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DETERMINING FORM AND DATA ASSIMILATION

ALGORITHM FOR WEAKLY DAMPED AND DRIVEN

KORTEWEG-DE VRIES EQUATON- FOURIER MODES CASE

MICHAEL S. JOLLY, TURAL SADIGOV, AND EDRISS S. TITI

Abstract. We show that the global attractor of a weakly damped and driven
Korteweg-de Vries equation (KdV) is embedded in the long-time dynamics

of an ordinary differential equation called a determining form. In particular,
there is a one-to-one identification of the trajectories in the global attractor of
the damped and driven KdV and the steady state solutions of the determining
form. Moreover, we analyze a data assimilation algorithm (down-scaling) for
the weakly damped and driven KdV. We show that given a certain number of
low Fourier modes of a reference solution of the KdV equation, the algorithm
recovers the full reference solution at an exponential rate in time.

1. Introduction

The Korteweg-de Vries equation

ut + uux + uxxx = 0. (1.1)

was derived as a model of unidirectional propagation of water waves with small
amplitude in a channel. It was first introduced by Bousinessq and then reformulated
by Diederik Korteweg and Gustav de Vries in 1885. The function u(x, t) in (1.1)
represents the elongation of the wave at time t and position x. The solutions of
this nonlinear and dispersive equation are solitary waves. In physical applications,
however, one can expect some dissipation of energy, as well as external excitation.
To account for these effects, damping and forcing terms are added to the model

ut + uux + uxxx + γu = f. (1.2)

Existence and the uniqueness of the solution of the damped and driven Korteweg-de
Vries (KdV) equation subject to the boundary conditions

u(t, x) = u(t, x+ L), ∀ (t, x) ∈ R× R, (1.3)

can be shown by adjusting the methods used for undamped KdV in [4], [16] or [19].
The existence of the weak global attractor A, for (1.2)-(1.3), was shown in [11],
and the strong global attractor in H2 was shown in [12]. In particular, it has been
shown in [12] that there exist a constant R, that depends only on γ and |f |H2 , such
that

sup
s∈R

|u(s)|H2 ≤ R, (1.4)
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for every u(·) ⊂ A. We observe that the estimates detailed in section 4, below, can
be followed almost line by line in order to obtain an explicit bound for R.

For many strongly dissipative PDE’s, capturing the attractor by a finite system
of ordinary differential equations is achieved by restricting the equation to an iner-
tial manifold, as is done for Kuramoto-Sivashinsky, Ginzburg-Landau and certain
reaction-diffusion equations (see, e.g., [20] and references therein). An inertial man-
ifold is a finite dimensional Lipschitz positively invariant manifold which attracts
all the solutions at an exponential rate. A sufficient condition for the existence of
an inertial manifolds is the presence of large enough gaps in the spectrum of the
linear dissipative operator, i.e. the presence of separation of scales in the underly-
ing dynamics. The existence of inertial manifolds is still out of reach for various
dissipative equations, including the two-dimensional Navier-Stokes equations, and
the damped and driven KdV equation (1.2)-(1.3). Our aim here is to capture the
attractor in H2, of the damped and driven KdV, by the dynamics of an ordinary
differential equation, called a determining form, which is defined in the phase space
of trajectories.

A determining form is found for the 2D Navier-Stokes equations (NSE) in [7]
by using finitely many determining modes. In that work, the trajectories in the
attractor of the 2D NSE are identified with traveling wave solutions of the deter-
mining form. Another type of determining form is found for the 2D NSE by the
same authors in [8]. The steady state solutions of this second kind of determining
form are precisely the trajectories in the global attractor of the 2D NSE. Dissipa-
tivity (viscosity) plays a fundamental role in establishing a determining form for
this equation.

In contrast, the weakly damped and driven nonlinear Schrödinger equation (NLS)
and weakly damped and driven KdV are dispersive equations. They are not strongly
dissipative due to the absence of viscosity. To embed the attractors of these systems
in the long time dynamics of ordinary differential equations requires different tech-
niques. Recently, we have shown that a determining form of the second kind exists
for the damped and driven NLS (see [14]) using a feedback control term involving
the Fourier projection of a trajectory in the attractor. In this paper we adapt the
approach in [8] and [14] for the KdV. As in [14] the analysis here uses compound
functionals motivated by the Hamiltonian structure of the corresponding systems.

The idea for determining forms starts with the property of determining modes
(see [9]). A projector P is said to be determining if whenever u1(·), u2(·) ⊂ A have
the same projection Pu1(t) = Pu2(t) for all t ∈ R, they are in fact the same solution.
A determining projector P defines a map W on the set S = {Pu(·)|u(·) ⊂ A}. A
key step in constructing a determining form is to extend this map to a function
space. If P = PN is the projection onto the first N Fourier modes, the number N
is called the number of determining modes. Like the dimension of A, N serves as
a measure of the complexity of the flow, and the resolution required to capture it.
We give an estimate for N in terms of the damping parameter γ and the forcing
term f for the KdV.

The analysis of the determining form is akin to that for our data assimilation
(down-scaling) algorithm. Data assimilation refers to the injection of coarse grain
observational data into the model to drive the system toward an accurate solution
(see e.g., [15], [18], [13], [6], [3], and for computational study of continuous data
assimilation, [10]). The proof that this works for the KdV is similar to extending
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the W map except instead of taking an initial time to −∞, we take the time to +∞.
Indeed the feedback control approach to determining forms was inspired by that
approach to data assimilation (down-scaling) first taken in [1] and [2]. As in [14],
we use a ‘reverse’ Poincaré type inequality to extend the W map and show that
it is Lipschitz. For the data assimilation algorithm, we use a different technique
which involves combining two differential inequalities.

2. Preliminaries

Consider the 1D damped and driven KdV equation

ut + uux + uxxx + L(u) = f.

The damping term L(u) could have different forms such as −νuxx or γu. The
case where L(u) = −νuxx constitutes stronger dissipation. The analysis for a data
assimilation algorithm and a determining form for the case L(u) = −νuxx is very
similar to the analysis in [8], and will not be discussed here. In this paper, we will
focus on the case where L(u) = γu. Thus, our equation is

ut + uux + uxxx + γu = f,

subject to periodic boundary conditions

u(t, x) = u(t, x+ L), ∀ (t, x) ∈ R× R,

and initial value u(0, x) = u0(x), where 0 < L < ∞ and γ > 0. Let 0 ≤ k < ∞.
We denote by Hk[0, L] (or simply Hk) the Sobolev space of order k,

Hk[0, L] :=
{

u ∈ L2[0, L] : Dαu ∈ L2[0, L] for 0 ≤ α ≤ k
}

,

and by Ḣk
per, the subspace of Hk consisting of functions which are periodic in x,

with period L, and have spatial mean zero. Note that Ḣ0
per[0, L] = L̇2

per[0, L]. We

assume that u0 ∈ Ḣ2
per, f is time independent, and f ∈ Ḣ2

per. It is easy to see that
if u0 and f are with spatial mean zero, then the solution of (1.2) has spatial mean
zero. It has been proven in [11] that (1.2), subject to the boundary conditions
(1.3), has a strong global attractor in H2. The global attractor is the maximal
compact invariant set under the solution operator S(t, ·). Throughout this paper,
for simplicity, we omit the domain of integration and dx in the spatial integration
so that

|u|2 :=

∫

u2, |u|2H1 :=

∫

u2
x,

|u|2H2 :=

∫

u2
xx, |u|∞ := sup

x∈[0,L]

|u(x)|.

We also recall the Agmon inequality

sup
x∈[0,L]

|w(x)| ≤ |w|
1
2 |wx|

1
2 . (2.1)

Bounding expressions that depend on γ, f (and µ, see (3.3), below) will be denoted
by capital letters R with specific indices. The bounding expressions R with indices
0, 1, ∞, 2 and superscript ′ are the L2, H1, L∞, H2 and time derivative bounds,
respectively, for the solution in the global attractor of (3.3), below. Those bound-

ing expressions accented with ˜ and ˜̃will be subsequently improved. As they are

improved once, we remove a .̃ For example, ˜̃R1 will be improved once, and we use
R̃1 for the improvement. Then we improve R̃1 again to get R1 which is the final
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improvement. We will denote R0
i = R|µ=0 for i = 0, 1,∞, 2, and R′0 = R′|µ=0.

Universal constants will be denoted by c, and updated throughout the paper. We
denote by P = Pm the L2-projection onto the space Hm, where

Hm := span{eikx
2π
L : 0 < |k| ≤ m}. (2.2)

3. The Statement Of The Main Result

We use the Banach spaces,

X = Ċb(R, PmH2) = {v : R → PmH2 : v is continuous and bounded,

∫

v = 0},

(3.1)

Y = Ċb(R, H
2) ={w : R → H2 : w is continuous, |w|H2 is bounded, and

∫

w = 0},

(3.2)

with the following norms,

|v|X = sup
s∈R

|v(s)|H2 , |w|Y = sup
s∈R

|w(s)|H2 .

Let v ∈ X , and consider the equation

ws + wwx + wxxx + γw = f − µ[Pm(w) − v], (3.3)

subject to periodic boundary conditions

∂j
xw(s, x) = ∂j

xw(s, x+ L), ∀(s, x) ∈ R× R. (3.4)

for j = 0, 1 and 2. We assume that f ∈ Ḣ2
per. The following theorem is the

combination of several theorems in the subsequent sections. The conditions (4.12),
(4.25), (5.1), (5.2), (8.2), (8.3), (8.4), and (9.1) are defined in subsequent sections.

Theorem. Let ρ = 4R, where R is given in (1.4). Let v ∈ Bρ
X(0), i.e., v ∈ X,

with |v|X < ρ, and u∗ be a steady state solution of equation (1.2). Then we have

the following:

(1) Assume that µ and m are large enough depending on ρ, such that (4.12),
(4.25), (5.1) and (5.2) hold, then
(a) there exists a unique bounded solution w ∈ Y of (3.3), which holds

in the space H−1. This defines a map W : Bρ
X(0) → Y , such that

w = W (v).
(b) The map PmW : Bρ

X(0) → X is a Lipschitz map.

(c) Assume also that µ and m are large enough such that (8.2) holds, then
we have W (Pmu(s)) = u(s), if and only if u(·) is a trajectory in the

global attractor of (1.2).
(d) The determining form

dv

dt
= F (v) = −|v − PmW (v)|2X(v − Pmu∗),

is an ordinary differential equation which has global existence and

uniqueness in the forward invariant set

{v ∈ X : |v − Pmu∗|X < 3R}.

Furthermore, the trajectory Pmu(s), s ∈ R, is included in this set, for

every u(·) ⊂ A.
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(2) Assume that µ and m are large enough such that (4.12), (4.25), (8.2), (8.3)
and (8.4) hold. Let u(s) be the global solution of (1.2) − (1.3), for a given

initial data u(s0) ∈ Ḣ2, which satisfies |u(s)|H2 < ρ, for all s ≥ s0; and let

w(s) be the global solution of (3.3) − (3.4), with v = Pm(u), for arbitrary

initial data w(s0) ∈ Ḣ2, where |w(s0)|H2 < ρ. Then |w(s) − u(s)| → 0, as
s → ∞, at an exponential rate with exponent γ

4 .

