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Abstract

Family trees have vast applications in multiple fields from genetics to anthropology and 

economics. However, the collection of extended family trees is tedious and usually relies on 

resources with limited geographical scope and complex data usage restrictions. Here, we collected 

86 million profiles from publicly-available online data shared by genealogy enthusiasts. After 

extensive cleaning and validation, we obtained population-scale family trees, including a single 
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pedigree of 13 million individuals. We leveraged the data to partition the genetic architecture of 

longevity by inspecting millions of relative pairs and to provide insights into the geographical 

dispersion of families. We also report a simple digital procedure to overlay other datasets with our 

resource in order to empower studies with population-scale genealogical data.

One Sentence Summary

Using massive crowd-sourced genealogy data, we created a population-scale family tree resource 

for scientific studies.

Family trees are mathematical graph structures that can capture mating and parenthood 

among humans. As such, the edges of the trees represent potential transmission lines for a 

wide variety of genetic, cultural, socio-demographic, and economic factors. Quantitative 

genetics is built on dissecting the interplay of these factors by overlaying data on family 

trees and analyzing the correlation of various classes of relatives (1–3). In addition, family 

trees can serve as a multiplier for genetic information through study designs that leverage 

genotype or phenotype data from relatives (4–7), analyzing parent-of-origin effects (8), 

refining heritability measures (9, 10), or improving individual risk assessment (11, 12). 

Beyond classical genetic applications, large-scale family trees have played an important role 

across disciplines, including human evolution (13, 14), anthropology (15), and economics 

(16).

Despite the range of applications, constructing population-scale family trees has been a 

labor-intensive process. Previous approaches mainly relied on local data repositories such as 

churches or vital record offices (14, 17, 18). But these approaches have limitations (19, 20): 

they require non-trivial resources to digitize the records and organize the data, the resulting 

trees are usually limited in geographical scope, and the data may be subject to strict usage 

protections. These challenges reduce demographic accessibility and complicates fusion with 

information such as genomic or health data.

Constructing and validating population scale family trees

Here, we leveraged genealogy-driven social media data to construct population-scale family 

trees. To this end, we focused on Geni.com, a crowd-sourcing website in the genealogy 

domain. Users can create individual profiles and upload family trees. The website 

automatically scans profiles to detect similarities and offers the option to merge the profiles 

when a match is detected. By merging, larger family trees are created that can be 

collaboratively co-managed to improve their accuracy. After obtaining relevant permissions, 

we downloaded over 86 million publicly available profiles (21). The input data consists of 

millions of individual profiles, each of which describes a person and any putative 

connections to other individuals in the dataset, along with any auxiliary data about the 

creator of the profile. Similar to other crowdsourcing projects (22), a small group of 

participants contributed the majority of genealogy profiles (fig. S1).

We organized the profiles into graph topologies that preserve the genealogical relationships 

between individuals (Fig. 1A). Biology dictates that a family tree should form a directed 
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acyclic graph (DAG) where each individual has an in-degree that is less than or equal to two. 

However, 0.3% of the profiles resided in invalid biological topologies that included cycles 

(e.g. a person that is both the parent and child of another person) or an individual with more 

than two parents. We developed an automated pipeline to resolve local conflicts and prune 

invalid topologies (fig. S2) and benchmarked the performance of the pipeline against human 

genealogists (21). This resulted in >90% concordance between the pipeline and human 

decisions to resolve conflicts, generating 5.3 million disjoint family trees.

The largest family tree in the processed data spanned 13 million individuals who were 

connected by shared ancestry and marriage (Fig. 1B). On average, the tree spanned 11 

generations between each terminal descendant and their founders (fig. S3). The size of this 

pedigree fits what is expected as familial genealogies coalesce at a logarithmic rate 

compared to the size of the population (23).

