-distributed frailty terms[136]. Fitting
this model estimates the hazard ratio θ̂Frailty for the effect of previous infection, along
with the parameters of the underlying Gamma distribution describing individual-
specific frailties.

4. Proportional hazards model with “fixed effects” for individual subjects. Fitting this
model estimates a hazard ratio θ̂FE for the effect of previous infection and estimates
subject-specific rates of infection (via individual-specific intercepts) which have no pre-
specified distributional assumption.

We defined θ̂MH = ORMH for the proposed analysis strategy of a self-matched, negative
control design and considered various distributions for λPi:

1. Truncated Normal distribution (with a pre-specified lower bound at a = 0);

2. Truncated Cauchy distribution (with a pre-specified lower bound at a = 0);

3. Uniform distribution;

4. Gamma distribution;

5. Mixtures of Gamma distributions.

We considered multiple parameterizations of each of these distributions (Table 3.4), hold-
ing the mean rate (or location parameter of the Cauchy distribution) constant at one infection
per year across all simulations to determine effects of inter-individual heterogeneity on esti-
mates of θ. We illustrate the distributions in Figure 3.3. Considering cohorts of 500 individu-
als, we drew λPi values at random and sampled exponentially-distributed event times of first
and second infections for each individual, truncating observations at five years. We repeated
simulations 500 times for each θ ∈ {0.01, 0.02, ..., 0.99}, drawing λPi values independently
for each simulation. We used the simulated datasets to estimate θ̂Naive, θ̂RE, θ̂FE, andθ̂Frailty

taking the average of estimates obtained across all 500 iterations to obtain a single point
estimate for each parameterization.

To compute θ̂MH , we drew hazards (λPi) and event times for negative control observations
from each subject, assuming event times were exponentially-distributed with respect to the
sampled rate parameters. To standardize comparisons of θ̂MH under differing distributions
of λPi, we defined λNi = 1∀i under each simulation.

To investigate how the different modeling frameworks performed in capturing the distri-
bution of individual-specific hazards, we saved estimates of individual-specific fixed effects,
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random effects, and frailties alongside estimates of θ̂. We fitted a single density kernel to the
distribution of individual-specific estimates across 10 simulated cohorts for each true value
of θ and underlying distribution of λPi.

Distribution Parameters I II III IV V
Truncated
Normal

Mean µ µ = 1 µ = 1 µ = 1 µ = 1 µ = 1

Variance
σ2

σ2 = 1/4 σ2 = 1/2 σ2 = 1 σ2 = 2 σ2 = 4

Lower
bound a

a = 0 a = 0 a = 0 a = 0 a = 0

Upper
bound b

b =∞ b =∞ b =∞ b =∞ b =∞

Truncated
Normal

Location
x0

x0 = 1 x0 = 1 x0 = 1 x0 = 1 x0 = 1

Scale γ γ = 1/8 γ = 1/4 γ = 1 γ = 4 γ = 8
Lower
bound a

a = 0 a = 0 a = 0 a = 0 a = 0

Upper
bound b

b =∞ b =∞ b =∞ b =∞ b =∞

Uniform Lower
bound a

a = 7/8 a = 3/4 a = 1/2 a = 1/4 a = 0

Upper
bound b

b = 9/8 b = 5/4 b = 3/2 b = 7/4 b = 2

Gamma Shape k k = 8 k = 4 k = 1 k = 1/4 k = 1/8
Scale θ θ = 1/8 θ = 1/4 θ = 1 θ = 4 θ = 8

Gamma
mixture (i)

Shape 1 k1 k1 = 1/8 k1 = 1/8 k1 = 1/8 k1 = 1/8 k1 = 1/8

Scale 1 θ1 θ1 = 1 θ1 = 1 θ1 = 1 θ1 = 1 θ1 = 1
Shape 2 k2 k2 = 3/8 k2 = 15/8 k2 = 15/16 k2 = 3/32 k2 = 3/320
Scale 2 θ2 θ2 = 1/5 θ2 = 1 θ2 = 2 θ2 = 20 θ2 = 200

