
UCLA
UCLA Electronic Theses and Dissertations

Title
Learning Theory of Mind for Multi-agent Planning

Permalink
https://escholarship.org/uc/item/5f19g5jk

Author
Zhao, Qingyi

Publication Date
2020

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5f19g5jk
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Learning Theory of Mind for Multi-agent Planning

A thesis submitted in partial satisfaction

of the requirements for the degree

Master of Science in Computer Science

by

Qingyi Zhao

2020

c© Copyright by

Qingyi Zhao

2020

ABSTRACT OF THE THESIS

Learning Theory of Mind for Multi-agent Planning

by

Qingyi Zhao

Master of Science in Computer Science

University of California, Los Angeles, 2020

Professor Song-Chun Zhu, Chair

Theory of mind (ToM) refers to the ability to understand oneself’s and others’ mental states.

The major difficulty of incorporating ToM into multi-agent planning is updating an agent’s

beliefs of others’ beliefs over time, which are probability distributions over distributions.

In this work, we propose a novel way to model this nested belief update with a higher

computational efficiency, simultaneously providing an approach to learn other agents’ models.

We model the belief update by a Markov probability transition, which linearly updates beliefs

as distributions. This transition kernel characterizes another agent’s belief update and it is

learnable, thus we learn other agents’ models by learning their kernels. We demonstrate the

effectiveness of our algorithm in a police-thief game, showing that our agent is able to learn

other agents’ belief updates and intentionally change their beliefs to achieve its own goal.

ii

The thesis of Qingyi Zhao is approved.

Kai-Wei Chang

Yingnian Wu

Song-Chun Zhu, Committee Chair

University of California, Los Angeles

2020

iii

To my family and friends

who always supported me

iv

Table of Contents

List of Figures . vii

Acknowledgements . ix

1 Introduction . 1

2 Literature Review . 4

3 Algorithm . 6

3.1 Theory-of-mind Belief Update . 6

3.1.1 First-level Belief Update . 7

3.1.2 Second-level Belief Update . 8

3.1.3 Belief Dynamics . 9

3.2 Theory-of-mind Planning . 11

3.3 Learning . 13

3.3.1 Learning Belief Dynamics . 13

3.3.2 Learning Estimation Model . 13

3.3.3 Learning Zero-level Value Functions 13

4 Experiments . 15

4.1 Environment . 15

4.2 Thief’s Belief Update . 16

4.3 Comparative Methods . 16

4.4 Experiment Results . 18

v

5 Conclusion . 23

Bibliography . 24

vi

List of Figures

1.1 A ToM agent observes the world s and save the observation o into its memory m.

The memory includes o1:t its past observations, and a1:t−1 the performed actions.

Based on the memory, it updates is belief b1 about the world, belief b2 about other

agents’ beliefs. Each level l of belief bl has a corresponding value function vl(·),

and value functions are combined into an action value function u. Finally, the

agent chooses an optimal action a based on u and changes the world state. . . 2

4.1 The ground truth game setting. It shows the ground truth identities of all agents 17

4.2 The belief game setting. It shows the thief’s belief of each agent being the police

(player). Darker colors indicates higher probabilities. 18

4.3 Experiment results in the slow-thief setting. (a) shows the average success rate

of catching the thief in the training stage. (b) shows the probability within an

episode that the thief predicts the agent is the police. The curves are averaged over

20 final episodes during training. From the beliefs we can see that the strategies

of different methods vary, but they can achieve similar performance (as shown in

(b)) in the slow-thief setting. (c) shows the estimated belief of the thief by our full

ToM model within an episode, averaged over the final 20 episodes during training.

The estimated beliefs are obtained by the two-level belief update, which employs

a learned belief dynamics and belief estimation model. From the figure we can

see that our agent is able to estimate the thief’s belief within a small error. All

the plots use data generated from 10 independent training trials. 19

vii

4.4 Experiment results in the fast-thief setting. (a) shows that our ToM agent

significantly outperforms other methods, achieving a success rate close to 1. (b)

shows that our agent intentionally lowers the thief’s belief thus it achieves the

high success rate. The other methods learn to chase the thief, hence they are

recognized by the thief (the belief goes higher as time evolves). (c) shows that

our agent is able to estimate the thief’s belief within a small error. 20

4.5 Learned zero-level value functions in the fast-thief setting. (a) and (b) shows

the learned values on the mental state learned by ToM-gt and ToM, i.e., the

value of our agent that the thief thinks our agent is/is not the police. Our agent

successfully learns that being recognized as a police has a lower value. (c) shows

the final learned value function of the distance between our agent and the thief.

Our agent learns that when the thief is very close, there is a high value to directly

approach the thief. When the thief is far away, getting closer will not gain much

value. 21

4.6 Qualitative results in the fast-thief setting. Each group of two rows shows in the

first row the ground truth state, and in the second row the beliefs of the thief

along time (from left to right). The green one is the thief and the red one is

the police. Darker colors indicate higher beliefs. Agents appear on the opposite

side when they cross the boundary. (a) The thief recognizes the MADDPG agent

as the police and escapes. (b) Our ToM agent successfully hide its identity and

catches the thief. 22

viii

Acknowledgements

First of all, I would like to thank my advisor Song-Chun Zhu. It has been a great honor to

work with and extremely lucky for me to be advised by Song-Chun. His guidance along the

way has helped me grow both academically and as a person. I would also like to express

my gratitude towards to Siyuan Qi, who has been my mentor throughout my research life.

Through numerous discussions I had with Siyuan, I got to know how to be a true researcher

and exposed to a great number of intriguing ideas. Next, I want to thank Professor Tao Gao,

and other members in VCLA, Yixin Zhu, Baoxiong Jia, Feng Gao, Luyao Yuan, Feng Shi,

Victor Zhang for their help and insightful discussions we have had.