We evaluated the structure of the tree by inspecting the genetic segregation of unilineal 

markers. We obtained mitochondria (mtDNA) and Y-STR haplotypes to compare multiple 

pairs of relatives in our graph (21). The mtDNA data was available for 211 lineages and 

spanned a total of 1768 transmission events (i.e. graph edges), whereas the Y-STR data was 

available for 27 lineages that spanned 324 total transmission events. Using a prior of no 

more than a single non-paternity event per lineage, we estimated a non-maternity rate of 

0.3% per meiosis and non-paternity rate of 1.9% per meiosis. This rate of non-paternity 

matched previous rates of Y-chromosome studies (24, 25) and the non-maternity rate was 

close to historical rates of adoption of an unrelated member in the US (26). Taken together, 

these results demonstrate that millions of genealogists can collaborate in order to produce 

high quality population-scale family trees.

Extracting demographic data

We found that lifespan in the Geni.com profiles was largely concordant with reports 

generated by traditional demographic approaches. First, we extracted demographic 

information from the collected profiles with exact birth and death dates, which show higher 

quality compared to profiles with only year resolution for these events (fig. S4). The data 

reflected historical events and trends such as elevated death rates at military age during the 

American Civil War, WWI, and WWII, and a reduction in child mortality during the 20th 

century (Fig. 2A). We compared the average lifespan in our collection to a worldwide 

historical analysis covering the years 1840–2000 (27). We found an R2=0.95 between the 

expected lifespan from historical data and the Geni dataset (Fig. 2B) and a 98% concordance 

with historical distributions reported by the Human Mortality Database (HMD) (Figs. 2C; 

fig. S5).

Next, we extracted the geographic locations of life events using a combination of an 

automated geo-parsing pipeline and structured text manually curated and approved by 

genealogists (21) (fig. S6A). Overall, we were able to place about 16 million profiles into 

longitude/latitude coordinates, typically at fine-scale geographic resolution, without major 

differences in quality between the automated geo-parsing and manual curations for 

subsequent analyses (fig. S6B) (21). The profiles were distributed across a wide range of 
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locations in the Western World (Fig. 2D; fig. S7) with 55% from Europe and 30% from 

North America. We analyzed profiles in ten cities across the globe and found that the first 

appearance of profiles was only after the known first settlement date for nearly all of the 

cities, suggesting good spatiotemporal assignment of profiles (Fig. 2E). Movie S1 presents 

the place of birth of individuals in the Geni dataset in 5 year intervals from 1400 to 1900 

along with known migration events.

We were concerned that the Geni.com profiles might suffer from certain socio-economic 

ascertainment biases and therefore would not reflect the local population. To evaluate this 

concern, we collected ~80,000 publicly available death certificates from the Vermont 

Department of Health for every death in this state between 1985 and 2010. These records 

have extensive information for each individual, including education level, place of birth, and 

a cause of death in an ICD-9 code. Approximately one thousand individuals in Geni 

overlapped this death certificate collection. We compared the education level, birth state, and 

ICD-9 code between these ~1000 Geni profiles and the entire Vermont collection. For all 

three parameters, we found >98% concordance between the distribution of these key 

sociodemographic attributes in the Geni profiles in Vermont and the entire state of Vermont 

(Table S1–S3). Overall, this high level of consistency argues against severe socioeconomic 

ascertainment. Table S4 reports key demographic and genetic attributes for various familial 

relationships from parent-child via great-great-grandparents to fourth cousins.

Characterizing the genetic architecture of longevity

We leveraged the Geni dataset to characterize the genetic architecture of human longevity, 

which exhibits complex genetics likely to involve a range of physiological and behavioral 

endophenotypes (28, 29). Narrow-sense heritability (h2) of longevity has been estimated to 

be around 15%−30% (Table S5) (30–35). Genome-wide association studies have had limited 

success in identifying genetic variants associated with longevity (36–38). This relatively 

large proportion of missing heritability can be explained by the following: (A) longevity has 

non-additive components that create upward bias in estimates of heritability (39), (B) 

estimators of heritability are biased due to unaccounted environmental effects (10), (C) the 

trait is highly polygenic and requires larger cohorts to identify the underlying variants (40). 

