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A HAMILTONIAN FORMULATION OF GUIDING CENTER MOTION* 

Robert G. Littlejohn 

Lawrence Berkeley Laboratory 
University of California 
Berkeley, California 94720 

ABSTRACT 

Nonrelativistic guiding center motion in the magnetic 

field BB(x), with E=0, is studied using Hamiltonian methods. 
f'J 

The drift equations are carried to second order in the perpen-

dicular motion. The Hamiltonian methods which are used are 

described in detail in order to facilitate possible applica-

tions. Unusual mathematical techniques are called upon, 

especially the use of noncanonical coordinates in phase space. 

Lie transforms are used to carry out the perturbation expansion. 

Applications in kinetic theory, in the area of adiabatic 

invariants, and in other areas are anticipated. 

*Work was supported by the Office of Fusion Energy of the U.S. Department 
of Energy under contract No. W-7405-ENG-48, 
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I. INTRODUCTION 

In a recent paper 1  I have described the mathematical apparatus of 

a new approach to a Hamiltonian formulation of guiding center motion, 

and I have illustrated the method with the problem of nonrelativistic 

guiding center motion in the magnetic field B = B(x,y). In this paper 
IV 

I will extend those results to the case of a nonrelativistic particle 

moving in a time-independent but otherwise arbitrary magnetic field 

B = B(x), with the electric field B = 0. Throughout this paper,IV  

except in Appendix A, a familiarity with the mathematical methods of 

Ref. 1 will be assumed. 

The study of guiding center motion is essentially a problem in 

perturbation theory in classical mechanics. Although it has always 

been known that charged particle motion can be described in Hamiltonian 

terms, nevertheless most of the results that have been obtained in this 

area have been derived with non-Hamiltonian perturbation methods. 2-8 

Therefore Hamiltonian methods have not found wide application in studies 

of guiding center motion in plasma physics, in spite of the great 

interest in the dynamics of plasmas in nonuniform magnetic fields. 

This is unfortunate, because Hamiltonian methods provide great 

computational advantages over non-Hamiltonian methods, as well as 

a formalism which is notable for its elegance and notational compactness. 

The original Hamiltonian treatment of guiding center motion was 

given by Gardner, 9  who employed field line coordinates and mixed-

variable generating functions in an algorithm to systematically remove 

the dependence of the Hainiltonian on gyrophase to all orders. Gardner's 

methods were elaborated upon by Taniuti,' °  Stern,
11 
 and others, 

who also used field line coordinates and mixed-variable generating functions. 
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12 
Recently Mynick has developed a theory of guiding center motion 

using Hainiltonian methods. Mynick has also used field line coordinates, 

but in contrast to the authors above he has used a combination of mixed-

variable generating functions and Lie transforms. Mynick seems to be the 

first to have employed the great power of. Lie transforms in guiding center 

work. By way of additional contrast, Mynick has used an ordering scheme 

which treats the parallel and perpendicular scale lengths with different 

ordering parameters. His results are perturbative, i.e. represented 

by power series, only in the parallel ordering parameter. The results are 

in closed form for the perpendicular ordering parameter. 

In addition, some recent work 	13 
by Meyer has shown how the guiding 

center problem can be treated without using either mixed-variable generating 

functions or Lie transforms. Instead, Meyer has developed canonical 

transformations by appealing directly to the defining Poisson bracket 

relations. Furthermore Meyer has avoided the use of field line coordinates. 

Meyer's work has many points in common with the theory presented in Ref. 1 

and here, although the detailed nature of the connection remains to be 

established. 

Two salient features of this work are the use of rectangular coordinates 

instead of field line coordinates in configuration space and the use of 

noncanonical coordinates in phase space. The latter especially calls 

into play certain unusual mathematical techniques, which are described 

in Ref. 1. In addition, the perturbation expansion which is used to 

eliminate the dependence of the Hamiltonian on gyrophase is effected 

by means of Lie transforms. 
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It is the primary purpose of this paper to provide the details of 	- 

a Hainiltonian treatment of guiding center motion, rather than simply 

the resulting drift equations. The hope is that this paper will lay 

the groundwork for applications in kinetic theory and other areas. 

Therefore I will go into much more detail than would be necessary 

if only the drift equations were of interest. 

Nevertheless, the most immediate and tangible results of this 

work are the drift equations, which are carried out to second order 

in the perpendicular motion of the guiding center. Using non-Hamiltonian 

methods, Northrop and Rome8  have carried the drift equations to the 

same order under the same assumptions, viz. nonrelativistic motion 

in a static magnetic field. Therefore there is little that is new 

in the drift equations, although the form which is developed here 

for the second order guiding center position gives rise to equations 

of motion which are less complicated than those of Northrop and Rome. 

This may be seen most easily in Appendix A. Finally, I should note 

that a detailed comparison of these results with those of Northrop 

and Rome shows complete agreement. 

Since there will perhaps be readers who will be interested only in 

the drift equations, and not in the Hamiltonian methods used to derive 

them, I have given in Appendix A a summary of the drift euations for 

a particularly convenient (but non-Hamiltonian) choice of guiding 

center variables, employing a notation which is as independent as 

possible of conventions established earlier in the paper. This Appendix 

should be especially useful for numerical or simulation work. 
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The organization of this paper is as follows. The basic purpose of 

Sec. 2 is to define the problem. In this section, we Introduce three 

sets of phase space coordinates, which are called "physical particle 

variables." The last two sets especially have great physical immediacy, 

and their use has the important effect of banishing, once and for all, 

the magnetic vector potential A from the formalism. 
lu 

Sec. 3 contains a number of technical details of the algebra which' 

must be used in a treatment of guiding center motion to second order. 

This algebra focuses on the system of unit vectors employed, and special 

attention is given to the perpendicular unit vectors. Most of this 

section would be unnecessary if the guiding center Hamiltonian were only 

carried to lowest order. Similarly, much of the algebraic details given 

in this section would be unavoidable in any treatment of guiding center 

motion to second order, whether it be Hamiltonian or not. 

Secs. 4 and 5 are devoted to the Darboux transformation. Since there 

are a number of properties of the Darboux transformation which can be 

expressed in closed form, most notably the components of the Poisson 

tensor in the resulting coordinate system, these properties are derived 

and listed in Sec. 4. The Darboux transformation itself must be developed 

as power series in e, and this development is carried out in Sec. S. 

In Sec. 6 we perform the averaging transformation, using Lie transforms, 

and obtain thereby the guiding center Haniiltonian as well as a set of 

guiding center variables. It turns out that the guiding center variables 

depend on the choice of perpendicular unit vectors which is made in the 

problem definition. In order to deal with this situation, we discuss 



10 

at length the degree of arbitrariness in the guiding center variables, 

and we prove that in any semicanonical coordinate system, such as seems 

to be necessary for a Hainiltonian treatment of any kind, a dependence 

on the choice of perpendicular unit vectors is unavoidable. In a noncanonical 

coordinate system, however, such a dependence can be eliminated, at 

least through second order. Indeed, the noncanonical guiding center variables 

used in Appendix A are free of such dependencies. 

Finally, in Sec. 7 we discuss the results and suggest various 

extensions and applications. 

I 
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2. PHYSICAL PARTICLE VARIABLES 

In this section we will discuss three relatively simple coordinate 

systems in phase space. Of these, the first consists of a slight 

variation on the rectangular canonical coordinates (q,p) which are usually 
lu 

used in a Hamiltonian formulation of the motion of a charged particle 

in a magnetic field. The other two coordinate systems are related in 

a simple manner to the instantaneous dynamical state of the particle 

and to the magnetic field at the particle position. Therefore the 

variables making up these coordinate systems will be called "physical 

particlevariables," in contrast to guiding center variables, which 

will be introduced later. Of the three coordinate systems described in 

this section, only the first is a canonical system. In addition, we 

will establish certain notational conventions in this section. 

The motion of a particle of charge e and mass m in a static 

magnetic field B(x) with E=O may be described by the Hamiltonian 

I ....!A(q)] 2 	 (2.1) H(q,) = 	-  mc 't 

where A is the magnetic vector potential satisfying B = VX. This 

Hamiltonian differs slightly from the usual Hainiltonian for a charged 

particle. It does, however, give the correct equations of motion as 

long as the canonical coordinates (q,) are related to the particle's 

position x and velocity v by 
1\1 

x = q 

"I 

e 	
(2.2) 

mc f'J 
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To use the Hamiltonjan (2.1) it should be remembered that the Hainiltonian 

has dimensions of energy/mass, i.e. (velocity) 2 , and that the canonical 

momentum p has dimensions of velocity. 

With the ordering (q,p),  the Poisson tensor (which was called the 

c-tensor in Ref. 1) has the following components: 

	

0 	I 
'3 	 I 0 	- ---- 

	

-i 	o 
(2.3) 

Here I represents the 3x3 identity matrix. 

The guiding center approximation is introduced into the Hamiltonian 

(2.1) by replacing the charge e by e/c, where e is a formal expansion 

parameter. The result is 

1 
H(q,p)= ;;- [ p 

L 	 cmc" 

In addition, the transformation law (2.2) is modified as follows: 

e - A(q) 
cmc 

(2.4) 

(2.5) 

The Poisson tensor given in Eq. (2.3) does not change with the introduction 

of c. Henceforth we will use Eqs. (2.4) and (2.5) instead of (2.1) and 

(2.2). 

The parameter c may be considered to be a variable, describing a 

family of systems, of which the one corresponding to c = 1 is the 

physical system. The order of an expression is determined by its 

behaviour ase -+ 0, while the position x, velocity , and fields 	and
I\j 

are held fixed. Thus the Hamiltonian is 0(1), and the canonical 
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momentum p is O(e). 
nu 

The second coordinate system consists of the particle variables 

and v, which are related to q and k by Eq. (2.5). In this coordinate 
Al 

system, with the ordering 	the Poisson tensor has the form 

o 
(2.6) 

-I 
• 	 1 mc 

where the symbol B represents the antisymmetric tensor'which is dual 

to the magnetic field vector 
IV 

	

B 
ij  

. 	ijk 
= E 	

k 
B 	 (2.7) 

Here and in the remainder of this paper summation over repeated indices 

is to be understood. As for the Hamiltonian, it is especially simple in 

the (x,v) coordinates:IV  

= 	,2 	 (2.8) 

An alternate form for the Poisson tensor, which is completely 

equivalent to Eq. (2.6), is sometimes useful. If we are givenany two 

phase functions F and G, expressed in terms of 	then their 

Poisson bracket F,G} is given by 

	

3F 3G 	DF Dg + j_ S1.  (2F x G) • 	(2.9) 

	

x av 	av x 	c " 	v av 
I', 	 .•, 	 Al"I 

where the vector 0 is defined by 

(2.10) 
" mc 
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The third coordinate system represents a kind of cylindrical 

coordinates in velocity space, with the local magnetic field vector 

indicating the direction of the cylinder axis. We write B() = 

and define the unit vector b() by 

B Cx) 

b(x) = B(x) 
1. 

