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RESEARCH ARTICLE

High-quality and universal empirical 
atomic charges for chemoinformatics 
applications
Stanislav Geidl1†, Tomáš Bouchal1†, Tomáš Raček1,2†, Radka Svobodová Vařeková1*, Václav Hejret1, Aleš Křenek3, 
Ruben Abagyan4 and Jaroslav Koča1*

Abstract 

Background: Partial atomic charges describe the distribution of electron density in a molecule and therefore provide 
clues to the chemical behaviour of molecules. Recently, these charges have become popular in chemoinformatics, as 
they are informative descriptors that can be utilised in pharmacophore design, virtual screening, similarity searches 
etc. Especially conformationally-dependent charges perform very successfully. In particular, their fast and accurate 
calculation via the Electronegativity Equalization Method (EEM) seems very promising for chemoinformatics applica-
tions. Unfortunately, published EEM parameter sets include only parameters for basic atom types and they often miss 
parameters for halogens, phosphorus, sulphur, triple bonded carbon etc. Therefore their applicability for drug-like 
molecules is limited.

Results: We have prepared six EEM parameter sets which enable the user to calculate EEM charges in a quality com-
parable to quantum mechanics (QM) charges based on the most common charge calculation schemes (i.e., MPA, NPA 
and AIM) and a robust QM approach (HF/6-311G, B3LYP/6-311G). The calculated EEM parameters exhibited very good 
quality on a training set (R2 > 0.9) and also on a test set (R2 > 0.93). They are applicable for at least 95 % of molecules 
in key drug databases (DrugBank, ChEMBL, Pubchem and ZINC) compared to less than 60 % of the molecules from 
these databases for which currently used EEM parameters are applicable.

Conclusions: We developed EEM parameters enabling the fast calculation of high-quality partial atomic charges for 
almost all drug-like molecules. In parallel, we provide a software solution for their easy computation (http://ncbr.muni.
cz/eem_parameters). It enables the direct application of EEM in chemoinformatics.

Keywords: Partial atomic charges, Electronegativity Equalization Method, EEM, Quantum mechanics, QM, Drug-like 
molecules
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Background
Partial atomic charges are real numbers describing the 
distribution of electron density in a molecule, thus pro-
viding clues as to the chemical behaviour of molecules. 
The concept of charges began to be used in physical 

chemistry and organic chemistry. Afterwards, partial 
atomic charges were adopted by computational chemis-
try and molecular modelling, where they serve for calcu-
lating electrostatic interactions, describe the reactivity of 
the molecule etc. Specifically, they are applied in molecu-
lar dynamics, docking, conformational searches, binding 
site predictions etc. Recently, partial atomic charges also 
became popular in chemoinformatics, as they proved to 
be informative descriptors for QSAR and QSPR model-
ling [1–9] and for other applications [10–12]; they can 
be utilised in pharmacophore design [13–15], virtual 
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screening [16–18], similarity searches [19–21], molecular 
structure comparison [22–24] etc.

The partial atomic charges cannot be determined 
experimentally or derived straightforwardly from the 
results of quantum mechanics (QM), and many differ-
ent methods have been developed for their calculation. 
The most common method for charge calculation is an 
application of the QM approach and afterwards the uti-
lisation of a charge calculation scheme. Charge calcula-
tion schemes can be based on orbital-based population 
analysis, on wave-function-dependent physical observa-
bles or on reproducing charge-dependent observables. 
Examples of orbital-based population analyses are Mul-
liken population analysis (MPA) [25, 26], Löwdin popula-
tion analysis [27] and Natural population analysis (NPA) 
[28, 29]. Wave-function-dependent physical observables 
are used in the atoms-in-molecules (AIM) approach [30, 
31], Hirshfeld population analysis [32–34], CHELPG [35] 
and Merz-Singh-Kollman (MK) [36, 37] method. The 
reproduction of charge-dependent observables is applied 
in the CM1, CM2, CM3, CM4, and CM5 approaches [38, 
39].

