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EXECUTIVE SUMMARY 
Shared mobility services, including carsharing, bikesharing, scooter sharing, and transportation 
network services (TNCs) (also called ridesouring and ridehailing), offer flexible, on-demand 
alternatives to personal auto use that can also supplement public transit and active modes of 
transportation. While early adoption of shared mobility services has primarily been led by younger 
individuals with higher levels of income and education (Shaheen et al., 2017), recent evidence 
suggests that lower-income people of color (POC) without access to personal vehicles are among 
the heaviest users of TNC services (Lazarus, et al., 2020, Brown, 2018). Lower-income POC are 
using TNCs for essential trip purposes, including commuting and accessing healthcare, groceries, 
and public transportation (Lazarus, et al., 2020). It is widely anticipated that vehicle automation 
and electrification may further enhance the affordability of shared on-demand services as well as 
reduce the negative environmental and safety impacts of road transportation in general(Greenblatt 
and Shaheen, 2015).  

Pooling, in which multiple passengers traveling along similar paths are matched and transported 
in the same vehicle, has been projected to reduce the congestion and emissions impacts of shared 
automated vehicle (SAV) fleets (Viegas et al., 2016; WEF and BCG, 2018; Greenblatt and 
Shaheen, 2015; Greenblatt and Saxena, 2015). Yet prior to the COVID-19 pandemic, which 
spurred the suspension of many existing pooled on-demand ride services, the rate of pooled ride 
requests among users of the TNC services Lyft and Uber was relatively low, resulting in negligible 
impacts to overall vehicle occupancies (CARB, 2019; Schaller, 2018; Shaheen and Cohen, 2019). 
In 2018, only about 30 percent of TNC users surveyed across four metropolitan regions in 
California considered requesting a pooled ride more than half the time they used TNCs (Lazarus 
et al., 2021). Ultimately, the ability to fully leverage the potential societal benefits offered by the 
three revolutions in urban transportation (electrification, automation, and sharing) relies heavily 
on the ubiquity of individuals willing to pool rides as well as an equitable distribution of the 
benefits that innovative mobility offers. 

This research investigates strategies to improve the mobility of low-income travelers by 
incentivizing the use of electric SAVs (SAEVs) and public transit. We employ two agent-based 
simulation engines, an activity-based travel demand model of the San Francisco Bay Area, and 
vehicle movement data from the San Francisco Bay Area and the Los Angeles Basin to model 
emergent travel behavior of commute trips in response to subsidies for TNCs and public transit. 
Sensitivity analysis was conducted to assess the impacts of different subsidy scenarios on mode 
choices, TNC pooling and match rates, vehicle occupancies, vehicle miles traveled (VMT), and 
TNC revenues. The scenarios varied in the determination of which travel modes and income levels 
were eligible to receive a subsidy of $1.25, $2.50, or $5.00 per ride. Four different mode-specific 
subsidies were investigated, including subsidies for 1) all TNC rides, 2) pooled TNC rides only, 
3) all public transit rides, and 4) TNC rides to/from public transit only. Each of the four mode-
specific subsidies were applied in scenarios which subsidized travelers of all income levels, as well 
as scenarios that only subsidized low-income travelers (earning less than $50,000 annual 
household income). Simulations estimating wait times for TNC trips in both the San Francisco 
Bay Area and Los Angeles regions also revealed that wait times are distributed approximately 
equally across low- and high-income trip requests. 
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Key Findings 
We find that subsidizing TNCs and public transit 
by $1.25 to $5.00 per ride can incentivize greater 
usage of these modes with broad implications that 
vary across the subsidies explored. Figure 1 and 
Figure 2 display the sensitivity of a) overall mode 
share and b) low-income mode share to subsidies 
for all TNC rides and pooled TNC rides, 
respectively. Widespread savings in the consumer 
costs of all TNCs, as are expected from the rollout 
of SAEV technology, were found to increase the 
overall TNC mode share in the San Francisco Bay 
Area by an estimated 2,100 daily trips in response 
to the first $1.25 of TNC fare reduction and an 
estimated 10,000 daily trips at the $5 subsidy level. 
With the majority of new trips being shifted away 
from public transit and active modes, there were 
little additional environmental benefits from such 
scenarios beyond those achieved by the SAV or 
SAEV technology itself. Travelers shifting from 
public transit and active modes to TNCs benefited 
from faster travel times, although they incurred 
increased travel costs on the order of $20 per trip, 
on average. Using a fixed fleet size, the BEAM San 
Francisco Bay Area Model estimates that such 
growth in TNC adoption produces a net increase in revenues after subtracting subsidies.  

The results suggest that further reduction of the price of pooled TNCs is necessary to achieve 
higher utilization of SAEVs. Subsidies targeted only for pooled TNC rides resulted in substantial 
mode shifts from ride-alone to pooled TNCs with travel time increases of just three minutes, on 
average. At the lowest subsidy level ($1.25/ride), the overall mode share of pooled TNCs doubled, 
while at the highest level ($5/ride), the portion of ride alone TNCs fell to almost zero across income 
levels. The pooling match rate, or the portion of pooled TNC ride requests that are successfully 
matched, increased with respect to the pooling request rate (the portion of TNC ride requests that 
are for pooled service). Subsidies for pooled TNCs for all riders more than tripled the overall 
pooled TNC request rate, resulting in a 260% increase in the match rate from 12% to 32% at the 
$5 level and 19% increase in the ratio of TNC person miles traveled (PMT) to VMT. While 
subsidies for pooled TNCs targeting low-income riders achieved similar mode shifts among the 
subsidized population, they resulted in smaller increases in the pooled match rate and PMT to 
VMT ratios, reflecting the network effects of widespread adoption on the efficiency of pooled on-
demand services. Lower pooled request rates across the region in the scenarios subsidizing only 

a) Overall TNC mode share 

b) Low-income TNC mode share 
Figure 1. Sensitivity of TNC mode share 
to subsidies for all TNC rides, all income 

levels 
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low-income travelers reduced the likelihood that requested pooled rides were actually matched, 
thus limiting the potential benefits of offering such a subsidy. 

 

 
a)  Overall TNC mode share   b) Low-income TNC mode share 

Figure 2. Sensitivity of TNC mode share to subsidies for pooled TNC rides, all income levels 
 
Subsidies for public transit were the most effective in reducing regional VMT by eliciting 
substantial mode shifts away from personal vehicle use. A subsidy of just $1.25 resulted in about 
a 12% increase in overall public transit use (+1.8% mode share) with primary sources of mode 
shifts coming from driving alone, followed by biking, walking, and riding alone in a TNC. At the 
$5 subsidy level, a 26% increase in overall public transit mode share resulted in a 2.8% reduction 
in total VMT across the San Francisco Bay Area. On average, travelers shifting to public transit in 
the $5 subsidy scenario increased travel times by about 18 minutes, although those that shifted 
from TNCs incurred travel time increases of about one hour, on average.  

Recommendations for Future Work 
We conclude with a discussion of recommendations and considerations for further research for the 
development of equitable strategies to effectively manage demand for SAEV services. This 
research suggests that subsidies for pooled on-demand mobility services can promote mobility 
while improving the efficiency of these services. Although widespread adoption of pooled services 
is integral in generating the network effects needed for sustainable service, targeted strategies are 
needed to support populations that have been historically disadvantaged by the exclusivity of a 
car-centric transportation system.  

Further investigation of the effects of pricing and subsidy structures on policy outcomes is 
recommended. This research suggests that while revenue increases can offset subsidies in some 
situations, a feebate structure for transportation pricing—in which fees are applied to ride-alone 
service to cover the costs of pooling subsidies for particular populations—may be particularly 
effective for incentivizing all travelers to pool while supporting disadvantaged communities in 
overcoming the financial barriers of on-demand mobility. While a single income level was 
employed in this study to determine eligibility for the simulated subsidies region-wide, further 
research is also needed to investigate the potential benefits of a more targeted eligibility structure 
based on additional criteria (e.g., home or work location, housing burden).  
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This study suggests that SAEV services are capable of achieving equal distributions of wait times 
across low- and high-income trip requests in both the San Francisco Bay Area and Los Angeles 
regions. Further investigation is recommended to inform the development of regulations that 
ensure an equitable distribution of on-demand mobility service levels using indicators such as wait 
times and travel costs. The California Public Utilities Commission recently implemented such a 
regulation for the level of service provided by TNC wheelchair accessible vehicles by establishing 
response time standards specific to each geographic area of the state (CA Pub Util Code § 5440.5). 
Such policies may be integral in mitigating for the potentially inequitable consequences of pricing 
strategies that induce travelers with greater price sensitivity to choose modes with worse levels of 
service.  

Further research is needed to extend the findings of this study to a broader array of trip contexts 
including other essential and leisure trip purposes, geographic regions, and time periods (e.g., 
weekend travel, emergency/evacuation scenarios). Importantly, the models and scenarios 
investigated in this study should also be revisited once the lasting behavioral effects of the COVID-
19 pandemic become increasingly evident. 
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INTRODUCTION 
Automobile ownership has historically been a major determinant in access to job opportunities and 
other aspects of a high quality of life across most urban regions of the United States, particularly 
for those living outside of the urban core or in areas otherwise poorly served by public transit 
(Blumenberg and Pierce, 2016; Brown, 2017). Shared mobility services, including carsharing, 
bikesharing, scooter sharing, and transportation network services (TNCs) (also called ridesouring 
and ridehailing), offer flexible, on-demand alternatives to personal auto use that can also 
supplement public transit and active modes of transportation. Vehicle automation and 
electrification are expected to further improve the affordability of shared on-demand services and 
reduce the negative environmental and safety impacts of road transportation in general(Greenblatt 
and Shaheen, 2015). However, the potential societal benefits of these three revolutions in urban 
transportation (electrification, automation, and sharing) rely heavily on the ubiquity of individuals 
willing to pool rides in addition to the assurance that these benefits are equitably distributed across 
the population. 

Pooling, in which multiple passengers traveling along similar paths are matched and transported 
in the same vehicle, has been projected to reduce the congestion and emissions impacts of shared 
automated vehicle (SAV) fleets (Viegas et al., 2016; WEF and BCG, 2018; Greenblatt and 
Shaheen, 2015; Greenblatt and Saxena, 2015). Pooling can be carried out in many forms, 
including: 1) app-based pooling services that typically match commuters and facilitate nominal 
reimbursements of drivers by passengers or employers (e.g., Waze Carpool, Scoop), 2) pooled 
TNC services that match on-demand ride requests that are typically offered at a discount to ride 
alone service (e.g., Lyft Shared rides, Uber Pool), and 3) microtransit services which pool rides in 
larger vehicles such as vans or shuttles using either fixed or dynamic routes and either fixed or 
dynamic schedules (e.g., Via, Bridj, Chariot). Public health concerns amid the COVID-19 
pandemic prompted many companies to constrain or suspend pooled ride services starting in 
February 2020.  