Gamma
mixture
(ii)

Shape 1 k1 k1 = 1/2 k1 = 1/2 k1 = 1/2 k1 = 1/2 k1 = 1/2

Scale 1 θ1 θ1 = 1 θ1 = 1 θ1 = 1 θ1 = 1 θ1 = 1
Shape 2 k2 k2 = 3/10 k2 = 3/2 k2 = 3 k2 = 3/10 k2 = 3/10
Scale 2 θ2 θ2 = 1/5 θ2 = 1 θ2 = 2 θ2 = 20 θ2 = 200

Table 3.4: Event rate distributions applied to simulation study. Parameterizations are listed
in order of increasing variance from I to V. Gamma mixture distributions are weighted to
be half from each distribution.
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Figure 3.3: Caption continued on next page
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In figure 3.3 we show simulated distributions and hazard ratio estimates under “näıve”
inference approaches and under the proposed approach of self-matched inference with nega-
tive controls. Panels are organized to present, in each row, the assumed distribution (column
1), the estimate θ̂Naive based on a Cox proportional hazards model without any correction
for inter-individual heterogeneity (column 2), proportional hazards models employing vari-
ous frailty frameworks (columns 3-5), and the estimate θ̂MH based on the proposed approach
(column 6). One-to-one lines plotted in grey in columns 2-6 indicate where estimates would
recover the true value, i.e. θ̂ = θ. Horizontal grey lines plotted at θ̂ = 1 indicate where esti-
mates exceed 1, indicating directionally-misspecified estimates of the causal effect of interest.
Values are plotted on a red-to-blue color ramp corresponding to the parameterizations I-V,
respectively, in order of least (I; red) to greatest (V; blue) variance as detailed in Table 3.4.
A) Truncated Normal distribution; B) Truncated Cauchy distribution; C) Uniform distribu-
tion; D) Gamma distribution; E) Mixture of Gamma distributions (i) with means at 0.125
and 1.875; and F) Mixture of Gamma distributions (ii) with means at 0.5 and 1.5.

We plot distributions and estimates under each approach in Figure 3.3 as described
above. The näıve hazards ratio tended to overestimate θ, leading to under-estimation of the
degree of protection (1 − θ). Bias was minimized as θ approached zero, consistent with a
scenario of strong protective immunity. Values of θ̂Naive often exceeded 1 in scenarios where
θ < 1; in practice, such an estimate would lead to inference that prior infection increases
susceptibility to infection or disease due to the pathogen of interest, when in fact prior
infection is protective. For all distributions considered, bias in θ̂Naive was greatest under
parameterizations yielding the highest between-individual variance in λPi.

Alternative methods performed variably under the differing conditions (Figure 3.3).
Lower degrees of bias were evident in θ̂MH as compared to estimates generated under the
other methods assessed. Gamma frailty models and random effects models tended to yield
less-biased estimates of θ than θ̂Naive. However, the same direction of bias (resulting in
under-estimation of the reduction in susceptibility, or θ̂ > θ) was evident with all three of
these approaches. Bias was worst when λPi values were drawn from Gamma or Gamma
mixture distributions, and tended to increase under distributions with greater variance in
λPi, or greater irregularity in the case of Gamma mixture distributions. In contrast, fixed-
effects models estimating multipliers on hazards for each individual tended to under-estimate
θ under most distributions of λPi, although both θ̂FE > θ and θ̂FE < θ were apparent in
simulations using the truncated Cauchy distribution for λPi. For the truncated Normal
distribution, bias in θ̂FE decreased with greater variance in λPi, whereas for the Uniform,
Gamma, and Gamma mixture distributions, bias increased with greater variance in λPi.

