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A HAMILTONIAN FORMULATION OF GUIDING CENTER MOTION*

Robert G. Littlejohn -

Lawrence Berkeley Laboratory
. University of California
Berkeley, California 94720

"ABSTRACT

Nonrelativistic guiding center motion in the magnetic

field 2=2(£), with E=0, is studied using Hamiltonian methods.
The drift'equations are carried to second order in the perpen—
dicular motion. The Hamiltonian methods which are used are
described in detail in order to facilitate possible applica-
tions. Unusual mathematical techniques are called upon,
especially the use of noncanonical coordinate; in phase space.
Lie transforms are used to carry out the perturbatién expansion.
Applications in kinetic theory, in the area of adiabatic

invariants, and in other areas are anticipated.’

£

*Work was supported by the Office of Fusion Energy of the U.S. Department
of Energy under contract No. W-7405-ENG-48, '



I. INTRODhCTION

In a recent paper} I have described the mathemati;al appératuS'of
a new approach to a Hamiltoniaﬁ formulation of guiding center motion,
and I havé illustrated the method with the problem of nonrelativistic
guiding center motion in the magnetic field E = B(x,y)i. In this paper
I will extend those results fo the case of a nonrelativistic particle
moving in a time-independent but otherwisebarbitréry magnetic field
§‘= %(5), with the electric field E = 0. Throughout this paper,
except in Appendix A, a familiarity with the mathematical methods of
Ref. 1 will be assumed.

The study of guiding center motion is eSsentially a-problem in
perturbatidn theory inAclassical méchanics. Although it has always
been known that charged particle motion can be described in Hamiltonian
terms, neverthelesé most of the results that have been obtained in this
area have been derived with non-Hamiltonian perturbation methods .28
Therefore‘Hamiltonian methods have not found wide application in studie§
of guiding center motioﬁ in plasma physics, in spite of the great
interest in fhe dynamics of plasmaé in nonuniform magnetic fields.

This is ﬁnfortunate, because Hamiltonian methods provide great
computational advantages over non-Hamiltonian methods, as well as
a formalism which is notable for its elegance and notational compactness.

The original Hamiltonian treatment of guiding center motion was
given by Gardner,9 who employed field line coordinates and mixed-
variable generating functions in an algorithm to systématically remove'
the dependence pf the Hamiltonian on gyrophase to all orders. Gardner's '

methods were elaborated upon by Taniuti,10 Stern,11 and others,

who also used field line coordinates and mixed-variable generating functions.
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Recently Mynick12 has developed a theory of guiding center motion
using Hamiltonian methods. Mynick has also used field line coordinates,
but in contrast to the authors above he has used a combination of mixed-
variable generating functions and Lie transforms. Mynick seems to be the
first to have employed the great power of Lie transforms in guiding center
work. By way of addifional contrast, Mynick has used an ordering scheme
which treats the paraliel and perpendiéﬁlar scale lengths with different
ordering parameters. His results are perturbative, i.e. represented
by powef series, only in.the parallel ordering paramefer. The results are
in closed form for the perpendicular ordering parameter.

In addition, some recént work by Meyer13 has shown how the guiding
center problem can be tfeated without using either mixed-variable generating
functions or Lie transforms; Instead, Meyer has developed canonical
transformations by appealing directly to the defining Poisson bracket
relations. Furthermore, Meyer has avoided the use of field line coordinates.
Meyer's work has many points in common with the theory presented in Ref. 1
and here, although the detailed nature of the'conneétion remains to be
established.

Two salient features of this Qork are the use of rectangular coordinates
instead of field line coordinates in configuration space and the use of
noncanonical coordinates in phase space. The latter especially calls
into play certain unusual mathematical techniques, which are described
in Ref. 1. 1In addition, the perturbation expansion which is used to
eliminate the dependence of the Hamiltonian on gyrbphase is effected

by means of Lie transforms.



It is the primary purpose of this péper to prbvide the details of
a Hamiltonian treatmént of guiding center motion, rather than simply-
the resulting drift equations. The hope is that this paper will la}
the groundwork for applications in kinetic theory and other areas.
Therefore I will go into much more detail than would be necessary
if only the drift equations were of interest.

| Nevertheless, the most immediate and tangible results of this
work are the drift equations, which are carried out to second order
in the perpendicular motion of the guiding center. Using non-Hamiltonian
methods, Northrop and Rome8 have carried thé drift equations to the
‘séme order undér the same assumptions, viz. nonrelativistic motion
in a static magnetic field. Therefore there is little that is neQ
in the drift equatiéns, although the form which is developed here
for the second order guiding center position gives rise to equations
of motion which are less éomplicated than those of Northrop and Rome.
This may be seen most easily in Appendix A. Finally, I should note
that a detailedléomparison of these results with those of Nérthrop
and Rome shows complete agréement.

Since there will perhaps be regders who will be interested only in
the drift equations, and not in the Hamiltonian methods used to derive
them, I have given in Appendix A a summary of the drift equations for
a particularly convenient (but non-Hamiltonian) choice of guiding
center variables, employing a notation which is as independént as
possible of conventions established earlier in the paper. This Appendix

should be especially useful for numerical or simulation work.
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The organization of this paper is as follows. VThe basic purposé of
Sec. 2 is to define the problem. In this section, we introduce three
sets of phase'Space coordinates, which aré called "physicai particle
variables." The last two sets espécially have great physi¢a1 immediacy,
and their use has the important effect of banishing,'bnce‘énd for ail,
the magnetic vector‘potenfial é from fhe formalism.

Sec. 3 contains a number of technical details of the algebra which’
must be used in a treatment of guiding center motibn to second order.
This algebra focuses on the system of unit vectors employed, and spéciél'
attention is givenvto the perpendicular unit vectors. Most of this
section would be unnecessary if the guiding center Hamiltonian Qere only

carried to lowest order. Similarly, much of the algebraic details given

'in this section would be unavoidable in any treatment of guiding center

motion to second order, whether it be Hamiltonian or not.

Secs. 4 and 5 are devoted to the Darboux transformation. Since there
are a number of properties of the Darboux transformation which can be
expressed in closed form, most notably the components of the Poisson
tensor in the resulting coordinate system, these properties are derived
and listed in Sec. 4. The Darboux transfbrmation itself must be developed
as power series in ¢, and this developmeﬁt is carried out in Sec. 5.

In Sec. 6 we perform the averaging transformation, using Lie transforms,
énd obtain thereby the guiding center Hamiltonian as well as a set of
guiding center variables. It turns out that the guiding center variables
depend on the choice of perpendicular unit vectors which is made in the

problem definition. In order to deal with this situation, we discuss



at length the degree of arbitrariness in the guiding center variables,
and wé prove that in any semicanonical coordinate system, such as seems
to be necessary for a Hamiltonian treatment of any kind, a dependence
on the choice of perpendicular unit vectors is unavoidable. In a noncanonical
coordinate system, however, such a dependence can be eliminated, at>
least through second order. Indeed, the noﬁCanonical guiding center variables
used in Appendix A are free of such dependencies.
Finally, in Sec. 7 we discuss the results and suggest various

extensions and applications.
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2. PHYSICAL PARTICLE VARIABLES

In this section we will discuss three relatively simple coordinate
systems in phase space, Of these, the first consists of a slight
variation on the rectangular Canonicai coordinates (g,E) which are uéually
used in a Hamiltonian formulation of the motion of a charged particle
in a magnetic field. The other two coordinate systems arevrélated in
5 simple manner to the instantaneoué dynamical state of the particle
and to the magnetic field at the particle position. Therefore the
variables making up these coordinate systems will be called 'physical
farticle’variableé," in contrast to guiding center variables, which
will be introduced later. Of the three coordinate systems described in
this section, only the first is a canonical system. In addition, we
will establish. certain notational conQentions iﬁ this section.

The motion of a particle of charge e and mass m in a static

magnetic field E(é) with §=0 may be described by the Hamiltonian

Hg.p) = 3 [p - oo A@]° | (2.1)

where Q istthe magnetic vector potential satisfying E = Vxé. This
Hamiltonian differé slightly from the usual Hamiltonian for a charged
particle. It does, however, give the correct equations of motion as
long as the canonical coordinates (g,Ej are related to the'Particle's

position X and velocity v by

on
"
20

(2.2)



To use the Hamiltonian. (2.1) it should be remembered that the Hamiltonian
has dimensions of energy/mass, i.e._(velocitY)z, and that_thercanonical
momentum p has dimensions of velocity.

") .

With the ordering (q,p), the Poisson tensor (which was called the
h NNy ’ .

o-tensor in Ref. 1) has the following components:
: :
R [ (2.3)
: ' : : _
t : :

Here I represents the 3x3 identity matrix.
The guiding center approximation is introduced into the Hamiltonian
(2.1) by feplacing the charge e by e/e, where ¢ is a formal expansion

parameter. The result is

e 2

- 1 ' L
H(g,g) =5 [R " ome Q(g)] | (2.4)

In addition, the transformation law (2.2) is modified as follows:

=q . : v
A3 . (2.5)
X =P - e AW

The Poissoﬁ tensor given ih Eq. (2.3) does not chénge‘with the introduﬁtion
of e. Henceforth we will use Eqs. (2.4) and (2.5) ihstead éf (2.1) and
(2.2). |

The parameterie may be considered to be a variable, describing:a
family of systems, of which the one corresponding to € = 1 is the
physical system. The order of an expression is determined by its
behaviour as e > 0, while the position X, velocity v, and fields Q and g

are held fixed. Thus the Hamiltonian is O(1), and the canonical

w
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momentum p is 0(6-1).
The second coordinate system consists of the‘particle variables x
and Y, which are related to q and B by Eq. (2.5]. :In.this coordinate

system, with the ordering (é,x), the Poisson tensor has the form

0 I ‘
- H :
ol |ecodoo : - (2.6)
;e
-1 | —3B
} EMC
where the symbol B represents the antisymmetric tensor which is dual |
to the magnetic field vector %:
‘Bij = Eijk Bk (?.7)

Here and in the remainder of this paper summation over repeated indices

is to be understood.  As for the Hamiltonian, it is especially simple in
the (x,v) coordinates:
NN

2

1
HRE.,Y) =5V (2.8)
An alternate form for the Poisson tensor, which is completely
equivalent to Eq. (2.6), is sometimes useful. If we are given any two
phase functions F and G, expressed in terms of ({,x), then their
Poisson bracket {F,G} is given by
_3F 3G F 3G . 1 _ (3F 3G] 3 .
{F,G} 3X av sz'ax TR [Sg“ax] ‘ (2.9)

R=ack - 2.10
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The third coordinate system represents a kind of cylindrical
coordinates in velocity space, with the local magnetic field vector

indicating the direction of the cylinder axis. We write B(é) = lg(%){,

and define the unit vector b({) by'

W

x)

36y (2.11)

5(5) =

It is convehient to assume that B(&) is boﬁn@ed awaf from zero in the
spatial region of interest. Not only does this guarantee that the vector
G(%) is continuous, but it is also a necessary condition for the
validity of tﬁe guiding center approximation.