Unfortunately, QM charge calculation approaches are 
very time-consuming. A markedly faster alternative is to 
employ empirical charge calculation approaches, which 
can also provide high-quality charges. These approaches 
can be divided into conformationally-independent, 
which are based on 2D structure (e.g., Gasteiger’s and 
Marsili’s PEOE [40, 41], GDAC [42], KCM [43], DENR 
[44]) and conformationally-dependent, calculated from 
3D structure (e.g., EEM [45], QEq [46] or SQE [47, 
48]). We would like to highlight that conformationally-
dependent charges are considered to be more suitable for 
chemoinformatics applications [1–3, 7, 12, 20]. The rea-
son is that these charges contain extensive information 
not only about chemical surrounding of atoms, i.e., its 
topology (2D structure based charges) but also geometry 
and “chemical quality” of the surrounding. Such informa-
tion is missing, for example, in force field charges which 
use averaged atomic charges from large sets of structures. 
Therefore we only focus on conformationally-dependent 
atomic charges.

Electronegativity equalization method (EEM) is the 
most frequently used conformationally-dependent 
empirical charge calculation approach. It calculates 
charges using the following system of linear equations:

(1)















B1
κ

R1,2
· · ·

κ
R1,N

− 1
κ

R2,1
B2 · · ·

κ
R2,N

− 1

.

.

.
.
.
.

. . .
.
.
.

.

.

.
κ

RN ,1

κ
RN ,2

· · · BN − 1

1 1 · · · 1 0















·













q1
q2
.
.
.

qN
χ̄













=













−A1

−A2

.

.

.

−AN

Q













where qi is the charge of an atom i; Ri,j is the distance 
between atoms i and j; Q is the total charge of the mol-
ecule; N is the number of atoms in the molecule; κ is the 
molecular electronegativity, and Ai, Bi and κ are empiri-
cal parameters. The parameters Ai and Bi vary for indi-
vidual atom types, where atom type is a combination of 
element type and maximal bond order of the atom i. For 
example, atom type C2 means that the atom is carbon 
and it creates at least one double bond with its neigh-
bors. An atom X in the aromatic ring is therefore also 
included into X2 atom type. The parameters Ai, Bi and 
κ are molecule independent and they are calculated 
from QM atomic charges by a process of EEM param-
eterization [49]. EEM is not only a fast charge calcula-
tion approach, but it can also provide highly accurate 
charges, i.e., they can mimic the QM charges for which 
EEM has been parameterized. On the other hand, EEM 
charges can be outperformed in certain situations. Spe-
cifically, QEq showed better agreement with experi-
mental dipole moments [46] and SQE is presented as an 
extension of the EEM to obtain the correct size-depend-
ence of the molecular polarizability [47]. But this draw-
back is compensated by a fact that the quality of EEM 
charges was documented by many successful applica-
tions [2, 3, 50–55] and they are clearly the most cited 
empirical conformationally-dependent charges.

Therefore, many EEM parameter sets for various QM 
charge calculation approaches were published later or 
recently (see Table  1). In parallel, a few freely available 
software tools also include an EEM charge calculation 
method (see Table 2).

EEM recently began to be also used in chemoinfor-
matics, giving very promising results [1–3, 64, 65]. 
Because of their rapid calculation, they can be easily 
computed for large sets of molecules (e.g., drug-like 
compounds). Unfortunately, a broader utilisation of 
EEM charges in chemoinformatics is now limited by 
the fact that available EEM parameter sets can only 
cover part of common organic molecules, as they only 
contain the parameters for some elements and certain 
bond orders (Table  1). For the above reasons, our aim 
with this work is to provide EEM parameter sets that 
cover most of the drug-like molecules and with accu-
racy comparable to QM charges. Specifically, we have 
parameterized EEM for frequently used charge calcu-
lation schemes, high enough QM theory levels and a 
large basis set. Afterwards, we compared the cover-
age and quality of our EEM parameter sets with previ-
ously published EEM parameter sets (see Table  1) and 
with EEM parameter sets embedded in software tools 
(see Table  2). Additionally, we have prepared a soft-
ware solution, enabling the user to easily calculate EEM 
charges via our EEM parameters.
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Methods
EEM parameterization (step 1)
All the steps performed during our work are depicted 
in Fig.  1a. The most challenging part of our work was 
the EEM parameterization. This step required several 
tasks (see Fig. 1b) and the quality of the calculated EEM 
parameters sets depends on the proper accomplishment 
of all these tasks.