I would like to express my sincerest gratitude to my parents, grand parents, and other

family members who have supported me and given me confidence during the hard times of

my life.

This work is mainly based on a draft submission to ICML 2019, with Siyuan Qi, Yingnian

Wu, and Song-Chun Zhu listed as co-authors. Siyuan Qi led the project and contributed

the most to problem formulation, algorithm design, experiments, and manuscript writing.

Professor Yingnian Wu and Song-Chun Zhu offered directional suggestions and guidance

along the way.

ix

CHAPTER 1

Introduction

Multi-agent systems, ranging from two-player games to the human society, have been studied

across many domains. For individual agents to maximize their values in such environments,

they must learn to interact with and against others, as well as understand the consequences

of their actions.

Most multi-agent planning approaches focus on modeling other agents’ policies based on

physical world states [33, 15, 9, 8]. However, besides the physical states, humans also reason

about other agents’ mental states including their beliefs. This ability to understand oneself’s

and others’ mental states and reason about their behaviors, is commonly referred to as the

theory of mind (ToM).

We argue that there are two distinctions between ToM and non-ToM agents. 1) ToM

agents make predictions in a higher dimension (both physical and mental states). 2) ToM

agents intentionally change other agents’ mental states, i.e., beliefs about the world. In

this way, a ToM agent changes others’ future behaviors to maximize its own value. In

contrast, traditional approaches only react to predicted future behaviors of other agents.

A representative line of work to incorporate ToM into planning algorithms is interactive

partially observable Markov Decision processes (I-POMDPs) [10].

Figure 1.1 shows a ToM planning framework. In this framework, a ToM agent keeps

beliefs (probability distributions) about the world state by Bayesian updates over time: at

every time step, it updates the prior belief after performing an action and receiving an

observation. It also keeps high-level beliefs about other agents’ beliefs, which are represented

by distributions of distributions. They are computed by a nested Bayesian update, which

1

Mind of agent j Mind of agent i

Physical world

belief
memory

value function (desire)
action value function

action (intention)
observationstate

Figure 1.1: A ToM agent observes the world s and save the observation o into its memory m.

The memory includes o1:t its past observations, and a1:t−1 the performed actions. Based on

the memory, it updates is belief b1 about the world, belief b2 about other agents’ beliefs. Each

level l of belief bl has a corresponding value function vl(·), and value functions are combined

into an action value function u. Finally, the agent chooses an optimal action a based on u

and changes the world state.

2

involves Bayesian updates of other agents’ lower-level beliefs.

However, exact inference for nested belief updates is computationally very difficult for

several reasons. These reasons include 1) other agents’ model (e.g., observation function) are

required to compute the nested belief updates. 2) Belief updates for world states suffer from

the curse of dimensionality, and nested belief updates aggravate this issue. In general, only

approximate belief updates are computable.

To avoid the first problem, most methods assume that other agents’ models are known [4,

6, 5, 7, 25, 20]. A more recent work [12] removes this constraint by adding a prior distribution

to other agents’ models.

To alleviate the second problem, various approximation methods for the belief update are

proposed, including particle filter [5], state space pruning [6], and nested MDPs [13].

The major contribution of this work is a novel way to approximate the belief update, at the

same time providing an alternative approach to learn other agents’ models. By decomposing

the belief update, we identify and approximate a “belief dynamics” term that is particularly

computationally costly. The belief dynamics predicts how other agents’ beliefs will change

after our agent performs an action. We model this process by a Markov probability transition.

The transition kernel linearly transforms the current belief to a predicted belief, thus greatly

reducing the computational complexity. We can show that there always exists a kernel that

transforms the true beliefs, hence theoretically this approximation can be exact. The kernel

is also learnable, e.g., by generator neural networks. Since this kernel characterizes another

agent’s belief update, our agent essentially learns the other agents’ models by learning their

kernels.

We demonstrate the effectiveness of our algorithm in a police-thief game, in which the

police agent needs to catch the thief while hiding its own identity from the thief. In the

experiments, we show that 1) our agent can accurately estimate the beliefs of other agents.

2) Our agent can learn meaningful values over physical states and mental states. 3) Most

importantly, our agent is able to intentionally change other agents’ beliefs to achieve high

values, outperforming other state-of-the-art multi-agent planning algorithms.

3

CHAPTER 2

Literature Review

Theory of mind has first been studied in psychology and cognitive science [31]. It has been

shown that the ability to perform mental simulations of others increases rapidly since the

young-infant phase [32, 11, 16, 19]. This allows reasoning about others’ mind, and it is

vital in a multi-agent environment because each agent’s choice affects the payoff of other

agents [30, 3].

This stimulates a growing interest in the AI community to build algorithms that exhibit

this ability [2, 14]. For example, Bayesian Theory of Mind (BToM) [2, 1] predicts the mental

states of humans. [21] proposed ToMnet, a neural network to predict the characteristic of an

observed agent and its future behaviors. These are perception models that do not involve

planning.

The most representative series of work on ToM planning is I-POMDP [4, 6, 5, 7, 25, 20],

which extends the traditional POMDPs. It augments world states to interactive states to

include beliefs of the intentional model of other agents (belief, reward function, observation

function, etc.). However, solving I-POMDP can be extremely expensive and inefficient. The

generalization to interactive states greatly increases the dimension of the state space, and

this curse of dimensionality is exacerbated by the nested belief reasoning among agents.

Methods have been proposed to approximate I-POMDP. For example, I-PF [5] approxi-

mates the belief updates by particle filters. I-PBVI [6] constrains the interactive state space

by computing a finite set of beliefs reachable from the initial belief over a certain horizon.