We thus sought to harness our resource and build a model for the sources of genetic variance 

in longevity that jointly evaluates additivity, dominance, epistasis, shared household effects, 

spatiotemporal trends, and random noise.

We adjusted longevity to be the difference between the age of death from the expected 

lifespan using a model that we trained with 3 million individuals. Our model includes 

spatiotemporal and sex effects and was the best among 10 different models that adjusted 

various spatio-temporal attributes (fig. S8). We also validated this model by estimating the 

narrow-sense heritability of longevity (h2) according to the mid-parent design (41) with 

nearly 130,000 parent-child trios. This process yielded h2
mid-parent = 12.2% (s.e.=0.4%) 

(Fig. 3A), which is on the lower end but in the range of previous heritability estimates (Table 

S5). Consistent with previous studies, we did not observe any temporal trend in mid-parent 

heritability (Fig. 3B).
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We partitioned the source of genetic variance of longevity using more than three million 

pairs of relatives from full sibling to 4th cousin (21). We measured the variance explained by 

an additive component, pairwise epistatic model, 3-way epistasis, and dominancy (Fig. 3C). 

To mitigate correlations due to non-genetic factors, these three million pairs were all sex-

concordant to address residual sex differences not accounted for by our longevity 

adjustments (fig. S9) and do not include relatives who are likely to have died due to 

environmental catastrophes or in major wars (fig. S10). We also refined the genetic 

correlation of the relatives by considering multiple genealogical paths (fig. S11–S13).

The analysis of longevity in these 3 million of pairs of relatives showed a robust additive 

genetic component, a small impact of dominance, and no detectable epistasis (Fig. 3D; Table 

S6) (21). Additivity was highly significant (padditive<10−318) with an estimated 

h2
sex-concordant/relatives = 16.1% (s.e.=0.4%), similar to the heritability estimated from sex-

concordant parent-child pairs h2
concordant/parent-child = 15.0% (s.e.=0.4%). The maximum-

likelihood estimate for dominance was around 4% but the epistatic terms converged to zero 

despite the substantial amount of data. Other model selection procedures such as Mean 

Squared Error (MSE) analysis and Bayesian Information Criterion (BIC) argued against 

pervasive epistatic contribution to longevity variance in the population (21).

We tested the ability of our model to predict the longevity correlation of an orthogonal 

dataset of 810 monozygotic (MZ) twin pairs collected by the Danish Twin Registry (Fig. 

3D) (42). Our inferred model for longevity accurately predicted the observed correlation of 

this twin cohort with 1% difference, well within the sampling error for the mean twin 

correlation (s.e. = 3.2%). We also evaluated an extensive array of additional analyses that 

included various adjustments for environmental components and other confounders (fig. 

S14–15) (21). In all cases, additivity explained 15.8%−16.9% of the longevity estimates, 

dominance explained 2%−4% and no evidence for epistatic interactions could be detected 

using our procedure.

We also estimated the additive and epistatic components using a method that allows rapid 

estimation of variance components of extremely large relationship matrices, called sparse 

Cholesky factorization linear mixed models (Sci-LMM) (43). This method takes into 

account a kinship coefficient matrix of 250 million pairs of related individuals in the Geni 

dataset and includes adjustment for population structure, sex, and year of birth. We observed 

an additivity of 17.8% (s.e=0.84%) and a pairwise epistatic component that was not 

significantly different from zero (21).

Taken together, our results across multiple study designs (fig. S16) indicated that the limited 

ability of GWA studies so far to associate variants with longevity cannot be attributed to 

statistical epistasis. Importantly, this does not rule out the existence of molecular interactions 

between genes contributing to this trait (44–47). Based on a large number of data points and 

study designs, we measured an additive component (h2 ≃16%) that is considerably smaller 

than the value generally cited in the literature of 25%. These results indicate that previous 

studies are likely to have overestimated the heritability of longevity. As such, we should 

lower our expectations about our ability to predict longevity from genomic data and 

presumably to identify causal genetic variants.
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Assessment of theories of familial dispersion

Familial dispersion is a major driving force of various genetic, economical, and 

demographic processes (48). Previous work has primarily relied on vital records from a 

limited geographical scope (49, 50) or used indirect inference from genetic datasets that 

mainly illuminate distant historical events (51).