EEM parameterization: selection of atom types to be 
parameterized
Our goal is to provide EEM parameter sets applicable 
for most common drug-like molecules. Therefore, we 
provide EEM parameters for the majority of atom types 
occurring in these molecules. These atom types are sum-
marized in Table 3 (columns 1–3).

EEM parameterization: preparation of the training set
Our training set contains the 3D structures of 4475 
distinct small organic molecules. The molecules were 
obtained from the DTP NCI database [66] and their 
3D structures were generated with CORINA 3.60 [67], 
without any further geometry optimization. The DTP 
NCI database collects compounds tested as anticancer 
drugs (with positive or negative results), therefore it is 
a database of common drug-like molecules. The train-
ing set was created in such a way that each selected 
atom type is contained in at least 100 molecules. The 
occurrences of individual atom types in the train-
ing set are summarized in Table  3. The list of train-
ing set molecules, including their NSC numbers and 
summary formulas, can be found in (Additional file 1: 
Table S1).

Table 1 Summary information about published EEM parameters evaluated in this study

† An element symbol with no further information (e.g., C) means that the EEM parameters are available for this element bound by all possible bond orders. The 
element symbol followed by a number (e.g., C1) means that the EEM parameters are only available for this element bound by a bond with an order described using 
this number
‡ For this parameter set, C1 represents sp3 hybridization, C2 sp2 hybridization, C3 sp hybridization, etc.

QM theory Level + basis set Charge calc. scheme EEM parameter set name Published by Elements and bond orders included†

 HF/STO-3G  MPA Baek1991 Baekelandt et al. [56] C, O, N, H, P, Al, Si

Svob2007_cbeg2 Svobodova et al. [49] C1, C2, O, N1, N2, H, S1

Svob2007_cmet2 Svobodova et al. [49] C1, C2, O, N1, N2, H, S1, Fe, Zn

Svob2007_chal2 Svobodova et al. [49] C1, C2, O, N1, N2, H, S1, Br, Cl, F, I

Svob2007_hm2 Svobodova et al. [49] C1, C2, O, N1, N2, H, S1, F, Cl, Br, I, Fe, Zn

 HF/6-31G*  MK Jir2008_hf Jirouskova et al. [57] C1, C2, O, N1, N2, H, S1, F, Cl, Br, Zn

 B3LYP/6-31G*  MPA Bult2002_mpa Bultinck et al. [58] C, O, N, H, F

 NPA Bult2002_npa Bultinck et al. [58] C, O, N, H, F

Ouy2009‡ Ouyang et al. [59] C, O, N, H

Ouy2009_elem Ouyang et al. [59] C, O, N, H

 Hir. Bult2002_hir Bultinck et al. [58] C, O, N, H, F

 MK Bult2002_mk Bultinck et al. [58] C, O, N, H, F

Jir2008_mk Jirouskova et al. [57] C1, C2, O, N1, N2, H, S1, F, Cl, Br, Zn

 CHELPG Bult2002_che Bultinck et al. [58] C, O, N, H, F

 AIM Bult2004_aim Bultinck et al. [60] C, O, N, H, F

Table 2 Information about freely available software tools enabling EEM charge calculation

 Software  EEM parameters used by a software

 OpenBabel [61] It contains the embedded EEM parameter set Bult2002_mpa, which was parameterized for B3LYP/6-31G*/MPA charges. It does not 
allow any other EEM parameter set to be used

 Balloon [23] It contains an embedded EEM parameter set published by Puranen et al. [62], which was calculated by fitting to the MEP field. 
Balloon’s developers claim that the EEM charges calculated via Balloon should be comparable to B3LYP/cc-pVTZ/MPA. It does not 
allow any other EEM parameter set to be used

 EEM SOLVER [63] It allows the use of any input EEM parameter sets provided by the user. It does not contain any embedded EEM parameter sets
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EEM parameterization: selection of QM charge calculation 
approach
We performed the EEM parameterization for two QM 
theory levels (B3LYP and HF), one basis set (6-311G) 
and three charge calculation schemes (MPA, NPA and 
AIM). We provide the EEM parameters for all combina-
tions of these theory levels, the basis sets and the charge 

calculation schemes (see Table 4). Theory levels HF and 
B3LYP were selected, because they are very often used 
for QM charge calculation and were also successfully 
used for EEM parameterization several times [49, 56–
60]. The basis set 6-311G was used, because it is robust, 
also covers iodine and moreover, Pople basis sets are 
very suitable for EEM parameterization. MPA and NPA 

