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Abstract: It is challenging for engineers to timely identify illegal ground intrusions in underground
systems such as subways. In order to prevent the catastrophic collapse of subway tunnels
from intrusion events, this paper investigated the capability of detecting the ground intrusion
of underground structures based on dynamic measurement of distributed fiber optic sensing. For an
actual subway tunnel monitored by the ultra-weak fiber optic Bragg grating (FBG) sensing fiber with
a spatial resolution of five meters, a simulated experiment of the ground intrusion along the selected
path was designed and implemented, in which a hydraulic excavator was chosen to exert intrusion
perturbations with different strengths and modes at five selected intrusion sites. For each intrusion
place, the distributed vibration responses of sensing fibers mounted on the tunnel wall and the track
bed were detected to identify the occurrence and characteristics of the intrusion event simulated by
the discrete and continuous pulses of the excavator under two loading postures. By checking the
on-site records of critical moments in the intrusion process, the proposed detection approach based
on distributed structural vibration responses for the ground intrusion can detect the occurrence of
intrusion events, locate the intrusion ground area, and distinguish intrusion strength and typical
perturbation modes.

Keywords: subway tunnel safety; ground intrusion detection; ultra-weak FBG; distributed vibration;
dynamic measurement

1. Introduction

As an important carrier of the urban population, the subway system has greatly eased the pressure
of ground transportation. In recent decades, research on early warning and treatment of various
hazards that may affect the safety of subways has attracted widespread attention. Due to fewer
indicators and concise detection principles, compared with structural safety monitoring of subway
infrastructure, more commercial applications have emerged in the field of subway fire monitoring.
Overviews and applications related in this area were reported in [1–3]. However, when long and large
range needs to be considered, especially for subway tunnels, it is still a great challenge to find viable
measures to meet the diverse needs of structural safety monitoring.

Since the tunnel lining structure generally uses concrete as the construction material, cracks on
the lining surface are often used to reflect the safety status of a subway tunnel. One method based on
digital images to detect cracks was reported by Zhang et al. [4]. For the indicators of temperature and
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strain, Ye et al. [5] described the study of tunnel safety monitoring during the construction stage based
on quasi-distributed sensing technology of a limited number of fiber Bragg grating (FBG) sensors.
Recently, references [6,7] reported some research advances in FBG-based sensors that combine the
Internet of things or 3D printing techniques to detect damage or movement of underground structures.
In addition to the conventional indicator, the study conducted in [8] indicates that some influencing
factors, such as buried depth and operation age should also be collected when assessing the state of the
tunnel. Reference [9] pointed out that particular emphasis should be paid on time and space-continuous
monitoring for environmental and geotechnical underground structures. However, the above studies
were primarily based on discrete response information with respect to time or space, which is difficult
to meet the real-time requirements of structural safety monitoring for the entire line of the actual
underground structure, such as a subway. Due to the advantages of large-scale monitoring, high
sensitivity, and multiplexing capacity, distributed fiberoptic sensing technology is widely considered
to be an ideal means for the safety monitoring of tunnel structures. Dewynter et al. [10] indicated the
feasibility of continuous monitoring of soil movements while tunneling based on Brillouin optical time
domain reflectometry (BOTDR) technology. Recent studies on using BOTDR to trace the distributed
strain to secure tunnel safety can be found in [11–14].