We harnessed our resource to evaluate patterns of human migration. First, we analyzed sex-

specific migration patterns (21) to resolve conflicting results regarding sex bias in human 

migration (52). Our results indicate that females migrate more than males in Western 

societies but over shorter distances. The median mother-child distances were significantly 

larger (Wilcox, one-tailed, p<10−90) by a factor of 1.6x than father-child distances (Fig. 4A). 

This trend appeared throughout the 300 years of our analysis window, including in the most 

recent birth cohort, and was observed both in North American (Wilcox, one-tailed, p<10−23) 

and European duos (Wilcox, one-tailed, p<10−87). On the other hand, we found that the 

average mother-child distances (fig. S17) were significantly shorter than the father-child 

distances (t-test, p<10−90), suggesting that long-range migration events are biased towards 

males. Consistent with this pattern, fathers displayed a significantly (p<10−83) higher 

frequency than mothers to be born in a different country than their offspring (Fig. 4B). 

Again, this pattern was evident when restricting the data to North American or European 

duos. Taken together, males and females in Western societies show different migration 

distributions in which patrilocality occurs only in relatively local migration events and large-

scale events that usually involve a change of country are more common in males than 

females.

Next, we inspected the marital radius (the distance between mates’ places of birth) and its 

effect on the genetic relatedness of couples (21). The isolation by distance theory of Malécot 

predicts that increases in the marital radius should exponentially decrease the genetic 

relatedness of individuals (53). But the magnitude of these forces is also a function of factors 

such as taboos against cousin marriages (54).

We started by analysing temporal changes in the birth locations of couples in our cohort. 

Prior to the Industrial Revolution (<1750), most marriages occurred between people born 

only 10km from each other (Fig. 4A [black line]). Similar patterns were found when 

analysing European-born individuals (fig. S18) or North American-born individuals (fig. 

S19). After the beginning of the second Industrial Revolution (1870), the marital radius 

rapidly increased and reached ~100km for most marriages in the birth cohort in 1950. Next, 

we analysed the genetic relatedness (IBD) of couples as measured by tracing their 

genealogical ties (Fig. 4C). Between 1650 and 1850, the average IBD of couples was 

relatively stable and on the order of ~4th cousins, whereas IBD exhibited a rapid decrease 

post-1850. Overall, the median marital radius for each year showed a strong correlation 

(R2=72%) with the expected IBD between couples. Every 70km increase in the marital 

radius correlated with a decrease in the genetic relatedness of couples by one meiosis event 

(Fig. 4D). This correlation matches previous isolation by distance forces in continental 

regions (55). However, this trend was not consistent over time and exhibits three phases. For 

the pre-1800 birth cohorts, the correlation between marital distance and IBD was 

Kaplanis et al. Page 6

Science. Author manuscript; available in PMC 2019 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



insignificant (p>0.2) and weak (R2=0.7%) (fig. S20A). Couples born around 1800–1850 

showed a two-fold increase in their marital distance from 8km in 1800 to 19km in 1850. 

Marriages are usually about 20–25 years after birth and around this time (1820–1875) rapid 

transportation changes took place, such as the advent of railroad travel in most of Europe 

and the United States. However, the increase in marital distance was significantly (p<10−13) 

coupled with an increase in genetic relatedness, contrary to the isolation by distance theory 

(fig. S20B). Only for the cohorts born after 1850, did the data match (R2=80%) the 

theoretical model of isolation by distance (fig. S20C).

Taken together, the data shows a 50-year lag between the advent of increased familial 

dispersion and the decline of genetic relatedness between couples. During this time, 

individuals continued to marry relatives despite the increased distance. From these results, 

we hypothesize that changes in 19th century transportation were not the primary cause for 

decreased consanguinity. Rather, our results suggest that shifting cultural factors played a 

more important role in the recent reduction of genetic relatedness of couples in Western 

societies.

