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Abstract

Sums of Squares and Symmetric Polynomials

by

Isabelle Shankar

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Serkan Hoşten, Co-chair

Professor Jon Wilkening, Co-chair

Real algebraic geometry has a long and beautiful history going back to the 1800s. It is the
study of real polynomials using algebraic techniques. Convex optimization plays a key role
in applied mathematics and engineering, studying the geometric structure of convex sets
that arise in optimization problems. Representation theory allows us to understand, study,
and exploit the symmetries that naturally arise in many mathematical problems. The work
in this thesis lies in the intersection of these fields, studying the symmetries of geometric
objects coming from convex algebraic geometry and optimization. In particular, we study
the spectrahedra that arise in the theory of symmetric polynomials and sums of squares
(SOS) polynomials.

Much of this thesis is motivated by polynomial optimization. It is through this lens that
we arrive at the study of semidefinite programming, the feasible region of which is called a
spectrahedron. A common method for solving a semidefinite program (SDP) is via interior-
point methods. Interior-point algorithms cut out a path towards the optimal solution and
taking the Zariski closure of this defines the central curve. In this thesis, we discuss the
central curve in semidefinite programming, linear programming and quadratic programming.
As our first contribution, we prove the degree of the central curve for a generic SDP is equal
to the maximum likelihood (ML) degree of a statistical model formulated and discussed
in [75]. As such the degree of the central curve of a generic SDP can be computed using
complete quadrics [50, 53].

The study of sums of squares and invariant polynomials inevitably leads to the study of
invariant semidefinite programs [32]. Such an SDP can be greatly simplified using symmetry
reduction techniques. We explore the geometry of the spectrahedra that arise from the
invariant SDPs when considering sums of squares and symmetric polynomials. The first
spectrahedron we study is the symmetry-adapted PSD cone, denoted PSDSn

N , a spectrahedral
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cone that gives representations of symmetric SOS polynomials. We compute its dimension,
characterize its extremal rays, and determine that this convex cone is Terracini convex.
Furthermore, using tools from representation theory, one can enforce a block-diagonalized
structure on the set of matrices in PSDSn

N . We study the structure of these blocks, each
associated to an irreducible representation of the symmetric group. For the trivial irreducible
representation, we provide an explicit description of these matrix blocks.

The second spectrahedron is the symmetry-adapted Gram spectrahedron. For a given sym-
metric polynomial f of degree 2d in n variables, the symmetry-adapted Gram spectrahedron of
f is the intersection of the affine subspace defined by the coefficients of f and the symmetry-
adapted PSD cone. For particular n and d, we describe the facial structure of these spectra-
hedra, including for binary (n = 2), quadratic (d = 2), ternary quartic (n = 3, d = 4), and
ternary sextic (n = 3, d = 6) polynomials.

Finally, as an application of the above theory, we find several counterexamples to a 2011
conjecture presented by Cuttler, Greene, and Skandera in [24] pertaining to symmetric mean
inequalities.
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Chapter 1

Introduction

1.1 Motivation

Let R[x1, . . . , xn]≤d = R[x]≤d be the space of real polynomials in n variables of degree at
most d. A polynomial f in R[x1, . . . , xn]≤2d is said to be a sums of squares (SOS) polynomial
if f = q21 + · · ·+ q2r where qi ∈ R[x1, . . . , xn]≤d, i = 1, . . . , r. We will often simply say that f
is SOS for short.

Why is this interesting to study? As motivation we consider the unconstrained polynomial
optimization problem

f ∗ = inf
x∈Rn

f(x) (1.1)

where f is real a polynomial of degree 2d. Polynomial optimization problems approximate
an incredibly wide range of problems in theoretical and applied mathematics, and as such
have a rich history of research while still being an ongoing area of study. However, even this
seemingly simple unconstrained problem is NP-hard (in the number of variables n and fixed
degree). Thus the optimization community continues to search for methods that can help
relax this problem while still effectively and efficiently finding a good solution. This is where
sums of squares come in.

We first reformulate the problem as follows

f ∗ = inf{f(x) : x ∈ Rn}
= sup{γ ∈ R : f(x) ≥ γ}
= sup{γ ∈ R : f(x)− γ ≥ 0}

so that we are now interested in certifying nonnegativity of the polynomial f − γ. This can
be relaxed to a sums of squares problem,

f sos = sup{γ : f(x)− γ is SOS}.

It is clear that if a polynomial is SOS, it is nonnegative. However the converse is not
necessarily true except in the three cases proven by Hilbert: univariate polynomials (n = 1),
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quadratic polynomials (2d = 2), and bivariate quartics (n = 2 and 2d = 4). Still, there is
a great deal of practical evidence that sums of squares are highly useful even beyond these
cases.

The next natural question to answer is why this is easier to solve than the original
polynomial optimization problem. The short answer is because an SOS problem reduces
to a semidefinite program (SDP) and there are efficient algorithms to solve it. Indeed a
polynomial f is SOS if and only if there is a positive semidefinite matrix Q such that

f(x) = [x]tQ[x] (1.2)

where [x] is a vector of polynomials that form a basis of R[x]≤d. If we take Q to be a
matrix of unknowns, then by equating coefficients we get a system of linear equations in
the matrix entries of Q. Thus to certify that a polynomial is SOS, we must search over the
cone of positive semidefinite matrices (the PSD cone) for a matrix which satisfies the affine
conditions imposed by Equation 1.2 which is precisely a semidefinite program. The set of
all positive semidefinite matrices Q that satisfy the equation f = [x]tQ[x] is called the Gram
spectrahedron of f . More generally, the feasible region of an SDP is called a spectrahedron.

One common method of solving an SDP is via an interior-point method. In this algorithm,
one solves a series of optimization problems related to the original SDP. Each unique solution
is a point inside the feasible region of the SDP, and if one takes the set of all such solutions,
we create a path towards the boundary of the spectrahedron. This is called the central path
and it leads to an optimal solution of the original optimization problem.

Suppose that we now take the Zariski closure of this path. This gives us the central curve
of our optimization problem.
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Studying the central curve gives insight into how complex the corresponding optimization
problem could be. Indeed, in the linear programming case, this was studied in [25] and the
degree of the central curve of a generic linear program was calculated to be

(
m−1
k

)
, where

m is the number variables and k is the number of linear constraints. Chapter 2 discusses
this in the semidefinite programming case as well as for linear programming and quadratic
programming.

Now, the SDP corresponding to a given SOS program can grow quite quickly. As such,
it is important to develop and study tools which reduce or simplify the problem size. The
primary goal of this thesis is to study symmetry reduction techniques which do precisely
that for the case when a given polynomial is symmetric. Symmetric polynomials are of vital
importance in representation theory and combinatorics. With respect to sums of squares,
the structure of the space of symmetric polynomials can be exploited, and it is for this reason
that we are interested in studying symmetric polynomials.

The symmetry reduction techniques studied in this thesis were introduced in [32] and
can be broken into two fundamental steps. In the first step, we reduce the number of
indeterminants in the decision variable of our SDP. The second step block-diagonalizes the
decision variable. We briefly summarize this process here, but we will go into more details
in Chapter 3.

Let D : Sn → GL(N) be an orthogonal representation of Sn acting on R[x]d, the space
of homogeneous polynomials of degree d in n variables, where N =

(
n+d−1

d

)
. By restricting

the SOS problem to the fixed point subspace

F = {X : XD(σ) = D(σ)X, ∀σ ∈ Sn},

the number of variables in the SDP is significantly reduced. This brings us to the first
spectrahedron of interest. For fixed n and d, the symmetry adapted PSD cone is

PSDSn
N = {Q ∈ PSDN : QD(σ) = D(σ)Q, for all σ ∈ Sn},

a spectrahedral cone that gives representations of symmetric SOS polynomials. Next, by
employing a change of basis matrix which block-diagonalizes the representation D, one can
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enforce a similar block-diagonalized structure to the set of matrices in PSDSn
N [28]. This

results in a cone that is isomorphic to a direct sum of smaller PSD cones. The smaller and
more structured symmetry adapted PSD cone is much easier to optimize over compared to
the much larger PSD cone. We use this to define the second spectrahedron of interest in
this thesis. For a given symmetric polynomial f of degree 2d, the symmetry adapted Gram
spectrahedron of f is the set

KSn
f = Lf ∩ PSDSn

N ,

that is, the intersection of the affine subspace defined by f = [x]TQ[x] (as before) and the
symmetry adapted PSD cone. It is clear that the symmetry adapted Gram spectrahedron is
a subset of the Gram spectrahedron of f .

1.2 Contributions

Chapter 2 discusses the degree of the central curve for semidefinite programming, linear
programming, and quadratic programming, based on work in [42]. Our main contribution
is Theorem 2.2.3 where we prove that the degree of the central curve for an SDP, when the
cost function and the right-hand side vector are generic, is equal to the maximum likelihood
degree (ML degree) of the linear concentration model generated by the constraint matrices
and cost matrix of the given SDP. When the constraints are also generic, this degree is
equal to the degree of the reciprocal variety associated to the linear subspace defined again
by the constraint matrices and cost matrix. We further conclude in Corollary 2.2.1 and
Corollary 2.2.2 that the degree of the central curve of a generic SDP is symmetric in the
number of constraints, and it is polynomial in m (size of the matrices) of degree k (number
of constraints).

In Section 2.2 we will revisit the degree of the central curve of a generic linear program.
We relate this degree to the ML degree of linear concentration models generated by diagonal
matrices and further provide a new proof that this degree is equal to

(
m−1
k

)
. The end of

Section 2.2 extends this result and its proof technique to convex quadratic programs with
linear constraints. Theorem 2.2.6 bounds the degree of the central curve of such programs
when the objective function and the constraints are generic.

Based on work from [37], in Chapter 3 we compute the dimension of PSDG
N , characterize

its extremal rays, show it is Terracini convex, and in the case of G = Sn, we present the block
in any symmetric matrix Q ∈ PSDSn

N corresponding to the trivial representation. Section
3.5 collects our results on binary and quadratic symmetric polynomials that are SOS. In
the binary case, we compute the symmetry adapted matrix representations of all symmetric
polynomials, and in the quadratic case, we do the same, and prove that, as the number of
indeterminates tends to infinity, the ratio of SOS symmetric quadratic forms to all symmetric
quadratic forms is 1

8
. Another interesting consequence obtained is that symmetric quadratic

SOS polynomials in n variables can only be sums of 1, n− 1 or n squares. In Section 3.6, we
start with the classic case of ternary quartics, describing the associated symmetry adapted
PSD cone. We then completely describe the geometric structure of the symmetry adapted
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Gram spectrahedron for a generic, smooth, positive, symmetric ternary quartic including
the rank of the matrices on its boundary. Further, we provide necessary conditions on the
coefficients for a symmetric ternary quartic to be SOS. We continue the section by going
up in degree and considering degree six symmetric polynomials in three variables. Here we
show that the rank of a matrix in the symmetry adapted Gram spectrahedron of a generic
symmetric ternary sextic will be at least 4.

In Chapter 4, using the machinery of Chapter 3, we study symmetric mean inequalities
introduced in [24]. This chapter is based on the work done in [38]. Let hλ be the homogeneous
symmetric polynomial with respect to a partition λ. The term-normalized homogeneous
symmetric polynomial is

Hλ(x) =
hλ(x)

hλ(1, . . . , 1)
.

It was conjectured that
Hλ(x) ≤ Hµ(x), x ≥ 0⇔ λ � µ

where x ≥ 0 means x is component-wise nonnegative and the partition order � is the usual
dominance ordering. However, we provide counterexamples showing that Hλ(x) ≤ Hµ(x)
can hold for incomparable pairs of partitions, µ and λ. Indeed we do this by proving that
Hµ(x21, . . . , x

2
n)−Hλ(x

2
1, . . . , x

2
n) is SOS for some incomparable pairs (λ, µ).
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Chapter 2

The Degree of the Central Curve

The Zariski closure of the central path which interior point algorithms track in convex
optimization problems such as linear, quadratic, and semidefinite programs is an algebraic
curve. The degree of this curve has been studied in relation to the complexity of these interior
point algorithms, and for linear programs it was computed by De Loera, Sturmfels, and
Vinzant in 2012 [25], with a specific formula in the generic case. Semidefinite programming
is a generalization of linear programming and thus a natural question to ask is what the
degree of the central curve is for a generic SDP.

After some background on semidefinite programming, we show that the degree of the
central curve for generic semidefinite programs is equal to the maximum likelihood degree
of an associated linear concentration model. New results from the intersection theory of the
space of complete quadrics imply that this is a polynomial in the size of semidefinite matrices
with degree equal to the number of constraints. Besides its degree we explore the arithmetic
genus of the same curve. For completeness, we also compute the degree of the central curve
for generic linear programs with different techniques which extend to bounding the same
degree for generic quadratic programs.

2.1 Preliminaries

Semidefinite Programming

In this section we go over key notions in semidefinite programming that will be required
for the topics of this thesis. A semidefinite program (SDP) is a type of conic optimization
problem that generalizes linear programming. It has a wide array of applications including
control theory and dynamical systems, combinatorial optimization, and statistics. Thus
semidefinite programming has been a topic of interest for several decades. In particular, it
is necessary for understanding sums of squares of polynomials as we will see in Section 3.1.
We begin with several definitions.

Let SmR and SmC be the vector spaces of m×m symmetric matrices with real and complex
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entries, respectively. If the underlying field is clear, we will at times denote the space of
symmetric matrices simply as Sm.

Definition 2.1.1. A real symmetric matrix A ∈ SmR is positive semidefinite if

xtAx ≥ 0, ∀x ∈ Rm

and we denote this by A � 0. It is positive definite if

xtAx > 0, ∀x 6= 0 ∈ Rm

and we denote this by A � 0.

Definition 2.1.1 is not always the most useful characterization of positive semidefinite
matrices. The following two propositions provide additional ways to determine if a matrix
is positive semidefinite or positive definite.

Proposition 2.1.1. Let A ∈ SmR be a real symmetric matrix. The following are equivalent:

1. A � 0.

2. xtAx ≥ 0, ∀x ∈ Rm.

3. All the eigenvalues of A are nonnegative.

4. All the principle minors of A are nonnegative.

5. There exists a factorization A = U tU where U is a real m×m matrix.

Proposition 2.1.2. Let A ∈ SmR be a real symmetric matrix. The following are equivalent:

1. A � 0.

2. xtAx > 0, ∀x 6= 0 ∈ Rm.

3. All the eigenvalues of A are positive.

4. All the principle minors of A are positive.

5. There exists a factorization A = U tU where U is a real invertible m×m matrix.

The space of positive semidefinite matrices is in fact a cone called the positive semidefinite
cone or PSD cone, denoted PSDm. As a subset of m×m real symmetric matrices (isomorphic

to R(m+1
2 )), PSDm is a full-dimensional closed convex cone in this vector space. It is a semi-

algebraic set defined by 2m− 1 polynomial inequalities given by forcing the 2m− 1 principal
minors of an m×m symmetric matrix to be nonnegative.

In semidefinite programming, we intersect the PSD cone with an affine subspace of sym-
metric matrices and optimize over the resulting convex body, called a spectrahedron. Recall
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that the standard Euclidean inner product on real symmetric matrices is 〈Y, Z〉 := Tr(Y Z) =∑
i,j YijZij. We may now present the primal SDP:

minimize 〈C,X〉
subject to 〈Ai, X〉 = bi, i = 1, . . . , k

X � 0

(2.1)

where C and Ai, i = 1, . . . , k, are in SmR , and bi ∈ R for i = 1, . . . , k.