Two variables of the new coordinate system are defined in terms of
the»velocitylx and the vector ﬂ, These»are u and w, the instantaneous

parallel and perpendicular velocities, Tespectively, and they are given

by

u = y-b(x) | ~ o (2.12)
2

w=(v" -u )/2 - (2.13)

Let us now introduce, in addition to b, two more fields of unit vectors,
which are called %1(¥) and %2(5), and which are illustrated in Fig. 1.

Taken together with b, these form a right-handed set of unit vectors:

T1°Tp T Ty T, S bbb =1 _ _ (2.14)
T1°T, = T1°b = T2~b =0 (2.15)
b = X1, . | '(2.16)

For the time being, we may assume that %1 and %2 are arbitrary, apart

from the relations (2.14)-(2.16). Later we will consider the possibility
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of a judicious choice for ?1 and Ezf
It is useful to define several more quantities, relative to the

%I-TZ plane, i.e. the perpendicular plane. These quantities are shown in-

Fig. 2. First we define the perpendicular velocity vector Vi by
Yo =X - ub. Next, the gyroradius vector r is given by r= e(Bxx)/Q,

where 2 is the signed gyrofrequency:
0=8_%.9- sign(e)|o| ' (2.17)
mc R LY : .

It is convenient to introduce a velocity-dependent unit vector ¢, which is
in the direction of the perpendicular velocity vector Vi, so .that Vi = we,

or
4 - ub + wé ‘ - . (2.18)
In addition: we define another velocity-depgndent unit vector a, given by
R | o (2.19)

The triad (5,5,6) forms a right-handed set. The gyroradius vector r is
related to the unit yector a by r = ewa/Q. ‘Finally, the gyrophase 6 is -

defined as the angle, measured in a clockwise sense, between L and a.

Thus we have

cost 11 - sind 12

-sing ?1 - cosf T

Ry
1]

(2.20)

0>
i

2 E

Our third coordinate system in phase space consists of the six

physical particle variables (é,u,e,w) as just defined. In these definitions
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we have refrained frdm'referring to circles or circular motibn,”bééause
in géneral the motion is not exactly circular, and because in a theory
which is to be systematic to any order we do not want to céll upbh'. |
4 concepts which are vague beyond lowest order. In this sense the terms
"éyroradius" and "gyrofrequency" are imprecise. The?efore_the>
definitions above may perhaps best be taken és closed-form, élgébfaié
relations specifying a variable transfprmation (%,x) - (%,u,efw).
Nevertheless, in the special case of a uniform magnetic field,

these variables do have a physical meaning which is both simple and
precise,»because-thevperpendicular motion of the particle is circular.
Fig. 3 shows the meaning of some of these variables in the case of
a uniform magnetic field. In this case the guiding center positon X
:is given by X = X - r exactly, and it is the précise center Qf the
circle of motion. Later we will discuss wéyS'in which fhe definition
of X may be extended to the case of nonuniform fields in a manner which '
is systematib to all orders. For now, however, we simply use Fig. 3
for its suggestive value. For example, it may be seen that the unit
.vectors.é and ¢ rotate with the particle, in a clockwise direcfion
(6 increasing) for a positive particle, and in a couhterclockwise
direction (6 decreasing) for a negative particle.

vao complete the description of the (é,u,e,w) coordinate system,
we need the Hamiltonian and the Poisson tensor. The former is easy

to obtain:

H(%;ﬁ,e,w) - %{w + ud) S (2.21)
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As for the Poisson tensor, it may be obtained from Eq. (2.9) and the

olJ, with 2z = (é u,6,w) being taken as the six-

relation {z',z7}

dimensional coordinate vector. A little calculatlon gives the components

of the Poisson tensor in the following form: .

{(x,x} =0 _ - (2.
{%,u} =b o . ' (2.
{5,9}'= -a/w ‘ o (2.
{%;w} =c - A (2.
{u,0} = -a-vbeC - b:vcea - %B'Vfré (2
{u,w} = w c*Vbec + u b+Vb-¢ (2.
{o,w} = L & ¢.vi.a + Y B (vxb) @
Ew W : .

Two notational conventions have been used in these equations and
should be mentioned. First, for any pair of vecfors Xvand %, Vx-% | |
means (VX)-% and not V(X-%). This convention will:be followed throughout
this paper And second, the operator vV is to be taken at flxed (u o,w),
and not at fixed . ThlS convention is followed whenever we are
expressing any relation in the (i,u,e,w) coordinate system.

There are altogether 15 independent components of a general 6x6
antisymmetric matrix, which Eqs. (2.22) give for the component matrix
o%j. Of these, € appears in only one, as shown by Eq. (2 22g).

Eqs. (2.22) Csntaih a number of different expressionsklnvolving
‘unit vectors and their gradients. Expressions of this type occur
more and more frequently as one proceeds with the guiding center problem,

especially at higher orders. Therefore we turn now to a systematic

study of the properties of these unit vectors.

22a)
22b)
22¢)

22d)

.22e)

22f)

.22g)
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3. PROPERTIES OF THE‘UNITAVECTORS

A number of simple but important properties of,theiunit vectors
follow from the orthonormality cénditions, Egs. (2.145-(2.16). . We
include in this list of properties the velocity dependent vectors a
and ¢, defined by Eq. (2.20), since in the remainder of the calculation

and t.,.

1 2 First, we express the

. these vectors are even more useful than T

identity tensor I and the vector operator bx in terms of the unit vectors:

37t ToT, * bb = aa + b6 + cc = I - (3.1)
T,Ty - T4T, = ac - ca = $XI (3.2)
Next, we have the following relations involving the gradients of the
unit vectors:
VTl T, = V'rz-'rz = Va-a = Vb+b6 = vc.c. = 0
.le-B = -Vbet,, Vr,cb = -UbeT,, VI eT, = -VT,eT, (3.3)
Vasb = -Vb-a, vC+b = -vb:¢, va:¢ = -vViea
Third, the normalization of b implies the following useful identities:
bx (Vxb) = -beVb (3.4)
vxb = bx(b-vb) + b[b- (vxb)] (3.5)
x%iVVb-b = -(X-Vb)-(%-Vb) (3.6)
where X and_% are any two vectors. In particular, Eq. (3.6) implies
55:97B-b = -(b-vb)> (3.7)

In addition to the above, the vector b satisfies the following relation,
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on account of the Maxwell equation v-B = 0:

Veb = - 5 : (3.8)
The vector V?l-fz = VC-a is of special importance, so we assign to
it the symbol 5:
5 =_V11-12 = Vcea | (?.9)

The vector 5 has the following geometrical interpretation. The vectors

and T which define the.perpendicular plané, are a function of

T3 2°

position X and hence vary from point>to point. This variation is partly

due to the variation in the vector B, to which ?1 and fz,are orthogonal,

andﬂpartly'dﬁe to an arbitrariness in the definition of"f1 and %2,

whi;h at this ppint in the work we are allowing for. Therefore if w§
examine the vectq?sv%l and %2 at some point P and at a neighboring point
P',lthen these vectors and the perpendicular plane they define will be

rotated at P' relative to their values at P. If the vectors T, and T

1 2

at P' are projected back onto ;he perpendicular plane at P, thén-they_will
be rotated_byva certain angle Ay relative to-the.vectors %lvand ?2 at P,.
and the angle Ay will, for small separations, be proportional to the
dis;ance between P and P'. Indeed, if we let A& be the displacement
vector between P and P', then we have Ay = A&og. In pgrticular, the
quantity 3-5 represents the rate (in terms of radians per unit length)

at which the vectors %1 and %2 ""twist" as one moves along a magnetic
field line.

These considerations are important when we consider the arbitrariness
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in the definition of %i and %2. Without és yet addressing fhe question of
alpossible.judicious choice for %1 and %2, let us suppose that we have,

in addition to %l(ﬁ) and %zté), another pair of pgrpendicular unit vector

fields %i(é) and ?é({). Both pairs are required to satisfy the relations

in Eqs. (2.14)-(2.16), but beyond that their specification is arbitrary.

Both pairs of unit vectors must lie in the perpendicular plane, so a

relation of the following‘form must hold between them:

-
[,
I

= cos¢ %1 - sing %2
| | (3.10)
sin¢ %1 + cosp T,

~>
N -
1]

\

vhere ¢ = ¢(%)‘is in general dependent on position. We conclude.that
if %1 and ?2 are given, then any other choice of perpendicular unit vectors
is related to the given one by some rotation anglé fiéld ¢(§),:and conversely.

Let us now consider how the various quantities defined in Sec. 2 change
under the selection of a new set of perpendicular unit vectors, as |
shown byiEq. (3.10) and as sbecified by the field ¢(5). Following-the"
notation above, we let primes répresent the new quantities. |

Clearly, the parallel and perpendicular velocities are invariant
under such a change, i.e. u' = u, and w' = w.” The gyrophase'e, on tﬁe
other hand, changes by the amount ¢, since 6' is the gyrophase relative to
the fi direction:-

6' =86 - ¢(§). 7 | .(3.11)

Therefore of the coordinates (§,u,6,w), only 6 depends on the choice 

of perpendicular unit vectors.
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The unit»vector§ a and E, which are defined in terms of b and the
_ pafticle velocity X’ are naturally invariant under the transformation
indicated by Eq. (3.10). Nevertheless, the vector~§, which can be
expressed in terms of the gradients of a and ¢ by 5 = Vc.a, is not

invariant:

In view of the geometrical interpretatién of the vector R which was
-given above, this result should not Be surprising. Lest it seem
paradoxical from a mathematical point of view, i.e. that a and ¢ are
;nvériant while R = vc-a is not, we reéallwthaf the operator V in the
expression'fqr § is taken at fixed (u,6,w), and that 6 is not invariaht.
That.is,>the operator V, in this sense, is not invariant. It is inter-'
esting to observe that Eq. (3.12) is analogous to a gauge transformation
;for the magnetic vector potential A.

