UC Davis UC Davis Previously Published Works

Title

Analysis of Concordance Between Next-Generation Sequencing Assessment of Microsatellite Instability and Immunohistochemistry-Mismatch Repair From Solid Tumors.

Permalink

https://escholarship.org/uc/item/5f1066fk

Authors

Ali-Fehmi, Rouba Krause, Harris Morris, Robert <u>et al.</u>

Publication Date

2024-10-01

DOI

10.1200/PO.23.00648

Peer reviewed

[®]Analysis of Concordance Between Next-Generation Sequencing Assessment of Microsatellite Instability and Immunohistochemistry-Mismatch Repair From Solid Tumors

Rouba Ali-Fehmi, MD¹ (b); Harris Benjamin Krause, PhD² (b); Robert T. Morris, MD^{3,4}; John J. Wallbillich, MD^{3,4} (b); Logan Corey, MD^{3,4}; Sudeshna Bandyopadhyay, MD^{3,4}; Mira Kheil, MD^{3,4} (b); Leana Elbashir, MD^{3,4}; Fadi Zaiem, MD^{3,4}; M. Ruhul Quddus, MD⁵ (b); Evi Abada, MD, MS^{3,5}; Thomas Herzog, MD⁶ (b); Anthony N. Karnezis, MD, PhD⁷ (b); Emmanuel S. Antonarakis, MD⁸ (b); Pashtoon Murtaza Kasi, MD, MS⁹ (b); Shuanzeng Wei, MD, PhD¹⁰ (b); Jeffrey Swensen, PhD²; Andrew Elliott, PhD²; Joanne Xiu, PhD² (b); Jaclyn Hechtman, MD²; David Spetzler, MS, PhD, MBA² (b); Jim Abraham, PhD² (b); Milan Radovich, PhD² (b); George Sledge, MD² (b); Matthew J. Oberley, MD, PhD² (b); and David Bryant, MD, PhD²

DOI https://doi.org/10.1200/P0.23.00648

ABSTRACT

- **PURPOSE** The new CAP guideline published in August 2022 recommends using immunohistochemistry (IHC) to test for mismatch repair defects in gastroesophageal (GE), small bowel (SB), or endometrial carcinoma (EC) cancers over nextgeneration sequencing assessment of microsatellite instability (NGS-MSI) for immune checkpoint inhibitor (ICI) therapy eligibility and states there is a preference to use IHC over NGS-MSI in colorectal carcinoma (CRC).
- **METHODS** We assessed the concordance of NGS-MSI and IHC-MMR from a very large cohort across the spectrum of solid tumors.
- **RESULTS** Of the over 190,000 samples with both NGS-MSI and IHC-MMR about 1,160 were initially flagged as discordant. Of those samples initially flagged as discordant, 50.9% remained discordant after being reviewed by an additional pathologist. This resulted in a final discordance rate of 0.31% (590/191,767). Among CRC, GE, SB and EC, 55.4% of mismatch repair proficient/MSI high (MMRp/MSI-H) tumors had at least one somatic pathogenic mutation in an MMR gene or *POLE*. Mismatch repair deficient/microsatellite stable (MMRd/MSS) tumors had a significantly lower rate of high tumor mutational burden than MMRp/MSI-H tumors. Across all solid tumors, MMRd/MSI-H tumors had significantly longer overall survival (OS; hazard ratio [HR], 1.47, *P* < .001) and post-ICI survival (HR, 1.82, *P* < .001) as compared with MMRp/MSS tumors. The OS for the MMRd/MSS group was slightly worse compared to the MMRp/MSI-H tumors, but this difference was not statistically significant (HR, 0.73, *P* = .058), with a similar pattern when looking at post-ICI survival (HR, 0.43, *P* = .155).
- **CONCLUSION** This study demonstrates that NGS-MSI is noninferior to IHC-MMR and can identify MSI-H tumors that IHC-MMR is unable to detect and conversely IHC-MMR can identify MMRd tumors that NGS-MSI misses.

ACCOMPANYING CONTENT

Accepted August 12, 2024 Published November 20, 2024

JCO Precis Oncol 8:e2300648 © 2024 by American Society of Clinical Oncology

Creative Commons Attribution Non-Commercial No Derivatives 4.0 License

INTRODUCTION

MLH1/PMS2 and MSH2/MSH6 are proteins that form heterodimers and play a critical role and in the recognition and initiation of DNA mismatch repair (MMR).¹ Expression of the MMR proteins can be assessed directly via immunohistochemistry (IHC) and categorized as MMR proficient (MMRp) or MMR deficient (MMRd). Microsatellite instability (MSI) status can also be assessed via polymerase chain reaction (PCR) or next-generation sequencing (NGS)^{3,4} and categorized as MSI high (MSI-H) or microsatellite stable (MSS). PCR-MSI or NGS-MSI is highly correlated with IHC-defined MMR status (IHC-MMR).⁵⁻⁹ MMRd/MSI-H tumors can benefit from treatment with immune checkpoint inhibitors (ICIs).¹⁰ An advantage of using NGS-MSI is that many patients are already undergoing NGS to identify somatic mutations that could inform the treatment they receive; assaying for MSI status at the same time reduces tissue consumption although IHC may have a faster turnaround time and be more likely to succeed when there is low neoplastic content.

CAP guidelines published in August 2022¹¹ proposed IHC testing for MMR defects or testing for MSI status via PCR or

CONTEXT

Key Objective

What is the concordance between next-generation sequencing assessment of microsatellite instability (NGS-MSI) and immunohistochemistry (IHC) for mismatch repair defects across different solid tumors, in accordance with the 2022 CAP guideline recommendations.

Knowledge Generated

A discordance rate of only 0.31% was noted between NGS-MSI and IHC-MMR. Additionally, NGS-MSI proves to be non-inferior to IHC-MMR for mismatch repair defects assessment.

Relevance

This study demonstrated high concordance between NGS-MSI and IHC-MMR, and no difference in overall survival between discordant tumors was observed. NGS-MSI can detect mismatch repair deficiencies that IHC-MMR does not detect, and conversely IHC-MMR can detect some mismatch repair deficiencies that NGS-MSI cannot; thus, no one technology captures all cases of mismatch repair deficiency. Based on the reported rates of discordance, for every 1,111 patient tested with NGS-MSI, one patient will be identified as microsatellite instability high (MSI-H) that MMR-IHC would not have identified.

IHC-MMR in gastroesophageal (GE), small bowel (SB), or endometrial carcinoma (EC) tumors over NGS of MSI (NGS-MSI) for ICI therapy eligibility. For colorectal carcinoma (CRC), PCR and IHC-MMR were preferred over NGS-MSI. These recommendations suggest that IHC generally is preferable to NGS-MSI to evaluate ICI therapy recommendations because of reduced cost of the assay and lack of published evidence of concordance with IHC-MMR. In the guidelines, two studies that had previously investigated the concordance between IHC-MMR and NGS-MSI were cited as evidence of the concordance of IHC-MMR and NGS-MSI testing. These studies were limited by their sample sizes (n = 91, CRC¹² and n = 12,288, pan-tumor¹³). Hechtman et al¹⁴ investigated 443 tumors with IHC-MMR and NGS-MSI-H results and found that MMRp/MSI-H discordant tumors had an enrichment of missense over truncating mutations in MMR proteins. However, the results were limited by their sample, and clinical outcomes were reported for only three patients.

We assessed the concordance of NGS-MSI versus IHC-MMR from a cohort of 190,000 tumors across a large spectrum of cancer types and studied the molecular characteristics, immunological landscape, and clinical outcome of these patients.

METHODS

Next-Generation Sequencing-592 Gene Panel/ Whole-Exome Sequencing

NGS-592 or whole-exome sequencing (WES) was performed for 191,767 solid tumors (CRC: n = 28,105, GE: n = 9,849, SB: n = 1,405, EC: n = 14,129) sequenced at Caris Life Sciences (Appendix 1).

Identification of Genetic Variants

Genetic somatic variants identified were interpreted by board-certified molecular geneticists and categorized as pathogenic, likely pathogenic, variant of unknown significance, likely benign, or benign (Appendix 2).

MSI Status by NGS-592/WES

The details of this MSI analysis for NGS-592 have been described previously.¹⁵ Details on MSI by WES can be found in Appendix 3.

Whole-Transcriptome Sequencing

Whole-transcriptome sequencing was conducting on micro dissected tumor content and sequenced using the Illumina NovaSeq platform (Illumina, Inc, San Diego, CA; Appendix 4).

Mismatch Repair Protein Expression by IHC

IHC was performed on formalin-fixed paraffin-embedded sections on glass slides. Slides were stained using automated staining techniques, per the manufacturer's instructions, and were optimized and validated per Clinical Laboratory Improvement Amendments/CAP and ISO requirements. Board-certified pathologists evaluated all IHC results independently.

MMR protein expression was tested by IHC using antibody clones (MLH1, M1 antibody; MSH2, G2191129 antibody; MSH6, 44 antibody; and PMS2, EPR3947 antibody [Ventana Medical Systems, Inc, Tucson, AZ]). The complete absence of

protein expression for any of the four proteins tested was considered MMRd and MMRp as positive staining in all four proteins.

Tumor Mutational Burden

For the NGS-592 and WES assays, tumor mutational burden (TMB) was measured by counting all nonsynonymous missense, nonsense, inframe insertion/deletion, and frameshift mutations found per tumor that had not been previously described as germline alterations in dbSNP151, Genome Aggregation Database, or benign variants identified by Caris geneticists. A cutoff point of ≥ 10 mutations per Mb (mut/Mb) was used based on the KEYNOTE-158 pembrolizumab trial,¹⁶ which showed that patients with a TMB of ≥ 10 mt/MB (TMB-H) across several tumor types had higher response rates than patients with a TMB of <10 mt/MB.¹⁷ Caris was a member of the friends of cancer consortium and are aligned with their standards.¹⁸

Discordant Cases and Pathology Review

Cases where MMR and MSI calls were discordant are triggered for review by an additional pathologist who reevaluates the IHC staining. For this study, to further confirm that the MMR IHC determination on discordant cases after this initial revaluation are correct, CRC (n = 74), GE (n = 31), SB (n = 7), and EC (n = 90) with discordant MMR/MSI results that had digitized slides available were re-reviewed (central pathology review [CPR]) by two senior board-certified pathologists (R.A.-F., D.B.). Each pathologist re-reviewed all slides digitally independently and were blinded to each other's interpretations. When a disagreement arose during CPR, a consensus interpretation was obtained by re-evaluating and discussing the case together. NGS-MSI results were not reviewed on these discordant cases as the MSI result is derived from an algorithm and is not subjectively interpreted like MMR-IHCs are. We acknowledge that NGS-MSI can have lower performance and may produce false MSI-stable results at lower percentages of tumor nuclei. Our laboratory-developed assay has been appropriately validated down to our minimum input of 20% tumor nuclei, but this could be a limitation of our study.

Clinical Outcomes

Real-world overall survival was obtained from insurance claims and calculated from either tissue collection or from start of ICIs (atezolizumab, avelumab, nivolumab, or pembrolizumab) to last contact. Kaplan-Meier estimates were calculated for molecularly defined patients. Cohorts used were MMRd/MSI-H versus MMRp/MSS and MMRd/MSS versus MMRp/MSI-H tumors. These cohorts were applied to all available tumors in addition to CRC, GE/SB, and EC tumors.

Statistical Methods

Descriptive analyses were conducted using Mann–Whitney U (scipy V.1.9.3) and X²/Fisher exact tests (R v.3.6.1) for

continuous and categorical variables, respectively. *P* values were adjusted for multiple comparisons, with q < 0.05 considered significant when appropriate. All listed HRs use the Cox proportional hazards model, and the *P* values were calculated using the log-rank statistic.¹⁹

Ethics Approval and Consent to Participate

This study was conducted in accordance with the guidelines of the Declaration of Helsinki, Belmont Report, and US Common Rule. In keeping with 45 CFR 46.101 (b), this study was performed using retrospective, deidentified clinical data. Therefore, this study was deemed Institutional Review Board exempt, and no patient consent was necessary from the patients.

RESULTS

Concordance Across All MSI and MMR Tested Cases

All tumors (N = 191,767) that received IHC staining for MMR protein and had MSI data available were investigated. Discordant tumors (MSI and MMR in disagreement) were rereviewed by board-certified pathologists; 50.80% of the cases flagged as discordant became concordant after they were reviewed again by a pathologist (this process was independent of the CPR that was conducted for this paper), and 99.60% of tumors (191,177/191,767) were concordant; 0.31% (590/191,767) of tumors remained discordant after being rereviewed. For the discordant tumors, 30.8% (182/590) were MMRp/MSI-H and 69.2% (408/590) were MMRd/MSS; the level of discordance was evenly distributed across the solid tumors that were investigated (Table 1). Of note, in 0.76% of tested samples, both NGS-MSI and IHC-MMR results were indeterminate, and in 7.9% of samples, NGS-MSI was indeterminate and IHC-MMR was successful, and in 2.6% of samples, NGS-MSI was successfully run and IHC-MMR was indeterminate.

Pathology Review of a Subset of Discordant Cases

Of the 590 discordant cases, the four histologies with the highest rate of mismatch repair deficiency (CRC, GE, SB, and EC) were chosen for review, which consisted of 210 cases. Of these 210 discordant cases, 202 were available to be taken out of long-term storage and digitized. These 202 cases then underwent CPR to confirm the MMR diagnosis. 94% (46/49) of CRC that were MMRp/MSI-H were confirmed to be MMRp after review. However, the percent of diagnosis confirmed was much lower for GE (44%, 4/9), (75% 3/4), and EC (71%, 30/42) tumors (Table 2). Of the 202 reviewed discordant cases, 21 tumors were reclassified from MMRp to MMRd during pathology review. Of these, 66.7% (14/21) had loss of PMS2 and 47.6% (10/21) had loss of MLH1 (Fig 1).

Of the tumors that were initially classified as MMRd/MSS, 95.9% (94/98) were confirmed to be MMRd after review, and all four tumor types investigated had agreement rates of >95% (Table 2). After pathology review, the percentage

TABLE 1. Concordance and Discordance of NGS-MSI Versus IHC-MMR From a Cohort o	of 190,000 Tumors Across a Large Spectrum of Cancer Types
--	---

	Concordant	Discordant	Concordant	Discordant	
Cancer Type	MMRd/MSI-H	MMRd/MSS	MMRp/MSS	MMRp/MSI-H	% Concordance
All	6,913	408	184,264	182	99.69
CRC	1,884	25	26,147	49	99.74
GE	480	22	9,338	9	99.69
SB	124	3	1,274	4	99.50
EC	2,740	48	11,299	42	99.36
Others	1,685	310	136,206	78	99.72

Abbreviations: CRC, colorectal carcinoma; EC, endometrial carcinoma; GE, gastroesophageal; MMRd, mismatch repair deficient; MMRp, mismatch repair proficient; MSI-H, microsatellite instability high; MSS, microsatellite stable; NGS-MSI, next-generation sequencing assessment of microsatellite instability; SB, small bowel.

discordance decreased further across all investigated tumor types (Table 2).