Example 2.1.1. Consider the SDP with

C =

 0 −1 −1
−1 0 −1
−1 −1 0

 , A1 =

1 0 0
0 0 0
0 0 0

 , A2 =

0 0 0
0 1 0
0 0 0

 , A3 =

0 0 0
0 0 0
0 0 1

 ,
and bi = 1 for i = 1, 2, 3. The feasible region of this SDP is

{X ∈ S3
R : X =

 1 x12 x13
x12 1 x23
x13 x23 1

 � 0}

and is carved out by the inequalities we get when we force the principle minors of X to be
nonnegative as in Proposition 2.1.1 (4). That is, we require that 1−xij ≥ 0 and det(X) ≥ 0.
The resulting convex body is affectionately called the samosa:

The cost function 〈C,X〉 = −2x12−2x13−2x23 is minimized by maximizing x12+x13+x23
subject to the constraints. Note that 1 − xij ≥ 0 implies that xij ≤ 1. Moreover, the
determinant of

X∗ =

1 1 1
1 1 1
1 1 1


is zero, thus X∗ is feasible and minimizes the cost function with an optimal value of -6.
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Remark 1. In general, the set of positive semidefinite matrices with diagonal entries equal
to 1 is called the elliptope. This object is of interest in some combinatorial problems and has
been well studied (see for example [14, 45, 76]).

In the particular case where C = 0 the SDP problem (2.1) reduces to determining if the
feasible region is nonempty. This is called a feasibility problem.

Duality Theory

As with all conic programming, one can study semidefinite programming from a duality
perspective. This section will briefly cover this duality theory for SDPs. First we define the
dual problem to the primal SDP (2.1):

maximize bty

subject to
k∑
i=1

Aiyi � C
(2.2)

where b = (b1, . . . , bk)
t and y = (y1, . . . , yk) is the decision vector. As with linear program-

ming, the dual problem 2.2 is itself a semidefinite programming problem.
We always have weak duality, which means that the optimal solution value to the primal

problem bounds the solution value to the dual problem and vice versa. To see this, let X∗ be
a feasible solution to the primal problem and y∗ be a feasible solution to the dual problem.
Then,

〈C,X∗〉 − bty∗ = 〈C,X∗〉 −
k∑
i=1

〈Ai, X∗〉y∗i = 〈C −
k∑
i=1

Aiy
∗
i , X

∗〉.

Now since X∗ and y∗ are feasible, C−
∑k

i=1Aiy
∗
i and X∗ are positive semidefinite. Thus their

inner product must be nonnegative and we get weak duality, i.e. 〈C,X∗〉 ≥ bty∗. However,
strong duality, where the optimal values of the primal and dual problems are equal, is not
always guaranteed.

Example 2.1.2. Consider the primal and dual problems defined by

C =

1 0 0
0 1 0
0 0 0

 , A1 =

1 0 0
0 0 0
0 0 0

 , A2 =

0 0 1
0 −1 0
1 0 0

 ,
b1 = 0, and b2 = −1. The first constraint of the primal SDP, 〈A1, X〉 = b1, implies that
x11 = 0 which forces x12 = x13 = 0. Then the second constraint determines x22 = 1, thus the
optimal value is 1.

On the other hand, the dual problem is formulated as

maximize − y2

subject to

1− y1 0 −y2
0 1 + y2 0
−y2 0 0

 � 0
(2.3)
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and a solution is only feasible if y2 = 0. Thus the difference between the primal and dual
optimal values, called the duality gap, is 1. Positive duality gap is an active area of research
and the interested reader is encouraged to read [58].

Proposition 2.1.3. Let X∗ be a feasible solution to the primal SDP problem and y∗ be a
feasible solution to the dual SDP problem. Suppose further that

(C −
k∑
i=1

Aiy
∗
i )X

∗ = 0. (2.4)

Then the cost functions of the primal and dual problem at X∗ and y∗ are equal (i.e. 〈C,X∗〉 =
bty∗) and they are optimal solutions.

Equation (2.4) is called complementary slackness. This together with the feasibility
constrains of the dual and primal problems make what are called the Karush–Kuhn–Tucker
conditions or KKT conditions for short:

• (C −
∑k

i=1Aiyi)X = 0

• 〈Ai, X〉 = bi, i = 1, . . . , k

• X � 0

•
∑k

i=1Aiyi � C

The KKT conditions are necessary for strong duality. Indeed one can check that comple-
mentary slackness fails in Example 2.1.2 above.

There are a few ways to ensure that strong duality holds. We include here the most
commonly used condition known as Slater’s condition.

Theorem 2.1.1. Suppose that both the primal SDP (2.1) and dual SDP (2.2) are strictly
feasible. Then both problems have optimal solutions whose optimal values are equal.

Interior Point Method

Interior point algorithms are commonly used to solve semidefinite programming problems
by solving a series of associated optimization problems. Each solution is a point within the
spectrahedron (the feasible region of the SDP) and the set of solutions creates a path towards
an extreme point of the spectrahedron. This path is called the central path. In this section
we recall one interior point algorithm called the barrier method.

Given an SDP problem as (2.1), we consider the problem

minimize 〈C,X〉 − λ log(det(X))

subject to 〈Ai, X〉 = bi, i = 1, . . . , k
(2.5)
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where λ > 0 is a real parameter. We first solve (2.5) for very large λ. Note that the original
objective function 〈C,X〉 becomes negligible for sufficiently large λ. We then choose λ to
be smaller by some appropriate step size and again solve (2.5). Continuing on as such and
recording these solutions as λ goes to zero creates the central path.

As with the standard SDP, there are KKT conditions for (2.5):

C − λX−1 −
k∑
i=1

yiAi = 0,

〈Ai, X〉 = bi, i = 1, . . . , k,

X � 0

(2.6)

where y1, . . . , yk are the dual variables to the dual semidefinite program (2.2).
With the preliminary ingredients for semidefinite programming defined, we are now ready

to consider the main contribution of this section of the thesis, the degree of the central curve
of a generic SDP.

2.2 Central Curve

Throughout this section we will assume that the cost matrix C, the constraint matrices
A1, . . . , Ak, and b = (b1, . . . , bk)

t are generic, unless otherwise stated. This assures, among
other things, that if (2.1) is feasible, it is strictly feasible. The central curve of the primal
SDP is obtained from the Karush-Kuhn-Tucker (KKT) conditions (2.6) to the auxiliary
optimization problem (2.5). Hence we formally define the central curve as follows.

Definition 2.2.1. Let (X∗(λ), y∗(λ)) be the unique solution of the system (2.6) for a fixed
λ > 0. The (primal) central curve CSDP (C, {Ai}, b) is the projection onto SmC of the Zariski
closure in SmC × Ck of {(X∗(λ), y∗(λ)) : λ > 0}.

The central curve contains the central path {X∗(λ) : λ > 0}. Interior point algorithms
follow a piecewise linear approximation to the central path to obtain an optimal solution to
(2.1) as λ approaches zero [13, 29, 30, 57, 55]. The degree of CSDP (C, {Ai}, b) can be used to
give an upper bound on the total curvature of the central path which is a heuristic measure
on the number of steps interior point algorithms will take to find an optimal solution.

Interior point methods were first developed for linear programming problems, and the
study of the central curve for linear programming from the perspective of algebraic geometry
was initiated by Bayer and Lagarias in [4] and [3]. Dedieu, Malajovich, and Shub [27] studied
the total curvature of the central path for linear programs in relation to bounding the number
of iterations interior point algorithms take. By now we know that the total curvature can be
exponential in the dimension of the ambient space [1]. Most relevant to our work, De Loera,
Sturmfels, and Vinzant [25] obtained a breakthrough by computing the degree of the linear
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programming central curve. Given the linear program

minimize cx

subject to Ax = b

x ≥ 0,

(2.7)

where c ∈ Rm is a row vector, A is k ×m matrix of rank k, and b ∈ Rk is a column vector,
they have related this degree to the degree of a reciprocal variety and a matroid invariant.

Theorem 2.2.1. [25, Lemma 11] For generic b and c, the degree of the central curve of the
linear program (2.7) is equal to the degree of the reciprocal variety

L−1A,c :=
{
(u1, . . . , um) ∈ Cm :

(
1

u1
, . . . ,

1

um

)
∈ rowspan

(
A

c

)
and ui 6= 0, i = 1, . . . ,m

}
as well as the Möbius number |µ(A, c)| of the rank k+ 1 matroid associated to the row span

of
(
A
c

)
. When A is also generic, the degree of the central curve is equal to

(
m−1
k

)
.

Our main contribution is Theorem 2.2.3 where we prove that the degree of the central
curve for the SDP (2.1) when C and b are generic is equal to the maximum likelihood degree
(ML degree) of the linear concentration model generated by {Ai} and C. When {Ai} are
also generic, this degree is equal to the degree of the reciprocal variety associated to the
linear subspace L{Ai},C = span{A1, . . . , Ak, C}:

L−1{Ai},C :=
{
X ∈ SmC : X−1 ∈ L{Ai},C

}
.

We further show in Corollary 2.2.1 that, when {Ai}, C, and b are generic, the degree of
CSDP (C, {Ai}, b) is symmetric in the number of the linear equations defining (2.1). Corollary
2.2.2 concludes that in this case the degree of the central curve is a polynomial in m of
degree k. This theorem and the two corollaries complete the work started in [65], proving
Conjectures 4.3 and 4.4 in the same work.

Later in this section we report our observations on the arithmetic genus of CSDP (C, {Ai}, b).
We will also discuss semidefinite programs and the degree of their central curves associated
to sum of squares (SOS) polynomials.

Finally at the end of the chapter we will revisit the degree of the central curve of the linear
program (2.7) when A, c, and b are generic. Besides relating this degree to the ML degree of
linear concentration models generated by diagonal matrices, in Theorem 2.2.5 we provide a
different proof that this degree is equal to

(
m−1
k

)
. This result and its proof technique extend

to convex quadratic programs with linear constraints. Theorem 2.2.6 bounds the degree
of the central curve of such programs when the objective function and the constraints are
generic.
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Semidefinite Programs and Linear Concentration Models

In this section we consider the central curve CSDP (C, {Ai}, b) when C and b are generic. In
what follows, we describe the degree of this curve as the ML degree of a linear concentration
model. When {Ai} are also generic, we denote deg (CSDP (C, {Ai}, b)) by ψSDP (m, k).

Let L be a linear subspace of SmR spanned by k linearly independent symmetric matrices
{K1, . . . , Kk}. A linear concentration model is the set

L−1�0 := {Σ ∈ Sm�0 : Σ−1 ∈ L}

where Sm�0 is the cone of positive semidefinite matrices. Every matrix Σ in L−1�0 is the
covariance matrix of a multivariate normal distribution on Rm, and the elements of L are
concentration matrices.

Given a sample covariance matrix S, the maximum likelihood estimate K̂ of S with
respect to the linear concentration model defined by L is the unique positive semidefinite
solution to the zero-dimensional polynomial equations

ΣK = Idm, K ∈ L, Σ− S ∈ L⊥. (2.8)

The ML degree of this linear concentration model is defined as the number of solutions to
(2.8) in SmC .

In [75] it was proven that when the matrices K1, . . . , Kk are generic, the ML degree of
the linear concentration model is precisely the degree of the reciprocal variety L−1.

Theorem 2.2.2. [75, Theorem 2.3] The ML degree φ(m, k) of a linear concentration model
defined by a generic linear subspace L of dimension d in Sm equals the degree of the projective
variety L−1. This degree further satisfies

φ(m, k) = φ

(
m,

(
m+ 1

2

)
+ 1− k

)
.

Now we are ready to prove our main theorem.

Theorem 2.2.3. Given an SDP as in (2.1) with C and b generic, deg (CSDP (C, {Ai}, b)) is
equal to the ML degree of the linear concentration model generated by L = span{C,A1, . . . , Ak}.
If in addition A1, . . . , Ak are generic, ψSDP (m, k) is equal to the degree of L−1, and hence
ψSDP (m, k) = φ(m, k + 1).

Proof. By definition

deg(CSDP (C, {Ai}, b)) = |CSDP (C, {Ai}, b) ∩H|

where H is a generic hyperplane in SmC . Using the KKT conditions (2.6), the equations
defining CSDP (C, {Ai}, b) ∩H are

X−1 =
1

λ
C − 1

λ
Σk
i=1yiAi

〈Ai, X〉 − bi = 0, i = 1, . . . , k

〈B,X〉 − bk+1 = 0,

(2.9)



CHAPTER 2. THE DEGREE OF THE CENTRAL CURVE 14

for some generic B ∈ SmC and bk+1 ∈ C.
The first equation in (2.9) means that X−1 ∈ L, where L = span{C,A1, . . . , Ak}. Since

C is generic, in the last equation of (2.9) we can take B = C. Additionally, if we define S as
a matrix such that 〈Ai, S〉 = bi, for i = 1, . . . , k, and 〈C, S〉 = bk+1, the last k + 1 equations
in (2.9) mean that X − S ∈ L⊥. Note that these are precisely the likelihood equations of
the linear concentration model determined by L. This proves that deg(CSDP (C, {Ai}, b))
is equal to the ML degree of the linear concentration model defined by L. Additionally, if
A1, . . . , Ak are generic, Theorem 2.2.2 guarantees that φ(m, k+ 1) coincides with the degree
of L−1, which means that ψ(m, k) is equal to the degree of L−1 as well.

Corollary 2.2.1. The degree of the central curve for a generic SDP satisfies

ψSDP (m, k) = ψSDP

(
m,

(
m+ 1

2

)
− k − 1

)
.

Proof.

ψSDP (m, k) = φ(m, k + 1)

= φ(m,

(
m+ 1

2

)
+ 1− (k + 1))

= φ(m,

(
m+ 1

2

)
− k))

= ψSDP

(
m,

(
m+ 1

2

)
− k − 1

)
.

Corollary 2.2.2. ψSDP (m, k) is a polynomial in m of degree k.

Proof. This result follows from the work of Micha lek, Monin, Wísniewski, Manivel, Seyn-
naeve, and Vodička who employed the space of complete quadrics and intersection theory to
prove the polynomiality of φ(m, k) ([53] and [50, Theorem 1.3]) and from the seperate work
of Cid-Ruiz [20, Corollary C].

Arithmetic Genus

The ideal of polynomials IL−1
{Ai},C

in C[xij : 1 ≤ i ≤ j ≤ m] vanishing on the reciprocal

variety L−1{Ai},C is a prime ideal since this variety is irreducible. The proof of Theorem 2.2.2

(see [75, Theorem 2.3]) relies on the fact that IL−1
{Ai},C

is Cohen-Macaulay when {Ai} and C

are generic [41, 44]. Since the central curve CSDP (C, {Ai}, b) is obtained from intersecting
the reciprocal variety with d generic linear equations in (2.6), the numerator of the Hilbert
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series of IL−1
{Ai},C

and that of the defining ideal of the the central curve are identical. The

Hilbert series for the central curve will be of the form

h0 + h1t+ h2t
2 + · · ·+ hlt

l

(1− t)2

where the coefficients hj are nonnegative integers with h0 = 1 and hl 6= 0. The arithmetic
genus of the central curve can be calculated as

genus(m, k) := genus(CSDP (C, {Ai}, b)) = 1−
l∑

j=0

(1− j)hj.

