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Abstract

Background: Major depressive disorder (MDD) is one of the most commonly diagnosed mental 

illnesses worldwide, with a higher prevalence in women than men. Although currently available 

pharmacological therapeutics help many individuals, they are not effective for most. Animal 

models have been important for the discovery of molecular alterations in stress and depression, 

but difficulties in adapting animal models of depression for females has impeded progress into 

developing novel therapeutic treatments that may be more efficacious for women.

Methods: Using the California mouse social defeat model, we took a multidisciplinary approach 

to identify stress-sensitive molecular targets that have translational relevance for women. We 

determined the impact of stress on transcriptional profiles in male and female California mouse 

nucleus accumbens (NAc) and compared these results with data from post-mortem samples of the 

NAc from men and women diagnosed with MDD.
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Results: Our cross-species computational analyses identified regulator of G-protein signaling 2 

(Rgs2) as a transcript downregulated by defeat stress in female California mice and in women with 

MDD. RGS2 plays a key role in signal regulation of neuropeptide and neurotransmitter receptors. 

Viral vector mediated overexpression of Rgs2 in the NAc restored social approach and sucrose 

preference in stressed female California mice.

Conclusions: These studies show that Rgs2 acting in the NAc has functional properties that 

translate to changes in anxiety- and depression-related behavior. Future studies should investigate 

whether targeting Rgs2 represents a novel target for treatment-resistant depression in women.

Keywords

Peromyscus californicus ; prefrontal cortex; ventral tegmental area; social defeat; nucleus 
accumbens; major depression; depression; reward

Introduction

Chronic stress is a risk factor for mental illnesses such as anxiety and major depressive 

disorder (MDD), which are leading causes of disability worldwide (1–3). These disorders 

place a burden on society by impacting performance in school or work settings, social 

relationships, and self-care. Although therapies are available, many individuals seeking 

treatment do not respond completely (4), and the remission rate is about 20% (5). Extensive 

research indicates that the nucleus accumbens (NAc), part of the ventral striatum, is altered 

in patients with MDD. In humans, reductions in brain volume and brain activity in the 

ventral striatum are associated with social anhedonia (6) and MDD (7,8). As stress is a risk 

factor for depression, rodent social stress models can be used to investigate the impact of 

stress on brain function.

Social stress reduces social approach behaviors, which are affected by anxiety and 

depression disorders. This phenotype is modulated in part by the NAc (9). The NAc 

is important for the processing of rewarding and aversive stimuli (10) and receives 

dopaminergic, serotonergic, and glutamatergic innervation from nearby regions (11,12). 

Through connections to motor regions the NAc aids in the selection and elicitation of 

directed behavior to salient stimuli (13–15), including both rewarding or aversive cues 

(16,17). In rodents, chronic stress alters transcription and neuronal morphology in the NAc 

(9). Ultimately, these changes can affect the functional activity and connectivity of these 

cells and contribute to depression-like phenotypes.

A limitation of previous rodent social stress studies is that most focus exclusively on males 

(18). This forms a gap in knowledge as women are more likely to develop MDD than men. 

Although there has been progress integrating females in preclinical models (19), females 

are still underrepresented in rodent models of MDD. Recent studies suggest that there 

are distinct molecular signatures in the NAc and other brain regions in men and women 

with MDD (20,21). Similar findings have been reported in rodents exposed to sub-chronic 

variable stress (20,22) or early life stress (23). These sex-specific effects highlight the need 

for further development of preclinical models using female rodents that can be used to 

identify novel molecular targets (24). A challenge for studying molecular mechanisms of 
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social stress in females has been difficulty in establishing robust protocols in conventional 

rodents (25). In California mice (Peromyscus californicus), males and females exhibit 

vigorous aggressive behavior, which allows for both sexes to be exposed to similar levels of 

social stress in an ethologically valid approach (26).

We took a multidisciplinary approach using the California mouse social defeat model system 

to assess how defeat stress impacts the transcriptome of reward-related brain regions. We 

used RNAseq to examine transcriptional responses to social defeat in the NAc of male 

and female California mice and compared these data to transcriptional profiles from post-

mortem samples of the NAc of patients with MDD. Our analyses identified the G-protein 

regulator Rgs2 as a transcript down-regulated in samples from stressed female mice and 

women with depression. This protein facilitates the process of GTP hydrolysis, which in 

turn terminates downstream G-protein coupled receptor signaling pathways (27). Replication 

experiments and viral overexpression of Rgs2 in the NAc suggest that stress-induced 

decreases in Rgs2 in female California mouse NAc contribute to depression- and anxiety-

related behavior.