Biased estimation of θ occur in connection with a failure to accurately recover the un-
derlying individual-specific frailty distributions. For each modeling approach, the extent of
this misspecification in individual frailties varied over values of θ and distributions of λPi.
This misspecification is quantified in figures 3.4, 3.5, and 3.6
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Figure 3.4: Estimated Density Kernels For Fixed Effects Model. In each row, column 1 is
a reproduction of the densities used to produce the individual λPi. Columns 2-4 are the
estimated density kernels for θ = 0.2, θ = 0.5, θ = 0.8, respectively. Column 5 shows the
proportion of estimates which were over 1000 for each set of parameters. Values are plotted
on a red-to-blue color ramp corresponding to the parameterizations I-V, respectively, in
order of least (I; red) to greatest (V; blue) variance as detailed in Table 3.4. A) Truncated
Normal distribution; B) Truncated Cauchy distribution; C) Uniform distribution; D) Gamma
distribution; E) Mixture of Gamma distributions (i) with means at 0.125 and 1.875; and F)
Mixture of Gamma distributions (ii) with means at 0.5 and 1.5.
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Figure 3.5: Estimated Density Kernels For Random Effects Model. In each row, column 1
is a reproduction of the densities used to produce the individual λPi. Columns 2-4 are the
estimated density kernels for θ = 0.2, θ = 0.5, θ = 0.8, respectively. Column 5 shows the
proportion of estimates which were over 1000 for each set of parameters. Values are plotted
on a red-to-blue color ramp corresponding to the parameterizations I-V, respectively, in
order of least (I; red) to greatest (V; blue) variance as detailed in Table 3.4. A) Truncated
Normal distribution; B) Truncated Cauchy distribution; C) Uniform distribution; D) Gamma
distribution; E) Mixture of Gamma distributions (i) with means at 0.125 and 1.875; and F)
Mixture of Gamma distributions (ii) with means at 0.5 and 1.5.
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Figure 3.6: Estimated Density Kernels For Gamma Frailty Model. In each row, column 1
is a reproduction of the densities used to produce the individual λPi. Columns 2-4 are the
estimated density kernels for θ = 0.2, θ = 0.5, θ = 0.8, respectively. Column 5 shows the
proportion of estimates which were over 1000 for each set of parameters. Values are plotted
on a red-to-blue color ramp corresponding to the parameterizations I-V, respectively, in
order of least (I; red) to greatest (V; blue) variance as detailed in Table 3.4. A) Truncated
Normal distribution; B) Truncated Cauchy distribution; C) Uniform distribution; D) Gamma
distribution; E) Mixture of Gamma distributions (i) with means at 0.125 and 1.875; and F)
Mixture of Gamma distributions (ii) with means at 0.5 and 1.5.
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3.4 Sample size considerations

Simulation study

To inform applications of the proposed method, we next assessed statistical power under
differing conditions. A test statistic (ξMH) has previously been identified for ORMH under
the null hypothesis of no difference in risk given exposure[83]. For the contingency structure
(Table 3) formulated from the terms Ei to Hi (by which we define ORMH), this statistic can
be written generally as

ξMH =
(
∑N

i (Ei − (Ei+Fi)(Ei+Gi)
2

))2∑N
i

(Ei+Fi)(Ei+Gi)(Fi+Hi)(Gi+Hi)
4

(3.20)

which can then be simplified according to Ei + Fi = 1, Gi + Hi = 1, and Fi + Hi =
2− Ei −Gi. Thus,