The following table shows genus(m, k) for all values we can compute with Macaulay2 [36]
and/or using the two propositions that follow.

m\ k 1 2 3 4 5 6 7 8 9 10 11 12 13 14
2 0 0
3 0 0 1 0 0
4 0 1 10 20 22 20 10 1 0
5 0 3 33 3 0

Proposition 2.2.1. For m ≥ 2,

genus(m, 1) = genus

(
m,

(
m+ 1

2

)
− 1

)
= 0.

In these cases, the central curve is a rational curve. Furthermore, when k = 1 the numerator
of the Hilbert series is 1 + (m− 2)t, and when k =

(
m+1
2

)
− 1 it is 1.

Proof. In the case k =
(
m+1
2

)
− 1, the reciprocal variety is equal to Pk, and therefore the

central curve is P1. In the case k = 1, the reciprocal variety is the image of span{C,A1} ' P1

under the rational map given by the (m− 1)-minors of a generic m×m symmetric matrix.
Hence it is a rational curve of degree m− 1. This implies that the numerator of the Hilbert
series of the ideal defining the reciprocal variety, and therefore that of the central curve, is
1 + (m − 2)t. This means that the central curve is also a rational curve, i.e., its genus is
equal to zero.

Proposition 2.2.2. For m ≥ 2,

genus

(
m,

(
m+ 1

2

)
− 2

)
=

(
m− 2

2

)
and

genus

(
m,

(
m+ 1

2

)
− 3

)
= 1 + (m− 1)2(m− 3).
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Proof. In the first case, the reciprocal variety is a hypersurface defined by a single polynomial
of degree m− 1. Therefore the numerator of the Hilbert series is equal to 1 + t+ · · ·+ tm−2.
Therefore the arithmetic genus of the central curve is

1−
m−2∑
j=0

(1− j) =
m−3∑
j=1

j =

(
m− 2

2

)
.

In the second case, the reciprocal variety is of codimension two, and it is a complete in-
tersection generated by two degree m − 1 generators; see [75, p. 611] and Lemma 2.2.1
below. Therefore the numerator of the Hilbert series is equal to (1 + t + · · · + tm−2)2 =
1 + 2t + · · · + (m− 2)tm−3 + (m− 1)tm−2 + (m− 2)tm−1 + · · · + 2t2m−5 + t2m−4. Using the
formula for the arithmetic genus first yields 1 + (2m − 6)

(
m−1
2

)
+ (m − 3)(m − 1). This in

turn is equal to 1 + (m− 3)(m− 1)2.

Lemma 2.2.1. When k =
(
m+1
2

)
− 3, the reciprocal variety L−1{Ai},C associated to a generic

linear subspace L{Ai},C is a complete intersection of codimension two generated by two poly-
nomials of degree m− 1.

Proof. Let V be the variety of codimension 3 in P(m+1
2 )−1 defined by the (m − 1)-minors of

a generic m ×m symmetric matrix, and let X be the quasiprojective variety P(m+1
2 )−1 \ V .

Consider the regular map F : X 7−→ P(m+1
2 )−1 given by the (m−1)-minors of a generic m×m

symmetric matrix. Given the generic codimension two subspace L{Ai},C , the inverse image
F−1(L{Ai},C) is an irreducible subvariety of X by Bertini’s theorem [46, Theorem 3.3.1].
This subvariety is defined by two generic linear combinations of (m− 1)-minors, f1 and f2,

which are of degree m−1. The variety in P(m+1
2 )−1 defined by the same two polynomials is a

complete intersection of codimension two. This variety contains the reciprocal variety which
is irreducible and has also codimension two. Therefore if the ideal 〈f1, f2〉 is prime it has
to be the defining ideal of the reciprocal variety. But this is the case, since it is a complete
intersection and hence all its components have the same codimension. Any component other
than the one coming from F−1(L{Ai},C) is associated to V , but V has codimension three.

We note that in the above table the entry for m = 5 and k = 12 is computed using
Proposition 2.2.2. However, the entry for m = 5 and k = 3, which is conjecturally equal to
33 is missing. Nevertheless, we venture to state the following conjecture.

Conjecture 1. genus(m, k) = genus
(
m,
(
m+1
2

)
− k
)
.

Although we cannot prove this conjecture, we can prove the analogous statement for the
central curve of linear programs (2.7) when A, c and b are generic. The central curve for
linear programs is defined as in Definition 2.2.1 but using the KKT conditions for linear
programs; see (2.13) below.
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Theorem 2.2.4. Let Ak and Am−k be generic matrices of size k×m and (m−k)×m and of
rank k and m−k, respectively. Let bk and bm−k be two generic vectors in Rk and Rm−k. The
central curve of the linear program defined by Ak, bk, and a generic vector c has the same
arithmetic genus as the central curve of the linear program defined by Am−k, bm−k and c.

Proof. Let CLP (k) and CLP (m − k) denote the central curve of the generic linear programs
as in the statement. In this generic case, from [25] we have

genus(CLP (k)) = 1−
k∑
j=0

(1− j)
(
m− k + j − 2

j

)
, (2.10)

genus(CLP (m− k)) = 1−
m−k∑
j=0

(1− j)
(
k + j − 2

j

)
, (2.11)

where the binomial coefficients in each equation come from the coefficients of the Hilbert
series computed in [25]. To check that both computations have the same value, we need the
identities

n∑
j=0

(
r + j

j

)
=

(
r + n+ 1

n

)
ank

k∑
j=0

j

(
m− k + j − 2

j

)
= (m− k − 1)

(
m− 1

k − 1

)
.

First we get

genus(CLP (k)) =1−
k∑
j=0

(
m− k + j − 2

j

)
+

k∑
j=0

j

(
m− k + j − 2

j

)

=1−
(
m− k − 2 + k + 1

k

)
+ (m− k − 1)

(
m− 1

k − 1

)
=1−

(
m− 1

k

)
+ (m− k − 1)

(
m− 1

k − 1

)
=1− (m− 1)!

(m− 1− k)!k!
+ (m− k − 1)

(m− 1)!

(m− 1− k + 1)!(k − 1)!

=1− (m− 1)!(m−mk + k2)

(m− k)!k!

where the second line comes from the identities mentioned above with r = m− k− 2. Doing
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a similar computation for genus(CLP (m− k)) we get

genus(CLP (m− k)) =1−
m−k∑
j=0

(
m− (m− k) + j − 2

j

)
+

m−k∑
j=0

j

(
m− (m− k) + j − 2

j

)

=1−
(
k − 2 +m− k + 1

m− k

)
+ (k − 1)

(
m− 1

m− 1− k

)
=1−

(
m− 1

m− k

)
+ (k − 1)

(
m− 1

m− 1− k

)
=1− (m− 1)!

(k − 1)!(m− k)!
+ (k − 1)

(m− 1)!

k!(m− 1− k)!

=1− (m− 1)!(m−mk + k2)

(m− k)!k!
.

Sum of Squares Polynomials

Before considering other types of convex optimization problems, we consider the semidefinite
programs for sums of squares problems. More details on sums of squares can be found
in Section 3.1, but we briefly review this here. Let p ∈ R[x1, . . . , xn] be a homogeneous
polynomial of degree 2d and let Lp be the affine subspace of symmetric matrices Q satisfying
the identity

p = [x]TQ[x] (2.12)

where [x] is a vector of all monomials of degree d in n variables. The intersection of Lp with
the cone of positive semidefinite matrices is the Gram spectrahedron of p, and it is nonempty
if and only if p is a sum of squares (SOS) polynomial. That is, certifying that a polynomial
is SOS reduces to checking the feasibility of an SDP. This can be achieved by solving an
SDP using a random (generic) cost matrix C.

Example 2.2.1. Suppose we wish to show that a generic ternary quartic is an SOS. The
Ai’s and bi’s come from equating coefficients in (2.12). For example, if we let

[x] = [x2, xy, xz, y2, yz, z2]

the linear equation for the x2y2 term will be

p(2,2,0) = 〈A(2,2,0), Q〉
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where p(2,2,0) is the x2y2 coefficient of the random ternary quartic p,

A(2,2,0) =


0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


and Q is the decision variable of the SDP which will have k =

(
3+4−1

4

)
= 15 constraints with

matrices of size m =
(
3+2−1

2

)
= 6.

In general, the matrices {Ai} for the linear constraints will be sparse and far from generic.
However, if the polynomial p that we want to certify to be an SOS polynomial is generic,
then the bi’s in the corresponding SDP will be also generic. Using a generic cost matrix C in
this SDP allows us to consider the degree of the central curve for a generic SOS polynomial.

We wish to report our computations in three instances: binary sextics (n = 2, 2d = 6),
binary octics (n = 2, 2d = 8), and ternary quartics (n = 3, 2d = 4). The corresponding
SDPs are given by input data with m = 4, k = 7 for binary sextics, m = 5, k = 9 for binary
octics, and m = 6, k = 15 for ternary quartics. We note that for the same size SDPs with
generic {Ai} we will obtain ψSDP (4, 7) = 9, ψSDP (5, 9) = 137, and ψSDP (6, 15) = 528. We
believe that studying this invariant for various families of SOS polynomials is an interesting
future project.

Proposition 2.2.3. The degrees of the central curves for SDPs associated to generic binary
sextics, binary octics, and ternary quartics, where generic cost matrices are used, are 7, 45,
and 66, respectively.

As a last remark about the SDP arising from sums of squares, we would like to mention
that since C and b are generic, the computations in the previous proposition also correspond
to the ML degree of a linear concentration model. Namely, the concentration model de-
fined by catalecticants and an additional generic matrix corresponding to the cost matrix.
Exploring this relation is also an interesting future project.

Linear Programs

By choosing C and {Ai} in (2.1) to be diagonal matrices we recover linear programs (2.7).
The central curve CLP (c, A, b) for such a linear program can be defined as in the case of the
central curve for a semidefinite program using the corresponding KKT conditions:

c− λ
(

1

x1
, . . . ,

1

xm

)
− ytA = 0

Ax = b,

x ≥ 0.

(2.13)
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When in the data defining (2.7), c and b are generic the degree of the central curve CLP (c, A, b)
is equal to the degree of the reciprocal variety L−1A,c [25, Lemma 11]. Further, if A is also

generic, this degree is equal to
(
m−1
k

)
. For the case when all the data is generic, we will

denote the degree of the linear programming central curve by ψLP (m, k).
The observations that connect the ML degree of generic linear concentration models to

the degree of the central curve of generic semidefinite programs have their counterpart here as
well. One can consider the ML degree of linear concentration models generated by diagonal
matrices as in [75, Section 3]. For generic models we denote the ML degree by φdiag(m, k).
A consequence of Corollary 3 in [75] is the following.

Corollary 2.2.3.

φdiag(m, k) =

(
m− 1

k − 1

)
.

An argument parallel to the one used in the proof of Theorem 2.2.3 gives

Corollary 2.2.4. ψLP (m, k) = φdiag(m, k + 1).

In the rest of this section we will develop another method to prove that ψLP (m, k) =(
m−1
k

)
. This method will be extended for bounding the degree of the central curve for

generic convex quadratic programs with linear constraints in the next section. We note that
our techniques which are based on counting solutions to polynomial systems were employed
for a similar purpose in [27].

First we consider the polynomial system obtained by clearing denominators and dropping
the x ≥ 0 condition in (2.13):

cixi − λ− (ytai)xi = 0, i = 1, . . . ,m

Ax = b
(2.14)

where ai is the ith column of the matrix A. For generic data, the central curve is obtained as
the Zariski closure in Cm of the projection of the solution set in (C∗)m+k+1 to the equations
(2.14). Further, the degree of this central curve would be equal to the number of points in
(C∗)m obtained as the intersection of the central curve with a generic hyperplane defined by
ex = f .

Lemma 2.2.2. The degree of CLP (c, A, b) for generic c, A, and b is equal to the number
of solutions in (C∗)m+k+1 to the system (2.14) together with an extra equation of the form
ex = f where the coefficients of this equation are generic.

Proof. Clearly, every solution to (2.14) plus ex = f in (C∗)m+k+1 projects to a point in
CLP (c, A, b) ∩ {x : ex = f}. Conversely, the genericity of ex = f implies that the points in
CLP (c, A, b) ∩ {x : ex = f} come from points in (C∗)m+k+1 that satisfy (2.14) and ex = f .
We show that for each point x∗ ”downstairs” there is a unique point ”upstairs”. Suppose
there are at least two points (x∗, y∗, λ∗) and (x∗, z∗, µ∗) with these properties. Then it is easy
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to check that (x∗, ty∗ + (1− t)z∗, tλ∗ + (1− t)µ∗) is also a solution with the same properties
for any t. But this is a contradiction since we have only finitely many preimages by the
genericity of the data.

This lemma implies that in order to compute the degree of CLP (c, A, b) for generic A, c,
and b we need to count the solutions in (C∗)m+k+1 to

cixi − λ− (ytai)xi = 0, i = 1, . . . ,m

Ax = b

ex = f

(2.15)

where ex = f is also generic. Note that the rank of the matrix

(
A
e

)
is k + 1 and the

solutions to the last k + 1 equations in (2.15) can be parametrized by

x = v0 + t1v1 + · · ·+ tm−k−1vm−k−1

where v0, v1, . . . , vm−k−1 are generic vectors. Substituting this into the first m equations in
(2.15) we obtain m equations in m variables λ, y1, . . . , yk, t1, . . . , tm−k−1. Furthermore, the
genericity assumptions guarantee that each equation will have support equal to

λ, 1, t1, . . . , tm−k−1, y1, y1t1, . . . , y1tm−k−1, . . . , yk, ykt1, . . . , yktm−k−1.

The Newton polytope of a polynomial with this support is a pyramid of height one with base
equal to the product of simplices ∆m−k−1 ×∆k.

Theorem 2.2.5. ψLP (m, k) is equal to the volume of ∆m−k−1 ×∆k:(
m− 1

k

)
=

m−k−1∑
j=0

(
m− j − 2

k − 1

)
Proof. The above lemma and the previous discussion imply that ψLP (m, k) is equal to the
number solutions in (C∗)m to m equations in m variables, where each equation has support
equal to the set of monomials listed above. Bernstein’s Theorem implies that this number
is bounded above by the normalized volume of the Newton polytope of these monomials.
Since this polytope is a pyramid of height one over ∆m−k−1 ×∆k, we just need to compute
the normalized volume of the product of simplices. Further, because every triangulation of
∆m−k−1 × ∆k is unimodular we just need to count the number of simplices in any trian-
gulation. One such triangulation is the staircase triangulation. The maximal simplices in
this triangulation are described as follows. Consider a (m − k) × (k + 1) rectangular grid.
The simplices in the staircase triangulation of ∆m−k−1×∆k are in bijection with paths from
the northwest corner of this grid to the southeast corner where a path consists of steps in
the east or south direction. The total number of steps in each path is m − 1, and out of
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these steps k have to be south steps. Therefore there are a total of
(
m−1
k

)
such paths. These

paths can be partitioned into those which reach the south edge of the grid j steps before the
southeast corner where j = 0, . . . ,m− k− 1. The number of these kinds of paths for each j
is
(
m−j−2
k−1

)
. Finally, the proof of Lemma 11 in [25] implies that ψLP (m, d) ≥

(
m−1
d

)
, and this

concludes the proof.

Quadratic Programs

To complete our study of central curves in optimization problems we will now consider convex
quadratic programs with linear constraints.

minimize
1

2
xtQx+ cx

subject to Ax = b

x ≥ 0,

(2.16)

where Q is an m ×m positive definite matrix, c ∈ Rm, A is k ×m matrix of rank k, and
b ∈ Rk. The KKT conditions that lead to the definition of the central curve are

xtQ+ c− λ
(

1

x1
, . . . ,

1

xm

)
− ytA = 0

Ax = b,

x ≥ 0.