Let us now ask ourselves to whét extent the vector 5 can bé brought
into some simple form by an appropriate choice-of perpendicular unit
vectors. We might begin by asking if it is possible to choose %1 and
%2 so that 5 = 0. The answer, as may be seen from Eq. (3.12), is
no, because in general Vxﬁ # 0. NevertheleSS, this line of reasoning
raises an interesting point, namely that the curl of R is.invariént
under a change of perpendicular unit vectors: VxR = UxR'. This in
turn suggests that the vector ng can be exprgssed purely in terms
of B. Some algebra shows that this is indeed the case:

MIRE (V-5)2] + (VD) (B-VD) - B-VH-vH . (3.13)
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Ordinary vector notatibn fails with the:first term .in ﬁ, so index notation
has been used, with commas representing differentiation. For ‘example,
bi,j means abi/aij Eq. (3.13) is 6f use in cbmputihg the second order
drifts. |

Although we cannot make R=10Dbya choicg of perpendicular unit vectors,
it is possible to make one component of R vanish by such a choice.
Conéider, for example, the component along b. Suppose 5-5 # 0 with
respect to some choice %1, %2.°f perpendicﬁlar unit vectors. Then define

¢ (x) by
0] :/’imwdg' - (3.14)

where_th¢ line integral is taken along a magnetic field line, and whefé
the lower limit refers to some arbitrary initial value surface.‘ Theﬁ
B4V¢ = B'E’ and by Eq. (3.12) the change in unit vectors engendered by
) fhrough Eq. (3.10) gives B'B' = 0. -

This result can be strengthened. Let ¥(x) be any given scalar field.
Then it is possible to choose a pair of perpendicular unit vectors-éuch

that B'B = ¥. To see this, let
x - _ .
0G0 = [M IR - $¥EIBGNI & s

with the same integration conventions as in.Eq. (3.14). 'Then
6'V¢ = E-B - ¥, and the conclusion follows. This result will be of_
use later. |

The practical épplications of guiding center theory fall into two .

broad classes, namely theoretical and computational. In computational
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work it would not be desirable to choose perpendicular unit vectors according
to the method of the last paragraph, because in order to determine ?1
and %2 at a given point X one would have to perform a numerical integration
along field lines. For this kind of work it would be much better to
have a local determination of perpendicular ﬁnit vectors. -In'theoretica1=_,
studies, on the other hand, there is nc harm in choosing perpendicular
unit vectors in some}honlocal‘way, if it will simplify the resulting
expressions. -Later in this paper we will have opportunity to.make
some such choice. |

It is pqssible to choose perpendicular unit vectors which depend

only locally on the magnetic field direction b. For example, one might

let %1 and ?2 be the. principal normal and binormal unit vectors:

~ ~

b+Vb

T s — o (3.16)
|b+vb| '
T, = bx1 (3.17)

However, this choice has the disadvantage, from a theoretical Standpoint,
of producing discontinuities in ;1 and %2 at an inflection point of

a field liné, and it is incapable of handling the case of straight

field lines, which formed the subject of Ref. 1. In addition, it does
not seem to cause any‘simplification in expressions.which appear

later in this yorkk Therefore we will make no furthér use.of this
possible choice for %1 an@»%z. |
For most of the remaindgr of this paper, the gyrophase 6 will appear

only implicitly, through the unit vectors a and ¢. As may be seen from
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Eq. (2.20), these vectbrs are lineér ih sind and cosf, i;e. they éfe
quantities purely of the first harmonic in 6. When thése‘Vectors are
multiplied fogether, pbssibly in éonjunction with contractions and Spatial
gradients,vin general there will result terms of other multiples of

the fundaméntal harmonic, i.e. a Foﬁrief series in 6. The operation
. of prdjecting out the Fourier componenté of an expression is a familiar
'feature of perturbation fhebry for nearly periodic systems, and it is
convenient at this point to elaborate;upon'the Fourier decompdsitioh
vof various expressions which will be used iater.- The discussion will
nbt be‘particularly deep or profound, since thé higheSt'harmonic we
will encouﬂter\ié'thé seéohd, and relatively EQ,EQS techniques will
suffice for our purposes. It is fér the same reason that we .do not
introduce complex unit vectors. |

: Let‘us begin with quantities of the zeroth harmonic in 6. First

we_havé the fqilowing two fensor operators, which éré quadratic in

a and ¢, and which are of the zeroth harmonic:

aAn Aa

aa + cc

1-66 o (3.18)

A A AA

ac ~ ca

bx1 - (319

These were already meﬁtioned'in“Eqs. (3.1) and (3.2). Next, the vectors
B, VXB, and any other veétor expresséd purely in terms of 6, are, of
courée, of the zéroth harmonic. The vector 5 = Vcea is also of the
zeroth harmonic. Finally, we have the foliowing Scalafs.of the zeroth_

harmonic, which we abbreviate.by giving them special symbols:
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0

Zy = be(vxb) = ceVbea - a-vb-cC
Z, = veb = a+Vbea + c+VbecC
Z. = beVcea = bR
2 N
The symbol Z is a mnemonic for '"zeroth harmonic.' Observe that Z

vanishes in a current free region of space, i.e. when ng‘='0; and

that Z, can be made to take on any desired value by an appropriate
choice of perpendicular unit vectors, as'waslnoted above .
The principal vectors of the first harmonic are a and c. In

addition, we have.the following scalars, in which the symbol F is a

mnemonic for "first harmonic'":

0
F1 = beVb-c
F2 = a-Vcra = aog
F, = c-Veea = c+R
N

(3.20)
(3.21)

(3.22)

(3.23)
(3:24)
(3.25)

(3.26)

At the second harmonic, there are two tensor operators of importance,

namely aa-cc and ac+ca. From these we define the following scalars, in

which the symbol S is a mnemonic for 'second harmonic":

lAAA A A A
S0 = 5-(a-vb~c + ceVb-a)
1 .~ o~ A A A
Sl = 5—(a-Vb-a ~ Cc*Vbec)

Using these definitions, let us rewrite the Poisson bracket

(3.27)

(3.28)

relations in Eqs. (2.22e)-(2.22g) so as to show the Fourier decomposition

of the terms:
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1; 1 Shu ' ,
{u,8} = E-Zo - Z2 - G'FO S0 | ‘ (3.29a)
: 1 . o )
{u,w} = w(E-Z1 - Sl) + uF1 | (3.29b)
_e,u | |
fo,w) = —0+ 22, + F, _ (3.29¢)

We conclude this section by listing in Table I the derivatives and
integrals with respect to 6 of the various first and second harmonic

quantities defined above. This table will be of use later.
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4. THE DARBOUX TRANSFORMATION: FORMAL PROPERTIES

4.1. . Preliminaries

In this section we will describe some of the formal properties of
the Darboux transformation, which will take us from the (¥,u,6,w)
coordinate system in phase space to a new system, denoted by.(%,U,e,J).
This transformation is defined and justified on the basis of a straight-
forward and obvious extension of the methods of Ref. 1. We will postpone .
until Sec. 5a derivation of explicit. expressions for the .Darboux
transforma;ign, and;cbncentrate in this section on various closed-form :
results which can be pbtained,without:those expressions. Moét importantly,

we will derive in this section the components of the Poisson tensor with

respect to the,(%,U,e,J) coordinate system.
4.2. Specification of the Darboux transformation

Following the ﬁéttern established in Ref. 1, we seek a set of five
independent functions 6f‘(§,u,e,w); namely %, U, and J, which will

satisfy the following Poigéon bracket relations:

1/¢ 4

{8,J} =

{6,X} =0 - | | (4.2)
{o,u} = 0 (4.3)
{J,X} =0 (4.4)
{J,u} =0 (4.5)

Tﬁe solution of these equations for the five unknown functibns (é,U,J)

will produce a '"'semicanonical'' coordinate system in phase space,
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namely'(é,U,G,J), in which the variables 8 and J.gre, one might say,
""canonically decoupled" from the other four variables (é,U). The feason
for choosing the symbols X and‘U'fof four of the new coordinates will
become apparent in a moment. As in Ref. 1? the Poisson bracket {e,J}
is required to take on the valﬁe 1/e instead of 1 so that J will be |
0(1) instead of 0(e). |

The transformation (z,u,e,w) > (%,U,B,J) will be called the Darboux

transformation, because the solution to Eqs. (4.1)-(4.5) is obtained

by applying the Darboux algorithm, as explained in detail in Ref. 1.
In the new coordinates the unperturbed system, correspohding‘physically
to rapid, circular gyrations, is separated from the perturbation, which
corresponds to inhomogeneities in the magnetic'field, The precise'meaning
of this statement will become clear in Sec. 5,‘whén we obtain the
Hamiltonian in the (%,U,G{J)'coordinates. In addition, the semicanonical
nature of the new coordinate system allows us to.carronut an averaging
transfdrmation 5y means of Lie transforms, as will be shownvin Sec. 6,
the result éf which is a Hamiltdnian which is independent of 6.

To solve Eqs. (4.1)-(4.5) we introduce two différential opergtors,

d/dx and d/d,, defined by

d/dx

{ ,0) N ()

d/du = { , 3} (4.7

The operator d/du is not determined until we have, at least in principle,
a solution for J. Using these operators, Eqs. (4.1)-(4.5) can be written

in the following form:
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dJ/dx = -1/¢ . ‘ T (4.8)

S dx/dx = 0 - (4.9)
du/dx = 0 (4.10)
dX/dy = 0 - . o (4.;1) '

du/dy = 0 : (4.12)

Let us write Z = (é,u,e,w), and consider the phase space curves

z= %(A) which satisfy
d%/dx = {%,6} o "‘. - :(4ﬂ13)

These curvés will be called the "6-characteristics," bécause they are
the characteristic curves of the partiél différential operator contained
in Eq. (4.6)._ Once the 6-characteristics have been determined, the -
solutioﬁs to Eqs. (4.8)-(4.10) follow immediateiy. Similériy; the curves

z = %(p) satisfying

dz/dw = {z,3} . = % DI (4.14)

will be called the ”J—chafacteristics," and they'are used to solve Egs.
(4.11) and (4.12).
The defining équatioh for the e;charactéristics, Eq. (4.13), may be

written out, using Eﬁs. (2.22) and (3.29). The result is

dx a o
reeq o (4.15)
du _ 1., .,  _u. - ¢

> T7% %22 wFo 5 (4.16)
dw _ _ @ _u -

il z0 F3 (4.27)_

For ¢ sufficiently small, the right hand side of Eq. (4.17) is dominated
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by the term -f/ew, and'w is seen to be a-honofonic function of A.
Therefore Eq. (4.17) can be used to eliminate A in favor of w, yielding
the following set of differential equations, in which the equation for J,

derived from ‘Eq. (4.8), has been included:

a

o =€—D (4.18)
d—“=i[w(-lz+i)+up+ws] (4.19)
dw D 270 2 0 0 ' T
dJ _w A
=D (4.20)
Here the denominator D is given by
D =@+ c(uZy + wFy) | | | _(4‘.21)'

~Eqé. (4.18)-(4.20) are more useful than Eqs. (4.8) and (4.15)-(4.17) for

a practical determination of_the~functions-{%;U,J). S e e e e

4.3. Geometrical interpretation of thé coordinates (é,U,J),

_‘Let us give a geometrical interpretation to tﬁe g8-characteristics, .
and also to the functiqns (%,U,J) wﬁich are determined from them. We.
maf asshme fdr the sake of argument that we have a positive particle,
so that Q>6. A similar sequénce of deductions will go through for
a negative pérticle. Let us also assume, as we did abo#e, that é is
small enough that the term -Q/ew dominétes the right hand side of.Eq.
(4.17). ThenAas A increases, w decreases monotonically towgrd w=0.
Therefore the e-characteristics,vwhich must lie on the surfaces
8 = constaht, converge inward toward the four-dimensional surface w=0.
This surface is a singular surface, in the sense that it is a branch

surface of the phase function 6, and a single point of this surface
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is converged upon by a whole family of e—chafacteriétics. An entirely
analogous behaviour;for the 6-characteristics was observed in Ref. 1
and discussed there in greater detail.