(2.11) 

It is convenient to assume that B() is bounded away from zero in the 

spatial region of interest. Not only does this guarantee that the vector 

b() is continuous, but it is also a necessary condition for the 

validity of the guiding center approximation. 

Two variables of the new coordinate system are defined in terms of 

the velocity v and the vector b. These are u andw, the instantaneous 
parallel and perpendicular velocities, respectively, and they are given 

MIA 

u = •b(x) 	 . 	 (2.12) 

2 	- w=(v -u 2  )2 	 - 	 ( 2.13) 

Let us now introduce, in addition to b, two more fields of unit vectors, 

which are called i 1 (x) and T 2 (x), and which are illustrated in Fig. 1. 

Taken together with , these form a right-handed set of unit vectors: 

= 	= bb = 1 	 (2.14) 

	

T1T2 = T1b = r 2 •b 	0 	 (2.15) 

b = T 1 XT 2 	 (2.16) 

For the time being, we may assume that t 
1 

and 
 2 

 are arbitrary, apart 

from the relations (2.14)-(2.16). Later we will consider the possibility 
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of a judicious choice for T and T 2 . 

It is useful to define several more quantities, relative to the 

T 1 T 2  plane, i.e., the perpendicular plane. These quantities are shown in 

Fig. 2. First we define the perpendicular velocity vector v by 

= 	- u. Next, the gyroradius vector r is given by r = £(Gxv)/c, 

where 0 is the signed gyrofrequency: 

= 	= 	=sign(e) k:,I 	 (2.17) 

It is convenient to introduce a velocity-dependent Unit vector &, which is 

in the direction of the perpendicular velocity vector v.L, so that . =r. 

or 

= 	+ w& 	 (2.18) 

In addition, we define another velocity-dependent unit vector a, given by 

a = 	 (2.19) 

The triad (a,b,&) forms a right-handed s'et. The gyroradius vector r is 

related to the unit vector a by r = cwa/c2. Finally, the gyrophase e is 

defined as the angle, measured in a clockwise sense, between T and a. 

Thus we have 

a = cosO r - sinG 1 2 	
(2.20) 

= -sinG 	cosO 

Our third coordinate system in phase space Consists of the six 

physical particle variables (,u,O,w) as just defined. In these definitions 

I 
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we have refrained from referring to circles or circular motion, because 

in general the mlotioni is not exactly circular, and because in a theory 

which is to be systematic to any order we do not want to call upon 

concepts which are vague beyond lowest order. In this sense the terms 

"gyroradius" and "gyrofrequency" are imprecise. Therefore the 

definitions above may perhaps best be taken as closed-form, algebraic 

relations specifying a variable transformation 	- (x,u,O,w). 

Nevertheless, in the special case of a uniform magnetic field, 

these variables do have a physical meaning which is both simple and 

precise, because the perpendicular motion of the particle is circular. 

Fig. 3 shows the meaning of some of these variables in the case of 

a uniform magnetic field. In this case the guiding center positon 

is given by 	= 	- 	exactly, and it is the precise center of the 

circle of motion. Later we will discuss ways in which the definition 

of X may be extended to the case of nonuniform fields in a manner which 

is systematic to all orders. For now, however, we simply use Fig. 3 

for its suggestive value. For example, it may be seen that the unit 

vectors i and E rotate with the particle, in a clockwise direction 

(0 increasing) for a positive particle, and in a counterclockwise 

direction (0 decreasing) for a negative particle. 

To complete the description of the (x,u,0,w) coordinate system, 

we need the Hamiltonian and the Poisson tensor. The former is easy 

to obtain: 

H(,u,0,w) = -(w2  + u2 ) 	 (2.21) 
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As for the Poisson tensor, it may be obtained from Eq. (2.9) and the 

relation {z ' ,z 3 } = a', with 	= (,u,O,w) being taken as the six-. 

dimensional coordinate vector. A little calculation gives the components 

of the Poisson tensor in the following form: 

lu 

[XU  

{x,O}= -â/w 
lu 

{,w} = a 

{u,O} = - vi•& - 	- ! 
w 

{u,w} = w 	+ u 

+ cVc' + 1! S.(VxS) 

(2.22a) 

(2.22b) 

(2.22c) 

(2.22d) 

(2.22e) 

(2.22f) 

(2.22g) 

Two notational conventions have been used in these equations and 

should be mentioned. First, for any pair of vectors Y and Z, VY•Z 
Iv f'J 

means (vY).Z and not V(Y.Z). This convention will be followed throughout 
,L 

this paper. And second, the operator V is to be taken at fixed (u,O,w), 

and not at fixed v. This convention is followed whenever we are 
lu 

expressing any relation in the (,u,O,w) coordinate system. 

There are altogether 15 independent components of.a general 6x6 

antisymmetric matrix, which Eqs. (2.22) give for the component matrix 

ij 
Of these, c appears in only one, as shown by Eq. (2.22g). 

Eqs. (2.22) contain a number of different expressionsinvolving 

unit vectors and their gradients. Expressions of this type occur 

more and more frequently as one proceeds with the guiding center problem, 

especially at higher orders. Therefore we turn now to a systematic 

study of the properties of these unit vectors. 
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3. PROPERTIES OF THE UNIT VECTORS 

A number of simple but important properties of 
I the unit vectors 

follow from the orthonormality conditions, Eqs. (2.14)-(2.16). We 

include in this list of properties the velocity dependent vectors 

and c, defined by Eq. (2.20), since in the remainder of the calculation 

these vectors are even more useful than T̂  and 
'2  First, we express the 

identity tensor I and the vector operator Gx in terms of the unit vectors: 

+TT +6..aa+bb+cc.. I 	 (3.1) 

T 2 TI - T1 T 2 = 	- 	= Sxi 	 (3.2) 

Next, we have the following relations involving the gradients of the 

unit vectors: 

V:i•i = 	 v&.. = 0 

= 	 v 2 .1; = 	
'12 = 

Va•b = -Vb.a, Vc•b = -Vb•c, Va•c = -Vc•a 

Third, the normalization of bG  implies the following useful identities: 

1x(vxb) = 	 - 	 (3.4) 

Vxfi = bx(b.Vb)+ b[b.(vxb)] 	 (3.5) 

YZ:v. =V 	-(Y.v).(Z.v) 	 (3.6) j 

where Y and Z are any two vectors. In particular, Eq. (3.6) implies 

bb:VVb•b = -(.v) 2 	 (3.7) 

a 

In addition to the above, the vector satisfies the following relation, 
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on account of the Maxwell equation V. = 0: 

= - 6.VB 	
(3.8) 

The vector V 1 . 2  = V& is of special importance, so we assign to 

it the symbol R: 

=VT 1, T = Vc•a 	 (3.9) 

The vector R has the following geometrical interpretation. The vectors 

and 	which define the perpendicular plane, are a function of2-9 

position x and hence vary from point to point. This variation is partly 
lu 

due to the variation in the vector , to which 	and T 2  are orthogonal, 

and partly due to an arbitrariness in the definition of 	and 

which at this point in the'work we are allowing for. Therefore if we 

examine the vectors 	and 	at some point P and at a neighboring point 

P', then these vectors and the perpendicular plane they define will be 

rotated at P' relative to their values at P. If the vectors 	and 12 

at P' are projected back onto the perpendicular plane at P. then.they will 

be rotated by a certain angle p relative to the vectors 	and 	at P, 

and the angle Ap will, for small separations, be proportional to the 

distance between P andP'. Indeed, if we let Lix be the displacement 

vector between P and P', then we have ip = tx•R. In particular, the 

quantity b.R represents the rate (in terms of radians per unit length) 

at which the Vectors T and 	"twist" as one moves along a magnetic 

field line. 

These considerations are important when we consider the arbitrariness 
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in the definition of 	and 
2•  Without as yet addressing the question of 

a possible judicious choice for 	and 	let us suppose that we have, 

in addition to 	and 	another pair of perpendicular unit vector 

fields r(x) and 	W. Both pairs are required to satisfy the relations 

in Eqs. (2.14)-(2.16), but beyond that their specification is arbitrary. 

Both pairs of unit vectors must lie in the perpendicular plane, so a 

relation of the following form must hold between them: 

= cos 	- sin4 T2 	
(3.10) 

= Sjflc T̂  + cos4 T 2  

where = 4() is in general dependent on position. We conclude that 

if 	and 	are given, then any other choice of perpendicular unit vectors 

is related to the given one by some rotation angle field 4(),  and conversely. 

Let us now consider how the various quantities defined in Sec. 2 change 

under the selection of a new set of perpendicular unit vectors, as 

shown by Eq. (3.10) and as specified by the field 4(). Following the 

notation above, we let primes represent the new quantities. 

Clearly, the parallel and perpendicular velocities are invariant 

under such a change, i.e. u' = u, and w' = w. The gyrophase 0, on the 

other hand, changes by the amount •, since 0' is the gyrophase relative to 

the 	direction: 

0' = 0 - q() 	 (3.11) 

Therefore of the coordinates (,u,0,w), only 0 depends on the choice 

of perpendicular unit vectors. 
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The unit vectors a and c, which are defined in terms of b and the 

particle velocity v, are naturally invariant under the transformation 
ru 

indicated by Eq. (3.10). Nevertheless, the vector R, which can be 

expressed in terms of the gradients of a and by j = V&•&, is not 
invariant: 

= 	= R (3.12) 

In view of the geometrical interpretation of the vector which was 

given above, this result should not be surprising. Lest it seem 

paradoxical from a mathematical point of view, i.e. that a and & are 
invariant while R = 	is not, we recall that the operator V in the 

111 

expression for R is taken at fixed (u,O,w), and that 0 is not invariant. 

That is, the operator V, in this sense, is not invariant. It is inter-

esting to observe that Eq. (3.12) is analogous to a gauge transformation 

for the magnetic vector potential A. 