(2.17)

When Q, c, A, and b are generic, we denote by ψQP (m, k) the degree of the central curve for
generic quadratic programs. One can show by a homotopy continuation argument that it is
sufficient to assume Q to be a generic diagonal matrix. For precise details of this result, we
refer the reader to [71, Section 3.2]. With Q = diag(q1, . . . , qm), after clearing denominators
and ignoring the nonnegativity constraints x ≥ 0 in (2.17), we arrive to the following system
of polynomial equations:

qix
2
i + cixi − λ− (ytai)xi = 0 i = 1, . . . ,m

Ax = b,
(2.18)

where ai is the ith column of the matrix A. As in the linear programming case we have the
following lemma.

Lemma 2.2.3. ψQP (m, k), the degree of the central curve of a generic quadratic program is
equal to the number of solutions in (C∗)m+k+1 to the system (2.18) together with an extra
equation of the form ex = f where the coefficients of this equation are also generic.

Proof. The proof of this lemma is identical to the proof of Lemma 2.2.2.



CHAPTER 2. THE DEGREE OF THE CENTRAL CURVE 23

Theorem 2.2.6.

ψQP (m, k) ≤
m−k−1∑
j=0

(
m− j − 2

k − 1

)
2j.

This is the volume of the Newton polytope of a polynomial with support in monomials

λ, 1, t1, . . . , tm−k−1, t
2
1, t1t2, . . . , t

2
m−k−1

y1, y1t1, . . . , y1tm−k−1, . . . , yk, ykt1, . . . , yktm−k−1

Proof. By Lemma 2.2.3 and as in the proof of Theorem 2.2.5 we need to count solutions to
(2.18) plus a generic linear equation ex = f in the torus (C∗)m+k+1. The solutions to the
equations Ax = b and ex = f can again be parametrized as

x = v0 + t1v1 + · · ·+ tm−k−1vm−k−1

where v0, . . . , vm−k−1 are generic vectors. Substituting this into the first m equations in
(2.18) we obtain m equations in m variables λ, y1, . . . , yk, t1, . . . , tm−k−1. Furthermore, the
genericity assumptions guarantee that each equation will have support equal to

λ, 1, t1, . . . , tm−k−1, t
2
1, t1t2, . . . , t

2
m−k−1

y1, y1t1, . . . , y1tm−k−1, . . . , yk, ykt1, . . . , yktm−k−1

The number of solutions to these m equations in (C∗)m is bounded by the normalized volume
of the Newton polytope of the above monomials. Since this is a pyramid of height one, we
just need to compute the volume of the Newton polytope of the monomials except λ. This
polytope has a staircase triangulation as for ∆m−k−1 ×∆k where each simplex corresponds
to a path as we described in the proof of Theorem 2.2.5, except that the volume of a simplex
corresponding to a path which reaches the south edge of the grid j steps before the southeast
corner is 2j. Therefore ψQP (m, k) is at most

m−k−1∑
j=0

(
m− j − 2

k − 1

)
2j.

Remark 2. There are many more specializations of semidefinite programming that one may
consider. For example, one can consider the degree of the central curve in second-order
conic programming (SOCP) which can be reformulated as a sparse SDP. Another special
case is convex quadratically constrained quadratic programs (QCQP) which can be written as
an SOCP. However, the resulting SDP will no longer have generic data {C,A1, . . . , Ak, b}.
Indeed, using computer software such as Macaulay2 one can compute these degrees for small
cases using the appropriate KKT conditions and projecting onto the primal space. In doing
so one can see that they do not generally coincide with the ML degree. Like in the linear
programming and quadratic programming case above, one must find a different theory to
determine the degree of the central curve in these specializations, an interesting potential
future project.
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Chapter 3

Symmetry Adapted Gram
Spectrahedra

In this chapter we study the spectrahedra that arise in the theory of symmetric and sums
of squares (SOS) polynomials. For a finite group G, we are interested in sums of squares
polynomials which are G-invariant. Section 3.1 offers precise definitions and background
for sums of squares and representation theory. We then go on to define what is called a
symmetry adapted basis and use this to construct the symmetry adapted PSD cone. While
Section 3.2 goes into more detail, we briefly describe the process here.

We start with a representation of G on Rn, extending by linear substitution to a repre-
sentation D : G→ GL(V ) on V = R[x1, . . . , xn]d, the vector space of degree d homogeneous
polynomials in n indeterminates. The dimension of V is N =

(
n+d−1

d

)
, and we denote the

cone of N×N positive semidefinite matrices by PSDN . Choosing a basis for V gives matrices
D(g), and we obtain the symmetry adapted version of PSDN , namely,

PSDG
N :=

{
Q ∈ PSDN

∣∣∣∣ D(g)TQD(g) = Q, for all g ∈ G
}
.

For a given polynomial f of degree 2d which is invariant under the action of a group G, the
symmetry adapted Gram spectrahedron of f is the closed, convex, semi-algebraic set

KG
f := Lf ∩ PSDG

N .

Here, Lf is the linear space of symmetric matrices Q which represent f as f(x) = [x]TQ[x],
and [x] is a column vector whose entries form a basis for V , usually chosen to be all monomials
of degree d in the variables x1, . . . , xn.

The Gram spectrahedron Kf = Lf ∩ PSDN for a polynomial f is a set parameterizing
all ways to write f as a sum of squares. Its geometry is important for understanding sums
of squares representations of f . For example, the matrices of lowest rank contained in Kf

encode the ways to write f as a sum of a minimal number of squares. These matrices of
lowest rank are extremal points of Kf . Characterizing the minimal number of squares is a
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topic that has been widely studied [15, 18, 19, 52, 66, 69, 77]. The symmetry adapted Gram
spectrahedron KG

f is a smaller and simpler convex set for which we can ask similar questions.
It was introduced in [32] and has since been used in a variety of applications [2, 63, 62].

In this thesis, we mainly focus on the case G = Sn, the symmetric group, and the
polynomials we consider will be the usual symmetric polynomials [47]. Section 3.1 offers a
brief summary of the background needed from representation theory and SOS polynomials.
In Section 3.2 we discuss what is called a symmetry adapted basis which will allow us to
construct the symmetry adapted PSD cone. Section 3.3 then goes on to define the symmetry
adapted Gram spectrahedron. In Section 3.4 we return to the symmetry adapted cone PSDG

N .
In particular, we compute the dimension of PSDG

N , characterize its extremal rays, prove it is
Terracini convex, and in the case of G = Sn, we present the block in any symmetric matrix
Q ∈ PSDSn

N corresponding to the trivial representation.
The remainder of the chapter collects results about symmetric polynomials for particular

n and d. Section 3.5 focuses on binary (n = 2) and quadratic (2d = 2) symmetric polynomials
that are SOS. In the binary case, we compute the symmetry adapted matrix representations
of all symmetric polynomials, and in the quadratic case, we do the same, and prove that,
as the number of indeterminates tends to infinity, the ratio of SOS symmetric quadratic
forms to all symmetric quadratic forms is 1

8
. Another interesting consequence obtained is

that symmetric quadratic SOS polynomials in n variables can only be sums of 1, n − 1
or n squares. In Section 3.6, we start with the classic case of ternary quartics, describing
the associated symmetry adapted PSD cone. We then completely describe the geometric
structure of the symmetry adapted Gram spectrahedron for a generic, smooth, positive,
symmetric ternary quartic including the rank of the matrices on its boundary. Further, we
provide necessary conditions on the coefficients for a symmetric ternary quartic to be SOS.
We end the section by going up in degree and considering degree six symmetric polynomials
in three variables. Here we show that the rank of a matrix in the symmetry adapted Gram
spectrahedron of a generic symmetric ternary sextic will be at least 4.

3.1 Preliminaries

In this section, we review some basic facts about sums of squares and representation theory.
This allows us to discuss invariant semidefinite programs that arise from proving nonnegativ-
ity of invariant polynomials. In particular, we will be interested in symmetric polynomials,
which are invariant under the Sn action of permuting the variables.

Sums of Squares

We begin with a few definitions and a bit of notation. Let R[x]≤d = R[x1, . . . , xn]≤d be
the space of real polynomials in n variables of degree at most d. A polynomial p in
R[x1, . . . , xn]≤2d is said to be a sums of squares (SOS) polynomial if p = q21 + · · · + q2r
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where qi ∈ R[x1, . . . , xn]≤d, i = 1, . . . , r. That is, a polynomial is SOS if it can be written as
a sum of polynomials squared.

As we discussed in Section 1.1, sums of squares is a common method for proving non-
negativity of a polynomial as an SOS polynomial must be nonnegative. Moreover, certifying
SOS-ness can be reduced to a semidefinite program, as we see in the following theorem.

Theorem 3.1.1. Let f(x) ∈ R[x1, . . . , xn]≤2d be a polynomial of degree 2d and let [x] be a
column vector consisting of a basis of R[x1, . . . , xn]≤d. Then f(x) is a sum of squares if and
only if there exists an N ×N real positive semidefinite matrix Q where N =

(
n+d
d

)
such that

f(x) = [x]tQ[x]. (3.1)

Example 3.1.1. Consider the polynomial f(x) = 5x2−2x+ 2. We take the monomial basis

as our basis of R[x]≤1, letting [x] =
[
1 x

]t
. Then by Theorem 3.1.1 we must find a positive

semidefinite matrix Q = (qij) such that

5x2 − 2x+ 2 =
[
1 x

] [q11 q12
q12 q22

] [
1
x

]
.

Expanding the right-hand side to get

5x2 − 2x+ 2 = q11 + 2q12x+ q22x
2

and equating coefficients defines the affine subspace of symmetric matrices, q11 = 5, 2q12 =
−2, and q22 = 2. Indeed

Q =

[
5 −1
−1 2

]
is positive semidefinite and thus we certify that f is SOS.

The set of all positive semidefinite matrices Q that satisfy (3.1) for a given f is called the
Gram spectrahedron of f . Gram spectrahedra have been studied intensively in [12, 18, 19,
32, 59], to name a few. By Theorem 3.1.1 it is precisely the affine subspace defined by (3.1)
intersected with the PSD cone, i.e. the feasible region of an SDP. Thus we see that checking
if a polynomial is SOS reduces to an SDP, more specifically, a feasibility problem.

We omit the proof for Theorem 3.1.1, but note that the key ingredient is that a positive
semidefinite matrix can be factored as in Proposition 2.1.1 (5). Thus f can be written as
(U [x])t(U [x]) which gives us the sum of squares decomposition. While the factorization is
not unique, given a Q of rank r, we will always get an SOS decomposition of f with r squares.
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In the example above, this means we must get a sum of two squares:

5x2 − 2x+ 2 =
[
1 x

] [ 5 −1
−1 2

] [
1
x

]
=
[
1 x

] [−2 1
1 1

] [
−2 1
1 1

] [
1
x

]
=
[
x− 2 x+ 1

] [x− 2
x+ 1

]
= (x− 2)2 + (x+ 1)2.

For the remainder of this thesis, we will assume our polynomials are homogeneous,
meaning that each term is of the same degree. We can always homogenize a polynomial
f(x1, . . . , xn) of degree d by introducing a new variable xn+1 and defining a new polynomial

f̄ = xdn+1f(
x1
xn+1

, . . . ,
xn
xn+1

).

If f is positive, then so is f̄ . Likewise for SOS polynomials. Moreover, if p =
∑

i q
2
i is homo-

geneous of degree 2d, the polynomials qi will be homogeneous of degree d and furthermore
the vector [x] in Equation (3.1) will only need to contain homogeneous polynomials of degree
d. Thus we restrict our study to homogeneous polynomials, also called forms, and denote
the space of forms of degree d by R[x]d = R[x1, . . . , xn]d.

Note that the dimension of R[x]d is
(
n+d−1

d

)
. We quickly restate the theorems and defi-

nitions from earlier in the context of homogeneous polynomals.

Theorem 3.1.2. Let f(x) ∈ R[x1, . . . , xn]2d be a homogeneous polynomial and let [x] be
a column vector consisting of a basis of R[x1, . . . , xn]d. Then f(x) is a sum of squares
if and only if there exists an N × N real positive semidefinite symmetric matrix Q where
N =

(
n+d−1

d

)
and

f(x) = [x]TQ[x]. (3.2)

Now the vector [x] only contains homogeneous polynomials of degree d and N is the
number of monomials of degree exactly d. As before the set of N × N real symmetric

matrices SN is a vector space isomorphic to R(N+1
2 ). The subset of positive semidefinite

matrices PSDN is a full-dimensional closed convex cone in this vector space. It is a semi-
algebraic set defined by 2N − 1 polynomial inequalities given by forcing the 2N − 1 principal
minors of an N ×N symmetric matrix to be nonnegative.

Definition 3.1.1. Let f ∈ R[x1, . . . , xn]2d. The Gram spectrahedron of f is the spectrahedron

Kf := Lf ∩ PSDN ,

where Lf is the affine subspace of symmetric matrices Q satisfying (3.2).

Proposition 3.1.1. The Gram spectrahedron Kf is non-empty if and only if f is an SOS
polynomial.
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Representation Theory

Representation theory is the study of symmetry. Specifically, it is concerned with the study
of symmetries that arise from a group acting on a vector space. By linearizing the structure
of a group in this way, we are able to study the group through the more familiar lens of
vector spaces.

There is a great deal of theory required to fully understand and prove even the few key
ideas in representation theory that appear in this section. As this is beyond the scope of
this thesis, we simple provide the necessary statements and definitions along with examples.
We are primarily interested in representations of Sn, the symmetric group, of permutations
on n elements. As such most examples will be about Sn.

Definition 3.1.2. Let V be a complex finite-dimensional vector space. A representation of
a group G is a morphism D : G→ GL(V ).

That is, D assigns to each element g ∈ G a linear transformation, D(g), such that

D(g)D(h) = D(gh), ∀g, h ∈ G (3.3)

which in particular implies that D(id), where id is the identity element in G, is the identity
matrix and D(s−1) = D(s)−1. We say the dimension of the representation is the dimension
of the underlying vector space V .

Example 3.1.2. The trivial representation sends each element of a group to 1, i.e. D(g) = 1
for all g ∈ G, and therefore fixes a 1-dimensional vector space.

Example 3.1.3. Consider Sn and let V = Cn with standard basis vectors e1, . . . , en. To
each permutation we assign the linear transformation that permutes the corresponding basis
vectors. For example, the element (12) sends e1 7→ e2, e2 7→ e1, and fixes ei for i = 3, . . . , n.
We can write this representation in matrix form. For a transposition (i(i+ 1)) we get

D((i(i+ 1))) =

e1 e2 · · · ei+1 ei · · · en


that is, the identity matrix with the ith and (i + 1)th columns swapped. By Equation (3.3),
the remaining linear transformations can be generated by these matrices as transpositions
generate Sn. This is sometimes called the defining representation of Sn.

Given a representation we say that G acts on the vector space V or call it the action of
G on V . It is also common to refer to the vector space itself as the representation and we
will at times do so in this thesis.