Methods and materials

Full details for all experimental procedures (28,29) are provided in supplementary materials.

Animals and housing conditions

All studies on California mice (Peromyscus californicus) were in accordance with the NIH 

Guide for the Care and Use of Laboratory Animals and approved by the Institutional Animal 

Care and Use Committee at the University of California, Davis.

Social Defeat Stress (SDS)

Mice were randomly assigned to control handling or three episodes of social defeat as 

previously described (30). Behavior tests and brain tissue collection were conducted two 

weeks after the last episode of social defeat.

Sucrose Anhedonia

Sucrose preference was assessed using a two-bottle choice test (30). Mice were habituated 

for two days with two bottles of tap water. The next day water in one bottle was replaced 

with a 1% sucrose solution for a 24 hr observation period. Percent sucrose preference was 

calculated as the amount of sucrose solution consumed (mL) over total amount of solution 

consumed (water and sucrose solution combined, mL).

Social Interaction Test

Social interaction testing was performed as previously described (30,31). We define time 

spent in the interaction zone with a target mouse as social approach. Social vigilance was 

scored during the acclimation and interaction phases by recording the amount of time 

the focal mouse spent with its head oriented towards the target mouse while outside the 

interaction zone.
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RNA extraction and RNA-sequencing library preparation

Adult mice were euthanized 1 day after the final behavioral test. Brains were removed 

rapidly, and bilateral punches were made from VTA (16 gauge), NAc (14 gauge), and 

PFC (12 gauge) and flash-frozen in tubes on dry ice. Total RNA was isolated with TriZol 

reagent (Invitrogen) and purified with RNeasy Micro Kits (Qiagen). Purified RNA was 

used to prepare libraries using Truseq mRNA library prep kit (Illumina RS-122–2001/2). 

VTA, NAc, and PFC samples were prepared from individual animals and sequenced 

with 125-nt single-end reads at Beckman Coulter Genomics (currently Genewiz). Samples 

were multiplexed to produce >30M reads/sample. All reads and RNA-seq files have been 

deposited and are available through NCBI BioProject (ID: PRJNA700778). RNAseq data 

from human subjects used for analysis was published previously (20).

RNAseq Data Analysis

Raw reads were processed with expHTS (32) to trim low-quality reads and adapter 

contamination and to remove PCR duplicates. The processed reads were aligned to a 

California mouse brain transcriptome (PRJNA350325) using bwa mem (33). The average 

mapping rate was 90.2%. Read counts per transcript were combined to generate counts per 

gene. Genes with fewer than 2 counts per million reads in all samples were filtered prior 

to analysis, leaving 40,634 genes. Differential expression analyses were conducted using 

the limma-voom Bioconductor pipeline (34,35). Heatmaps were generated using Python and 

GO analyses on female differential expression analyses were performed using Kolmogorov-

Smirnov tests, as implemented in the Bioconductor package topGO, to compare uncorrected 

differential expression p-values for genes annotated with a given term to those not annotated 

with a given term (36). Full threshold-free differential expression lists were performed using 

RRHO (37). Parameters for significant differential expression were set at an uncorrected 

p<0.05 and a logFC > |1.15| between stress comparisons (42, 44).

In-situ hybridization

In-situ hybridization was performed as previously described (38). Brains were coronally 

cryosectioned at 60μm, fixed, treated with proteinase K, acetylated, permeabilized, and 

equilibrated in hybridization solution. A riboprobe (0.3μg/mL) directed against Rgs2 
corresponding to bases 74–550 of cDNA sequence XM_028884620.1 was hybridized 

overnight at 65°C. Slides were then washed and incubated with alkaline phosphatase-

conjugated sheep anti-digoxigenin primary antibody (1:1000; Roche) overnight then 

developed in nitro blue tetrazolium and 5-bromo-4-chloro-3-indolyl-phosphate (Roche) at 

37°C for 24 hrs.