Let us now ask ourselves to what extent the vector R can be brought 

into some simple form by an appropriate choice Of perpendicular unit 

vectors. We might begin by asking if it is possible to choose T and 

so that R = 0. The answer, as may be seen from Eq. (3.12), is 

no, because in general vxR j 0. Nevertheless, this line of reasoning 
lu 

raises an interesting point, namely that the curl of R is invariant 

under a change of perpendicular unit vectors: VxR = Vx'. This in 

turn suggests that the vector VxR can be expressed purely in terms 

of b. Some algebra shows that this is indeed the case: 

2  VxJ =b I(bb) - (V•b)J + (V'b)(b.Vb) - 	 (3.13) 
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Ordinary vector notation fails with the first term in b, so index notation 

has been used, with commas representing differentiation. For example, 

means ab1/x.. Eq. (3.13) is of use in computing the second order 

drifts. 

Although we cannot make R = 0 by a choice of perpendicular unit vectors, 

it is possible to make one component of R vanish by such a choice. 

Consider, for example, the component along b. Suppose b.j 	0 with 

respect to some choice r, -r of perpendicular unit vectors. Then define 

x) by 

lu 
;) Tm (3.14) 

where the line integral is taken along a magnetic field line, and where 

the lower limit refers to some arbitrary initial value surface. Then 

= b•R, and by Eq. (3.12) the change in unit vectors engendered by 

through Eq. (3.10) gives b' = 0. 

This result can be strengthened. Let 4'() be any given scalar field. 

Then it is possible to choose a pair of perpendicular unit vectors such 

that b 	= i. To see this, let 

x 
+()  

with the same integration conventions as in Eq. (3.14). Then 

b•V4 = 	- , and the conclusion follows. This result will be of 

use later 

The practical applications of guiding center theory fall into two 

broad classes, namely theoretical and computational. In computational 

(3.15) 
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work it would not be desirable to choose perpendicular unit vectors according 

to the method of the last paragraph, because in order to determine 

and 	at a given point one would have to perform a numerical integration 

along field lines. For this kind of work it would be much better to 

have a local determination of perpendicular unit vectors. In theoretical 

studies, on the other hand, there is no harm in.choosing perpendicular 

unit vectors in some nonlocal way, if it will simplify the resulting 

expressions. Later in this paper we will have opportunity tomake 

some such choice. 

It is possible to choose perpendicular unit vectors which depend 

only locally on the magnetic field direction b. For example, one might 

let T and T 2  be the, principal normal and binormal unit vectors: 

- b•Vb - 	 (3.16) 
IbVb1 

T 2  =bxT 1. 	 (3.17) 

However, this choice has the disadvantage, from a theoretical standpoint, 

of producing discontinuities in T and r 2  at ,an inflection point of 

a field line, and it is incapable of handling the case of straight 

field lines, which formed the subject of Ref. 1., In addition, it does 

not seem to cause any simplification in expressions.which appear 

later in this work. Therefore we will make no further use of this 

possible choice for T and T 2 . 

For most of the remainder of this paper, the gyrophase 0 will appear 

only implicitly, through the unit vectors a and &. As may be seen from 
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Eq (2.20), these vectOrs are linear in sine and cosO, i.e. they are 

quantities purely of the first harmonic in 0. When these vectors are 

multiplied together, possibly in cOnjunction with contractions and spatial 

gradients, in general there will result terms of other multiples of 

the fundamental harmonic, i.e. a Fourier series in 0. The operation 

of projecting out the Fourier components of an expression is a familiar 

feature of perturbation theory for nearly periodic systems, and it is 

convenient at this point to elaborate upon the Fourier decomposition 

of various expressions which will be used later. The discussion will 

not be particularly deep or profound, since the highest harmonic we 

will encounter is the second, and relatively ad hoc techniques will 

suffice for  our purposes. It is for the same reason that we do not 

introduce complex unit vectors. 

• Let us begin with quantities of the zeroth harmonic in 0. First 

we have the following two tensor operators, which are quadratic in 

and &, and which are of the zeroth harmonic: 

+ 
	

(3.18) 

ac-ca =bxl 
	

(3.19) 

These were already mentioned in Eqs. (3.1) and (32) 	Next, the vectors 

b, VXb, and any other vector expressed purely in terms of b, are, of 

course, of the zeroth harmonic. The Vector R = Vca is also of the 

zeroth harmonic. Finally, we have the following scalars of the zeroth 

harmonic, which we abbreviate by giving them special symbols; 
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Z0  = b.(Vxb) = c.Vb•a - a•Vbc 	 (3.20) 

Z 1  = V•b 	= a•Vba + cVbc 	 (3.21) 

Z 2  = b•Vc•a = b• 	 (3.22) 
 Iv 

The symbol Z is a mnemonic for "zeroth harmonic." Observe thatZ 0  

vanishes in a current free region of space, i.e. when VxB = 0, and 

that Z2  can be made to take on any desired value by an appropriate 

choice of perpendicular unit vectors, as was noted above. 

The principal vectors of the first harmonic are a and C. In 

addition, we have the following scalars, in which the symbol F is a 

mnemonic for "first harmonic": 

F 0  = 	 (3.23) 

F1  = 	 (3.24) 

F2  = a•Vc•a = aR 	 (3.25)  lu 

F3  = c•Vca = c•R 	 (3.26) 

At the second harmonic, there are two tensor operators of importance, 

namely aa- - EE and &+&. From these we define the following scalars, in 

which the symbol S is a mnemonic for "second harmonic": 

- 	 S0  = - (a.Vb.c + c.Vb.a) 
	

(3.27) 

S 1  = - 	 (3.28) 

Using these definitions, let us rewrite the Poisson bracket 

relations in Eqs. (2.22e)-(2.22g) so as to show the Fourier decomposition 

of the terms: 
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{u,O}= 4 z0  - 	- . F - S0 	 (3.29a) 

{u,w} = w(4 Z 1  - S 1 ) + uF1 	 (3.29b) 

{O,w} = - + 	Z0  + F3 	 (3.29c) 

We conclude this section by listing in Table I the derivatives and 

integrals with respect to 0 of the various first and second harmonic 

quantities defined above. This table will be of use later. 
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4. THE DARBOUX TRANSFORMATION: FORMAL PROPERTIES 

4.1., Preliminaries 

In this section we will describe some of the formal properties of 

the Darboux transformation, which will take us from the (,u,O,w) 

coordinate system in phase space to a new system, denoted by (X,U,O,J). 
IV 

This transformation is defined and justified on the basis of a straight-

forward and obvious extension of the methods of.Ref. 1. We will postpone 

until Sec. S a derivation of explicit, expressions for the .Darboux 

transformation, and concentrate in, this section on various closed-form 

results which, can be obtained without.those expressions. Most importantly, 

we will derive in this section the components of the Poisson 't'ensoi with 

respect to the .(X,U,e,J) co.ordinate system. 

4.2. Specification of the Darboux transformation 

Following the pattern established in Ref. 1, we seek a set of five 

independent functions of (x,u,6,w), namely X, U, and J, which will 

satisfy the following Poisson bracket relations: 

{O,J} 	= 1/6 ' 	 (4.1) 

{e,} 	= 
lu 

0 , 	 (4.2) 

{o,U} 	= 0 	. 	' (4.3) 

{J,} 	= 0 (4.4) 

{J,U} = 0 (4.5) 

The solution of these equations for the five unknown functions (,U,J) 

will produce a "semicanonical" coordinate system in phase space, 
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namely (U,e,J), in which the variables e and J .  are, one might say, 

"canonically decoupled" from the other four variables (,U). The reason 

for choosing the symbols X and U for four of the new coordinates will 
Pu 

become apparent in a moment. As in Ref. 1, the Poisson bracket {O,J} 

is required to take on the value 1/c instead of 1 so that J will be 

0(1) instead of 0(c). 

The transformation (x,u,e,w) -' (X,U,o,J) will be called the Darboux 

transformation, because the solution to Eqs. (4.1)-(4.5) is obtained 

by applying the Darboux algorithm, as explained in detail in Ref. 1. 

In the new coordinates the unperturbed system, corresponding physically 

to rapid, circular gyrations, is separated from the perturbation, which 

corresponds to inhornogeneities in the magnetic field. The precise meaning 

of this statement will become clear in Sec. 5,when we obtain the 

Hamiltonjan in the (X,u,e,J) coordinates. In addition, the semicanonical 

nature of the new coordinate system allows usto. carry out an averaging 

transformation by means of Lie transforms, as will be shown in Sec. 6, 

the result of which is a Hainiltonian which is independent of 0. 

To solve Eqs. (4.1)-(4.5) we introduce two differential operators, 

d/dA and d/d, defined by 

d/dA = { , e} 
	

(4.6) 

d/dp = { ,J} 
	

(4.7) 

The operator d/dp is not determined until we have, at least in principle, 

a solution for J. Using these operators, Eqs. (4.1)-(4.5) can be written 

in the following form: 
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dJ/dA = -1/c 

dX/dx 
I', 

= 0 

dU/dx=0 

dX/dp=0 

dU/dV = 0 

Let us write 	= (,u,0,w), and consider the phase space curves 

z = z(A) which satisfy 

dz/dA ={z,0} 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

These curves will be called the 110-characteristics," because they are 

the characteristic curves of the partial differential operator contained 

in Eq. (4.6). Once the 0-characteristics have been determined, the 

solutions to Eqs. (4.8)-(4.10) follow immediately. Similarly, the curves 

z = z(p) satisfying 

dz/d ={.,J} 	 (4.14)ru  III 

will be called the "J-characteristics," and they are used to solve Eqs. 

(4.11) and (4.12). 

The defining equation for the s-characteristics, Eq. (4.13), may be 

written out, using Eqs. (2.22) and (3.29). The result is 

dx 
(4.15) 

jT = - Z 0 - Z 2 - 	F0 	S0 	 (4.16) 

dw_ 	2 U2 	F 	 417 
dA 	cw 	wO ,3 

For E  sufficiently small, the right hand side of Eq. (4.17) is dominated 
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by the term -11/cw, and w is seen to be a monotonic function of A. 

Therefore Eq. (4.17) can be used to eliminate A in favor of w, yielding 

the following set of differential equations, in which the equation for J, 

derived from Eq. (4.8), has been included: 

dx 	Fa 	
(4.18) 

du = - [w(- .j Z 0  + Z) + uF 0  + wS0 ] 	 (4.19) 

(4.20) 

Here the denominator D is given by 

D = 0 + c(uZ 0  + wF3 ) 

Eqs. (4.18)-(4.20) are more useful than Eqs. (4.8) and (4.15)-(4.17) for 

a practical determination of the functions (,U,J). 	 - 

4.3. Geometrical interpretation of the coordinates (,U,J) 

Let us give a geometrical interpretation to the 8-characteristics, 

and also to the functions (X,U,J) which are determined from them. We 

may assume for the sake of argument that we have a positive particle, 

so that c>O. A similar sequence of deductions will go through for 

a negative particle. Let us also assume, as we did above, that c is 

small enough that the term -1/cw dominates the right hand side of Eq. 