Discordant MMRp/MSI-H Tumors

We next investigated pathogenic/likely pathogenic variants (PLP variants) that could be responsible for the observed MMRp/MSI-H discordance. Missense PLP variants *MLH1*, *MSH2*, *MSH6*, or *PMS2* were classified as Group 1. Any PLP variants to alternative MMR genes (*MLH3*, *MSH3*, *PMS1*) were classified as Group 2, and PLP variants in *POLE* are classified as Group 3.

In total, 55.4% (46/83) of MMRp/MSI-H tumors had at least one Group 1, 2, or 3 PLP variants, and 28.9% (24/83) tumors had at least one Group 1 mutation. Of group 1, 95.8% (23/24) had just one group 1 variant present: 45.6% (11/24) had a *MLH*1 variant, 20.8% (5/24) had a *MSH*2 variant, 33.3% (8/24) had an *MSH*6 variant, and 4.2% (1/24) had a *PMS*2 variant. The tumor that had two simultaneous group 1 PLP variants was a uterine neoplasm that had mutations in *PMS*2 and *MSH*6 (affecting both MMR heterodimers). Of samples that had a Group 2 mutation, 87.5% (14/16) had a mutation in *MSH*3. Finally, 18.1% (15/83) of tumors had a *POLE* mutation. Of these tumors, 93.3% (14/15) had no other Group 1 or 2 mutations (Fig 2).

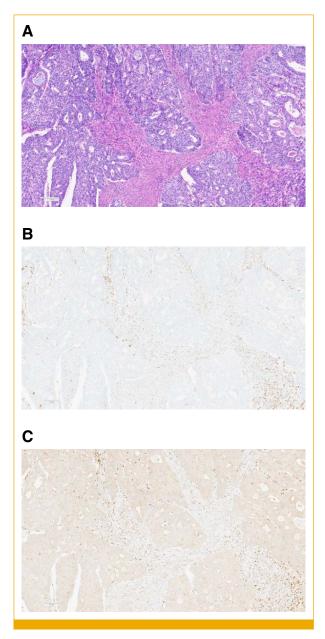

Another possible reason for MMRp/MSI-H discordance is that there is clonal loss (heterogeneous staining) of one of the stained for MMR proteins. Of all MMRp/MSI-H samples that were confirmed by pathology review, 9.6% (8/83) had clonal loss of at least one MMR protein. Of the eight tumors that had clonal loss of at least one MMR protein, 83.3% (6/8) had clonal loss of both MLH1 and PMS2, all of them EC tumors.

TABLE 2. Concordance/Discordance of NGS-MSI and IHC-MMR After CPR for CRC, GE, SB, and EC Tumors

Subgroup	No. of Samples with IHC and MSI Data	No. of MMRp/MSI-H Samples Un- dergoing Pathology Review	MMRp After Pathol- ogy Review	% Discrepant Cases Resolved	Percent Discordant Postreview
CRC MMRp/MSI- H	30,835	49	46	6	0.15
GE MMRp/MSI-H	10,743	9	4	56	0.04
SB MMRp/MSI-H	1,528	4	3	25	0.20
EC MMRp/MSI-H	15,150	42	30	29	0.20
Combined MMRp/MSI-H	58,256	104	83	20	0.14

Subgroup	No. of Samples With IHC and MSI Data	No. of MMRd/MSS Samples Under- going Pathology Review	MMRd After Pathol- ogy Review	% Discrepant Cases Resolved	Percent Discordant Postreview
CRC MMRd/MSS	30,835	25	24	4	0.08
GE MMRd/MSS	10,743	22	21	5	0.20
SB MMRd/MSS	1,528	3	3	0	0.20
EC MMRd/MSS	15,150	48	46	4	0.30
Combined MMRd/MSS	58,256	98	94	4	0.16

Abbreviations: CPR, central pathology review; CRC, colorectal carcinoma; EC, endometrial carcinoma; GE, gastroesophageal; IHC, immunohistochemistry; MMRd, mismatch repair deficient; MMRp, mismatch repair proficient; MSI-H, microsatellite instability high; MSS, microsatellite stable; NGS-MSI, next-generation sequencing assessment of microsatellite instability; SB, small bowel.

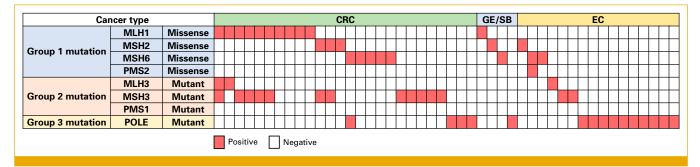
FIG 1. (A) H&E, (B) MLH1, and (C) PMS2 at 10× magnification showing an EC tumor with loss of nuclear expression for MLH1 and PMS2. This tumor was MMRd/MSI-H. EC, endometrial carcinoma; H&E, hematoxylin and eosin; MMRd, mismatch repair deficient; MSI-H, microsatellite instability.

Discordant MMRd/MSS Tumors

Of the 94 post-CPR MMRd/MSS tumors, 32% (30/94) had MLH1 loss, 70% (65/94) PMS2 loss, 3% (3/94) MSH2 loss, and 31% (29/94) MSH6 loss (by IHC; denominator represents tumors that had slides available for that stain; Appendix 5).

In specific MSI assays, MSH6 can show a loss of protein but atypical mutational spectra that does not confer MSI-H phenotype.²⁰⁻²² Among MMRd/MSS tumors, 2 of 24 CRC, 3 of 21 GE, 1 of 3 SB, and 19 of 46 EC tumors had an isolated loss of MSH6. Among MMRd/MSS tumors, 2 of 21 GE and 2 of 46 EC tumors had nonisolated loss of MSH6, and no MSH6 mutations were observed in the nonisolated loss group. Unique mutations were observed in the isolated loss group (sometime multiple per tumor, variants of unknown significance are included), but almost no recurrent mutations were identified.

Previous work²³ has shown that nonpathogenic mutations in *MLH1* can be responsible for discordance between NGS-MSI and IHC-MMR. Of the tumors that underwent pathology review, 12% (3/25) of MMRd/MSS tumors with MLH1 loss had nonpathogenic mutations in *MLH1* including E717D, L296S, and M242V.


TMB and the Tumor Immune Microenvironment of Discordant Cases

When concordant tumors were investigated, MMRd/MSS CRC, EG/SB and EC tumors had a significantly lower rate of TMB-H than MMRp/MSI-H tumors (Fig 3A). The prevalence of TMB-H in CRC discordant tumors was compared with concordant tumors. The magnitude of difference was the largest between MSS versus MSI-H tumors regardless of MMR status. MMRd/MSI-H had a significantly higher TMB-H prevalence than MMRp/MSS, and MMRp/MSI-H had a significantly lower TMB-H prevalence as compared with MMRd/MSI-H (Fig 3B). Similar results are observed for TMB-H prevalence in GE/SB and EC tumors (Appendix 6).

Using immune deconvolution of bulk RNA-seq data (QuanTIseq), we investigated the immune microenvironment across CRC, EC, and GE/SB tumors. The EC cohort is a mixture of histologic subtypes, endometrioid, serous, clear cell, and carcinosarcoma among others and was not separately analyzed by specific histology. Our patient population is also enriched with higher staged disease than the typical practice. No significant difference in immune infiltrate was observed between the MMRd/MSS and MMRp/MSI-H cohort (q > 0.05). However, MMRp/MSI-H CRC tumors had 4% more M1 macrophage infiltrate as compared with MMRd/ MSS CRC tumors (P < .05; Fig 3C).

Survival Outcomes on the Basis of Discordance

When comparing clinical outcomes of concordant tumors across all investigated solid tumors, concordant MMRd/MSI-H patients had significantly longer OS (HR, 1.472 [95% CI, 1.408 to 1.538]; P < .001, Fig 4A) as did post-ICI survival (HR, 1.818 [95% CI, 1.627 to 2.032]; P < .001, Fig 4B). Compared with MMRp/MSI-H tumors, MMRd/MSS had similar OS that was trending worse for the MMRd/MSS cohort (HR, 0.728 [95% CI, 0.523 to 1.013]; P = .058, Fig 4C), with a similar pattern when looking at post-immunotherapy (IO) survival (HR, 0.429 [95% CI, 0.129 to 1.429]; P = .155, Fig 4D). A similar pattern is observed when comparing concordant and discordant tumors in cancer-specific contexts (CRC, GE/SB, and EC).

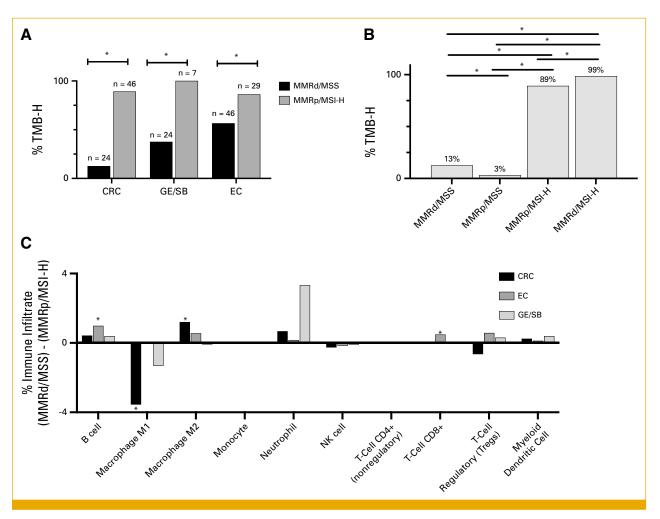
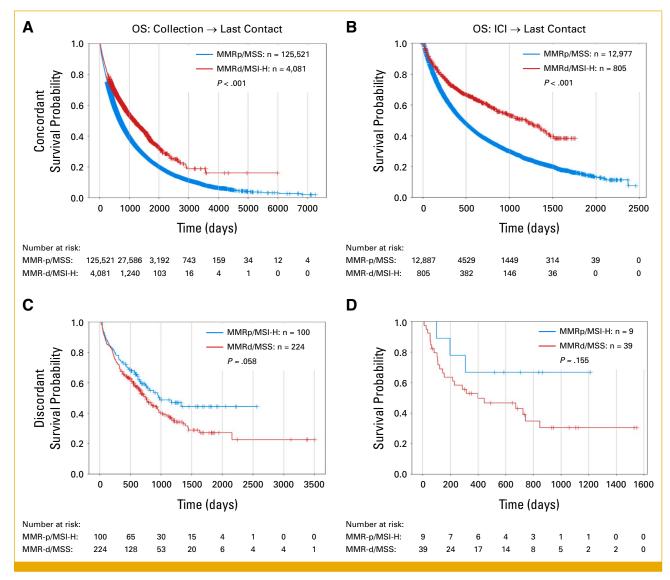


FIG 2. Oncoprint of MMRp/MSI-H tumors with at least one of the eight investigated mutations. For Group 1 mutations, positive indicates a pathogenic missense mutation and negative indicated no pathogenic missense mutation. For Group 2 and POLE Mutant, positive indicates any pathogenic mutation and negative indicates no pathogenic mutations. CRC, colorectal carcinoma; EC, endometrial carcinoma; GE, gastro-esophageal; MMRp, mismatch repair proficient; MSI-H, microsatellite instability high; SB, small bowel.


DISCUSSION

MSI can be caused by germline mutations (Lynch syndrome) or somatic alterations (mutations, *MLH*¹ promoter methylation)

of DNA-mismatch repair enzymes including *MSH*2, *MSH*6, *PMS*2, and *MLH*1.^{24,25} For patients with Lynch syndrome, MSI occurs in non-neoplastic in addition to cancerous cells.²⁶ Among GI tract malignancies, dMMR/MSI-H

FIG 3. (A) TMB-H prevalence for the four investigated tumor types. (B) Prevalence of TMB-H for discordant and concordant CRC tumors (q < 0.05 as indicated by asterisk for both). (C) Difference in immune cell infiltrate between MSS/MMRd and MSI-H/MMRp tumors in three cancer groups (P < .05 denoted by black asterisk, q > 0.05 for all immune cell population comparisons). CRC, colorectal carcinoma; EC, endometrial carcinoma; GE, gastroesophageal; MMRd, mismatch repair deficient; MMRp, mismatch repair proficient; MSS, microsatellite stable; MSI-H, microsatellite instability high; SB, small bowel; TMB, tumor mutational burden.

FIG 4. Overall survival (A, C) and time from immune checkpoint inhibitor to last contact (B, D) for concordant MMRd/MSI-H tumors as compared with MMRp/MSS (A, B) and discordant MMRp/MSI-H and MSS-MMRd tumors (C, D). Tumors included in this analysis are a subset of those in the main text who had matched insurance claim data available. HR was calculated using the Cox proportional hazards model, and *P* values were calculated using the log-rank test. HR, hazard ratio; ICI, immune checkpoint inhibitor; MMRd, mismatch repair deficient; MMRp, mismatch repair proficient; MSS, microsatellite stable; MSI-H, microsatellite instability high; OS, overall survival.

tumors frequently express a high neoantigen burden, making them immunogenic and responsive to ICL.^{15,27-29} As a result, classification of tumors as MSI-H or MSS has become increasingly important due to its association with immunotherapy response across multiple tumor types.^{10,30}

Previously published work in CRC comparing PCR–MSI with IHC showed concordance of 97.8% (132/136) among MSI–H cases and 97.9% (444/447) among MSS cases.³¹ This is similar to the concordance we observed in MSI–H (97.44%, 168/6,913) and MSS CRC cases (99.90%, 26,147/26,172). Another study¹⁴ showed that of 443 MSI–H cases with matching IHC, 32 cases were discordant (7.2%). We observed

a slightly lower discordance rate (2.6%), in agreement with several other studies.^{7,12,13,32}

Interobserver variability (rate of agreement between multiple observers) found in the CPR (percent of discordant tumors whose diagnosis changed following CPR) is in line with that reported in the literature (>90%)³³ but was lower than expected in GE, SB, and EC MMRp/MSI-H tumors. Increased interobserver variability in MMRp/MSI-H discordant tumors makes sense as the reinterpretation of just one of the stains as deficient would trigger a change in diagnosis. It is unclear why the interobserver variability is lower in GE SB and EC but not CRC tumors. Future studies should seek to reproduce this phenomenon. Additionally, it would be helpful to create guidelines for when an ambiguous IHC-MMR stain should undergo reflexive NGS testing.