Western blots

Protein was extracted from NAc punches and then separated with gel electrophoresis 

and transferred to polyvinylidine fluoride (PVDF) membranes (Bio-Rad, Hercules, CA), 

rinsed, and blocked. Membranes were incubated overnight in primary rabbit anti-RGS2 

(Abcam, Boston, MA; ab155762) 1:1000 at 4°C that was validated using samples from Rgs2 
knockout mice (Supplemental Fig. 1). Membranes were incubated in peroxidase-conjugated 

anti-rabbit secondary antibody (1:100, Vector, Burlingame, CA). Membranes were washed, 
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developed, and imaged on a Bio-Rad ChemiDoc. Blots were probed for β-actin as a loading 

control (Cell Signaling, Danvers, MA, 1:1000), and RGS2 protein bands were normalized to 

their respective β-actin controls.

Quantitative Real-Time PCR

RNA was extracted from NAc tissue punches from SDS male and female mice (n = 5–8 

per group) using an RNAeasy micro kit (Qiagen, 74004) and converted to cDNA using 

an iScript cDNA synthesis kit (Bio-Rad; 1708891). Real-time qPCR was performed using 

SybrGreen Fast master mix (Applied Biosystems) on a ViiA 7 Real-Time PCR system and 

analyzed by the 2−ΔΔCt method. For primer sequences see Supplemental Table 1.

Overexpression of Rgs2 within the NAc by HSV-mediated gene transfer.

To overexpress RGS2, we used a bicistronic p1005 herpes simplex virus (HSV) expressing 

GFP or GFP and Rgs2 (Origene). Expression of GFP is driven by a cytomegalovirus (CMV) 

promoter while the gene of interest is driven by the IE4/5 promoter (39,40). One week 

following defeat, mice received one bilateral 0.6uL injection of either the RGS2 vector 

or vector containing GFP alone into the NAc core (A/P: 0.84, M/L: ±1.5, D/V: 6.0). One 

week later mice were tested for sucrose anhedonia test and social interaction. To confirm 

that expression was limited to NAc, sections of the NAc were imaged to visualize GFP 

colocalization with Neurotrace (ThermoFisher). RGS2 overexpression was confirmed via 

western blot.

Statistical analyses

All statistical analyses were performed using R statistical software. Normality of data was 

assessed using Shapiro-tests. A Fligner-Killeen test was used to assess homogeneity of 

variance. Two-way ANOVA (sex and stress) was used to analyze qPCR data and behavior 

measures. An unpaired t-test was used for western blot data. One-way ANOVA was used 

to analyze behavior data for the RGS2 overexpression experiment. After ANOVA analyses 

that revealed significant interaction effects, we used a priori planned comparisons to test for 

effects of stress in males and females, or RGS2 versus GFP controls (41).

Results

Effects of social defeat on male and female transcriptional responses in the NAc of 
California mice

We performed behavioral and transcriptional analyses two weeks after social defeat or 

control manipulations (Fig. 1A). Similar to previous studies of California mice (42,43), 

stressed females but not males showed a decrease in social interaction ratio when the 

target was present (Fig. 1B, stress*sex interaction effect, F1,29=4.37, p<0.05) and planned 

comparisons showed an effect of stress in females but not males. There were no differences 

in the open field phase (Fig. 1C). We performed RNA-seq on samples of the NAc from 

these mice (Supplemental Table 2). We first set more liberal parameters for identifying 

alterations in transcription (uncorrected p<0.05, log2 fold-change (logFC) > |0.38|) to 

identify broad patterns of transcriptional changes (44,45). Heatmaps plotting normalized 

transcript expression (RPKMs) show contrasting transcriptional expression patterns in 
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females, where low abundance transcripts in control females were more abundant in stressed 

females, and vice versa (Fig. 1D); this pattern is less distinct in males (Fig. 1D). Most of the 

top ten highly enriched terms following gene ontology analyses of differentially expressed 

transcripts in females are related to dopamine signaling pathways and G-alpha(q) second 

messenger signaling cascades (Fig. 1E). When comparing these datasets using RRHO, we 

found more overlap in overexpressed transcripts for males and females (Supplemental Fig. 