Although distributed sensing technology provides a viable way for understanding the responses
of tunnel structures in view of continuous time and space, existing studies primarily focus on the static
measurement based on strain or temperature. In the past decades, research of distributed dynamic
measurement [15] was mainly based on distributed acoustic sensing (DAS) techniques [16,17], which
have been another research hotspot in the field of engineering monitoring. In the railway fields, DAS
techniques were researched for railway perimeter security [18] and condition monitoring of the train
and rail [19]. In geophysical engineering, the need and application concerning simultaneous vibration
and temperature sensing technology based on DAS were reviewed in [20]. Moreover, Rao [21] reported
the feasibility of using DAS technology to monitor the illegal or unauthorized third-party intrusion
(TPI) in oil pipelines. However few studies pay attention to the impact of ground construction on
the safety of underground structures covering a long-distance range through distributed dynamic
measurements. He et al. [22] proposed that by processing images taken by unmanned aerial vehicle
was a feasible way to detect ground drilling construction which may affect tunnel safety. However,
this method is undoubtedly susceptible to climatic conditions and occlusion of ground buildings.
Moreover, the method based on the analysis of UAV-images is still difficult to meet the timely warning
needs of the entire subway line. Compared with oil pipelines, subway tunnels have deeper buried
depths, and more complicated boundary conditions and load propagation paths. Therefore, different
test accuracy, sensitivity, response speed, signal-to-noise ratio (SNR), and other parameters need to
be considered when using DAS technology to tackle the similar need for these two different fields.
This may be the reason for less reports on DAS-based tunnel TPI.

Comparing with DAS technology using ordinary optic fiber, ultra-weak FBG array based on
the draw tower [23,24] using sensing optic fiber, integrates both advantages of fiber optic point
sensors and distributed sensors. This technology is an alternative way to achieve high-precision,
fast, and wide coverage distributed measurement. Previous research around this technology focused
more on monitoring strain, temperature or strain-based deformation for the object of interest [25,26].
In addition, a multi-parameter measurement system based on ultra-weak FBG array with sensitive
material was proposed in [27]. However, all the research is still limited to static indicators. Actually,
ultra-weak FBG array is also adept to perform dynamic monitoring [28] in addition to the above
positive characteristics usually witnessed in static measurement. From the reports in [15,29–32], the
comparison results in Table 1 reveal that the ultra-weak FBG array can be not only used for both
static and dynamic measurements, but also has higher SNR than that of DAS sensors. Moreover,
higher SNR often leads to better sensing performances, such as higher measurement accuracy, faster
response time, and simpler detection circuit, so ultra-weak FBG array is more suitable than DAS when
dealing with distributed vibration and other scenarios requiring high-speed measurement. Therefore,
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based on such performance advantages in distributed dynamic measurement, this paper explores
the detection capability of ultra-weak FBG sensing array fabrication by the draw tower for ground
intrusion. The experimental results of detecting the ground intrusion event of an actual subway tunnel
were reported. The detection approach of ground intrusion is the second part of this paper, followed
by the details on the design and implementation of a field experiment. Finally, the effectiveness of
the proposed method to detect and identify a simulated intrusion is discussed based on the on-spot
experimental results from the ultra-weak FBG distributed sensing technology.

Table 1. Comparisons between common sensors for underground structure monitoring and ultra-weak
fiber Bragg grating (FBG).

Sensors Static/Dynamic
Measurement

Multiplexing
Capacity

Reflectivity
index 1 Transmission Medium

Electronic Both Weak N.A. 2 Electric cable
FBG Both Median 0.1–1 Sensing optic fiber