It is useful to think of two representations as being the “same” representation in some
sense. We illustrate this with an example first before giving a precise definition.
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Example 3.1.4. Consider the symmetries of a triangle. Let G = S3 and consider the
representation which permutes the vertices of the below triangle in the unit circle:

Transpositions correspond to reflections of the triangle, for example,

D((23)) =

[
1 0
0 −1

]
with respect to the standard basis vectors. We also have rotations, such as

D((123)) =

[
−1

2
−
√
3
2√

3
2
−1

2

]

which together with reflections completely describe the symmetries of a triangle. On the other
hand, consider these same symmetries in a different basis, letting b1 be the vector going to
vertex 2 and b2 be the vector going to vertex 3. In this basis, we get the matrices

D′((23)) =

[
0 1
1 0

]
and D′((123)) =

[
0 −1
1 −1

]
That is, we have two representations that describe the same symmetries (i.e. linear trans-
formations), but in different coordinate systems.

We think of these two representations as the same representation. To be more precise
they are equivalent.

Definition 3.1.3. Two n-dimensional representations g → D(g) and g → D′(g) of a group
G are equivalent provided there exists a fixed non-singular n× n matrix T such that

D′(g) = T−1D(g)T ∀g ∈ G.

In the remainder of this section we wish to fully decompose a representation into its most
basic components. With this goal in mind we start by defining subrepresentations.
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Definition 3.1.4. A subrepresentation of a representation V of a group G is a subspace
W ⊂ V such that D(g)w ∈ W for all w ∈ W and g ∈ G.

That is, restricting the action of G to W is itself a representation. For example, {0} and
V are always subrepresentations of V .

Example 3.1.5. Consider the defining representation of Sn on Cn from Example 3.1.3. It
is easy to see that W = span{(1, 1, . . . , 1)t} is a subrepresentation.

Definition 3.1.5. A representation V is said to be irreducible if {0} and V are the only
subrepresentations of V .

If V has a proper subspace which is also a subrepresentation, we say it is reducible.

Theorem 3.1.3 (Schur’s Lemma). Let V and V ′ be irreducible representations of a group
G. If φ : V → V ′ is a morphism of representations then either φ is an isomorphism or
φ = 0. Further, any two such isomorphisms between V and V ′ differ by a scalar multiple.

It is helpful to think in terms of matrix representations. Let D and D′ be irreducible
representations of vectors spaces V and V ′ respectively. Suppose we have a matrix T (not
necessarily square) such that TD(g) = D′(g)T for all g ∈ G. Schur’s lemma tells us that
either T is the null matrix or T is square, invertible, and D and D′ are equivalent.

Theorem 3.1.4 (Maschke’s Theorem). Let V be a representation of a finite group G. Then
there exists a direct sum decomposition

V = V1 ⊕ V2 ⊕ · · · ⊕ Vk

where each Vi is an irreducible representation of G.

We will also write the decomposition into irreducible representations as

V = m1V1 ⊕m2V2 ⊕ · · · ⊕mkVk

where mi, i = 1, . . . , k, is called the multiplicity of Vi. That is, there are mi equivalent copies
of this irreducible representation in the direct sum decomposition. We call the subspace
miVi = ⊕mi

j=1Vi an isotypic component.
Not only can we decompose representations of finite groups into its irreducibles, using

Schur’s lemma we can produce a matrix representation with block diagonalized structure.
That is, if D(g) is a matrix representation for V and D(i), i = 1, . . . , k, are matrix represen-
tations for the irreducible representations Vi, then there exists an invertible matrix T such
that

T−1D(g)T =


D(1)(g) 0 · · · 0

0 D(2)(g) · · · 0
...

...
. . .

...
0 0 · · · D(k)(g)
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for all g ∈ G.
As this thesis is mainly interested in the symmetric group, we end with a discussion of the

irreducible representations of Sn. Indeed, it turns out that the irreducible representations of
Sn are in one-to-one correspondence with partitions of n.

Definition 3.1.6. Given a positive integer n, a partition λ of n is a sequence of positive
integers λi, i = 1, . . . , k, in nonincreasing order such that

∑
i λi = n. By λ ` n we mean λ

is a partition of n. At times we also denote a partition by its sequence (λ1, . . . , λk).

We identify partitions with Young diagrams which have k rows of boxes with λi boxes in
each row. For example, for partition λ = (6, 3, 1, 1) the corresponding Young diagram is

One can define the hook length to any given box in the Young diagram as the number
of boxes directly below and to the right of it (including itself). For example,

x

the hook length of the box with x inside is 5.
As previously stated, there is a natural bijection between the irreducible representations

of Sn and partitions of n. It is beyond the scope of this thesis to go into the details of
constructing these irreducible representations and showing the isomorphisms. The reader is
encouraged to consult [31, Chapter 7].

Example 3.1.6. The irreducible representations associated to λ = (n) and µ = (1, 1, . . . , 1)
(both partitions of n) are both 1-dimensional. They are called the trivial and the alternat-
ing (or sign) irreducible representations, respectively. The trivial irreducible representation
sends all elements to 1 while the alternating sends a permutation to its sign, 1 for even
permutations, -1 for odd permutations.

Example 3.1.7. The irreducible representation labeled by λ = (n− 1, 1) is called the stan-
dard irreducible representation of Sn. Example 3.1.4 illustrates one way to construct this
representation for n = 3. More generally for Sn, one starts with an (n − 1)-simplex with
vertices labeled 1, . . . , n on the unit sphere in Rn−1. The standard irreducible representation
is defined by the linear transformations corresponding to the symmetries of the simplex.
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Until now, we have only considered V = Cn. However, a very interesting vector space
to consider is the space of polynomials. In this thesis we are mainly concerned with real
polynomials, however, it is useful at times to consider C[x]d as well. Let Sn act on V = C[x]d
by permuting the variables. By Maschke’s Theorem, C[x]d decomposes into the irreducible
representations of Sn,

C[x]d = mλ1Vλ1 ⊕mλ2Vλ2 ⊕ · · · ⊕mλsVλs

where λj, j = 1, . . . , s, are all partitions of n. Let λ1 = (n) so that Vλ1 is the trivial
representation. The isotypic component associated to λ1 = (n) is the space of symmetric
polynomials of degree d. These are precisely polynomials which are invariant under the
action of Sn, i.e. D(g)p(x) = p(x) for a symmetric polynomial p, and this subspace is
denoted C[x]Sn

d .
It will be particularly important to be able to determine the multiplicity of each irre-

ducible representation of Sn in the decomposition of C[x]d and the remainder of this section
is dedicated to such computations.

Multiplicities of irreducible representations for Sn acting on
homogeneous polynomials

In this section, V = R[x1, . . . , xn]d ' RN or its complexification, the vector space of homo-
geneous degree d polynomials in x1, . . . , xn. We begin with a representation of G = Sn on
Rn which extends to a representation on V by linear substitution of variables. Furthermore,
we will also use the fact that the irreducible representations of Sn are indexed by partitions
λ [67]. In other words,

V = mλ1Vλ1 ⊕ · · · ⊕mλsVλs

where λ1, λ2, . . . , λs are partitions of n. Here we provide a simple way to determine the
multiplicity of the irreducible representation Vλ. For this we need to compute 〈χλ, χd〉 where
χλ is the irreducible character associated to Vλ and χd is the character of the representation
V = C[x1, . . . , xn]d. We will present a method which we have learned from Mark Haiman.

The space of complex-valued functions CG on a group has a natural inner product CG×
CG → C defined by

〈f, g〉 :=
1

|G|
∑
σ∈G

f(σ)g(σ).

The ring of symmetric functions Λ also has a natural inner product. This can be defined by
specifying its values on pairs of basis vectors; for instance

〈mλ, hµ〉 = δλµ

where mλ and hµ are monomial and complete homogeneous symmetric functions associated
to partitions λ and µ, respectively. Elsewhere in this thesis mλ denotes the multiplicity of
the irreducible representation Vλ, but in this section it denotes the monomial symmetric
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function associated to such a partition. A key tool for us will be the Frobenius characteristic
map [74, p. 351]. This is a linear map between the subspace of functions χ : Sn → C
constant on conjugacy classes and the ring Λ. It is defined by

ch(χ) =
1

n!

∑
σ∈Sn

χ(σ)ppar(σ)

where par(σ) = µ is the partition given by the cycle type of σ, and pµ = pµ1 · · · pµk is the
power sum symmetric polynomial [74, Section 7.7]. The characteristic map ch is an isometry
[74, Proposition 7.18.1] between the subspace of functions constant on conjugacy classes and
the space Λn of degree n symmetric functions, each equipped with their respective inner
products. In the former, the irreducible characters χλ of Sn form an orthonormal basis, and
in the latter, the Schur polynomials sλ form an orthonormal basis. It is a standard fact in
representation theory and the theory of symmetric functions that ch(χλ) = sλ [67, Section
4.7].

Theorem 3.1.5. Let χd be the character of the representation of the symmetric group Sn
acting on polynomials of degree d in n variables V = C[x1, . . . , xn]d. Let b(λ) =

∑
i(i− 1)λi

and let hi be the hook length for the ith box in the Young diagram of λ. The multiplicity
of the irreducible representation Vλ in V is equal to the number of solutions y ∈ Nn of the
equation

h1y1 + · · ·+ hnyn = d− b(λ).

Proof. We first compute the inner product

〈sλ(z),
∑
d

ch(χd)q
d〉 = 〈sλ(z),

∑
µ`n

sµ(z)sµ(1, q, q2, . . .)〉

= sλ(1, q, q
2, . . .).

Here, the first equality is by [74, Exercise 7.73], while the second one is by orthonormality
of the Schur basis for Λ. Thus we have shown that∑

d

〈χλ, χd〉qd =
∑
d

〈ch(χλ), ch(χd)〉qd = 〈sλ(z),
∑
d

ch(χd)q
d〉 = sλ(1, q, q

2, . . .).

Let fλ(q) be the q-analogue of the number of standard Young tableaux of shape λ, which
means that

fλ(q) =
∑

T∈SY T (λ)

qmaj(T )

where maj(T ) is the sum of the descents in T , i.e. it is the sum over all i such that i + 1
appears in a lower row in T than i. We let h(x) be the hook length for a box x in the Young
diagram of λ. Using this, we obtain

sλ(1, q, q
2, . . .) =

fλ(q)

(1− q)(1− q2) · · · (1− qn)
=

qb(λ)∏
x∈λ(1− qh(x))
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= qb(λ)(1 + qh1 + q2h1 + · · · )(1 + qh2 + q2h2 + · · · ) · · · (1 + qhn + q2hn + · · · )

where the first equality is [74, Proposition 7.19.11], the second equality is [74, Corollary
7.21.3], and hi are all the hook lengths of λ. Expanding this out we see that the coef-
ficient of the qd term is the number of ways we can add multiples of the hook lengths
h1, 2h1, . . . , h2, 2h2, . . . , hi, 2hi, . . . so they add up to d− b(λ).

Example 3.1.8. Suppose we have S4 acting on V = C[x1, x2, x3, x4]4. Consider the Young
diagram of λ = (2, 1, 1) with zeros filled in the first row, 1’s in the second row and so on:

0 0

1

2

Summing up the numbers gives us b(λ) = 3. The hook lengths are 4,2,1,1, and d = 4.
Thus in order to calculate the multiplicity of the irreducible representation associated to
(2, 1, 1), by Theorem 3.1.5 we need to find all nonnegative integer solutions to the equation
x1 + x2 + 2x3 + 4x4 = 4− 3 = 1. In the table below we calculate this for all partitions of 4:

Partition b(λ) hTx = n− b(λ) Number of solutions
(4) 0 x1 + 2x2 + 3x3 + 4x4 = 4 5

(0, 0, 0, 1)
(1, 0, 1, 0)
(0, 2, 0, 0)
(2, 1, 0, 0)
(4, 0, 0, 0)

(3, 1) 1 x1 + x2 + 2x3 + 4x4 = 3 6
(0, 1, 1, 0)
(1, 0, 1, 0)
(0, 3, 0, 0)
(1, 2, 0, 0)
(2, 1, 0, 0)
(3, 0, 0, 0)

(2, 2) 2 x1 + 2x2 + 2x3 + 3x4 = 2 3
(0, 0, 1, 0)
(0, 1, 0, 0)
(2, 0, 0, 0)

(2, 1, 1) 3 x1 + x2 + 2x3 + 4x4 = 1 2
(0, 1, 0, 0)
(1, 0, 0, 0)

(1, 1, 1, 1) 6 4x1 + 3x2 + 2x3 + x4 = −2 0
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As a last example consider the partition λ = (n) associated to the trivial irreducible
representation of Sn for V = C[x]d. The hook lengths are 1, 2, . . . , n and b((n)) = 0. To
calculate the multiplicity we wish to know the positive integer solutions to the equation

x1 + 2x2 + · · ·+ nxn = d.

Notice that x1 counts the number of 1’s in our sum, x2 counts the number of 2’s and so on.
Assuming n ≥ d, this implies that the multiplicity of the trivial irreducible representation
will be equal to the number of partitions of d. Moreover, for any n and d we will always
have at least one copy of the trivial irreducible representation as (d, 0, . . . , 0) will always be
a solution.

For some recent results on the interplay between n, d and the multiplicities of irreducible
representation of Sn for V = C[x]d, the interested reader should consider [26].

3.2 Symmetry Adapted Basis

In this section we define and discuss a symmetry adapted basis of a vector space V given
a particular representation. For completeness we also include Algorithm 1 at the end for
concrete calculations of such a basis.

Recall from the previous section that a representation of a group G is a homomorphism ρ :
G→ GL(V ) where GL(V ) is the group of invertible linear transformations of a vector space
V . If V is finite-dimensional, we also write GL(n) for n = dimV . A subrepresentation of V
is a subspace U ⊂ V which is invariant under the action of G. If the only subrepresentations
of V are {0} and V , we say that V is irreducible. The character χρ : G → C is defined by
taking the trace of each ρ(g) and is used to decompose representations. A representation
which admits a direct sum decomposition V = ⊕Vi with each Vi irreducible is said to be
completely reducible. Representations of finite groups are completely reducible. When we
decompose V into irreducibles V1, . . . , Vs, each Vi appears with multiplicity mi:

V = m1V1 ⊕ · · · ⊕msVs.

This means that there exists a basis of V such that ρ(g) becomes the matrix D(g) for g ∈ G
and is block diagonal with mi blocks corresponding to Vi where each block is ni × ni with
ni = dimVi. Here we denote by D(g) the matrix written in a chosen basis for the linear map
ρ(g).

In general, these mi matrices of size ni × ni corresponding to Vi are not identical. For-
tunately, one can choose a different basis of V with respect to which the representation
matrices D̃(g) for all g ∈ G are block diagonal where the mi blocks corresponding to Vi are
identical. See [28, Section 5.2] or [72, p. 23] for Algorithm 1 to compute such a basis. In
other words, this algorithm constructs a change of basis matrix T such that T−1D(g)T is
block diagonal with this extra nice property for all g ∈ G. Such a basis is known as a sym-
metry adapted basis. A symmetry adapted basis can also be used to simplify linear operators
P ∈ Hom(V, V ) which commute with the representation matrices D(g) for all g ∈ G.
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In this thesis, we are concerned with the field of real numbers R, but to more easily
and uniformly describe the representation theory involved we work with C. Irreducible
representations of finite groups over C come in three types [72, p. 108]. All of them give
rise to representations of G over R, although the dimension may stay the same (type 2) or
double (types 1 or 3). The characters of the representations over R are either equal to the
character χ of the representation over C (type 2) or equal to χ + χ or 2χ (types 1 or 3).
By averaging over the group, an invariant inner product can be created which allows each of
these real representations to be written using real orthogonal matrices. See Example 3.3.1.
For many results, the orthogonality of the matrices is important. Therefore we will assume
that all irreducibles appearing in the isotypic decompositions under consideration are of type
2. In the case G = Sn, all irreducibles are indeed of type 2, so this assumption is always
justified. For other groups, to see if an irreducible representation is type 2, one needs check
if 1
|G|
∑

g∈G χ(g2) = 1 [72, p. 109]. Whenever we use the complexification C ⊗R V , recall
that adjustments can be made so that all the matrices are real, and the dimensions will not
change.