(4.17). Then as A increases, w decreases monotonically toward w=0. 

Therefore the 8-characteristics, which must lie on the surfaces 

e = constant, converge inward toward the four-dimensional surface w=0. 

This surface is a singular surface, in the sense that it is a branch 

surface of the phase function 8, and.a single point of this surface 
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is converged upon by a whole family of 0-characteristics. An entirely 

analogous behaviour for the 0-characteristics was observed in Ref. 1 

and discussed there in greater detail. 

Every point , = (,u,0,w) of phase space (except those for which 

w=O) has a unique O-characteristicpassing through it, and that 0-char-

acteristic, followed inward, reaches the surface w=0. Fig. 4 gives 

a schematic illustration of the 0-characteristics and certain quantities 

associated with them. When the surface w=0 has been reached, the x and 
IV 

u coordinates take on certain values, which can be considered functions 

of the original point ,. We will call these functions (,u,0,w) and 

IJ(x,u,e,w); they have the property that when w=0, X=x and U=u. 
ru 

Effectively, the functions X and U form a coordinate system on the 
IV 

surface w=0, which is being treated as an initial value surface for,  

the 0-characteristics. The values of the functions X and U elsewhere 

in phase space are found by propagating these functions along 0-char-

acteristics, i.e. by assigning the same values of X and U to any two 

points z and z' which lie on the same 0-characteristic. Clearly, the 

functions X and U so constructed are constants of the 0-characteristics, 

and hence satisfy Eqs. (4.9) and (4.10). 

As for the function J(x,u,0,w), we define it to be -1/c times the 

elapsed A parameter between the point , = (,u,0,w) and the w=0 point 
lu 

on the 0-characteristic passing through z. The resulting function 

satisfies Eq. (4.8), and it also satisfies the initial value 

condition J=0 when w=0. 

4.4. Constants of the J-characteristics 

According to the Darboux algorithm, the four functions (,U) will 
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be constants of the J-characteristics everywhere in phase space, i.e. 

they will satisfy Eqs. (4.11) and (4.12), if they are constants of the 

3-characteristics on the initial value surface w=0. In order to analyze 

the J-characteristjcs on w=0, we need an expression for the function 

J(x,u,O,w) near w=0, so that Poisson brackets may be formed. That is, 

we need a solution to Eq. (4.20) as a power series in w. To lowest 

order in w, the result can be obtained by inspection; it is 

2 
J(x,u,O,w) = w Ui;- + 0(w3 ) 	 (4.22) 

where 

D0  = 0 + cuZ 	 (4.23) 

Now we may find the 3-characteristics near w=0, using Eqs. (4.22) and 

(4.14). The resulting differential equations for the 3-characteristics are 

dx 	-. 
= 	- + 0(w2) 	 (4.24) 

0 

du wuF 

dii = 
 D 1 + O(w2) 	 (4.25) 

0 

dw = 	 2 
0(w ) 	 (4.26) 

The right hand sides of all three of these equations go to zero as w--0, 

so that the 3-characteristics on the surface w=0 consists of immobile 

points. Hence the functions (X,U), which take on the values (,u) on
IV 

w=0, are constants of the 3-characteristics on w0, and therefore also 

everywhere else in phase space. We conclude that the functions (,U,J), 
IV 
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whose construction has been described but not yet explicitly demonstrated, 

satisfy Eqs. (4.8)-(4.12), and hence also Eqs. (4.1)-(4.5).. 

4.5. The Poisson tensor in the (X,U,0,J) coordinate system 

- 	 Of the 15 independent components of the Poisson tensor in the (,U 1 0 1 J) 

• 	 coordinate system, nine are given by Eqs. (4.1)-(4.5). The remaining six 

components, i.e. the Poisson brackets of the coordinates (X,U) among 

themselves, remain to be determined. The method we use for finding these 

Poisson brackets is exactly that used in Ref. 1; since the Poisson brackets 

of the variables (X,U) among themselves are constant along 0-characteristics, 

we can evaluate them on the initial value surface w=O. The results, 

expressed in terms of the variables (X,IJ), will then be valid everywhere 

in phase space. An interesting aspect of this procedure is that it 

gives results in closed form, i.e. not as a power series in c. 

In order to find the required Poisson brackets on the surface w=O, 

we need the functions (,U) in a neighborhood of w=O, so that derivatives 

may be taken. Therefore, as we did above with the function J,we now solve 

Eqs. (4.18) and (4.19) as a power series in w. Again, to lowest order, the 

results can be written down practically by inspection: 

(,u 1 0 1 w) = x - 

U(x,u,0,w) 
IV 

Taking the Poisson brackets 

and keeping track of the w-orde 

EW 

	

a + O(w2) 	 (4.27) 
0 

rwuFA 	2 
D0 	

+ O(w ) 	 (4.28) 

of these quantities among themselves 

ring gives, after some algebra, 
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{X.,X.} = j- (a.c.-a.c.) + 0(w) 	 (4.29) 

X.,U} = b. + 	(a.F1 -c.F 0) +0(w) 	 (4.30) 

Then taking the limit w+0 and replacing (x,u) by (X,U) gives the 
IV 

following results, which are valid everywhere in phase space: 

{X,X} = 	bxl 
c+cUZ 0  (4.31) 

{x,u} = 	
c+cIJZ0 

bx(b.Vb) 	 (4.32) 
1~1 

In these equations all fields are evaluated at X , e.g. b means b(), and 
nu 

V means 	Eqs. (4.31) and (4.32), along with Eqs. (4.1)-(4.5), 

completely specify the Poisson tensor in the (X,U,e,J) coordinate system. 

4.6. The Lagrange tensor 

Because of the unfamiliarity of the manipulations used to derive 

Eqs. t4.31) and (4.32), it would be reassuring to check the self-consistency 

of the underlying theory. One way to do this is to compute the 4x4 

component matrix of the Lagrange tensor (called the w-tensor in Ref. 1) 

which corresponds to the 4x4 Poisson tensor given in Eqs. (4.31) and 	 - 

(4.32). According to the theory, the Lagrange tensor must be closed 

(see Eq. (2.12) of Ref. 1). Here we are dealing only with the reduced 

system of two degrees of freedom, described by the variables 

because the overall Poisson tensor, including the variables (O,J), has 

been brought'into block diagonal form by Eqs. (4.1)-(4.5) (see Eq. (3.12) 

of Ref. 1). 
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Let us adopt the ordering (,U) = (X,Y,Z,U) for the four phase space 

coordinates, and define, for the purposes of this demonstration, two 

vectors M and N by 

M = cb 	 (4.33) 

N = ç + cUVxb 	 (4.34) 
Ilu 

The vector 	is closely related to the vector 	of Morozov and Solov'ev. 14  

Using Eq. (3.5) it is then straightforward to show that 

MxI 

	

{X,X} = 	 (4.35) 
b.N 

IV 

N 

	

{X,U} = 	 (4.36) 
b.N 

IV 

and hence the Poisson tensor has the form 

o 	-M 	M 	N z 	y 	x 

	

M 	0 	-M 	N = 1 	Z 	 X 	y 	 (437) 

	

b•N -M 	M 	0 	N 
1 	y 	x 	 z 

	

-N 	-N 	-N 	0 

	

x 	y 	z 

Here the subscript 4 has been appended to the symbol o to indicate that 

we are dealing with the reduced 4x4 Poisson tensor in the variables (,U). 

On taking the negative of the inverse of 0 (4)  we obtain the 4x4 

Lagrange tensor 
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0 

N 
1 	z 

W (4)jj  = • T 	
-N 

y 
-M x 

-N 
z 

0 

N 
x 

-M 
y 

	

N 	M 
y 	x 

	

-N 	M 	
(4.38) 

	

o 	M 

	

-M 	0 z 

Note that the expressions for the components of the Lagrange tensor 

are simpler than those of the Poisson tensor, in that they lack the 

denominator b•N. The tensor W (4)  is closed, i.e. it satisfies 
1\1 

+ 	+ aw(4)k = 0 
	 (4.39) 

where z= (X,U), if the following relations hold:1.  

= 0 	 (4.40) 

VXM = N/U 	 (4.41) ,\ 

It may be immediately verified that these two equations are valid, and 

hence that the Lagrange tensor W (4)  is closed. 

An important result may be obtained from the Lagrange tensor. Let 

us revert to the full six-dimensional coordinate set z = (X,U,e,J), and 

write W . . for the 6x6 Lagrange tensor. Then in accordance with Eqs. (4.1)-

(4.5) we have 

W(4 ) 	0 
= 	 (4.42) ij 

0 
- C 	0 
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Let us now put z = (q,p) for the original canonical coordinates of 

Sec. 2. Since the quantities w.. are the Lagrange brackets of the coordinates 
ij 

z among themselves, we have, using the notation of Ref. 1 for the matrix y, 
IV 

k 	maz  
LA).. = -4 1  -i 	 (4.43) kin 

On taking the determinant of this relation we obtain 

	

det(w..) = 2 
	

(4.44) 

where A is the Jacobian of the transformation z c  = (q,p) -'- 	
= (,1J,O,J): 

1a(,) 
= det 
	

J 
	

(4.45) 

From these relations and from Eq. (4.38) it is easy to find 	I 

tI = 	+ cUZ 0 I 	 (4.46) 

Therefore we have 

d 
3 
 q d 

3  p = 1c1 + eUZ O I d 3 X dii dO dJ 	 (4.47) 

This relation is of obvious importance in any Vlasov kinetic treatment 

of a plasma which is expressed in the coordinates (,U,O,J). 
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5. THE DARBOUX TRANSFORMATION: EXPLICIT EXPRESSIONS 

In this section we will give explicit formulas for the Darboux 

transformation (x,u,O,w) -* (,U,8,J) and its inverse, expressed as 

power series in c. To the order given the calculations are fairly 	 -. 

simple and easily checked. In addition, we will give the Hamiltonian, 

also as a power series in c, in the (,U,8,J) coordinates. 

5.1. Specification of the 8-characteristics 

The Darboux transformation is found by solving Eqs. (4.18)-(4.20) 

for the 8-characteristics and for the evolution of the function J 

along them. 	To this end it is useful to imagine two points 

zi = and z = (Xf Uf 8 f Wf). the "initial" point and 

"final" point, which lie on the same 8-characteristic. In addition, we 

will call the values of the function J at the two points J and J f . 