Yet even prior to the COVID-19 pandemic, the rates of pooled ride requests among users of the 
TNC services Lyft and Uber were relatively low, resulting in negligible impacts to overall vehicle 
occupancies (CARB, 2019; Schaller, 2018; Shaheen and Cohen, 2019). In 2018 in New York City, 
for example, only about 22 percent of requested Lyft Line (now Lyft Shared) rides and 23 percent 
of Uber Pool rides resulted in matched trips (Schaller, 2018). Another study across the state of 
California in 2018 found that the average vehicle occupancy of ride-alone and pooled TNC trips 
were about the same, at about 1.55 passengers per vehicle (CARB, 2019). In a survey distributed 
across four California metropolitan regions in 2018, Lazarus, et al. (2020) find that only about 30 
percent of TNC users consider requesting a pooled ride more than half the time they use TNCs, 
although heavy TNC users - those that use TNCs more than three days per week - are significantly 
more likely to consider pooling than less frequent users. The study also finds that commute trips 
are the most attractive TNC trip purpose for pooling and quantifies significant differences in the 
time and price tradeoffs of low- and high-income TNC users, finding that high-income users 
(earning $100,000 or more) are among the least likely to pool rides.  
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While early adoption of shared mobility services has primarily been led by younger individuals 
with higher levels of income and education (Shaheen et al., 2017), recent evidence suggests that 
lower-income people of color (POC) without access to personal vehicles are among the heaviest 
users of TNC services (Lazarus, et al., 2020, Brown, 2018). In particular, lower-income POC are 
using TNCs for essential trip purposes, including commuting and accessing healthcare, groceries, 
and public transportation (Lazarus, et al., 2020). Lower income TNC users have a lower value of 
in-vehicle time than other users, resulting in a greater willingness to accept the travel time increases 
inherent in pooled rides in return for cost savings. As a result, subsidization and promotional offers 
for pooled rides and rides connecting to public transit are attractive strategies to promote pooling 
among heavy users while improving the affordability of on-demand services for disadvantaged 
populations. 

This research investigates strategies to improve the mobility of low-income travelers by 
incentivizing the use of SAEVs and public transit. Sensitivity analyses of several subsidy scenarios 
were conducted using agent-based simulation models of the San Francisco Bay Area and the Los 
Angeles regions, revealing key opportunities to increase TNC vehicle occupancies while 
supporting low-income communities in accessing affordable on-demand shared mobility and 
public transit services. Regional-level outcomes of the subsidies are examined, including the 
sources and characteristics of modal shifts to subsidized modes, the impacts of increased pooling 
request rates on pooled match rates, TNC vehicle occupancies and the portion of VMT attributed 
to travel without passengers (deadheading) as well as the tradeoffs in the amounts of subsidy 
incentives distributed versus additional TNC revenue generated. In the following section, we 
provide an overview of the methodological approach of this study. Results of model calibration 
and sensitivity analyses are presented next, followed by a discussion of key findings, study 
limitations, and conclusions.  

METHODOLOGICAL OVERVIEW 
This study employs two agent-based simulation models for the analysis of the sensitivity of 
regional travel behavior to policy initiatives that could expand the benefits of the “Three 
Revolutions” in mobility (shared, electric, and connected/automated vehicles) for low-income 
groups. The Behavior Energy Automation Mobility framework (BEAM) model, described more 
fully in the Appendix, was selected for assessing active transportation and social equity impacts 
of pricing policies. An existing activity-based travel model for the nine county San Francisco (SF) 
Bay Area implemented in BEAM was used, which includes multi-modal travel behavior and 
automated electric fleet operations for both ride-alone and pooled on-demand ride services (e.g., 
Uber and Uber Pool, Lyft and Lyft Shared Rides). The model simulates the travel decisions of a 
synthetic population of individuals, each with designated socio-demographic attributes, vehicle 
ownership, and activity plans determining home and work locations and desired commute travel 
times. BEAM emphasizes within-day planning with the inclusion of a discrete choice model that 
dynamically determines the mode choices of simulated travelers according to the state of the 
transportation system during the simulation.  

We introduced additional heterogeneity into this model (e.g., sensitivity of demand with respect 
to income, age, vehicle ownership) with the implementation of a multinomial logit model 
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estimated from a general population stated preference (SP) survey of four metropolitan regions in 
California (Los Angeles, Sacramento, San Diego, and the SF Bay Area) that was conducted in Fall 
2018 (Lazarus et al., 2020). The heterogeneous model was calibrated in order to align the commute 
mode shares of each of three income groups in the BEAM SF Bay Area model to those reported 
by the 2017 National Household Travel Survey for the same region (NHTS, 2017) (see Figures 
A3 and A4).  

SAEV fleet operations in the SF and Los Angeles (LA) metropolitan areas were more extensively 
analyzed using a separate agent-based fleet simulation model, Routing and Infrastructure for 
Shared Electric vehicles (RISE) (Bauer et al, 2018) that models the repositioning, matching, and 
charging of automated electric fleets of on-demand vehicles (see Appendix for further 
information). TNC trip data for the SF Bay Area was taken from BEAM outputs, including the 
origin, destination, time of day, travel distance and duration of all ride-alone and pooled TNC ride 
requests. In order to extrapolate emergent TNC travel behavior observed using the SF Bay Area 
model to the LA region, a model was trained to reproduce SF Bay Area data with a standard 
machine learning algorithm, then extrapolated to LA. We recorded the wait time and deadheading 
distance for each trip,and compared the operational results by socioeconomic status of the 
passengers. 

Sensitivity Analysis 
The BEAM SF Bay Area model was applied in sensitivity analysis of four different subsidy 
schemes for shared mobility, including subsidies for: 1) all TNC trips, 2) pooled TNC trips, 3) all 
public transit trips, and 4) TNC trips connecting to public transit. Each subsidy was applied for: 1) 
all travelers, and 2) low-income travelers (earning less than $50,000) only. In total, 24 subsidy 
scenarios were run in the SF Bay Area model, including all combinations of the 4 eligible modes, 
2 eligible target groups, and 3 subsidy levels shown in Table 1. The subsidies factored into the 
simulation at the mode choice stage, during which the estimated costs of eligible trips were 
discounted by the subsidy amount up to the cost of the trip1.  

Eligible Modes Target Groups Subsidy Levels 

All TNC rides 
Pooled TNC rides 
All public transit rides 
TNC rides to/from public transit 

All incomes 
Low-income (less than $50,000 annual 
household income) 
 

$1.25/ride  
$2.50/ride 
$5.00/ride 

Table 1. Sensitivity analyses performed 

Travelers’ eligibility for low-income subsidies was determined based on household income, with 
all travelers in households earning less than $50,000 annually being eligible for the subsidies. 
This income level is commensurate with the eligibility requirements of low-income membership 
and discount programs for several shared mobility services in California (e.g., Bike Share for 
All, LimeAccess) in which qualifying users must show enrollment in a local, state, or federal 

 
1 If an eligible trip cost less than the subsidy amount, the trip would be free and no additional subsidy would be 
provided to the traveler. 
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low-income assistance program such as CalFresh, the Supplemental Nutrition Assistance 
Program, or SNAP, or discounted utility programs. As shown in  

Figure 3, the California state income limits vary considerably by county, with 2-person 
households earning $50,000 per year being considered very low-income in five out of the nine 
SF Bay Area counties. In Marin, San Francisco, San Mateo, and Santa Clara counties, 2-person 
households earning $50,000 per year are considered extremely low-income. While a single 
income level was employed to determine eligibility for the simulated subsidies region-wide, 
further research is needed to investigate the potential benefits of a more targeted eligibility 
structure based on additional criteria (e.g., home or work location, housing burden).  

 
Figure 3. 2020 California State Income Limits (HCD, 2020) 

Simulation outputs from BEAM including all mode choices and vehicle movements were 
processed and analyzed to produce estimates of regional commute mode shares, trip 
characteristics (e.g., cost, duration, length, vehicle occupancy), and outcomes from TNC 
operations (e.g., revenue, deadheading miles, occupied miles). In addition, the distributions of 
TNC trips produced by sensitivity analysis in the BEAM SF Bay Area model were input to RISE 
to test for differences in the TNC service levels and enable the extrapolation of the behavioral 
responses to the subsidies in a model of the LA Basin. Sensitivity analyses of TNC subsidies and 
level of service restrictions that specified a minimum wait time for rides requested by low-
income travelers were run for LA using RISE.  

RESULTS 
In this section, the results of the sensitivity analyses in the SF Bay Area and LA regions are 
presented. We begin with a discussion of the baseline simulation results produced by the 
calibrated BEAM SF Bay Area model, in which key metrics used throughout the study are 
introduced given the context of available reference data for the region. The results of sensitivity 
analysis of ride-alone and pooled TNC subsidies provided to all income levels are presented 
next, followed by a comparison across both types of TNC subsidies when provided to all versus 
just low-income riders. The following subsection presents the results of public transit subsidies, 
including those provided for all public transit rides and those targeting TNC connections to 



10 

public transit. Finally, we present the results of sensitivity analyses of pooled TNC subsidies and 
wait time restrictions run using RISE. 

Baseline SF Bay Area Simulation Results 
In the baseline scenario, TNC trips made up about 0.8% of all trips in the BEAM SF Bay Area 
model. Pooled ride requests accounted for about 22% of those trips, although only about 12% of 
requested pooled rides were successfully matched. Given that the BEAM model simulated 
independent travel decisions not including coordination among travelers of the same household 
or workplace, all TNC ride requests were constrained to one passenger per request. This resulted 
in an average occupancy across all TNC rides of about 1.01 passengers per TNC ride the average 
occupancy of pooled TNC rides was about 1.07 passengers per ride. The geographic distribution 
of TNC trip requests in the baseline scenario is displayed in Figure 4 below. City origin-
destination pairs for which requested pooled TNC rides were successfully matched across two or 
three trip requests are shown in the figure with orange and magenta lines, respectively. In 
addition, larger orange and magenta circles are shown in cities for which pooled TNC ride 
requests for trips starting and ending in the city were successfully matched.  