I-POMDP Lite [13] uses a nested MDP to model other agents to approximate the exact

I-POMDP policy.

4

The above approximation methods all assume that the agent knows exactly the models,

except beliefs, of other agents. A more recent work [12] removes this constraint. It performs

belief update using Bayesian inference and particle filtering by sampling other agents’ models

from prior distributions.

In our work, the agent approximates the belief update by a Markov transition kernel,

which is different from all prior methods. This kernel acts linearly on beliefs, hence greatly

reducing the computational complexity. This transition kernel is learnable, hence our agent

can learn the models of other agents without specified prior knowledge. This also provides a

different perspective from prior methods to learn other agents’ models.

5

CHAPTER 3

Algorithm

3.1 Theory-of-mind Belief Update

To act in uncertain environments due to noisy/partial observation, an agent tracks the

physical world state s over time based on the actions it performed and its past observations.

At each time step t, an agent i keeps a belief bi,t, which is a probability distribution of the

world state st given its memory mi,t. The memory includes its past observations, oi,1:t, and

the performed actions, ai,1:t−1.

In the rest of the thesis, we will use numbered superscripts to indicate the ToM level

of the variables (e.g., first level beliefs b1). A first-order ToM agent tracks not only the

physical world state, but also the mental states of other agents. Specifically, it tracks its

state s = (s0, b1) over time, where b1 is all agents’ first-level beliefs of the world state s0. In

other words, a first-order ToM agent i maintains two types of beliefs: first- and second-level

beliefs. They are probability distributions of s0 and b1, respectively. The first-level belief is

formulated as the probability of the world state given its past observation and actions:

b1
i,t(s

0
t) = p(s0

t |oi,1:t, ai,1:t−1) (3.1)

The second-level belief b2
ij,t is defined as agent i’s belief about agent j’s first-level belief

b1
j,t:

b2
ij,t(b

1
j,t) = p(b1

j,t|oi,1:t, ai,1:t−1), for j 6= i. (3.2)

At every time step t, an agent i updates its belief bi,t−1 to bi,t, according to the action

ai,t−1 performed at last time step and the observation oi,t received afterwards. This is called

6

belief update, which we will discuss in details in the rest of this section. In general, the agent

estimates the physical and mental states by Bayes filtering, which updates its belief each

time an action is performed and a new observation arrives.

3.1.1 First-level Belief Update

The first-level belief of agent i about the world state at time t is b1
i,t(s

0
t) = p(s0

t |oi,1:t, ai,1:t−1).

The Bayes filtering to update the belief at time t can be decomposed into a two-step process:

• Prediction. The agent updates its previous belief b1
i,t−1(s0

t−1) after taking an action ai,t−1

by predicting how the state s0
t−1 will change:

p(s0
t |oi,1:t−1, ai,1:t−1)

=

∫
s0t−1

p(s0
t , s

0
t−1|oi,1:t−1, ai,1:t−1)ds0

t−1

=

∫
s0t−1

p(s0
t |s0

t-1, oi,t-1, ai,t-1)p(s0
t-1|oi,1:t-1, ai,1:t-2)ds0

t-1

=

∫
s0t−1

p(s0
t |s0

t−1, oi,t−1, ai,t−1)︸ ︷︷ ︸
world dynamics

b1
i,t−1(s0

t−1)︸ ︷︷ ︸
previous belief

ds0
t−1

(3.3)

We can see that the agent updates its previous belief b1
i,t−1(s

0
t−1) by applying a stochastic

state transition function p(s0
t |s0

t−1, oi,t−1, ai,t−1). At this time, the agent has not received the

new observation oi,t. This prediction step computes how first-level beliefs will change after

performing an action. Note that although we have uncertainty about the true world state,

but this distribution itself (i.e., the belief) is deterministic for a certain time step.

• Correction. After receiving a new observation oi,t, the agent corrects its prediction from

the last step :

b1
i,t(s

0
t) = p(s0

t |oi,t, oi,1:t−1, ai,1:t−1)

= α p(s0
t , oi,t|oi,1:t−1, ai,1:t−1)

= α p(oi,t|s0
t) p(s

0
t |oi,1:t−1, ai,1:t−1)︸ ︷︷ ︸

first-level prediction

(3.4)

where α is a normalizing constant as we apply the Bayes rule, p(oi,t|s0
t) is the likelihood of

observation oi,t, and p(s0
t |oi,1:t−1, ai,1:t−1) is the updated belief from the prediction step.

7

3.1.2 Second-level Belief Update

The second-level belief gets updated in a similar way. At each time step t, agent i maintains

a second-level belief about agent: b2
ij,t(b

1
j,t) = p(b1

j,t|oi,1:t, ai,1:t−1), for j 6= i. The Bayes filtering

is the same as the first-level belief update, except that the states are replaced by first-level

beliefs:

• Prediction:

p(b1
j,t|oi,1:t−1, ai,1:t−1)

=

∫
b1j,t−1

p(b1
j,t|b1

j,t−1, oi,t−1, ai,t−1)︸ ︷︷ ︸
belief dynamics

b2
ij,t−1(b1

j,t−1)db1
j,t−1

(3.5)

Similar to the first-level belief update, the agent updates the previous belief b2
ij,t−1(b1

j,t−1) by

applying a stochastic transition function p(b1
j,t|b1

j,t−1, oi,t−1, ai,t−1) defined on the first-level

belief of agent j. We call this transition function the belief dynamics. It takes the observation

as input since it contains information about the state, and the first-level belief changes

differently under different states even if the same action is performed.