Discussion

In this work, we leveraged genealogy-driven media to build a dataset of human pedigrees of 

massive scale that covers nearly every country in the Western world. Multiple validation 

procedures indicated that it is possible to obtain a dataset that has similar quality to 

traditionally collected studies, but at much greater scale and lower cost.

We envision that this and similar large datasets can address quantitative aspects of human 

families, including genetics, anthropology, public health, and economics. Our tree and 

demographic data are available in a de-identified format, enabling static analysis of the Geni 

dataset. We also offer a dynamic method that enables fusing other datasets with our data 

based on digital consent of participants using the Geni API (fig. S21) (21). We have been 

using this one-click mechanism to overlay thousands of genomes with family trees on 

DNA.Land (56). Other projects can use a similar strategy to add large pedigrees to their 

existing data collection.

More generally, similar to previous studies (57, 58), our work demonstrates the synergistic 

power of a collaboration between basic research and consumer genetic genealogy datasets. 

With ever-growing digitization of humanity and the rise of consumer genetics (59), we 

believe that such collaborative efforts can be a valuable path to reach the dramatic scale of 

information needed to address fundamental questions in biomedical research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Overview of the collected data
(A) The basic algorithmic steps to form valid pedigree structures from the input data 

available via the Geni API. Gray: profiles; Red: marriages (See fig. S2 for a comprehensive 

overview). The last step shows an example of a real pedigree from the website with ~6,000 

individuals spanning about 7 generations (B) The size distribution of the largest 1,000 

family trees after data cleaning sorted by size.
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Fig. 2. Analysis and validation of demographic data
(A) Distribution of life expectancy per year. The colors correspond to the frequency of 

profiles of individuals who died at a certain age for each year. Stars indicate deaths during 

military ages in the civil war, WWI, and WWII (B) The expected lifespan in Geni (black) 

and the Oeppen & Vaupel study (red, ref: 30) as a function of year of death (C) Comparing 

the lifespan distributions versus Geni (black) and HMD (red) (Also see fig. S5A) (D) The 

geographic distribution of the annotated place of birth information. Every pixel corresponds 

to a profile in the dataset (E) Validation of geographical assignment by historical trends. 

Top: the cumulative distribution of profiles since 1500 for each city on a logarithmic scale as 

a function of time. Bottom: year of first settlement in the city.
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Fig. 3. The genetic architecture of longevity
(A) The regression (red) of child longevity on its mid-parent longevity (defined as difference 

of age of death from the expected lifespan). Black: the average longevity of children binned 

by the mid-parent value. Gray: estimated 95% confidence intervals (B) The estimated 

narrow-sense heritability (red squares) with 95% confidence intervals (black bars) obtained 

by the mid-parent design stratified by the average decade of birth of the parents (C) The 

correlation of a trait as a function of IBD under strict additive (h2, orange), squared (VAA, 

purple), and cubic (VAAA, green) epistasis architectures after dormancy adjustments (D) The 

average longevity correlation as a function of IBD (black circles) grouped in 5% increments 

(gray: 95% CI) after adjusting for dominancy. Dotted line: the extrapolation of the models 

towards MZ twins from the Danish Twin Registry (red circle).
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Fig. 4. Analysis of familial dispersion
(A) The median distance [log10 x+1] of father-offspring places of birth (cyan), mother-

offspring (red), and marital radius (black) as a function of time (average year of birth) (B) 

The rate of change in the country of birth for father-offspring (cyan) or mother-offspring 

(red) stratified by major geographic areas (C) The average IBD [log2] between couples as a 

function of average year of birth. Individual dots represent the measured average per year. 

Black line denotes the smooth trend using locally weighted regression (D) The IBD of 

couples as a function of marital radius. Blue line denotes best linear regression line in log-

log space.
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