(3) Assume that m is large enough such that (9.1) holds. Then the determining

modes property holds for (1.2), (1.3), and the number of determining modes,

m, is of the order of O(γ− 26
3 , |f |

14
3

H2), as γ → 0 and |f |H2 → ∞.

We note that the above theorem assumes the existence of a steady state solution
to (1.2), which is proved in Appendix A. For the existence of solution to (3.3)
which belongs to Y , we use parabolic regularization (see, e.g., [19]). Specifically,
we consider

ws + ǫwxxxx + wwx + wxxx + γw = f − µ[Pm(w)− v], (3.5)

where 0 < ǫ < 1, subject to periodic boundary conditions

∂j
xw(s, x) = ∂j

xw(s, x+ L), ∀(s, x) ∈ R× R.

for j = 0, 1, 2. We give the proof using the Galerkin approximation method. Our
plan is to find a sufficiently smooth bounded solution wǫ to (3.5) for all s ∈ R. In
order to do that, we consider the Galerkin approximation of (3.5):

∂wn

∂s
+ ǫ(wn)xxxx + Pn(wn(wn)x) + (wn)xxx + γwn = fn − µ[Pm(wn)− v], (3.6)

with initial data

wn(−k, x) = 0, for some fixed k ∈ N,

where wn, fn ∈ Hn. Here we consider n > m. Note that Pnv = v, for every v ∈ X .
Since (3.6) is an ordinary differential equation with locally Lipschitz nonlinearity,
it has a unique, bounded solution wn on a small interval [−k, S∗), for some S∗ >

−k. We establish here global existence (in time), uniform in n and s bounds

(which may depend on 1
ǫ
) in the norms of the spaces L̇2 and Ḣ4, which will imply,

among other things, that S∗ = ∞. This is done by taking the inner product
of (3.6) with wn and ∂8

xw
n which are in the space Hn, respectively, and then

using integration by parts, Hölder, Agmon, interpolation and Gronwall inequalities.
We denote this solution by wǫ

n,k ∈ Cb((−k,∞); Ḣ4) ∩ L2((−k,∞); Ḣ6), referring
to its dependence on ǫ, n and the initial time −k. By using the Arzela-Ascoli
theorem and Cantor diagonal process on the sequence in k, we obtain a solution
wǫ

n ∈ Cb((−∞,∞); Ḣ4)∩L2((−∞,∞); Ḣ6) that is defined for all s ∈ R, and enjoys
certain estimates, which are uniform with respect to n. Then, by applying the Aubin
compactness theorem (see e.g. [5], [20]) and Cantor diagonal process to the sequence

in n, we obtain a bounded solution wǫ ∈ L∞((−∞,∞); Ḣ4)∩L2((−∞,∞); Ḣ6) to

(3.5). Moreover, we show that the equation (3.5) holds in L2(R, L̇2). Then, using
the Hamiltonian structure of equation (3.5) when ǫ = 0, f = 0 and µ = 0, we find
uniform in ǫ estimates for wǫ in H1 and H2. Finally, we take ǫ → 0, and obtain
a bounded solution w ∈ H2 on R to the equation (3.3), which obeys the bounds
we find in previous steps. In the next section, we establish the above described a
priori estimates for (3.6) and steps.
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It is worth mentioning that following similar ideas to those in section 4, below,
for the case µ = 0 in equation (3.5), and assuming that w is a solution that lies in
the global attractor A, one can obtain an explicit bound for R in (1.4).

4. A Priori Estimates

4.1. L2 bound. Let [−k, S∗) be the maximal interval of existence for (3.6). For
simplicity we will drop the subscripts n and m; we will use w instead of wn and
Pw instead of Pmw. Multiply (3.6) by w, and integrate over the spatial domain to
get
∫

wws + ǫ

∫

wxxxxw +

∫

w2wx +

∫

wxxxw + γ

∫

w2 =

∫

fw − µ

∫

(Pw)2 + µ

∫

vPw.

Here we used the fact that v is in Hm. We recognize that for any natural number
l,

∫

wlwx =

∫

1

l + 1
∂x(w

l+1) = 0 (4.1)

Also,
∫

wxxxw = −

∫

wxxwx = −

∫

1

2
∂x(wx)

2 = 0. (4.2)

Thus, by the Cauchy-Schwarz and Young inequalities, we have

d

ds
|w|2 + 2ǫ|wxx|

2 + 2γ|w|2 + 2µ|Pw|2 ≤ 2|f ||w|+ 2µ|v|X |Pw| (4.3)

≤
|f |2

γ
+ γ|w|2 + µ|v|2X + µ|Pw|2,

or simply

d

ds
|w|2 + γ|w|2 + µ|Pw|2 ≤

|f |2

γ
+ µ|v|2X .

Since w(−k) = 0, and since |v|X < ρ, by applying Gronwall’s inequality, we get

|w(s)| ≤
|f |+ γ

1
2µ

1
2 ρ

γ
=: R̃0, for all s ∈ [−k, S∗).

This bound implies the global existence of the Galerkin system (3.6) so that S∗ =

∞. Moreover, we have w ∈ Cb([−k,∞); L̇2).

4.2. H4 bound. Multiply (3.6) by ∂8
xw ∈ Hn, integrate over the spatial domain

and use integration by parts, the Cauchy-Schwarz and Young inequalities, to obtain

d

ds
|∂4

xw|
2 + 2ǫ|∂6

xw|
2 + 2γ|∂4

xw|
2 + 2µ|∂4

xPw|2 ≤ 2|fxx||∂
6
xw|

+ 2µ|v|X |∂6
xPw| −

∫

wwx∂
8
xw

≤
4

ǫ
(|fxx|

2 + µ2|v|2X) +
ǫ

2
|∂6

xw|
2 −

∫

wwx∂
8
xw. (4.4)
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Here
∫

wwx∂
8
xw = −

∫

w2
x∂

7
xw −

∫

wwxx∂
7
xw

= 3

∫

wxwxx∂
6
xw +

∫

wwxxx∂
6
xw

≤ 3|wx|∞|wxx||∂
6
xw|+ |w|∞|wxxx||∂

6
xw|

≤ 3|wx|
1
2 |wxx|

3
2 |∂6

xw|+ |w|
1
2 |wx|

1
2 |wxxx||∂

6
xw| (Agmon’s inequality)

≤ c|w|
17
12 |∂6

xw|
19
12 (Interpolation of H1, H2, H3 between L2 & H6)

≤ cR̃
17
12

0 |∂6
xw|

19
12

≤
c

ǫ
19
5

+
ǫ

2
|∂6

xw|
2. (Young’s inequality)

We use this in (4.4), and absorb the term ǫ
2 |∂

6
xw|

2 in the left-hand side, and find

an H4 bound for w = wǫ
n,k. Thus,

wǫ
n,k ∈ Cb((−k,∞); Ḣ4) ∩ L2

loc((−k,∞); Ḣ6). (4.5)

We realize that since

∂wǫ
n,k

∂s
= −ǫ(wǫ

n,k)xxxx−Pn(w
ǫ
n,k(w

ǫ
n,k)x)−(wǫ

n,k)xxx−γwǫ
n,k+fn−µ[Pm(wǫ

n,k)−v],

we have (see section 4.7 of [14])

∂wǫ
n,k

∂s
∈ Cb((−k,∞); L̇2) ∩ L2

loc((−k,∞); Ḣ2). (4.6)

We observe that the bounds of the relevant norms in (4.5), (4.6) are independent
of n and k. We now focus on the sequence (wǫ

n,k)k∈N ⊂ Hn for fixed ǫ, and fixed n,

but k is variable. Since Hn is a finite dimensional space, thanks to (4.6) we may
invoke the Arzela-Ascoli theorem to extract a subsequence ((wǫ

n,k)
(1)) of (wǫ

n,k) such

that (wǫ
n,k)

(1) → (wǫ
n)

(1), as k → ∞, uniformly on the interval [−1, 1]. Moreover,

(wǫ
n)

(1) is a bounded solution of (3.6) on the interval [−1, 1]. Let j ∈ N, we use an
induction iterative procedure to define (wǫ

n,k)
(j+1) to be subsequence of (wǫ

n,k)
(j), all

of which are subsequences of wǫ
n,k. Thanks to (4.6) we can apply the Arzela-Ascoli

theorem to extract a subsequence of (wǫ
n,k)

(j), denoted by (wǫ
n,k)

(j+1), such that

(wǫ
n,k)

(j+1) → (wǫ
n)

(j+1), as k → ∞, uniformly on the interval [−(j + 1), (j + 1)].

We notice that (wǫ
n)

(j) satisfies all the uniform estimates (see (4.5) and (4.6)) that
are satisfied above by the sequence wǫ

n,k in the interval [−j, j]. Then by the Cantor

diagonal process, we obtain that (wǫ
n,k)

(k) → wǫ
n on every interval [−M,M ], where

wǫ
n is a bounded solution of the Galerkin approximation of the regularized equation

(3.6) on all of R such that

wǫ
n ∈ Cb((−∞,∞); Ḣ4) ∩ L2

loc((−∞,∞); Ḣ6),

and obeys the estimates we found in previous steps. Since

∂wǫ
n

∂s
= −ǫ(wǫ

n)xxxx − Pn(w
ǫ
n(w

ǫ
n)x)− (wǫ

n)xxx − γwǫ
n + fn − µ[Pm(wǫ)− v],

we have
∂wǫ

n

∂s
∈ Cb((−∞,∞); L̇2) ∩ L2

loc((−∞,∞); Ḣ2).
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Now, by using Aubin’s compactness theorem and Cantor’s diagonal process, one
can find

wǫ ∈ L∞((−∞,∞); Ḣ4) ∩ L2
loc((−∞,∞); Ḣ6),

that solves (3.5), and the equation holds in L∞(R; L̇2) ∩ L2
loc(R; Ḣ

2).

4.3. H1 bound (uniform in ǫ). Next, we establish uniform in ǫ bounds for wǫ.
For simplicity, we will write w instead of wǫ. Since w ∈ H4 and H4 is an algebra,
we have w2 ∈ H4 ⊂ L2. Thus, we can take the inner product of equation (3.5),
which holds in L∞(R, L2), with 2wxx + w2. Integrating over the spatial domain,
using integration by parts, and observing that the function Φ, defined below, is
absolutely continuous, we have

d

ds
Φ + γΦ+ 2ǫ|wxxx|

2 =− γ

∫

w2
x − 2µ

∫

(Pwx)
2 +

2γ

3

∫

w3

− 2

∫

fxxw − 2µ

∫

vxxPw −

∫

fw2

+ µ

∫

w2Pw − µ

∫

vw2 + ǫ

∫

wxxxxw
2, (4.7)

where

Φ(w) =

∫

(w2
x −

w3

3
). (4.8)

We now estimate the right-hand side of (4.7). Here

2γ

3

∫

w3 + µ

∫

w2Pw ≤ (γ + µ)|w|∞|w|2

≤ (γ + µ)|w|
5
2 |wx|

1
2

≤
(γ + µ)

4
3

γ
1
3

|w|
10
3 +

γ

2
|wx|

2

≤
(γ + µ)

4
3

γ
1
3

R̃
10
3

0 +
γ

2
|wx|

2.