ξMH =
(
∑N

i (Ei −Gi))
2∑N

i (Ei +Gi)(2− Ei −Gi)
(3.21)

which is expected to follow a χ2 distribution with one degree of freedom under the
null hypothesis. We calculated values of ξMH obtained for cohorts of varying sizes under
differing parameterizations of θ, λPi, and λNi. For values of θ ∈ {0.1, 0.2, ..., 0.9}, we sampled
individual event times Ai toDi for a population of 100,000 individuals whom we subsequently
partitioned (without replacement) into 2000 hypothetical study cohorts each of size N=25,
50, 75, 100, 150, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, and 1000. For these analyses,
we considered λPi values drawn from truncated Normal, Gamma, and Gamma mixture
distributions, under the parameterizations of each of these distributions with greatest and
least variance listed in Table 3.4. We determined statistical power via the proportion of
simulated cohorts for which the upper bound of a 95% confidence interval around ORMH

would be expected to correctly exclude the null value, i.e. Pr(ξMH > ξ97.5%MH = 5.02).
To assess how correlation between λPi, and λNi could affect the statistical power of

estimates, we conducted simulations under two sets of assumptions. Under the first, we
considered λNi = 1 for all i (equal to the expected value of λPi under all parameterizations),
so that λNi ⊥ λPi; under the second, we defined λNi=λPi, under the assumption that
individuals with greater risk of the outcome of interest would also experience higher incidence
of the negative control condition. These conditions bound power estimates, corresponding
to assuming no correlation and perfect correlation between λNi and λPi, respectively.

Results

We present results of the power analyses in Figure 4. Analyses with as few as 50 subjects
had roughly 80% power or greater to estimate θ = 0.1 (corresponding to 90% protection)
under all conditions explored; analyses with 500 subjects had 80% power or greater to
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estimate θ ≤ 0.5 (corresponding to 50% protection or greater) under all conditions. No
scenarios revealed 80% or greater power for estimation of θ ≥ 0.8 (corresponding to less
than 20% protection), even with 1000 subjects; statistical power for estimation of θ = 0.9
was 10% or lower under nearly all conditions explored. This is a limitation of the method;
however, detecting θ slightly less than 1 presents weak motivation to investigate a pathogen
for vaccine development as there is little naturally acquired immunity.

For simulations with λNi ⊥ λPi, statistical power was weaker under parameterizations
resulting in greater variance in λPi. In contrast, for simulations with λNi = λPi, differences in
statistical power were less strongly apparent with increasing variance in λPi. Taken together,
these findings suggest statistical power is maximized when negative control endpoints are
chosen which tend to occur more commonly among individuals who are at greatest risk of
the outcome of interest.
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Figure 3.7: Statistical power for simulated analyses using the proposed approach of self-
matched inference via negative controls. Each panel presents the statistical power for re-
jecting the null hypothesis with two-sided p¡0.05 under varying conditions. Lines plotted
in red to blue correspond to decreasing values of θ: 0.9 (red), 0.8, 0.7, . . . , 0.1 (blue), cor-
responding to increasing protection from 10% to 90%. Plots are presented in groups of 4
panels, each corresponding to analyses with values drawn from the following distributions:
A) Truncated Normal distribution; B) Gamma distribution; C) Mixture of Gamma distribu-
tions with means at 0.125 and 1.875 (as detailed in Table 3.4). Panels in the top row (A.1,
A.2, B.1, B.2, C.1, C.2) represent analyses in which no correlation is assumed between rates
of the outcome of interest and negative control outcome (λNi = 1∀i). Panels in the bottom
row (A.3, A.4, B.3, B.4, C.3, C.4) represent analyses in which the correlation between rates
of the outcome of interest and the negative control outcome are is maximized (λNi = λPi).
Within each grouping, panels on the left-hand side (A.1, A.3, B.1, B.3, C.1, C.3) correspond
to distributions with the least variance in individual rates of the outcome of interest (λPi;
i.e., parameterization I in Table 3.4). Panels on the right-hand side within each grouping
(A.2, A.4, B.2, B.4, C.2, C.4) correspond to distributions with the greatest variance in indi-
vidual rates of the outcome of interest (λPi; i.e., parameterization V in Table 3.4).

3.5 Potential Introduction of Bias

At a design level, self-matched inference reduces or eliminates the potential for bias due
to time-invariant factors that individually influence risk[145]. However, complications arise
when individuals’ risk of experiencing these endpoints differs over time.