 

 
Figure 4. Distribution of TNC trips in the SF Bay Area Baseline Scenario 

The width of the lines representing matched pooled TNC trips are weighted by the number of matched 
rides with the same origin-destination city pair and number of passengers. Larger circles denote matched 

pooled trips within the same city. 
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Estimates of TNC pool request and match rates, average overall TNC occupancy, and average 
pooled TNC occupancy from six studies in the United States, summarized in Table 2, suggest 
that the calibrated BEAM SF Bay Area model produced a reasonable baseline. In comparing the 
BEAM model outputs to these metrics, it is important to keep in mind that the BEAM model 
included only solo commuter trips. Since the dynamics of companion travel are not represented, 
the average overall and pooled TNC occupancies estimated by the BEAM model should be 
interpreted as the average number of ride requests per vehicle. The pooled request rate of 22% is 
greater than all but one estimate from the literature, which was conducted using the activity data 
of all Lyft trips in LA from September to November 2016 (Brown, 2019). It is possible that the 
pooling rate of 29% found by the Brown (2019) study is biased due to the fact that only Lyft 
activity data was included in the study, whereas other TNC services (i.e., Uber) were included in 
the other studies which estimated lower pooling rates.  

Study 
(year 
published) 

Study 
Region, 
Year 

Data 
Collection 
Method 

TNC Pool 
Request 
Rate 

TNC 
Pool 
Match 
Rate 

Average 
Overall 
TNC 
Occupancy 

Average 
Pooled TNC 
Occupancy 

Dead-
heading 
Percentage 

Rayle et al. 
(2016) 

San 
Francisco, 
CA, 2015 

Intercept 
survey n/a n/a 2.1 n/a n/a 

Henao and 
Marshall (2018) 

Denver, 
CO, 2016 

Intercept 
survey 13% 15% 1.36 n/a 40.8% 

Brown (2019) 
Los 
Angeles, 
CA, 2016 

Activity 
data 29% n/a n/a n/a n/a 

Gehrke et al. 
(2018) 

Boston, 
MA, 2017 

Driver trip 
diaries 20% n/a 1.52 1.4 n/a 

Schaller (2018) New York 
City, 2018 

Activity 
data n/a 22-

23% n/a n/a 41% 

Circella et al. 
(2019) CA, 2018 Survey (last 

trip) 15% n/a 1.9 n/a n/a 

CARB (2019) CA, 2019 Driver trip 
diaries 

12% (CA) 
9% (Bay 
Area) 

n/a 
1.54 (CA) 
1.56 (Bay 
Area) 

1.57 (CA) 
1.46 (Bay 
Area) 

38.5% 

BEAM SF Bay Area Model 22% 12% 1.01* 1.07* 67.5% 

Table 2. TNC Pooling Metrics 
*The BEAM model does not simulate travel among companions (i.e., traveling with a friend/relative/other 

for the same trip). 
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The baseline match rate for the BEAM SF Bay Area model is notably lower than the most recent 
estimate of the match rate in New York City using activity data (Schaller, 2018), although it is 
only slightly lower than that of Denver. The discrepancy may be due to the regional scope of the 
SF Bay Area Model which spans nine counties with varying employment density (see Appendix, 
Figure A6). Within-county trips generally have the highest pooled match rates while the counties 
with greatest public transit access (e.g., San Francisco, Alameda, Contra Costa, San Mateo, Santa 
Clara) have the lowest TNC pooled request rates among within-county trips albeit with match 
rates ranging from about 20% to 75% (see Appendix, Figures A6). 

The CARB (2019) study employed self-recorded trip diaries from 31 drivers across the state of 
California, nine of which were serving the SF Bay Area. Of the 737 trips recorded by the SF Bay 
Area drivers (about one quarter of the trips in the CARB study), the pooling request rate was 
about 9%, with an average occupancy of 1.56 passengers per TNC ride and an average of 1.46 
passengers per pooled ride. Notably, the Gehrke et al. (2018) study also found that the average 
occupancy of pooled rides was less than that of all TNC rides. This may reflect a key difference 
in the trip characteristics of ride alone and pooled TNC trips. More research is needed in this 
area; however, the authors stipulate that TNC users may be less likely to request a pooled ride 
when making a trip with one or more companions (e.g., traveling with a friend, relative, 
coworker, etc.). Travel companions already benefit from a reduced per-person fare since they can 
share the cost of a ride and thus may prefer the privacy and convenience of a private ride. The 
financial incentive of a pooled ride, which charges a discounted rate in return for the possibility 
of a longer travel time is likely to be more salient for a solo rider than for travel companions. 

The portion of TNC VMT attributed to deadheading is considerably higher in the baseline 
scenario compared to the estimates from Denver, New York City, and California (Henao and 
Marshall, 2018; Schaller, 2018; CARB, 2019). This may be due to a number of parameters in the 
TNC fleet configuration, including the TNC fleet size and parameters of the algorithms 
governing the repositioning of TNC vehicles throughout the simulation. The calibration of such 
parameters were not undertaken for the purposes of this study, though they are of great interest 
for future work. It is also important to note that the TNC fleet size was kept fixed across all 
sensitivity analysis scenarios in the BEAM SF Bay Area Model.  

Summary statistics of the baseline TNC trip characteristics are presented in Table 3, including 
mean and median trip distance, duration, and cost. The overall average TNC trip distance was 
about 20 miles per trip in the baseline BEAM SF Bay Area model. On average, pooled TNC trips 
in the baseline were about 10 miles and 12 minutes longer than ride-alone trips. TNC trips 
connecting to public transit were much shorter, averaging about 5 miles in distance and 7 
minutes in duration. Including the transit leg, TNC trips connecting to public transit averaged 
about 32 miles and 68 minutes. Figure 5 shows the distributions of trip distances, durations, and 
costs of TNC trips in the baseline, demonstrating a high variance in ride-alone and pooled TNC 
trip characteristics. By comparison, CARB (2019) estimates that the statewide average TNC trip 
distance is about 12 miles and SFCTA (2017) estimates that the average TNC trip distance for 
trips within the City of San Francisco is about 2.6 miles. The baseline model produced a slightly 
higher estimate of the average trip distance for inter-county trips in San Francisco, at about 3.8 
miles per trip (see Appendix, Figure A7). The average cost of pooled TNC trips was generally 
higher than that of ride alone trips, reflecting the greater distance of pooled TNC trips in the 
baseline simulation. The distribution of the costs of TNC connections to public transit was 
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bimodal, with about one third of these trips costing between $5 and $15 and another third 
between $20 and $30 in total. On average, low-income travelers (earning less than $50,000) 
made less expensive ride-alone and pooled TNC trip trips than other travelers, with average ride-
alone and pooled TNC trip costs of about $34 and $43 among low-income TNC users compared 
to costs of about $38 and $55 among TNC users earning more than $50,000. 

 Ride Alone TNC Pooled TNC 
TNC Connection to 
Public Transit Overall 

Distance (miles) 

mean 21 31 5 20 

median 18 28 4 16 

standard deviation 13 18 4 16 

Duration (min) 

mean 23 35 7 22 

median 19 30 5 18 

standard deviation 15 21 5 18 

Cost ($) 

mean 37 46 20 35 

median 32 42 21 29 

standard deviation 20 24 9 21 

Table 3. Baseline TNC Trip Characteristics by Type of TNC Ride Service 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



14 

 
a) TNC trip distance    b) TNC trip duration 

 
c) TNC trip cost 

Figure 5. Distribution of TNC Trip Distance and Duration by Service Type 
 

Sensitivity Analysis of Subsidies for TNCs in the San Francisco Bay Area 
This section presents the results of the sensitivity analysis of TNC subsidies using the BEAM 
model of the SF Bay Area (see Table 1). 

Subsidies for All TNC Rides 
The provision of subsidies for all TNC rides regardless of service type produced slight overall 
mode shifts on the order of fractions of a percent of the total number of trips across the region 
(see Figure 6a). However, when considering that there are a total of 3.9 Million commuters in the 
SF Bay Area (ACS, 2019), the 0.06% increase in overall TNC commute mode share resulting 
from a $1.25 subsidy for all TNC rides would result in an estimated 2,100 new daily TNC trips 
in the region, while at the $5 subsidy level, the total increase in TNC mode share of 0.29% 
would amount to an estimated 10,000 new daily trips. Travelers earning between $50,000 and 
$100,000 per year exhibited the largest mode shifts, with increases of 0.3% in ride-alone and 
0.1% in TNC public transit connection mode shares at the $5 subsidy level. Though small in 
absolute terms, these increases constitute a 46% and 73% increase in the baseline mode shares of 
ride-alone TNCs and TNC connections to public transit, respectively, among this group. Notably, 
neither the middle- nor high-income groups exhibited increases in pooled TNC trips in response 
to the general decrease in TNC prices. In contrast, low-income travelers increased usage of all 
three TNC trip types (ride-alone, pooled, and public transit connections) (see Figure 6b). Up 
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until the $2.50 subsidy level, the greatest mode shift among low-income travelers was to TNC 
connections to public transit (+0.14%), followed by pooled TNCs (+0.08%) and ride-alone TNCs 
(+0.06%). The additional subsidy at the $5 level induced a slightly greater increase in ride-alone 
TNC mode share (+0.11%) than in the mode shares of pooled (+0.09%) and TNC connections to 
public transit (+0.08%). 

 
a) Overall TNC mode share      b) Low-income TNC mode share 
Figure 6. Sensitivity of mode share to subsidies for all rides, all income levels 

 
The primary sources of the mode shifts to TNCs in response to subsidies for all TNC rides were 
from walking, biking, and walking to/from public transit (see Figure 7). Notably, driving alone 
and driving to/from public transit hardly changed in response to subsidies for all TNCs.  As the 
subsidy level increased, former public transit users made up a greater share of the mode shift to 
ride-alone TNCs, with about half of new ride-alone TNC trips at the $5 subsidy level being 
shifted from public transit accessed by foot and about 30% from walking. While trip 
characteristics vary widely, travelers shifting from walk to/from public transit to ride-alone 
TNCs saved an average of about 65 minutes, amounting to about an 80% decrease in travel time 
in the $5 TNC subsidy scenario. On average, these travelers spent $19.05 more traveling by ride-
alone TNC in the $5 TNC subsidy scenario compared to using public transit in the baseline 
scenario.  
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a) Overall mode shifts 

 

 
b) Low-income mode shifts 

Figure 7. Mode shifts to TNCs from $5 subsidies for all rides, all income levels 
Bars on the left show mode share that shifts from each mode used in the baseline simulation to TNC 

modes used in the scenario described above. Trips with no change in mode used or those that shifted to 
non-TNC modes are not shown. 

 
Mode shifts to pooled TNCs, which were almost entirely among low-income travelers, were 
more heavily drawn from former walking trips, with about 40% of new pooled TNC trips at the 
$5 subsidy level being shifted from walk trips, about 30% from public transit trips accessed by 
foot, and about 15% from ride-alone TNCs. Low-income travelers shifting to pooled TNCs from 
walking to/from public transit at the $5 subsidy level saved even more time than those shifting to 
ride-alone TNCs while increasing spending by about the same amount, with average time 
savings of about 70 minutes and an average increase in trip cost of about $21. In contrast, 
middle- and high-income travelers that made this shift had commutes that were about 5 miles 
shorter, on average, resulting in average time savings of 50 minutes and about $13 in cost 
increases. 