(a) (b)

Fig. 1 a Composition of steps performed within this work and b tasks performed during EEM parametrization

Table 3 Occurrence of atom types in the training set

 Denotation of  
atom type

 Element  
symbol

 Maximal bond  
order

 Number of atoms with this  
atom type in the training set

 Number of molecules containing 
this atom type in the training set

H1 H 1 57,119 4442

C1 C 1 15,220 3447

C2 2 38,097 4149

C3 3 345 266

N1 N 1 4151 2483

N2 2 3383 1879

N3 3 345 266

O1 O 1 5016 2525

O2 2 5793 3069

F1 F 1 938 395

P1 P 1 153 143

P2 2 251 213

S1 S 1 1034 770

S2 2 1391 1211

Cl1 Cl 1 1084 676

Br1 Br 1 336 261

I1 I 1 1734 1365

Total – – 136,390 4475
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population analyses were employed, because they are the 
most known charge calculation schemes and addition-
ally, EEM is able to mimic MPA and NPA charges very 
successfully [49, 58, 59]. AIM was selected, because it is 
based on a different principle from the other two, and 
EEM can also mimic AIM charges very efficiently [60]. 
Note that we do not provide EEM parameters for ESP 
and RESP charges, because it is known that EEM does 
not mimic these charges well [2, 58].

EEM parameterization: calculation of QM charges
For each molecule from the training set, six sets of QM 
charges were calculated via the above-mentioned six QM 
charge calculation approaches. The calculations of QM 
charges were carried out using Gaussian09 [68]. With the 
AIM population analysis, the output from Gaussian03 
was further processed with the software package AIMAll 
[69].

EEM parameterization: calculation of EEM parameter sets
For each set of QM charges, the EEM parameterization 
was performed and the values of the parameters are pro-
vided in (Additional file  2: EEM parameters). The soft-
ware NEEMP [70] was used for the parameterization. 
This software implements the parameterization method-
ology described by [49] and introduces several marked 
improvements into it. NEEMP provides EEM parameter 
sets together with their quality criteria, i.e., squared Pear-
son correlation coefficient (R2), root mean square devia-
tion (RMSD), and average absolute error (�), calculated 
via Eqs. (2), (3) and (4), respectively

where qEEMi  is the EEM charge of an atom i; qQMi  is the 
QM charge of an atom i; qEEM is an average of all EEM 
charges; qQM is an average of all QM charges, N is the 
number of atoms in the molecule.

Coverage comparison (step 2)
For comparison, we used our six EEM parameter sets 
and 15 published EEM parameter sets, described in 
Table 1 (all 21 of these EEM parameter sets will be below 
referred to as the tested EEM parameter sets). The cov-
erage comparison was done on four very well-known 
databases of drug-like chemical compounds: DrugBank 
[71, 72], ChEMBL [73], PubChem [74], and ZINC [75]. 
The number of compounds in all these databases (from 
10th February 2015) are summarized in Table 5. For each 
tested EEM parameter set, we analysed how many com-
pounds from the four databases can be covered by them 
(i.e., contains only atom types present in the tested EEM 
parameter sets). This coverage analysis was done using 
NEEMP. 

Quality comparison (step 3)
This evaluation was done for the 21 above-mentioned 
tested EEM parameter sets and was performed on two 
data sets—a test set (657 molecules) and an extended test 
set (1226 molecules). The extended test set contained all 
approved drugs (i.e., drugs which have received approval 
in at least one country) from the DrugBank database 
(downloaded 10th February 2015), for which it was pos-
sible to calculate all QM charges necessary for testing. 
The test set was a subset of the extended test set, which 
contained only molecules covered by all the tested EEM 
parameter sets. The 2D structures of all molecules were 
obtained from DrugBank. The lists of molecules from 
the test set and the extended test set, including their 
DrugBank IDs and summary formulas, can be found in 
(Additional file 3: Table S2a; Additional file 4: Table S2b, 
respectively). The 3D structures of all the molecules were 
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Table 4 Quality criteria of our EEM parameter sets