2) and less overlap in transcripts that were reduced after defeat. When stricter parameters 

were used to identify differentially expressed genes (uncorrected p<0.05, logFC > |1.15) 

(44,46), we found a more robust effect of stress in females, where 320 transcripts were 

elevated in stressed females versus 36 transcripts in males (Fig. 1F). In contrast 140 

transcripts were less abundant in females versus 31 transcripts in males. Volcano plots 

of these data also indicate stronger transcriptional responses in females compared to males 

(Supplemental Fig. 3). Together these results suggest that there may be sex-specific changes 

in transcriptomic responses in the NAc, with stronger responses occurring in females 

compared to males. For example, only 11 transcripts that were upregulated in stressed 

females were also upregulated in stressed males (Fig. 1F; Supplemental Table 3). For 

females, we also used RRHO analyses to assess the extent to which effects of stress on 

transcription in the NAC generalized to the PFC and VTA (9). Transcripts that were more 

abundant in the NAc of stressed females were also more abundant in the PFC and VTA 

(Supplemental Fig. 4) of stressed females. In contrast, distinct sets of transcripts were 

decreased by social defeat across the NAc, PFC, and VTA. A weakness of these analyses 

is that the vast majority of comparisons do not pass false discovery rate thresholds for 

significance, a common problem for bulk tissue RNAseq analyses (47). To determine the 

extent to which the patterns of gene expression in our study generalize across species, we 

used RRHO analyses to compare male and female California mouse NAc RNAseq results 

to data obtained from the NAc of men and women with MDD (GEO accession number: 

GSE102556).

Transcriptional patterns related to social defeat and major depressive disorder

Using RRHO we observed that the effects of social defeat stress on transcriptional responses 

in female California mice were broadly similar to differences observed in samples from 

women with MDD (Fig. 2A). This overlap was largely absent in samples from male 

California mice and samples from men with MDD (Fig. 2B). We then identified 17 

transcripts present in both stressed female mice and women with MDD that had an 

uncorrected p<0.05 and log FC>|1.15| (Fig. 2A). One of these transcripts is Rgs2. We 

identified a sex-specific effect of stress on Rgs2 RPKMs in female California mice (Fig. 

2C, sex*stress interaction effect, F1,29=4.762, p<0.05), with planned comparisons showing 

an effect of stress in females but not males. Importantly, Rgs2 was not identified as a DEG 

in the NAc of male mice or males with MDD. There was a positive correlation between 

Rgs2 expression and social approach in the social interaction test for females (Fig. 2D, 

Pearson r=0.6, p<0.05) but not males (Fig. 2E, r=0.098, p>0.05). No effects of stress were 

observed on Rgs2 RPKMs in the VTA or PFC (Supplemental Fig. 5). To determine the 

robustness of social defeat stress on Rgs2 expression, we measured gene expression in one 

set of biological replicates and RGS2 protein in a separate set of samples (Fig. 3A).
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Social defeat stress reduces Rgs2 mRNA and RGS2 protein expression in the female NAc

Using in-situ hybridization we confirmed Rgs2 expression in the NAc (Fig. 3B). Social 

defeat reduced social approach in females but not males when the target was present 

(Supplemental Fig. 6A, stress*sex, F1,26=5.995, p<0.05) but not when it was absent 

(Supplemental Fig. 6B). In these mice, real-time PCR analyses showed that social defeat 

reduced Rgs2 mRNA in the NAc in females but not males (Fig. 3C, stress*sex, F1,26=4.687, 

p<0.05). While RNAseq analyses showed no sex differences in Rgs2 mRNA in control mice, 

planned comparisons in the real-time PCR cohort showed that Rgs2 mRNA was higher 

in control females than control males (p<0.05). Similar to analyses of sequencing data, 

Rgs2 mRNA was positively correlated with social approach in females (Fig. 3D, Spearman 

ρ=0.57, p=0.03) but not in males (ρ=−0.27, p=0.39). In a separate group of biological 

replicates, social defeat significantly decreased RGS2 protein expression in females (Fig. 

3E, t(7) = 6.9, p <0.001) and RGS2 protein was positively correlated with social approach 

(Fig. 3F, ρ=0.73, p=0.03).

Rgs2 overexpression in the NAc blocks depression-like behavior in stressed females

Overexpression of Rgs2 in the NAc via viral gene transfer was used to assess the effect of 

increasing Rgs2 on depression- and anxiety-like phenotypes in stressed females (Fig. 4A, 

B). Viral expression occurred in neurons and the Rgs2 virus increased RGS2 protein in the 

NAc (Fig. 4C). There were no differences in sucrose preference prior to defeat stress (Fig. 