Across all subsidy levels and income groups, about 70 to 80% of the increases in TNC 
connections to public transit were from travelers that formerly walked to/from public transit. As 
shown in Figure 8, the majority of travelers that shifted from walking to/from public transit to 
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using TNCs to access public transit increased net trip cost in return for a decrease in trip 
duration. On average, travelers in the middle- and high-income groups making this shift in the $5 
TNC subsidy scenario saved about 24 minutes while low-income travelers saved about 12 
minutes. All groups spent about $11 more, on average.  

 

 
c) Middle- and high-income    b) Low-income 

Figure 8. Distribution of the change in trip duration vs net cost of new TNC connections to 
public transit in the scenario with pooled $5 subsidy for all riders 

(change = scenario value - baseline value) 
 
Subsidies for Pooled TNC Rides Only 
Restricting the TNC subsidies to pooled rides dramatically increased the mode shifts to pooled 
TNCs (see Figure 9). At the lowest subsidy level of $1.25, the overall mode share of pooled 
TNCs doubled, with about a 40% increase in the pooled TNC mode share among the lowest 
income group and about a 270% increase among the middle- and high-income groups. At the $5 
subsidy level, the pooled TNC mode share among low-income travelers doubled to about 1.4% 
while those of middle- and high-income travelers increased from 0.1% to 0.9% and from 0.02% 
to 0.35%, respectively. Ride-alone mode share decreased as the subsidy for pooled rides 
increased, reaching one tenth of the overall baseline mode share at the $5 subsidy level. 

 
d) Overall mode share    b) Low-income mode share 

Figure 9. Sensitivity of mode share to subsidies for pooled rides, all income levels 
 
Across all income groups, the primary source of mode shifts to pooled TNCs in response to 
subsidies for pooled TNCs only was from ride-alone TNCs, followed by walking and public 
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transit accessed by foot (see Figure 10). About 60 to 65% of the mode shift to pooled TNCs 
among travelers earning more than $50,000 was from ride-alone TNCs. In comparison, ride-
alone TNC trips accounted for about 45% of the mode shift to pooled TNCs among the lowest 
income group, which had higher rates of mode shift from walking and public transit (see Figure 
10b). On average, travelers shifting from ride-alone to pooled TNCs increased travel time by 
about 3 minutes and saved about $4.47 in the $5 pooled TNC subsidy scenario, across all income 
groups. The travel time savings and cost increases for travelers shifting from walking to/from 
public transit to pooled TNCs were about the same as in the scenarios with all TNCs subsidized. 

 
a) Overall mode shifts 

 
b) Low-income mode shifts 

Figure 10. Mode shifts to TNCs from $5 subsidies for pooled rides, all income levels 
The bars on the left show the mode share that shifts from each mode used in the baseline simulation to 

TNC modes used in the scenario described above. Trips with no change in mode used or those that shifted 
to non-TNC modes are not shown. 

 
Subsidies for Low-Income TNC Riders Only 
Subsidies for all TNC rides targeted to low-income riders only elicited a slightly larger mode 
shift to ride-alone TNCs than when the same subsidies were provided to all riders (+0.19% 
compared to +0.17%). In addition, they resulted in a slightly lower rate of mode shift to pooled 
TNCs (+0.16% compared to +0.18%). On the other hand, subsidies for pooled TNC rides only 
elicited a smaller shift to pooled TNC rides when the subsidies were only provided to low-
income riders than when they were provided to all riders. The greater increase in pooled TNC 
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mode share among low-income travelers in scenarios in which all TNC riders were subsidized 
may reflect economies of scale achieved by the widespread increase in demand for pooled TNC 
use in those scenarios. We will explore the interrelated effects of pooled TNC request rates on 
pooled matching rates next. 

Comparison of All TNC Subsidies 
Figure 11 shows the sensitivity of the pooled TNC request and match rates for scenarios with all 
income levels subsidized (panels a-b) and with only low-income riders subsidized (panels c-d). 
Panels a and c show the pooled TNC request and match rates across all trips while panels b and d 
show the pooled TNC request and match rates among low-income trips only. Across all subsidy 
scenarios, the pooled request rate, or the percentage of TNC ride requests that are for pooled 
service, directly reflects the mode shifts previously discussed. Overall, we see that pooled TNC 
match rates (shown as labels in Figure 11) increased with respect to the pooled request rate. 
Subsidies for all TNC rides have a comparatively small effect on both pooled TNC request and 
match rates, as they increased both ride-alone and pooled ride requests at about the same rates. In 
contrast, subsidies for pooled TNCs for all riders more than triple the overall pooled TNC 
request rate, resulting in a 260% increase in the match rate from 12% to 32% at the $5 level. The 
pooled request and match rates among low-income riders also increased, though by smaller 
amounts (170% and 150% increase, respectively).  

a) All rides, all income levels subsidized    b) Low-income rides, all income levels subsidized 

 
c) All rides, low-income only subsidized          d) Low-income rides, low-income only subsidized 
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Figure 11. Pooled TNC Request and Match Rates by Subsidy Type and Amount 
(Request Rate: pooled TNC requests as a percent of all TNC requests; Match Rate (shown on each bar): 

matched pooled TNC requests as a percent of all pooled TNC requests) 
 
Pooled TNC request rates among low-income TNC users increased by about the same amount 
regardless of whether subsidies were provided to all income levels or were targeted to low-
income travelers only. However, lower pooled request rates across the region in the scenarios 
subsidizing only low-income travelers reduced the likelihood that requested pooled rides were 
actually matched. The pooled match rates among low-income travelers were significantly lower 
in scenarios with only low-income TNC riders subsidized compared to those subsidizing all 
riders (see Figure 11b and 11d, respectively). The pooled TNC match rate among low-income 
travelers increased from 12% to 30% when subsidies were provided to pooled TNC riders of all 
income levels. However, when the same subsidy was restricted to just low-income travelers, the 
match rate increased by less than half as much, reaching about 18% at the $5 subsidy level.  

The overall average occupancy of TNC rides increases with respect to the pooled match rate, as 
does the average occupancy of pooled TNC rides. Consistent with the discussion above, 
subsidies for all TNCs, whether restricted to low-income riders or not, did not impact the average 
occupancies of TNC rides in general nor those of pooled TNC rides. When all riders were 
offered $5 subsidies for pooled TNC rides, the average occupancy of all TNC rides increased by 
12% from 1.01 ride requests per ride in the baseline to 1.14 requests per TNC ride. The average 
occupancy of pooled TNC rides increased by 13% from 1.07 to 1.20 requests per pooled TNC 
ride at the $5 subsidy level for pooled TNC rides, all riders. More modest increases were 
achieved by the subsidies for only low-income pooled TNC riders, which resulted in average 
occupancy rates of 1.03 requests per ride across all TNC rides and 1.08 across pooled TNC rides 
at the $5 subsidy level.  

Although we found that total TNC VMT increased as demand for TNCs increased, the portion of 
TNC VMT attributed to deadheading generally decreased across the subsidy scenarios. Figure 12 
below shows the total extrapolated VMT by TNCs, with the breakdown of occupied and empty 
VMT labeled for each subsidy scenario. When all income groups were subsidized, total TNC 
VMT increased by about 4.2% from the baseline at the $5 subsidy level for all TNC rides and by 
about 3.5% from the baseline at the $5 level for pooled TNC rides. The portion of total VMT that 
were empty miles decreased from about 67.5% in the baseline to about 62.8% and 64.8% at the 
$5 subsidy levels for all rides and pooled rides, respectively. In contrast, subsidization for low-
income riders only resulted in little variation in the total TNC VMT and smaller improvements in 
the portion of empty miles out of total TNC VMT, which decreased to about 65.7% and 66.0% in 
response to $5 subsidies for low-income riders using all TNCs and just pooled TNCs, 
respectively.  
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a) All income levels subsidized    b) Low-income only subsidized 
Figure 12. Extrapolated TNC Vehicle Miles Traveled by Subsidy Scenario with All Riders 

Subsidized 
Additional TNC revenue is generated from the increased adoption of TNCs, across all subsidy 
types and levels (see Figure 13). When all TNC rides and income levels are subsidized, the 
amount of additional revenue generated exceeds the total amount of incentives distributed, across 
all subsidy levels (+$25,000, +$9,000, and +$79,000 at the $1.25, $2.50, and $5.00 levels, 
respectively). This is also true at the $1.25 and $2.50 subsidy levels for all rides, low-income 
only, and at the $1.25 level for pooled rides, all incomes. In other scenarios, the costs of 
incentives distributed exceed the additional revenue generated.  

 
a) All income levels subsidized   b) Low-income only subsidized 

Figure 13. Extrapolated Total Change in TNC Revenue and Total Incentives Distributed by 
Subsidy Type and Amount 

Overall, some subsidy types paid for themselves whereas others did not. Nonetheless, for those 
with net costs, there could still be a social benefit from these subsidies, such as increasing low-
income mobility, use of public transit, and/or decreased driving. However, further study will 
have to occur before policy decisions can be made about which types of subsidies to pursue. 

Subsidies for Public Transit 
Public transit subsidies were investigated with both the all income levels and low-income only 
eligibility structures. In addition to a subsidy provided for all public transit rides regardless of 
access/egress mode, subsidies targeted specifically for TNC connections to/from public transit 
were analyzed. 
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a) Change in overall mode share  b) Change in low-income mode share 

Figure 14. Change in Mode Share by Public Transit Subsidy Level 
Subsidies for public transit rides result in larger magnitudes of mode shifts than do TNC 
subsidies. When the subsidies are made available to all travelers, the $1.25 level results in about 
a 12% increase in overall public transit use (+1.8% mode share). The increase at this level is 
primarily in public transit trips accessed by foot (+1.7%), with a slight increase in those accessed 
by personal vehicle (+0.11%) and an even smaller increase in the amount of public transit trips 
accessed by TNCs (+0.003%). The rate of mode shift to public transit accessed by foot tapers off 
as the subsidy level increases, with total public transit mode share increasing by another 1.2% at 
the $2.50 subsidy level and 0.8% at the $5 subsidy level. Mode shifts among low-income 
travelers are smaller than those of the overall population, with an increase in overall public 
transit mode share 1.2% at the $1.25 subsidy level, and additional increases of 0.8% and 0.6% at 
the $2.50 and $5 subsidy levels, respectively. The mode shifts of low-income travelers follow a 
similar pattern as the overall population, with an initial increase of +1.1% in the mode share of 
public transit accessed/egressed by walking and +0.08% in the mode share accessed/egressed by 
driving a private vehicle. However, the low-income mode share of public transit trips accessed 
by TNCs is relatively unaffected by the subsidies. Figure 15 summarizes these mode shifts at the 
$5 subsidy level across the a) overall population and b) low-income population. 