Also,

− 2

∫

fxxw ≤ 2|f |H2 |w| ≤ 2|f |H2R̃0

−

∫

fw2 − µ

∫

vw2 ≤ (|f |∞ + µ|v|X)|w|2 ≤ (|f |∞ + µ|v|X)R̃2
0,

− 2µ

∫

vxxPw ≤ 2µ|vxx||Pw| ≤ 2µ|v|XR̃0.
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For the last term on the right hands side of (4.7), we do the following:

ǫ

∫

wxxxxw
2 = −2ǫ

∫

wwxwxxx

≤ 2ǫ|w|∞|wx||wxxx|

≤ 2ǫ|w|
1
2 |wx|

3
2 |wxxx| (Agmon)

≤ ǫc|w|
3
2 |wxxx|

3
2 (Interpolation of H1 between L2 and H3)

≤ ǫcR̃
3
2

0 |wxxx|
3
2

≤ cǫR̃6
0 +

3ǫ

4
|wxxx|

2. (Young)

Thus, we obtain

d

ds
Φ + γΦ ≤

(γ + µ)
4
3

γ
1
3

R̃
10
3

0 + (|f |∞ + µ|v|X)R̃2
0 + 2(|f |H2 + µ|v|X)R̃0 + cǫR̃6

0.

We realize that the right-hand side of the above inequality does not depend on ǫ

(since ǫ ∈ (0, 1)). Let s ∈ R, and take s0 < s. Then by Gronwall’s inequality, we
obtain

Φ(w(s)) ≤ e−γ(s−s0)Φ(w(s0))

+
1

γ

{

(γ + µ)
4
3

γ
1
3

R̃
10
3

0 + (|f |∞ + µ|v|X)R̃2
0 + (2|f |H2 + 2µ|v|X)R̃0 + cǫR̃6

0

}

.

Notice that for ǫ > 0, we have w ∈ L∞(R, H4), in particular Φ(w(s0)) is bounded
uniformly, for every s0 ∈ R. Now we let s0 → −∞. Since e−γ(s−s0)Φ(w(s0)) → 0,
and since |v|X < ρ, we have

Φ(w(s)) ≤
1

γ

{

(γ + µ)
4
3

γ
1
3

R̃
10
3

0 + (|f |∞ + µρ)R̃2
0 + (2|f |H2 + 2µρ)R̃0 + cǫR̃6

0

}

,

(4.9)

for all s ∈ R. Also,

Φ(w) =

∫

w2
x −

w3

3
≥ |wx|

2 −
1

3
|w|

5
2 |wx|

1
2

≥ |wx|
2 − |w|

10
3 −

1

2
|wx|

2,

and hence

|wx|
2 ≤ 2Φ(w) + 2|w|

10
3 ≤ 2Φ(w) + 2R̃

10
3

0 . (4.10)

Using (4.9), we obtain that

|wx| ≤
˜̃R1,

where

˜̃R2
1 :=

2
(

(γ + µ)
4
3 + γ

4
3

)

γ
4
3

R̃
10
3

0

+
2

γ

{

(|f |∞ + µρ)R̃2
0 + 2(|f |H2 + µρ)R̃0 + cǫR̃6

0

}

. (4.11)
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Thus, we have a H1 bound which is uniform in ǫ, since ǫ ∈ (0, 1). Note that
˜̃R1 = O(µ

3
2 ) as µ → ∞.

4.4. Improved L2 bound. We will use R̃1 to get a sharper bound for |w|. We
define the operator Q := I −P , i.e., Qw = w−Pw. We add 2µ|Qw|2 to both sides
of (4.3), use Young’s and Poincaré’s inequalities to get

d

ds
|w|2 + 2ǫ|wxx|

2 + 2γ|w|2 + 2µ|w|2 ≤ 2|f ||w|+ 2µ|v|X |Pw| + 2µ|Qw|2

≤
|f |2

γ
+ γ|w|2 + µ|v|2X + µ|Pw|2 +

µL2

2π2(m+ 1)2
|wx|

2

≤
|f |2

γ
+ µ|v|2X + (γ + µ)|w|2 +

µL2

2π2(m+ 1)2
˜̃R2
1.

Now, if we choose m large enough such that

µL2

2π2(m+ 1)2
˜̃R2
1 ≤ µα, (4.12)

for some α ≥ 1, to be determined later, since |v|X < ρ, then

d

ds
|w|2 + (γ + µ)|w|2 ≤

|f |2

γ
+ µ(ρ2 + µα−1).

By Gronwall’s inequality on the interval [s0, s], and letting s0 → −∞, we obtain

|w(s)| ≤

√

√

√

√

|f |2

γ
+ µ(ρ2 + µα−1)

(γ + µ)
≤

√

|f |2

γ2
+ ρ2 + µα−1

≤
|f |

γ
+ ρ+ µ

α−1

2 =: R0. (4.13)

for all s ∈ R. We observe that R0 = O(µ
α−1

2 , γ−1, |f |), for α ∈ [1, 2), as µ → ∞,
γ → 0 and |f | → ∞. We chose α less than 2, so that this is an improvement over

R̃0 = O(µ
1
2 ).

4.5. Improved H1 bound (uniform in ǫ). Replacing R̃0 with R0 in (4.11), we
find an improved bound

sup
s∈R

|wx(s)| ≤ R̃1,

where

R̃2
1 :=

2

γ

{

(
(γ + µ)

4
3

γ
1
3

+ γ)R
10
3

0 + (|f |∞ + µρ)R2
0 + 2(|f |H2 + µρ)R0 + cǫR̃6

0

}

.

We note that R̃1 = O(µ
5α−1

6 ), as µ → ∞, where α ∈ [1, 2).
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4.6. H2 bound (uniform in ǫ). Since (3.5) holds in L∞(R, L̇2) and w ∈ Ḣ4, we
multiply (3.5) by 18

5 wxxxx+6wwxx+3w2
x+w3 ∈ L2, and integrate over the spatial

domain. From multiplying (3.5) by the term 18
5 wxxxx, we get

d

ds

∫

9

5
w2

xx +
18ǫ

5
|wxxxx|

2 +
18

5

∫

wwxwxxxx

+
18

5

∫

wxxxwxxxx + γ
18

5

∫

w2
xx + µ

18

5

∫

Pw2
xx

=
18

5

∫

fxxwxx + µ
18

5

∫

vxxwxx. (4.14)

We have

18

5

∫

wwxwxxxx = −
18

5

∫

w2
xwxxx −

18

5

∫

wwxxwxxx,

where

−
18

5

∫

w2
xwxxx =

36

5

∫

wxw
2
xx,

and

−
18

5

∫

wwxxwxxx =
18

5

∫

wxw
2
xx +

18

5

∫

wwxxxwxx,

which gives

−
18

5

∫

wwxxwxxx =
9

5

∫

wxw
2
xx.

We rewrite (4.14) as,

d

ds

∫

9

5
w2

xx +
18ǫ

5
|wxxxx|

2 + 9

∫

wxw
2
xx + γ

18

5

∫

w2
xx + µ

18

5

∫

Pw2
xx

=
18

5

∫

fxxwxx + µ
18

5

∫

vxxwxx. (4.15)

From multiplying (3.5) by the term 6wwxx, we get

6

∫

wswwxx + 6ǫ

∫

wwxxwxxxx + 6

∫

w2wxwxx

+ 6

∫

wwxxwxxx + 6γ

∫

w2wxx + 6µ

∫

(Pw)wwxx

= 6

∫

fwwxx + 6µ

∫

vwwxx. (4.16)

Since

6

∫

wswwxx = −6

∫

wsxwwx − 6

∫

wsw
2
x,

and

d

ds

∫

ww2
x =

∫

wsw
2
x + 2

∫

wwxwxs,

we have that

6

∫

wswwxx = −
d

ds

∫

3ww2
x − 3

∫

wsw
2
x. (4.17)
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For the remaining terms in (4.16), we write

6

∫

w2wxwxx = 3

∫

w2 ∂

∂x
(w2

x) = −3

∫

∂

∂x
(w2)w2

x = −6

∫

ww3
x,

6

∫

wwxxwxxx = 3

∫

w
∂

∂x
(w2

xx) = −3

∫

wxw
2
xx,

6γ

∫

w2wxx = −12γ

∫

ww2
x,

6µ

∫

(Pw)wwxx = −6µ

∫

(Pwx)wwx − 6µ

∫

(Pw)w2
x.

By using these equalities and (4.17) in (4.16), we get

−
d

ds

∫

3ww2
x − 3

∫

wsw
2
x − 6

∫

ww3
x − 3

∫

wxw
2
xx − 12γ

∫

ww2
x

− 6µ

∫

(Pwx)wwx − 6µ

∫

(Pw)w2
x

= 6

∫

fwwxx + 6µ

∫

vwwxx − 6ǫ

∫

wwxxwxxxx. (4.18)

Multiplying (3.5) by the term 3w2
x, we get

3

∫

wsw
2
x + 3

∫

ww3
x−6

∫

wxw
2
xx + 3γ

∫

ww2
x + 3µ

∫

(Pw)w2
x

= 3

∫

fw2
x + 3µ

∫

vw2
x − 3ǫ

∫

w2
xwxxxx, (4.19)

since

3

∫

w2
xwxxx = −6

∫

wxw
2
xx.

Multiplying (3.5) by the term w3, we get
∫

wsw
3 + ǫ

∫

w3wxxxx +

∫

w4wx+

∫

w3wxxx + γ

∫

w4 + µ

∫

(Pw)w3

=

∫

fw3 + µ

∫

vw3. (4.20)

Since
∫

wsw
3 =

d

ds

∫

1

4
w4,

∫

w4wx = 0,

∫

w3wxxx = −3

∫

w2wxwxx = −
3

2

∫

w2 ∂

∂x
(w2

x) =
3

2

∫

∂

∂x
(w2)w2

x = 3

∫

ww3
x,

we may rewrite (4.20) as

d

ds

∫

1

4
w4+3

∫

ww3
x + γ

∫

w4 + µ

∫

(Pw)w3

=

∫

fw3 + µ

∫

vw3 − ǫ

∫

w3wxxxx. (4.21)
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Now we add (4.15), (4.18), (4.19) and (4.21) to get the following energy equation

d

ds

∫
(

9

5
w2

xx − 3ww2
x +

w4

4

)

+ γ

∫
(

18

5
w2

xx − 9ww2
x + w4

)

+
18ǫ

5
|wxxxx|

2

=

∫
(

18

5
fxxwxx + 6wfwxx + 3fw2

x + fw3

)

+ µ

∫
(

18

5
vxxwxx + 6wvwxx + 3vw2

x + vw3

)

− µ
18

5

∫

(Pwxx)
2 + 6µ

∫

(Pwx)wwx

+ 3µ

∫

(Pw)w2
x − µ

∫

(Pw)w3

− 6ǫ

∫

wwxxwxxxx − 3ǫ

∫

w2
xwxxxx − ǫ

∫

w3wxxxx.