Every point Z = (é,u,e,w) of phase space (except those for which.
w=0) has a unique 6-characteristic passing through if, and that 6-char-
acteristic, followed inward, reaches the surface w=0. .Fig. 4 gives
a schematic illustration of the 6-characteristics and certain quantities
associated with them. VWhen the surface w=p has been reached, the X and
u coordinates take on certain values, which: . can be considered functions
of theboriginal point z- We will call these functions %(%,u,e,w) and
'U(%,u,e,w); they have the property that when Q=0, %=§ and U=u.
Effectively, the functions % and U fqrm a coordinate system on the
surface w=0, which is being treated as an initial value surface for
the e-characteristi;s. The values of the functions X and U elsewhere
in phése space are found by propagating these functions élong 6-char-
acteristics, i.e. by asSigning»the‘same values of X and U to any two
points z and‘%' which lie on the same efcharaCteristic. Cleariy, the
functions X and U so constructed are constants of the 6-characteristics,
and hence satisfy Eqs. (4.9) and (4.10).

. As for the function J(&,u,e,w), we define it to be -1/¢ times the
elapsed A pargmeter between the point z= (é,u,e,w) and the w=0 point
on the 8-characteristic passing fhrough z. "The resuitihg function
SatiSfies.Eq.‘(4.8), and it also satisfies the initial value

condition J=0 when w=0.

4.4. Constants of the J-characteristics

According to the Darboux algorithm, the four functions (%,U) will
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be constants of the J-characteristics everywhere in phase'spaée, i.e.
they will satisfy Eqs. (4.11) and (4.12), if they are constants of the‘
J-characteristics on the initial value surface w=0. In order to analyze.
the J-characteristics on w=0, we need an expression for the function
J(Q,u,e,w) near w=0, so that Poisson brackets may be formed. That is,
we need a solution to Eq. (4.20) as a power series in w. To lowest
order in w;:the result can be obtained by inspection; it is

2 .
J({,u,e,w) = 7%— + 0(w3) (4.22)
. =70 )

where

Dy = @+ euz, » . (4.23)

Now we may find the J-characteristics near w=0, using Eqs. (4.22) and

(4.14) . The resulting differential equations for the J-characteristics are

fl_?é = Y.é + O(wz) i (4 24)
dy DO : :

du qu1 2 .
il e U] - @
dw _ 2 .

P ow™) (4.26)

The right hand sides of all three of these equations go to zero as w0,
so that the J-charactefistics on the surface w=0 éonsists of immobile
points. Hence the fﬁnctions (%,U), which take on'the Vaiues (ﬁ,u)_on
w=0, are constants of the J-characteristics on w=0, and therefore also

everywhere else in phase space. We conclude that the functions (%,U,J),
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whose construction has been described but not yet explicitly demonstrated,

satisfy Eqs. (4.8)-(4.12), and hence also Egs. (4.1)-(4.5).

4.5, The Poisson tensor in the,(%,U,e,J) coordinate system

Of the 15 independent eomponents of tneAPoisson fensor in the (5?U,6,J)
coordinate system, nine are given by Egs. (4;1)-(4.5). The remaining six
- components, i.e. the Poisson brackets of the coordinates (¥,U) among
themselves, remain to be determined. The method we use for finding these
Poisson brackets is exactly that'used in Ref. 1; since the Poisson brackets
ofltne variables (é,U) among themselves are constant elong 6 -characteristics,
we can evaluate them on the initial value surface w=0. The results,
expressed in terms of the variables ({,U), will then be valid‘everfnhefe
‘in phase space. An interesting aspect of this procedure is that it
gives results in closed form, i.e. not as a power seriee in‘e.

In order to find the required Poisson brackets on the surface w=0, |
we need the funetiens (%,U).in a neighborhood:of w=0, so that deriVatives‘.w
may‘beltaken, Therefore, as we did above with the.function J, we now solve
Eqs. (4.18) and.(4.19) as a power series in w. Again, to lewest order, the

Tesults can be written down practically by inspection:

B EW 2 - L '
%(%,u,e,w) =X - ﬁg-a + 0(w) (4.27)
équd 2 ' ,
U(x,u,6,w) =u - + 0(w’) " (4.28)
N D 0 . .

Taking the Poisson brackets of these quantities among themselves

and keeping track of the w-ordering gives, after some algebra,
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€ ,
{Xi,Xj} = 55 (aicj-ajci) + 0(w) , ‘ ‘,‘,‘(4.29)
' €u .
{Xi,U} = bi + BE—(aiFl-ciFO) +0(w) (4.30)

Then taking the limit w+0 and replacing (ﬁ,u) by (%,U) gives the

following results, which are valid everywhere in phase space:

_ €
(XX} = FeUT, bxI (4.31)
-— " ' e U " " . " »
{X,U} = b + 55— bx(b-vb) | (4.32)

In these equations all fields are evaluated at %, e.g. b means b(é), and
v means 3/3X. Eqs. (4.31) and (4.32), along with Eqs. (4.1)-(4.5),

completely specify the Poiséon tensor in the (%,U,e,J) coordinate system.

4.6: The Lagrange teﬁsor'

Because of the unfamiliarity of the manipuiations used to.derive
Eqs. (4.31) and (4.32), it would be reassuring fo check tﬁe self-consistency
of the underlying theory. One way to do this is to compute the 4x4
component matrix of the'Lagrange-tensor (called the w-tensor in Ref. 1)
which corresponds to the 4X4.Poi$son tensor given in Egs. (4.31) and
(4,32). According to the theory, the Lagrange tensor must be closed
(see Eq. (2.12) of Ref. 1). Here we are dealing only with the reduced
system of two degrees of freedom, described by the variables (é,U),
because the overall Poisson tensor, including the variables (6,J), has
4been brought into block diagonal form by Eqs. (4.1)-(4.5) (see Eq. (3.12)

of Ref. 1).
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Let us adopt the ordering (%,U) = (X,Y,Z,U) for the four phase space
coordinates, and define, for the purposes of this demonstration, two

vectors M and N by

~

- b i ' | (4.33)

Q + Uvxb (4.34)

cz °oX

The vector N is closély related to the vector B* of Morozov and Solov'ev.14

Using Eq. (3.5) it is then straightforward to show that

{X,X} = < (4.35)
NNy beN
n
Q ‘
{§,U} = - (4.36)
b.N .
N
and hence the Poisson teﬁsor has the form
(0 -M M- N
z y X
o(i) == 7 oo (4.37)
beN {-M M 0 N .
n y X z
-N -N -N 0
. X y z )

Here the subscript 4 has been appended to the symbol o to indicate that

we are dealing with the reduced 4x4 Poisson tensor in the variables (%,U).
On taking the negative of the inverse of‘oti) we obtain the 4x4

Lagrange tensor w(4)ij:



(0 - -N NS M)
z y X
s ;N 0 -Nx_My '
W, nes = = o (4.38)
Wi e '\ xn N 0 M| - T
y X z
M M M 0 )
{ X y z J
Note that the expressions for the components of the Lagfange tensor
are simpler than those of the Poisson tensor, in that they lack the
denominator 5-§. The tensor w(4) is closed, i.e. it satisfies
ow . . ow . dw .
154)” " 1(4)3“, s 4K _ 4 (4.39)
92 9z 227 . '
whére % = (X,U), if the following relations hold:
V-Q =0 - ‘ - | ' (4.40)
VxM = 3N/3U B : - (4.41)

It may be immediately verified that these two equations are valid, and .
ﬁencé that théﬂLagrange tensor ©4) is closed. |

An important result may be obtained from the Lagrange tensor. Let
us revert to fhe full six-dimensional coordinate set Z = Q%,U,O,J), and
write Qij'for the 6x6 Lagrange tensor. 'Then in aécdrdance‘wifh Egs. (4<1)-A

(4.5) we have

wes = | mmmmeee —— | (4.42)
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Let us now put'%c = (q,p) for the original canonical coordinates of
’ - VLY
-Sec. 2. Since the quantities wij are the Lagrange brackets of the coordinates

2 among themselves, we have, using the notation of Ref. 1 for the matrix vy,

azt azg
W, = =——s Y,  —— , (4.43)
1 ozt km az7

On taking the determinant of this relation we obtain

2
Cdet(u; ) =87 o (4.44)

where A is the Jacobian of the transformation z_ = (q,p) = 2z = (%,U,G,J):
- » , , e A N

3(q,p)
- Y
4= det 15U8,0) (4.45)
From these relations and from Eq. (4.38) it is easy to find |A]: B
IAI =-|Q +EUZOI . (4.46)

Therefore we have

3 .3 : 3

dqdp=|a + ez | d°X du de dJ : (4.47)

NN 0 v .

This relation is of obvious importance in any Vlasov kinetic treatment

of a plasma which is expressed in the coordinates (%,U,G,J).
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5. THE DARBOUX TRANSFORMATION: EXPLICIT EXPRESSIONS

In this section‘wé will give explicit formulas for the Darboux
transformation (é,u,e,w) - (%,U,G,J) and its‘inverse,iexpressed as
power series in €. To the order givenvthe calculations are fairly
simple and easily checked. ‘In addition, we Qill give the Hamiltonian,

also as a power series in e, in the (%;U,G,J) coordinates.