 
 
 
 
 



23 

 
 

a) Overall mode shifts 

 
b) Low-income mode shifts 

Figure 15. Mode shifts to Public Transit from $5 subsidies for Public Transit Rides, All Income 
Levels 

The bars on the left show the mode share that shifts from each mode used in the baseline simulation to 
public transit used in the scenario described above. Trips with no change in mode used or those that 

shifted to non-public transit modes are not shown. 
 
The primary sources of the mode shifts to public transit are from drive alone, followed by biking, 
walking, and ride alone TNC. Across all subsidy levels, about 60% of all new walk to/from 
public transit trips were shifted from drive alone. That portion is smaller among low-income 
travelers (about 45%), for which about one quarter of the increase in walk to/from public transit 
mode share was shifted from walking and about 4% from ride alone and pooled TNCs. Among 
the middle-income group, only about 20% of induced walk to/from public transit mode share 
were shifted from walking and about 2% were from ride alone and pooled TNCs. These portions 
were even smaller among the highest income group, which exhibited the largest mode shifts 
from biking to public transit accessed/egressed by foot across all income groups. At the $5 
subsidy level, about one quarter of new walking to/from public transit trips among this group 
were shifted from biking, compared to 10% and 20% among the middle and low-income groups, 
respectively. Across all income groups, about 5% of new walk to/from public transit trips were 
shifted from travelers shifting their access/egress mode from driving to walking.  
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On average, travelers shifting to public transit in the $5 subsidy scenario increased travel times 
by about 18 minutes. Those experiencing the largest travel time increases were travelers shifting 
from drive alone, ride alone and pooled TNCs, with increases of about 22, 66, and 68 minutes, 
respectively. Trips shifted from TNCs to public transit tended to be longer, covering distances of 
about 30 miles, on average. In contrast, the average drive alone trip that shifted to public transit 
was about half as long. 

Subsidies provided only to trips using TNCs to access/egress public transit produced the largest 
increases in this mode, across all subsidy types. However, the overall mode share of public 
transit varies only slightly in response to such a subsidy, as about 60 to 70% of the mode shifts to 
public transit accessed/egressed by TNC are from travelers who formerly walked to/from public 
transit, across all income and subsidy levels. Another 15 to 20% of the mode shifts are from 
former walking trips, and about 10 to 15% are from ride alone TNC trips. 

The mode shifts to public transit induced by subsidization result in notable decreases in total 
VMT by private vehicles, as shown in Figure 16. Figure 16a demonstrates the impact on VMT of 
the 4.5% reduction in drive alone mode share at the $5 subsidy level for all transit riders, which 
results in a 2.8% reduction in drive alone VMT. Overall VMT also decreases by about 2.8% in 
this scenario, with a 3.4% reduction in TNC VMT. Public transit subsidies for low-income riders 
only produce smaller reductions in VMT, with a 0.53% reduction in drive alone VMT and a 
0.51% reduction in overall VMT at the $5 subsidy level for all public transit rides for low-
income only. As discussed previously, subsidies targeted for TNC connections to/from public 
transit result in relatively small mode shifts which are reflected in the minor reductions in VMT 
shown in Figure 16. 

 

 
a) All income levels subsidized   b) Low-income only subsidized 

Figure 16. Extrapolated Total Vehicle Miles Traveled by Subsidy Type and Amount 

Sensitivity Analysis of Pooled Subsidies and Wait Time Restrictions Using RISE 
Results from sensitivity analysis of TNC subsidies using RISE are shown in Figure 17. Across 
all subsidy scenarios, wait time and deadheading time and distance are slightly lower for low-
income riders than high-income riders. The differences in both deadheading time and distance 
decrease slightly when all trips are subsidized, likely due to relatively more high-income trips. 
Fleet size (not shown in figure) generally increases with increasing subsidy, from 636 vehicles 
with no subsidy to 675 vehicles when all trips are subsidized. 
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Figure 17. Simulation results for a range of subsidy scenarios in the SF Bay Area 

This result suggests that there is little difference in wait times with income. These findings are 
consistent with those of Brown (2019) using activity data in Los Angeles. Thus, if discrepancies 
in wait times occurred, they would likely be due to discrimination, for example if drivers are 
reluctant to enter low-income neighborhoods. In this case, the fleet operator would need to focus 
more vehicles in low-income areas and implement some sort of cross-subsidy to ensure equal 
wait times for all rider demographic groups. 

To analyze the impact of such a policy, we conducted simulations in which the maximum 
allowed wait time is lower for low-income riders than high-income riders. As shown in Figure 18 
and Table 3, results suggest that it is feasible to decrease average wait times for low-income 
riders to under five minutes while increasing fleet size by less than 5%. The deadheading (i.e., 
empty) distance per trip increases for low-income riders, but this impact is offset by a decrease in 
empty distance for high-income riders, such that the overall deadheading ratio (the ratio of empty 
distance to total vehicle miles traveled) remains roughly constant. 

Table 3 also shows the results for restricting wait times in low-income neighborhoods 
(“Geographic” restrictions), which could be employed if it is impractical to restrict wait time 
based on individual income (“Individual” scenarios). While geographic restrictions are 
somewhat less efficient at reducing low-income rider wait time, they still show the potential to 
significantly reduce wait time at the cost of a small increase in fleet size.  
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Figure 18. Impact on wait times and fleet size of reducing maximum allowed wait time for low-

income riders 

Maximum 
wait time 
(low-
income) 

Restriction 
type 

Fleet 
size 

Wait 
time 
(low- 
income) 

Wait 
time 
(high- 
income) 

Empty 
miles 
per trip  
(low- 
income) 

Empty 
miles 
per trip 
(high- 
income) 

Overall 
deadhead-
ing ratio 

10 Geographic  629 5.10 5.44 2.93 2.57 0.205 

7 Geographic  655 4.83 5.31 3.47 2.18 0.201 

5 Geographic  666 4.82 5.13 3.85 2.09 0.208 

10 Individual 629 5.10 5.48 2.63 2.72 0.205 

7 Individual 646 4.88 5.13 3.18 2.64 0.208 

5 Individual 654 4.70 5.36 3.28 2.38 0.202 

Table 3. Simulation results for San Francisco Bay Area. 
 
Results for Los Angeles are consistent with the Bay Area: in the base scenario, wait time is no 
higher for low-income riders than for high-income riders, and wait times for low-income riders 
can be decreased by over a minute on average by reducing the maximum allowed wait time from 
10 minutes to five minutes, by increasing the fleet size by less than 3%. The deadheading ratio 
also increases by less than 3% in the scenario where wait time is capped at five minutes for low-
income riders. In practice, this wait time reduction arises from requiring low-income trips to be 
served by vehicles that are already idle. In the base scenario, 46% of all trips are assigned to 
vehicles that are occupied at the time of the request, with an average of five minutes left in their 
previous trip. In contrast, when maximum wait time for low-income riders is reduced to five 
minutes, only 14% of low-income trips are served by currently occupied vehicles, with an 
average of two minutes left in their previous trip. This flexibility in routing arises from the fact 
that at any given time during the simulations, there are at least five times as many vehicles 
available as there are trip requests. Even if routing is much less flexible in reality, this result 
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suggests that TNC companies should be able to provide equal levels of service even if drivers 
exhibit significant discrimination towards marginalized groups. 

 
 

Maximum 
wait time 
(low-income) 

Fleet 
size 

Wait time 
(low- 
income) 

Wait time 
(high- 
income) 

Empty miles 
per trip  
(low- 
income) 

Empty 
miles per 
trip (high- 
income) 

Overall 
deadheading 
ratio 

10 5225 5.19 5.22 1.02 1.01 0.118 

7 5303 4.02 5.27 1.36 0.91 0.120 

5 5375 3.67 5.18 1.51 0.86 0.121 

Table 4. Simulation results for Los Angeles metropolitan area. 

 
Figure 19. Comparative results for Los Angeles base simulation showing the 5th-95th percentile 

range of each statistic 

GENERAL DISCUSSION 
The models and survey data used in this study represent travel patterns and preferences prior to 
the COVID-19 pandemic. While the results indicate that pooled TNC and public transit adoption 
can be incentivized with $1.25 to $5 subsidies, the long-term impacts of the pandemic on travel 
behavior and willingness to share rides may have a significant effect on the outcomes of the 
subsidization strategies investigated in this study. Persisting health concerns are likely to skew 
behavior toward single-party rides, and fewer TNC rides in general compared with lower-risk 
transport modes such as private vehicles, active transit, and micromobility. The relative 
perception of health risks from pooling a ride with another passenger in comparison to riding 
alone in a TNC vehicle with a driver is yet to be determined. Perceptions of safety may increase 
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following a full rollout of vaccines, yet this is also still unknown. Nonetheless, pooled TNC, app-
based pooling, and microtransit services all offer reduced contact in comparison to traditional 
public transit services. Thus the opportunity to mitigate higher rates of auto ownership and single 
occupant vehicle use by promoting pooled rides persists. In the longer-term horizon, monetary 
incentives may play an important role in reintegrating public transit into daily travel. 

The study results demonstrate the considerable time savings offered by TNC services in 
comparison to public transit. While the subsidies explored reduce the financial barrier to 
accessing on-demand mobility, the increases in travel costs for those shifting from public transit 
and active travel modes to TNCs are significant, particularly for lower income travelers. At 
scale, microtransit services that offer flexible on-demand shared ride services in larger vehicles 
such as passenger vans and shuttles may offer a more favorable tradeoff between operational 
costs and levels of service than either pooled TNCs or fixed route public transit, particularly for 
service to or from lower density areas.  

The results across different types of public transit subsidies suggest that direct subsidization of 
public transit is more effective in reducing single occupant vehicle use and VMT than subsidies 
for TNCs, including targeted subsidies only for pooled rides or TNC connections to public 
transit. Although not included in the BEAM model, pooled TNC trips connecting to public 
transit would likely increase the benefits of subsidizing first/last mile TNC trips to public transit 
by increasing pooled match rates and overall TNC vehicle occupancy. Incentivization of the use 
of other first/last mile modes such as bicycles, e-bicycles, e-scooters, and mopeds are of interest 
for further investigation. 