Consider continuously varying hazards λPi(t) and λNi(t). When variation over time
is identical for both disease of interest and negative control events (e.g. due to shared
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seasonal patterns, or exposure to interventions affecting both conditions equally), E(ORMH)
is unaffected. Formally, we express this scenario as

λPi(t) = λPif(t) (3.22)

λNi(t) = λNif(t) (3.23)

Dividing the observation period into small windows of length dt, where the hazard
is approximately constant (i.e. the probability of a negative control event happening is
λNi(t)dt+ o(dt)), we consider the windows to be multinomial trials, where

P (Ai ≤ Bi) =
λPi(t)dt

λPi(t)dt+ λNi(t)dt
=

λPi(t)

λPi(t) + λNi(t)
(3.24)

This circumstance motivates the selection of negative-control outcomes which share sea-
sonal patterns with the outcome of interest. We illustrate bias that may occur when hazards
do not vary synchronously in Figure 3.8, identifying the greatest bias under conditions of
inverted seasonal patterns in relation to one another.

0.1 0.3 0.5 0.7 0.9

0.1

0.3

0.5

0.7

0.9

θ̂ M
H

θ

Figure 3.8: Seasonal variation introduces bias. We plot the estimated values of θ̂ for a range
of values of θ, under various seasonal conditions. Seasonal disease of interest but not negative
control is plotted in pink. INverse seasonality of the two events is plotted in blue, with the
larger seasonal effect shown using a dotted line. The orange line shows a case when the
two seasonal effects have different periods. To implement seasonality, the base hazard was
multiplied by a periodic seasonal effect function with a period of one year
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Broadly, we may interpret these findings to support the selection of negative-control
outcomes that resemble the outcome of interest in their association with other time-varying
confounders such as individuals’ age, health status, and sociodemographic exposures.

We may also relax the assumption that event times are exponentially-distributed, condi-
tional on individual hazards and exposures. Here we are centrally concerned with expressions
for P (Ai < Bi) under alternative distributions, as P (Ai < Bi) =

λPi

λPi+λNi
is key to cancelling

out the individual effects. This probability for gamma-distributed (k, θ) events is the reg-
ularized incomplete beta function IB( θA

θA+θB
) while for Weibull-distributed event times it is

1/(1+(λNi

λPi
)k) where k is the shared shape parameter of the distributions. Discrepancies arise

in both cases when the distributions are parameterized differently (Figures 3.9 and 3.10).
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Figure 3.9: Bias of Gamma Distributed Event Time Assumption. Here we plot the absolute
difference between P (Ai < Bi) for the exponential event times and gamma event times.
Larger discrepancies are shown as more red, and greater concordance as more black. We
show four pairs of shape where kA and kB are either low (equal to 0.5) or high (equal to 3) in
the four panels. Each cell is filled according to the absolute value of the difference between

kAθA
kAθA+kBθB

and the regularized incomplete beta function IB( θA
θA+θB

, kB, kA).
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Figure 3.10: Bias of Weibull Distributed Event Time Assumption. Here we plot the absolute
difference between P (Ai < Bi) for the exponential event times and Weibull event times.
Larger discrepancies are shown as more red, and greater concordance as more black. In A)
the shape of the Weibull distributions k = 0.5, and in B) k = 2. Cells are filled according to
the absolute difference between λP

λP+λN
and 1

1+
λN
λP

k
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3.6 Application to Rotavirus Birth Cohort Data

Last, we applied the proposed method to real-world data collected in two birth-cohort
studies of rotavirus infection and disease among 200 children in Mexico City, Mexico and 373
children in Vellore, India. These datasets have been described extensively in primary study
publications[137, 52] and subsequent re-analyses [76, 78]. In these studies, pregnant mothers
were enrolled prior to childbirth, and children were followed from birth to ages 2 years (in
Mexico City) and 3 years (in Vellore). Investigators aimed to identify all rotavirus infections
through routine testing of asymptomatic stool specimens (collected by field workers at regular
home visits) for rotavirus, and by monitoring children for anti-rotavirus seroconversion over
serial blood draws at scheduled intervals. Active surveillance was undertaken for all cases of
gastroenteritis among children to characterize symptoms and test diarrheal stool specimens
for rotavirus.