 EEM parameter set 
name

 Relevant QM charges R2  RMSD �̄

Cheminf_b3lyp_mpa B3LYP/6-311G/MPA 0.9007 0.1038 0.0727

Cheminf_b3lyp_npa B3LYP/6-311G/NPA 0.9651 0.0746 0.0540

Cheminf_b3lyp_aim B3LYP/6-311G/AIM 0.9499 0.0785 0.0558

Cheminf_hf_mpa HF/6-311G/MPA 0.9178 0.1125 0.0776

Cheminf_hf_npa HF/6-311G/NPA 0.9633 0.0805 0.0574

Cheminf_hf_aim HF/6-311G/AIM 0.9441 0.0919 0.0651

Table 5 Size of  database, used for  comparison of  EEM 
parameter set coverages

 Database  Number of compounds

DrugBank 6874

ChEMBL 1,456,020

PubChem 63,676,639

ZINC 21,957,378
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generated with CORINA 2.6 [67], without any further 
geometry optimization. For all the molecules, we calcu-
lated all the types of QM charges which corresponded 
to the tested EEM parameters. This means we used the 8 
QM charge calculation approaches mentioned in Table 1 
and the six QM charge calculation approaches employed 
for calculating our EEM parameter sets. The calcula-
tions of QM charges were done with Gaussian09 and the 
AIMAll software package was used for AIM charges. We 
compared the quality of the tested EEM parameter set 
on both the test set and the extended test set. The com-
parison was done using NEEMP, which provided qual-
ity criteria for all the tested EEM parameter sets. In the 
extended test set, some molecules were not covered by 
certain EEM parameter set(s). Therefore, we calculated 
quality criteria based purely on the covered molecules 
and in parallel, we also computed the coverage.

Quality comparison: EEM parameter sets embedded 
in software tools
The calculation of EEM charges can be done with a few 
software tools, e.g., EEM SOLVER, OpenBabel or Bal-
loon. The software tools OpenBabel and Balloon contain 
embedded EEM parameter sets (see Table 2). Therefore, 
we also evaluated the quality of these embedded EEM 
parameter sets. This evaluation was done for the same 
data sets and via the same procedure as with the tested 
EEM parameter sets. The only difference was that the 
EEM charges were not calculated with NEEMP, but with 
OpenBabel and Balloon. Afterwards, these EEM charges 
were compared with the relevant QM charges using R 
statistical software [76], which provided their quality 
criteria.

Software solution (step 4)
We provide the user two such solutions, the first based 
on EEM SOLVER and the second on OpenBabel.

Results and discussion
EEM parameterization (step 1)
EEM parameterization was performed for six QM charge 
calculation approaches, and a training set containing 
4475 drug-like molecules was used. Squared Pearson 
correlation coefficient (R2), root mean square deviation 
(RMSD) and average absolute error (�) of the obtained 
EEM parameter sets, calculated for the training set, are 
summarized in Table  4. These quality criteria describe 
the correlation between QM charges and the correspond-
ing EEM charges and they were calculated using NEEMP 
software.

These results show that the quality of our EEM param-
eter sets is very high, i.e., all the R2 values are higher or 
equal to 0.9. Table 4 also illustrates that QM theory levels 

B3LYP and HF are both applicable for EEM parameteri-
zation, and EEM charges based on them have similar 
accuracy. From this table, we can also see that the quality 
of EEM parameters based on NPA and AIM population 
analysis is slightly better than for MPA.

Coverage comparison (step 2)
Information about the coverages of published EEM 
parameter sets and our EEM parameter sets are summa-
rized in Table  6. The coverages were computed on four 
well-known databases of drug-like molecules—Drug-
Bank, ChEMBL, PubChem and ZINC. Table 6 shows that 
the coverages of the published EEM parameter sets are 
low (<60 %). The only exception are the EEM parameter 
sets published by Svobodova et al. and Jirouskova et al., 
which have coverage between 70 and 80  %. In contrast, 
our EEM parameter sets have very high coverage—about 
95 % or more for all the databases. The not covered mol-
ecules include atom types rare for drug-like molecules, 
e.g., metals or boron. An interesting fact is that the cov-
erages are very similar for all four analyzed databases. 
Therefore, low EEM parameter set coverage is not merely 
an isolated issue related to one database, but a general 
problem.