NGS is a widely used technology that facilitates personalized cancer therapy by assaying for actionable genomic alterations, including single nucleotide variants, copy number variants, and structural variants in a single assay. NGS has been adapted for the purpose of MSI testing^{12,34,35} and allows for a one-step approach to reporting MSI status along with other biomarkers. However, IHC and PCR-based assays performed on tumor tissue samples is preferred over NGS in determination of MSI/dMMR status. We demonstrate the value of assaying for MSI through orthogonal techniques (NGS-MSI and IHC) to trigger re-evaluation of discordant tumors by a pathologist. On the basis of our data, 1,111 patients would need to receive NGS-MSI testing to identify one patient as MSI-H that MMR-IHC would not have identified and 476 patients would need to receive MMR-IHC testing to identify one patient as MMR-d that NGS-MSI would not have identified.

Next, possible reasons for discordance in MMRp/MSI-H tumors were investigated. Missense mutations in assayed MMR protein that can cause the protein to be expressed but nonfunctional were considered (group 1) in addition to mutations in alternative MMR genes that were not stained for (*MLH3, MSH3, PMS1*; group 2). Finally, *POLE* mutations (group 3), which are associated with a hypermutated status, ³⁷⁻⁴² were evaluated. Of the 83 MMRp/MSI-H tumors that underwent pathology review, 55.4% (46/83) had at least one Group 1, 2, or 3 mutation present. This highlights an advantage of assaying for MSI via NGS as compared with IHC, which is unable to identify MSI caused by alternations outside of the routinely tested four MMR genes.

It has been shown that nonpathogenic mutations in MLH1 can be responsible for discordance between NGS-MSI and IHC-MMR.²³ The two benign variants identified previously (p.V384D and p.A441T) were not observed in our data set. However, three additional nonpathogenic mutations were identified as possibly contributing to the observed discordance (p.E717D, p.L296S, and p.M242V). These

AFFILIATIONS

¹University of Michigan, Ann Arbor, MI

²Caris Life Sciences, Phoenix, AZ

³Karmanos Cancer Institute, Detroit, MI

⁴Wayne State University School of Medicine, Detroit, MI

⁵Women & Infants Hospital/Alpert Medical School of Brown University, Providence, RI

⁶University of Cincinnati Medical Center, Cincinnati, OH

⁷UC Davis Medical Center, Sacramento, CA

⁸University of Minnesota Masonic Cancer Center, Minneapolis, MN ⁹New York-Presbyterian/Weill Cornell Medical Center, New York, NY ¹⁰Fox Chase Cancer Center, Philadelphia, PA nonpathogenic mutations may result in false-positive results on IHC-MMR but not when using NGS-MSI.

For CRC, EG/SB, and EC tumors, MMRp/MSI-H tumors have higher prevalence of the TMB-H as compared with MMRd/ MSS. These data suggest that high TMB correlates better with NGS-defined MSI-H compared with MMR deficiency defined by IHC and that these tumors may behave more like microsatellite instable tumors as compared with MSS/MMRd tumors. In CRC, MMRd/MSI-H tumors had a significantly higher TMB-H prevalence as compared with both MMRp/MSS and MMRp/MSI-H. This provides further evidence to support the hypothesis that MMRp/MSI-H cases should be considered eligible for ICI therapy and aligns with previous studies that showed 82% of MSI-H tumors were also TMB-H.⁴³

The overall survival and IO therapy associated survival of MSI-H/MMRp tumors was noninferior to MSS/MMRd tumors. This further bolsters the argument that NGS-MSI is equivalent and at best provides several advantages when used in conjunction with IHC-MMR. Furthermore, these findings are hypothesis-generating for the concept that, in cases of discordance between MMR and NGS, MSI-NGS is a better predictive biomarker for response to ICI.

One of the limitations of our study is that it was retrospective. Additionally, tumors that undergo NGS tend to of an advanced stage or has undergone treatment before sequencing. Furthermore, *MLH1* promoter hypermethylation status was not available.²⁵ No data on the germline status of MMR gene were available so patients in our data set with Lynch syndrome were unable to be identified. Further validation of these data should be done for early-stage tumors.

Despite the limitations, from a clinical standpoint, if there is one potential biomarker for which curative responses can be seen across tumor types, it is mismatch repair deficiency. Although, importantly, other pan-tumor biomarkers exist (NTRK1/2/3 fusions, RET fusions, and TMB-H). As a result, these opportunities should not be missed. As NGS-based testing is increasingly adopted with more guidelines endorsing it, these clinically relevant discordances will occur more frequently.

CORRESPONDING AUTHOR

Rouba Ali-Fehmi, MD; e-mail: Alifehmi@med.umich.edu.

DATA SHARING STATEMENT

The data sets analyzed during this study are not publicly available but are available from the corresponding author on reasonable request.

AUTHOR CONTRIBUTIONS

Conception and design: Rouba Ali-Fehmi, Harris Benjamin Krause, Robert T. Morris, Mira Kheil, Fadi Zaiem, Emmanuel S. Antonarakis, Pashtoon Murtaza Kasi, Shuanzeng Wei, David Spetzler, Jim Abraham, George Sledge, Matthew J. Oberley, David Bryant

Administrative support: Milan Radovich, Matthew J. Oberley

Provision of study materials or patients: M. Ruhul Quddus, Jeffrey Swensen

Collection and assembly of data: Rouba Ali-Fehmi, Harris Benjamin Krause, Robert T. Morris, Logan Corey, Sudeshna Bandyopadhyay, Mira Kheil, Leana Elbashir, M. Ruhul Quddus, Evi Abada, Emmanuel S. Antonarakis, David Spetzler, Jim Abraham, Matthew J. Oberley, David Bryant

Data analysis and interpretation: Rouba Ali-Fehmi, Harris Benjamin Krause, Robert T. Morris, John J. Wallbillich, Logan Corey, Leana Elbashir, Thomas Herzog, Anthony N. Karnezis, Pashtoon Murtaza Kasi, Jeffrey Swensen, Andrew Elliott, Joanne Xiu, Jaclyn Hechtman, David Spetzler, Jim Abraham, Milan Radovich, George Sledge, Matthew J. Oberley

Manuscript writing: All authors

Final approval of manuscript: All authors Accountable for all aspects of the work: All authors

AUTHORS' DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated unless otherwise noted. Relationships are self-held unless noted. I =

Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO's conflict of interest policy, please refer to www.asco.org/ rwc or ascopubs.org/po/author-center.

Open Payments is a public database containing information reported by companies about payments made to US-licensed physicians (Open Payments).

Harris Benjamin Krause

Employment: Caris Life Sciences

Robert T. Morris

Honoraria: GlaxoSmithKline, Clovis Oncology, AstraZeneca, Merck Consulting or Advisory Role: GlaxoSmithKline, AstraZeneca, Clovis Oncology

Speakers' Bureau: AstraZeneca, Clovis Oncology, GlaxoSmithKline, Merck

Thomas Herzog

Leadership: GOG Foundation

Consulting or Advisory Role: AstraZeneca, Clovis Oncology, Johnson & Johnson, Caris MPI, GlaxoSmithKline, Merck, Eisai, Epsilogen, Mersana, Seagen, Aadi, Corcept Therapeutics, AbbVie

Anthony N. Karnezis Research Funding: Fate Therapeutics

Emmanuel S. Antonarakis

Consulting or Advisory Role: Sanofi, Janssen Biotech, Merck, AstraZeneca, Lilly, Bayer (Inst), Amgen, Blue Earth Diagnostics, Curium Pharma, Foundation Medicine, Tempus, Alkido Pharma, Z-Alpha, AADi, Corcept Therapeutics, Hookipa Pharma, Menarini Silicon Biosystems, Pfizer, Tango Therapeutics

Research Funding: Astellas Pharma (Inst), Bayer (Inst), Bristol Myers Squibb (Inst), Macrogenics (Inst), Merck (Inst), Orion Health (Inst)

Patents, Royalties, Other Intellectual Property: Co-inventor of a biomarker technology that has been licensed to Qiagen

Pashtoon Murtaza Kasi

Leadership: Precision Biosensors

Stock and Other Ownership Interests: Elicio Therapeutics

Consulting or Advisory Role: Taiho Pharmaceutical (Inst), Ipsen (Inst), Natera, Foundation Medicine, MSD Oncology, Tempus, Bayer, Lilly, Delcath Systems, QED Therapeutics, SERVIER, Taiho Oncology, Exact Sciences, Daiichi Sankyo/Astra Zeneca, Eisai, Seagen, SAGA Diagnostics, Illumina, BostonGene, NeoGenomics Laboratories, Elicio Therapeutics, BostonGene, Guardant Health, Regeneron

Research Funding: Advanced Accelerator Applications (Inst), Tersera (Inst), Boston Scientific (Inst)

Travel, Accommodations, Expenses: AstraZeneca

Shuanzeng Wei

Consulting or Advisory Role: Caris Life Sciences

Jeffrey Swensen Employment: Caris Life Sciences Travel, Accommodations, Expenses: Caris Life Sciences

Andrew Elliott Employment: Caris Life Sciences

Joanne Xiu Employment: Caris Life Sciences

Jaclyn Hechtman

Employment: Caris Life Sciences Stock and Other Ownership Interests: Caris Life Sciences Honoraria: WebMD, Illumina, Bayer Consulting or Advisory Role: Pfizer

David Spetzler

Employment: Caris Life Sciences Stock and Other Ownership Interests: Caris Life Sciences Honoraria: Caris Life Sciences Research Funding: Caris Life Sciences

Patents, Royalties, Other Intellectual Property: Caris Life Sciences holds and has pending patents with intellectual property interests relating to health and medicine

Travel, Accommodations, Expenses: Caris Life Sciences

Jim Abraham

Employment: Caris Life Sciences Leadership: Caris Life Sciences Stock and Other Ownership Interests: Caris Life Sciences Research Funding: Caris Life Sciences Patents, Royalties, Other Intellectual Property: Patents Pending with Caris Life Sciences

Travel, Accommodations, Expenses: Caris Life Sciences

Milan Radovich

Employment: Caris Life Sciences Leadership: Caris Life Sciences Stock and Other Ownership Interests: LifeOmic Patents, Royalties, Other Intellectual Property: Patents developed at Caris Life Sciences (Inst) Travel, Accommodations, Expenses: Caris Life Sciences

George Sledge

Employment: Caris Life Sciences Leadership: Syndax, Caris Life Sciences Stock and Other Ownership Interests: Syndax, Caris Life Sciences Consulting or Advisory Role: Syndax Travel, Accommodations, Expenses: Caris Life Sciences

Matthew J. Oberley

Employment: Caris Life Sciences

Leadership: Caris Life Sciences

Stock and Other Ownership Interests: Caris Life Sciences Travel, Accommodations, Expenses: Caris Life Sciences

David Bryant

Employment: Caris Life Sciences Stock and Other Ownership Interests: Caris Life Sciences

No other potential conflicts of interest were reported.