In principle, the belief dynamics should follow a similar Bayesian update as the first-level

belief update of agent j itself. However, exact inference of the belief dynamics needs to

marginalize out all possible j’s observations and actions, and then perform a lower-level belief

update. This is computationally very expensive or intractable. We discuss our proposed

approximation method in Section 3.1.3.

• Correction. The belief is then updated by the observation:

b2
ij,t(b

1
j,t) = p(b1

j,t|oi,t, oi,1:t−1, ai,1:t−1)

= α p(oi,t|b1
j,t) p(b

1
j,t|oi,1:t−1, ai,1:t−1)︸ ︷︷ ︸

second-level prediction

(3.6)

For simplicity, we still use α to represent the normalizing constant, with a value different

from the first-level belief.

8

3.1.3 Belief Dynamics

The belief dynamics predicts how a belief of another agent, in the form of a probability

distribution, will change stochastically when actions are performed over time. However,

exact inference for nested belief update is computationally very expensive or intractable as

discussed in Section 3.1.2. Approximated solutions have been proposed, such as particle

filters [5] and bounded policy iteration [25]. Here we propose an alternative solution that is

simple but effective.

The existing methods model the belief state transition in a general way similar to world

state transitions (e.g., particle filter). Let us denote the current belief as bt, the predicted

belief after performing an action as b̂t+1. The key observation of our method is that this

Bayesian update process can always be described by a probability transition kernel. In other

words, we can always find a probability transition kernel to transform bt to b̂t+1. Formally,

we have the following proposition.

Proposition 1. 1 Let S be a measurable space and st, st+1 ∈ S. ∀bt(st) = p(st|o1:t, a1:t−1)

and b̂t+1(st+1) = p(st+1|o1:t, a1:t), there exists a Markov kernel κ(st, st+1) ∈ S × S → [0, 1]

such that (1) ∀st+1, b̂t+1(st+1) =
∫
st
bt(st)κ(st, st+1)dst, and (2) ∀st,

∫
st+1

κ(st, st+1)dst+1 = 1.

Proof. Since st is independent of at, we have

b̂t+1(st+1) = p(st+1|o1:t, a1:t)

=

∫
st

p(st+1|st, o1:t, a1:t)p(st|o1:t, a1:t)dst

=

∫
st

p(st+1|st, o1:t, a1:t)p(st|o1:t, a1:t−1)dst

=

∫
st

p(st+1|st, o1:t, a1:t)bt(st)dst

Obviously ∀st,
∫
st+1

p(st+1|st, o1:t, a1:t) = 1.

Hence κ(st, st+1) = p(st+1|st, o1:t, a1:t) is a kernel that satisifies the conditions.

1For simplicity, we omit the agent indices in the proposition.

9

This introduces a general linear form for the belief dynamics that can be extended to

higher levels. Representing the beliefs by vectors, we can re-write the belief dynamics as:

b̂1
j,t = κt−1b

1
j,t−1

(3.7)

Parametrized by observations and actions, the kernel κ(o, a) transforms the previous belief

to the predicted belief. The kernel κ(o, a) is to be learned. For example, it can be generated

by a generator neural network. The kernel acts on the belief linearly, but the kernel itself

is non-linear in its parameters (i.e., the observations and actions). Due to its simple and

general form, it is quite powerful and computationally favorable.

Since it is difficult to learn a perfect kernel, we can further add a noise term to this belief

transition:

b̂1
j,t = κt−1b

1
j,t−1 + ε (3.8)

Assuming the noise follows a multivariate Gaussian distribution as a convenient approximation,

we have ε ∼ N (0,ΣD) where ΣD is the covariance matrix. Equivalently, we have b̂1
j,t ∼

N (κt−1b
1
j,t−1,ΣD) where κt−1 , κ(oi,t−1, ai,t−1). After adding the noise, we normalize b1

j,t to

ensure that it remains to be a distribution.

Given the above belief dynamics, we can efficiently compute the second-level belief update.

If at the last time step we have b1
j,t−1 ∼ N (µt−1,Σt−1), then the prediction step (Eq. 3.5)

is a convolution of two Gaussian distributions. Hence the result will still be a Gaussian

distribution. According to the second-level belief prediction (Eq. 3.5) and correction (Eq. 3.6),

we have the following conclusions:

• The prediction step gives b1
j,t ∼ N (µp,Σp), where

µp = κt−1µt−1 (3.9)

Σp = ΣD + κt−1Σt−1κt−1 (3.10)

Hence we can obtain the µp and Σp by applying the transition kernel κt−1. To compute the

correction step, we need a observation model. We can first learn an belief estimation model

10

b̃1
j,t = f(oi,t) that directly estimates the beliefs from observations up to a Gaussian noise:

b̃1
j,t ∼ N (b1

j,t,Σo). Then we can rewrite the observation model p(oi,t|b1
j,t) as p(b̃1

j,t|b1
j,t), which is

a Gaussian distribution. Then the correction step is computing the predictive posterior given

a Gaussian prior and a Gaussian likelihood. Since a multivariate Gaussian is the conjugate

prior of itself, we have:

• The correction step gives b1
j,t ∼ N (µt,Σt), where

µt = (Σ−1
p + Σ−1

o)−1(Σ−1
p µp + Σ−1

o µo) (3.11)

Σt = (Σ−1
p + Σ−1

o)−1 (3.12)

where µo is directly predicted by the belief estimation model. Σo is learned in the training

phase of the belief estimation model by computing the covariance between predicted beliefs

and ground truth beliefs.

The above equations give an efficient way to compute the second-level belief update. The

above process agrees with the Kalman filter. When the state space is continuous, the belief

is a continuous function instead of a discrete vector. Then infinite-dimensional Kalman filter

can be adopted [22].