Quality comparison (step 3)
Table  6 summarizes the main quality criteria (i.e., R2 
values) of all tested EEM parameter sets for the test set, 
which contained 657 approved drugs from DrugBank. 
Other quality criteria (RMSD and �) can be found in 
(Additional file  5: Table S3) and all values of partial 
atomic charges (represented as tables and as graphs) 
are in (Additional file 6). The table shows that our EEM 
parameter sets are among the best performing EEM 
parameter sets to have been published so far. The table 
also illustrates that the quality of EEM parameters is 
strongly influenced by the selection of QM charge cal-
culation scheme. Specifically, EEM parameters based on 
MPA, NPA and AIM charges are very high quality, and 
EEM parameters based on Hirshfeld charges are still 
acceptable. EEM parameters based on MK and CHELPG 
charges are very low quality, which is in agreement 
with published data [2, 58]. Both theory levels (HF and 
B3LYP) and all three basis sets used (STO-3G, 6-31G* 
and 6-311G) are applicable for EEM parameterization. 
These results also confirm that our selection of QM 
theory level, basis set and charge calculation schemes is 
appropriate.

For the extended test set, the quality criteria exhibit simi-
lar trends (see Additional file 7: Table S4). In parallel, the 
coverages for this data set are slightly higher than for the 
complete DrugBank database. An interesting fact is that 
even for such common compounds as approved drugs, the 
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coverages of published EEM parameter sets are low. Specif-
ically, most published EEM parameter sets have coverages 
between 55 and 65 %. Further remarkable fact is that qual-
ity criteria of our EEM parameters are better for the test set 
than for the training set. The reason is that the training set 
is much larger and heterogeneous than the test set.

Quality comparison: EEM parameter sets embedded 
in software tools
EEM charges produced with OpenBabel were compared 
with QM charges calculated with B3LYP/6-31G*/MPA. 
The quality criteria for the test set were the same as for 
the EEM parameters Bult2002_mpa (i.e., R2 about 0.97). 
This was expected, because OpenBabel uses Bult2002_
mpa as its embedded EEM parameters. Very surprising 
was the behavior of OpenBabel on the extended set. The 
coverage was 100 %, but the quality criteria were mark-
edly lower (e.g., R2 about 0.82). The reason for this is that 

OpenBabel replaces the EEM parameters for atom types 
which are not provided in Bult2002_mpa with the EEM 
parameters for some other atom types. Unfortunately, 
this approach is not very reliable, i.e., the quality crite-
ria for molecules which are in the extended test set but 
are not in the test set are very low (R2

= 0.66). Addition-
ally, this approach is relatively tricky. The user does not 
know whether the correct or the estimated EEM param-
eters are used and, therefore, whether the resulting EEM 
charges will be of a good quality.

The EEM charges produced by Balloon were compared 
with the QM charges calculated by the B3LYP/cc-pVTZ/
MPA approach. The coverage was close to 100 %, but the 
correlation was also low (R2 < 0.8). On the other hand, 
the Balloon developers mentioned that the EEM charges 
provided by Balloon do not correspond directly to some 
particular QM charges, and they should only be close to 
B3LYP/cc-pVTZ/MPA charges.

Table 6 Summary information about coverage and quality of all tested EEM parameters (see below for meaning of colours)

Relevant QM charges
EEM parameter 

set name

Coverage comparison Quality 
comparison

QM theory 
level + basis set

Charge 
calc. 

scheme

Coverage [%] R2

Test setDrugBank ChEMBL PubChem ZINC

HF/STO-3G MPA

Baek1991 58.1 42.3 40.5 40.1 0.8981
Svob2007_cbeg2 55.0 49.5 47.3 51.9 0.9758
Svob2007_chal2 71.7 75.2 77.2 80.2 0.9668
Svob2007_chm2 72.2 75.2 77.3 80.2 0.9623
Svob2007_cmet2 55.5 49.5 47.3 51.9 0.9676

HF/6-31G* MK Jir2008_hf 70.8 74.7 76.5 79.8 0.6872

B3LYP/6-31G*

MPA Bult2002_mpa 55.4 49.4 48.2 49.6 0.9658

NPA

Bult2002_npa 55.4 49.4 48.2 49.6 0.8131
Ouy2009 49.0 41.1 39.1 40.0 0.9655
Ouy2009_elem 50.0 41.2 39.1 40.0 0.9633