REFERENCES

- 1. Li GM: Mechanisms and functions of DNA mismatch repair. Cell Res 18:85-98, 2008
- 2. Reference deleted
- 3. Bonneville R, Krook MA, Chen HZ, et al: Detection of microsatellite instability biomarkers via next-generation sequencing. Methods Mol Biol 2055:119-132, 2020
- 4. Saul M, Poorman K, Tae H, et al: Population bias in somatic measurement of microsatellite instability status. Cancer Med 9:6452-6460, 2020
- 5. Riedinger CJ, Esnakula A, Haight PJ, et al: Characterization of mismatch-repair/microsatellite instability-discordant endometrial cancers. Cancer 130:385-399, 2024
- Xiao J, Li W, Huang Y, et al: A next-generation sequencing-based strategy combining microsatellite instability and tumor mutation burden for comprehensive molecular diagnosis of advanced colorectal cancer. BMC Cancer 21:282, 2021
- 7. Shimozaki K, Hayashi H, Tanishima S, et al: Concordance analysis of microsatellite instability status between polymerase chain reaction based testing and next generation sequencing for solid tumors. Sci Rep 11:20003, 2021
- Zito Marino F, Amato M, Ronchi A, et al: Microsatellite status detection in gastrointestinal cancers: PCR/NGS is mandatory in negative/patchy MMR immunohistochemistry. Cancers (Basel) 14: 2204, 2022
- 9. Amemiya K, Hirotsu Y, Nagakubo Y, et al: Simple IHC reveals complex MMR alternations than PCR assays: Validation by LCM and next-generation sequencing. Cancer Med 11:4479-4490, 2022
- 10. Le DT, Durham JN, Smith KN, et al: Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357:409-413, 2017
- 11. Bartley AN, Mills AM, Konnick E, et al: Mismatch repair and microsatellite instability testing for immune checkpoint inhibitor therapy: Guideline from the College of American pathologists in collaboration with the association for molecular pathology and fight colorectal cancer. Arch Pathol Lab Med 146:1194-1210, 2022
- 12. Zhu L, Huang Y, Fang X, et al: A novel and reliable method to detect microsatellite instability in colorectal cancer by next-generation sequencing. J Mol Diagn 20:225-231, 2018
- 13. Middha S, Zhang L, Nafa K, et al: Reliable pan-cancer microsatellite instability assessment by using targeted next-generation sequencing data. JCO Precis Oncol 10.1200/P0.17.00084
- 14. Hechtman JF, Rana S, Middha S, et al: Retained mismatch repair protein expression occurs in approximately 6% of microsatellite instability-high cancers and is associated with missense mutations in mismatch repair genes. Mod Pathol 33:871-879, 2020
- Vanderwalde A, Spetzler D, Xiao N, et al: Microsatellite instability status determined by next-generation sequencing and compared with PD-L1 and tumor mutational burden in 11,348 patients. Cancer Med 7:746-756, 2018
- Marabelle A, Fakih M, Lopez J, et al: Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: Prospective biomarker analysis
 of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol 21:1353-1365, 2020
- 17. Merino DM, McShane LM, Fabrizio D, et al: Establishing guidelines to harmonize tumor mutational burden (TMB): In silico assessment of variation in TMB quantification across diagnostic platforms: phase I of the friends of cancer research TMB harmonization project. J Immunother Cancer 8:e000147, 2020
- Vega DM, Yee LM, McShane LM, et al: Aligning tumor mutational burden (TMB) quantification across diagnostic platforms: Phase II of the friends of cancer research TMB harmonization project. Ann Oncol 32:1626-1636, 2021
- Abraham JP, Magee D, Cremolini C, et al: Clinical validation of a machine-learning-derived signature predictive of outcomes from first-line oxaliplatin-based chemotherapy in advanced colorectal cancer. Clin Cancer Res 27:1174-1183, 2021
- 20. You JF, Buhard O, Ligtenberg MJL, et al: Tumours with loss of MSH6 expression are MSI-H when screened with a pentaplex of five mononucleotide repeats. Br J Cancer 103:1840-1845, 2010
- 21. Verma L, Kane MF, Brassett C, et al: Mononucleotide microsatellite instability and germline MSH6 mutation analysis in early onset colorectal cancer. J Med Genet 36:678-682, 1999
- 22. Wu Y, Berends MJ, Mensink RG, et al: Association of hereditary nonpolyposis colorectal cancer-related tumors displaying low microsatellite instability with MSH6 germline mutations. Am J Hum Genet 65:1291-1298, 1999
- 23. Bosch DE, Yeh MM, Salipante SJ, et al: Isolated MLH1 loss by immunohistochemistry because of benign germline MLH1 polymorphisms. JCO Precis Oncol 10.1200/P0.22.00227
- 24. Boland CR, Goel A: Microsatellite instability in colorectal cancer. Gastroenterology 138:2073-2087.e3, 2010
- 25. Kato A, Sato N, Sugawara T, et al: Isolated loss of PMS2 immunohistochemical expression is frequently caused by heterogenous MLH1 promoter hypermethylation in Lynch syndrome screening for endometrial cancer patients. Am J Surg Pathol 40:770-776, 2016
- 26. Roudko V, Cimen Bozkus C, Greenbaum B, et al: Lynch syndrome and MSI-H cancers: From mechanisms to "off-the-shelf" cancer vaccines. Front Immunol 12:757804, 2021
- 27. Finotello F, Mayer C, Plattner C, et al: Molecular and pharmacological modulators of the tumor immune contexture revealed by deconvolution of RNA-seq data. Genome Med 11:34, 2019 28. Chang L, Chang M, Chang HM, et al: Microsatellite instability: A predictive biomarker for cancer immunotherapy. Appl Immunohistochem Mol Morphol 26:e15-e21, 2018
- Chang L, Chang M, Chang HM, et al: Microsatellite instability: A predictive biomarker for cancer immunoinerapy. Appl immunoinstochem Mol Morphol 26:e15-e2
 Kloor M, von Knebel Doeberitz M: The immune biology of microsatellite-unstable cancer. Trends Cancer 2:121-133, 2016
- De Mattos-Arruda L, Siravegna G: How to use liquid biopsies to treat patients with cancer. ESMO Open 6:100060, 2021
- 31. Loughrey MB, McGrath J, Coleman HG, et al: Identifying mismatch repair-deficient colon cancer: Near-perfect concordance between immunohistochemistry and microsatellite instability testing in a large, population-based series. Histopathology 78:401-413, 2021
- 32. Malapelle U, Parente P, Pepe F, et al: Impact of pre-analytical factors on MSI test accuracy in mucinous colorectal adenocarcinoma: A multi-assay concordance study. Cells 9:2019, 2020 33. Sari A, Pollett A, Eiriksson LR, et al: Interobserver agreement for mismatch repair protein immunohistochemistry in endometrial and nonserous, nonmucinous ovarian carcinomas. Am J Surg
- Pathol 43:591-600, 2019 34. Hempelmann JA, Scroggins SM, Pritchard CC, et al: MSIplus for integrated colorectal cancer molecular testing by next-generation sequencing. J Mol Diagn 17:705-714, 2015
- Waakes A, Smith N, Penewit K, et al: Accurate pan-cancer molecular diagnosis of microsatellite instability by single-molecule molecular inversion probe capture and high-throughput sequencing. Clin Chem 64:950-958, 2018
- 36. Reference deleted
- 37. Ma X, Dong L, Liu X, et al: POLE/POLD1 mutation and tumor immunotherapy. J Exp Clin Cancer Res 41:216, 2022
- 38. Roberts SA, Gordenin DA: Hypermutation in human cancer genomes: Footprints and mechanisms. Nat Rev Cancer 14:786-800, 2014
- 39. Briggs S, Tomlinson I: Germline and somatic polymerase ɛ and δ mutations define a new class of hypermutated colorectal and endometrial cancers. J Pathol 230:148-153, 2013
- 40. Howitt BE, Shukla SA, Sholl LM, et al: Association of polymerase e-mutated and microsatellite-instable endometrial cancers with neoantigen load, number of tumor-infiltrating lymphocytes, and expression of PD-1 and PD-1 L. JAMA Oncol 1:1319-1323. 2015
- 41. van Gool IC, Bosse T, Church DN: POLE proofreading mutation, immune response and prognosis in endometrial cancer. Oncoimmunology 5:e1072675, 2016
- 42. van Gool IC, Eggink FA, Freeman-Mills L, et al: POLE proofreading mutations elicit an antitumor immune response in endometrial cancer. Clin Cancer Res 21:3347-3355, 2015
- 43. Goodman AM, Sokol ES, Frampton GM, et al: Microsatellite-stable tumors with high mutational burden benefit from immunotherapy. Cancer Immunol Res 7:1570-1573, 2019
- 44. OMIM: An Online Catalog of Human Genes and Genetic Disorders. https://www.omim.org/

APPENDIX 1. NEXT-GENERATION SEQUENCING-592 GENE PANEL/WHOLE-EXOME SEQUENCING

NGS-592 or whole-exome sequencing (WES) was performed for 191,767 solid tumors (colorectal carcinoma [CRC]: n = 28,105, gastroesophageal [GE]: n = 9,849, small bowel [SB]: n = 1,405, endometrial carcinoma [EC]: n = 14,129) sequenced at Caris Life Sciences; both assays were internally validated at Caris Life Sciences, and there was high concordance between the two assays. Briefly, a concordance study comparing the WES panel with Caris' previously validated test NGS-592 panel included 113 samples that spanned 18 different lineages and covered a wide range of tumor cells density (20%-90% tumor nuclei) and variants frequency (8%-100%). Additionally, a concordance study comparing WES with an independently validated WES panel 16 different lineages and covered a wide range of tumor cells density (30%-90% tumor nuclei) and variant frequency (8%-94%). Both studies found these assays highly concordant.

Before molecular testing, tumor enrichment was achieved by harvesting targeted tissue using manual microdissection techniques. For NGS-592, genomic DNA was isolated from formalin-fixed paraffin-embedded (FFPE) sample using a DNA-QIAamp DNA FFPE Tissue Kit (Qiagen, Hilden, Germany). Tumor samples were sequenced using the NextSeq platform (Illumina, Inc, San Diego, CA). Matched normal tissue was not sequenced. A KAPA Library Quantification Kit (Agilent SureSelect XT-LI Library Preparation Kit, Agilent, Santa Clara, CA) was used in addition to a custom-designed SureSelect XT assay to enrich 592 whole-gene targets (Agilent Technologies). A list of the gene targets can be found in Appendix Table A1.

WES was performed on genomic DNA isolated from a micro-dissected, FFPE tumor sample. Genomic DNA was isolated from FFPE sample using a DNA-QIAamp DNA FFPE Tissue Kit (Qiagen) and sequenced using the Illumina NovaSeq 6,000 seguencers (Illumina, Inc). A KAPA Library Quantification Kit (Agilent SureSelect XT-LI Library Preparation Kit) was used in addition to a hybrid pull-down panel of baits designed to enrich for 720 clinically relevant genes at high coverage and high readdepth was used (Appendix Table A2), along with another panel designed to enrich for an additional >20,000 genes at lower depth. The performance of the WES assay was validated for sequencing variants, copy number alteration, tumor mutational burden (TMB), and microsatellite instability (MSI). The WES assay was validated to 50 ng of input and had a positive predictive value of 0.99 against a previously validated NGS assay. WES can detect variants in samples with tumor nuclei as low as 20% and detects down to 5% variant frequency with an average depth of at least 500×. A list of which portion of the genome were sequenced for PMS2, MSH6, MSH2, and MLH1 genes can be found in Appendix Table A3. MLH1 promoter hypermethylation status was not evaluated

APPENDIX 2. IDENTIFICATION OF GENETIC VARIANTS

Genetic somatic variants identified were interpreted by board-certified molecular geneticists and categorized as pathogenic, likely pathogenic, variant of unknown significance, likely benign, or benign, according to the American College of Medical Genetics and Genomics (ACMG) standards and using the following databases: COSMIC, University of California, Santa Cruz (UCSC) Genome Brower, PubMed, HGMD, Genome Aggregation Database, ClinVar database, dbSNP database, InSiGHT database, IARC TP53 database, LOVD databases, BRCA Exchange, GeneReviews, Atlas of Genetics and Cytogenetics in Oncology and Hematology, CIViC database, cBioPortal, OMIM database,⁴⁴ and COSMIC Fusions. If a variant has a rs number associated with it, the dbSNP database must also be consulted to determine minor allele frequency of the mutation and based on the Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the ACMG and the Association for Molecular Pathology. When assessing mutation frequencies of individual genes, pathogenic, and likely pathogenic were counted as mutations while benign, likely benign variants and variants of unknown significance were excluded unless otherwise noted. A list of variants considered pathogenic/likely pathogenic for PMS2, MSH6, MSH2, and MLH1 can be found in Appendix Table A4. The DNA aligner used was BWA 0.7.17, and variant calling was done using smatools mpileup + Pindel.

APPENDIX 3. MSI DETECTION AND CLASSIFICATION IN WES: METHODOLOGY AND CRITERIA

MSI by WES was examined by the direct analysis of 7,317 known homopolymer through pentapolymer target microsatellite regions sequenced in the WES gene panel and compared with the reference genome hg19 from the UCSC Genome Browser database. The number of microsatellite loci that were altered by somatic insertion or deletion was counted for each sample. Only insertions or deletions that result in increased or decreased number of tandem repeats were considered. Genomic variants in the microsatellite loci were detected using the same depth and frequency criteria as used for mutation detection. The threshold for microsatellite instability high (MSI-H) by WES was determined to be 116 or more loci with insertions or deletions, equivocal to be 113-115, and stable to be 112 or less.

APPENDIX 4. RNA EXTRACTION AND SEQUENCING METHODOLOGY FOR FFPE SPECIMENS

FFPE specimens underwent pathology review to estimate percent tumor content and tumor size; a minimum of 10% of tumor content in the area for microdissection was required to enable enrichment and extraction of tumor-specific RNA. RNA-RNeasy RNA FFPE Tissue Kit (Qiagen) was used, and RNA quality and quantity was determined using the Agilent TapeStation (Agilent Technologies). Biotinylated RNA baits were hybridized to the synthesized and purified cDNA targets and the bait-target complexes were amplified in a post-capture PCR reaction. The resultant libraries were quantified and normalized, and the pooled libraries were denatured, diluted, and sequenced using the Illumina NovaSeq platform (Illumina, Inc). Aligning of RNA sequences was done using STAR V.2.7.8a. For transcript counting, transcripts per million molecules were generated using the Salmon expression pipeline. Immune cell fraction was calculated via deconvolution of WTS data by quanTIseq.²⁷

APPENDIX 5. PATTERNS OF MMR PROTEIN LOSS IN MSS AND MMRD TUMORS

Of the 21 mismatch repair deficient (MMRd)/microsatellite stable (MSS) GE tumors, 48% (10/21) were single losses (seven PMS2 and three MSH6 loss). There was one tumor that had loss of both MSH2 and MSH6 and another tumor had loss of both MLH1 and MSH6 (loss of one part of each of the heterodimers). Forty-three percent (9/21) of tumors had loss of both MLH1 and PMS2. All (3/3) of the SB tumors had only one loss (two tumors had loss of PMS2 and one had loss of MSH6).

In EC tumors, 15 of 46 had loss of MLH1, 25 of 46 had PMS2 loss, 2 of 46 had MSH2 loss, and 21 of 46 had MSH6 loss. Of the 17 tumors that had loss of two MMR proteins, 15 of 17 had loss of both proteins in the MLH1/PMS2 heterodimer. Two tumors had loss of both proteins in the MSH2/MSH6 heterodimer.

APPENDIX 6. TMB AND THE TUMOR IMMUNE MICROENVIRONMENT OF DISCORDANT CASES

When concordant tumors were investigated, MMRd/MSS CRC, EG/SB, and EC tumors had a significantly lower rate of TMB-H than mismatch repair proficient (MMRp)/MSI-H tumors (CRC: 12.5% TMB-H, n = 24 [mean = 29.5 mut/Mb, median = 6.5, range, 2-513] v 89.1% TMB-H, n = 46 [mean = 55.7 mut/Mb, median = 36.5, range, 5-327], P < .001; GE/SB: 37.5% TMB-H, n = 24 [mean = 23.5 mut/Mb, median = 8, range, 1-336] v 100% TMB-H, n = 7 [mean = 107.1 mut/Mb, median = 28, range: 10-579], P = .003; EC: 56.5% TMB-H, n = 46 [mean = 55.1 mut/Mb, median = 12, range: 1-324] v 86.2%, n = 29 [mean = 160.6 mut/Mb, median = 27, range: 6-520], P = .011; Fig 3A).

The prevalence of TMB-H in CRC discordant tumors was compared with concordant tumors. The magnitude of difference was the largest between MSS versus MSI-H tumors regardless of MMR status (MMRd/MSS: 12.5%, n = 24 [mean = 29.5 mut/ Mb, median = 6.5, range, 2-513]; MMRp/MSS: 3.1%, n = 12,543 [mean = 6.9 mut/ Mb, median = 6, range, 0-569]; MMRp/MSI-H 89.1%, n = 46 [mean = 55.7 mut/Mb, median = 36, range, 5-327]; MMRd/MSI-H 99.7%, n = 866 [mean = 40.8 mut/Mb, median = 36, range, 5-353]; P < .001 for all comparisons). MMRd/MSI-H had a significantly lower TMB-H prevalence than MMRp/MSS, and MMRp/MSI-H had a significantly lower TMB-H prevalence as compared with MMRd/MSI-H (Fig 3B). Similar results are observed for TMB-H prevalence in GE/SB (MMRp/MSS: 5.3%, n = 4,717 [mean = 6.8 mut/Mb, median = 6, range, 0-89]; MMRd/MSI-H: 97.4%, n = 114 [mean = 29.6 mut/Mb, median = 6, range, 0-554]; MMRd/MSI-H: 96.1%, n = 2,806 [mean = 29.4 mut/Mb, median = 20, range, 4-678]).