3.2 Theory-of-mind Planning

Based on the belief about the world state and other agents’ mental states, a ToM agent

chooses an optimal action based on a value function. This value function is defined on the

belief space, and it is convex and piecewise-linear [10]. Usually this function is learned by

value iteration. However, this is very hard due to the curse of dimensionality.

In the reinforcement learning literature, it is common to learn approximated value

functions [26]. Here we approximate this value function by a linear function of the beliefs

with intuitive semantic meanings. Specifically, we define the first-level value function as:

v1
i (b

1
i) =

∫
s0
b1
i (s

0)v0
i (s

0)ds0 (3.13)

11

where v0
i (s

0) is a value function defined on true world states. The second-level value function

v2
ij(b

2
ij) measures agent i’s value of its second-level belief b2

ij on agent j’s belief. The second-level

value function is similarly defined as:

v2
ij(b

2
ij) =

∫
s0

∫
b1j

b2
ij(b

1
j)b

1
j(s

0)v0
ij(s

0)db1
jds

0

=

∫
s0

∫
b1j

b2
ij(b

1
j)b

1
j(s

0)db1
j︸ ︷︷ ︸

Expectation of first-level belief

v0
ij(s

0)ds0

=

∫
s0
Eb2ij [b

1
j] v

0
ij(s

0)ds0

(3.14)

It is grounded to the actual mental states by the zero-level value function v0
ij(s

0), which is

the value of agent i when agent j believes that the state is in s0 with probability 1. Notice

the difference between v0
i (s

0) and v0
ij(s

0): v0
i (s

0) is defined on the physical state while v0
ij(s

0)

is defined on the mental state.

Then the first-order ToM agent i at time t chooses an optimal action a∗i,t that maximizes

its future value, which combines the first- and second-level value functions:

a∗i,t = argmax
ai,t

u1
i (b

1
i,t, ai,t) +

∑
j 6=i

u2
i (b

2
ij,t, ai,t)

= argmax
ai,t

∫
b1i,t+1

p(b1
i,t+1|b1

i,t, ai,t)v
1
i (b

1
i,t+1)db1

i,t+1︸ ︷︷ ︸
expected future physical state value

+
∑
j 6=i

∫
b2ij,t+1

p(b2
ij,t+1|b2

ij,t, ai,t)v
2
ij(b

2
ij,t+1)db2

ij,t+1︸ ︷︷ ︸
expected future mental state value

(3.15)

This way the agent considers the change of other agents’ beliefs after taking an action. This

is particularly important since it enables the first-order ToM agent to intentionally change

other agents’ beliefs. This changes others’ future behaviors and thus maximizes the agent’s

own value.

12

3.3 Learning

3.3.1 Learning Belief Dynamics

To predict the future beliefs, the agent generates the transition kernel κ(oi,t−1, ai,t−1) given its

observation oi,t−1 and action ai,t−1. Each column of this transition kernel κ sums to 1. This

can be practically implemented as a generator neural network, which takes the observation

and action as inputs and generates all the columns for κ. To ensure that each column sums

to 1, a softmax activation function can be added before the final output of each column.

3.3.2 Learning Estimation Model

The belief estimation model b̃1
j,t = f(oi,t) estimates the first-level belief of agent j given agent

i’s observation at time t. This can be learned by any classification model that outputs a

probability for each state given the observation. The model can be trained by optimizing the

difference (e.g., mean squared error, cross entropy) between the ground truth and estimated

belief of agent j.

3.3.3 Learning Zero-level Value Functions

Since the beliefs of agent i (i.e., b1
i,t and b2

ij,t+1) themselves are updated deterministically by

Bayes filtering, the stochastic belief prediction p(b1
i,t+1|b1

i,t, ai,t) in Eq.3.15 is given by the Dirac

delta function δ(b1
i,t+1 − b̂1

i,t+1), where b̂1
i,t+1 is the belief after the performing the prediction

step. Hence for first-level future value function we have:

u1
i (b

1
i,t, ai,t) =

∫
b1i,t+1

p(b1
i,t+1|b1

i,t, ai,t)v
1
i (b

1
i,t+1)db1

i,t+1

=

∫
b1i,t+1

δ(b1
i,t+1 − b̂1

i,t+1)v1
i (b

1
i,t+1)db1

i,t+1

= v1
i (b̂

1
i,t+1(ai,t)) =

∫
s0
b̂1
i,t+1(s0)v0

i (s
0)ds0

(3.16)

13

where b̂1
i,t+1 is the predicted future belief by performing the prediction step in the Bayes

filtering after taking action ai,t. Similarly, for the second-level future value function:

u2
i (b

2
ij,t, ai,t) = v2

ij(b̂
2
ij,t+1(ai,t))

=

∫
s0
Eb̂2ij,t+1

[b1
j,t+1] v0

ij(s
0)ds0

(3.17)

Finally, the combined value function can be re-written as an inner product of beliefs and

zero-level value functions:

q1
i (b

1
i,t, ai,t) +

∑
j 6=i

q2
i (b

2
ij,t, ai,t) = 〈b̂,v0〉 (3.18)

where b̂ is the concatenation of b̂1
i (s

0) and Eb̂2ij,t+1
[b1
j,t+1] for all j 6= i, and v0 is the concate-

nation of v0
i (s

0) and v0
ij(s

0) for all j 6= i.

From reinforcement learning’s perspective, this formulation is a function approximation of

the action-value functions. Specifically, b̂ can be interpreted as the feature vector extracted

from the state, and v0 is the weight. Hence learning the zero-level value functions can be

achieved by applying existing algorithms [26, 28, 27, 23] to learn the weights for a linearly

approximated value function.