Initial analyses of the datasets gave differing conclusions about the strength of protection
against rotavirus gastroenteritis (RVGE). Based on Cox proportional hazards models that
did not account for variation in individual frailty, children in Mexico City were estimated
to have experienced 77% (95% confidence interval: 60-88%), 83% (64-92%), and 92% (44-
99%) lower rates of RVGE following one, two, and three previous infections, respectively, as
compared to zero infections[137]. In contrast, children in Vellore, where the rate of rotavirus
acquisition was higher, were estimated to have experienced 43% (24-56%), 71% (59-80%),
and 81% (69-88%) lower rates of RVGE after one, two, and three previous infections, as
compared to zero infections, based on a parametric Exponential survival model allowing
Gamma frailty terms[52]. Subsequent analyses of the datasets revealed substantial variation
in rates of rotavirus infection and risk of RVGE among individual children, as well as a po-
tential for confounding due to declining risk of RVGE when infections were acquired at older
ages, irrespective of previous infection[78]. In contrast, model-based analyses accounting for
the independent effects of age and previous infection on children’s susceptibility to RVGE
estimated that children experienced 33% (23-41%), 50% (42-57%), and 64% (55-70%) lower
rates of RVGE after one, two, and three previous infections, respectively, as compared to
zero infections[76].
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Figure 3.11: Estimated protection against rotavirus gastroenteritis associated with previous
infection. We plot point estimates and 95% confidence intervals (lines) for estimates of the
hazard ratio of rotavirus gastroenteritis associated with having previously experienced one,
two, and three previous infections, versus zero previous infections, estimated via re-analysis
of the Mexico City and Vellore rotavirus birth cohort studies[137, 52], Analyses include
rotavirus-negative diarrhea occurrences as a negative control endpoint.

We used the proposed self-matched negative control design to re-estimate naturally-
acquired protection against RVGE in the cohort datasets. Here, RVGE episodes (acute,
new-onset diarrhea with rotavirus detected in the stool) are the outcome of interest and
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acute, new-onset diarrhea episodes without rotavirus detection as the negative control. We
compared the times of RVGE and rotavirus-negative diarrhea episodes from each child be-
ginning from birth, and thereafter following detection of the first, second, and third rotavirus
infection (generating confidence intervals via resampling of individual children). This yielded
estimates of 27% (–1-48%), 50% (13-73%), and 48% (0-77%) lower rates of RVGE following
one, two, and three previous infections, as compared to zero infections (Figure 5). Notwith-
standing lower statistical power for the proposed method, these estimates are in agreement
with previous findings15 suggesting lower strength of naturally-acquired protection than
what was estimated in initial analyses of the birth cohort studies[137, 52].

3.7 Discussion

We propose a novel self-matched negative control method for estimating the hazard ra-
tio of time to infection or disease due to a pathogen of interest, given previous infection.
Analytically and via simulation, we show this method recovers unbiased estimates under a
range of conditions, including when individual hazards are drawn from highly irregular or
skewed distributions. We find these irregular or skewed distributions may lead to bias under
proportional hazards models with commonly-used frailty estimation frameworks. Desirably,
the proposed approach requires no parametric assumptions other than events occurring con-
tinuously and independently after conditioning on their underlying, individual-specific rates
of occurrence. Beyond infectious disease natural history studies, this approach may have
value for assessing the effects of other exposures on recurrent event times.