5.1. Specification of the 6-characteristics

The Darboux transformation is found by solving Eqs. (4.18)-(4.20)
for the g-characteristics and for the evolution of the function J
along them. To this end it is useful to imagine two points

- " = ". . . " -
Z; (&i,ui,ei,wi) and Zs (5f,uf,ef,wf), the "initial" point and
""final" point, which lie on the same §-characteristic. In addition, we
will call the values of the function J at the two points Ji and Jf.
Since a §-characteristic always lies on a contour surface of 6, we
hav . =

ave el Qf

As for the variables Xes Ug, and Jf, we will find expressions, written

as power series in ¢, which give these quantities as functions of

, and the subscripts on this variable can be dropped.

Wes Wo, Xo, UL, and Ji. Due to the form of the differential equations

in Eqs. (4.18)-(4.20), w is regarded as the independent variable
parametrizing the e—characteristics,’so both wo and W appear in

the expressions for Xes Ugs and J The quantities Xi» Uy and J

£’ £ i

are to be thought of as initial conditions for the functions Xe» Ugs
~and Jf; clearly, the determination of these functions completely
specifies the g-characteristics and the evolution of the quantity J

along them.



-35-

The method we use for finding the functions Xg> uf;'and Jf has been

called the method of parameter perfurbations by Nayfeh.ls. The method is

extremely simple; we put

X(wW) = xo * eXg * e2?\52 + 0(e") (5.1)
u(w) = ug + euy + 0(e?) | (5.2)
J(w) = Jo + ed) + 0(e?) ‘ (5.3)

in which the qdantities Xo» X1° etc.,, are to be regarded as functions of
w. These expressions are substituted into Eqs. (4.18)-(4.20), all
quantities are expanded out in powers of e, and then collected order

by order. For example, we have
| 2
2(x) = 2xy) * ex,°2(x,) *+ 0(e7) . (5.4)

The result is a hierarchy of differential equations, which can be solved

order by order.

The solution of the differential equations'requires only trivial
integrations. When the results are collected together, we obtain the
‘following formulas, valid between any two points Z; and g On a

f-characteristic:

s, AL ? o

X = X3 * glwgwy) + e 329(”{‘”1) a-v(g)
a2 2 . 3 ‘
"3 (Wg-wi)F, + zui(Wf-Wi)Zoli + 0(e) (5.5)

_ e[ 2 2 1 | 2
Ue = u, + 75{(wf—wi)(22- E-ZO+SO) + 2ui(wf-wi)F0] +0(e7) (5.6)
J.=J 2 )+e L ww.) (2w 4w )aev |t
£ Ga MWy £ )

1 3

2
- g;j 2(wf—w1)F3 + 3u, (wf—w )Z ]% + 0(62) (577)
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. In these formulas, all fields on the right hand side are evaluated at X5

5.2. The Darboux transformation and its inverse

Let us specialize the formulas above so as to obtain %, U, and J
as functions of (%,u,e,w). To do this we identify Z; with z and Zs
with the w=0 point on the 6-characteristic passing through Z. That.is,
we set %i=§, ui=u, wi=w, and qi=J, and also %f=§, uf=U, wf=0, and Jf=0.
These substitutions are in accordance with the definition and initial
~value properties of the functions %; U, and J, as described in Sec. 4,

and they give the following:

A 2 ~
ewa 2Y w A a ~
é(é,u,e,w) =X - < + € ;——7{Qa-v(§) + Fsa]
20
uw ~ 3
+ — 7 as + 0(e™) : (5.8)
0 !
Q . .
U(x,u,8,w) =.u - —51w2(2 -1 Z +S )} + 2uwF | + O(ez) . (5.9)
CoAr T 20 2 2700 0
w2 w3 - w2u 2
J(’)\(I,U,B,W)_ = E + € ‘6?2—:,;(3°VQ-2QF3) - -2—5-2—2' ZO] + O(E ) V (5.10)

In these formulas the fields on the right hand side are evaluated at

the particle positon x. Eqgs. (5.8)-(5.10) form the Darboux transformation.
Note that thfough the O(e) term the quantity X corresponds with the

usual definition of the guiding center. Alternatively, we might say

that X coincides with the exact guiding center for a uniform magnetic

field. It is on these grounds that we will call fhe variables (é,U,e,J)

"guiding ceﬁter variables," or; for reasons which will become apparent

in the next section, "intermediate guiding center variables." The first
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term of the expression for U needs no interpretation; it is the instan-
taneous parallel velocity. And the first term of the expression for J
is, of course, proportional to the magnetic moment to lowest order.
Note that J is negative for a negative particle. There is not much point
in interpreting these formulas beyond these 1owest.ordef terms, because
the higher order terms‘will change when we perform the averaging
transformation, in Sec. 6.

Let us return to Eqs. (5.5)-(5.7) and swap the roles of',%i and Ze This
will allow us to determine X, u, and J as functions of %, U, and w. That

=X, u.=U, w.=0, and J.=0, and also Xx,.=x, u,.=u, w.=w, and
v 1 1 i N

1s, we set ')\(;' £Af f

1

J.=J. Doing so, we obtain

£
ewa 2 w2 a
B =+ 2 A i) - g
20
L .-32 £ 0(ed) | ' (5.11)
2 0
: _ _E[.2 1 Np 2
u(X,U,6,W) = U+ 5= (2~ 3 Z,+5,) + 2UwFOI + 0(e9) (5.12)
w2 w3 | | sz . 2
JQLU,0,u) = 3=+ e[- m—s(a-vmnps) - m—zzo] + 0(e9) (5.13)

In these formulas the fields on the right hand side ére evaluated at é,
and V means B/BX.

Eqs. (5.11)- (5 13) do not quite form the inverse of the Darboux
transformatlon because to have the inverse it is necessary to express

the physical particle variables (%,u,e,w) in terms of the intermediate
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guiding center variables (5,U,6,J). To do this, we first invert the

series in Eq. (5.13) to find w as a function of (%,U,S,J). To the order

given this series inversion is trivial, and it gives

w(X,U,0,3) = (200)1/? (2‘”)(3 V0 + QF,)
39

/ .
. i‘m—g%—‘l Zo] + 0(ed) (5.14)

This is then substituted into Eqs. (5.11) and (5.12), yielding

) |
x(X,U,0,9) = x + 24, 3(2‘”) [SQa va - OF,a

60> 3
1/2
- (a-vsz)é] - (—2@)2—”205% + 0(ed) ' (5.15)
u(X,U,6,J) = U + [CZQJ)(Z2 ; Z +SO)

1/2
+ —(Z—Q‘%———U Fo] + 0(e?) » (5.16)

Again, all fields on the right hand side are evaluated at'§. Egs.

(5.14)-(5.16) form the inverse of the Darboux transformation.

5.3. The Hamiltonian
It is now possible to find the Hamiltonian in the intermediate
‘guiding center variables (%,U,G,J). It is obtained by simply substituting

Eqs. (5.14) and (5.16) into (2.21), and this gives
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| 3/2
H(X,U,8,9) = 0 + > U% + e[ {ZH)__(qr +a.vq)
3 w3
1/2.2 o |
(20)U,1 2an %y 2 , '
Y G RtEtS) Fo] * 0D - GID

We should not expect this Hamiltoﬁian to be'independent of'e; énd
indged, there are 6-dependent terms in the O(e) term of Eq. (5.17). The
angle 6 is a well defined function of the physical particle variables
(x,¥), as indicated implicitly by Eqs. (2.18) and (2.20), and this |
particular functional form was chosén on the basis of two considerations.

- The first requirement was that 6 should reduce to the exact gyrophase
for a uniform magnetic fiéld. (With sufficient care ih the limiting ﬁroce$$;
this is equivalent to e+0.) This requirement makes the unperturbed
system "recurrent," in Kruskal'sl6 terminology, and it causes .the’
Hamiltonian to be independent of 6 at lowest order. The second
requirement was that 6 should have a simple dependence on the physical
pafticle variables. Neither of these requirements takes into consideratioﬁ
the higher order éorrections in the guiding center expansion, and the
result.is a Hamiltonian which depends on 6 beyond lowest order.

In spité of its 6-dependence, however, the Hamiltonian above
may be used to obtain the well known, classic drifts, because the
é-dependence of H causes correctiéns only at an order in e which is

beyond these classic drifts. To see this, let us write H in the form

H(%,U,G,J) = QJ + l-U2

: N2
> + eHl(%,U,G,J) + 0(e™) (5.18)

and then use the Poisson bracket relations, given in Eqs. (4.1)-(4.5),
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(4.31), and (4.32), to compute time derivatives. Let us carry the results
to the highest order in € which is compatible with an assumption of

ignorance -about the term eH,. The Poisson bracket relations in Eqs. (4.31)

1
and (4.32) are to be expanded in a power series in e in this process.

The drifts themselves are found by computing dé/dt; Carried through
0(e), this is

- 1~ U2 oo oo o Oy 2 |
= bU + e[ﬁ-bX(JVQ);+ i{'bx(bbe) +b |t 0(e™) , (5.19)

2 &

Evidently, the parallel motion of the guiding center can be found only

through 0(1), because of the term in aHl/aU. That is, we have

dx h - .

g PO | | © (5.20)
The perpendicular motion, on the other hand, can be found through O(e):

2

d)é e oA ',\A_ 2 o : »
LﬁJL = § bx©ve + UTBevB) v 0(D) (5.21)

Mirroring effects are displayed by computing du/dt:

_Jb-v2 + 0(e) V - | (5.22)

Finally, we can compute the time derivatives of 6 and J:

dé _ @2 ‘ '

T rom o _ , (5.23)
) ,

aJ _ 9 :

=55 o , (5.24)
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In Eq. (5.24) we see that J has a time evolution at O(1). This evolution
is, howevef, purely oscillatory at 0(1), because the opérator 3/236
projects out purely.oscillatory ferms in 6. Therefore J has a secular
time evolution only at O(é). That j has a time evolution ai all is,
of coufse, a reflection of the fact that the Hamiltonian does depend'
on § in terms béyond lowest order, and hence that J is a constéﬁf of
the motion'oniy to lowest order.

When‘the 0(e) term in thé Hamiltonian is made independent of 6 by
méans of a near—idéntity coordinate fransfdrmation; all of the results
.expressed in Eqs. (5.20)-(5.24) becomé extended to-one higher order.
In particular, one obtains the second order perpendicular drifts. We
now turn our attention to the averaging transformation, which will

yield a Hamiltonian which is independent of 6.
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6. THE GUIDING CENTER HAMILTONIAN

‘In this section we will develop a procedure for finding a near-
identity transformation of the form (X,U,6,J) + (X,ﬁ,é,ﬁ).such that
the Hamiltonian in the new coordinates is independent of 8. The new.
variables will be called "averaged guiding center'variables," and
the new Hamiltonian K will be called the ''guiding éenter Hamiltonian."
The procedure involved is a variant of the Lie transform method, as
vdeéailed in Ref. 1. Using the guiding center Hamiltonian, we will be"

able to find, .among other things, the second order perpendicular drifts..