We define

ϕ(w) =

∫
(

9

5
w2

xx − 3ww2
x +

w4

4

)

, (4.22)

which is an absolute continuous function, then the above implies

d

ds
ϕ+ γϕ+

18ǫ

5
|wxxxx|

2 = − γ

∫
(

9

5
w2

xx − 6ww2
x +

3

4
w4

)

+

∫
(

18

5
fxxwxx + 6wfwxx + 3fw2

x + fw3

)

+ µ

∫
(

18

5
vxxwxx + 6wvwxx + 3vw2

x + vw3

)

− µ
18

5

∫

(Pwxx)
2 + 6µ

∫

(Pwx)wwx

+ 3µ

∫

(Pw)w2
x − µ

∫

(Pw)w3

− 6ǫ

∫

wwxxwxxxx − 3ǫ

∫

w2
xwxxxx − ǫ

∫

w3wxxxx.

We now use Young’s, Hölder’s, Agmon’s and interpolation inequalities along with,
uniform in ǫ ∈ (0, 1), L2 and H1 bounds for each term on the right-hand side to
obtain bounds in which the power on µ is minimal:

6γ

∫

ww2
x = 6γ

∫

wwxwx = 3γ

∫

∂

∂x
(w2)wx = −3γ

∫

w2wxx

≤ 3γ|w|∞|w||wxx| ≤ 3γ|w|
3
2 |wx|

1
2 |wxx|

≤ 3γR
3
2

0 R̃
1
2

1 |wxx|,
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3

∫

(f + µv)w2
x = 3

∫

(f + µv)wxwx = −3

∫

(fx + µvx)wxw − 3

∫

(f + µv)wxxw

=
3

2

∫

(fxx + µvxx)w
2 − 3

∫

(f + µv)wwxx

≤
3

2
|w|∞|w|(|f |H2 + µ|v|X) + 3(|f |∞ + µ|v|∞)|w||wxx|

≤
3

2
R

3
2

0 R̃
1
2

1 (|f |H2 + µ|v|X) + 3(|f |∞ + µ|v|∞)R0|wxx|,

6µ

∫

(Pwx)wwx + 3µ

∫

(Pw)w2
x = −

3

2
µ

∫

(Pwxx)w
2 − 3µ

∫

Pwwwxx

≤
9

2
µR

3
2

0 R̃
1
2

1 |wxx|,

∫

18

5
fxxwxx + µ

∫

18

5
vxxwxx ≤

18

5
(|f |H2 + µ|v|X)|wxx|,

∫

6wfwxx +

∫

6wµvwxx ≤ 6(|f |∞ + µ|v|∞)|w||wxx|

≤ 6(|f |H2 + µ|v|X)R0|wxx|,

∫

fw3 +

∫

µvw3 − µ

∫

(Pw)w3 ≤(|f |H2 + µ|v|X)R
5
2

0 R̃
1
2

1 + µR3
0R̃1.

For the terms with ǫ, we have

− 6ǫ

∫

wwxxwxxxx − 3ǫ

∫

w2
xwxxxx − ǫ

∫

w3wxxxx

≤ 6ǫ|w|∞|wxx||wxxxx|+ 3ǫ|wx|∞|wx||wxxxx|+ ǫ|w|2∞|w||wxxxx|

≤ 6ǫ|w|
1
2 |wx|

1
2 |wxx||wxxxx|+ 3ǫ|wx|

3
2 |wxx|

1
2 |wxxxx|+ ǫ|w|2|wx||wxxxx| (Agmon)

≤ 9ǫc|w|
11
8 |wxxxx|

13
8 + ǫc|w|

11
4 |wxxxx|

5
4 (Interpolation)

≤ ǫc|w|
22
3 +

23ǫ

16
|wxxxx|

2 (Young)

≤ ǫcR
22
3

0 +
18ǫ

5
|wxxxx|

2.

We sum all of above, and use the fact that |v|X < ρ, to get

d

ds
ϕ+ γϕ ≤ −

9

5
γ|wxx|

2 + C̃1|wxx|+ C̃2 + ǫcR
22
3

0 ,

where

C̃1 :=3γR
3
2

0 R̃
1
2

1 + 3(|f |∞ + µρ)R0 +
9

2
µR

3
2

0 R̃
1
2

1

+
18

5
(|f |H2 + µρ) + 6(|f |H2 + µρ)R0, (4.23)

and

C̃2 :=
3

2
R

3
2

0 R̃
1
2

1 (|f |H2 + µρ) + (|f |H2 + µρ)R
5
2

0 R̃
1
2

1 + µR3
0R̃1. (4.24)
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We note that C̃1 = O(µ
7α+1

6 ) and C̃2 = O(µ
7α−2

3 ), for α ∈ [1, 2). We use Young’s
inequality to get

d

ds
ϕ+ γϕ ≤

5

36γ
C̃2

1 + C̃2 + ǫcR
22
3

0 .

Let s ∈ R, and take s0 < s. Then by Gronwall’s inequality, we obtain

ϕ(w(s)) ≤ e−γ(s−s0)ϕ(w(s0)) +
5

36γ2
C̃2

1 +
1

γ
C̃2 +

ǫcR
22
3

0

γ
.

Notice that for ǫ ∈ (0, 1), we have w ∈ L∞(R, Ḣ4), in particular ϕ(w(s0)) is
bounded uniformly, for every s0. Now we let s0 → −∞. Since e−γ(s−s0)ϕ(w(s0)) →
0, we have

ϕ(w(s)) ≤
5

36γ2
C̃2

1 +
1

γ
C̃2 +

ǫcR
22
3

0

γ
, for all s ∈ R.

Since

3

∣

∣

∣

∣

∫

ww2
x

∣

∣

∣

∣

=
3

2

∣

∣

∣

∣

∫

(w2)xwx

∣

∣

∣

∣

=
3

2

∣

∣

∣

∣

∫

w2wxx

∣

∣

∣

∣

≤
3

2
R

3
2

0 R̃
1
2

1 |wxx|,

we have

ϕ(w(s)) ≥
9

5
|wxx|

2 −
3

2
R

3
2

0 R̃
1
2

1 |wxx| ≥ |wxx|
2 −

45

64
R3

0R̃1,

and hence

|wxx(s))|
2 ≤ ϕ(w(s)) +

45

64
R3

0R̃1, for all s ∈ R.

Thus

|wxx(s)| ≤

√

5

36γ2
C̃2

1 +
1

γ
C̃2 +

ǫcR
22
3

0

γ
+

45

64
R3

0R̃1 =: R̃2, for all s ∈ R.

Note that R̃2 = O(µ
7α+1

6 ), as µ → ∞, and that R̃2 is bounded uniformly in ǫ, since
ǫ ∈ (0, 1).

4.7. More improved H1 bound (uniform in ǫ). We rewrite (4.7) as

d

ds
Φ+ (γ + µ)Φ + 2ǫ|wxxx|

2 =− γ

∫

w2
x − 2µ

∫

(Pwx)
2 +

2γ

3

∫

w3 − 2

∫

fxxw

− 2µ

∫

vxxPw −

∫

fw2 + µ

∫

w2Pw − µ

∫

vw2

+ µ

∫

w2
x −

µ

3

∫

w3 − ǫ

∫

wxxxxw
2,

and update the bounds for the terms on the right-hand side. Here again, we use
interpolation inequalities to eliminate the terms with ǫ. Using Poincaré’s inequality,
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we have

µ

∫

w2
x = µ|wx|

2 = µ|Pwx|
2 + µ|Qwx|

2

≤ µ|Pwx|
2 +

µL2

4π2(m+ 1)2
|wxx|

2

≤ µ|Pwx|
2 +

µL2R̃2
2

4π2(m+ 1)2
.

We assume that m is large enough such that

µL2R̃2
2

4π2(m+ 1)2
≤ µβ , (4.25)

for some β > 0, to be determined later. Then, since |f |∞ ≤ |f |H2 and |v|X < ρ, we
have

d

ds
Φ+ (γ + µ)Φ ≤

(γ + µ)
4
3

γ
1
3

R
10
3

0

+ (|f |H2 + µρ)R2
0 + 2(|f |H2 + µρ)R0 + cǫR6

0 + µβ .

Thus, by (4.10), |wx| ≤ R1 where

R2
1 :=

2

γ + µ

{(

(γ + µ)
4
3

γ
1
3

+ (γ + µ)

)

R
10
3

0

}

+
2

γ + µ

{

(|f |H2 + µρ)R2
0 + (2|f |H2 + 2µρ)R0 + cǫR6

0 + µβ
}

. (4.26)

We see that

R1 =

{

O(µ
β−1

2 ) if 5α ≤ 3β + 1,

O(µ
5α−4

6 ) if 5α > 3β + 1,

as µ → ∞, and R1 = O(γ− 5
3 , |f |

5
3

H2), as γ → 0 and |f |H2 → ∞.

4.8. Improved H2 bound (uniform in ǫ). We make similar estimates as we did
above for finding H2 bound using the new H1 bound R1. We obtain that

sup
s∈R

|wxx(s)| ≤

√

5

36γ2
C2

1 +
1

γ
C2 +

ǫcR
22
3

0

γ
+

45

64
R3

0R1 =: R2. (4.27)

where C1, C2 are as in (4.23), (4.24) but with R̃1 replaced by R1. We find that

C1 =

{

O(µ
3α+β

4 ) if 5α ≤ 3β + 1,

O(µ
14α−1

12 ) if 5α > 3β + 1,

C2 =

{

O(µ
3α+β−2

2 ) if 5α ≤ 3β + 1,

O(µ
14α−7

6 ) if 5α > 3β + 1,

where C1 = O(γ− 7
3 , |f |

7
3

H2) and C2 = O(γ− 14
3 , |f |

14
3

H2) . Thus, for α ∈ [1, 2),

R2 =

{

O(µ
3α+β

4 ) if 5α ≤ 3β + 1,

O(µ
14α−1

12 ) if 5α > 3β + 1,

as µ → ∞, and R2 = O(γ− 10
3 , |f |

7
3

H2), as γ → 0 and |f |H2 → ∞.
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4.9. L∞ bound (uniform in ǫ). Using Agmon’s inequality (2.1), we find that

|w(s)|2∞ ≤ |w(s)||wx(s)| ≤ R0R1, for all s ∈ R.