4D). After defeat, there were significant differences in sucrose preference (one-way ANOVA 

F2,14=36.4, p<0.001), with females receiving the Rgs2 virus in the NAc consuming more 

sucrose than GFP (planned comparison p<0.001) whereas misplaced Rgs2 viral injections 

did not differ from GFP. In the social interaction test, there were significant differences in 

social approach (Fig. 4E, F2,14=11.66, p<0.01) and social vigilance (Fig. 4F, F2,14=36.39, 

p<0.01). Mice that received the Rgs2 virus in the NAc had higher social approach (planned 

comparison, p<0.01) and lower social vigilance (planned comparison, p<0.05) compared to 

females receiving GFP. Mice with misplaced Rgs2 injections were not different from GFP 

controls. Rgs2 overexpression had no effects on behavior during the acclimation phase when 

the target was absent (Fig. 4G, 4H, both p’s >0.05). During the open field phase of the social 

interaction test, Rgs2 overexpression had no effects on distance traveled (Fig. 4I, p>0.05) or 

on time spent in the center of the arena (Fig. 4J, p>0.05).

Discussion

An important question in psychiatry is why rates of depression and anxiety are elevated in 

women versus men. There is growing evidence that distinct neurobiological responses can 

be evoked by stress in women and men. Here we demonstrate that social defeat stress in 

female California mice induces broad patterns of transcriptional changes in the NAc that are 

correlated with transcriptional patterns reported in postmortem NAc samples collected from 

women diagnosed with depression. This finding suggests a strong translational potential 

for female California mice in studying biological mechanisms related to depression and 

anxiety that are relevant for women. These analyses identified Rgs2 as a stress-sensitive 

transcript in the NAc of females. RGS2 protein regulates the activity of neuropeptide and 

neurotransmitter receptors, and its overexpression blocked stress-induced sucrose anhedonia 
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and social avoidance. Overexpression of Rgs2 also reduced social vigilance, which is 

modulated by the bed nucleus of the stria terminalis (48), suggesting that Rgs2 modulates 

direct or indirect connections within the extended amygdala. Consistent with prior studies, 

stressed males did not exhibit social avoidance and had fewer transcriptional changes in 

the NAc. However, stressed male California mice exhibit alternative phenotypes such as 

reduced cognitive flexibility (49), suggesting that in males stress could have stronger effects 

on transcription outside of the NAc. Thus, when utilizing rodent models to study social 

stress in both males and females it is important to consider a broad range of behavioral and 

neurobiological phenotypes.

Genetic variants of the Rgs2 gene that have less stable Rgs2 mRNA (50) are correlated with 

increased risk for depression (51), anxiety (52–56), and risk for suicide (57–59). Disruptions 

in Rgs2 gene expression are also linked to patients with treatment-resistant depression 

(54), suggesting that Rgs2 may play some role in a lack of efficacy to currently available 

treatments. These studies included both men and women and adjusted genetic analyses 

for sex. However, none of these studies tested whether Rgs2 gene variations had stronger 

associations with health outcomes in women versus men. Preclinical studies in male Mus 
musculus showed that Rgs2 deletion increased anxiety-like responses and passive coping 

responses (60,61). These studies had important limitations. Global knockout approaches 

cannot distinguish whether behavioral changes are due to developmental effects of Rgs2 or 

altered gene function in the adult brain. Our results show that stress-induced decreases in 

Rgs2 expression in the adult brain can contribute to depression-like behaviors. Furthermore, 

Rgs2 is widely distributed throughout the brain, so global knockout approaches have little 

precision for identifying the brain circuits mediating Rgs2 action on social behavior. In 

addition, behavioral studies focused primarily on males. In our qPCR experiment Rgs2 
expression was higher in control females versus control males, although this difference was 

not replicated in the RNAseq dataset. There are few data on RGS2 expression in male 

and female brains, although higher Rgs2 expression was reported in female rat brainstem 

versus males (62). Further study is needed to determine whether baseline differences in 

Rgs2 expression are consistent across species or brain regions. Previous work showed that 

Rgs2 expression in the brain can be stress sensitive (63), but to our knowledge no study 

has tested whether these changes contribute to behavioral outcomes via RGS2 manipulation. 

Our experiments show that in females, Rgs2 mRNA and protein in the NAc are decreased 

by social defeat, and that viral overexpression of RGS2 in NAc is sufficient to reduce 

stress-induced social avoidance, social vigilance, and sucrose anhedonia. These findings 

agree with clinical findings, suggesting that Rgs2 is an important modulator for behaviors 

with translational relevance.