6.1. The averaging.transformation

According to'fhe.théory develbped inhﬁef. 1, coordinate transfor;
mations assbciéfed with Hamiltonian fiows preserve the functionai férm
of the Poisson tensor, which in our case. is given By'Eqs.»(4;i)-(4.5)'
and (4.31)-(4.32). These transformations were given the name '"symplectic
transformations' in Ref. 1, and. they are, in a sense, canonical |
transformations expressed in noncanonical coordinates.

In order to develop an expression for a near-identity symplectic
transformation, we consider a sequence of time-indepeﬁdent phase functions
gl, g2, ..., which we will call the,generatérs of the tfansformation.

The generators are associated witﬁ a sequence Ll’ L2, ... of "Lie

operators,' defined in terms of the Poisson bracket:

The factor € has been inserted into this definition in order to cancel

the factor 1/e¢ in Eq. (4.1), so that the Lie operators Ln are 0(1).
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The Lie operators are in turn associated with a sequence Tl’ T

symplectic transformation operators, according to the rule

_ _.n
Tn = exp(‘e Ln/n)_

Finally, the Tn are multiplied together, giving an overall symplectic

. . . -1
transformation T and its inverse T " :

T = "'TSTZTI
-1 -1,.-1_-1

T = T1 T2 T3 e

Under the action of the transformation T, the old variables

z = (X,U,8,J) go into new variables % = (E,U,é,j) according to

£
%

Tz
n

T_lé

Likewise, the old Hamiltonian H is transformed into the new Hamiltonian

K:

Our goal is to design the transformation T, i.e. to find the generators

2’

v(6.2)

(6.3)

(6.5)

(6.6)

(6.7

gn,‘so‘that the new Hamiltonian K will be independent of 8. In addition,

we demand that the transformation itself be free of secular terms.

To this end we expand the components of the Poisson tensor, which

appear implicitly in Eq. (6.1), in power series in ¢, and write

(6.8)
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where
\ L =E_g.£2__i§£.a_
no 36 3J ' aJ 238
g
= peyg O_ _ D 7,
Lnl =5 Vgn oU  au bV

and so forth. These are substituted into Eq. (6.2) and thence into

Eqs. (6.3) and (6.4), giving

. 2
2
‘T =1 - eLlO +

2 20 10

2
-1 2
=T el * 3yl

Finally, we write

and combine Eqs. (6.12)-(6.14) with (6.7) to get, to the lowest two

orders,

L, H = K1 - H

100 1

For the purposes of this paper it will only be necessary to find the

first generator, gy> which is specified by Eq. (6.16).

£ (-L,. + L - 2L,,) + o3y

Ly, + LI, + 2L,) o)

(6.

(6.

(6.

(6.

(6.

(6.

(6.

(6.

10)

11)

12)

13)

14)

15)

16)
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6.2. The guiding center Hamiltonian
Let us apply the results above to the Hamiltonian in Eq. (5.17).

First, from Eq. (6.15) we have

- = = - 1 -2 A . ,
Ko(X,U,J) = 2(X)J + > U (6.17)

Next, Eq. (6.16) is decomposed into its averaged and oscillatory- parts

in 6. The averaged part gives K1:

kq&h;w%z+z

1 ot 2) (6.18)

The oscillatory part gives a differential equation for glz

o 81 (205)3/2
-

a6 39

(2QJ)U S
29 0

(QF _+2-vQ) -

3

1/2,2 S |
- (ZQJ% U F, » N : (6.19)

Using Table I, this is easily integrated, yielding

' 3/2 1/2.2 )
g, = &zgi%_f_(_gpz+e.vg) - £22%19.51 +‘£3&£¥T—lL-F1 (6.20)
30" 49 Q

- Here we may collect together the terms of K, writing out Zovand 22:
- - = = 1-2  of1- A 2 :
K(%,U,J) = QJ + EU + EJU[E b- (Vxb) + b-g] + 0(eT) (6.21)

Of course, all fields on the right hand side are evaluated at the averaged

guiding center position X. K is the guiding center Hamiltonian.
p .
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6.3. The averaging transformation: explicit results
Using the result for g and.the transformation formulas in Eqs. (6.11)
and (6.12), it is easy to write out explicit expressions for the

averaging transformation (X,U,6,J) - (X,ﬁ,é,i). We find the following:

X(X,U,8,J) = X + Efﬁ{_(zQJ)s' e 80200 Y20F. 7 + 03 (6.22)
ALY - % 492 1 1 E) .
U(x,U,6,J) = U + 0(e?) - . ' (6.23)
. ) € 3/2, 4 '
J(x,u,0,J) =3 + —=[2(203)° “(QF _+a-vQ) + 3Q(20J)US
N 693 3 0
N 6Q(ZQJ)1/2U2FO] + 0(ed) (6.24)
8(X,U,8,J) =6 + —E-{z(sz)l/z(;QF +8.VQ) - QUS
¥ 2 2 1
2Q
+ 29(29J)’1/2U2F1]‘+ 0(82) o "(6.25)

We need not write out the inverse of Eqs. (6.22)4(6.25),’because
to the ordef given it may be obtained simply by swapping z and % and
changiﬁg the sign of the correction terms. | | N

Of perhaps greater importance than the above is the transfp;ma;ion
connecting the averaged guiding center vaiiabiés with the physical

particle variables. This transformation is obtained by combining

Eqs. (6.22)-(6.25) with Eqs. (5.8)-(5,10). The result is
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ewa

— + ¢

2
XGou,0,w) = x - =2 2’-531}39s16 + 2(b-v)b + 20(bxR)

49

- VQ - (aa-c).ve| + 2(z a+2F. b)) + 0(e3) (6.26)
‘ g2 1
O(x,u,0,w) = u - Erwlz.- L7245 ) + 2uwE.] + 0(eD) (6.27)
A2 29 2-2° "0 0 :
B(x,u,0,W) = 6 + -5L1}w(-np +3-vQ) - QuS
A ZQ2 2 1
u2 2 ,
+29 —F; |+ 0(e9) (6.28)
= w2 £ 3 2
J(g\c{,u,e,w) T + ;;g[\v a‘VQ‘ + Qw u(SO-ZO)
(6.29)

+2Qwu2F0] + '0(62)

In these expressions, all fields on the right hand side are evaluated at

the physical particle position X.
inverse of the transformation

For completeness, we give here the

specified by Eqs. (6.26)-(6.29).
=.1/2 -

- - - o _ Q R N N -

(X,0,6,5) = X + LD 5 4 20D o5 5+ adb-va)b

N ~ 9) 493 1

f 7)

-.1/2- X
} . Q_w__u__[_gplb
4Q

- zg(ﬁxg) - 3VQ + (34-88).V
(6.30)

lC."
(SN}

- 224 - bx(a-vb) - e-vﬁ] - = b.vb $+ 0(e>)
Q" .
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- € | = 1
o [(ZQJ) (Zy- 5 Zo*S,)

=
—~
»<
[eni}
D1
-
]
Nt
n

[and

+ z(zm)l/zﬁpo] + 0(eH (6.31)

0(X,0,8,3) = 6 + <=|2(203)1/ 2 (aF_-¢-va) + obs
A ) 2 1

-29(293)'1/262F1]' + 0D - (6.32)
w(x,0,8,3) = 2ah/? .+ ;—Q[(znj)l/zﬁ(zo-so)
- zﬁzpo] f.O(ez) ' (6.33)

.Iﬁ\these expressions, all fields on the rjght'hand side are evaluated at
the averaged guiding center position %, and the vectors a and c are
evaluated at 6..

Of all these relations, Eq. (6.29) is especially important. J is
the adiabatic invariant associated with the gyration, and it is proporé V

tional to the magnetic moment, denoted here by u:
we=gold . (6.34)

According to this relation, p is positive for particles of both signs of
charge. The O(e) term in Eq. (6.29) is in agreement with the old result.
derived originally by Kruskal.4 The 0(52) term which would follow is

to date unknown, except for maghetic fields of special symmetry.
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6.4. Uniqueness of the averaged éuiding center variables
It is important>to ask to what extent the variables (g,ﬁ,é,j), given
by Egs. (6.26);(6;29), are unidue; S0 that other guiding center variablee
of possible advantage may be selected in various applications. On_the face
of it, this is a formidable question, because the route from the phyeical
‘particle variables in Sec. 2 to the averaged gu1d1ng center var1ab1es
here is long, and it is punctuated with a number of reasonable but
essentlally arbltrary choices whose ultlmate effect is not clear \Tou
. formulate an answer it is perhaps best to study the end product, eepecially
in the light of Kruékal'slé'theory of "nice" variahles, rather than to
analyze in detail the method by uhich the end product was obtained.
| Let us begin by llstlng, roughly in order of 1ncrea51ng speC1a112at10n,
some prOpertles wh1ch the averaged guiding center varlables satlsfy We |
may then examine the degrees of freedom which are introduced, step by.
step, as the listed properties, taken as restricting assumptions on the
averaged:guiding oenter variables, are relaxed.
| First and foremost the averaged gu1d1ng center varlables are free
of rapld osc111at10ns to all orders, at least in the 1mag1ned and formal
11m1t that the requlred power series are carried out to all orders. , To
state thrs property a 11tt1e more prec1seiy, we may say that the t1me
derlvatlve of the averaged gu1d1ng center varlables is 1ndependent of the |
angle-like varlable 6. This is the property of“"nlceness,” and its exact
definition involves the singling out.of an angle-like variable whose time
'fevolutlon unllke that of the remalnlng varlables is non-zero at lowest
order. (In the case at hand, the lowest order is O(e ) ) In a noncanonical
theory of gu1d1ng center motlon, such as that developed by Northrop and Rome,8

niceness is the only essential requirement. The overbar notation for our
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~variables here, as well as the word "averaged,' are reminders that the
variables are nice.

Second, the averaged guiding center variables form a semicanonica}v.
coofdinate system in phase space. By this we mean that the set of six
variables (%,ﬂ,é,i) consists of two, namely 6 and J, which are (apart from}‘b
the factor 1/¢) canonically conjugate, plus four more, namely % and U, thch
have vanishing Poisson»ﬁrackets with 6 and J. Let us write é'for the four
variables Z and U collectively. Then the éemicanonical requirement can be -
written as {5,3j=1/e and {é,é}é{é,3}=0. With the given identification for é,
this requirement is equivaient to thé'Poisson bracket relatioﬁs in Eqgs.
(4.1)-(4.5). ' By ‘

Third and finally, the four‘variablés E satisfy Poisson bracket relations
among themselves whose form is given by Egs. (4.31)-(4.32). These relations,
as well as those in Egs. (4.1)-(4.5), were preserved under the symplectic
averaging transformation.