Theorem 3.2.1. [28, Theorem 2.5] Let ρ : G → GL(V ) be a representation of the finite
group G, and let

V = m1V1 ⊕ · · · ⊕msVs

be the direct sum decomposition into irreducible representations Vi with dimVi = ni and
multiplicity mi. Then every P ∈ Hom(V, V ) such that D(g)P = PD(g) for all g ∈ G has
the following form in a symmetry adapted basis:

P =


P1 0 . . . 0
0 P2 . . . 0
...

...
. . .

...
0 0 . . . Ps


where each Pi is an (mini)× (mini) matrix

Pi =


µi11Ini

µi12Ini
. . . µi1mi

Ini

µi21Ini
µi22Ini

. . . µi2mi
Ini

...
...

. . .
...

µimi1
Ini

µimi2
Ini

. . . µimimi
Ini

 .

Proof. In a symmetry adapted basis we have
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D(g) =


D1(g) 0 . . . 0

0 D2(g) . . . 0
...

...
. . .

...
0 0 . . . Ds(g)


where each Di(g) is an (mini) × (mini) block diagonal matrix with mi identical ni × ni
matrices along its diagonal:

Di(g) =


Σi(g) 0 . . . 0

0 Σi(g) . . . 0
...

...
. . .

...
0 0 . . . Σi(g)

 .

After partitioning P into (mini)× (mjnj) matrices Pij for i, j = 1, . . . , s, we see that

D(g)P = PD(g)

implies Di(g)Pij = PijDj(g). We partition each Pij further

Pij =


P 11
ij P 12

ij . . . P
1mj

ij

P 21
ij P 22

ij . . . P
2mj

ij
...

...
. . .

...
Pmi1
ij Pmi2

ij . . . P
mimj

ij


and observe that Σi(g)P tu

ij = P tu
ij Σj(g) for all i, j = 1, . . . , s and g ∈ G. When we view

P tu
ij as an element of Hom(Vi, Vj), Schur’s Lemma implies that P tu

ij = 0 whenever i 6= j.
Furthermore, P tu

ii = µituIni
.

Corollary 3.2.1. Let V = m1V1 ⊕ · · · ⊕msVs be as in Theorem 3.2.1. Then the dimension
of the subspace of linear operators P ∈ Hom(V, V ) such that D(g)P = PD(g) for all g ∈ G
is m2

1 +m2
2 + · · ·+m2

s.

Proof. The above theorem implies that the dimension is at most m2
1 +m2

2 + · · ·+m2
s. Every

block diagonal matrix P = diag(P1, . . . , Ps), with Pi as in the theorem, commutes with each
D(g). Since the m2

i scalars µitu are free parameters for i = 1, . . . , s, we get the result.

A reordering of the symmetry adapted basis which block-diagonalizes the D(g) matrices
also leads to a more convenient block-diagonalization of commuting linear operators P such
that PD(g) = D(g)P .
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Corollary 3.2.2. Given V = m1V1 ⊕ · · · ⊕msVs and P ∈ Hom(V, V ) such that D(g)P =
PD(g) for all g ∈ G, let

B =
s⋃
i=1

mi⋃
k=1

Bik

be an ordered basis that is symmetry adapted where Bik = {vik1 , vik2 , . . . , vikni
}. If one reorders

the basis vectors in
⋃mi

k=1 Bik as
⋃ni

`=1 B̃i` with B̃i` = {vi1` , vi2` , . . . , v
imi
` } then

P =


P̃1 0 . . . 0

0 P̃2 . . . 0
...

...
. . .

...

0 0 . . . P̃s


where

P̃i =


Mi 0 . . . 0
0 Mi . . . 0
...

...
. . .

...
0 0 . . . Mi

 and Mi =


µi11 µi12 . . . µi1mi

µi21 µi22 . . . µi2mi

...
...

. . .
...

µimi1
µimi2

. . . µimimi

 .

Proof. The reordering of the symmetry adapted basis has the effect of reordering the rows
and columns of Pi in Theorem 3.2.1 resulting in P̃i.

For completeness, we briefly summarize the algorithm in [28, p. 113] used to compute the
change of basis matrix to get a symmetry adapted basis as in Corollary 3.2.2. This algorithm
can also be found in [72, p. 23]. For each irreducible representation Vi of the finite group
G, let di(g) be the matrix representation for g ∈ G. The size of di(g) is ni × ni where ni is
the dimension of Vi. We furthermore choose di(g) to be real orthogonal matrices, which can
easily be done when all irreducibles appearing are of type 2, as we assume throughout.
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Algorithm 1: Computation of symmetry adapted change of basis matrix as in
Corollary 3.2.2

• For each irreducible representation i = 1, . . . , s,

1. Compute the matrix

πi =
∑
g∈G

di11(g
−1)D(g).

2. The matrix πi will be of rank mi. Choose mi linearly independent columns and label
them

vi11 , v
i2
1 , . . . , v

imi
1 .

If this set of vectors is not orthonormal, apply Gram-Schmidt (here we utilize a
modification to the algorithm [28, Theorem 5.4]) and relabel each vij1 .

3. For each k = 2, . . . , ni,

a) Compute the matrix

Pik =
ni
|G|

∑
g∈G

di1k(g
−1)D(g).

b) Define new column vectors
vijk = Pikv

ij
1

for j = 1, . . . ,mi.

• The above generates a symmetry adapted basis for all mi copies of Vi. Arrange
these vectors,

Basis Bi1 for V 1
i : vi11 vi12 · · · vi1ni

Basis Bi2 for V 2
i : vi21 vi22 · · · vi2ni

...
...

...
...

...
Basis Bimi

for V mi
i : vimi

1 vimi
2 · · · vimi

ni

• Construct the change of basis matrix T : For each i = 1, . . . , s, the corresponding
columns of T will be the {vijk } in the following order:

vi11 vi12 · · · vi1ni

vi21 vi22 · · · vi2ni

...
...

...
...

vimi
1 vimi

2 · · · vimi
ni

starting with vi11 and going down each column of the array and ending with vimi
ni

.
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3.3 Symmetry Adapted Gram Spectrahedron

In this section we consider SOS polynomials invariant under the linear action of a finite
group G. Therefore we start with a representation of G on Rn. A polynomial f is G-
invariant if f(g−1x) = f(x) for all g ∈ G. The Sn-invariant polynomials are the usual
symmetric polynomials. The vector space of G-invariant polynomials of degree 2d will be
denoted R[x1, . . . , xn]G2d.

The action of G on Rn extends to a representation D : G→ GL(V ) for V = R[x1, . . . , xn]d
with matrices D(g) with respect to a chosen basis. Let [x] be the column vector whose entries
form a basis for V . For any (possibly non-invariant) polynomial f ∈ R[x1, . . . , xn]2d we can
write f(x) = [x]TQ[x] for some Q ∈ SN . Hence g · f(x) = [x]TD(g)TQD(g)[x] for all g ∈ G,
and if f is G-invariant then f(x) = [x]TD(g)TQD(g)[x] for all g ∈ G.

Proposition 3.3.1. If f is a G-invariant polynomial in R[x1, . . . , xn]G2d then there exists
Q ∈ SN such that f(x) = [x]TQ[x] where Q = D(g)TQD(g) for all g ∈ G.

Proof. By Theorem 3.1.1 there exists Q′ ∈ SN such that f(x) = [x]TQ′[x]. Since f is
G-invariant, f(x) = [x]TD(g)TQ′D(g)[x] for all g ∈ G. Now let

Q =
1

|G|
∑
g∈G

D(g)TQ′D(g).

Definition 3.3.1. Let f ∈ R[x1, . . . , xn]G2d be a G-invariant polynomial for some represen-
tation of G on Rn. Let D : G → GL(V ) be the representation of G on V = R[x1, . . . , xn]d
given by linear substitution. The symmetry adapted Gram spectrahedron of f is

KG
f := Lf ∩ PSDG

N ,

where

PSDG
N :=

{
Q ∈ PSDN

∣∣∣∣ D(g)TQD(g) = Q, for all g ∈ G
}
.

Here, Lf is the affine space of symmetric matrices Q satisfying f(x) = [x]TQ[x] for [x] a
column vector whose entries form a basis of V , and D(g) are the matrices of D in this basis.
The set PSDG

N consists of all positive semidefinite matrices which are fixed by the action of
G. We call this the symmetry adapted PSD cone.

Corollary 3.3.1. Let V = R[x1, . . . , xn]d and let D : G → GL(V ) be the representation of
G on V obtained by linear substitution from a representation of G on Rn. Assume that all
irreducible representations appearing in the isotypic decomposition

C⊗R V = m1V1 ⊕ · · · ⊕msVs
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are of type 2, with dimVi = ni and multiplicity mi. Then there exists a basis for V such that
a symmetric matrix Q ∈ SN is in PSDG

N if and only if

Q =


Q̃1 0 . . . 0

0 Q̃2 . . . 0
...

...
. . .

...

0 0 . . . Q̃s

 where Q̃i =


Qi 0 . . . 0
0 Qi . . . 0
...

...
. . .

...
0 0 . . . Qi

 (3.4)

with Qi ∈ PSDmi
for all i = 1, . . . , s and ni identical copies in Qi.

Proof. By Corollary 3.2.2 an arbitrary matrix Q commutes with all D(g) if and only if it
has the stated block-diagonal form in a symmetry adapted basis. If all matrices D(g) are
orthogonal, requiring D(g)TQD(g) = Q is the same as requiring QD(g) = D(g)Q. Since
the irreducibles are of type 2, the matrices di, and therefore πi and Pik, can be chosen with
real entries in Algorithm 1. Thus, the symmetry adapted basis can be written as real linear
combinations of the original basis vectors. By using the invariant inner product

〈v, w〉 := vT

(
1

|G|
∑
g∈G

D(g)TD(g)

)
w,

the symmetry adapted basis can further be adjusted so that the matrices D(g) in that basis
are orthogonal matrices. To carry this out, one can apply Gram-Schmidt using the invariant
inner product above. It only remains to require symmetry and positive semidefiniteness.
This is the condition stated above, that Qi ∈ PSDmi

.

As one might expect PSDG
N and KG

f are simpler, smaller, and more structured objects
than their counterparts PSDN and Kf when f is G-invariant. The rest of this chapter is
devoted to convincing the reader that this is indeed the case.

Example 3.3.1. The focus of this thesis is the case G = Sn. However, we include an example
with the symmetry group G = Ih of an icosahedron. All 10 irreducible representations of Ih
are of type 2. We continue this example in Section 3.4 to demonstrate extremal rays of rank
> 1. This group consists of 120 invertible 3 × 3 orthogonal matrices. Generators are, for
instance, −1 0 0

0 −1 0
0 0 1

 ,

 0 0 1
1 0 0
0 1 0

 ,


1
2
−1

4

√
5− 1

4
1√
5+1

1
4

√
5 + 1

4
1√
5+1

−1
2

1√
5+1

1
2

1
4

√
5 + 1

4

 ,

 −1 0 0
0 −1 0
0 0 −1

 .

The action on R3 extends to an action on V = R[x1, x2, x3]2. The 6 × 6 matrices D̃(g) for
all 120 elements g ∈ Ih written in the monomial basis {x21, x1x2, x1x3, x22, x2x3, x23} are

(
g11 g12 g13
g21 g22 g23
g31 g32 g33

)
D̃7−→


g211 g11g21 g11g31 g221 g21g31 g231

2 g11g12 g12g21 + g11g22 g12g31 + g11g32 2 g21g22 g22g31 + g21g32 2 g31g32
2 g11g13 g13g21 + g11g23 g13g31 + g11g33 2 g21g23 g23g31 + g21g33 2 g31g33

g212 g12g22 g12g32 g222 g22g32 g232
2 g12g13 g13g22 + g12g23 g13g32 + g12g33 2 g22g23 g23g32 + g22g33 2 g32g33

g213 g13g23 g13g33 g223 g23g33 g233

 .
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The resulting 6× 6 matrices above will not be orthogonal matrices. However, we can create
the matrix

S :=
1

|G|
∑
g∈G

D̃(g)
T

D̃(g)

which we use to define the invariant inner product 〈v, w〉 := vTSw. In this case,

S =



7
5

0 0 −1
5

0 −1
5

0 4
5

0 0 0 0
0 0 4

5
0 0 0

−1
5

0 0 7
5

0 −1
5

0 0 0 0 4
5

0
−1

5
0 0 −1

5
0 7

5

 .

Applying a modified Gram-Schmidt to the monomial basis we can create a new basis u1, . . . , u6
for which the representation matrices become orthogonal. Collecting the new basis vectors in

the columns of a matrix U we create orthogonal matrices D(g) = U−1D̃(g)U for all g ∈ Ih.
A useful fact is that U−1 = UTS. Consider [x]T I[x] for [x] the column vector containing the
monomials of degree 2. This would produce the polynomial

x41 + x21x
2
2 + x21x

2
3 + x42 + x22x

2
3 + x43,

which is not Ih-invariant. Proposition 3.3.2 below implies that, in the monomial basis, the
identity matrix is not in PSDIh

N , as can also be checked directly. However, if we apply
the change of basis and extract the polynomial corresponding to the identity matrix f =
(UTm)T I(UTm) we obtain the Ih-invariant polynomial

f =
3

4
x41 +

3

2
x21x

2
2 +

3

4
x42 +

3

2
x21x

2
3 +

3

2
x22x

2
3 +

3

4
x43.

In the basis given by the column vector UTm, the 2-dimensional symmetry adapted PSD cone
PSDIh

6 is given by the 63 inequalities arising from the principal minors of the matrix given
(to 5 digits) by

13
28 q55 +

15
28 q66 0 0 −0.61859 q55 + 0.61859 q66 0 −0.73193 q55 + 0.73193 q66

0 q55 0 0 0 0
0 0 q55 0 0 0

−0.61859 q55 + 0.61859 q66 0 0 2
7 q55 +

5
7 q66 0 −0.84515 q55 + 0.84515 q66

0 0 0 0 q55 0
−0.73193 q55 + 0.73193 q66 0 0 −0.84515 q55 + 0.84515 q66 0 q66

 .

We close this section with the observation that constructing SOS decompositions with
symmetry adapted bases has another advantage. Namely, the partial sums of squares are
G-invariant polynomials themselves when one groups them according to the isotopic com-
ponents. This result was also pointed out in [32, pp. 107-112], but we would like to call
attention to it, as well as provide a fully explicit proof. We then use this result to prove that
every matrix in PSDG

N produces a G-invariant polynomial.
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Proposition 3.3.2. Let f ∈ R[x1, . . . , xn]G2d be a G-invariant polynomial with real coef-
ficients and let every irreducible appearing with nonzero multiplicity in C[x1, . . . , xn]d =
C⊗R R[x1, . . . , xn]d be of type 2. If f is an SOS polynomial then

f =

r1∑
α1=1

q21,α1
+

r2∑
α2=1

q22,α2
+ · · ·+

rs∑
αs=1

q2s,αs
(3.5)

where each qi,αi
is a polynomial of degree d appearing in the ith isotypic component miVi of

C[x1, . . . , xn]d = m1V1 ⊕ · · · ⊕msVs.