Since a 8-characteristic always lies on a contour surface of 8, we 

have 8. = 
	

and the subscripts on this variable can be dropped. 

As for the variables xf. u fP  and J f  we will find expressions, written 

as power series in c, which give these quantities as functions of 

w
fi 
, w., 	

i 	i
, x, u, and J.. Due to the form of the differential equations 

 1 

in Eqs. (4.18)-(4.20), w is regarded as the independent variable 

parametrizing the 8-characteristics, so both w. and Wf  appear in 

the expressions for x , u , and J . The quantities x., u: and J 
'f 	f 	f 	 "J' 	1. 

are to be thought of as initial conditions for the functions xf
P 

Uf  

and J f . clearly, the determination of these functions completely 

specifies the 8-characteristics and the evolution of the quantity J 

along them. 
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The method we use for finding the functions 	U, and Jf  has been 

15 called the method of parameter perturbations by Nayfeh. 	The method is 

extremely simple; we put 

2 	3 
x(w) =+ Ex+ £ 	+ 0 Cc  

u(w) = u0  + cu1  + 0(c 2 ) 	 (5.2) 

J(w) = J 0  + cJ + 0(c 2 ) 	 (5.3) 

in which the quantities 	,, etc., are to be regarded as functions of 
lu 

w. These expressions are substituted into Eqs. (4.18)-(4.20), all 

quantities are expanded out in powers of c, and then collected order 

by order. For example, we have 

c(x) = Q(x ) + cx •vc2(x ) + 0(c 2 ) 	 (5.4) 41 	r\0 

The result is a hierarchy of differential equations, which can be solved 

order by order. 

The solution of the differential equations requires only trivial 

integrations. When the results are collected together, we obtain the 

following formulas, valid between any two points z andon a 

0-characteristic: 

ca 	 21 	2 	ía 
= 	

+ 	(Wf Wi 

— i 
2

) + c 	(Wf _Wj ) a•V- 

F 
- 	(w -w. 

2 	
i 

)F + 2u 	
i 

(w -w)Z ] + 0(c 3 ) 	 (5.5) 
2Q t 	3 	£ 	0 

£[(wfwl_2 )  u = u. + 	.(z2 	
i 

! Z +S ) + 2u 	
i 

(w -w)F ] +0(c 2 ) 	 (5.6) f 	1 200 	f0 

122 J = J. 	
2 + —(wf  -w.1 ) + c It(

wfi-w.)2 f1f (2w  +wi ) a.V[k) 
1 1 - 	I2WfW.)F3 + 3ui(w-w?)Z0} + 0(c 2 ) 	 (5.7) 

6 	I 
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In these formulas, all fields on the right hand side are evaluated at x.. 
''1 

5.2. The Darboux transformation and its inverse 

Let us specialize the formulas above so as to obtain X , U, and J 

as functions of (,u,0,w). To do this we identify . with z and 

with, the w=0 point on the 0-characteristic passing through ,. That is, 

we set x 	u.=u, w.=w, and J=J, and also 	Uf=U. Wf=O and Jf=O. 

These substitutions are in accordance with the definition and initial 

value properties of the functions X, U, and J, as described in Sec. 4, 

and they give the following: 

 2w21 v() + F3 ] 2,2 

+ -.- Z 0a + OCt ) 	 (5.8) 

U(x,u,0,w) = .0 - 	[w2 (Z 2 	Z0+S0) + 2uwF0J + 0( 6 2 ) 

	

2 	3 	 2 

	

w 	 2 [ 	Wu 	
1 

J(x,u,0,w). = 	+ c1 W  
--(a.vQ-2c2F 3) - 	Z01 + 0(6) 	 (5.10) 

A.

6c 

In these formulas the fields on the right hand side are evaluated at 

the particle positon x. Eqs. (5.8)-(5.10) form the Darboux transformation. 
lu 

Note that through the 0(c) term the quantity X corresponds with the 

usual definition of the guiding center. Alternatively, we might say 

that X,1 coincides with the exact guiding center fora uniform magnetic 

field. It is on these grounds that we will call the variables (,U,0,J) 

"guiding center variables," or, for reasons which will become apparent 

in the next section, "intermediate guiding center variables." The first 
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term of the expression for U needs no interpretation; it is the instan-

taneous parallelvelocity. And the first term of the expression for J 

is, of course, proportional to the magnetic moment to lowest order. 

Note that J is negative for a negative particle. There is not much point 

in interpreting these formulas beyond these lowest order terms, because 

the higher order terms will change when we perform the averaging 

transformation, in Sec. 6. 

Let us return to Eqs. (5.5)-(5.7) and swap the roles of z and ,. This 
ii'i

will allow us to determine x, u, and J as functions of , U, and w. 	That 
'IV 

is we set x.=X, u
i
=!J, w.=O, and J.=O, and also x =x, u u, w =w, and 

1 	 1 	 '\f'. 	£ 	f 

Jf=J. Doing so, we obtain 

cwa2w2  xQ,u,e,w) = X + 	+ c 	F3a}ru  nu 	
2c 

Uw z 	+ 0( 0 ) (5.11) 

 !z+s) +2iJwFu(,U,O,w) = U + 	[W2 (Z2- 2 0 0 
	 + O(c) 	(5.12) 

w 2 	w 3 	 w2U 	1 I 
J(,u,e,w) = - + c[_ 	(a•V+QF3) - 

20

2 0j + 0(62) 	(5.13) 22 

In these formulas the fields on the right hand side are evaluated at X, 

and V means s/ax. 

Eqs. (5.11)-(5.13) do not quite form the inverse of the Darboux 

transformation, because to have the inverse it is necessary to express 

the physical particle variables (,u,O,w) in terms of the intermediate 
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guiding center variables (,U,O,J). To do this, we first invert the 

series in Eq. (5.13) to find w as a function of (,U,e,J). To the order 

given this series inversion is trivial, and it gives 

w(,U,O,J) 	(2cJ)1' 	
1(2cJ) -' 

+ c[(a.Vc2 + c2F3 ) 
3ç 2  

+ 

	

(20J)2U z0J + 0(c 2) 	 (5.14) 2 

This is then substituted into Eqs. (5.11) and (5.12), yielding 

	

2c(2QJ)f3 	
- F3  + 	 a + c  

6 

- (.v)á} - ( 20J)2U 	+ 0(€) 	 (5.15) 

u(,U,O,J) = U + 	 - 
It,

Z  2c 	2 2 0+S0) 

	

+ (2J)2u F0] + 0(c 2) 	 (5.16) 

Again, all fields on the right hand side are evaluated at . Eqs. 

(5.14)-(5.16) form the inverse of the Darboux transformation. 

5,3. The Hamiltonian 

It is now possible to find the Hamiltonian in the intermediate 

guiding center variables (,U,0,J). It is obtained by simply substituting 

Eqs. (5.14) and (5.16) into (2.21), and this gives 
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H(,U,0,J) = cJ + 	U + C 	 (c2F 3+a.vc) 

+ (2cJ)U,1 	 (2c~J) 112u 2  
2 	

F0] + O(2) 	 (5.17) 2 Z
0+Z 2+S0 ) + 

We should not expect this Hamiltonian to be independent of 0, and 

indeed, there are 0-dependent terms in the 0(c) term of Eq. (5.17). The 

angle 0 is a well defined function of the physical particle variables 

(x,v), as indicated implicitly by Eqs. (2.18) and (2.20), and thisrV  1~1

particular functional form was chosen on the basis of two considerations. 

The first requirement was that 0 should reduce to the exact gyrophase 

for a uniform magnetic field. (With sufficient care in the limiting process, 

this is equivalent to c+0.) This requirement makes the unperturbed 

system "recurrent," in Kruskal's 16  terminology, and it causes the 

Hamiltonian to be independent of 0 at lowest order. The second 

requirement was that 0 should havea simple dependence on the physical 

particle variables. Neither of these requirements takes into consideration 

the higher order corrections in the guiding center expansion, and the 

result is a Hamiltonian which depends on 0 -beyond lowest order. 

In spite of its 0-dependence, however, the Hamiltonian above 

may be used to obtain the well known, classic drifts, because the 

0-dependence of H causes corrections only at an order in c which is 

beyond these classic drifts. To see this, let us write H in the form 

H(,U,e,J) = J + 4 U 2  + cH1 (X,IJ,0,J) + 0(c 2 ) 	 (5.18) 
 lu 

and then use the Poisson bracket relations, given in Eqs. (4.1)-(4.5), 

•1 
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(4.31), and (4.32), to compute time derivatives. Let us carry the results 

to the highest order in c which is compatible with an assumption of 

ignorance about thô term cH 1 . The Poisson bracket relations in Eqs. (4.31) 

and (4.32) are to be expanded in a power series in c in this process. 

The drifts themselves are found by computing d/dt. Carried through 

0(c), this is 

d 	 2 	 IHI  
= bU + c[ bx(Jvc) + 	bx(b.Vb) + b 	+ 0(c 2 ) 

Evidently, the parallel motion of the guiding center can be found only 

through 0(1), because of the term in DH 1/aU. That is, we have 

(5.19) 

[dx] 	
= U + 0(c) 
	

(5.20) 

The perpendicular motion, on the other hand, can be found through 0(c): 

j xjv + U2 .V) + 0(c 2 ) 

Mirroring effects are displayed by computing dU/dt: 

dU dt = -Jb.vc2 + 0(c) 

(5.21) 

(5.22) 

Finally,- we can compute the time derivatives of 0 and J: 

dO 	c2 = 	+ 0(1) (5.23) 

- aH 
= - 	+ 0(c) 	- 	 (5.24)38 
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In Eq. (5.24) we see that J has a time evolution at 0(1). This evolution 

is, however, purely oscillatory at 0(1), because the operator /O 

projects out purely oscillatory terms in 0. Therefore J has a secular 

time evolution only at 0(c). That J has a time evolution at all is, 

of course, a reflection of the fact that the Hamiltonian does depend 

on 0 in terms beyond lowest order, and hence that J is a constant of 

the motion only to lowest order. 

When the O(c)  term in the Hamiltonian is made independent of 0 by 

means of a near-identity coordinate transformation, all of the results 

expressed in Eqs. (5.20)-(5.24) become extended toone higher order.. 