Rayleigh-based
OTDR/OFDR Static

Strong 10−9–10−7 Ordinary optic fiber
Brillouin-based

BOTDR/BOTDA Static

Rayleigh-based DAS Both
Ultra-weak FBG Both 10−5–10−4 Sensing optic fiber

1 Higher reflectivity index usually means better signal-to-noise ratio (SNR); 2 Not applicable.

2. Detection Methodology of Ground Intrusion

Figure 1 illustrates the distributed vibration sensing principle used to detect ground intrusion.
The phenomenon of light interference caused by the reflection signals of two adjacent ultra-weak FBGs
is used to detect the vibration of the object of interest. Here, the ultra-weak FBG is regarded as a mirror,
and L represents the distance that causes light interference. The spatial resolution of the distributed
vibration along the sensing fiber is typically determined by the parameter L. The sensitivity and the
frequency response of the vibration signal measured by the strain-induced phase variation between
two ultra-weak FBGs are improved by the interferometer. Here, Faraday rotating mirrors are utilized
in the demodulation process of ultra-weak FBG array to suppress the polarization effect. Moreover,
the 3-by-3 coupler phase demodulation algorithm is used to reconstruct the time domain signal, and
restore the phase information of the vibration signal, through which the interrogation of the vibration
frequency and amplitude can be realized. Further, optical time domain reflectometry technique is
utilized to achieve vibration localization.
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The high sensitivity of large-scale ultra-weak FBGs and the corresponding demodulation system
of high speed [33] make the sensing fiber particularly suitable for locating abnormal perturbations
occurring within a long-distance range. In addition, the previous study [34] revealed the repeatability
of such a sensor is around 3.41 nε. When an illegal ground intrusion event occurs, the propagation path
of the intrusion load from the ground to the tunnel wall and track bed can generally be demonstrated,
as shown in Figure 2. Based on this assumption, the study used armored distributed sensing fibers
to measure the distributed vibration of the tunnel wall and the track bed. Five-meter equidistance
between adjoining FBGs along the sensing fiber determined the spatial resolution of the detection
target, and this resolution almost can meet the positioning accuracy requirement for an actual subway
tunnel. The approach used to quickly indicate whether a ground intrusion occurs was conducted
by monitoring the distributed structural vibration responses along the tunnel and analyzing the
difference in responses between the immediate state and the normal baseline state. Since the light
interference region indicated by the address of ultra-weak FBG can be interrogated with the time-
and wavelength-division multiplexing method [35,36] and has a corresponding relationship with the
mileage information of the monitoring structure, locating the intrusion can be achieved by identifying
the light interference region corresponding to the abnormal vibration responses.
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3. Experimental Design and Implementation

3.1. Engineering Background of the Experimental Scheme

An actual tunnel structure (Wuhan Metro Line 7) was used in this study. Before the operation of
the subway, the ultra-weak FBG sensing fibers were installed on the structural surfaces of the tunnel
wall and the track bed. It covered a range of nearly three kilometers, aiming to detect the distributed
structural vibration response of the monitoring zones. Figure 3 displays the actual layout of sensing
fibers on the spot. The real-time vibration responses with 1 kHz sampling rate were fully transmitted
back to the platform monitoring center and processed by the demodulator and servers. According
to the spatial resolution of the sensing fiber and the on-spot layout of the tunnel structure, more
than 500 vibration regions along the tunnel wall and the track bed can be distinguished based on the
interrogated address of the light interference.
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3.2. Design of the Ground Intrusion

The intrusion perturbation was simulated by drilling ground through a small hydraulic excavator.
According to the on-spot survey and structural design blueprints of the subway, both the available
ground region for the simulated perturbation and the facade relationship between the ground and
underground tunnel structure were taken into account to determine the intrusion sites and path, as
illustrated in Figure 4. The plane distances between the underground tunnel and five intrusion sites
correspond to the right part of the plot provided in Figure 4. Here, based on design and survey data,
the average buried depth of the tunnel under the selected area was approximately 22.6 m. From the
facade, the position P1 was placed just above the sensing fiber that monitored the tunnel wall.
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3.3. Implementation of the Intrusion Perturbation

Two types of perturbation postures of the experiment excavator displayed in Figure 5 were set to
simulate the different strengths of the ground intrusion. Discrete and continuous pulses were applied
sequentially for each perturbation posture to simulate different intrusion modes. In order to reduce the
damage of the pavement, when perturbations were applied, a steel plate was placed in advance at
each position given in Figure 4.
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All tests were scheduled to be carried out in the early hours to reduce interference with ground
traffic. As depicted in Figure 4, field tests were sequentially performed at the positions of P1, P2, P3,
P4, and P5. The purpose of considering varied distance was to explore the identifiability of distributed
vibration responses under different strengths and modes. After the excavator reached the designated
invasion site, discrete and continuous pulses were applied sequentially in the two postures shown
in Figure 5. Perturbation in each place lasted for 1 to 1.5 min. In addition to the duration time for
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each specified intrusion point, other critical moments in each process were also recorded, including
moments about excavator movement, loading posture adjustment, and pre-intrusion repositioning.

4. Result Analysis and Discussion

This section reports the characteristics of distributed vibration responses of underground tunnel
structures under simulated intrusions. The ability to detect and distinguish the strength and mode of
intrusion loads with different distances was investigated and discussed.