A main function of RGS proteins is to potentiate the process of GTP hydrolysis, 

which effectively switches off downstream G-protein coupled receptor signaling pathways 

(27,64,65). Reduced production of RGS2 protein disrupts this process (66), which 

consequently interferes with the function of neuropeptide and neurotransmitter receptors 

(67,68). In addition to the GTPase activating action, RGS proteins may modulate GPCR 

responses by several other mechanisms. For example, they may act as effector antagonists 

for G alpha subunits or as regulators of epigenetic and transcriptional processes (69). RGS2 

specifically regulates G-alpha(q) signaling events (70). Given this distinction, an important 
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question to consider is which receptor signaling pathways within the NAc are being 

impacted by stress-induced reductions in RGS2. Prior findings indicate that RGS2 may 

regulate dopamine receptor 1 (D1R)-expressing neurons in the NAc (71–73). Single-cell 

RNAseq analyses of striatum showed that Rgs2 gene in the striatum clusters significantly 

with D1R-expressing neurons but not D2R-expressing neurons (74). Although these data 

lack anatomical specificity, it suggests that RGS2 could be impacting social behavior 

through a D1R-driven mechanism within the striatum, and potentially specifically within 

the NAc. Consistent with this hypothesis, D1R agonist infusions in the NAc are sufficient 

to reduce social approach in unstressed female California mice (75). Confirming whether 

Rgs2 modulates signaling pathways in the NAc through a D1R driven mechanism, or 

through other receptor signaling systems, will lead to novel insights on a cell-type-specific 

mechanism through which Rgs2 modulates social behavior and deficits in social behavior 

that are relevant to stress disorders. Other members of the RGS family have been shown 

to modulate stress, but they have distinct functions. Prevention of Rgs7 action reduces 

anxiety-like behaviors in response to environmental stimuli in male mice (76), whereas 

deletion of the Rgs4 gene decreases the efficacy of monoamine-targeting antidepressants and 

promotes the actions of ketamine (77).

Although Rgs2 was not differentially expressed in the VTA or PFC, at a broad level RRHO 

analyses comparing the NAc with VTA and PFC detected more overlap in transcripts 

upregulated by stress than transcripts downregulated by stress. In C57Bl6/J, unpredictable 

chronic mild stress induced similar transcriptional changes in the NAc and PFC in male 

but not female mice, while in females similar gene expression profiles were observed 

in the NAc and BLA (78). In analyses of human post-mortem samples, RRHO analyses 

detected little overlap in gene expression across NAc and cortical regions in either males 

or females. Numerous studies have reported sex-specific neural transcriptional responses to 

stress using bulk RNAseq methods (79), in which different cells are combined during the 

RNA extraction process. A weakness of these studies, including ours, is that this approach 

generally does not provide sufficient power to detect differential expression that passes 

false discovery correction (but see (80)). Thus, although RRHO analyses identified broad 

similarities in gene expression signatures in female rodent and human NAc samples, few 

transcripts met criteria for differential expression (Fig. 2A). Despite this weakness, when 

combined with follow-up analyses of different biological replicates, these approaches have 

led to the successful identification of numerous transcripts with sex-specific transcriptional 

responses to stress such as Dusp4, Dnmt3a, and Emx1. Here we showed that bulk 

sequencing approaches are effective for hypothesis generation when paired with replication 

and manipulation of candidate gene function. Our analyses also identified Slc22A3 as 

a transcript down-regulated by stress in California mice and decreased in samples from 

women diagnosed with depression. One protein encoded by this transcript is organic 

cation transporter 3 (OCT3), a low-affinity high-capacity transporter for monoamines (81). 

Although less is known about OCT3, it enhances place preference responses to cocaine (82) 

and is sensitive to glucocorticoids (83). Our sequencing data suggests that it is an intriguing 

target for further study. Moving forward, greater use of strategies that have more statistical 

power is needed. This could be achieved using larger sample sizes or analyses of more 

defined cell populations via single-cell analyses of transcription (84). This will increase the 
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utility of comparisons across stress models and enhance our ability to assess the extent to 

which depression and anxiety disorders are linked to sex-specific molecular signatures.