The model results indicate that revenues outweigh subsidy costs primarily when provided for all 
rides, all incomes, as well as for all rides, low-income levels at the $1.25 and $2.50 levels while 
subsidizing pooled rides results in revenues outweighing subsidy costs only at the $1.25 subsidy 
level for all incomes. These results stand in contrast to our model findings that the greatest 
increase in pooled TNC rides result from targeted pooled-only subsidies, which exhibit up to an 
80% increase in pooled match requests under a $5.00 subsidy. We also found that subsidizing all 
rides had roughly the same effect on low-income riders as subsidies targeting low-income rides 
only. However, there was a greater increase in pooled mode share among low-income travelers 
in scenarios in which all TNC riders are subsidized, which may reflect economies of scale 
achieved by the widespread increase in demand for pooled TNC use in those scenarios. Overall, 
it appears that subsidies targeting pooled rides generally do not pay for themselves. This is not 
necessarily a failure, however; to achieve a social benefit (increasing shared rides and thereby 
reducing vehicle traffic as well as travel times among riders who might otherwise use a slower 
form of transit such as walking or biking) might require some expenditure of public funds. It 
appears that revenues are at least half as large as the subsidies in most of the cases in Figure 13 
where revenues do not exceed costs; for instance, in the pooled ride, all riders $5.00 subsidy 
level. This suggests that subsidies could be substantially offset by revenues, lowering public 
spending to achieve a desirable social outcome. 

STUDY LIMITATIONS 
This study is primarily constrained by the scope and limitations of the models used. 
Geographically, the two major metropolitan regions that are the focus of this study, Los Angeles 
and the San Francisco Bay Area, are the two largest and most dense regions of the state of 
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California. Each of these regions has a unique distribution of land use, transportation, population, 
and employment, with a large degree of within-region variation. While neither region can be 
considered a typical urban environment, various sub-regions within the San Francisco Bay Area, 
in particular, provide insight into the relative responses of commuters with a variety of personal 
and trip characteristics as well as varied access to transportation.   

Commute trips compose a large portion of peak road travel in most urban areas and thus 
contribute importantly to the negative impacts of personal vehicle use which can be mitigated by 
the strategies explored in this study. However, there are a multitude of other trip purposes which 
are not considered, including essential trips to access healthcare, childcare, food, and other 
services, as well as recreational trips. Given the finding that pooled TNC match rates benefit 
directly from greater pooled request rates, application of pooling subsidies across the full 
spectrum of trip purposes is likely to further improve the outcomes of such strategies. The 
likelihood to request a pooled ride varies significantly across trip contexts (Lazarus, et al., 2020), 
so responses to pooling incentives are likely to vary considerably across spatial and temporal 
dimensions. In addition, within-household planning and other forms of pooling among 
acquaintances were not modeled. As discussed previously, this affects the interpretation of TNC 
vehicle occupancies, which represent the number of ride requests served per vehicle as opposed 
to the expected number of passengers per vehicle. Further research is needed to investigate the 
implications of emergent travel behavior in response to pooling incentives with a broader scope 
of travel patterns and geographies.    

Several aspects of the transportation system and travel behavior were kept fixed in the BEAM 
San Francisco Bay Area model to limit the number of confounding variables in the sensitivity 
analysis. These included the size and composition of the TNC vehicle fleet and all characteristics 
of vehicle charging and parking supply. Unlike RISE, which optimizes the size of the TNC fleet 
in order to maintain service levels, TNC fleet parameters are fixed within each BEAM 
simulation run. Additional sensitivity analysis would be needed to further investigate the 
behavioral effects of scaling the TNC fleet up or down in tandem with the subsidies that were 
investigated in this study. Likewise, the impacts of vehicle charging and parking supply were not 
explicitly investigated in the BEAM model, though they are prominent features of the RISE 
model.  

Finally, there are a multitude of other subsidy types and structures that may be studied using the 
methodology of this study. The three subsidy levels that were employed in the study were 
determined following initial testing in the BEAM San Francisco Light model, which only 
simulated trips within San Francisco county. The various effects of the subsidies are found to 
taper as the subsidy level increases, suggesting that higher subsidy levels would have decreasing 
marginal effects as demand for the incentivized modes saturates further.  

CONCLUSIONS 
The subsidization of TNCs and public transit with $1.25 to $5.00 can incentivize greater usage of 
these modes with broad implications that vary across the subsidy types and structures explored. 
The baseline simulation (without subsidies) produced a TNC pooled request rate of 22% and a 
pooled match rate of 12%, which are consistent with results obtained by other studies. The 
sensitivity analysis of subsidies for all TNC rides regardless of service type illuminates potential 
outcomes of widespread cost savings that are expected from the rollout of SAV technology. The 
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results suggest that uniform decreases in the consumer costs of TNCs across all service types 
would increase TNC mode share in the San Francisco Bay Area by about 0.06% or about 2,100 
daily trips in response to a $1.25 reduction in TNC fares and about 0.29% or 10,000 daily trips in 
response to a $5 reduction in TNC fares. Of those trips, about half are ride-alone, 30% are 
connections to public transit, and the remaining 20% are pooled, resulting in a slight decline in 
the pooled request rate and almost no effect in the pooled match rate. With almost no shift from 
driving alone to TNCs, there are little to no additional environmental benefits from such 
scenarios beyond those achieved by the SAV or SAEV technology itself. Travelers shifting from 
public transit and active modes to TNCs benefit from faster travel times, although they incur 
increased travel costs on the order of $20 per trip, on average. Using a fixed fleet size, the 
BEAM San Francisco Bay Area Model estimates that such growth in TNC adoption produces a 
net increase in revenues minus subsidies distributed. 

Comparison of the scenarios subsidizing all TNC services to those subsidizing only pooled TNC 
rides demonstrates that further reduction of the price of pooled TNCs is necessary to achieve 
higher utilization of SAEVs. Subsidies for pooled TNC rides only result in substantial mode 
shifts from ride-alone to pooled TNCs with travel time increases of just three minutes, on 
average. At the lowest subsidy level ($1.25/ride), the overall mode share of pooled TNCs 
doubled, while at the highest level ($5/ride), the portion of ride alone TNCs fell to almost zero 
across income levels. Subsidies for all TNC rides targeted only to low-income riders elicited a 
slightly larger mode shift to ride-alone TNCs and a slightly smaller shift to pooled TNCs than 
when the same subsidies were provided to all riders. However, the pooled match rate for low-
income riders was only half as large when pooled-ride subsidies were targeted to low-income 
riders only as when applied to all riders, indicating a potentially important role of the network 
effect in creating economies of scale for pooled TNC service. Subsidies for TNC rides were 
smaller than the generated revenues when subsidies were applied to all rides and income levels, 
as well as to low-income riders below the $5 subsidy level, and to pooled rides at all income 
levels below the $2.50 subsidy level. Such subsidies were therefore deemed cost-effective. 
However, other types of subsidies generated less revenues than they cost. Nonetheless, there 
could be societal value for these subsidies, such as increasing low-income mobility, use of public 
transit, and/or decreased driving. Further study will have to occur before policy decisions can be 
made on which types of subsidies to pursue. 

For the San Francisco Bay Area, differences in wait times, relocation times, and relocation 
distances are nearly identical across income levels and subsidies explored; in fact, they are 
slightly lower for low-income riders. As a result, any actual differences, if they were to occur, 
would likely result from discrimination, not network constraints. To correct for potential 
discrimination, wait times for low-income riders can be kept to under 5 minutes by lowering the 
maximum wait time from 10 to 5 minutes. This is accomplished by increasing the fleet size by 
less than 5%. Simulation results for Los Angeles were nearly identical to the San Francisco Bay 
Area in terms of wait times and relocation times/distances. However, to correct for potential 
discrimination, lowering the maximum wait time from 10 to 5 minutes resulted in average wait 
times decreasing by more than one minute, increasing the fleet size by less than 3% and the 
fraction of trips served by idle vehicles from 54% to 86%. 

Further investigation of the effects of pricing and subsidy structures on policy outcomes is 
recommended. This research suggests that while revenue increases can offset subsidies in some 
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situations, a feebate structure—in which fees are applied to ride-alone service to cover the costs 
of low-income pooling subsidies—may be particularly effective for incentivizing travelers of all 
income levels to pool while supporting lower-income travelers in accessing on-demand mobility. 
Such a subsidy structure may employ a broad definition of pooled modes that includes traditional 
public transit service, microtransit, and traditional carpooling, particularly if payment is 
integrated across services in the form of a mobility-as-a-service (MAAS) platform. 

Subsidization programs for pooled on-demand mobility and public transit may be modeled after 
existing programs in other sectors, including those providing subsidized utilities, food, and 
healthcare access. Several shared micromobility services already offer low-income membership 
programs using enrollment in local, state, or federal aid programs such as CalFresh or Medicaid 
as proof of eligibility. In California, the Low Income Rate Assistance (LIRA) and California 
Alternate Rates for Energy (CARE) programs, which offer assistance to low-income residents 
for paying their water and energy bills, respectively, have established a precedent for the 
subsidization of public goods. It may be worthwhile to explore the potential of such programs to 
provide transportation subsidies in future research. 

Further work is also needed to extend the findings of this research to a broader array of trip 
contexts including other essential and leisure trip purposes, geographic regions, and time periods 
(e.g., weekend travel, emergency/evacuation scenarios). Importantly, the models and scenarios 
investigated in this study should be revisited once the lasting effects of the COVID-19 pandemic 
on travel behavior become increasingly evident. While some findings may hold, considerable 
changes in trip patterns and traveler preferences will likely affect the efficacy of incentives on 
mode shifts to pooled modes. 
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APPENDIX  
BEAM Overview 
The BEAM model is an agent-based simulation developed by the Lawrence Berkeley National 
Laboratory (LBNL) and University of California Berkeley Institute of Transportation Studies 
(ITS) (cite). The model uses census or survey data to generate a synthesized population of 
individuals and their corresponding households endowed with a home location, socio-
demographic characteristics (e.g., gender, age, income, vehicle ownership), and a daily activity 
plan that determines the time and location of activities that individuals travel to throughout the 
simulation. A multi-modal network for cars, bikes, pedestrians, and public transit is integrated in 
the model, with travel speeds in the road network estimated at the link level based on the length, 
speed limit, and capacity of each link and the flow of vehicles on the links at any time in the 
simulation. Public transit operations are simulated using a fixed schedule and TNC service is 
optimized using a centralized algorithm that manages fleet repositioning, assignment to ride 
requests, and matching of pooled ride requests.  