Thus

sup
s∈R

|w(s)|∞ ≤ R∞,

where

R∞ := R
1
2

0 R
1
2

1 . (4.28)

We observe that, for α ∈ [1, 2),

R∞ =

{

O(µ
α+β−2

4 ) if 5α ≤ 3β + 1,

O(µ
8α−7

12 ) if 5α > 3β + 1,

as µ → ∞, and R∞ = O(γ− 4
3 , |f |

4
3

H2), as γ → 0 and |f |H2 → ∞.

Remark 1. We remark that for the case when µ = 0 in equation (3.5), and under

the assumption that the solution w belongs to the global attractor of (1.2), the above

estimates are still valid, which yields an explicit bound for R in (1.4), i.e., R =
R2|µ=0 = R0

2.

4.10. Time derivative bound. Let θ ∈ Ḣ2. Since (3.5) holds in L2
loc(R, Ḣ

2) and

w ∈ L∞(R, Ḣ4), we multiply (3.5) by θ, and integrate over the spatial domain to
get
∫

wsθ + ǫ

∫

wxxxxθ +

∫

wwxθ +

∫

wxxxθ + γ

∫

wθ + µ

∫

Pwθ =

∫

(f + µv)θ.

Using integration by parts we get,
∫

wsθ = −ǫ

∫

wxxθxx +
1

2

∫

w2θx −

∫

wxθxx

− γ

∫

wθ − µ

∫

Pwθ +

∫

(f + µv)θ

≤ ǫ|wxx||θxx|+
1

2
|w|2|θx|∞ + |wx||θxx|

+ ((γ + µ)|w| + |f |+ µ|v|X)|θ|

≤ {R2 +
1

2
R2

0 +R1 + (γ + µ)R0 + |f |+ µ|v|X}|θ|H2 .

Thus, since |v|X < ρ, we have

|
dw

ds
(s)|Ḣ−2 ≤ R̃′, for all s ∈ R,

where

R̃′ := R2 +
1

2
R2

0 +R1 + (γ + µ)R0 + |f |+ µρ, (4.29)

with

R̃′ = O(µ
14α−1

12 ),

as µ → ∞, and R̃′ = O(γ− 10
3 , |f |

7
3

H2), as γ → 0 and |f |H2 → ∞, after taking ǫ > 0
as small as necessary.
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4.11. Passing to the limit. Summarizing the above ǫ-independent bounds, we
have

wǫ ∈ L∞(R, Ḣ2),

and
∂wǫ

∂s
∈ L∞(R, Ḣ−2),

and the bounds for the corresponding norms are uniform in ǫ. Thus, by the Aubin
compactness theorem and a Cantor diagonal argument, with respect to the sequence
M , there exists a subsequence wǫj of wǫ and w ∈ L∞(R, Ḣ2) such that

wǫj ⇀ w weak- ⋆ in L∞(R, Ḣ2),

wǫj → w strongly in L2
loc(R, Ḣ

1),

∂wǫj

∂s
⇀

dw

ds
weak- ⋆ in L∞(R, Ḣ−2),

as ǫj → 0, and w obeys the uniform in ǫ bounds we established in previous steps for
wǫ. Thus, we can pass to the limit, in the sense of distributions, to get a solution
of (3.3) as a limit of one for (3.5). This completes the proof of the existence of
bounded solutions, on all of R, to the equation (3.3), i.e., w ∈ Y . We note that
since

∂w

∂s
= −wwx − wxxx − γw − µPw + f + µv, (4.30)

we have that ∂w
∂s

∈ Ḣ−1, and the above equation holds in L∞(R, Ḣ−1). Thus,
similar to the previous section, from (4.30), one can show that

sup
s∈R

|
∂w

∂s
(s)|Ḣ−1 ≤ R′,

where

R′ :=
1

2
R

3
2

0 R
1
2

1 +R2 + (γ + µ)R0 + |f |+ µρ.

We note that

R
′

=

{

O(µ
3α+β

4 ) if 5α ≤ 3β + 1,

O(µ
14α−1

12 ) if 5α > 3β + 1,

5. Uniqueness of the solution

Theorem 1. Let ρ = 4R, where R is given in (1.4). Assume that conditions (4.12),
(4.25) hold along with

C3 ≤ 2µ, (5.1)

and assume that m is large enough such that

C3L
2

8π2(m+ 1)2
1

γ2

[

(2γ + 2µ)R∞ + 2R
′4
γ−3

]

≤
1

2
, (5.2)

holds where C3 is defined in (5.15), below. Then for any v ∈ Bρ
X(0) ⊂ X, where X

is defined as in (3.1), there exists a unique bounded solution w ∈ Y of (3.3), where
Y is defined as in (3.2).
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Proof. Suppose there exist two bounded solutions of (3.3), w and w̃, in Y corre-
sponding to the same v ∈ Bρ

X(0).

ws + wwx + wxxx + γw = f − µ[Pm(w) − v],

w̃s + w̃w̃x + w̃xxx + γw̃ = f − µ[Pm(w̃)− v].

Subtract, denoting δ := w − w̃, to obtain

δs + wwx − w̃w̃x + δxxx + γδ = −µPmδ.

Note that

wwx − w̃w̃x =
1

2

∂

∂x
(w2 − w̃2) = (ξδ)x, where ξ =

w + w̃

2
,

and hence

δs + (ξδ)x + δxxx + γδ = −µPδ. (5.3)

Note that the equation for the difference (5.3) holds only in L∞(R, Ḣ−1). Thus,

the equation does not act on δxx ∈ L̇2. But it acts on eikx
2π
L (for simplicity, we

take L = 2π for this section). So we can write (5.3) at the level of k-th Fourier
coefficient,

dδk

ds
+ ikck − ik3δk + γδk = −µδkχ|k|≤m, (5.4)

where k ∈ Z \ {0}, δk is the k-th Fourier coefficient of δ, ck is the k-th Fourier
coefficient of ξδ ∈ L∞(R, H2), and χk≤m is 1 when |k| ≤ m and zero otherwise.
(5.4) is an ordinary differential equation in C. We multiply (5.4) by k2δ̄k ∈ C, to
get

k2
dδk

ds
δ̄k + ik3ckδ̄k − ik5|δk|

2 + γk2|δk|
2 = −µk2|δk|

2χ|k|≤m.

We take the real parts above to obtain

1

2
k2

d|δk|
2

ds
+Re{ik3ck δ̄k}+ γk2|δk|

2 = −µk2|δk|
2χ|k|≤m. (5.5)

We claim that
∑

k∈Z\{0}

k2
d|δk|

2

ds
=

d

ds

∑

k∈Z\{0}

k2|δk|
2. (5.6)

To prove the above claim, we apply a consequence of the Weirstrass convergence
theorem, i.e., the series of derivatives converges uniformly. Therefore, we need to

find a sequence g(k) ∈ ℓ1 such that |k2 d|δk|
2

ds
| ≤ g(k). From (5.5), we have

|
1

2
k2

d|δk|
2

ds
| = | −Re{ik3ck δ̄k} − γk2|δk|

2 − µk2|δk|
2χ|k|≤m|

≤ k3|ck||δk|+ (γ + µ)k2|δk|
2

≤
1

2
k2|ck|

2 +
1

2
k4|δk|

2 + (γ + µ)k2|δk|
2.

Thus,

|k2
d|δk|

2

ds
| ≤ k2|ck|

2 + k4|δk|
2 + 2(γ + µ)k2|δk|

2 =: g(k).
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Then,
∑

k∈Z\{0}

g(k) =
∑

k∈Z\{0}

k2|ck|
2 +

∑

k∈Z\{0}

k4|δk|
2 + 2(γ + µ)

∑

k∈Z\{0}

k2|δk|
2

= |(ξδ)x|
2 + |δxx|

2 + 2(γ + µ)|δx|
2

≤ 16R2
0R

2
1 + 4R2

2 + 8(γ + µ)R2
1 < ∞,

thus g(k) ∈ ℓ1, which concludes the proof of (5.6). Thus we can take sum over all
k ∈ Z \ {0} in (5.5), to get

1

2

d

ds

∑

k∈Z\{0}

k2|δk|
2 +

∑

k∈Z\{0}

Re{ik3ck δ̄k}+ γ
∑

k∈Z\{0}

k2|δk|
2

= −µ
∑

k∈Z\{0}

k2|δk|
2χ|k|≤m. (5.7)

We realize that
∑

k∈Z\{0}

Re{ik3ck δ̄k} =
∑

k∈Z\{0}

Re{−ik3δk c̄k}

= Re{
∑

k∈Z\{0}

−ik3δk c̄k}

=

∫

δx(ξδ)xx.

Thus (5.7) becomes

1

2

d

ds
|δx|

2 +

∫

δx(ξδ)xx + γ|δx|
2 = −µ|Pδx|

2. (5.8)

Take Ḣ−2 action of (5.3) on −ξδ ∈ H2 to obtain

− < δs, ξδ > −

∫

δx(ξδ)xx − γ

∫

ξδ2 = µ

∫

ξδPδ. (5.9)

One can verify, since H1 is an algebra, that

d

ds

∫

ξδ2 =< ξs, δ
2 > +2 < δs, ξδ > .

Therefore, we use this observation and add (5.8) and (5.9), to get

d

ds
Ψ+ γΨ = −γ

∫

δ2x + γ

∫

ξδ2 − 2µ

∫

(Pδx)
2 + 2µ

∫

ξδPδ− < ξs, δ
2 >,

where

Ψ(δ(s)) =

∫

(δ2x(s)− ξ(s)δ2(s)). (5.10)

Here we do the following estimations on each of these terms using Hölder, Young’s
and Agmon’s inequalities:

γ

∫

ξδ2 ≤ γ|ξ|∞|δ|2 ≤ γR∞|δ|2,

−2µ

∫

ξδPδ ≤ 2µR∞|δ|2,

< ξs, δ
2 >≤ |ξs|H−1 |δ2|H1 ≤ 2R

′

|δx|
3
2 |δ|

1
2 ≤ 2R

′4
γ−3|δ|2 + γ|δx|

2.
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Thus we get

d

ds
Ψ+ γΨ ≤

[

(γ + 2µ)R∞ + 2R
′4
γ−3

]

|δ(s)|2

≤
[

(γ + 2µ)R∞ + 2R
′4
γ−3

]

sup
s∈R

|δ(s)|2.

Let s0 ∈ R, and s > s0. From Gronwall’s inequality,

Ψ(δ(s)) ≤ Ψ(δ(s0))e
−γ(s−s0) +

1

γ

[

(γ + 2µ)R∞ + 2R
′4
γ−3

]

sup
s∈R

|δ(s)|2.