Hirshfeld Bult2002_hir 55.4 49.4 48.2 49.6 0.9061

MK
Bult2002_mk 55.4 49.4 48.2 49.6 0.7844
Jir2008_mk 70.8 74.7 76.5 79.8 0.7022

CHELPG Bult2002_che 55.4 49.4 48.2 49.6 0.7803
AIM Bult2004_aim 55.4 49.4 48.2 49.6 0.9739

HF/6-311G
MPA Cheminf_hf_mpa

94.6 95.7 96.9 100.0

0.9606
NPA Cheminf_hf_npa 0.9713
AIM Cheminf_hf_aim 0.9791

B3LYP/6-311G
MPA Cheminf_b3lyp_mpa 0.9552
NPA Cheminf_b3lyp_npa 0.9695
AIM Cheminf_b3lyp_aim 0.9800

Coverage > 90% > 80% > 70% > 60% < 60%
R2 > 0.95 > 0.9 > 0.85 > 0.8 < 0.8
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All the quality criteria and coverages for EEM param-
eter sets embedded in OpenBabel and Balloon are sum-
marized in (Additional file 8: Table S5).

Coverage comparison and quality comparison combined
To date, there have been no EEM parameter sets available 
which would provide both high coverage and high-qual-
ity EEM charges (see Table  6). On the other hand, the 
EEM parameter sets calculated in this paper solve this 
problem, because they exhibit coverage close to 100  % 
and excellent quality criteria. Therefore, they can be used 
for chemoinformatics applications. 

Software solution (step 4)
For the actual applicability of EEM in chemoinformat-
ics, the user doesn’t just need EEM parameter sets that 
are high quality and cover almost all molecules. They also 
need a software package that embeds these EEM param-
eter sets and calculates EEM charges based on them. We 
provide the user with two such solutions. First, we pro-
vide our EEM parameter sets in a format that can be 
directly used in EEM SOLVER (Additional file  2: EEM 
parameter sets). Second, we provide an OpenBabel patch 
which allows our EEM parameter sets to be used directly 
in OpenBabel (Additional file  9: OpenBabel patch). All 
the information including documentation is also acces-
sible on the web: http://ncbr.muni.cz/eem_parameters. 
The parameters are also accessible via ACC web applica-
tion [77].

Conclusion
We provide here six EEM parameter sets which enable 
the user to calculate EEM charges with quality compa-
rable to frequently used QM charges computed by well-
known charge calculation schemes (i.e., MPA, NPA and 
AIM) and based on a robust QM approach (HF/6-311G, 
B3LYP/6-311G). The training set for EEM parameteriza-
tion contained more than 4000 molecules from the DTP 
NCI drug database, and all six calculated EEM parame-
ter sets exhibited a very good quality on this training set 
(R2 > 0.9).

The coverage of these computed EEM parameter 
sets was then compared with the coverages of 15 EEM 
parameter sets published in the past. This comparison 
was done on four key databases of drug-like molecules—
DrugBank, ChEMBL, Pubchem and ZINC. The compar-
ison showed that our EEM parameter sets enable us to 
calculate EEM charges for almost all molecules in these 
databases.

We then compared the quality of computed and 
published EEM parameter sets on two test data sets 
composed of approved drugs from DrugBank. This com-
parison also included EEM parameter sets embedded in 

the software tools OpenBabel and Balloon. The compari-
son showed that our EEM parameter sets are among the 
best performing EEM parameter sets published to date 
(R2 > 0.93).

To summarize, charge calculation methodology suit-
able for chemoinformatics applications like virtual 
screening or QSAR should be fast, conformationally-
dependent and accurate. EEM fulfils all these require-
ments. However, EEM parameter sets that would exhibit 
high coverage of drug-like molecule databases and pro-
vide high quality charges have not been available to 
date. The EEM parameters calculated in this paper solve 
this problem. They exhibit coverage close to 100  % and 
excellent quality criteria, therefore they are applicable in 
chemoinformatics.

Last but not least, we provide a software solution for 
the easy computing of EEM charges based on these EEM 
parameter sets—input files for EEM SOLVER and Open-
Babel patch.
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