14

CHAPTER 4

Experiments

We test different multi-agent planning algorithms in a police-thief game as shown in Figure 4.1

and Figure 4.2. There are three types of agents in this game: a police (the player) controlled

by the tested algorithm, a thief (the game engine) controlled by a zero-order ToM policy,

and several passersby that wander around randomly. The goal of the police is catching the

thief by colliding with it, while the goal of the thief is to escape until the game exceeds a

maximum time limit. In this game, the thief does not know which agent is the police, so it

needs to maintain a belief of every agent being the police to escape. The police knows who is

the thief, but it needs to hide its identity to prevent the thief from escaping. We benchmark

the police’s success rate on catching the thief to evaluate the multi-agent planning methods.

4.1 Environment

We adopt the Multi-Agent Particle Environment [18], which is a two-dimensional world with

continuous space and discrete time. We use a closed-world setting: an agent will reappear

on the opposite side of the world after crossing a boundary. The environment is physically

simulated: an agent can accelerate, and agents can collide with each other. The observation

for an agent is the positions of other agents, and the allowed actions are the accelerations in

four directions. The police receives a 1.0 reward when it collides with the thief, otherwise a

-0.1 reward at each time step.

15

4.2 Thief’s Belief Update

As mentioned above, we use a zero-order ToM thief to recognize potential police and escape.

The thief maintains a first-level belief about each agent’s identity. In the beginning, the belief

for each agent is uniform (0.5 probability being police for every agent). At each time step,

the belief is updated by Bayes filtering given by Eq. 3.3 and 3.4. Since an agent’s identity

cannot be changed by the thief’s actions, the prediction step has no effect on the belief. For

the correction step, we compute the observation likelihood as p(oi,t|s0
t) = p(θ|µ, k). Here θ is

the relative angle between the velocity of an agent and the line connecting the agent and the

thief. p(θ|µ, k) = ekcos(θ−µ)

2πI0(k)
is the von Mises distribution. At every time step, the thief runs

away from the agent that has the highest probability being the police.

We designed two settings in our experiments: slow-thief and fast-thief. In the slow thief

setting, the thief will have a smaller acceleration than that of the police, and a directly

chasing policy is sufficient to catch the thief. In the fast thief setting, the thief can easily

escape from a direct chaser.

4.3 Comparative Methods

We compare our method (full/ablated) with an existing ToM method and a state-of-the-art

multi-agent reinforcement learning algorithm. We use the following algorithms to learn the

police’s policy for benchmarking:

• ToM-gt. This is our ToM planning agent given the ground truth belief of the thief (computed

by Bayesian filtering) at every time step. It does not perform belief updates, but it needs to

learn the zero-level value functions. This serves as an ablative version of our full model.

• ToM. This is our full model. It learns the zero-level value functions, belief dynamics,

and belief estimation models. It performs belief updates by Bayesian filtering. To learn

the zero-level value functions, we use true online TD(λ) [23]. Therefore the value functions

are estimated and updated at every time step during each episode. We use a 3-layer fully

connected neural network for both the transition kernel generator and the belief estimation

16

Police

Passerby Thief

Figure 4.1: The ground truth game setting. It shows the ground truth identities of all agents

model. The size of hidden layers is 64 for the kernel generator, and 32 for belief estimation.

• MADDPG [15]. This is a state-of-the-art multi-agent reinforcement learning algorithm that

extends deep deterministic policy gradient (DDPG) [24] to a multi-agent setting.

• MToM [29]. Another theory-of-mind planning approach. However, this approach only

models the belief of policies rather than the belief of world states. We use the deep Q-Network

(DQN) [17] for the initial policy estimation of MToM.

• Direct chasing. This agent always chooses the action that will minimize the distance

between itself and the thief.

• Passerby. The same random walker as the other passersby.

17

Thief

Guessed police

Figure 4.2: The belief game setting. It shows the thief’s belief of each agent being the police

(player). Darker colors indicates higher probabilities.

For simplicity, we only use the positions of the thief and the police itself as observations for

every method. In our method, we also compute the distance between these two positions as a

feature. The maximum episode length is 100, and each algorithm is trained for 1000 episodes.

4.4 Experiment Results

We show our quantitative experiment results in Figure 4.3 and Figure 4.4. In both settings,

our method achieves a high success rate and outperforms other methods.

18

0 200 400 600 800 1000
Episode

0.0

0.2

0.4

0.6

0.8

1.0
Su

cc
es

s r
at

e

ToM gt
ToM
passerby
MToM
chase
MADDPG

(a) Average success rate

0 20 40 60 80 100
Time step

0.0

0.2

0.4

0.6

0.8

1.0

Be
lie

f

ToM gt
ToM
passerby
MToM
chase
MADDPG

(b) Thief’s belief

0 20 40 60 80 100
Time step

0.0

0.2

0.4

0.6

0.8

1.0

Be
lie

f

Ground truth
Estimation

(c) Estimated belief

Figure 4.3: Experiment results in the slow-thief setting. (a) shows the average success rate

of catching the thief in the training stage. (b) shows the probability within an episode that

the thief predicts the agent is the police. The curves are averaged over 20 final episodes

during training. From the beliefs we can see that the strategies of different methods vary, but

they can achieve similar performance (as shown in (b)) in the slow-thief setting. (c) shows

the estimated belief of the thief by our full ToM model within an episode, averaged over the

final 20 episodes during training. The estimated beliefs are obtained by the two-level belief

update, which employs a learned belief dynamics and belief estimation model. From the

figure we can see that our agent is able to estimate the thief’s belief within a small error. All

the plots use data generated from 10 independent training trials.

Slow-thief setting In the slow-thief setting, different methods show different belief curves

(Figure 4.3b) but they achieve similar performance (Figure 4.3a). This is because the thief

is easy to catch in this setting, so different methods converge to different types of policies.