Since

Ψ(δ(s)) ≥ |δx(s)|
2 − |ξ|∞|δ(s)|2 ≥ |δx(s)|

2 −R∞|δ(s)|2,

we have that

|δx(s)|
2 ≤ Ψ(δ(s)) +R∞|δ(s)|2. (5.11)

Thus,

|δx(s)|
2 ≤ Ψ(δ(s0))e

−γ(s−s0) +
1

γ

[

(2γ + 2µ)R∞ + 2R
′4
γ−3

]

sup
s∈R

|δ(s)|2. (5.12)

Since Ψ(δ(s0)) is uniformly bounded for all s0 ∈ R, we let s0 → −∞, to obtain a
‘reverse’ Poincaré type inequality

|δx(s)|
2 ≤

1

γ

[

(2γ + 2µ)R∞ + 2R
′4
γ−3

]

sup
s∈R

|δ(s)|2, (5.13)

for every s ∈ R. We now take the action of (5.3) on 2δ, and observe that

< δs, δ >=
1

2

d

ds
|δ|2,

and apply (4.2) to obtain

d

ds
|δ|2 + 2γ|δ|2 + 2µ|Pδ|2 = −

∫

2(ξδ)xδ.

Here

−

∫

2(ξδ)xδ =

∫

2ξδδx =

∫

ξ
∂

∂x
δ2 = −

∫

ξxδ
2

≤ |ξx|∞|δ|2

≤ |ξx|
1
2 |ξxx|

1
2 |δ|2

≤ R
1
2

1 R
1
2

2 |δ|
2

= C3|δ|
2, (5.14)

where

C3 =

{

O(µ
3α+3β−2

8 ) if 5α ≤ 3β + 1,

O(µ
24α−9

24 ) if 5α > 3β + 1,

for α ∈ [1, 2). For specific choices of α = 1 and β = 4
3 , we have

C3 := R
1
2

1 R
1
2

2 = O(µ
5
8 ), (5.15)
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as µ → ∞. Thus,

−

∫

2(ξδ)xδ ≤ C3|Pδ|2 + C3|Qδ|2

≤ C3|Pδ|2 +
C3L

2

4π2(m+ 1)2
|δx|

2.

If we choose µ large enough such that (5.1) hold, then

d

ds
|δ|2 + 2γ|δ|2 ≤

C3L
2

4π2(m+ 1)2
|δx|

2.

Applying (5.13) above, we get

d

ds
|δ|2 + 2γ|δ|2 ≤

C3L
2

4π2(m+ 1)2
1

γ

[

(2γ + 2µ)R∞ + 2R
′4
γ−3

]

sup
s∈R

|δ(s)|2.

As before, let s0 ∈ R, and s > s0. Since |δ(s0)| is bounded uniformly for all s0 ∈ R,
we apply Gronwall’s inequality on the interval [s0, s], and let s0 → −∞, to obtain

|δ(s)|2 ≤
C3L

2

8π2(m+ 1)2
1

γ2

[

(2γ + 2µ)R∞ + 2R
′4
γ−3

]

sup
s∈R

|δ(s)|2,

for all s ∈ R. By choosing m large enough such that (5.2) holds, we obtain that

sup
s∈R

|δ(s)|2 ≤
1

2
sup
s∈R

|δ(s)|2.

Thus, δ(s) = 0, for all s ∈ R, i.e., w = w̃. �

Remark 2. (1) Note that conditions (4.12) and (4.25) enable us to choose µ

large enough such that (5.1) holds.
(2) By Theorem 1, we can now define a map W : Bρ

X(0) → Y such that W (v) :=
w is the unique bounded solution of (3.3), i.e., w ∈ Y .

Remark 3. (1) (4.12), (4.25), and (5.2) dictates that

d =

{

max{ 4−α
2 , 7α−3β+4

6 , 27α+11β−2
16 } = 27α+11β−2

16 if 5α ≤ 3β + 1,

max{ 4−α
2 , 7α−3β+4

6 , 136α−17
48 } = 136α−17

48 if 5α > 3β + 1,

where m = O(µd), as µ → ∞. (5.1) dictates that
{

3α+ 3β < 10 if 5α ≤ 3β + 1,

α < 11
8 if 5α > 3β + 1.

We recall that α ∈ [1, 2). Thus, this is a linear optimization problem where

we would like to minimize d subject to the constraints. Solving the linear

optimization problem, we obtain that the optimal values are α = 1 and

β = 4
3 where the minimum value of d is 119

48 . Thus, the minimum number

of the modes, m, that is needed is to achieve the uniqueness of the bounded

solution of (3.3) is O(µd), where d = 119
48 ≈ 2.48

(2) For the optimal values of α and β, we realize that R0 = O(1),R1 =

O(µ
1
6 ),R2 = O(µ

13
12 ),R′ = O(µ

13
12 ), and R∞ = O(µ

1
12 ), as µ → ∞.
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6. Lipschitz property of W (v)

Theorem 2. Let v ∈ Bρ
X(0) := {v ∈ X ; |v|X < ρ} with ρ = 4R, and R is given

in (1.4). Assume conditions (4.12), (4.25), (5.1) and (5.2) hold. Then the map

PmW : Bρ
X(0) → X is a Lipschitz function with Lipschitz constant LW , where

LW =
4π2m2

L2

(

C3L
2

2π2γ(m+ 1)2
(µ+ µR∞) +

2µ

γ

)

. (6.1)

Proof. Note that all constants R0,R1,R2,R
′ and R∞ depend on ρ = 4R. Let

v, ṽ ∈ Bρ
X(0), with W (v) = w and W (ṽ) = w̃, so that

ws + wwx + wxxx + γw = f − µ[Pm(w) − v],

w̃s + w̃w̃x + w̃xxx + γw̃ = f − µ[Pm(w̃)− ṽ].

Subtract, denoting δ := w − w̃ and η := v − ṽ, to obtain

δs + (ξδ)x + δxxx + γδ + µPmδ = µη, (6.2)

where ξ = w+w̃
2 . As in the previous section, we consider the evolution of the Fourier

coefficients of δ to verify that

d

ds
Ψ+ γΨ =− γ

∫

δ2x + γ

∫

ξδ2 − 2µ

∫

(Pδx)
2 + 2µ

∫

ξδPδ− < ξs, δ
2 >

2µ

∫

ηxxδ − 2µ

∫

ξηδ, (6.3)

where

Ψ(δ) =

∫

(δ2x − ξδ2),

as in (5.10). For last three terms on the right-hand side of (6.3), we have

< ξs, δ
2 >≤ |ξs|H−1 |δ2|H1 ≤ 2R

′

|δx|
3
2 |δ|

1
2 ≤ 2R

′4
γ−3|δ|2 + γ|δx|

2.

2µ

∫

ηxxδ ≤ 2µ|η|X |δ|,

− 2µ

∫

ξηδ ≤ 2µ|ξ|∞|η|X |δ| ≤ 2µR∞|η|X |δ|.

Thus we get

d

ds
Ψ(δ(s)) + γΨ(δ(s)) ≤

[

(γ + 2µ)R∞ + 2R
′4
γ−3

]

|δ(s)|2 + |η|X(2µ+ 2µR∞)|δ(s)|.

Let s0 ∈ R, and s > s0. Since Ψ(δ(s0)) is uniformly bounded for all s0 ∈ R, we
apply Gronwall’s inequality on the interval [s0, s], use (5.11) and let s0 → −∞, to
obtain

|δx(s)|
2 ≤

1

γ
[(2γ + 2µ)R∞+2R

′4
γ−3] sup

s∈R

|δ(s)|2

+ |η|X(2µ+ 2µR∞) sup
s∈R

|δ(s)|, (6.4)

for all s ∈ R. Now we take the action of equation (6.2) on 2δ, to obtain

d

ds
|δ|2 + 2γ|δ|2 + 2µ|Pδ|2 = −

∫

2(ξδ)xδ + 2µ

∫

ηδ.
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Thanks to (5.14), we have

−

∫

2(ξδ)xδ ≤ C3|δ|
2,

= C3|Pδ|2 + C3|Qδ|2

≤ C3|Pδ|2 +
C3L

2

4π2(m+ 1)2
|δx|

2.

Also, we have

2µ

∫

ηδ ≤ 2µ|η||δ| ≤ 2µ|η|X |δ|.

Thus, from (5.1) and the above estimates, we get

d

ds
|δ|2 + 2γ|δ|2 ≤

C3L
2

4π2(m+ 1)2
|δx|

2 + 2µ|η|X |δ|.

We use (6.4) above, to get

d

ds
|δ|2 + 2γ|δ|2 ≤

C3L
2

4π2(m+ 1)2
1

γ

[

(2γ + 2µ)R∞ + 2R
′4
γ−3

]

sup
s∈R

|δ(s)|2

+
C3L

2

4π2(m+ 1)2
|η|X(2µ+ 2µR∞) sup

s∈R

|δ(s)|

+ 2µ|η|X sup
s∈R

|δ(s)|.

By (5.2), we have

d

ds
|δ(s)|2 + 2γ|δ(s)|2 ≤ γ sup

s∈R

|δ(s)|2 + γ
L2

4π2m2
LW |η|X sup

s∈R

|δ(s)|,

where LW is defined in (6.1). We let s0 ∈ R, and s > s0. Since |δ(s0)|
2 is bounded

for all s0 ∈ R, by Gronwall’s inequality on the interval [s0, s], and letting s0 → −∞,
we obtain

|δ(s)|2 ≤
1

2
sup
s∈R

|δ(s)|2 +
1

2

L2

4π2m2
LW |η|X sup

s∈R

|δ(s)|,

for all s ∈ R. Thus

sup
s∈R

|δ(s)| ≤
L2

4π2m2
LW |η|X .

We note that

|Pδxx(s)| ≤
4π2m2

L2
|Pδ(s)| ≤

4π2m2

L2
|δ(s)| ≤ LW |η|X .

Thus,

|Pδ|X ≤ LW |η|X ,

i.e.,

|PW (v)− PW (ṽ)|X ≤ LW |v − ṽ|X ,

where LW is defined in (6.1). �

Theorem 3. Let ρ = 4R, where R is given by (1.4). Assume that µ and m are

large enough such that (4.12), (4.25), (8.2) and (5.2) hold.
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(1) Suppose that u is a trajectory in the global attractor of the damped and

driven KdV equation (1.2)-(1.3), and suppose that w = W (Pmu) is the

unique bounded solution of equation (3.3) with v = Pmu. Then w(s) =
W (Pmu) (s) = u(s), for all s ∈ R.

(2) Suppose v = PmW (v), for some v ∈ Bρ
X(0). Then W (v) is a trajectory in

the global attractor of the damped and driven KdV equation (1.2)-(1.3).

Proof. To prove (1) we first observe that the choice of R in (1.4) guarantees that
Pmu(·) ∈ Bρ

X(0), for every u(·) ⊂ A. Taking the difference of the following equations

ws + wwx + wxxx + γw = f − µ[P (w − u)],

us + uux + uxxx + γu = f,

we get

δs + wwx − uux + δxxx + γδ = −µPδ,

where δ := w − u. Note that

wwx − uux = (ξδ)x, where ξ =
w + u

2
,

and hence

δs + (ξδ)x + δxxx + γδ = −µPδ. (6.5)

We then proceed as in the proof of Theorem 1 to obtain that |δ(s)| = 0, for all fixed
s ∈ R. Thus, w(s) = W (Pmu(s)) = u(s), for all s ∈ R; which concludes the proof
of (1).