TABLE A1. Gene List for Targeted DNA Sequencing Panel

TABLE A1. Gene List for Targeted DNA Sequencing Panel	TABLE A1. Gene List for Targeted DNA Sequencing Panel (continued)
Genes	Genes
ABI1 (10p12.1)	BCL9 (1q21.2)
ABL1 (9q34.12)	BCOR (Xp11.4)
ABL2 (1q25.2)	BCORL1 (Xq26.1)
ACKR3 (2q37.3)	BCR (22q11.23)
ACSL3 (2q36.1)	BIRC3 (11q22.2)
ACSL6 (5q31.1)	BLM (15q26.1)
ADGRA2 (8p11.23)	BMPR1A (10q23.2)
AFDN (6q27)	BRAF (7q34)
AFF1 (4q21.3-22.1)	BRCA1 (17q21.31)
AFF3 (2q11.2)	BRCA2 (13q13.1)
AFF4 (5q31.1)	BRD3 (9q34.2)
AKAP9 (7q21.2)	BRD4 (19p13.12)
AKT1 (14q32.33)	BRIP1 (17q23.2)
AKT2 (19q13.2)	BTG1 (12q21.33)
AKT3 (1q43-44)	BTK (Xq22.1)
ALDH2 (12q24.12)	BUB1B (15q15.1)
ALK (2p23.2-23.1)	C15orf65 (15q21.3)
AMER1 (Xq11.2)	CACNA1D (3p21.1)
APC (5q22.2)	CALR (19p13.13)
AR (Xq12)	CAMTA1 (1p36.31-36.23)
ARAF (Xp11.3)	CANT1 (17q25.3)
ARFRP1 (20g13.33)	CARD11 (7p22.2)
ARHGAP26 (5q31.3)	CARS1 (11p15.4)
ARHGEF12 (11q23.3)	CASP8 (2q33.1)
ARIDIA (1p36.11)	CBFA2T3 (16q24.3)
ARID2 (12q12)	CBFB (16q22.1)
ARNT (1q21.3)	CBL (11q23.3)
ASPSCR1 (17q25.3)	CBLB (3q13.11)
	CBLC (19q13.32)
ASXL1 (20q11.21)	CCDC6 (10q21.2)
ATF1 (12q13.12)	CCN6 (6q21)
ATIC (2q35)	CCNB1IP1 (14q11.2)
ATM (11q22.3)	CCND1 (11q13.3)
ATP1A1 (1p13.1)	CCND2 (12p13.32)
ATP2B3 (Xq28)	
ATR (3q23)	CCND3 (6p21.1)
ATRX (Xq21.1)	CCNE1 (19q12)
AURKA (20q13.2)	CD274 (9p24.1)
AURKB (17p13.1)	CD74 (5q33.1)
AXIN1 (16p13.3)	CD79A (19q13.2)
AXL (19q13.2)	CD79B (17q23.3)
BAP1 (3p21.1)	CDC73 (1q31.2)
BARD1 (2q35)	CDH1 (16q22.1)
BCL10 (1p22.3)	CDH11 (16q21)
BCL11A (2p16.1)	CDK12 (17q12)
BCL11B (14q32.2)	CDK4 (12q14.1)
BCL2 (18q21.33)	CDK6 (7q21.2)
BCL2L11 (2q13)	CDK8 (13q12.13)
BCL2L2 (14q11.2)	CDKN1B (12p13.1)
BCL3 (19q13.32)	CDKN2A (9p21.3)
BCL6 (3q27.3)	CDKN2B (9p21.3)
BCL7A (12q24.31)	CDKN2C (1p32.3)
(continued in next column)	(continued on following page)

TABLE A1. Gene List for Targeted DNA Sequencing Panel (continued)

anel (continued)	TABLE A1.	Gene List for Targeted DNA Sequencing Panel (continued)	

Genes	Genes
CDX2 (13q12.2)	ELK4 (1q32.1)
CEBPA (19q13.11)	ELL (19p13.11)
CHCHD7 (8q12.1)	ELN (7q11.23)
CHEK1 (11q24.2)	EML4 (2p21)
CHEK2 (22q12.1) CHIC2 (4q12)	EMSY (11q13.5)
	EP300 (22q13.2)
CHN1 (2q31.1)	EPHA3 (3p11.1)
CIC (19q13.2)	EPHA5 (4q13.1-13.2)
CIITA (16p13.13)	EPHB1 (3q22.2)
CLP1 (11q12.1)	EPS15 (1p32.3)
CLTC (17q23.1)	ERBB2 (17q12)
CLTCL1 (22q11.21)	ERBB3 (12q13.2)
CNBP (3q21.3)	ERBB4 (2q34)
CNOT3 (19q13.42)	ERC1 (12p13.33)
CNTRL (9q33.2)	ERCC1 (19q13.32)
COL1A1 (17q21.33)	ERCC2 (19q13.32)
COPB1 (11p15.2)	ERCC3 (2q14.3)
COX6C (8q22.2)	ERCC4 (16p13.12)
CREB1 (2q33.3)	ERCC5 (13q33.1)
CREB3L1 (11p11.2)	ERG (21q22.2)
CREB3L2 (7q33)	ESR1 (6q25.1-25.2)
CREBBP (16p13.3)	ETV1 (7p21.2)
CRKL (22q11.21)	ETV4 (17q21.31)
CRLF2 (Xp22.33)	ETV5 (3q27.2)
CRTC1 (19p13.11)	ETV6 (12p13.2)
CRTC3 (15q26.1)	EWSR1 (22q12.2)
CSF1R (5q32)	EXT1 (8q24.11)
CSF3R (1p34.3)	EXT2 (11p11.2)
CTCF (16q22.1)	EZH2 (7q36.1)
CTLA4 (2q33.2)	EZR (6q25.3)
CTNNA1 (5q31.2)	FANCA (16q24.3)
CTNNB1 (3p22.1)	FANCC (9q22.32)
CYLD (16q12.1)	FANCD2 (3p25.3)
CYP2D6 (22q13.2)	FANCE (6p21.31)
DAXX (6p21.32)	FANCF (11p14.3)
DDB2 (11p11.2)	FANCG (9p13.3)
DDIT3 (12q13.3)	FANCL (2p16.1)
DDR2 (1q23.3)	FAS (10q23.31)
DDX10 (11q22.3)	FBX011 (2p16.3)
DDX5 (17q23.3)	FBXW7 (4q31.3)
DDX6 (11q23.3)	FCRL4 (1q23.1)
DEK (6p22.3)	FEV (2q35)
DICER1 (14q32.13)	FGF10 (5p12)
DNM2 (19p13.2)	FGF14 (13q33.1)
DNMT3A (2p23.3)	FGF19 (11q13.3)
DOT1L (19p13.3)	FGF23 (12p13.32)
EBF1 (5q33.3)	FGF3 (11q13.3)
ECT2L (6q24.1)	FGF4 (11q13.3)
EGFR (7p11.2)	FGF6 (12p13.32)
EIF4A2 (3q27.3)	FGFR1 (8p11.23)
ELF4 (Xq26.1)	FGFR10P (6q27)
(continued in next column)	(continued on following page)
· · · · · ·	

Ali-Fehmi et al

TABLE A1. Gene List for Targeted DNA Sequencing Panel (continued) TABLE A1. Gene List for Targeted DNA Sequencing Panel (continued)

Genes	Ganac
	Genes
FGFR2 (10q26.13)	HOXA11 (7p15.2)
FGFR3 (4p16.3)	HOXA13 (7p15.2)
FGFR4 (5q35.2)	HOXA9 (7p15.2)
FH (1q43)	HOXC11 (12q13.13)
FHIT (3p14.2)	HOXC13 (12q13.13)
FIP1L1 (4q12)	HOXD11 (2q31.1)
FLCN (17p11.2)	HOXD13 (2q31.1)
FLI1 (11q24.3)	HRAS (11p15.5)
FLT1 (13q12.3)	HSP90AA1 (14q32.31)
FLT3 (13q12.2)	HSP90AB1 (6p21.1)
FLT4 (5q35.3)	IDH1 (2q34)
FNBP1 (9q34.11)	IDH2 (15q26.1)
FOXA1 (14q21.1)	IGF1R (15q26.3)
FOXL2 (3q22.3)	IKBKE (1q32.1)
FOXO1 (13q14.11)	IKZF1 (7p12.2)
F0X03 (6q21)	IL2 (4q27)
F0X04 (Xq13.1)	IL21R (16p12.1)
FOXP1 (3p13)	IL6ST (5q11.2)
FSTL3 (19p13.3)	IL7R (5p13.2)
FUBP1 (1p31.1)	INHBA (7p14.1)
FUS (16p11.2)	IRF4 (6p25.3)
GAS7 (17p13.1)	IRS2 (13q34)
GATA1 (Xp11.23)	ITK (5q33.3)
GATA2 (3q21.3)	JAK1 (1p31.3)
GATA3 (10p14)	JAK2 (9p24.1)
GID4 (17p11.2)	JAK3 (19p13.11)
GMPS (3q25.31)	JAZF1 (7p15.2-15.1)
GNA11 (19p13.3)	JUN (1p32.1)
GNA13 (17q24.1)	KAT6A (8p11.21)
GNAQ (9q21.2)	KAT6B (10q22.2)
GNAS (20q13.32)	KCNJ5 (11q24.3)
GOLGA5 (14q32.12)	KDM5A (12p13.33)
GOPC (6q22.1)	KDM5C (Xp11.22)
GPC3 (Xq26.2)	KDM6A (Xp11.3)
GPHN (14q23.3-24.1)	KDR (4q12)
GRIN2A (16p13.2)	KDSR (18q21.33)
GSK3B (3q13.33)	KEAP1 (19p13.2)
H3-3A (1q42.12)	KIAA1549 (7q34)
H3-3B (17q25.1)	KIF5B (10p11.22)
H3C2 (6p22.2)	KIT (4q12)
H4C9 (6p22.1)	KLF4 (9q31.2)
HERPUD1 (16q13)	KLHL6 (3q27.1)
HEY1 (8q21.13)	KLK2 (19q13.33)
HGF (7q21.11)	KMT2A (11q23.3)
HIP1 (7q11.23)	KMT2C (7q36.1)
HLF (17q22)	KMT2D (12q13.12)
HMGA1 (6p21.31)	KNL1 (15q15.1)
HMGA2 (12q14.3)	KRAS (12p12.1)
HNF1A (12q24.31)	KTN1 (14q22.3)
HNRNPA2B1 (7p15.2)	LASP1 (17q12)
HOOK3 (8p11.21)	LCK (1p35.2)
(continued in next column)	(continued on following page)

TABLE A1. Gene List for

Genes

or Targeted DNA Sequencing Panel (continued)	TABLE A1. Gene List for Targeted DNA Sequencing Panel (continued	
	Genes	
	MYCL (1p34.2)	

Genes LCP1 (13q14.13)	Genes MYCL (1p34.2)
LGR5 (12q21.1)	MYCN (2p24.3)
LHFPL6 (13q13.3-14.11)	MYD88 (3p22.2)
LIFR (5p13.1)	MYH11 (16p13.11)
LMO1 (11p15.4)	MYH9 (22q12.3)
LM02 (11p13)	NACA (12q13.3)
LPP (3q27.3-28)	NBN (8q21.3)
LRIG3 (12q14.1)	NCKIPSD (3p21.31)
LRP1B (2q22.1-22.2)	NCOA1 (2p23.3)
LYL1 (19p13.13)	NCOA2 (8q13.3)
MAF (16q23.2)	NCOA4 (10q11.22)
MAFB (20q12)	NDRG1 (8q24.22)
MALT1 (18q21.32)	NF1 (17q11.2)
MAML2 (11q21)	NF2 (22q12.2)
MAP2K1 (15q22.31)	NFE2L2 (2q31.2)
MAP2K2 (19p13.3)	NFIB (9p23-22.3)
MAP2K4 (17p12)	NFKB2 (10q24.32)
MAP3K1 (5q11.2)	NFKBIA (14q13.2)
MAX (14q23.3)	NIN (14q22.1)
MCL1 (1q21.2)	NKX2-1 (14q13.3)
MDM2 (12q15)	NONO (Xq13.1)
MDM4 (1q32.1)	NOTCH1 (9q34.3)
MDS2 (1p36.11)	NOTCH2 (1p12)
MECOM (3q26.2)	NPM1 (5q35.1)
MED12 (Xq13.1)	NR4A3 (9q31.1)
MEF2B (19p13.11)	NRAS (1p13.2)
MEN1 (11q13.1)	NSD1 (5q35.3)
MET (7q31.2)	NSD2 (4p16.3)
MITF (3p13)	NSD3 (8p11.23)
MLF1 (3q25.32)	NT5C2 (10q24.32-24.33)
MLH1 (3p22.2)	NTRK1 (1q23.1)
MLLT1 (19p13.3)	NTRK2 (9q21.33)
MLLT10 (10p12.31)	NTRK3 (15q25.3)
MLLT11 (1q21.3)	NUMA1 (11q13.4)
MLLT3 (9p21.3)	NUP214 (9q34.13)
MLLT6 (17q12)	NUP93 (16q13)
MN1 (22q12.1)	NUP98 (11p15.4)
MNX1 (7q36.3)	NUTM1 (15q14)
MPL (1p34.2)	NUTM2B (10q22.3)
MRE11 (11q21)	OLIG2 (21q22.11)
MRTFA (22q13.1-13.2)	OMD (9q22.31)
MSH2 (2p21-16.3)	P2RY8 (Xp22.33)
MSH6 (2p16.3)	PAFAH1B2 (11q23.3)
MSI2 (17q22)	РАКЗ (Хq23)
MSN (Xq12)	PALB2 (16p12.2)
MTCP1 (Xq28)	PATZ1 (22q12.2)
MTOR (1p36.22)	PAX3 (2q36.1)
MUC1 (1q22)	PAX5 (9p13.2)
MUTYH (1p34.1)	PAX7 (1p36.13)
MYB (6q23.3)	PAX8 (2q14.1)
MYC (8q24.21)	PBRM1 (3p21.1)
(continued in next column)	(continued on following page)
	(g page)