Given all three of these requirements, the averaged guiding center
variables are still not unique. Consider first the Poisson bfacket relations.
These relations are certainly presefved under any symplectic transformation.
Conversely, if a transformation preserves the Poisson bracket relationst and
if the trénsformation can be[continuoﬁsly connected with the identity
transformatiqn; then it is (questions of convergence aside) a symplectic
transformation such.as shown in Eq. (6.3).

Only a certain subclass of the symplectic transformations will preserve
niceness, however. The members of this subclass are associated with generators
nghich are indeféndent of 6. If we put L = elg, } for such a generator and

T = exp(-L), then it is easy to see that T takes any phase function which

is independent of 6 into another such function. (Here we are treating
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factors of € slightly differently than in Eqs. (6.1)-(6.2).) In particular,
~a B-independent Hamiltonian goes into another such Hamiltonian, and hence

niceness is preserved.

Such a transformation T takes the variables z = (Z,6,J) into a new
set Tz = z' = (£',6',J') according to
N 4V n
z' = exp(-L)Z S ‘ (6.35j
n ] n
6' = exp(-L)6 (6.36)
Jr =]

J o , (6.37)

Since we are assuming that 3g/d6 = 0, the action of T on the variable J
can be written out explicitly. The action of T on the variables ¢ and 8,
. 4V

given by Eqs. (6.35)-(6.36), can be written as a powér series in €,

assuming that g itself can be expanded in powers of €. Explicitly, we have

X' = X 4 b 2B 4 0(s2g) : ' (6.38)
ny AV -
a0

U' =0 - eb-vg + O(ezg) (6.39)

§' =8 + & 4+ 0(ep) | | (6.40)
3

The transformation given by Eqs. (6;35)—(6.37) is the most general one
which satisfies all three properfies listed above, if we restrict considera-
tion to transformations which can be continuously connected with the identity.
It is interesting to observe that the degreé'of afbitrariness in»the
averéged guiding center variables, as indicated by this transformation,
cén also be achieved by modifying certain steps in the procedure used
to derive the averaged guiding center variables (%,U,é,ﬁ). For example,

a suitable choice for g in Eqs. (6.38)-(6.40) will reproduce the effects

of a redefinition of perpendicular unit vectors, as will be shown below..
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In addition, if we had allowed for a constant of integration, depending on
(é,U,J), on passing froﬁ Eq. (§.19) to Eq. (6.20), then the effeet would be
the same as the transformation above, with'g =.ec aﬁd c being the constant
of integfation.

Let us now suspend the third reqﬁirement, and ask for fhe general form
of a transformation (5,5,5) +-(E",§",5”), such that the doubleiprimed
variables are nice, and such that the variables 6" and J" are canonically
decoupled from the variables E" in the manner shown by Egs. (4.1);(4.5), but
where the Poisson brackets of the variables E” among themselves may take on
- whatever form they will. .Certainly there is nothing sacred about the forms
‘given in Eqs. (4.31)-(4.32). These forms came from our choice of coordinate
system on the surface w=0, namely that which is naturally induced there by the
(%,u)bcoordinate mesh. Although this choice was reasonable, it was not
compelling.

We may answer this question first by noting that the symplectic transfor-

mation given by Eqs. (6.35)-(6.37), followed by a transformation of the form

" = %(é') (6.41)
n .
8" = o' ‘ (6.42)
Jv = Jv (6.43)

where % is an arbitrary invertible transformation of four va;iables inte
four variables, will be a meﬁber of the class of trehsfermations we seek.
Because the second transformation mixes up the four variables E' among
themselves; but leaves 6' and J' alone, Eqs. (4.31)-(4.32) will in general
pass into a forﬁ-with little resemblance to its antecedent, wherees the
form of Eqs. (4.1)-(4.5) will remain invariant. An example of such a.

transformation %‘would be the transformation which leaves U unchanged but



-53-

which converts % into spherical (or toroidal) coordinates. Secondly
and conversely, it is possible to argue that any transformation
which preserves niceness as well as the form of Eqs. (4.1)-(4.5) is
" the composition of a transformation of the form of Eqs. (6.35)-(6.38)
with one of the form of Eqs. (6.41)-(6.43). |

When we abandon the second requirement, that the form of the Poisson
brackets in Eqs.v(4.1)-(4.5) hbld, then we are left only with the require-
ment of niceness. It was argued'in Ref. 1 that at least a semicanonical
coordinate system is necessary in order to carry out Hamiltonian pertur-
bation theory, although Hamiltonian mechanics itself can be made generally
covariant. Therefore, for practical purposes, the relaxation of the
;etond requirement amounts to an abandonment df Hamiltonian mechanics.
Let us note, therefore, before taking leave of semicanonical coordinate
systems, certain features which are common to all such systems.

Most outstandingly, the quantity J is common td all such systems%.
as shown by Eqs. (6.37) and (6.43). Kruskal has shown that J is an
action integralAassociated with certain ciosed curves in phase‘space,
‘called "rings." 'Thévdetailed form of the action integral is equivalent to .
the Pdisson bracket relation in Eq. (4.1). Rings are geometrical constructs
thch are based on the properties of nice variables and which are ind;pen-
dent of coordinate system. It follows that J éannot»change under a trans-
formation of coordinates which preserves both niceness and the semicanonical
Poisson bracket conditions. One might summarize this by saying that the
, adiabatic invariant associated with the gyration is unique.
Next, we note that the quantity 8 can change only by the addition

of some function which is dependent on the other five nice variables,
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as shown by Eq. (6.40). Geometriéally,'thiS'amounts'to a change in the
origin of phase, different for'each'ring, which nevertheless leaves.
“unchanged the relative reckoning of phasg along -any given ring.

- Let us now relax all requirements except that of niceness. Let us

write £ for the five nice variables (K,U,J)'collectively, and ask for
v
the most general variable transformation which preserves niceness.

Kruskal has answered this question; it is
6' = 6 + £(E) (6.44)
S N ' ' o

Pl Al

(€) P ' (6.45)
'\’ .

2ln

where f is éh arbitrary function and where E is an arbitrary invertible
trénsfdfﬁation of five variables into fivé others. Note that Eq. (6.45)
involvés a much gréater freedom‘of éhoice'of variables than was allowed
in the semicanonical coordinate sysfems. We will see later that thisl

extra fféedom'makes noh-Hamiltonian treatments of éuiding ceﬁter motion

somewhat more convenient, for some purposes, than Hamiltonian treatments.

6.5. A judicious choice for perpendicular unit vectors

It may be seen in Eqs. (6.26)-(6.29) that all of the averaged'guiding
cente; variables except J depend on the choice of perpendicular unit
vectors, as shown by their dependénce on thé vector 5. In addition, -
the Hamiltonian K, shown in Eq. (6.21), depends on g in the O(e) term.

That J does not must be a reflection of the fact that J can be defined

in invariant terms, as was mentioned above. The deeper significance of this

-
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observation is not clear, but it may be noted by way of providing a clue
that J is the generator of displacements in 6.

In any case, thosé quantitiés which depend on 5 through Z2 = 6-5 can
be brought into a possibly simpler form by'a'judicious choice of perpen-
dicular unit vectors, as shown in Sec. 3. As noted before,'such a choice
cannot be determined locally and hence is not useful for numericél work.

But for theoretical or algebraic purposes, there is no harm in setting

5'5 equal to any scélar field we like. In particular, if we take
BeR = - % B (vx) | | 6.46
ny 2 ( . )

then the O(e) term in the Hamiltonian K vanishes, and we have

2

K(X,0,3) = oJ + %-ﬁ + 0(62) C o (6.47)

n

This choice of perpendicular unit vectors is equivalent to taking

for the field ¢(§), appearing in Eqs. (3.11)-(3.12), the following:

X
1 A~
¢ (x) =/"' (§ + 3 Vxb) «dx (6.48)
wheré the integrand is evaluated at 5' and the integral is taken along
a field line. It is also equivalent to taking
gX,0,3) = -3 oD (6.49)

in Eqs. (6.35)-(6.40).

In addition to simplifying the Hamiltonian K, the assumed choice of
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perpendicular unit vectors simplifies Eqs. (6.27) and (6.31), giving

0(x,u,6,w) = u - -zéﬁ[wz(,so-zo) + 2uwFO] + 0(e?) (6.50)
u(g,vﬁ,é,j) =U + %[(293) (so-zo) + 2(293)1/2050] + 0(52) : (6.51)

On taking the phase 3verage, which agrees with the time average to
lowest order, Eq.(6.51) gives an equation'which provides an interpretation

- of the variable U:.
U = Avg.(u) + eJb-(Vxb) + O(éz) (6.52)

The variable U agrees with the variable v, used by Northrop and Rome8
through the’order given. ‘A different choice of perpendicular unit vectors
could have been made which would cause U to be identica} with Avg.(u);
although it would also éause the Hamiltonian K to be more complicated..
The effect of the O(e) term in Eq. (6.52) has been carefully discussed
by Northrop and Rome. . |

No matter what choice iS made for perpendicular unit vectors,

however, it is impossiblg to rid the expression for X, given in Eq. (6.26),

X 2

of its dependence on 5, which is through the term bx . (The only
exception is the case that ng, given by Eq. (3.13), should vanish.)

We shall return to this point later.

6.6. The equations of motion
Let us make the choice of perpendicular unit vectors implied by

Eq. (6.46) and derive the equations of motion, which will give us,
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among other things,. the second order perpendicular drifts. The general
case of an arbitrary choice of perpendicular unit vectors need not

be given; the more complicated formulas which result in this case are
easily worked out.

First let us compute dg/dt. We have

&‘ €$<‘|

= {g,g}-[Jvn +,0(e2)] + {g,ﬁ}[ﬁ + 0(52)] ' (6.53)

Taking the parallel and perpendicular components of this relative to

b(%), we obtain

(dX) ‘

| = b0 + 0(e? (6.54)
\dt”‘ : :
(4] - 2~ - 3 | J

rra i ———jri——-r— bX(3VQ + Ub-Vb) + O(e™) . v (6.55)
Pl qeelbe (9xb)

Eq. (6.54) shows that U is actually the parallel velocity of the guiding
center. Eq. [(6.55) shows that the 0(62) correction to the perpendicular
drifts is proportional to the O(e) ferm, although this simplicity has
been achieved at fhe price of making a Special and not necesgarily
convenient choice for the definition of the guiding center position %.

0f course, Eq. (6.55) is easily expanded properly into a power series in €.