Our findings provide several practical insights for real-world longitudinal cohort studies.
Collecting data on multiple endpoints affords the opportunity to leverage negative-control ob-
servations to support causal inference. For studies applying the proposed approach, negative-
control endpoints affected by the same risk factors or exposures as the outcome of interest
are desirable both to reduce potential risks of confounding due to time-varying factors, and
to maximize statistical power based on the correlation between event rates for the outcome
of interest and negative-control outcome, λPi and λNi. “Test-negative” control conditions
which resemble the outcome of interest, but are not attributable to the same pathogen[77,
126], may provide a compelling choice, particularly if their occurrence is predicted by similar
risk factors. For instance, shared risk factors are well-documented for rotavirus-positive and
rotavirus-negative diarrhea[76, 65]. Considering respiratory illness, multiple etiologic viruses
may share similar seasonal transmission patterns[93], routes of transmission via high-risk
contact[96], and associations of disease progression or severity with host comorbidities[47].
For sexually-transmitted infections, particular risk behaviors[49] differing among individuals
or over time could alter risk of any infection, rather than infection with the pathogen of in-
terest alone[107]. In the context of real-world cohort studies, test-negative control conditions
which are clinically similar to the outcome of interest would likely result in a study visit or
other recorded interaction with similar probability. This further supports consideration of
inference methods making use of test-positive and test-negative occurrences of a particular
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clinical syndrome.
In summary, self-matched inference via negative controls may provide a flexible strategy

to circumvent bias introduced by variation in individual frailty for analyses of naturally-
acquired immunity. Applications to other exposures affecting the distribution of recurrent
event times merit consideration, given the possible limitations we identify in existing analysis
frameworks.
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Chapter 4

Concluding thoughts

This dissertation combines three chapters of work united by their ability to shed light on
complicated infectious disease processes with the use of straightforward mechanistic modeling
and statistical techniques. Differential equation modeling and odds ratio frameworks are not
new approaches in the field, but this work shows that there are still many applications of
them that have gone lacking. It is crucial to continue to strive to understand our world
through such lenses as new approaches may be perhaps more complex but obfuscate the key
details that allow us to truly understand the core ideas of certain systems.

Chapter one details a general model of hyperparasitism that relaxes several key assump-
tions made in prior models. With this simple model, an adaptive dynamics approach can be
taken to look more closely at the evolutionary trajectories of the hyperparasite. By using
this approach, we are able to show that the probability of a hyperparasite hitchhiking is a key
parameter in this system. The value of the hitchhiking parameter dramatically alters any
predictions about evolutionary outcomes in hyperparasites. This model has the flexibility to
be used in multiple systems and makes a strong case for continued study of these trispecies
systems. In particular, it shows that the measurement of the hitchhiking probability is an
essential part of growing the understanding of a hyperparasitic system.

Chapter two also presents a differential equation model but this time focusing on the
ecology or epidemiology of the disease in question, namely one being controlled by a vaccine.
This model makes clear that both the trajectory of immunity during the waning process,
and the resulting level of susceptibility after vaccinal immunity has waned are core to any
understanding of population level protection provided by the vaccine. With a simple model
we can reveal these simple facets of vaccinal immunity to be driving the resulting protection
experienced by the population. This new conceptual model is ripe for further advances and
adaptations to understand the interaction between vaccination and a variety of factors.

Chapter three further builds the understanding of partial immunity by created a new
technique for measuring the amount of immunity conferred by a natural infection, using a
nonparametric negative control design. By designing a new method that is robust to indi-
vidual differences in susceptibility, this new method can be used in a variety of settings and
even in cases where individuals are coming from potentially two unknown subpopulations.
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Chapter three also shows this method is unbiased providing for certain conditions. Accurate
estimates of protection are vital for identifying vaccine candidate pathogens, and for making
accurate estimates about the epidemiology of the disease and burden in a population.

In summary the approaches presented, two differential equation models and a statistical
estimation method, grow our understanding of infectious disease dynamics. We can apply
these frameworks to simplify complicated systems, distilling them down into lessons that
can be learned and applied to future study of hyperparasitism, waning vaccinal immunity,
partial naturally acquired immunity, or perhaps other related questions in the future.
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