To prove (2) we observe that since v = PmW (v), then the unique bounded
solution, for all s ∈ R, w(s) = W (v)(s), of equation (3.3) is in fact a bounded
solution, for all s ∈ R, of the damped and driven KdV equation (1.2). Therefore,
by the characterization of the global attractor to be the collection of all bounded,
for all s ∈ R, solutions we conclude that w(·) ⊂ A.

�

7. The determining form

Thanks to (1.4), we have

|u(s)|H2 ≤ R, for all s ∈ R,

for every u(·) ⊂ A. In particular, we also have that |Pmu(s)|H2 ≤ R for all s ∈ R.
Let u∗ be a steady state solution of the damped and driven KdV (1.2). As in [8],
we consider the following determining form for the damped and driven KdV in the
ball Bρ

X(0), with ρ = 4R,

dv(τ)(s)

dτ
= −|v(τ)− PmW (v(τ))|2X (v(τ)(s) − Pmu∗), (7.1)

v(0) = v0,

with v0 ∈ Bρ
X(0), where | · |X is defined in (3.1). The specific conditions on m,

and its dependence on R, guarantee the existence of a Lipschitz map PmW (v), for
v ∈ Bρ

X(0), which have been already proven and are stated again in the following:
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Theorem 4. Let ρ = 4R, where R is given in (1.4), and suppose that conditions

(4.12), (4.25), (5.1), and (5.2) hold.

(1) The vector field in the determining form (7.1) is a Lipschitz map from the

ball Bρ
X(0) into X. Thus, (7.1), with initial data v0 ∈ Bρ

X(0), is an ODE,

in Bρ
X(0), which has short time existence and uniqueness.

(2) The ball B3R
X (Pmu∗) = {v ∈ X : |v − Pmu∗|X < 3R} ⊂ Bρ

X(0) is forward

invariant in time, under the dynamics of the determining form (7.1). Con-

sequently, (7.1) has global existence and uniqueness for all initial data in

B3R
X (Pmu∗).

(3) Every solution of the determining form (7.1), with initial data v0 ∈ B3R
X (Pmu∗),

converges to a steady state solution of the determining form (7.1).
(4) All the steady state solutions of the determining form, (7.1), that are con-

tained in the ball Bρ
X(0) are given by the form v(s) = Pmu(s), for all s ∈ R,

where u(s) is a trajectory that lies on the global attractor, A, of (1.2)-(1.3).

Proof. (1) Since PmW (v) is a Lipschitz map in Bρ
X(0), which is shown in the

previous section, the vector field in the determining form is a Lipschitz map
from the ball Bρ

X(0) into X .
(2) From the short time existence and uniqueness of determining form (7.1),

we find that

v(τ) − Pmu∗ = θ(τ)(v0 − Pmu∗), (7.2)

where

θ(τ) = e−
∫

τ

0
|v(σ)−PmW (v(σ))|2Xdσ, (7.3)

for small enough τ . Since θ(τ) is non-increasing and belongs to [0, 1], then
v(τ) ∈ B3R

X (Pmu∗), which implies the global existence for (7.1). Moreover,
(7.2) implies that v(τ) ∈ B3R

X (Pmu∗), for all τ ≥ 0.
(3) Since θ(τ) ∈ [0, 1], for all τ ≥ 0, and non-increasing, then θ(τ) → θ̄, as

τ → ∞. On the one hand, if θ̄ = 0, from (7.2), we obtain that

v(τ) → Pmu∗,

as τ → ∞. Thus v(τ) is converging to steady state solution Pmu∗ of the
determining form (7.1), and Pmu∗ ∈ PmA. On the other hand, if θ̄ ∈ (0, 1],
then

v(τ) → v̄ := θ̄v0 + (1− θ̄)Pmu∗.

Thus,

|v(τ) − PmW (v(τ))|2X → |v̄ − PmW (v̄)|2X . (7.4)

Now since θ̄ > 0, from (7.3), we have that
∫ ∞

0

|v(τ) − PmW (v(τ))|2X < ∞. (7.5)

Since the integrand is converging, (7.4), then the limit of the integrant must
be zero, i.e.,

|v̄ − PmW (v̄)|2X = 0.

Therefore v(τ) converges, as τ → ∞, to v̄ which is the steady state solution
of the determining form.
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(4) Follows from the facts established in item (3) above and Theorem 3.
�

8. Continous data assimilation

In this section we provide a continuous data assimilation algorithm for recovering
a reference solution u of (1.2)-(1.3) from Pmu(s), for s ≥ s0. In other words, this
is a downscaling algorithm for recovering the fine scales (I − Pm)u from knowing
only the coarse scales Pmu.

Theorem 5. Let ρ = 4R with R given in (1.4), and let u(s) be the solution of

the damped and driven KdV equation (1.2)-(1.3), with f ∈ Ḣ2
per

. Assume that

|Pmu(s)|H2 < ρ, for all s ≥ s0. Let w(s) be the solution of the corresponding

‘continuous data assimilation’ equation

ws + wwx + wxxx + γw = f − µ[Pmw − Pmu], (8.1)

with an arbitrary initial data w(s0) ∈ Ḣ2, with |w(s0)|H2 < ρ, and subject to

periodic boundary conditions

∂j
xw(s, x) = ∂j

xw(s, x + L), ∀(s, x) ∈ R× R.

for j = 0, 1 and 2. Assume that µ and m are large enough so that conditions (4.12),
(4.25), and

C0
3 ≤ µ, (8.2)

C0
3L

2

4π2(m+ 1)2
≤

γ

2m
, (8.3)

1

m

(

(γ + 2µ)R∞ + 2R
′4
γ−3

)

≤
γ

2
, (8.4)

hold. Then we have |w(s) − u(s)| → 0, as s → ∞, at an exponential rate with

exponent γ
4 .

Proof. We first note that one can prove the existence and the uniqueness of the
solution for the initial value problem (8.1) subject to boundary conditions by slight
adjustment of the proof given for KdV equation in [19]. In particular, one needs
to regularize the equation with ǫwxxxx as in section 3, and look at the regularized
equation with C∞ initial data wǫ(s0), where wǫ(s0) → w(s0) in H2, as ǫ → 0.
Then one can use results in [17], and find uniform in ǫ estimates as in [19] (or as
in section 4) to prove the desired result. Thus we can assume that both of the

above equations (1.2) and (8.1) have global solution in L∞([s0,∞), Ḣ2), and the

equations hold in L∞((s0,∞), Ḣ−1). We also use the same bounding notation such

as R0, R1, R2, R∞ and R
′

for L2, H1, H2, L∞ and time derivative bounds for the
global solutions of these equations where s ≥ s0, not on whole line R. We note that
since |Pmu(s)| < ρ, for all s ≥ s0, and |w(s0)|H2 < ρ, the bounding expressions
mentioned above depend on ρ. We proceed as in Theorem 1, but take Pmu instead
of v and δ = w − u, to obtain

d

ds
Ψ+ γΨ ≤

[

(γ + 2µ)R∞ + 2R
′4
γ−3

]

|δ(s)|2, (8.5)
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where again

Ψ(δ) =

∫

(δ2x − ξδ2). (8.6)

As in the proof of Theorem 1, we have

d

ds
|δ|2 + 2γ|δ|2 + 2µ|Pδ|2 = −

∫

2(ξδ)xδ,

as well as in (5.14)

−

∫

2(ξδ)xδ ≤ C0
3 |δ|

2,

where

C0
3 := (R0

1)
1
2 (R0

2)
1
2 . (8.7)

We note that, contrary to previous sections where C3 depends on µ and ρ, here C0
3

depends only on ρ, but not on µ. Here we have,

−

∫

2(ξδ)xδ ≤ C0
3 |Pδ|2 + C0

3 |Qδ|2 ≤ C0
3 |Pδ|2 +

C0
3L

2

4π2(m+ 1)2
|δx|

2.

If we choose µ large enough such that (8.2) hold, then

d

ds
|δ|2 + 2γ|δ|2 ≤

C0
3L

2

4π2(m+ 1)2
|δx|

2. (8.8)

Since

Ψ(δ) ≥ |δx|
2 − |ξ|∞|δ|2 ≥ |δx|

2 −R∞|δ|2,

we have that

|δx|
2 ≤ Ψ(δ) +R∞|δ|2. (8.9)

Thus,

d

ds
|δ|2 + 2γ|δ|2 ≤

C3L
2

4π2(m+ 1)2
Ψ(δ) +

C3L
2R∞

4π2(m+ 1)2
|δ|2. (8.10)

We add 1
m

× (8.5) and (8.10), to get

d

ds

(

|δ|2 +
1

m
Ψ

)

+ γ

(

2|δ|2 +
1

m
Ψ

)

≤
C3L

2

4π2(m+ 1)2
Ψ(δ) +

C3L
2R∞

4π2(m+ 1)2
|δ|2

+
1

m

[

(γ + 2µ)R∞ + 2R
′4
γ−3

]

|δ|2.

(8.11)

We note that the functional Ψ(δ(·)) : [s0,∞) → R, defined in (8.6), is an absolutely
continuous map with respect to s on any subinterval of [s0,∞). Now we look at
different cases depending on the sign of Ψ(δ(s)) for different values of s.

CASE 1 : Ψ(δ(s)) ≤ 0 on the interval [s∗,∞). Then, by (8.9), we have

|δx(s)|
2 ≤ R∞|δ(s)|2, on the interval [s∗,∞).

From (8.8),

d

ds
|δ(s)|2 + 2γ|δ(s)|2 ≤

C3L
2R∞

4π2(m+ 1)2
|δ(s)|2, on the interval [s∗,∞).
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(8.3) and (8.4) imply that

C3L
2R∞

4π2(m+ 1)2
≤ γ,

then by Gronwall’s inequality,

|δ(s)|2 ≤ e−γ(s−s∗)|δ(s∗)|2, for every s ∈ [s∗,∞).

Thus |δ(s)| → 0, as s → ∞, at an exponential rate with exponent γ
2 .

CASE 2 : Ψ(δ(s)) ≥ 0 on the interval [s∗,∞). Then since Ψ(δ(s)) ≥ 0, if we
choose m large enough such that (8.3) and (8.4) hold, then from (8.11), we obtain

d

ds

(

|δ|2 +
1

m
Ψ

)

+ γ

(

2|δ|2 +
1

m
Ψ

)

≤
γ

2m
Ψ+

(

γR∞

2m
+ γ

)

|δ|2.

(8.4) implies that 2R∞ ≤ m. Thus, we have

d

ds

(

|δ|2 +
1

m
Ψ

)

+
γ

2

(

|δ|2 +
1

m
Ψ

)

≤ 0.

By Gronwall’s inequality,

|δ(s)|2 +
1

m
Ψ(δ(s)) ≤

(

|δ(s∗)|2 +
1

m
Ψ(s∗)

)

e−
γ
2
(s−s∗), for all s ∈ [s∗,∞). (8.12)

Since Ψ(δ(s)) ≥ 0 on the interval [s∗,∞), we have

|δ(s)|2 ≤

(

|δ(s∗)|2 +
1

m
Ψ(s∗)

)

e−
γ
2
(s−s∗), for all s ∈ [s∗,∞).