In particular, one obtains the second order perpendicular drifts. We 

now turn our attention to the averaging transformation, which will 

yield a Hamiltonian which is independent of 0. 
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6. THE GUIDING CENTER HAMILTONIAN 

In this section we will develop a procedure for finding a near-

identity transformation of the form (,U,O,J) - 	 such that 

the Hainiltonian in the new coOrdinates is independent of 0. The new 

variables will be called "averaged guiding center variables," and 

the new Hamiltonian K will be called the "guiding center Hamiltonian." 

The procedure involved is a variant of the Lie transform method, as 

detailed in Ref. 1. Using the guiding center Hamiltonian, we will be 

able to find, among other things, the second order perpendicular drifts.. 

6.1. The averaging transformation 

According to the theory developed in Ref. 1, coordinate transfor-

Inations associated with Hamiltonian flows preserve the functional form 

of the Poisson tensor, which in our case.is  given by Eqs. (4.1)-(4.5) 

and (4.31)-(4.32). These transformations were given the name "symplectic 

transformations" in Ref. 1, and.they are, in a sense, canonical 

transformations expressed in noncanonical coordinates. 

In order to develop an expression for a near-identity syniplectic 

transformation, we consider a sequence of time-independent phase functions 

91 2 9 2 , . ., which we will call the generators of the transformation. 

The generators are associated with a sequence L 11  L2 , ... of "Lie 

operators," defined in terms of the Poisson bracket: 

Ln  = cg, } 	 (6.1) 

The factor c has been inserted into this definition in order to cancel 

the factor lie in Eq. (4.1), so that the Lie operators Ln  are 0(1). 
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The Lie operators are in turn associated with a sequence T 1 , T2 , ... of 

symplectic transformation operators, according to the rule 

T = exp(-e'L/n) 

Finally, the T are multiplied together, giving an overall symplectic 

transformation T and its inverse T: 

T = . . . T3T2TJ  

= T1 1T 1 T 1 . 

Under the action of the transformation T, the old variables 

z = (,U,O,J) go into new variables 	= 	 according to
10 

z = Tz 

-:1- 

(6.2) 

(6.3) 

(6.4) 

(6.5) 

(6.6) 

Likewise, the old Hamiltonian H is transformed into the new Hamiltonian 

K: 

K = T 1H 
	

(6.7) 

Our goal is to design the transformation T, i.e. to find the generators 

g,so that the new Hamiltonian K will be independent of . In addition, 

we demand that the transformation itself be free of secular terms. 

To this end we expand the components of the Poisson tensor, which 

appear implicitly in Eq. (6.1), in power series in c, and write 

L = L 0  + L1 + c 2L 2  + ... 	 (6.8) 
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L 
nO 	ae ai 	31 ae 

L 1  = .Vg fr - 	i.v  au 

and so forth. These are substituted into Eq. (6.2) and thence into 

Eqs. (6.3) and (6.4), giving 

T = I - cL10 + F(-L20 + L0 - 2L 1 ) + 0(c 3 ) 

2 
= I + cL1  + —(L20  + L 0  + 2L11 ) + 0(c 3) 

Finally, we write 

00 

H nO 

cc 

K= 	nK 
n=O 

(6.9) 

(6.10) 

(6.11) 

(6.12) 

(6.13) 

(6.14) 

and combine Eqs. (6.12)-(6.14) with (6.7) to get, to the lowest two 

orders, 

K0  = H0  

L10H0 =K1  H1  

For the purposes of this paper it will only be necessary to find the 

first generator, g 1 , which is specified by Eq. (6.16). 

(6.15) 

(6.16) 
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6.2. The guiding center Hamiltonian 

Let us apply the results above to the Hamiltonian in Eq. (5.17). 

First, from Eq. (6.15) we have 

	

= c2()J + 4ü 2 	 (6.17) 
lu 

Next, Eq. (6.16) is decomposed into its averaged and oscillatory, parts 

in 0. The averaged part gives K1 : 

	

K 1 (X,EJ,J) = ,U(Z + Z 2 ) 	 (6.18) 

The oscillatory part gives a differential equation for g 1 : 

391 	(22J) 3"2 	 (2cJ)U c; 	= - 
	

(cF3+a.Vc) T 	2c2 	S0 

(2c2J) '2u 2  

	

- 	 F0 	 (6.19) 

Using Table I, this is easily integrated, yielding 

= ( 2QJ) 3/'2 ( 	& v) - ( 2c2J)U 	(2cJ)"2u2 F
1 	 (6.20) 1 	3g .) 	 4 2 	1  

Here we may collect together the terms of K, writing out Z 0  and Z 2 : 

K(X,IJ,J) = ci + 	+ 	1'b-(V'b) + b.R] + O( 2 ) 	 (6.21) 

Of course, all fields on the right hand side are evaluated at the averaged 

guiding center position 4 . K is the guiding center Hamiltonian. 



6.3. The averaging transformation: explicit results 

Using the result for g 1  and the transformation formulas in Eqs. (6.11) 

and (6.12), it is easy to write out explicit expressions for the 

averaging transformation (,U,O,J) - (,LJ,O,J). We find the following:ru  I)i 

(,U,O,J) = 	+ 	 + 8(2J)' 2UF 1 } + 0(c 3 ) 	 (6.22) 

U(,U,O,J) = U + 0(c 2 ) 	 (6.23) 

3(,U,o,J) ='J + 	[2(2J) 312 (F3+â.V) + 30(2J)US 0  

+ 6(2J) 2U2F0 1 + 0(c 2 ) 	 (6.24) 

(,U,o,J) =0 + 	 - 

+ 20(2J' 2U 2F 1 ]+ 0(c 2 ) 

We need not write out the inverse of Eqs. (6.22)-(6.25), because 

to the order given it may be obtained simply by swapping , and z and 
 110 

changing the sign of the correction terms. 

Of perhaps greater importance than the above is the transformation 

connecting the averaged guiding center variables with the physical 

particle variables. This transformation is obtained by combining 

Eqs. (6.22)-(6.25) with Eqs. (5.8)-(5,10). The result is 



-47- 

cwa + 
C 
 2 w 2  

u, w) 	 [3 s~ S l~  + 2(.vc2) + 2(xR) (,O, 	= 	
- 

(4c2 

wu 

	

- 	- (&&).v] 	
2 o 

2F 1b) + O() 	(6.26) + —(Z a+ 

U(x,u,O,w) = u - c [w2  (Z2 - 

 1 
- Z 0+S0 ) + 2uwF0] + 0(c 2 ) 	 (6.27) 

(,u,e,w) = 0 + _E[2w(_QF2+&.Vc - c2uS 1  

2 
+ 2 	p1] + 0(c 2 ) 	 (6.28) 

w 

2 
w 
- 	+ w2u(S0 -Z 0 ) = -+ C 

2c2 3 [
w  J(,u,0,w) 	

2c 

+2QU2F1 + 0(c 2 ) 	 (6.29) 

In these expressions, all fields on the right hand side are evaluated at 

the physical particle position x. 

For completeness, we give here the inverse of the transformation 

specified by Eqs. (6.26)-(6.29). 

	

=  R + 	 + £ 

______ 	
2(2) 	

+ 4(b.VQ)b C- 	 a  

4c 

	

-' 	 - 	- 1/2 
- 2Q(bxR) - 3V + (_).vQ] + 

(2QJ) 	
[_8F1 

1 	-2 
- 2Z a - 6x(.Vb) - &.Vb - 	b•vb + 0(c 3 ) 	 (6.30) 0 
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u(,O,,3) = U + .1.[(2c23)(Z 2 _ -Z0+S0 ) 

	

+ 2(203) 112UF0] + 0(e 2 ) 	 (6.31) 

=6 + - [2(2)1/2(F2_&.vQ) + Os 1  

20(20J)-1/252F1] + 0(c 2 ) 	 (6.32) 

= (20)1"2 + 	
[20) 1/20(Z"_S,) 

	

- 262F01 + 0(c 2 ) 	 (6.33) 

In these expressions, all fields on the right'hand side are evaluated at 

the averaged guiding center position X, and the vectors a and C are 

evaluated at 0.. 

Of all these relations, Eq. (6.29) is especially important. J is 

the adiabatic invariant associated with the gyration, and it is propor-

tional to the magnetic moment, denoted here by p: 

p 
	

(6.34) 

According to this relation, p is positive for particles of both signs of 

charge. The 0(c) term in Eq. (6.29) is in agreement with the old result. 

derived originally by Kruskal. 4  The 0(c 2) term which would follow is 

to date unknown, except for magnetic fields of special symmetry. 
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6.4. Uniqueness of the averaged guiding center variables 

It is important to ask to what extent the variables 	 given 

by Eqs. (6.26)-(6.29), are unique, so that other guiding center variables 

of possible advantage may be selected in various applications. On the face 

of it, this is a formidable question, because the route from the physical 

particle variables in Sec. 2 to the averaged guiding center variables 

here is long, and it is punctuated with a number of reasonable but 

essentially arbitrary choices whose ultimate effectis not clear. To 

formulate an answer it is perhaps best to study the end product, especially 

in the light of Kruskal's 16  theory of "nice" variables, rather than to 

analyze in detail themethod by which the end product was obtained. 

Let us begin by listing, roughly in order of increasing specialization, 

some properties which the averaged guiding center variables satisfy. We 

may then examine the degrees of freedom which are introduced, step by 

step, as the listed properties, taken as restricting assumptions on the 

averagedguiding center variables, are relaxed. 

First and foremost, the averaged guiding center variables are free 

of rapid oscillations to all orders, at least in the imagined and formal 

limit that the required power series are carried out to all orders. To 

state this property a little more precisely, we may say that the time 

deriyatj.ve of the averaged guiding center variables is independent of the 

angle-like variable 5 . This is the property of "niceness," and its exact 

definition involves the singling out of an angle-like variable whose time 

evolution, unlike that of the remaining variables, is non-zero at lowest 

order. (In the case at hand, the lowest order is O(c').) In a noncanonical 

theory of guiding center motion, such as that developed by Northrop and Rome, 8  

niceness is the only essential requirement. The overbar notation for our 
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variables here, as well as the word "averaged," are reminders that the 

variables are nice. 

Second, the averaged guiding center variables form a semicanonical 

coordinate system in phase space. By this we mean that the set of six 

variables 	 consists of two, namely 0 and J, which are (apart from 

the factor i/c)  canonically conjugate, plus four more, namely X and U, which 

have vanishing Poisson brackets with e and J. Let us write for the four 

variables R and U collectively. Then the semicanonical requirement can be 

written as {O,J}=l/c and {,}={,3}=O. With the given identification for C, 
Al 

this requirement is equivalent to the Poisson bracket relatIons in Eqs. 