Further, each partial sum of squares
∑ri

αi=1 q
2
i,αi

is a G-invariant polynomial, with ri =
rank(Qi) as in Corollary 3.3.1. By choosing bases agreeing with the real representations
corresponding to each isotypic component, each qi,αi

may be chosen with real coefficients.

Proof. Let vij be the column vector [vi1j , v
i2
j , . . . , v

imi
j ]T of basis polynomials chosen in Algo-

rithm 1 as an orthonormal basis for the column space of the jth projection operator for the
ith isotypic component. Since Vi is of type 2, these basis vectors can be chosen as polyno-
mials with real coefficients, and such that the matrices di(g) are orthogonal. Let Qi be the
matrices appearing in Corollary 3.3.1. Then the partial sum of squares for the ith isotypic
component can be rewritten

ri∑
αi=1

q2i,αi
=

ni∑
j=1

(vij)
TQi(v

i
j)

=

〈
Qi,

ni∑
j=1

(vij)(v
i
j)
T

〉
= 〈Qi, Pi(x)〉

where Pi(x) is an mi ×mi matrix with polynomial entries and ri = rank(Qi). Specifically,
the (k, `) entry of the matrix Pi(x) is given by

pik,` =

ni∑
j=1

vikj v
i`
j . (3.6)

Letting di(g) = (diα,β) for g ∈ G be the orthogonal matrices for the real representation
associated to the ith isotypic component, we have the relations

ni∑
j=1

(diαj)(d
i
βj) = δαβ.

Recall for each k = 1, . . . ,mi the entry vikj of the column vector vij is a symmetry adapted
basis polynomial which transforms like the jth basis vector of the ith irreducible represen-
tation:

g · vikj =

ni∑
α=1

diαjv
ik
α .
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Acting with the group element g ∈ G we have

ni∑
j=1

(vij)(v
i
j)
T 7→

ni∑
j=1


...∑ni

α=1 d
i
αjv

ik
α

...

 [ · · · ∑ni

β=1 d
i
βjv

i`
β · · ·

]

=

ni∑
j=1


. . . (k, `) entry =∑

(α,β)∈[ni]×[ni]
diαjd

i
βjv

ik
α v

i`
β

. . .

 .
Pulling the sum over j = 1, . . . , ni inside to each individual entry of the matrix we see that
the orthogonality relations zero out all terms except those giving the (k, `) entry of Pi(x).
Therefore, each of the entries of Pi(x) will be itself an invariant polynomial, and hence∑ri

αi=1 q
2
i,αi

= 〈Qi, Pi(x)〉 is invariant. Note that a factorization of Qi will still be required to
find the ri explicit squares q2i,αi

as usual.

Example 3.3.2. Consider the polynomial (H21 −H111)(x
2
1, x

2
2, x

2
3) =

1

18
(x41 + x21x

2
2 + x21x

2
3 + x42 + x22x

2
3 + x43)(x

2
1 + x22 + x23)−

1

27
(x21 + x22 + x23)

3

=
1

54
x61 +

1

54
x62 +

1

54
x63 −

1

18
x21x

2
2x

2
3

which is an S3-invariant (symmetric) polynomial. We will define a family of such polynomials
in Chapter 4. One matrix in its symmetry adapted Gram spectrahedron is

1

108



4 −2
√

2 0 0 0 0 0 0 0 0

−2
√

2 2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 1
√

2 0 0 0 0 0

0 0 0
√

2 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1
√

2 0 0

0 0 0 0 0 0
√

2 2 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 6


.

The rows and columns of this matrix correspond to polynomials which form a symmetry
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adapted basis, and using these we can write our polynomial as

(H21−H111)(x
2
1, x

2
2, x

2
3) =

1

54
x61 +

1

54
x62 +

1

54
x63 −

1

18
x21x

2
2x

2
3

=
1

108

((2
√

3

3
(x31 + x32 + x33)−

√
3

3
(x21x2 + x21x3 + x1x

2
2 + x1x

2
3 + x22x3 + x2x

2
3)
)2

+
(√6

6
(2x31 − x32 − x33) +

√
6

6
(2x21x2 + 2x21x3 − x1x22 − x1x23 − x22x3 − x2x23)

)2
+
(√2

2
(x32 − x33) +

√
2

2
(x1x

2
2 − x1x23 + x22x3 − x2x23)

)2
+
(
x21x2 − x21x3 − x1x22 + x1x

2
3 + x22x3 − x2x23

)2)
where the first square comes from the rank one trivial block, the second and third squares
from the two copies of the rank one standard block and the last square from the rank one
alternating block. Clearly, the first and last squares are symmetric polynomials. Proposition
3.3.2 states that the sum of the second and third squares is also a symmetric polynomial.
Although it is not immediately clear from the above representation, it is indeed so. We invite
the reader to check.

Note that the proof of Proposition 3.3.2 can be applied to any matrix Q in the symmetry
adapted PSD cone, which leads to the following results.

Corollary 3.3.2. Let [x] be a vector of polynomials comprising a fixed basis of R[x1, . . . , xn]d.
Then every matrix Q ∈ PSDG

N , calculated using the representation matrices D(g) written in
this basis produces a G-invariant polynomial f(x) = [x]TQ[x].

Corollary 3.3.3. The symmetry adapted Gram spectrahedron KG
f is non-empty if and only

if the G-invariant polynomial f is SOS.

3.4 Properties of symmetry adapted PSD cones and

Gram spectrahedra

In this section we provide general results about PSDG
N and KG

f . We compute the dimension

of PSDG
N and give a characterization of its extreme rays, as well as describe the matrix block

of Q ∈ PSDSn
N in a symmetry adapted basis corresponding to the trivial representation when

G is the symmetric group.

Corollary 3.4.1. The dimension of PSDG
N is

∑s
i=1

(
mi+1

2

)
.

Proof. Since the dimension of PSDmi
is
(
mi+1

2

)
Corollary 3.3.1 implies the result.
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Extremal Rays

Every point Q ∈ PSDG
N gives rise to a ray, as in

ray(Q) := {cQ : c ∈ R≥0} .

A ray r is extremal if it cannot be written as a non-trivial convex combination of other
rays. We note that in the case of the usual cone of positive semidefinite matrices PSDN ,
the Spectral Theorem for symmetric matrices implies that the extremal rays correspond
to matrices of rank one. A face F of a convex set K is a convex subset such that if a
convex combination of two points of K lies in F , then the points were already elements of
F . In symbols, if a, b ∈ K and ta + (1− t)b ∈ F for some t ∈ (0, 1) then a, b ∈ F . Given a
spectrahedron K, any matrix Q ∈ K belongs to the relative interior of a unique face denoted
by FK(Q). The face FK(Q) is the intersection of K with the subspace of all matrices whose
kernel contains the kernel of Q; see [61].

Theorem 3.4.1. [61, Theorem 1] Let K ⊂ PSDk be a spectrahedron, and for Q ∈ K define

S(Q) = {X ∈ Sk : ker(Q) ⊂ ker(X)}.

Then FK(Q) = S(Q) ∩K.

Corollary 3.4.2. Let K = L ∩ PSDk be a spectrahedral cone for some linear subspace
L ⊂ Sk, and let Q ∈ K. Then Q is extremal if and only if the dimension of the affine hull
of FK(Q) is one.

This leads to the following theorem, further specialized to our case:

Theorem 3.4.2. Let Q1, . . . , Qs be the symmetric matrices appearing in the blocks as in
Corollary 3.3.1. Then the extremal rays of PSDG

N are in bijection with the set of matrices
Q ∈ PSDG

N such that exactly one matrix Qi has rank one, and the other Qj, j 6= i have rank
zero, considered up to scaling by R≥0.

Proof. Let Q ∈ PSDG
N such that one Qi has rank one and the others are zero matrices. The

existence of such Q follows from Corollary 3.2.2. Without loss of generality we can assume
that the (1, 1) entry of Qi is nonzero. We denote this entry by a. Since the columns of Qi

are multiples of the first column and the rows are multiples of the first row we get

Qi =


a s2a · · · smi

a
s2a s22a · · · s2smi

a
...

...
. . .

...
smi

a smi
s2a · · · s2mi

a

 .
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A basis for ker(Qi) is 
−s2

1
0
...
0

 ,


−s3

0
1
...
0

 , · · · ,


−smi

0
0
...
1

 .

The only symmetric matrices whose kernel contains ker(Qi) are scalar multiples of
1 s2 · · · smi

s2 s22 · · · s2smi

...
...

. . .
...

smi
smi

s2 · · · s2mi

 .

This also shows that the only symmetric matrices whose kernel contains ker(Q) have the
same block structure as Q where Q̃j = 0 when j 6= i, and in Q̃i each block is a (possibly
different) multiple of Qi. But then by Theorem 3.4.1 S(Q) ∩ PSDG

N = FPSDG
N

(Q), and this
consists of positive multiples of Q. Therefore the ray generated by Q is an extremal ray.
Any other type of matrix in PSDG

N is easily seen to be a conical combination of the above
matrices. This proves the theorem.

Corollary 3.4.3. The ranks of extremal rays of PSDG
N are precisely {n1, . . . , ns}, ni =

dimVi. In particular, the minimum rank attained by extremal matrices is min(n1, . . . , ns),
and if no one-dimensional representation of G appears in V with positive multiplicity, this
minimum rank is bigger than one.

Note that this differs from PSDN , whose extremal rays are defined by rank one matrices.
We continue with Example 3.3.1.

Example 3.4.1. Consider again the group G = Ih of 120 symmetries of the icosahedron. The
space of degree 3 polynomials has dimension 10, and can help us write the degree 6 icosahedral
invariants as sums of squares. Using the Mulliken symbols for irreducible representations of
Ih typical in chemistry [23, last page], we have that

vector spaces C[x1, x2, x3]3 = T1u ⊕ T2u ⊕Gu

dimensions 10 = 3 + 3 + 4.

Since the minimum dimension of an irreducible in this decomposition is 3, we can already
conclude that the extremal rays of PSDIh

10 will not be given by matrices of rank 1. The extremal
rays correspond to matrices of rank at least 3.

Similarly, since the degree 5 polynomials decompose as

vector spaces C[x1, x2, x3]5 = 2T1u ⊕ 2T2u ⊕Gu ⊕Hu

dimensions 21 = 2(3) + 2(3) + 4 + 5,

we know that the extremal rays are defined by matrices of rank exactly 3, 4, and 5 in PSDIh
21.
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Terracini convexity

In [68] the authors define Terracini convexity as a generalization of neighborliness to convex
cones which are not necessarily polyhedral. Indeed, in the polyhedral case, k-Terracini is
equivalent to k-neighborly. However, there are many families of non-polyhedral cones which
are also Terracini convex, including the PSD cone. In what follows, we will introduce the
necessary definitions and then prove that PSDG

N is also Terracini convex.

Definition 3.4.1. Let C be a closed, convex cone in Rd. To a point x ∈ C, we associate the
set of feasible directions into C,

KC(x) = cone{z − x : z ∈ C}.

We call the closure of this cone, KC(x), the tangent cone of C at x. The convex tangent
space of C at x is

LC(x) = KC(x) ∩ −KC(x).

Definition 3.4.2. Let C be a closed, convex, pointed cone in Rd. C is k-Terracini convex
if for any k extremal rays x(1), . . . , x(k),

LC
( k∑
i=1

x(i)
)

=
k∑
i=1

LC(x(i)) (3.7)

Furthermore, if C is k-Terracini convex for all k ∈ N, then it is Terracini convex.

Example 3.4.2. [68, Example 1.9] The cone of positive semidefinite matrices is Terracini
convex. This can be shown by proving that LPSDN

(X) = {MX + XM : M ∈ SN} and we
will show something similar for the symmetry adapted PSD cone.

Theorem 3.4.3. Let C be a direct sum of PSD cones of varied sizes,

C = ⊕si=1PSDki .

Then C is Terracini convex.

Proof. First, we claim that LC(X) = {MX + XM : M ∈ ⊕si=1Ski)}. To prove this we
assume without loss of generality that X = diag(D̃1, . . . , D̃s) where

D̃i =

(
Di 0
0 0

)
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is a ki × ki matrix and Di is a diagonal matrix of rank ri with positive diagonal entries.
Consider the cone of feasible directions.

KC(X) = cone{Z −X : Z ∈ ⊕si=1PSDki}

= cone{diag(

(
Zi

11 −Di (Zi
12)

t

Zi
12 Zi

22

)
) :

(
Zi

11 (Zi
12)

t

Zi
12 Zi

22

)
� 0}

= cone{diag(

(
Zi

11 −Di (Zi
12)

t

Zi
12 Zi

22

)
) : Zi

22 � 0, Zi
11 − Zi

12(Z
i
22)
†Zi

12 � 0,

(I − Zi
22(Z

i
22)
†)Zi

12 = 0}

where Y † is the pseudo inverse of Y , I is the identity matrix of appropriate size, and the
last equality follows from a characterization of positive semidefiniteness via the Schur com-
plement. Note that we are coning over these matrices, so any positive scaling of matrices
that satisfy these conditions is in the cone of feasible directions. This tells us that the top
left block can be anything and we can further rewrite our cone as

KC(X) = {diag(

(
W i

11 (W i
12)

t

W i
12 W i

22

)
) : W i

22 � 0, col(W i
12) ⊂ col(W i

22)}

where col refers to column space. Now if we take the closure of this we get that

KC(X) = {diag(

(
W i

11 (W i
12)

t

W i
12 W i

22

)
) : W i

22 � 0}

hence

LC(X) = KC(X) ∩ −KC(X)

= {diag(

(
W i

11 (W i
12)

t

W i
12 0

)
)}

= {MX +XM : M ∈ ⊕si=1Ski}.

With this characterization of the convex tangent space, it is easy to see that C is Terracini
convex since

LC(
∑
i

X(i)) = {M(
∑
i

X(i)) + (
∑
i

X(i))M : M ∈ ⊕si=1Ski}

= {
∑
i

MX(i) +X(i)M : M ∈ ⊕si=1Ski}

and ∑
LC(X(i)) =

∑
{MX(i) +X(i)M : M ∈ ⊕si=1Ski}

for any k extreme points.
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Remark 3. This proof was adapted from the proof that LPSDN
(X) = {MX+XM : M ∈ SN}

which Professor Chandrasekaran was kind enough to share with me in our discussion of his
paper [68].

Corollary 3.3.1 tells us that PSDG
N is exactly a direct sum of PSD cones. Hence we have

the following Corollary to Theorem 3.4.3,

Corollary 3.4.4. PSDG
N is Terracini convex.

Trivial Block

Here we turn to G = Sn acting on V = C[x1, . . . , xn]d by permuting the indices of the
indeterminates. For all n and d, the trivial representation appears in V with multiplicity
equal to p = p(n, d) where p(n, d) is the number of partitions of d with at most n parts via
Theorem 3.1.5. Therefore, in a symmetry adapted basis, there is one p × p diagonal block
corresponding to the trivial representation, called the trivial block.

We now use Algorithm 1 to build the trivial block for any n and d in the case of Sn. Note
that we may always use degree d monomials in n variables as a basis for V when G = Sn.
To start, we order our monomial basis so that orbits of G = Sn acting on the finite set of
monomials are grouped together. For example, for degree 3 monomials in 3 variables, we
could order our basis as

{x31, x32, x33, x21x2, x21x3, x1x22, x1x23, x22x3, x2x23, x1x2x3}

which has three orbits Gv for v ∈ {x31, x21x2, x1x2x3}. Note that in general the orbits can be
labeled by partitions of d with ≤ n parts. Under this ordering, a general symmetric matrix
will be described by the blocks indexed by the orbits of our monomials

Q =

O(xλ
(1)

) O(xλ
(2)

) · · · O(xλ
(p)

)


O(xλ
(1)

)

O(xλ
(2)

)
...