Ali-Fehmi et al

TABLE A1. Gene List for Targeted DNA Sequencing Panel (continued) TABLE A1. Gene List for Targeted DNA Sequencing Panel (continued)

Genes	Genes
PBX1 (1q23.3)	RARA (17q21.2)
PCM1 (8p22)	RB1 (13q14.2)
PCSK7 (11q23.3)	RBM15 (1p13.3)
PDCD1 (2q37.3)	RECQL4 (8q24.3)
PDCD1LG2 (9p24.1)	REL (2p16.1)
PDE4DIP (1q21.2)	RET (10q11.21)
PDGFB (22q13.1)	RHOH (4p14)
PDGFRA (4q12)	RICTOR (5p13.1)
PDGFRB (5q32)	RMI2 (16p13.13)
PDK1 (2q31.1)	RNF213 (17q25.3)
PER1 (17p13.1)	RNF43 (17q22)
PHF6 (Xq26.2)	ROS1 (6q22.1)
PHOX2B (4p13)	RPL10 (Xq28)
PICALM (11q14.2)	RPL22 (1p36.31)
PIK3CA (3q26.32)	RPL5 (1p22.1)
PIK3CG (7q22.3)	RPN1 (3q21.3)
PIK3R1 (5q13.1)	RPTOR (17q25.3)
PIK3R2 (19p13.11)	RUNX1 (21q22.12)
PIM1 (6p21.2)	RUNX1T1 (8q21.3)
PLAG1 (8q12.1)	SBDS (7q11.21)
PML (15g24.1)	SDC4 (20q13.12)
PMS1 (2q32.2)	SDHAF2 (11q12.2)
PMS2 (7p22.1)	SDHB (1p36.13)
POLE (12q24.33)	SDHC (1q23.3)
POT1 (7q31.33)	SDHD (11q23.1)
POU2AF1 (11q23.1)	SEPTIN5 (22q11.21)
POU5F1 (6p21.33)	SEPTIN6 (Xq24)
PPARG (3p25.2)	SEPTIN9 (17q25.3)
PPP2R1A (19q13.41)	SET (9q34.11)
PRCC (1q23.1)	SETBP1 (18q12.3)
PRDM1 (6q21)	SETD2 (3p21.31)
PRDM16 (1p36.32)	SF3B1 (2q33.1)
PRF1 (10q22.1)	SFPQ (1p34.3)
PRKAR1A (17q24.2)	SH2B3 (12q24.12)
PRKDC (8q11.21)	SH3GL1 (19p13.3)
PRRX1 (1q24.2)	SLC34A2 (4p15.2)
PSIP1 (9p22.3)	SLC45A3 (1q32.1)
PTCH1 (9q22.32)	SMAD2 (18q21.1)
PTEN (10q23.31)	SMAD4 (18q21.2)
PTPN11 (12q24.13)	SMARCA4 (19p13.2)
PTPRC (1q31.3-32.1)	SMARCB1 (22q11.23)
RABEP1 (17p13.2)	SMARCE1 (17q21.2)
RAC1 (7p22.1)	SMO (7q32.1)
RAD21 (8q24.11)	SNX29 (16p13.13-13.12)
RAD50 (5q31.1)	SOCS1 (16p13.13)
RAD51 (15q15.1)	SOX10 (22q13.1)
RAD51B (14q24.1)	SOX2 (3q26.33)
RAF1 (3p25.2)	SPECC1 (17p11.2)
RALGDS (9q34.13-34.2)	SPEN (1p36.21-36.13)
RANBP17 (5q35.1)	SPOP (17q21.33)
RAP1GDS1 (4q23)	SRC (20q11.23)
(continued in next column)	(continued on following page)

TABLE A1. Gene List for Targeted DNA Sequencing Panel (continued)

TABLE A1. Gene List for Targeted DNA Sequencing Panel (continued)

THRAP3 (1p34.3) TLX1 (10q24.31) TLX3 (5q35.1) TMPRSS2 (21q22.3) TNFAIP3 (6q23.3) TNFRSF14 (1p36.32) TNFRSF17 (16p13.13) TOP1 (20q12) TP53 (17p13.1) TPM3 (1q21.3) TPM4 (19p13.12-13.11) TPR (1q31.1) TRAF7 (16p13.3) TRIM26 (6p22.1) TRIM27 (6p22.1) TRIM33 (1p13.2) TRIP11 (14q32.12)

Genes	Genes
SRGAP3 (3p25.3)	TRRAP (7q22.1)
SRSF2 (17q25.1)	TSC1 (9q34.13)
SRSF3 (6p21.31-21.2)	TSC2 (16p13.3)
SS18 (18q11.2)	TSHR (14q31.1)
SS18L1 (20q13.33)	TTL (2q14.1)
SSX1 (Xp11.23)	U2AF1 (21q22.3)
STAG2 (Xq25)	UBR5 (8q22.3)
STAT3 (17q21.2)	USP6 (17p13.2)
STAT4 (2q32.2-32.3)	VEGFA (6p21.1)
STAT5B (17q21.2)	VEGFB (11q13.1)
STIL (1p33)	VHL (3p25.3)
STK11 (19p13.3)	VTI1A (10q25.2)
SUFU (10q24.32)	WAS (Xp11.23)
SUZ12 (17q11.2)	WDCP (2p23.3)
SYK (9q22.2)	WIF1 (12q14.3)
TAF15 (17q12)	WRN (8p12)
TAL1 (1p33)	WT1 (11p13)
TAL2 (9q31.2)	WWTR1 (3q25.1)
TBL1XR1 (3q26.32)	XPA (9q22.33)
TCEA1 (8q11.23)	XPC (3p25.1)
TCF12 (15q21.3)	XP01 (2p15)
TCF3 (19p13.3)	YWHAE (17p13.3)
TCF7L2 (10q25.2-25.3)	ZBTB16 (11q23.2)
TCL1A (14q32.13)	ZMYM2 (13q12.11)
TENT5C (1p12)	ZNF217 (20q13.2)
TERT (5p15.33)	ZNF331 (19q13.42)
TET1 (10q21.3)	ZNF384 (12p13.31)
TET2 (4q24)	ZNF521 (18q11.2)
TFE3 (Xp11.23)	ZNF703 (8p11.23)
TFEB (6p21.1)	ZRSR2 (Xp22.2)
TFG (3q12.2)	
TFPT (19q13.42)	
TFRC (3q29)	
TGFBR2 (3p24.1)	

JCO Precision Oncology

(continued in next column)

Genes	Genes
ABL1	CHEK1
ABRAXAS1	CHEK2
ACVR1	CIC
AIP	CLYBL
AKT1	CREBBP
AKT2	CRKL
AKT3	CSF1R
ALK	CTNNB1
AMER1	CYLD
APC	DAXX
AR	DDR2
ARAF	DICER1
ARID1A	DNMT3A
ARID1B	EGFR
ARID2	EME1
ASXL1	EPCAM
ATM	EP300
ATR	EPHA2
ATRX	ERBB2
AURKB	ERBB3
B2M	ERBB4
BAP1	ERCC2
BARD1	ESR1
BCL2	EZH2
BCOR	FANCA
BCORL1	FANCB
BLM	FANCC
BMPR1A	FANCD2
BRAF	FANCE
BRCA1	FANCF
BRCA2	FANCG
BRIP1	FANCI
CARD11	FANCL
CBFB	FANCM
CCND1	FAS
CCND2	FAT1
CCND3	FBXW7
CCNE1	FGF10
CD274	FGF19
CDC73	FGF3
CDH1	FGF4
CDK12	FGFR1
CDK4	FGFR2
CDK6	FGFR3
CDKN1B	FGFR4
CDKN1C	FH
CDKN2A	FLCN
CDKN2B	FLT1
(continued in next column)	(continued on following page)

Genes
CHEK1
 CHEK2
CIC
CLYBL
 CREBBP
CRKL
CSF1R
CTNNB1
CYLD
DAXX
DDR2
DICER1
 DNMT3A
 EGFR
EME1
 EPCAM
EP300
 EPHA2
ERBB2
 ERBB3
ERBB4
 ERCC2
ESR1
 EZH2
FANCA
FANCB
FANCC
FANCD2
FANCE
 FANCF
FANCG
 FANCI
FANCL
 FANCM
FAS
FAT1
FBXW7
FGF10
 FGF19
 FGF3
FGF4
FGFR1
FGFR2
FGFR3
FGFR4
FH
FLCN
FLT1

Genes	Genes
FLT3	MPL
FLT4	MRE11
F0XL2	MSH2
FUBP1	MSH3
FYN	MSH6
GATA3	MST1R
GLI2	MTOR
GNA11	MUTYH
GNA13	МҮВ
GNAQ	MYC
GNAS	MYCL
H3F3A	MYCN
H3F3B	NBN
HIST1H3B	NF1
HNF1A	NF2
HRAS	NFKBIA
ID2	NOTCH1
IDH1	NPM1
IDH2	NRAS
JAK1	NSD1
JAK2	NTHL1
ЈАКЗ	NTRK1
КАТ6А	NTRK2
KDM5C	NTRK3
KDM6A	PALB2
KDR	PBRM1
KIT	PDCD1
KLLN	PDCD1LG2
KMT2A	PDGFRA
КМТ2С	PDGFRB
KMT2D	PER1
KRAS	PHOX2B
LCK	PIK3CA
LYN	PIK3R1
LZTR1	PIM1
MAP2K1	PMS1
MAP2K2	PMS2
МАР2К4	POLD1
МАРЗК1	POLE
MAX	РОТ1
MDM2	PPARG
MDM4	PPP2R1A
MEF2B	PRDM1
MEN1	PRKAR1A
MET	PRKDC
MITF	PTCH1
MLH1	PTEN
MLH3	PTPN11
(continued in next column)	(continued on following page)

Ali-Fehmi et al

TABLE A2. Gene List for the Subset of Whole Exome Panel Genes Sequenced at High Coverage and Read Depth (continued)

Genes
YES1
ZNRF3
ABL2
ACKR3
ACSL3
ACSL6
AFDN
AFF1
AFF3
ARNT
ATF1
ATIC
ATP1A1
BCL11A
BCL11B
BCL2L11
BCL2L2
BCL3
BCL6
BCL9
BRD4
BTG1
C15orf65
CACNA1D
CALR
CAMTA1
CARS
CASP8
CBL
CCDC6
CD74
CD79A
CDH11
CDK8
CDKN2C
CDX2
СЕВРА
CHIC2
CLTCL1
CNBP
COX6C
CREB3L2
CRTC3
CTCF
CTNNA1
DDIT3
DDX41
DDX41
(continued on following page)