The value functions for ToM converges very quickly (within an episode) since we use true

online TD(λ). It updates the value functions at every time step during every episode. In the

beginning, the belief dynamics and estimation model are inaccurate, but it does not affect

the performance. Even if the thief correctly recognizes the police, it can be caught by direct

chasing. Typically, the thief is caught within 20 steps for all methods, and we can see a belief

raise in that phase. In some episodes, the agent fails to catch the thief due to some random

behavior. Therefore the curves go down after 20 steps similarly to the curve of the passerby

(a random walker).

19

0 200 400 600 800 1000
Episode

0.0

0.2

0.4

0.6

0.8

1.0
Su

cc
es

s r
at

e

ToM gt
ToM
passerby
MToM
chase
MADDPG

(a) Average success rate

0 20 40 60 80 100
Time step

0.0

0.2

0.4

0.6

0.8

1.0

Be
lie

f

ToM gt
ToM
passerby
MToM
chase
MADDPG

(b) Thief’s belief

0 20 40 60 80 100
Time step

0.0

0.2

0.4

0.6

0.8

1.0

Be
lie

f

Ground truth
Estimation

(c) Estimated belief

Figure 4.4: Experiment results in the fast-thief setting. (a) shows that our ToM agent

significantly outperforms other methods, achieving a success rate close to 1. (b) shows that

our agent intentionally lowers the thief’s belief thus it achieves the high success rate. The

other methods learn to chase the thief, hence they are recognized by the thief (the belief goes

higher as time evolves). (c) shows that our agent is able to estimate the thief’s belief within

a small error.

Fast-thief setting In the fast-thief setting as a contrast, the police needs to hide its

identity to catch the thief with a high success rate. From Figure 4.4b we can see that the

comparative non-ToM methods all converge to a greedy chasing behavior in this setting. The

thief recognizes the police and escapes. The success rate is around 0.6 for non-ToM methods

(including direct chasing), which is slightly higher than random walk that has a success rate

of 0.4.

On the other hand, our method achieves a success rate close to 1 by hiding its identity.

From the learning curve (Figure 4.4a) we can see that it takes some time for our ToM agent

to learn the belief dynamics and estimation model to achieve the final performance. Our

ToM agent can intentionally lower the belief of the thief to achieve its goal. Comparing with

the passerby (a random walker) we can see that the belief curve of our agent has a sharp

decline in the beginning. Hence this lowering is not a consequence of random movements. As

a final result, our ToM agent significantly outperforms all other methods.

In both settings, the second-level belief update estimates the belief of the thief quite

accurately as shown in Figure 4.3c and 4.4c. Qualitative results are shown in Figure 4.6, and

20

0 200 400 600 800 1000
Episode

1.5

1.0

0.5

0.0
Va

lu
e

Police
Not police

(a) Values of belief in ToM-gt

training

0 200 400 600 800 1000
Episode

1.50
1.25
1.00
0.75
0.50
0.25
0.00

Va
lu

e

Police
Not police

(b) Values of belief in ToM

training

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Distance

1

0

1

2

3

4

Va
lu

e

ToM gt
ToM

(c) Value function of distance

by ToM

Figure 4.5: Learned zero-level value functions in the fast-thief setting. (a) and (b) shows the

learned values on the mental state learned by ToM-gt and ToM, i.e., the value of our agent

that the thief thinks our agent is/is not the police. Our agent successfully learns that being

recognized as a police has a lower value. (c) shows the final learned value function of the

distance between our agent and the thief. Our agent learns that when the thief is very close,

there is a high value to directly approach the thief. When the thief is far away, getting closer

will not gain much value.

Figure 4.5 shows that our algorithm learns meaningful zero-level value functions for both the

physical state and the mental state.

21

(a) An example episode played by MADDPG [15].

(b) An example episode played by ToM (our method).

Figure 4.6: Qualitative results in the fast-thief setting. Each group of two rows shows in the

first row the ground truth state, and in the second row the beliefs of the thief along time

(from left to right). The green one is the thief and the red one is the police. Darker colors

indicate higher beliefs. Agents appear on the opposite side when they cross the boundary.

(a) The thief recognizes the MADDPG agent as the police and escapes. (b) Our ToM agent

successfully hide its identity and catches the thief.

22

CHAPTER 5

Conclusion

In this work, we propose a novel way to model the nested belief update, which alleviates

the computation problem and provides an alternative way to learn other agents’ models.

We model the nested belief update by a Markov probability transition, leading to a linear

transformation. The transition kernel is learnable and provides an efficient nested belief

update. In the experiments we show that our agent is able to learn other agents’ belief

updates and intentionally change other agents’ beliefs to achieve its goal. We believe this

work interprets the belief update from a unique perspective and will benefit research in

relevant domains.

23

Bibliography

[1] Chris Baker, Julian Jara-Ettinger, Rebecca Saxe, and Joshua B. Tenenbaum. Rational
quantitative attribution of beliefs, desires and percepts in human mentalizing. Nature
Human Behaviour, 1:0064, 03 2017.

[2] Chris Baker, Rebecca Saxe, and Joshua Tenenbaum. Bayesian theory of mind: Modeling
joint belief-desire attribution. In Proceedings of the annual meeting of the cognitive
science society, volume 33, 2011.

[3] Colin Camerer. Behavioral game theory: Experiments in strategic interaction. Princeton
University Press, 2003.

[4] Prashant Doshi and Piotr J Gmytrasiewicz. A particle filtering based approach to
approximating interactive pomdps. In AAAI Conference on Artificial Intelligence
(AAAI), 2005.

[5] Prashant Doshi and Piotr J Gmytrasiewicz. Monte carlo sampling methods for approxi-
mating interactive pomdps. Journal of Artificial Intelligence Research, 2009.