(4.1)-(4.5). 

Third and finally, the four variables satisfy Poisson bracket relations 

among themselves whose form is given by Eqs. (4.31)-(4.32). These relations, 

as well as those in Eqs. (4.1)-(4.5), were preserved under the symplectic 

averaging transformation. 

Given all three of these requirements, the averaged guiding center 

variables are still not unique. Consider first the Poisson bracket relations. 

These relations are certainly preserved under any symplectic transformation. 

Conversely, if a transformation preserves the Poisson bracket relations, and 

if the transformation can be continuously connected with the identity 

transformation, then it is (questions of convergence aside) a symplectic 

transformation such as shown in Eq. (6.3). 

Only a certain subclass of the symplectic transformations will preserve 

niceness, however. The members of this subclass are associated with generators 

g which are independent of 0. If we put L = c{g, } for such a generator and 

T = exp(-L), then it is easy to see that Ttakes any phase function which 

is independent of 6 into another such function. (Here we are treating 
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factors of c slightly differently than in Eqs. (6.1)-(6.2).) In particular, 

a ê-independent Hamiltonian goes into another such Hamiltonian, and hence 

niceness is preserved. 

Such a transformation T takes the variables z = (C,O,J) into a new 
f\J 

set Tz = z'= (t',o',J') according to 
4

llu 

= exp(-L) 	 (6.35) 

6 1  = exp(-L) 	 (6.36) 

(6.37) 

Since we are assuming that Dg/ae = 0, the action of T on the variable 3 

can be written out explicitly. The action of T on the variables C and 6, 

given by Eqs. (6.35)-(6.36), can be written as a power series in c, 

assuming that g itself can be expanded in powers of E. Explicitly, we have 

= 	+ c •- + 0(e 2g) 	 (6.38) 
au 

cbvg + O(c 2g) 
	

(6.39) 

= 	+ 	+ O(cg) 	 (6.40) 
aj 

The transformation given by Eqs. (6.35)-(6.37) is the most general one 

which satisfies all three properties listed above, if we restrict considera-

tion to transformations which can be continuously connected with the identity. 

It is interesting to observe that the degree of arbitrariness in the 

averaged guiding center variables, as indicated by this transformation, 

can also be achieved by modifying certain steps in the procedure used 

to derive the averaged guiding center variables 	 For example, 

a suitable choice for g in Eqs. (6.38)-(6.40) will reproduce the effects 

of a redefinition of perpendicular unit vectors, as will be shown below. 
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In addition, if we had allowed for a constant of integration, depending on 

(,U,J), on passing from Eq. (6.19) to Eq. (6.20), then the effect would be 

the same as the transformation above, with g = cc and c being the constant 

of integration. 

Let us now suspend the third requirement, and ask for the general form 

of a transformation 	- 	 such that the double primed 

variables are nice, and such that the variables 0" and 3" are canonically 

decoupled from the variables " in the manner shown by Eqs. (4.1)-(4.5), but 

where the Poisson brackets of the variables " among themselves may take on 
lu 

whatever form they will. Certainly there is nothing sacred about the forms 

given in Eqs. (4.31)-(4.32). These forms caine from our choice of coordinate 

system on the surface w=0, namely that which is naturally induced there by the 

(x,u) coordinate mesh. Although this choice was reasonable, it was not 

compelling. 

We may answer this question first by noting that the symplectic transfor-

mation given by Eqs. (6.35)-(6.37), followed by a transformation of the form 

= Z(') 	 (6.41) 

0" = 0' 	 (6.42) 

3" = 3 , 	 ( 6.43) 

where Z is an arbitrary invertible transformation of four variables into 

four variables, will be a member of the, class of transformations we seek. 	 - 

Because the second transformation mixes up the four variables ' among 

themselves, but leaves ' and 3' alone, Eqs. (4.3l)-(4.32) will in general 

pass into a form with little resemblance to its antecedent, whereas the 

form of Eqs. (4.1)-(4.5) will remain invariant. An example of such a 

transformation Z'would be the transformation which leaves 0 unchanged but 
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which converts R into spherical (or toroidal) coordinates. Secondly 
and conversely, it is possible to argue that any transformation 

which preserves niceness as well as the form of Eqs. (4.1)-(4.5) is 

the composition of a transformation of the form of Eqs. (6.35)-(6.38) 

with one of the form of Eqs. (6.41)-(6.43). 

When we abandon the second requirement, that the form of the Poisson 

brackets in Eqs. (4.1)-(4.5) hold, then we are left only with the require-

ment of niceness. It was argued in Ref. 1 that at least a semicanonical 

coordinate system is necessary in order to carry out Hamiltonian pertur-

bation theory, although Hamiltonian mechanics itself can be made generally 

covariant. Therefore, for practical purposes, the relaxation of the 

second requirement amounts to an abandonment of Hamiltonian mechanics. 

Let us note, therefore, before taking leave of semicanonical coordinate 

systems, certain features which are common to all such systems. 

Most outstandingly, the quantity J is common to all such systems, 

as shown by Eqs. (6.37) and (6.43). Kruskal has shown that J is an 

action integral associated with certain closed curves in phase space, 	 - 

called "rings." The detailed form of the action integral is equivalent to 

the Poisson bracket relation in Eq. (4.1). Rings are geometrical constructs 

which are based on the properties of nice variables and which are indepen-

dent of coordinate system. It follows that J cannot change under a trans-

formation of coordinates which preserves both niceness and the semicanonical 

Poisson bracket conditions. One might summarize this by saying that the 

adiabatic invariant associated with the gyration is unique. 

Next, we note that the quantity 6 can change only by the addition 

of some function which is dependent on the other five nice variables, 
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as shown by Eq. (6.40). Geometrically, this amounts to a change in the 

origin of phase, different for each ring, which nevertheless leaves 

unchanged the relative reckoning of phase along any given ring. 

Let us now relax all requirements except that of niceness. Let us 	
1. 

write 	for the five nice variables (,fi,i)collectively, and ask for 

the most general variable transformation which preserves niceness. 

Kruskal has answered this question; it is 

= 	.+ f() 
	

(6.44) 

= E() 	 (6.45) 

where f is an arbitrary function and where E is an arbitrary invertible 

transformation of five variables into five others. Note that Eq. (6.45) 

involves a much greater freedom of choice of variables than was allowed 

in the semicanonical coordinate systems. We will see later that this 

extra freedom makes non-Hamiltonian treatments of guiding center motion 

somewhat more convenient, for some purposes, than Hamiltonian treatments. 

6.5. A judicious choice for perpendicular unit vectors 

It may be seen in Eqs. (6.26)-(6.29) that all of the averaged guiding 

center variables except J depend on the choice of perpendicular unit 

vectors, as shown by their dependence on the vector R. In addition, 

the Hamiltonian K, shown in Eq. (6.21), depends on R in the 0(e) term. 

That . does not must be a reflection of the fact that 3 can be defined 

in invariant terms, as was mentioned above. The deeper significance of this 
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observation is not clear, but it may be noted by way of providing a clue 

that 3 is the generator of displacements in 0. 

In any case, those quantities which depend on R through Z 2  = b.R can 
'IV

be brought into a possibly simpler form by a jUdicious choice of perpen-

dicular unit vectors, as shown in Sec. 3. As noted before, such a choice 

cannot be determined locally and hence is not useful for numerical work. 

But for theoretical or algebraic purposes, there is no harm in setting 

6.R equal to any scalar field we like. In particular, if we take 

= - 	.(Vx) 
lu 

then the 0(c) term in the Hazniltonian K vanishes, and we have 

1 -2 	
0(c2) QJ + 	U .+ 

(6.46) 

(6.47) 

This choice of perpendicular unit vectors is equivalent to taking 

for the field 4(x), appearing in Eqs. (3.11)-(3.12), the following: 

4()  J
x 
n 

(R + 	Vxb).d 	 (6.48) 

where the integrand is evaluated at x' and the integral is taken along 

a field line. It is also equivalent to taking 

g(,U,3) = - 3 4() 	 (6.49) 
lu 

in Eqs. (6.35)-(6.40). 

In addition to simplifying the Hamiltonian K, the assumed choice of 



-56- 

perpendicular unit vectors simplifies Eqs. (6.27) and (6.31), giving 

U(x,u,O,w) = u - .- 1w2(S0_Z0) + 2uwF 0] + 0(c 2 ) 	 (6.50) 
'IV 

= U + 	(2c)(s0z0) + 2(2c25) '2UF 0 ] + 0(E2) 	(6.51) 

On taking the phase average, which agrees with the time average to 

lowest order,  Eq.  (6.51) gives an equation which provides an interpretation 

of the variable U: 

Ii = Avg.(u) + cJb.(Vxb) + 06: 2) 
	

(6.52) 

The variable Ii agrees with the variable v 1)  used by Northrop and Rome 8  

through the order given. A different choice of perpendicular unit vectors 

could have been made which would cause U to be identical with Avg.(u), 

although it would also cause the Haiiltonian K to be more complicated. 

The effect of the 0(c) term in Eq. (6.52) has been carefully discussed 

by Northrop and Rome. 

No matter what choice is made for perpendicular unit vectors, 

however, it is impossible to rid the expression for , given in Eq. (6.26), 

of its dependence on R, which is through the term bx. (The only
Ilu Iki

exception is the case that VXR, given by Eq. (3.13), should vanish.) 
%

We shall return to this point later. 

6.6. The equations of motion 

Let us make the choice of perpendicular unit vectors implied by 

Eq. (6.46)  and derive the equations of motion, which will give us, 
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among other things, the second order perpendicular drifts. The general 

case of an arbitrary choice of perpendicular unit vectors need not 

be given; the more complicated formulas which result in this case are 

easily worked out. 

First let us compute d/dt. We have 

dX 
{}.[jvç +0(c2)1 + {,U}[U + 0(c2)] 	 (6.53) 

Taking the parallel and perpendicular components of this relative to 

b(), we obtain 
ru 

~ IJX J  

dt 
bU 

+  0(2) 	
(6.54) 

~_dX- 	
3 

= 	 bx(3Vc + 1J 2
,.  
bVb) + O(c ) 	 (6.55) 

j.. 

Eq. (6.54) shows that Ii is actually the parallel velocity of the guiding 

center. Eq. ,(6.55) shows that the 0(c 2) correction to the perpendicular 

drifts is proportional to the 0(c) term, although this simplicity has 

been achieved at the price of making a special and not necessarily 

convenient choice for the definition of the guiding center position X . 

Of course, Eq. (6.55) is easily expanded properly into a power series in c. 