4.1. Responses of the Whole Intrusion Process

The #159 vibration zone of the tunnel structure just below the invasion site P1 was taken as
an example to illustrate the detectability of the dynamic structure responses to the intrusion load.
The vibration responses of the tunnel wall and the track bed under the perturbations of multiple
intrusion sites are shown in Figures 6 and 7, in which dotted lines based on the field records mark the
whole process of each intrusion site. It is shown that with the increase of the distance between the
perturbation sites and the tunnel, the identification effect of intrusion based on the amplitude feature of
structural vibration responses gradually decreased. Specifically, the results at position P5 showed that
it became difficult to distinguish the vibration responses caused by the intrusion load from those of the
excavator movement and pre-intrusion repositioning. Further, the response magnitude of the track
bed in each loading process was significantly smaller than that of the tunnel wall. This phenomenon
was consistent with the assumption described in Figure 2, indicating the dissipation of intrusion loads
during propagation from the tunnel wall to the track bed. In addition, this indicated that the response
of the tunnel wall was more suitable for inferring ground intrusion.
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4.2. Identifiability of Intrusion Characteristics

The above study discussed the relationship between the vibration response of#159 zone regarded
as the most conducive to receiving perturbations and ground intrusions at different distances. By further
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focusing on a complete intrusion process of one intrusion site in Figure 6, the feasibility of identifying
the characteristics of the simulated intrusion load was discussed. Figure 8 depicts the details of the
intrusion process of the position P1 marked in Figure 6, which clearly distinguishes the detailed
features of each stage of the simulated intrusion loading. During the test, the steel plate used for
protecting the pavement in each intrusion site was only temporarily placed rather than fixed. This
resulted in the phenomenon that the plate often bounced off and deviated from the initial position,
especially in the first perturbation stage of the discrete pulse. In order to address this problem that
occurred during pulse loading, the drill bit was typically used to reposition the plate, so that it was
apparent from the first perturbation phase of Figure 8 that the amplitude uniformity of the vibration
response was inconsistent with theoretical expectations. For the second perturbation stage, the duration
of the discrete pulses was short because of the difficulty in maintaining the posture stability of the
excavator. Due to this reason, there was no obvious increment in the magnitude of the response in this
stage. The increase in load strength due to the change in the perturbation posture was apparent in the
continuous pulse process of the second perturbation posture shown in Figure 8, although the response
amplitude of the first half of the continuous pulse still deviated from the expectation. The deviation
discrepancy was mainly attributed to disturbances caused by the unstable posture of the excavator
and the process of re-adjusting the plate.
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Moreover, both the excavator movement and the repositioning of the drill bit during the adjustment
process can be observed in Figure 8, which was more obvious in the time–frequency spectrum shown
in Figure 9, based on short-time Fourier transform. As can be seen from Figure 9a, different stages
of the simulated intrusion corresponded to different frequency response ranges of the tunnel wall.
For the excavator movement, the structure frequency was approximately 8 Hz. When the pulse loads
acted on the ground, more structure frequencies were presented. Also, Figure 9a indicates the fact
that the structure frequencies caused by each pulse mode were identical, in which the discrete pulses
stimulated frequencies around 37 Hz, 47 Hz, and 115 Hz. Instead, continuous pulses made more
frequencies with a maximum frequency around 267 Hz. Furthermore, as indicated in Figure 9b, the
vibration energy caused by discrete or continuous pulses in the second perturbation posture was
apparently greater than those in the first perturbation posture. These experimental results were in
agreement with the expectations of the design and further demonstrated the ability of the proposed
method of identifying typical load patterns.
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simulated intrusion based on weak responses for most of the monitoring zones shown in Figure 15. 
Figures 11–15 also revealed that the amplitude of the distributed vibration response along the 
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4.3. Detection Range of the Simulated Intrusion

The coordinate system depicted in Figure 10 was defined to analyze the influence range of the
simulated intrusion. The XOY and XOY’ represent the planes of the ground and the underground
buried tunnel, respectively, where X’, Y, and Z axes indicate the tunnel mileage, intrusion path, and
depth from the ground, respectively. The origins of the planes XOY and X’O’Y’ were set to the intrusion
position P1 and the tunnel #159 area, respectively.
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Figure 10. Coordinate system defined for the analysis of influence range of the simulated intrusion.