VES1 ZNRF3 ABL2 ACKR3 ACSL3 ACSL6 AFDN AFF1 AFF3 ARNT ATF1 ATF1 ATF1 ACSL3 ARNT AFF3 ARNT ATF1 ATF1 ATC ATF1 BCL11A BCL2L1 BCL2L2 BCL3 BCL6 BCL9 BRD4 BTG1 C1Sorf65 CACNA1D CAR CASP8 CBL CDCDC6 CD74 CD79A CDH11 CDK8 CDKN2C CDX2 CEBPA CHIC2 CCREG3L2 CCREG3L2 CCREG3L2 CCREG3L2 CCREG3L2 CCREG3L2 CCREG3L2 CCREG3L2			
ZNRF3 ABL2 ACKR3 ACSL3 ACSL6 AFDN AFF1 AFF3 ARNT ATF1 ATF1 ATF1 ATF1 ATF1 ATF1 BCL11A BCL2L11 BCL2L2 BCL3 BCL6 BCL9 BRD4 BTG1 C1Sorf65 CARNTA1 CARS CASP8 CBL CDC0C6 CD74 CD79A CDH11 CDK8 CDKN2C CDX2 CEBPA CHIC2 CLTCL1 CNBP COX6C CRE3JL2 CRTC3 CTCF	Genes		
ABL2ACKR3ACSL6AFDNAFF1AFF3ARNTATF1ATTCATT1CATT1ABCL11ABCL2L11BCL2L2BCL3BCL6BCL9BRD4BTG1CL5orf65CACNA1DCARSCARSCDC6CD74CD79ACDF11CDK8CDKN2CCDX2CEBPACHC2CTC1CTCFCTC5	YES1		
ACKR3 ACSL6 AFDN AFF1 AFF3 ARNT ATF1 ATTC ATF1 ATTC ATT1C ATT1A BCL11A BCL2L1 BCL2L1 BCL2L2 BCL3 BCL6 BCL9 BRD4 BTG1 C15orf65 CACNA1D CARS CDARS CDCC6 CD74 CD79A CDH11 CDK8 CDKN2C CDX2 CEBPA CHIC2 CUTC1 CNBP COX6C CRE312 CRTC3	ZNRF3		
ACSL3 ACSL6 AFDN AFF1 AFF3 ARNT ATF1 ATF1 ATC ATP1A1 BCL11A BCL2L1 BCL2L2 BCL3 BCL6 BCL9 BRD4 BTG1 C1Sorf65 CACNA1D CALR CANTA1 CARS CASP8 CBL CDC06 CD74 CD79A CDH11 CDK8 CDKN2C CDX2 CEBPA CHIC2 CL11 CNBP COX6C CREB3L2 CRTC3 CTCF	ABL2		
ACSL6 AFDN AFF1 AFF3 ARNT ATF1 ATIC ATF1A BCL11A BCL11B BCL22 BCL3 BCL6 BCL9 BRD4 BTG1 C1Sorf65 CACNA1D CARS CARS CASP8 CBL CCD6 CD74 CD79A CDH11 CDK8 CDKN2C CDX2 CEBPA CHIC2 CLTCL1 CNBP COX6C CREB3L2 CRTC3	ACKR3		
AFDN AFF1 AFF3 ARNT ATTC ATTC ATTO BCL2L11 BCC2L2 BCL3 BCL4 BCL5 BCL6 CDF65 CDARS CDF4 CDF9A CDF11 CDK8 CDKN2C CDK8 CDK9 CHIC2 CHC4 CDK6C	ACSL3		
AFF1 AFF3 AFNT ATF1 ATIC ATP1A1 BCL11A BCL2L1 BCL2L1 BCL2 BCL3 BCL6 BCL9 BRD4 BTG1 C1Sorf65 CACNA1D CARS CASP8 CBL CDC66 CD74 CD79A CDH11 CDK8 CDKN2C CDK2 CEBPA CHIC2 CITCL1 CNBP COX6C CREB3L2 CRTC3	ACSL6		
AFF3 AFR1 ATTC ATTC ATTP1A1 BCL11A BCL2L11 BCL2L2 BCL3 BCL6 BCL9 BRD4 BTG1 C1Sorf65 CACNA1D CARS CASP8 CBL CDC6 CD74 CD79A CDH11 CDK8 CDKN2C CDX2 CEBPA CHIC2 CLTCL1 CNRP COX6C CREB3L2 CRTC3 CTOF	AFDN		
ARNT ATF1 ATIC ATP1A1 BCL11A BCL2L1 BCL2L1 BCL2L2 BCL6 BCL9 BRD4 BTG1 CTSorf65 CACNA1D CARS CASP8 CBL CDC6 CD74 CD79A CDH11 CDK8 CDKN2C CDX2 CEBPA CHIC2 CLTCL1 CNRP COX6C CREB3L2 CRTC3 CTOF	AFF1		
ATF1 ATIC ATP1A1 BCL11A BCL2L11 BCL2L2 BCL3 BCL6 BCL9 BTG1 C15of65 CANTA1 CARS CASP8 CBL CDC6 CD74 CD79A CD411 CDK8 CDKN2C CDX2 CEBPA CHIC2 CLTCL1 CNBP COX6C CCREB3L2 CRTC3 CTOF	AFF3		
ATIC ATP1A1 BCL11A BCL11B BCL2L11 BCL2L2 BCL3 BCL6 BCL9 BRD4 BTG1 C1Sorf65 CACNA1D CARS CASP8 CBL CDC6 CD74 CD79A CD411 CDK8 CDKN2C CDX2 CEBPA CHIC2 CLTCL1 CNBP COX6C CREB3L2 CRTC3	ARNT		
ATP1A1 BCL11A BCL2L1B BCL2L1 BCL2L2 BCL6 BCL9 BRD4 BTG1 C1Sorf65 CACNA1D CALR CAMTA1 CARS CBL CDCDC6 CD74 CD79A CDH11 CDK8 CDKN2C CDX2 CEBPA CHIC2 CLTCL1 CNBP COX6C CREB3L2 CRTC3 CTCF	ATF1		
BCL11A BCL2L11 BCL2L2 BCL3 BCL6 BCL9 BRD4 BTG1 C15orf65 CACNA1D CALR CAMTA1 CARS CBL CDC06 CD74 CD79A CDH11 CDK8 CDKN2C CDX2 CEBPA CHIC2 CLTCL1 CNBP COX6C CREB3L2 CRTC3 CTOF	ATIC		
BCL11B BCL2L1 BCL2L2 BCL3 BCL6 BCL9 BRD4 BTG1 C15orf65 CACNA1D CALR CAMTA1 CARS CBL CCDC6 CD74 CD79A CDH11 CDK8 CDKN2C CDX2 CEBPA CHIC2 CLTCL1 CNBP COX6C CREB3L2 CRTC3 CTOF	ATP1A1		
BCL2L11 BCL2L2 BCL3 BCL6 BCL9 BRD4 BTG1 C15orf65 CACNA1D CALR CAMTA1 CARS CASP8 CBL CDC66 CD74 CD79A CDH11 CDK8 CDK2C CDX2 CEBPA CHIC2 CLTCL1 CNBP COX66C CREB3L2 CRTC3 CTOF	BCL11A		
BCL2L2 BCL3 BCL6 BCL9 BRD4 BTG1 C15orf65 CACNA1D CALR CAMTA1 CARS CBL CCDC6 CD74 CD79A CDH11 CDK8 CDK2C CDX2 CEBPA CHIC2 CLTCL1 CNBP COX6C CREB3L2 CRTC3 CTOF	BCL11B		
BCL3 BCL6 BCL9 BRD4 BTG1 C15orf65 CACNA1D CALR CAMTA1 CARS CBL CDC66 CD79A CD744 CD79A CDH11 CDK8 CDKN2C CDX2 CEBPA CHIC2 CLTCL1 CNBP COX6C CREB3L2 CRTC3 CTCF	BCL2L11		
BCL3 BCL6 BCL9 BRD4 BTG1 C15orf65 CACNA1D CALR CAMTA1 CARS CBL CDC66 CD79A CD744 CD79A CDH11 CDK8 CDKN2C CDX2 CEBPA CHIC2 CLTCL1 CNBP COX6C CREB3L2 CRTC3 CTCF	BCL2L2		
BCL9 BRD4 BTG1 DT5orf65 CACNA1D CACNA1D CALR CAMTA1 CARS CASP8 CBL CCDC6 CD74 CD74 CD79A CDH11 CDK8 CDKN2C CDK8 CDKN2C CDK2 CEBPA CHIC2 CLTCL1 CNBP COX6C CREB3L2 CRTC3 CTCF	BCL3		
BRD4 BTG1 C15orf65 CACNA1D CALR CAMTA1 CARS CASP8 CBL CCDC6 CD74 CD79A CD79A CD79A CD79A CD79A CD79A CD79A CD74 CD79A CD74 CD79A CD74 CD79A CD74 CD79A CD74 CD79A CD74 CD74 CD74 CD79A CD74 CD74 CD74 CD74 CD74 CD74 CD74 CD74	BCL6		
BTG1 C15orf65 CACNA1D CALR CAMTA1 CARS CAMTA1 CARS CASP8 CBL CCDC6 CD74 CD74 CD79A CD74 CD79A CD74 CD79A CD74 CD79A CD74 CD74 CD74 CD74 CD74 CD74 CD74 CD74	BCL9		
C15orf65 CACNA1D CALR CAMTA1 CARS CASP8 CBL CCDC6 CD74 CD79A CD79A CD79A CDH11 CDK8 CDKN2C CDK8 CDKN2C CDK2 CEBPA CHIC2 CLTCL1 CNBP COX6C COX6C CREB3L2 CRTC3 CTCF	BRD4		
CACNA1D CALR CAMTA1 CARS CASP8 CBL CCDC6 CD74 CD74 CD79A CDH11 CDK8 CDKN2C CDK8 CDKN2C CDK2 CEBPA CHIC2 CLTCL1 CNBP COX6C COX6C CREB3L2 CRTC3 CTCF	BTG1		
CALR CAMTA1 CARS CASP8 CBL CCDC6 CD74 CD79A CD79A CD79A CDH11 CDK8 CDKN2C CDK8 CDKN2C CDK2 CEBPA CHIC2 CLTCL1 CNBP COX6C CNBP COX6C CREB3L2 CRTC3 CTCF	C15orf65		
CAMTA1 CARS CASP8 CBL CCDC6 CD74 CD79A CD79A CDH11 CDK8 CDKN2C CDK8 CDKN2C CDK2 CEBPA CHIC2 CLTCL1 CNBP COX6C COX6C CREB3L2 CRTC3 CCTCF	CACNA1D		
CARS CASP8 CBL CCDC6 CD74 CD79A CD79A CDH11 CDK8 CDKN2C CDKN2C CDK2 CEBPA CHIC2 CLTCL1 CNBP COX6C COX6C CREB3L2 CRTC3 CCTCF	CALR		
CASP8 CBL CCDC6 CD74 CD79A CD19A CDH11 CDK8 CDKN2C CDKN2C CDK2 CEBPA CHIC2 CLTCL1 CNBP COX6C CREB3L2 CRTC3 CTCF	CAMTA1		
CBL CCDC6 CD74 CD79A CD79A CDH11 CDK8 CDKN2C CDK2 CDX2 CEBPA CHIC2 CLTCL1 CNBP COX6C COX6C CREB3L2 CRTC3 CCTCF	CARS		
CCDC6 CD74 CD79A CDH11 CDK8 CDKN2C CDX2 CEBPA CHIC2 CLTCL1 CNBP COX6C CREB3L2 CRTC3 CTCF	CASP8		
CD74 CD79A CDH11 CDK8 CDKN2C CDK2 CDX2 CEBPA CHIC2 CLTCL1 CNBP COX6C CREB3L2 CRTC3 CTCF	CBL		
CD79A CDH11 CDK8 CDKN2C CDX2 CEBPA CHIC2 CLTCL1 CNBP COX6C CREB3L2 CRTC3 CTCF	CCDC6		
CDH11 CDK8 CDKN2C CDX2 CEBPA CHIC2 CLTCL1 CNBP COX6C CREB3L2 CRTC3 CTCF	CD74		
CDK8 CDKN2C CDX2 CEBPA CHIC2 CLTCL1 CNBP COX6C CREB3L2 CRTC3 CTCF	CD79A		
CDKN2C CDX2 CEBPA CHIC2 CLTCL1 CNBP COX6C CREB3L2 CRTC3 CTCF	CDH11		
CDX2 CEBPA CHIC2 CLTCL1 CNBP COX6C CREB3L2 CRTC3 CTCF	CDK8		
CEBPA CHIC2 CLTCL1 CNBP COX6C CREB3L2 CRTC3 CTCF			
CHIC2 CLTCL1 CNBP COX6C CREB3L2 CRTC3 CTCF	CDKN2C		
CLTCL1 CNBP COX6C CREB3L2 CRTC3 CTCF			
CNBP COX6C CREB3L2 CRTC3 CTCF	CDX2		
COX6C CREB3L2 CRTC3 CTCF	CDX2 CEBPA		
CREB3L2 CRTC3 CTCF	CDX2 CEBPA CHIC2		
CRTC3 CTCF	CDX2 CEBPA CHIC2 CLTCL1		
CTCF	CDX2 CEBPA CHIC2 CLTCL1 CNBP		
	CDX2 CEBPA CHIC2 CLTCL1 CNBP COX6C		
CTNNA1	CDX2 CEBPA CHIC2 CLTCL1 CNBP COX6C CREB3L2		
	CDKN2C CDX2 CEBPA CHIC2 CLTCL1 CNBP COX6C CREB3L2 CRTC3 CTCF		
DDIT3	CDX2 CEBPA CHIC2 CLTCL1 CNBP COX6C CREB3L2 CRTC3		
DDX41	CDX2 CEBPA CHIC2 CLTCL1 CNBP COX6C CREB3L2 CRTC3 CTCF		

Genes	Genes
DEK	IRF4
EBF1	ITK
ECT2L	JAZF1
ELK4	JUN
EPHA3	КАТ6В
ERCC1	KCNJ5
ERCC3	KDSR
ERG	KIAA1549
ETV1	KIF5B
ETV5	KLF4
ETV6	KLHL6
EWSR1	KLK2
EXT1	LHFPL6
EXT2	LIFR
EZR	LPP
FAM46C	LRP1B
FCRL4	MAF
FGF23	MAML2
FGFR10P	MCL1
FHIT	MDS2
FLI1	MECOM
FNBP1	MLF1
FOXA1	MLLT10
F0X01	MLLT11
F0X03	MLLT3
FOXP1	MN1
FSTL3	MSI2
FUS	MUC1
GATA2	MYD88
GID4	NCOA2
GMPS	NDRG1
GRIN2A	NFIB
HEY1	NFKB2
HIST1H4I	NIN
HLF	NKX2-1
HMGA2	NOTCH2
HMGN2P46	NR4A3
НООКЗ	NUP214
HOXA11	NUP93
HOXA13	NUP98
НОХА9	NUTM1
HOXB13	OLIG2
HOXD13	PAFAH1B2
HSP90AA1	PAX3
HSP90AB1	PAX5
IGF1R	PAX8
IKZF1	PBX1
IL7R	PCM1
(continued in next column)	(continued on following page)

Genes	Genes
PDE4DIP	WWTR1
POU2AF1	XPC
PRCC	YWHAE
PRRX1	ZBTB16
PTPRC	ZNF217
RAC1	ZNF331
RHOH	ZNF384
RMI2	ZNF521
RPL22	ABCB11
RPN1	ACD
RUNX1T1	ACVR1B
SBDS	ADGRA2
SDC4	AJUBA
SETBP1	ALOX12B
SFPQ	ANKRD26
SLC34A2	APLNR
SNX29	ARFRP1
SOX10	ARHGAP35
SOX2	ARHGEF12
SPECC1	ARID5B
SPRED1	ASPSCR1
SRGAP3	ASXL2
SRSF2	AURKA
SRSF3	AXIN1
STAT3	AXIN2
STAT5B	AXL
STIL	BCL10
SUZ12	BCL2L1
SYK	BCL2L12
TAF15	BIRC3
ТВХТ	BRD3
TCEA1	BTG2
TCF7L2	ВТК
TERT	BUB1B
TET1	CBFA2T3
TFRC	CBLB
TGFBR1	CD22
TGFBR2	CD70
THRAP3	CD79B
TPM3	CDH23
TPM4	CDKN1A
TRIM27	CHD2
TRRAP	CHD4
TSHR	CHN1
USP6	CIITA
VTI1A	CNOT3
WDCP	CREB1
WISP3	CREB3L1
(continued in next column)	(continued on following page)

·	3	5	•	`	,
Genes					
WWTR1					
XPC					
YWHAE					
ZBTB16					
ZNF217					
ZNF331					
ZNF384					
ZNF521					
ABCB11					
ACD					
ACVR1B					
ADGRA2					
AJUBA					
ALOX12B					
ANKRD26					
APLNR					
ARFRP1					
ARHGAP35					
ARHGEF12					
ARID5B					
ASPSCR1					
ASXL2					
AURKA					
AXIN1					
AXIN2					
AXL					
BCL10					
BCL2L1					
BCL2L12					
BIRC3					
BRD3					
BTG2					
BTK					
BUB1B					
CBFA2T3					
CBLB					
CD22					
CD70					
CD79B					
CD79B CDH23					
CDH23 CDKN1A					
CHD2					
CHD2 CHD4					
CHN1					
CIITA					
CNOT3					
CREB1					
CREB3L1					

Genes	Genes
CRLF2	FIP1L1
CRTC1	F0X04
CSF3R	FRS2
CTLA4	GABRA6
CUL3	GALNT12
CUL4A	GATA1
CUX1	GATA4
CXCR4	GATA6
CYP17A1	GEN1
CYP2D6	GLI1
DDB2	GOPC
DDR1	GPC3
DDX3X	GPS2
DIS3	GREM1
DIS3L2	GRM3
DKC1	GSK3B
DMC1	H2AFX
DNA2	HDAC1
DNAJB1	HGF
DOT1L	HIF1A
EED	HIST1H3C
EGLN1	HLA-A
EIF1AX	HRG
EIF4A2	HSD3B1
ELF3	ID3
ELOC	IFNGR1
EME2	IGF2
EML4	ІКВКЕ
EMSY	INHBA
EPHA5	INPP4B
EPHA7	IRF1
EPHB1	IRF2
EPHB4	IRS2
ERC1	KDM5A
ERCC4	KEAP1
ERCC5	KEL
ERCC6	KIF1B
EREG	LDLR
ERRFI1	LIG1
ETS1	LMNA
ETV4	LM01
EX01	LM02
FAT3	LTK
FBX011	MAFB
FEN1	MAGI2
FGF12	MALT1
FGF14	MAP3K13
FGF6	MAPK1
(continued in next column)	(continued on following page)