Mode Choices in BEAM 
Prior to initiating a trip from one activity to another (e.g., from home to work or vice-versa), the 
BEAM model evaluates the estimated travel time and cost of each mode available to the 
individual trip maker at that time in the simulation, including: walking, biking, driving alone, 
riding alone in a TNC, pooling in a TNC, walking to/from public transit, biking to/from public 
transit, and riding alone in a TNC to/from public transit. The traveler chooses one option based 
on a probability distribution estimated using a discrete choice model (e.g., multinomial logistic 
regression, nested logistic regression). Based on the principles of utility maximization, the model 
predicts the likelihood that an individual chooses one particular alternative from a finite set of 
mutually exclusive alternatives. The utility equation implemented in BEAM is of the form 
defined in Equation 1., below: 

Equation 1. Homogeneous Mode Choice Utility Equation - BEAM Representation 
𝑈!,#,$ = 𝐴𝑆𝐶$ + 𝛽%&'#𝑋%&'#,!,#,$ + 𝛽!()*+,,#,$ ∙ 𝑋!()*+,,#,$ + 𝛽-.!#,#,$ ∙ 𝑋-.!#,#,$ + 𝛽#/.('0+/

∙ 𝑋#/.('0+/,#,$ + 𝜀	 
 
Where the variable terms 𝑋!"#$,&,$,', 𝑋&()*+,,$,', 𝑋-.&$,$,', and 𝑋$/.(#0+/,$,'correspond to the 
estimated cost, in-vehicle time, wait time and number of transfers for individual i making trip t 
using mode m. The term𝐴𝑆𝐶' is an alternative-specific constant (ASC) that represents the 
preference for a particular mode if all other parameters were equal. Finally, the equation includes 
an extreme-value distributed error term, 𝜀, representing unknown factors un-represented by the 
other variables.  

In this study, the mode choice model is represented using a multinomial logit equation of the 
form defined in Equation 2, below: 

 
Equation 2. Multinomial Logit Model 

𝑃!,#,$ = 𝑃𝑟𝑜𝑏(𝑈!,#,$ ≥ 𝑈1,#,$∀𝑗 ∈ 𝐶!,#) 	=
𝑒2(4!,#,$)

∑ 𝑒2(4%,#,$)1∈7!,#

 



35 

Where 𝑉&,$,' = 𝑈&,$,' − 𝜀 is the deterministic portion of the utility equation and 𝐶&,$is the set of 
mode alternatives available to individual i making trip t. Following the assumption that the 
variances of the error terms are homoscedastic (i.e., have equal variance), the scale parameter 𝜇 
is conveniently constrained to a value of one (Ben-Akiva and Lerman, 1985).  

Introducing heterogeneity to the BEAM mode choice model using SP survey data 
A heterogeneous mode choice model was implemented in the BEAM framework by introducing 
additional parameters to the utility function that represent the sensitivity of TNC mode choices to 
trip destination (home or work) and individual characteristics of the trip-maker, including: age, 
income, and car ownership. The model coefficients were estimated using data from an online 
general population SP survey distributed from August to December 2018 to residents in the Los 
Angeles, Sacramento, San Diego, and the San Francisco Bay Area metropolitan regions. The 
survey included a series of four to five SP mode choice experiments in which respondents were 
asked to indicate their preferred option among three TNC ride services for a specified trip, as 
presented: 

• Ride-alone TNC: a service such as UberX/ Lyft Classic where travelers request a direct, 
door-to-door ride for themselves. 

• Door-to-door shared ride (TNC): a service such as Uber Pool/ Lyft Shared rides 
(formerly Lyft Line) where travelers request a door-to-door ride for themselves and the 
route may deviate to pick up or drop off one to three additional passengers riding along a 
similar route. 

• Indirect shared ride (TNC): a service such as Uber Express Pool that is identical to the 
door-to-door shared ride, except the traveler is assigned pickup and dropoff locations that 
might require them to walk several minutes to and from the origin and destination 
locations designated in the ride request. Indirect shared rides may have one to five 
additional passengers.  

Respondents were asked to imagine that they were making a trip from a specified origin (home 
or outside from home) to a specified destination (home, a restaurant/bar, an event (e.g., sports 
event, theater, concert), the airport, a recreational/social activity (e.g., a park, the beach, etc.), or 
a public transit station with a specified time constraint (no, some, or plenty of time to spare). The 
alternative-specific attributes for each transportation option were presented in a table format 
including the: 1) estimated wait time, 2) estimated walking time to or from the pickup or dropoff 
locations, 3) estimated in-vehicle time, 4) estimated total time, 5) estimated cost, and 6) expected 
range of additional passengers. For more information regarding the design and implementation 
of the survey please see Lazarus, et al. (2020) and Shaheen et al. (2021).  

A total sample of 10,912 SP choice experiments from 2,398 individual respondents were 
collected and included in a discrete choice analysis for the present study. In contrast to the 
previous study, the model specification was constrained by the availability of parameters in 
BEAM. Parameters corresponding to travelers’ attitudes and perceptions toward sharing and 
their usual weekly travel profiles, (i.e., the frequency with which they drive, use public transit, 
etc.) and the time since they first began using TNCs were not included in this model, as this 
individual-level data is not represented in BEAM. One exception is the inclusion of the 
parameter indicating a medical condition or handicap. Although the BEAM model did not 
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distinguish travelers by this characteristic, the parameter was found to be highly significant by 
Lazarus, et al. (2020) and thus improves the performance of the model in estimating the 
coefficients for all other variables. Thus, rather than exclude the variable, it is included and all 
travelers in the BEAM model are treated as though they have no medical condition or handicap. 
Similarly, the coefficients corresponding to indirect pooled rides and the other three metropolitan 
regions are included in the model although only door-to-door pooled ride service and the San 
Francisco Bay Area are modeled in BEAM. Thus the coefficients corresponding to indirect 
pooled rides and to trips occurring in Los Angeles, Sacramento, and San Diego are not used in 
the simulation.  

The resulting heterogeneous utility function is defined in Equation 3, with the description, 
estimated coefficients, and significance of each parameter presented in Table A1 below.   

Equation 3. Heterogeneous Mode Choice Utility Equation - Standard Form 
𝑈!,$,# = 𝐴𝑆𝐶$ + 𝛽%&'#,! ∙ 𝑋%&'#,!,#,$ + 𝛽!()*+,,$,! ∙ 𝑋!()*+,,#,$ + 𝛽-.!#,! ∙ 𝑋-#,#,$ + 	𝛽#/.('0+/

∙ 𝑋#/.('0+/,# + 𝛽&/!8!(,$ ∙ 𝑋&/!8!(,# 
+𝛽9+'#,!,$ ∙ 𝑋9+'#,# + 𝛽.8+,!,$ ∙ 𝑋.8+,!,$ + 𝛽!(%&$+,!,$ ∙ 𝑋!(%&$+,!,$ + 𝛽%./)&-(+/,!,$ ∙ 𝑋%./)&-(+/,! 

 

Description Ride Alone TNC Door-to-Door TNC 

Alternative-specific constant 0 -1.058*** 

Trip cost ($) -0.027*** 

In-vehicle travel time (minutes) - Less than 
$35,000) 

-0.012** 

In-vehicle travel time (minutes) - $100,000 or 
more 

-0.039** 

Wait time (minutes) -0.055*** 

Origin: Home 0 

Origin: Somewhere other than home 0 0.054 

Destination: Home 0 

Destination: Restaurant/Bar 0 0.314** 

Destination: Airport 0 0.227* 

Destination: Transit Station 0 0.387* 

Destination: Work 0 0.445*** 

Destination: Social/Recreational Activity 0 
 

0.155* 

Time Sensitivity: Some/Plenty of time to spare 0 

Time Sensitivity: No time to spare 0 -0.363*** 

Gender: Male 0 
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Gender: Female 0 -0.007 

Age: Under 30 years old  0 

Age: 30 to 50 years old  0 -0.148** 

Age: 50 to 70 years old   -0.269 

Age: 70 years or older   -0.236* 

Employment: Unemployed/Retired 0 

Employment: Employed 0 -0.198** 

Income: Less than $35,000  0.457** 

Income: $35,000 to $100,000 0 

Income: $100,000 or more  0 0.170 

Medical condition/handicap: None 0 

Medical condition/handicap: Some 0 0.427*** 

Vehicle owner 0 0.251** 
*: p-value < 0.1; **: p-value < 0.01; ***: p-value < 0.0001 

Table A1. Heterogeneous Mode Choice Model 
 
The model results are consistent with the findings reported in Lazarus, et al. (2020), where the 
reader may find further analysis and interpretation of the full model. The following discussion of 
the model focuses on the parameters corresponding to the BEAM San Francisco Bay Area 
model, as other parameters do not affect the present study. The estimated coefficient for the ASC 
for pooled TNC is negative, reflecting a general preference for ride-alone TNCs. TNC mode 
choices in the San Francisco Bay Area are significantly more sensitive to the estimated wait time 
of a trip than to the estimated time in the vehicle. In addition, travelers earning less than 
$100,000 are significantly less sensitive to in-vehicle time than those earning more than 
$100,000. Dividing the coefficient estimates for wait and in-vehicle times by that of cost, the 
model estimates that the value of TNC wait time is about $120/hour, while the value of in-
vehicle time is about $86/hour for travelers earning more than $100,000 per year and about 
$25/hour for all other travelers.  

The coefficient estimates for trip origin suggest that, while travelers are more likely to choose an 
indirect pooled TNC when starting a trip from somewhere other than home, trip origin does not 
have a significant effect on likelihood to choose a door-to-door pooled ride. However, travelers 
are the most likely to choose a pooled TNC when traveling to work. In the San Francisco Bay 
Area, travelers are also significantly more likely to choose a pooled ride when making a TNC 
trip to a public transit station. The model reflects the sensitivity of travelers to the reliability of 
pooled rides, as the coefficient estimates corresponding to having ‘no time to spare’ are 
significant and negative. However, since mode choices in BEAM generally occur with plenty of 
time to spare, this variable does not have an effect in the present study. The remainder of the 
variables correspond to traveler characteristics, finding that in the San Francisco Bay Area, 
travelers under the age of 30, unemployed/retired or earning less than $35,000, with a medical 
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condition/handicap, and that own/lease a vehicle are the most likely to choose a door-to-door 
pooled TNC over a ride-alone TNC option.  

In order to implement the above model in the BEAM framework, the coefficients corresponding 
to ride-alone and door-to-door pooled rides were added to the utility equations for TNCs in the 
BEAM mode choice model. Since no additional parameters were initially introduced for the 
other modes, the resulting mode choice model necessitated considerable calibration, as described 
below.  

BEAM Model Calibration 
The primary model employed in this study is an activity-based travel model of the nine-county 
San Francisco Bay Area: San Francisco, San Mateo, Santa Clara, Alameda, Contra Costa, 
Solano, Napa, Sonoma, and Marin Counties. The model includes a simplified road network of 
about 70,000 nodes and 180,000 links wherein local roads are aggregated in order to reduce the 
computational burden of the simulation. Public transit services across the region are simulated 
using open-sourced General Transit Feed Specification (GTFS) data from each agency, and TNC 
service is simulated with TNCs managed by a single operator with a demand-following 
repositioning algorithm.  