Figures 11–15 plot the waterfall diagrams of the distributed structural vibration responses of 13
consecutive monitoring zones of the tunnel wall with a length of 65 m along the X’ axis, where the
response of the #159 area in each waterfall diagram was set in the center and highlighted in a different
color. Comparisons among Figure 11 show that at least 9 test zones with the #159 zone as the symmetry
center had the ability to identify the simulated intrusion. Since the position P5 was farther away from
the tunnel than other intrusion sites, it was not always easy to distinguish the simulated intrusion
based on weak responses for most of the monitoring zones shown in Figure 15. Figures 11–15 also
revealed that the amplitude of the distributed vibration response along the defined X’ axis and the
response symmetry of the monitoring zones centered on the #159 zone gradually became weak as the
intrusion site moved away from the tunnel. Here, the asymmetry may be related to the fact reflected in
Figure 4 that the designed intrusion path was not completely orthogonal to the tunnel.
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Figure 15. Distributed vibration responses of 13 consecutive monitoring zones under the perturbation
of position P5.

To further analyze the characteristics of the distributed vibration responses along the Y and X’
axes, the intrusion response sensitivity k was defined as,

k =
rintrusion

rstationary
(1)

where rintrusion and rstationary represented the root mean square values of the vibration signals of the
intrusion state and the stationary state, respectively. The duration used to determine rintrusion and
rstationary came from the field records. In order to search for potential regularity, we computed the k
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values of 13 consecutive regions in five simulated intrusion tests and obtained a k matrix with a shape
of 5 by 13. Then, the medians of k were calculated based on the k matrix according to the intrusion
site and the tunnel monitoring zone, respectively. After this statistical operation, the median-based
distributions along the defined Y and X’ axes are shown in Figure 16.
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As shown in Figure 16a, the medians of k under the perturbation at each site except P5 were
greater than 2.5. It can also be observed from the figure that the bar peak occurred at P2 rather than
P1. One possibility for this unforeseen situation was the different ground conditions at the simulated
intrusion sites. The map in Figure 4 clearly revealed that position P1 was near the edge of the road
while positions P2–P5 were all on a path between two plantations, so different ground stiffness may
be the cause of the occurrence of the abnormality in Figure 16a. An exponential attenuation process
can be found in Figure 16a when fitting the tendency only through four sites located at the same
ground condition. Figure 16b shows that the median-based distribution of the 13 monitoring zones at
multiple intrusion sites was biased towards the positive direction of the X’ axis, which substantially
conformed to the response asymmetry observed in Figures 11–15, namely, the offset angle between the
actual intrusion path shown in Figure 4 and the defined Y axis in Figure 10 caused the asymmetrical
distribution shown in Figure 16b. Compared with the threshold set to two, as depicted in Figure 16b, the
median of 12 among 13 monitoring zones was not less than 2.08, although the perturbation responses
from the small excavator were tiny during the entire experiment.

5. Conclusions

This study verified that ultra-weak FBG array is a viable method to meet the requirements of
distributed dynamic measurement technology in actual engineering. The capability of detecting the
ground intrusion in an underground structure based on such measurement technology was reported
through field tests. The analysis indicated that the proposed approach has the potential to distinguish
the strength and pattern of the typical load in the intrusion process within a certain range. Besides
the detectability of the intrusion event based on variations in vibration amplitude, the location of
ground intrusion can be inferred by the temporal and spatial distribution characteristics of vibration
responses along the tunnel. In view of the approved test time, interferences of subway trains and
ground transportation were not considered in the analysis, which seems to be a shortcoming of the
study that deserves further attention. However, due to the fact that the load influence generated by
the actual intrusion event is often greater than that of the small excavator adopted in this paper, it
is believed that the proposed approach can be applied to identify the ground intrusion occurring in
the daytime.
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