We note that |δ(s∗)|2 + 1
m
Ψ(s∗) is bounded. Thus |δ(s)| → 0, as s → ∞, at an

exponential rate with exponent γ
4 .

CASE 3 : Sign of Ψ(δ(s)) alternates between subintervals on the interval [s0,∞).
Without loss of generality, we assume that there exists a sequence {sn}n∈N ⊂
[s0,∞) such that Ψ(δ(s)) ≥ 0 on intervals I2k+1 for k ∈ 0, 1, 2, 3, ..., where I2k+1 :=
[s2k, s2k+1], Ψ(δ(s)) ≤ 0 on intervals I2k+2 for k ∈ 0, 1, 2, 3, ..., where I2k+2 :=
[s2k+1, s2k+2], and Ψ(δ(sk)) = 0 for any nonnegative integer k. We note that
∪n∈NIn = [s0,∞). We prove the following lemma.

Lemma. (a) For any nonzero n ∈ N, |δ(sn)|
2 ≤ |δ(sn−1)|

2e−
γ
2
(sn−sn−1).

(b) For any nonzero n ∈ N, |δ(sn)|
2 ≤ |δ(s0)|

2e−
γ
2
(sn−s0).

(c) For any s ∈ (s0,∞), |δ(s)|2 ≤ |δ(s0)|
2e−

γ
2
(s−s0).

Proof of the Lemma. (a) When n is an even integer, then Ψ(δ(s)) ≤ 0 on the
interval In. Thus, lemma follows from the first case above where we take the
interval In instead of [s0,∞). When n is an odd integer, then Ψ(δ(s)) ≥ 0 on the
interval In. Thus from the second case above, where we take the interval In instead
of [s0,∞), we obtain that

|δ(sn)|
2 ≤

(

|δ(sn−1)|
2 +

1

m
Ψ(sn−1)

)

e−
γ
2
(sn−sn−1).

Since Ψ(sn−1) = 0, Part (a) follows.

(b) This follows by mathematical induction and Part (a).
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(c) For any s ∈ (s0,∞), there exists an integer n such that, s ∈ In+1 = [sn, sn+1).
By using the idea of the proof of Part (a), we obtain that

|δ(s)|2 ≤ |δ(sn)|
2e−

γ
2
(s−sn).

Now by Part (b),

|δ(s)|2 ≤ |δ(s0)|
2e−

γ
2
(sn−s0)e−

γ
2
(s−sn)

= |δ(s0)|
2e−

γ
2
(s−s0).

This completes the proof of Lemma 8. �

Part (c) shows that, |δ(s)| → 0, as s → ∞, at an exponential rate with exponent
γ
4 . �

Remark 4. The same technique where we combine two differential inequalities can

be applied to give a data assimilation algorithm for damped and driven, nonlinear

Schrödinger equations.

9. Determining modes

Theorem 6. Let ρ = 4R, with R is given in (1.4). Assume that m is large enough

such that

L2

4π2(m+ 1)2
1

γ

[

2γR0
∞ + 2(R

′0
)4γ−3

]

≤
1

2
, (9.1)

which is the modified version of the condition (5.2). Here R0
∞ = R∞|µ=0 and

(R
′

)0 = R
′

|µ=0. Then the Fourier projection Pm of L2 onto the space Hm, where

Hm is defined in (2.2), is determining for (1.2), i.e., if u(·), ū(·) ⊂ A, the global at-

tractor of (1.2) with Pmu(s) = Pmū(s), for all s ∈ R, then u(s) = ū(s), for all s ∈
R.

Proof. We assume u(s) and ū(s) are trajectories on the global attractor, A, of
(1.2)-(1.3), and Pm(u(s)) = Pm(ū(s)) for all time s ∈ R, where m ∈ N is such that
(9.1) is satisfied. We have the following equations for u and ū,

us + uux + uxxx + γu = f,

ūs + ūūx + ūxxx + γū = f.

Subtract, denoting δ := u− ū, to obtain

δs + (ξδ)x + δxxx + γδ = 0,

where ξ = u+ū
2 . We proceed as in the proof of the Theorem 1, to get a ‘reverse’

Poincaré type inequality

|δx(s)|
2 ≤

1

γ

[

2γ(R∞)0 + 2(R
′0
)4γ−3

]

sup
s∈R

|δ(s)|2.
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Since Pδ = 0,

|δ(s)|2 = |Qδ(s)|2 ≤
L2

4π2(m+ 1)2
|δx(s)|

2

≤
L2

4π2(m+ 1)2
1

γ

[

2γ(R∞)0 + 2(R
′0
)4γ−3

]

sup
s∈R

|δ(s)|2

≤
1

2
sup
s∈R

|δ(s)|2

due to the condition (9.1). Thus we obtain that |δ(s)| = 0 for all s ∈ R, i.e.
u(s) = ū(s), for all s ∈ R. �

Remark 5. (9.1) implies that the number of determining modes m = O(γ− 26
3 , |f |

14
3

H2),
as γ → 0 and |f |H2 → ∞.

Appendix A. Steady State solution

We show the existence of a steady state solution of (1.2)-(1.3), namely a solution
of

uux + uxxx + γu = f, (A.1)

subject to periodic boundary conditions with basic periodic interval [0, L]. Here
∫

f = 0, thus the solution also must satisfy the compatibility condition
∫

u = 0. If
f = 0, then u = 0 is a solution. Take any nonzero f . First, we show that (A.1) has
a weak solution, in the sense of distributions. To this end, we consider the Galerkin
approximation of (A.1) in Hn

∼= R2n. The Galerkin approximation system is

Pn(un(un)x) + (un)xxx + γun = Pnf, (A.2)

where un ∈ Hn. Our first goal is to show that (A.2) has a solution. To begin, we
establish some a-priori estimates for (A.2). Suppose un is a solution of (A.2). Take
the inner product of (A.2) with un, and integrate by parts to obtain

γ|un|
2 = (f, un) ≤ |f ||un| ≤

|f |2

2γ
+

γ|un|
2

2
.

Thus,

γ

2
|un|

2 ≤
|f |2

2γ
.

From here, we conclude the following uniform in n estimate for all solutions of (A.2)

|un| ≤
|f |

γ
:= R0,

provided such solutions exist. We will use the following proposition that is proven
in [5].

Propostion. Let B(0, R) ⊂ Rn be a ball of radius R. Suppose Φ : B̄(0, R) → Rn

is a continuous map such that

(Φ(v), v) < 0 for every v ∈ ∂B(0, R).

Then there exists v∗ ∈ B̄(0, R) such that

Φ(v∗) = 0.
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We apply the above proposition to show that (A.2) has a solution. Let Φ be the
map defined on a closed ball in Hn, with L2 inner product, with radius 2R0, i.e,
Φ : B̄(0, 2R0) → Hn where

Φ(w) = −Pn(wwx)− wxxx − γw + Pnf.

Φ is a continuous map since it is essentially a quadratic map. Let |w| = 2R0. Then

(Φ(w), w) = −γ|w|2 + (f, w) ≤ −γ|w|2 + |f ||w|

≤ |w|(−γ|w| + |f |) < 0.

Thus applying the above proposition for R = 2R0, we conclude that there exists
w∗ ∈ B(0, 2R0) such that Φ(w∗) = 0; (A.2) has a solution w∗ =: un. Now, we
establish additional stronger norms on the solution of un of (A.2). Take the L2

inner product of (A.2) with (un)xxx ∈ Hn and interpolate to get

|(un)xxx|
2 = −

∫

un(un)x(un)xxx − γ

∫

un(un)xxx +

∫

f(un)xxx

≤ |un|∞|(un)x||(un)xxx|+ |f ||(un)xxx|

≤ |un|
1
2 |(un)x|

1
2 |(un)x||(un)xxx|+ |f ||(un)xxx|

≤ c|un|
3
2 |(un)xxx|

3
2 + |f ||(un)xxx|

≤ cR
3
2

0 |(un)xxx|
3
2 + |f ||(un)xxx|

≤
cR6

0

4
+

3

4
|(un)xxx|

2 + 2|f |2 +
1

8
|(un)xxx|

2

=
cR6

0

4
+ 2|f |2 +

7

8
|(un)xxx|

2.

Thus, |(un)xxx|
2 ≤ 2cR6

0+16|f |2 := R2
3. Hence un satisfies the uniform in n bounds

|un| ≤ R0, |(un)xxx| ≤ R3.

By the Sobolev embedding theorem, there exists a subsequence unj
such that

unj
→ u∗ weakly in H3,

unj
→ u∗ strongly in Hσ,

for all σ ∈ [0, 3), in particular for σ = 2, and u∗ ∈ H3 satisfies

|u∗| ≤ R0, |u∗
xxx| ≤ R3.

Let V := {all trigonometric polynomials with average zero} be a set of test func-
tions. Let φ ∈ V , and take nj > degree{φ}. Then from (A.2), we have

−
1

2
(u2

nj
, ∂xφ)− (unj

, ∂3
xφ) + γ(unj

, φ) = (f, φ).

Since unj
→ u∗ strongly in L̇2, we have

lim
j→∞

−(unj
, ∂3

xφ) = −(u∗, ∂3
xφ),

lim
j→∞

γ(unj
, φ) = γ(u∗, φ).
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Now,

|(u2
nj

− (u∗)2, ∂xφ)| = |

∫

(unj
− u∗)(unj

+ u∗)∂xφ|

≤ |unj
− u∗||unj

+ u∗||∂xφ|∞

≤ 2R0|unj
− u∗||∂xφ|∞ → 0,

as j → ∞, since unj
→ u∗ strongly in L̇2. Thus, limj→∞ − 1

2 (u
2
nj
, ∂xφ) = − 1

2 ((u
∗)2, ∂xφ).

Thus we have shown that u∗ ∈ Ḣ3 satisfying

|u∗| ≤ R0, |u∗
xxx| ≤ R3,

and that (A.1) is satisfied in the sense of distributions,

−
1

2
((u∗)2, ∂xφ)− (u∗, ∂3

xφ) + γ(u∗, φ) = (f, φ),

for every φ ∈ V . Since u∗ ∈ Ḣ3, and since H3 is an algebra, we have (u∗)2 ∈ H3

and u∗u∗
x ∈ H2. Therefore, the equation

u∗(u∗)x + (u∗)xxx + γu∗ = f

holds in L2. Then,

(u∗)xxx = −u∗(u∗)x − γu∗ + f.

Since f ∈ H2, and u∗(u∗)x ∈ H2, we have (u∗)xxx ∈ H2. This implies that
u∗ ∈ H5. Thus

u∗(u∗)x + (u∗)xxx + γu∗ = f holds in H2.

In particular, since H2 ⊂ C1, the equation holds in the classical sense and satisfies
the estimates above.
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