Although admittedly incomplete, the BEAM model in its currently available form focuses solely 
on commute trips, with each agent making two trips per day: one from home to work and another 
from work to home. While the total number of commuters in the San Francisco Bay Area is 
about 3.9 Million (US Census, 2019), the model employs a randomly-sampled sub-population of 
about 325,000 commuters. The population synthesis, including the generation of individuals, 
households, home and work locations, and preferred activity start times, was conducted 
externally from BEAM, using UrbanSim, a regional land use and transportation model that 
simulates housing and employment choices (Waddell, 2002). The distribution of employment 
density per census tract as reported in the 2019 American Community Survey (ACS) (U.S. 
Census, 2019) and modeled in BEAM are displayed in Figure A1 a and b, respectively. As 
shown, the distribution of the synthesized population in the BEAM model is generally similar to 
that of the actual population, with greatest density in the City of San Francisco and in the urban 
centers of the East and South Bay.  
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a) American Community Survey (2015)  b) BEAM San Francisco Bay Area Model 

Figure A1. Employment Density per Traffic Analysis Zone in the San Francisco Bay Area 
The methodological approach for scenario calibration and sensitivity analysis using BEAM was 
developed and tested using a model of the City and County of San Francisco, called “BEAM SF 
Light.” Functionally, the San Francisco model is a subset of the San Francisco Bay Area model 
consisting of the same road and public transit network. A sample of 50,000 commuters was 
generated from the synthetic population used in the San Francisco Bay Area BEAM model. 
Commuter data collected by SFMTA in the 2019 Travel Decision Survey (TDS) (SFMTA, 2019) 
was used to determine the sampling distribution per zip code based on the portion of residents 
living or working in the City of San Francisco.   

The mode choice model was calibrated with the objective of minimizing the mean squared error 
(MSE) of the simulated mode split as measured by census data. The first phase of calibration was 
conducted using the BEAM SF Light model and the commute mode share reported by the 2019 
TDS as the target mode split. The ASCs of the model were modified in consecutive runs of the 
BEAM SF Light model, until the MSE of the mode split reached about 0.0015. At this stage, the 
simulated mode shares among each of three income groups (earning less than $35,000, $35,000 
to $100,000, and more than $100,000) were compared to those estimated from the 2019 TDS, 
revealing significant disparities in the mode shares disaggregated in this way. In particular, by 
using only the overall mode share as a calibration target, the TNC mode share among the lowest 
and middle income groups in the simulation were about triple and double those of the population, 
respectively, while the TNC mode share among the highest income group in the simulation was 
only about a third of that of the population. Furthermore, transit mode share was skewed toward 
the highest income group with the transit mode share of the low-income group in the simulation 
equaling just 20% of that of the low-income population. This resulted in an MSE of 0.012 for the 
income-specific mode shares. 

In order to address these discrepancies, additional parameters were introduced in the mode 
choice model to represent heterogeneity in the sensitivity of demand for other modes with 
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respect to income. These include the parameters for in-vehicle time by income group, income 
group, and the trip transfer penalty (denoted with an asterisk in Table A2). These parameters 
were modified in another sequence of simulation runs until the MSE of income-specific mode 
shares was reduced to about 0.00099 and that of the overall regional commute mode split was 
reduced to 0.000019. The resulting mode choice model was then run in the full BEAM San 
Francisco Bay Area model and the same two steps were taken using the 2017 NHTS to estimate 
the commute mode splits for the San Francisco Bay Area (USDOT, 2017). At the end of the full 
calibration process, the MSE of the income-specific mode shares in the final calibrated model 
was 0.00086 and that of the overall regional commute mode split was 0.000013. As shown in 
Figure A2, the calibrated BEAM San Francisco Bay Area model has slightly higher mode shares 
of driving alone, TNC, and walking than reported by the NHTS 2017 and slightly lower mode 
shares of transit and bike use. Compared to the income-specific mode shares of the population 
(see Figure A3-A4), the low- and middle-income groups in the calibrated BEAM model have 
lower drive alone mode share and higher transit mode share.  

 

 
a) Population (NHTS, 2017)  b) BEAM San Francisco Bay Area Model 

Figure A2. Regional Commute Mode Split in the a) Population and b) Simulation 
 

 
a)  Low-income   b)  Middle-income    c)   High-income 

Figure A3. Commute Mode Split by Income Group in the Population (NHTS, 2017) 
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a)  Low-income   b)  Middle-income    c)   High-income 

Figure A4. Commute Mode Split by Income Group in the BEAM San Francisco Bay Area Model 
The final coefficient values of the calibrated mode choice model are presented in Table A2. 
Coefficients that were altered during the calibration process are denoted with asterisks. The 
coefficients for walk and bike time were set to 1.5 and 2.5 times the coefficients for in-vehicle 
time corresponding to pooled TNCs, respectively. In addition, parameters distinguishing the 
sensitivity of demand with respect to income across modes were introduced to the model to 
increase the mode shares of driving, walking, and biking among low-income travelers as well as 
that of biking among low-income travelers.  

 
Drive 
Alone 

Ride 
Alone 
TNC 

Pooled 
TNC 

TNC 
to/from 
Transit 

Walk 
to/from 
Transit 

Drive 
to/from 
Transit Walk Bike 

Alternative-specific 
constant* 0.000 -0.259 -0.491 0.137 0.334 0.096 0.444 0.246 

Trip cost ($) -0.027 

In-vehicle travel time 
(minutes) - Less than 
$35,000)* -0.012 -0.017 -0.029 

In-vehicle travel time 
(minutes) - $100,000 or 
more* -0.023 -0.035 -0.058 

Wait time (minutes) n/a -0.023 n/a 

Transfer* n/a 0.038 n/a 

Destination: Home 0 

Destination: Work 0 0.444 0 
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Age: Under 30 years old  0 

Age: 30 to 50 years old  0 -0.148 0 

Age: 50 to 70 years old  0 -0.269 0 

Age: 70 years or older  0 -0.236 0 

Income: Less than 
$35,000* 0.209 -0.104 0.000 0.139 0.07 

Income: $35,000 to 
$100,000* 0 

Income: $100,000 or 
more* 0 0.075  0.07 

Vehicle owner 0 0.251 0 

*: coefficients adjusted during calibration 
 

Table A2. Calibrated Mode Choice Model Parameters 

RISE Overview 
RISE is an agent-based fleet simulation model first described in Bauer et al (2018). The model 
routes vehicles to trips and to charge over the course of a simulated set of trip demand (typically 
an average weekday), given data inputs for travel times between each origin-destination pair. 
Trips that aren’t served within a chosen threshold (typically 10 minutes) are lost; however, the 
number of vehicles can be dynamically adjusted to ensure that a desired maximum wait time is 
achieved. The user chooses the relocation strategy for rebalancing the fleet and how vehicles 
decide to charge, as well as number of chargers and charging speed. Charging locations are 
determined by minimizing the total distance to all trips. Battery range can be fixed or estimated 
endogenously by increasing vehicles’ battery range whenever needed to serve a trip. The 
simulation repeats until the fleet’s average battery range and state of charge at the end of the 
simulation period are within 5% of the values at the beginning of the period. Outputs include the 
distance traveled by each vehicle both with and without a passenger, the energy supplied by each 
charger, and the wait time and operating cost associated with each trip. 

To simulate fleet operations in the San Francisco and Los Angeles metropolitan areas, we 
obtained data from StreetLight Data on trip volumes, travel distances and durations between each 
origin and destination zone (roughly the size of a traffic analysis zone, or TAZ). Given that these 
data are presented as distributions, additional pre-processing steps were required, and during the 
simulation each travel time and distance is determined by taking a random draw from the 
appropriate distribution. For more details on this process, see Sheppard et al. (2021). 

Vehicles were assumed to have 300-mile range, with a number of 50-kW chargers estimated 
based on the trip data such that each charger is occupied for four hours per day on average. The 
number of vehicles available to serve trips at any given time was determined by the trip data, 
assuming all trips must be served within a 10-minute wait time. We recorded the wait time and 
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“deadheading” (travel without passengers) distance for each trip, and compared the operational 
results by socioeconomic status of the passengers. 

San Francisco Bay Area to Los Angeles 
Trip data for the Bay Area was taken from BEAM outputs. To extrapolate trip data for Los 
Angeles, we developed a machine learning model based on the StreetLight Data for each city, 
along with Census data for the nearest census tract to each zone, including income, age, and 
population (see Table A3 for description of all variables and relative importance). The response 
variable was the number of trips between each zone-pair by hour of the day. The model was 
trained to reproduce San Francisco data with a standard machine learning algorithm based on 
decision trees, then extrapolated to Los Angeles based on the corresponding features in each 
zone. The final model for predicting BEAM outputs in the Bay Area had a mean squared error of 
0.033. As suggested by Figure A5, the model accurately reproduces the broader spatial pattern of 
trip counts across the Bay Area. 

Variable Relative 
importance 

Fraction of predictive 
power 

StreetLight trip density 1.00 0.16 

StreetLight trip count 0.99 0.16 

Straight-line distance 0.74 0.12 

Hour of day 0.56 0.09 

Fraction vehicles with vehicle scarcity (origin zone) 0.46 0.07 

Average driving time 0.38 0.06 

Fraction non-white travelers 0.33 0.05 

Population (origin zone) 0.33 0.05 

Average driving distance 0.28 0.04 

Population density (destination zone) 0.18 0.03 

Area (origin zone) 0.18 0.03 

Population density (origin census tract) 0.17 0.03 

Population (destination census tract) 0.15 0.02 

Population (destination zone) 0.15 0.02 

Fraction low-income travelers 0.13 0.02 

Population (origin zone) 0.12 0.02 

Fraction vehicles with vehicle scarcity (origin zone) 0.10 0.02 
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Area (destination zone) 0.04 0.01 

Area (destination census tract) 0.03 0.00 

Area (origin census tract) 0.03 0.00 

Table A3. Trip extrapolation model results 
 
 
 

 
Figure A5. Left: outputs of BEAM for ridehailing trips per square mile in each zone; Right: 

outputs from the machine learning model. 
 

 
Figure A6.  Baseline Distributions of the TNC Pooled Request Rate and TNC Pooled Match Rate 

By Origin-Destination County Pairs With Non-Zero Pooled Match Rates 
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a) Inter-County Trips by County of Origin     b) Intra-County Trips by County 

Figure A7. Mean TNC Trip Distance by County and Type of TNC Ride Service 
Error bars represent the standard deviation of trip distance in the corresponding county. 

 

 
Figure A8. Comparative results for San Francisco Bay Area base simulation in RISE showing 

the 5th-95th percentile range of each statistic. Trip counts are outputs for ridehailing from 
BEAM, and low-income and minority statistics represent shares of total travelers in StreetLight 

Data. 
 
 
 