[6] Prashant Doshi and Dennis Pérez. Generalized point based value iteration for interactive
pomdps. In AAAI Conference on Artificial Intelligence (AAAI), 2008.

[7] Prashant Doshi, Yifeng Zeng, and Qiongyu Chen. Graphical models for interactive
pomdps: representations and solutions. International Conference on Autonomous Agents
and MultiAgent Systems, 2009.

[8] Jakob Foerster, Richard Y Chen, Maruan Al-Shedivat, Shimon Whiteson, Pieter Abbeel,
and Igor Mordatch. Learning with opponent-learning awareness. In International
Conference on Autonomous Agents and MultiAgent Systems, 2018.

[9] Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon
Whiteson. Counterfactual multi-agent policy gradients. In AAAI Conference on Artificial
Intelligence (AAAI), 2018.

[10] Piotr J Gmytrasiewicz and Prashant Doshi. A framework for sequential planning in
multi-agent settings. Journal of Artificial Intelligence Research, 2005.

[11] J Kiley Hamlin and Karen Wynn. Young infants prefer prosocial to antisocial others.
Cognitive development, 26(1):30–39, 2011.

[12] Yanlin Han and Piotr Gmytrasiewicz. Learning others intentional models in multi-agent
settings using interactive pomdps. In Advances in Neural Information Processing Systems
(NIPS), 2018.

[13] Trong Nghia Hoang and Kian Hsiang Low. Interactive pomdp lite: Towards practical
planning to predict and exploit intentions for interacting with self-interested agents. In
International Joint Conference on Artificial Intelligence (IJCAI), 2013.

24

[14] Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and Samuel J Gershman.
Building machines that learn and think like people. Behavioral and Brain Sciences, 40,
2017.

[15] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch.
Multi-agent actor-critic for mixed cooperative-competitive environments. In Advances
in Neural Information Processing Systems (NIPS), pages 6379–6390, 2017.

[16] Yuyan Luo. Three-month-old infants attribute goals to a non-human agent. Develop-
mental science, 14(2):453–460, 2011.

[17] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. Nature, 2015.

[18] Igor Mordatch and Pieter Abbeel. Emergence of grounded compositional language in
multi-agent populations. In AAAI Conference on Artificial Intelligence (AAAI), 2018.

[19] Kristine H Onishi and Renée Baillargeon. Do 15-month-old infants understand false
beliefs? science, 308(5719):255–258, 2005.

[20] Alessandro Panella and Piotr Gmytrasiewicz. Bayesian learning of other agents’ finite
controllers for interactive pomdps. In AAAI Conference on Artificial Intelligence (AAAI),
2016.

[21] Neil C Rabinowitz, Frank Perbet, H Francis Song, Chiyuan Zhang, SM Eslami, and
Matthew Botvinick. Machine theory of mind. In International Conference on Machine
Learning (ICML), 2018.

[22] Simo Särkkä and Jouni Hartikainen. Infinite-dimensional kalman filtering approach to
spatio-temporal gaussian process regression. In International Conference on Artificial
Intelligence and Statistics (AISTATS), 2012.

[23] Harm Seijen and Rich Sutton. True online td (lambda). In International Conference on
Machine Learning (ICML), 2014.

[24] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin
Riedmiller. Deterministic policy gradient algorithms. In International Conference on
Machine Learning (ICML), 2014.

[25] Ekhlas Sonu and Prashant Doshi. Scalable solutions of interactive pomdps using
generalized and bounded policy iteration. Autonomous Agents and Multi-Agent Systems,
2015.

[26] Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction.
MIT press, 1998.

25

[27] Richard S Sutton, Hamid R Maei, and Csaba Szepesvári. A convergent o(n) temporal-
difference algorithm for off-policy learning with linear function approximation. In
Advances in Neural Information Processing Systems (NIPS), 2009.

[28] Richard S Sutton, Hamid Reza Maei, Doina Precup, Shalabh Bhatnagar, David Silver,
Csaba Szepesvári, and Eric Wiewiora. Fast gradient-descent methods for temporal-
difference learning with linear function approximation. In International Conference on
Machine Learning (ICML), 2009.

[29] Friedrich Burkhard Von Der Osten, Michael Kirley, and Tim Miller. The minds of many:
opponent modelling in a stochastic game. In International Joint Conference on Artificial
Intelligence (IJCAI), 2017.

[30] Jörgen W Weibull. Evolutionary game theory. MIT press, 1997.

[31] Henry M Wellman and Susan A Gelman. Cognitive development: Foundational theories
of core domains. Annual review of psychology, 43(1):337–375, 1992.

[32] Amanda L Woodward. Infants selectively encode the goal object of an actor’s reach.
Cognition, 69(1):1–34, 1998.

[33] Chongjie Zhang and Victor R Lesser. Multi-agent learning with policy prediction. In
AAAI Conference on Artificial Intelligence (AAAI), 2010.

26

	Title Page
	Abstract
	Committee
	Dedication
	Table of Contents
	List of Figures
	Acknowledgements
	1 Introduction
	2 Literature Review
	3 Algorithm
	3.1 Theory-of-mind Belief Update
	3.1.1 First-level Belief Update
	3.1.2 Second-level Belief Update
	3.1.3 Belief Dynamics

	3.2 Theory-of-mind Planning
	3.3 Learning
	3.3.1 Learning Belief Dynamics
	3.3.2 Learning Estimation Model
	3.3.3 Learning Zero-level Value Functions

	4 Experiments
	4.1 Environment
	4.2 Thief's Belief Update
	4.3 Comparative Methods
	4.4 Experiment Results

	5 Conclusion
	Bibliography