Next, we may obtain the 0(c) correction to the mirroring expression. 

dD  = -3 (ci + CUVX .VQ +  0(62) 	 (6.56) dt 	Q+clJb.(Vxb) 
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Eq. (3.5) has been used in writing this result in the form given. 

Finally, we have, the evolution of the gyrophase: 

d 	
Q(X)lu  0  + 0(c) dtc (6.57) 

Of course we have d./dt = 0 to all orders. 

6.7. Eliminating the dependence of R on R 
1, 	 ru 

One's intuition says that the guiding center position should not 

depend upon the choice of perpendicular unit vectors, and hence that 

the appearance of the term bxR in Eq. (6.26) represents a flaw or 

a shortcoming in the theory.. Therefore we may ask if it is possible 

to choose a new set of averaged guiding center variables which are free 

of this term in the new.quantities which correspond to R . It is here 
that we call upon the discussion of subsection 6.4. 

Any alternate definition for must be nice, since niceness is the 

one inviolate requirement which averaged guiding center variables must 

satisfy. Northrop and Rome have used the expression "guiding point" 

for some arbitrary, nice definition of X. There are many ways to define. 
Al 

a variable X' which agrees with our in any given number of leading 

terms of Eq. (6.26) and which is also nice, and'at the 0( 2  E ) term 	' 

there is little physical reason for choosing one form over another. 

This may be seen from Eqs. (6.44)-(6.45), showing how a new set of 

nice variables can be created from an old set. 

In particular, we may set 

= 	- 2 	 (6.58) 
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and we have a variable 	which is both nice and independent of perpen- 

dicular unit vectors. Likewise, we can kill the term 12 = b-R in Eq. (6.27) 
IV 

by putting 

+ cJ[b•R + 4b.(Vxb)] 	 (6.59) 

and we obtain a parallel velocity U' which is also independent of 

perpendicular unit vectors. This U' is identical to the U of Eq. (6.50) 

but obtained in a very different way. 

Unfortunately, the variable ' shown in Eq. (6.58) cannot be used 

in a Hainiltonian theory, nor can any other nice alternatives which eliminate 

the dependence on the choice of perpendicular unit vectors. This can be 

seen by examining Eqs. (6.35)-(6.43) which give the most general coordinate 

transformation allowed in a semicanonical theory. Therefore it appears 

that the intuition referred to above is wrong, at least for Hamiltonian 

mechanics. 

For certain applications, especially numerical ones, it is desirable 

to employ guiding center variables which are independent of the choice 

of perpendicular unit vectors. Furthermore, the Hamiltonian structure 

of the underlying theory may not be important in such work. Therefore 

we give, in Appendix A, a set of noncanonical variables and their 

equations of motion which would be useful for such purposes. 



7. CONCLUSIONS 

One shortcoming of this work is that it does not allow for time-

dependent fields. Nevertheless, the mathematical techniques which 

were developed in Ref. 1 and applied to static magnetic fields in 

this paper can be extended in a straightforward manner to time-

dependent electromagnetic fields. The results of this extension 

will be reported upon in future publications. 

The Hamiltonian methods developed here seem to yield results with 

less labor, than older methods, especially when carried beyond lowest 

order. Of course, there is a compensation in that there is more 

theory to be mastered, but this represents a kind of fixed overhead 

which does not increase as one proceeds to higher orders. For example, 

it seems feasible for one person working alone to extend the results 

of this paper to one higher order, although the amount of algebra is 

significant.. I myself have carried out approximately half of this 

calculation, but I have not recorded it here because of its incomplete-

ness and because it does not have much practical value. On the other 

hand, to the order given the equivalents of Eqs. (6.54)-(6.56)  for 

general electromagnetic fields are unknown and may perhaps best be 

derived by these methods. 

Even when carried to lowest order, however, the Hainiltonian methods 

presented here promise to be useful for the analysis of additional 

perturbations. For example, the effects of a small amplitude electro-

magnetic wave on single particle motion in a nonuniform background 

magnetic field have been studied by Grebogi, Kaufman, and Littlejohn) 7  In 

this analysis, the guiding center Hainiltonian in Eq. (6.47) is taken to 
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be the unperturbed system, to which perturbing terms representing 

the wave are added. The resulting Hamiltonian can then be treated 

by standard perturbation techniques. 

Additional results in the realm of single particle motion can 

be obtained by iterating the Darboux algorithm. This will allow 

one to study the nearly periodic motion of the guiding center 

corresponding to the longitudinal bouncing and motion on the flux 

surfaces. The results obtained to date in this area 3 ' 18  involve an 

averaging over the phase of the longitudinal bouncing motion, which 

is introduced after an averaging over the phase of gyration has 

been performed. If both phases are introduced before averaging, 

then the door is open to an analysis of resonances between gyration 

and bouncing. These resonances have an important effect on particle 

confinement in fusion devices of the mirror type, and a perturbation 

treatment should be especially useful in the so-called superadiàbatic 

regime. 

Self-consistent treatments of ensembles of particles are especially 

important in plasma physics. In the Vlasov approximation, Hamiltonian 

methods are well adapted to such treatments, and they have been applied 

in recent years to a number of different problems. 1925  Nevertheless, 

for the case of nonuniform magnetic fields one has had to make do 

with non-Hamiltonian methods, such as are used with drift kinetic 

equations. Possibly the area of application of greatest value for 

the Hamiltonian methods of this paper will be in kinetic theory. 
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APPENDIX A. 

This appendix gives the guiding center equations of motion in a 

form which would be suitable for numerical integration or other purposes 

with a minimum of overhead of notational conventions. The formulas of 

this appendix are similar to those given by Northrop and Rome, 8  but they 

are somewhat simpler. For the numerical integration of systems of 

ordinary differential equations it is important for efficiency reasons 

that the "driving terms," represented below by the right hand sides 

of Eqs., (A.5)-(A.8), be as simple as possible. Therefore the definitions 

of the guiding center variables given below have been juggled so as to 

simplify the corresponding equations of.evolution. 

For those readers continuing from the main text, we note that the 

guiding center variables (X,U,J) used in this appendix are nice but 
lu 

noncanonical variables. The overbar notation has been dropped, and these 

variables are not to be confused with the intermediate guiding center 

variables of Sec. 4. The variables U and J are identical to U and J 

of Sec. 6, while X is identical to X1  of Eq.. (6.58). 

Let x and v be the. particle's instantaneous position and velocity, 

let b be the unit vector in the direction of the magnetic fieldB, 

let 2=eB/mc be the signed gyrofrequency, and let u = b.v be the particle's 
ru 

instantaneous parallel velocity. Then the guiding center position 

may be defined as follows: 

= x -- xv + 2 i [4,y.,(v.,.-VQ)
Q 	c 	+ 9v b(b.vc2) - 4vvc2lu  

8c 

+ 6b(.Vb..)] +_[o.(vxb)bxv + 2b(b.vb.v .)] + O() 	(A.l) 
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In this formula and those that follow, c represents a mnemonic device for 

keeping track of the order of the terms. It should be set to unity in 

applications. Furthermore, the operator V in expressions involving Vb 

is taken to operate only on the vector b. One may think of Vb as a matrix 

M with.components M.. = 
13 	3 

The parallel velocity of the guiding center U is defined as follows: 

	

= 	- 	 - vb.(Vxb) + 4ub.Vb.(bxv)] + 0(62) 	(A.2) 

The quantity U is identical with the quantity v %  used by Northrop and Rome. 

The adiabatic invariant of gyration J is related to the magnetic moment 

i by p = eJ/c. It is given by 

2 	
6ç 2 

	

J = 	+ —2v(bxv).Vc2 + 	 - v.b.(Vxb)] 
4c 

+ 4c2u2b.Vb.(b xv) + 0(62) 	 (A.3) 

Note that J is negative for a negative particle. 

Eqs. (A.l)-(A.3) are to be regarded as definitionsof the guiding 

center variables in terms of the instantaneous particle variables x and v. 
IV 

Therefore all fileds on the right hand sides, such as c and b, are 

evaluated at the instantaneous particle position x. In addition, note that 

these equations can be written in a number of different forms. The forms 

chosen are more or less arbitrary. 

The kinetic energy K = - my 2  of the particle can be expressed in 

terms of the guiding center variables. The relation is 
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K = m[Q(X)J + I u 2 j + 0(c 2 ) 	 (A.4) 

The equations of motion of the guiding center variables are 

as follows. First, the parallel velocity: 

dU  
= -Jb.[V + F-U (b.Vb),Vcj + 0(c 2 ) 	 (A.5) 

This is completely equivalent to Eq. (6.56). Next we have the parallel 

motion of the guiding center, by which we mean the component of d/dt which 
lu 

is in the direction b(). This is 

dX 	
bU + Q(2) 	 (A.6) 

Finally, we have the perpendicular motion of the guiding center: 

[dx] 	
bx(JVQ + U2b.vb) + 2b 	!L(b.v xb)b.vb 

+ ![ .!(b.Vxb) - -(b.Vxb)b.Vb + 	V(b.Vxb) 

- bx(b.Vb.Vb) + (V.b)bx(b.Vb)] + O() 	 (A.7) 

In this expression, the term in V(b.Vxb) is not in a form which would 

be most convenient for numerical integration. When this term is expanded 

out, along with all the other terms multiplying JU above, there results 



B. 	
[..] = 
	_______ - .. (v•).v - 	: VVb 

+ i.vi.vi - 	v(V.b) + 1 2] 

where the symbol L means to take the perpendicular projection relative 

to b(). Finally, we note that in Eqs. (A.5)-(A.8) all fields on the 

right hand sides are evaluated at the guiding center position X. 
IV 

(A.8) 	 -, 
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TABLE I. Derivatives and integrals of various quantities with respect 

to 0. The symbol X refers to any of the quantities in the first column. 

X dX/dO fXdO 

- 

F 0  F 1  -F 1  

F 1  -F 0  F 0  

F 2  F 3  -F3  

F3  -F 2  F 2  

S 0  -2S 1  ½S1  

S 1  2S 0  -½S0 
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FIGURE CAPTIONS 

Fig. 1. The three unit vectors b, il.,  and 

Fig. 2. The perpendicular plane. 0 is the gyrophase to lowest order, 

and the unit vectors a and E rotate with the particle. 

Fig. 3. Motion in a uniform magnetic field. X is the guiding center 

position. 

Fig. 4. A schinatic illustration of a 0-characteristic. The w=0 "plane" 

in the diagram actually represents a four-dimensional surface 

in phase space. 
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