Genes	Genes
MAPK3	PPP2R2A
MBD4	PPP6C
MDC1	PREX2
MED12	PRF1
MERTK	PRKACA
MGA	PRKCH
MGMT	PRKCI
MKNK1	PRKN
MTAP	PRSS1
MTCP1	PRSS8
MUS81	PTCH2
MYH11	PTK2B
MYH9	PTPN22
NCOA3	PTPRD
NCOA4	PTPRO
NCOR1	PTPRT
NFE2L2	QKI
NFKBIE	RAD21
NONO	RAD51
NOTCH3	RAD51B
NSD2	RAD52
NSD3	RAD54B
NT5C2	RAD54L
P2RY8	RANBP2
PAK1	RARA
РАКЗ	RASA1
PARP1	RBBP8
PARP2	RBM10
PARP3	RCAN1
PAX7	RECQL4
PDGFB	REL
PDK1	RELA
PHF6	RHEB
PIK3C2B	RHOA
PIK3C2G	RINT1
PIK3CB	
PIK3CD	RPA1
PIK3CG	RPA2
PIK3R2	RPA3
PLAG1	RPA4
PLCG2	RPL10
PML	RPL5
POLD2	RPTOR
POLD3	RRAS2
POLD4	SEM1
POLH	SERPINB3
POLQ	SET
PPM1D	SGK1
(continued in next column)	

		-			
Genes					
PPP2R2A					
PPP6C					
PREX2					
PRF1					
PRKACA					
PRKCH					
PRKCI					
PRKN					
PRSS1					
PRSS8					
PTCH2					
PTK2B					
PTPN22					
PTPRD					
PTPRO					
PTPRT					
QKI					
RAD21					
RAD51					
RAD51B					
RAD52					
RAD54B					
RAD54L					
RANBP2					
RARA					
RASA1					
RBBP8					
RBM10					
RCAN1					
RECQL4					
REL					
RELA					
RHEB					
RHOA					
RINT1					
RIT1					
RPA1					
RPA2					
RPA3					
RPA4					
RPL10					
RPL5					
RPTOR					
RRAS2					-
SEM1					
SERPINB3					
SET					
SGK1	laart	inued on fall-	vina na -	2)	
	(cont	inued on follow	ving page	e)	

Genes
SH2B3
SLIT2
SMAD3
SMARCA1
SMC3
SNCAIP
SOS1
SOX9
SPTA1
SS18
SSBP1
STAG2
STAT4
STAT6
TAF1
TAL1
TAL2
TBX3
TCF3
ТЕК
TERF2IP
TET2
TFE3
TFEB
TFG
TIPARP
TLX3
TNF
ТОРЗА
ТОРЗВ
TRAF3
TRAF7
TSHZ3
TYK2
TYR03
UBE2T
VEGFA
WAS
ХРА
XP01
XRCC1
XRCC2
XRCC3
ZBTB2
ZFHX3
ZNF703
ZRSR2

TABLE A3. Genomic Regions Sequenced for PMS2, MSH6, MSH2, and

 MLH1

TABLE A3. Genomic Regions Sequenced for PMS2, MSH6, MSH2, and MLH1 (continued)

Chromosome	Start	Stop	Gene
chr7	5,986,749	5,987,635	PMS2
chr7	5,989,790	5,989,970	PMS2
chr7	5,991,963	5,992,072	PMS2
chr7	5,995,524	5,995,648	PMS2
chr7	5,997,316	5,997,438	PMS2
chr7	5,999,098	5,999,290	PMS2
chr7	6,002,443	6,002,651	PMS2
chr7	6,003,680	6,003,807	PMS2
chr7	6,003,962	6,004,073	PMS2
chr7	6,005,882	6,006,046	PMS2
chr7	6,008,987	6,009,029	PMS2
chr2	47,783,224	47,783,503	MSH6
chr2	47,790,912	47,791,133	MSH6
chr2	47,795,879	47,796,073	MSH6
chr2	47,798,596	47,801,165	MSH6
chr2	47,803,405	47,803,695	MSH6
chr2	47,804,895	47,805,037	MSH6
chr2	47,805,603	47,805,717	MSH6
chr2	47,806,189	47,806,368	MSH6
chr2	47,806,437	47,806,661	MSH6
chr2	47,806,764	47,806,870	MSH6
chr2	47,403,182	47,403,412	MSH2
chr2	47,408,386	47,408,565	MSH2
chr2	47,410,079	47,410,382	MSH2
chr2	47,412,399	47,412,570	MSH2
chr2	47,414,254	47,414,428	MSH2
chr2	47,416,281	47,416,439	MSH2
chr2	47,429,727	47,429,951	MSH2
chr2	47,445,533	47,445,667	MSH2
chr2	47,463,016	47,463,164	MSH2
chr2	47,466,643	47,466,818	MSH2
chr2	47,470,950	47,471,072	MSH2
chr2	47,475,010	47,475,280	MSH2
chr2	47,476,352	47,476,581	MSH2
chr2	47,478,257	47,478,529	MSH2
chr2	47,480,681	47,480,881	MSH2
chr2	47,482,764	47,482,959	MSH2
chr3	36,993,521	36,993,673	MLH1
chr3	36,996,604	36,996,719	MLH1
chr3	37,000,940	37,001,063	MLH1
chr3	37,004,386	37,004,484	MLH1
chr3	37,006,976	37,007,073	MLH1
chr3	37,008,799	37,008,915	MLH1
chr3	37,011,805	37,011,872	MLH1
chr3	37,011,996	37,012,109	MLH1
chr3	37,014,417	37,014,554	MLH1
chr3	37,017,491	37,017,609	MLH1 MLH1
chr3	37,020,295	37,020,473	MLH1 MLH1
0.110	(continued in nex		IVI∟∏I

Start	Stop	Gene
37,025,622	37,026,017	MLH1
37,028,769	37,028,942	MLH1
37,040,171	37,040,304	MLH1
37,042,253	37,042,341	MLH1
37,047,504	37,047,693	MLH1
37,048,502	37,048,619	MLH1
37,048,889	37,049,027	MLH1
37,050,471	37,050,663	MLH1
	37,025,622 37,028,769 37,040,171 37,042,253 37,047,504 37,048,502 37,048,889	37,025,622 37,026,017 37,028,769 37,028,942 37,040,171 37,040,304 37,042,253 37,042,341 37,047,504 37,047,693 37,048,502 37,048,619 37,048,889 37,049,027

TABLE A4. Variants Considered Pathogenic/Likely Pathogenic for PMS2, MSH6, MSH2, and MLH1

MLH1	MSH2	MSH6	PMS2
R659* c.1975C>T	c.942+3A>T	F1088fs c.3261dupC	D414fs c.1239delA
E102K c.304G>A	R524P c.1571G>C	F1088fs c.3261delC	S46I c.137G>T
119F c.55A>T	A636P c.1906G>C	F1088fs c.3260_3261dupCC	R107W c.319C>T
R226* c.676C>T	D660fs c.1977dupA	T1219I c.3656C>T	P246fs c.736_741delins11
K84E c.250A>G	A230fs c.687dupA	K1233fs c.3699_3702delAGAA	E410* c.1228G>T
Q516* c.1546C>T	E357* c.1069G>T	R240* c.718C>T	c3_19del22
E605del c.1814_1816delAAG	A309fs c.924_925dupAG	E1322* c.3964G>T	E172fs c.516delA
G67R c.199G>A	C333Y c.998G>A	E744fs c.2230dupG	Q205P c.614A>C
Q409* c.1225C>T	A913fs c.2736delA	E847* c.2539G>T	Q237* c.709C>T
c.116+5G>A	E262* c.784G>T	F1104fs c.3312delT	M1? c.3G>A
P640S c.1918C>T	G751R c.2251G>A	W372* c.1116G>A	M1? c.2T>C
Y157fs c.469delT	Q314* c.940C>T	E1234fslc.3699dupA	R563* c.1687C>T
W538* c.1614G>A	Q793* c.2377C>T	R379fs c.1135_1139delAGAGA	Y149fsjc.444delC
c.546-1G>A	Q690* c.2068C>T	R1242H c.3725G>A	l611fs c.1831dupA
c.677+1delG	E483* c.1447G>T	E708* c.2122G>T	E109fs c.325delG
P648L c.1943C>T	N311fs c.928delC	R248fs c.741dupA	c.251-1G>C
c.208-1G>A	Q337* c.1009C>T	R298* c.892C>T	R211* c.631C>T
N551fsjc.1653delC	W117* c.351G>A	R248*lc.742C>T	E253* c.757G>T
R755fs c.2263dupA	G47fslc.140delG	K218fs c.651dupT	c.24-1G>A
E71* c.211G>T	Q288* c.862C>T	Q698* c.2092C>T	c.706-1G>A
R265Clc.793C>T	c.942+2T>C	C694fsjc.2079dupA	Y519fs c.1555_1573del19
c.884+1G>T	T806fs c.2415_2431del17	V1160F c.3478G>T	F231fsjc.690_691delGT
c.545+1G>A	G587Rjc.1759G>C	R33fs c.97_101delinsA	R315* c.943C>T
A681Tlc.2041G>A	F88fs c.264delT	E877* c.2629G>T	
C494fs c.1480delT	c.366+1G>T	Q177* c.529C>T	
D74fsjc.221_237del17	Q409fs c.1226_1227delAG	K606fs c.1815_1816delTA	
c.1559-2A>T	S271fsjc.811_814delTCTG	Q939* c.2815C>T	
c.885-1G>C	G753* c.2257G>T	W628*lc.1884G>A	
T117Mlc.350C>T	G25fs c.72_85del14	D380fs/c.1134_1135delAA	
L555R c.1664T>G	c.1277-2A>G	G599fslc.1794dupA	
C77Y c.230G>A	E698fs c.2091dupT	T1284fs c.3847_3850dupATTA	
G98Rlc.292G>C	c.1760-1G>T	H1248_S1257del[c.3744_3773del30	
D41Hlc.121G>C	Q252fsjc.754delC	Q572*lc.1714C>T	
E78_S83del[c.232_249del18	Q377* c.1129C>T	V717fsjc.2150_2153delTCAG	
A21Elc.62C>A	G71* c.211G>T	N184fs c.552_555delTAAA	
T82Alc.244A>G	G126fsjc.377delG	E1187fs c.3561_3571del11	
K196fs c.588delA	P259fslc.775_776delinsT	E1234* c.3700G>T	
D450fs c.1348delG	G751R c.2251G>C	G237fsjc.710delG	
E23* c.67G>T	L556W[c.1667T>G	K125fsjc.375delA	
T82Plc.244A>C	P349Llc.1046C>T	T1085fs c.3252dupT	
D41Vlc.122A>T	G674D c.2021G>A	c.3646+1G>T	
D41Glc.122A>G	R680* c.2038C>T	G1292fsjc.3874_3890del17	
V506Alc.1517T>C		Q593*lc.1777C>T	
c.380+1G>A		c.3439-1G>T	
K618del c.1852_1854delAAG		E30* c.88G>T	
E37K/c.109G>A		Y977fsjc.2930dupA	
E37NC:109G>A E324* c.970G>T		E796fsjc.2386delG	
A21V c.62C>T		F1245fslc.3729_3732dupATTA	
· ·		· · ·	
E297* c.889G>T	(continued	S330*(c.989C>G on following page)	

Ali-Fehmi et al

TABLE A4. Variants Considered Pathogenic/Likely Pathogenic for PMS2, MSH6, MSH2, and MLH1 (continued)

MLH1	MSH2	MSH6	PMS2
742* c.2224C>T		Y214* c.642C>A	
		T86fs c.255delC	
		R379fs c.1128_1132delAAAGA	
		W970* c.2910G>A	
		Q835* c.2503C>T	
		D1112fs c.3332_3335dupATGA	
		C783fs c.2348_2349delGT	
		W50* c.149G>A	
		S536fs c.1607delG	
		S702* c.2105C>G	
		R1035* c.3103C>T	
		S1141fs c.3419dupA	
		E956fslc.2865dupA	
		R1068* c.3202C>T	
		Y1066* c.3198T>A	
		M1267Rjc.3800T>G	
		G1105fsjc.3313_3334del22	
		F432S c.1295T>C	
		R1176fs c.3525delT	
		A1320fs c.3959_3962delCAAG	
		K1004* c.3009_3010delinsCT	
		G1292fs c.3860_3872dup13	
		c.3647-1G>A	
		K1319fs c.3951_3955dupTAGAA	
		K1140fs c.3416dupG	
		Q593fs c.1776delA	
		A1293fs c.3876delA	
		A1320fs c.3957delA	
		S564* c.1691C>G	
		Q1146* c.3436C>T	
		E544* c.1630G>T	
		R1334Q c.4001G>A	
		E1193Klc.3577G>A	
		R1076C c.3226C>T	
		R495* c.1483C>T	
		V1192fsjc.3573dupT	
		Q776* c.2326C>T	
		c.3173-1G>T	
		C1165fs c.3491dupT	
		L447fsjc.1340_1341delTG	
		S154* c.461C>A	
		V1164fsjc.3490dupG	
		E368* c.1102G>T	
		G56fs c.166_178del13	
		P1295fs c.3878_3881dupCTTG	
		R300fsjc.896dupA	
		Q1314fslc.3938_3941dupTTCA	
		K1000fsjc.2999delA	
		P362fs c.1085delC	

TABLE A4. Variants Considered Pathogenic/Likely Pathogenic for PMS2, MSH6, MSH2, and MLH1 (continued)

MLH1	MSH2	MSH6	PMS2
		W50* c.150G>A	
		K246fs c.738_741delAAAA	
		A1293fs c.3876_3877insCCATA	
		K545fs c.1634_1637delAAGA	
		S156* c.467C>G	
		S677fs c.2029dupA	
		N984fsjc.2950_2951delAA	
		T928fs c.2781dupT	
		R1172fs c.3516_3517delAG	
		c.3172+1G>A	
		R732* c.2194C>T	
		Q419* c.1255C>T	
		Q160* c.478C>T	
		A48fs c.141_142delinsC	