Next, we may obtain the O(e) correction to the mirroring expression.

d0 = (b2 + elvxb)-v 2 '
= J (ba *+ eUVxb):78 , (% ' (6.56)
Q+eUbe (Vxb)
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Eq. (3.5) has been used in writing this result in the form given.

Finally, we have the evolution of the gyrophase:

a = et o | ~(6.57)

vy

Of course we have dj/dt = 0 to all orders.

6.7. Eliminating the dépendence of Z on R

One's intuition says that the guiding center position g should not.
depend upon the choice of perpendicular unit vectors, and hence that
the appearance of the term 6xg'in Eq. (6.26) represents a flaw or
a shortcoming in the theory.. Therefore we may ask if it is possible
to choose a new set of ayeraged guiding center variables which are free
of this term in the new:quantities which gorrespond to g. It is here

that we call upon the discussion of subsection 6.4.

Any alternate definition for E must be niée, since niceness is the
one inviolate requirement which averaged guiding center variables must
satisfy. Northroé and Rome have used the expressionv"guiding point"
for some arbitrary,vnice definition. of Z. Therg are many ways\to define
a variable Z' which égrees with our X in any given number of leading
terms of Eq. (6;26) and which is also nice, and at the 0(32) term
there is little physical reason for choosing one form over anq;her.

This may be seen from Eqs._(6.44)-(6.45), showing how a new set of»

nice variables can be created from an old set.

In particular, we may set

(6.58)
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and we have a variable X' which is both nice and independent of perpen-

~

dicular unit vectors. Likewise, we can kill the term Z_ = bog in Eq. (6.27)

2
by putting

' =T+ eJ[beR + % be(vxb)] ' (6.59)

and we obtain a parallel velocityAﬁf which is also independent of
perpendicular unit vectors. This U' is identical to the U of Eq. (6.50)
but obtained in a very different way.
Unfortunately, the variable X‘ shown in Eq.v(6.58) cannot be used
in a Hamiltonian theory, nof can any other nice'altgrnatives which eliminate
the dependence on the choice of perpendicular unit vectors. This can be
seen by examining Eqs. (6.35)-(6.43) which give the most general coordinate
transformatién allowed in a semicanonicai theory! Therefore it appears
that the intuition referred to above is wrong, at least for Hamiltonian
mechanics. | i
Fér certain applications, especially-numerical ones, it is.desirgble
to employ guiding center variables which are independent of the choice
of perpendiéular unit vectors. Furthermore, the Hamiltonian struéture
of the underlying theory may not be impoftant in such work. Tﬁerefore
we give, in Appendix A, a set of noncaﬁonical variables and their

equations of motion which would be useful for such purposes.
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7. CONCLUSIONS

.One éhortcoming of this work is that it does not allow for time-
dependent fields. Nevertﬁeless, the mathematical techniques which
were developed in Ref. 1 and applied to static magnetic fields in
this paper can be extended in a straightforward manner to time-

: depenaent electromagngtic fields. The results of this extension
will be repofted'upon in future publicatiohs.

The Hamiltonian methods developed here seem to yield results with
less labor than older metﬁods, éspetiaily when carried beyond lowest
order. Of course, there is a compensation in that there is more
théory to be mastered, but this represents a kind of fixed overhead
which does not increase as 6ne proceeds to higher ofders. For example,
it seems feasible for one person working alone to extend the results
of this paper to one higher order; although the amount of algebra is
significant. I myself have carried out approximately half of this
calculation, but I have not recorded it here because of its incomplete-
ness and Becaﬁse it does nbt have mﬁch practicallvalue. On the other
hand, to the order given the equivalents of Eqs. (6.54)-(6.56) for
general electromagnetic fields are unknown and may perhaps best bev
derived by thése metﬁods. | |

Even when carried to lowest order, however, the Hamiltonian methods
presented here promise to be useful fof the analysis of additional
perturbations. For example, the effects of a small amplitude electro-
magnetic wave on single particle motion‘jjxa nonuniform background
magnetic field have been studied by Grebogi, Kaufman, and Littlejohn.17

this analysis, the guiding center Hamiltonian in Eq. (6.47) is taken to

In

e
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be the unperturbed system, to which ?erturbing terms representing
the wave are added. Thé resulting Hamiltonian can then be treated
by standardvperturbation techniques.

Additional resulfs in the realm of éingle particle motion can
be obtained by iterating the Darboux'algqrithm. This wili allow
one to étudy the nearly periodic motion of thé guiding center
corresponding to the longitﬁdinal bouncing and motion on the flux

b

surfaces. The results obtained to date in this area involve an
averaging over the phase of the ;ongitudinal bouncing motion, which
is introduced after an averaging over the phase of gyration has
been performed. If both phase; are introduced before averaging,
then the door is open to an analysis of resonances between gyration
and bouncing. These resonances have an important effect on particle
confinement in fusion devices of the mirror type, and a perturbation
treatment should be espécially useful in the so-called superadiabatic
regime. |

Self-consistent treatments of ensembles of particles are éspecially
important in plasma physics. In the Vlasov approximation, Hamiltonian
methods are well adapfed to such treatments, and they have been applied

19-25 Nevertheless,

in recent years to a number of different problems.
for the case of nonuniform magnetic fields one has had to make do
with non-Hamiltonian methods, such as are used with drift kinetic

equations. Possibly the area of application of greatest value for

the Hamiltonian methods of this paper will be in kinetic theory.
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APPENDIX A.

This appendix gives the guiding center equations of motion in a

~ form which would be suitable for numerical integration or other purposes

~with a minimum of overhead of notational conventions. The formulas of-

this appendix are similar to those given by Northrop and Rome,8.but they
are somewhat simpler. fqr the numerical integration of systems of
ordinary differential equations it is important for efficiency reasons
that the "driving terms," represented below by the right hand sides

of Eqs. (A.5)-(A.8), be as simple as possible. Therefore the definitions

- of the guiding center variables given below have beenvjuggled so as to

simplify the éorresponding equations of evolution.
For those readers continuing from the main text, we note that the
guiding center variables (ﬁ,U,J) used in this appendix are nice but

noncanonical variables. The overbar notation has been dropped, and these

variables of Sec. 4. The variablesku and J are identical to U and J
of Sec. 6, while X is identical to X' of Eq. (6.58).
Let X and v be the particle's instantaneous position and velocity,
let 6 be the unit vector in the direction of the magnetic field~§,
let Q=eB/mc be the signéd gyrofreqﬁency, and let u :_G-X be the particle's
instantaneous parallel velocity. Then the guiding center position X

may be defined as follows:

X=x -
v n,

D|m

g e 2
bxy + €2 —l—-4vl(v*-VQ) + QVE b(b-vQ) - 4v,VQ
" 893 ATt

. . O S 3
+ 6Qb(x¢-Vb-X¢)] + Qﬁz-[o-(wb)bxx + 2b(b-vb-x_,_)}} + 0(e”) (A.1)
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In this formula and those that follow, € represents a mnemonic device for
‘keeping track of the order of the terms. It shouid be set to unity in
applications. Furthermore, the operator V in expressions.involving VG

is taken to operate only on the vector ﬁ, One may think of Vg as a matrix
M with components Mij = abj/axi.

‘The parallel velocity of the guiding center U is defined as follows:
Us=u.E£ 2(bxy) +Vbevs - vZbe(Uxb) + 4ub-¥b+(bxy)| + 0(ed)  (A.2)
40 n At 4 N :

The quantity U is identical with the qﬁantity v, used by Northrop and Rome.
The -adiabatic invariant of gyration J is related to the'magnetic moment

u by p =eJ/c. It is given by

. _E
493

o
I

2yf(bxx)'VQ + Qu[Z(bx,\\/)-Vb-)\/'_L - yfb-(VXbﬂ
_ 2. - 2 :
+ 4Qu b-be(bxx) + 0(e7) (A.3)

Note that J is negative fof a negative particle.

Eqs. (A.1)-(A.3) are to be regarded as definitions of the guiding
center variables in terms of the instantaneous particle variables 5 and Y.
Therefore all fileds on the right hand sides, such as 2, and B, are
evaluated at the instantaneous particle position Xx. Invaddition, note that
these equations can be written in a nﬁmber of different forms. The forms
chosén are more or less arbitrary.

The kinetic energy K = l-mv2 of the pérticle can be expressed in

2

terms of the guiding center variables. The relation is
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K = m[n(;é)J + %—'UZ] + 0(e?) (A.4)

The equations of motion of the guiding center variables are

as follows. First, the parallel velocity: ,
g% = -Jb-[\m + %g(b-Vb)XVS;] + 0(e?) ' ‘ ~ (A.5)

This is completely equivalent to Eq. (6.56). Next we have the parallel
motion of the guiding center, by which we mean the component of d%/dt which

is in the direction b(%). This 1is

dx) . > _

—| = bU + 0(e) (A.6)
1 , :

Finally, we have the perpendicular motion of the guiding center:

d% ~ 2; » j 27 U3 - S 7
—| = £ bx(Jvq + Ub-vb) + ¢ bxg- —(b+Vxb)b-Vb
dt Q 2
L Q
+ -‘-J—U‘ - —V-—Q-(IA)VXIS) - —l-(f)-fo))]A)-Vl; + l v(};.VxB)
Q Q 200 _ 2
- bx(b-Vb-Ub) + (V-t;)I;X(bﬂ?b)]; + 0(ed) (A.7)

In this expression, the term in V(b-Vxb) is not in a form which would
be most convenient for numerical integration. When this term is expanded

out, along with all the other terms multiplying JU above, there results
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I IR L o JURSI T

+ ‘B.vﬂ.vb - -;—V(V-b) + %vzb] _ ' (A.8)
N :
where the symbol 1 means to take the perpendicular projection relative
to 1;(')‘(1) Finélly, we note that in Eqs. (A.5)-(A.8) all fields on the

right hand sides are evaluated at the guiding center position ,)\(‘
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TABLE I. Derivatives and integrals of various quantities with respect

to 6. The symbol X refers to any of the quantities in the first column.

X dx/de /Xde
a ¢ -c
¢ -a a

Fo Fi Fy
1 Fo Fo
F) Fs F3
Fs 'Fz ks
S, -25, 45,
S, 25, -34S,
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FIGURE CAPTIONS

Fig.

Fig.

Fig.

Fig.

The three unit vectors b,_%l, and %2'

The perpendicular plane. 6 is the gyrophase to lowest order,

and the unit vectors a and ¢ rotate with the particle.
Motion in a uniform magnetic field. % is the guiding center
position.

A schmatic illustration of a §-characteristic. The w=0 "plane"
in the diagram actually represents a four-dimensional surface

in phase space.

-
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Fig. 1.
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Fig. 2.
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Fig. 3.
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Fig. 4.
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