These studies demonstrate that Rgs2 is a stress-sensitive transcript in the NAc that 

modulates depression- and anxiety-like behavior. Our results suggest that facilitating Rgs2 
activity could have important therapeutic properties, especially in females. This is important 

because women are twice as likely to develop MDD and some underlying mechanisms may 

be distinct from men. Identifying distinct mechanisms could facilitate sex-specific targets 

for therapeutic intervention. These studies in California mice highlight the utility of model 

systems in which social stress can be studied in males and females.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Social defeat stress differentially expresses NAc transcriptional patterns in a sex-
specific manner.
Timeline of experiment. Mice were run through social defeat and weeks later, they were 

run in a social interaction test. The next day, fresh punches of the NAc were collected for 

RNAseq (A). Social defeat reduces social approach in females but not males during the 

social interaction test (B). No differences were seen in distance traveled during the open 

field phase (C). Stressed female mice have different average transcript expression (RPKM) 

patterns compared to control females (D). Highly enriched differently expressed GO terms 

identified from overlapping male and female DEGs (E). Minimal overlap is present in DEGs 

between males and females (F). *planned comparison p<0.05 v. control. Group N’s: males/

control: 8, male/stress: 7, female/control: 8, female/stress: 6.
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Figure 2. Social defeat stress induces similar gene expression patterns in the NAc in female 
California mice compared to women with major depression (MDD).
Social defeat stress induces similarities in transcriptional patterns in female California mice 

compared to transcriptional patterns observed in women with MDD (A); one transcript 

similarly affected in both data sets is Rgs2. No similarities in DEGs were observed in 

stressed male California mice and men with MDD (B). Stress reduces Rgs2 average 

expression in a sex-specific manner (C). Rgs2 expression is correlated to social avoidance 

behavior in female (D) but not male (E) California mice. *planned comparison p<0.05 

v. control. Group N’s: males/control: 8, male/stress: 7, female/control: 8, female/stress: 8, 

women/MDD: 13, women/control: 9, men/MDD: 13, men/control: 13.
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Figure 3. Social defeat stress reduces Rgs2 mRNA and protein expression in NAc of female 
California mice.
Timeline for experiment. Male and female California mice were run through control 

handling or social defeat stress. Two weeks later, mice were run through a social interaction 

test. Tissue samples were collected 1 hour following behavior testing for different cohorts of 

mice (A). Rgs2 expression in the NAc was confirmed using in-situ hybridization (B). Social 

defeat stress reduced Rgs2 mRNA in females but not males (C), and Rgs2 mRNA expression 

levels are positively correlated with social approach behavior (D). Stress reduced RGS2 

protein levels in females (E), and these protein levels correlate with social approach (F). 

*p<0.05 planned comparison vs. female control p<0.05 v. control, ***p<0.001 independent 
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t-test vs. control, † p<0.05 planned comparison v. male control. qPCR group N’s: male/

control: 7, male/stress: 7, female/control: 6, female/stress: 8. Western blot group N’s 

control:4, stress:5.
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Figure 4. Overexpression of Rgs2 in the NAc reverses stress-induced depression-like behavior in 
female California mice.
Schematic of placement site and viral construct and image of viral transfection (GFP 

in NAc) (A). Timeline of experiment. We took baseline sucrose preference levels from 

all mice before stress exposure. All females were exposed to social defeat and then one 

week later, viral vectors (GFP or Rgs2) were microinjected into the NAc core. Four days 

later, stressed mice received a sucrose preference test followed by a social interaction test 

(B). Neurotrace staining shows that GFP expression occurs in neurons and western blot 

analysis demonstrates that HSV-RGS2 vectors increase RGS2 protein in the NAc (C). Rgs2 
overexpression reversed anhedonia-like phenotypes in the sucrose preference test (D). Rgs2 
overexpression increased social approach (E) and decreased social vigilance (F) when the 

target was present but not while the target was absent (G, H). Rgs2 overexpression did not 

alter distance traveled (I) or center time (J) during the open field phase. * p<0.05 planned 

comparison v. GFP. **p<0.01 planned comparison v. GFP. ***p<0.001 planned comparison 

v. GFP. †p<0.05 paired t-test with baseline (before stress). †††p<0.001 paired t-test with 

baseline (before stress). Group N’s: RGS2: 7, GFP: 6, miss: 4. Scale bar in 4A=200μM. 

Scale bar in 4C=25μM.
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