O(xλ
(p)

)

.

Proposition 3.4.1. Let Q ∈ PSDSn
N be an N × N symmetric matrix represented in the

monomial basis ordered with respect to the orbits O(xλ
(1)

), O(xλ
(2)

), . . . , O(xλ
(p)

). Let Λi,j be

the submatrix of Q indexed by O(xλ
(i)

) and O(xλ
(j)

) on the rows and columns, respectively.

Let si =
√
|O(xλ(i))|. Then there exists an orthogonal change of basis matrix T such that the



CHAPTER 3. SYMMETRY ADAPTED GRAM SPECTRAHEDRA 51

trivial block of T TQT is

Q · · · =


s21
s21

colsum(Λ1,1)
s22
s1s2

colsum(Λ1,2) · · · s2p
s1sp

colsum(Λ1,p)
s21
s1s2

rowsum(Λ1,2)
s22
s22

colsum(Λ2,2) · · · s2p
s2sp

colsum(Λ2,p)

...
...

. . .
...

s21
s1sp

rowsum(Λ1,p)
s22
s2sp

rowsum(Λ2,p) · · ·
s2p
s2p

colsum(Λp,p)


where colsum(Λi,j) is the sum of the entries of any column of Λi,j and rowsum(Λi,j) is the
sum of the entries of any row of Λi,j.

Proof. We follow Algorithm 1. Since n1 = 1, only the very first step needs to be executed.
Moreover, d1(g) = [1] for all g ∈ Sn, and D(g) are block diagonal in the basis given by the
orbits for each g. Hence π1 is block diagonal with p blocks of size s2i × s2i , i = 1, . . . p, along
the diagonal. It is not hard to see that block i is a multiple of the s2i × s2i matrix with every
entry equal to one. Therefore the first p columns of T are

T =




O(xλ

(1)
) 1/s1 0 · · · 0

O(xλ
(2)

) 0 1/s2 · · · 0
...

...
. . .

... · · · · · ·
O(xλ

(p)
) 0 0 · · · 1/sp

with the bar indicating a column vector. Now in T TQT the trivial block has the stated
form.

3.5 Binary and Quadratic Symmetric Polynomials

In this section we first fix the number of variables n = 2 and consider the structure of the
symmetry adapted PSDG

N cone. In this case, the matrices have size N = d + 1. We choose
the monomial basis {xd, xd−1y, . . . , xyd−1, yd}, and the symmetric matrices will be Q = (qij).
Moreover, we restrict to matrices Q such that QD(σ) = D(σ)Q where σ = (1 2).

Corollary 3.5.1. When n = 2 the dimension of the symmetry adapted PSD cone is

dim PSDS2
d+1 =

{
(d+1)(d+3)

4
d is odd

(d+2)2

4
d is even

Proof. The hook lengths are h1 = 2 and h2 = 1 for both partitions of n = 2 corresponding
to the trivial and alternating representations. Furthermore, b( ) = 0 and b( ) = 1. Thus
we can fill out the following table,
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d Partition hTy = d− b(λ) mλ

odd y1 + 2y2 = d d+1
2

y1 + 2y2 = d− 1 d+1
2

even y1 + 2y2 = d d
2

+ 1
y1 + 2y2 = d− 1 d

2

By Corollary 3.4.1 we need to compute

dim PSDS2
d+1 =

(
m + 1

2

)
+

(
m + 1

2

)
,

and this gives the result.

Proposition 3.5.1. There exists a change of basis matrix so that every Q ∈ PSDS2
N with

N = d+ 1 is of the form
1

2

(
Q

Q

)
where if d is odd

Q =


q11 + q1N q12 + q1(N−1) · · · q1N

2
+ q1(N

2
+1)

q12 + q1(N−1) q22 + q2(N−1) · · · q2N
2

+ q2(N
2
+1)

...
...

. . .
...

q1N
2

+ q1(N
2
+1) q2N

2
+ q2(N

2
+1) · · · qN

2
N
2

+ qN
2
(N
2
+1)


and

Q =


q11 − q1N q12 − q1(N−1) · · · q1N

2
− q1(N

2
+1)

q12 − q1(N−1) q22 − q2(N−1) · · · q2N
2
− q2(N

2
+1)

...
...

. . .
...

q1N
2
− q1(N

2
+1) q2N

2
− q2(N

2
+1) · · · qN

2
N
2
− qN

2
(N
2
+1)

 ,

while if d is even there are an extra row and column in the trivial block

Q =



q11 + q1N q12 + q1(N−1) · · · q1N−1
2

+ q1N+3
2

√
2q1N+1

2

q12 + q1(N−1) q22 + q2(N−1) · · · q2N−1
2

+ q2N+3
2

√
2q2N+1

2

...
...

. . .
...

...

q1N−1
2

+ q1N+3
2

q2N−1
2

+ q2N+3
2
· · · qN−1

2
N−1

2
+ qN−1

2
N+3

2

√
2qN−1

2
N+1

2√
2q1N+1

2

√
2q2N+1

2
· · ·

√
2qN−1

2
N+1

2
qN+1

2
N+1

2


and

Q =


q11 − q1N q12 − q1(N−1) · · · q1N−1

2
− q1N+3

2

q12 − q1(N−1) q22 − q2(N−1) · · · q2N−1
2
− q2N+3

2

...
...

. . .
...

q1N−1
2
− q1N+3

2
q2N−1

2
− q2N+3

2
· · · qN−1

2
N−1

2
− qN−1

2
N+3

2

 .
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Proof. Again we follow Algorithm 1 where d1(g) = [1] and d2(g) = [sign(g)] for g ∈ S2,
D(id) = Id+1 and

D(12) =


0 · · · 0 1
0 · · · 1 0
... . .

. ...
...

1 · · · 0 0

 .

Then π = Id+1 +D(12) and π = Id+1 −D(12). The change of basis matrix T looks a
little different depending on the parity of d:

d odd d even

√
2
2



1 0 1 0
0 1 0 1

...
...

1 0 1
1 0 −1

...
...

0 1 0 −1
1 0 −1 0


√
2
2



1 0 1 0
0 1 0 1

...
... 1√

2 0
...

... −1
0 1 0 −1
1 0 −1 0


By computing T TQT we get Q and Q in both cases.

Example 3.5.1. Consider the symmetric polynomial inequality P4(x, y) ≥ P1111(x, y) where
P4(x, y) = 1

2
(x4 + y4) and P1111(x, y) = 1

16
(x + y)4. It is proven in [24] that this inequality

holds over the nonnegative orthant. We can certify this inequality via sums of squares. First,
define the polynomial,

f(x, y) = (P4 − P1111)(x
2, y2) =

1

2
(x8 + y8)− 1

16
(x2 + y2)4

=
7

16
x8 − 1

4
x6y2 − 3

8
x4y4 − 1

4
x2y6 +

7

16
y8

and note that if f is SOS, then the above inequality holds for x, y ≥ 0. Next, assume
that f = [x]TQ[x] where Q = (qij) is a 5 × 5 symmetric matrix in the monomial basis
[x]T = [x4, x3y, x2y2, xy3, y4]. We equate the coefficients of f(x, y) and

[x]TQ[x] = q11x
8 + 2q12x

7y + (2q13 + q22)x
6y2 + (2q14 + 2q23)x

5y3 + (2q15 + 2q24 + q33)x
4y4

+ (2q14 + 2q23)x
3y5 + (2q13 + q22)x

2y6 + 2q12xy
7 + q11y

8

to find out q11 = 7
16

, q12 = 0, q22 = −1
4
− 2q13, q23 = −q14, and q33 = −3

8
− 2q15 − 2q24.

Substituting these into the computed matrices in Proposition 3.5.1 for d = 4 (even), our
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matrix Q becomes
q15 + 7

16
q14

√
2q13 0 0

q14 −2 q13 + q24 − 1
4

−
√

2q14 0 0√
2q13 −

√
2q14 −2 q15 − 2 q24 − 3

8
0 0

0 0 0 −q15 + 7
16

−q14
0 0 0 −q14 −2 q13 − q24 − 1

4

 .

Now we can run an SDP on this to certify that f is SOS. One rank two solution is
7
8

0 −7
√
2

8
0 0

0 0 0 0 0

−7
√
2

8
0 7

4
0 0

0 0 0 0 0
0 0 0 0 3

 .

This is indeed positive semidefinite and thus f(x, y) = (P4 − P1111)(x
2, y2) is SOS.

In the rest of the section we consider symmetric quadratic polynomials (d = 1) in any
number of variables n. Then N = n and D(g) are the n×n permutation matrices represented
in the monomial basis {x1, x2, . . . , xn}. It is not hard to see that in this basis all n × n
symmetric matrices which commute with all permutation matrices are of the form

Q =


q11 q12 · · · q12
q12 q11 · · · q12
...

...
. . .

...
q12 q12 · · · q11

 .

In a symmetry adapted basis the matrices look even simpler.

Proposition 3.5.2. There is a change of basis matrix such that every Q ∈ PSDSn
n is of the

form 
q11 + (n− 1)q12 0 · · · 0

0 q11 − q12 · · · 0
...

...
. . .

...
0 0 · · · q11 − q12

 .

Proof. The representation in question is the permutation representation of Sn. By Theorem
3.1.5, the trivial representation and the standard representation both appear with multiplic-
ity one. This tells us that there will be one 1×1 block associated to the trivial representation,
and n− 1 copies of a 1× 1 block associated to the standard representation. The application
of Algorithm 1 yields the desired diagonal matrix.
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Corollary 3.5.2. An n × n symmetric matrix Q = (qij) which commutes with D((1 2)) is
in PSDSn

n if and only if q12 ≤ q11 and q12 ≥ −1
n−1q11. Hence PSDSn

n is a two-dimensional
polyhedral cone defined by these linear inequalities.

Corollary 3.5.3. Let f(x) = a
∑

i x
2
i + b

∑
i<j xixj be a symmetric quadratic form. Then f

is SOS if and only if −1
n−1a ≤ b ≤ a. Moreover, the symmetry adapted Gram spectrahedron

KSn
f is either empty or an isolated point in PSDSn

n .

Proof. Observe that a = q11 and b = q12 by (3.2). Clearly, KSn
f = {(a, b)} if and only if f is

SOS.

Corollary 3.5.4. Symmetric quadratic SOS forms can only be written as a sum of one,
n− 1, or n squares.

Proof. Let f(x) = a
∑

i x
2
i + b

∑
i<j xixj be a symmetric quadratic form and consider (3.2)

with Q ∈ PSDN ,

a
∑
i

x2i + b
∑
i<j

xixj =
(
x1 · · · xn

)

q11 q12 · · · q1n
q12 q22 · · · q2n
...

...
. . . · · ·

q1n q2n · · · qnn


x1...
xn

 .

Equating coefficients we see that a = qii and b = qij for i 6= j, the same structure as
any invariant matrix. Thus PSDSn

n is in fact representative of all SOS decompositions of
symmetric quadratic SOS forms. Now, if the point (a, b) is in the interior of PSDSn

n , the
corresponding matrix has full rank. If it is on the extreme ray defined by q12 = q11, the
matrix rank will be one as all the blocks q12 − q11 will be zero. Lastly, if it is on the other
extreme ray, we get a rank n− 1 matrix.

Finally, we consider what happens as the number of variables goes to infinity. In partic-
ular, note that the slope of q12 = −1

n−1q11 goes to zero. This leads to the following result.

Theorem 3.5.1. As n goes to infinity, the ratio of SOS symmetric quadratic forms in n
variables to all symmetric quadratic forms in n variables is 1

8
.

3.6 Ternary Symmetric Polynomials

In this section we consider the case where n = 3 and N = 1
2
(d+ 2)(d+ 1).

Proposition 3.6.1. Let V = C[x1, x2, x3]d be the representation of S3 induced by permuting
the variables. Then the multiplicities of the trivial, standard, and alternating irreducible
representations are as in the following table
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Partition hTy = d− b(λ) mλ

y1 + 2y2 + 3y3 = d Q(d)
y1 + y2 + 3y3 = d− 1 P (d− 1)

y1 + 2y2 + 3y3 = d− 3 Q(d− 3)

where Q(d) and P (d) are quasi-polynomials as below:

Q(d) =



1
12
d2 + 1

2
d+ 1 d ≡ 0 mod 6

1
12
d2 + 1

2
d+ 5

12
d ≡ 1 mod 6

1
12
d2 + 1

2
d+ 2

3
d ≡ 2 mod 6

1
12
d2 + 1

2
d+ 3

4
d ≡ 3 mod 6

1
12
d2 + 1

2
d+ 2

3
d ≡ 4 mod 6

1
12
d2 + 1

2
d+ 5

12
d ≡ 5 mod 6

P (d) =


1
6
d2 + 5

6
d+ 1 d ≡ 0 mod 3

1
6
d2 + 5

6
d+ 1 d ≡ 1 mod 3

1
6
d2 + 5

6
d+ 2

3
d ≡ 2 mod 3

Proof. The multiplicities are computed using Theorem 3.1.5. In all three cases, they are
given by the Ehrhart quasi-polynomial [5] of a rational 2-simplex. For instance, for the
trivial representation we wish to count the number of nonnegative integer solutions to the
equation y1 + 2y2 + 3y3 = d. This is the number of lattice points in the polytope defined
by the hyperplane y1 + 2y2 + 3y3 = d and y1, y2, y3 ≥ 0. The vertices of this polytope are
(d, 0, 0), (0, d/2, 0), (0, 0, d/3), and it is the dth dilation of the polytope for d = 1. The lattice
point count is given by the quasi-polynomial Q(d) as in the statement. Similarly, for the
multiplicity of the standard representation, the Ehrhart quasi-polynomial P (d) of a different
two-simplex is needed.

Symmetric Ternary Quartics

Now we consider symmetric polynomials in three variables of degree four (n = 3, d = 2).
The study of general ternary quartics has a long history. It is known that a smooth ternary
quartic can always be written as f = q21 + q22 + q23 where qi ∈ C[x1, x2, x3]2, and there are
exactly 63 nonequivalent ways of doing that [21, Ch.1, §14]. There are always 28 bitangents
to the smooth projective plane curve defined by f , and certain sixtuples of pairs of these
bitangents, known as Steiner complexes, correspond to these 63 different representations;
see [59, Section 5]. Moreover, for real smooth ternary quartics there are exactly 8 SOS
representations with three squares [60]. This means that the usual Gram spectrahedron Kf

has exactly 8 vertices corresponding to matrices of rank 3.
In this section, we want to study the symmetry adapted Gram spectrahedron KS3

f . The

main objects of focus are the symmetric matrices Q = (qij) ∈ S6 such that f(x) = [x]TQ[x].
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Proposition 3.6.2. The symmetry adapted PSDS3
6 is a six-dimensional cone consisting of

positive semidefinite matrices of the form
q11 + 2q12 2q14 + q16 0 0 0 0
2q14 + q16 q44 + 2q45 0 0 0 0

0 0 q11 − q12 q14 − q16 0 0
0 0 q14 − q16 q44 − q45 0 0
0 0 0 0 q11 − q12 q14 − q16
0 0 0 0 q14 − q16 q44 − q45

 .

Proof. Proposition 3.6.1 tells us that the multiplicities of the trivial and standard represen-
tations are each two, and that of the alternating representation is zero. By Corollary 3.4.1
the dimension of PSDS3

6 is six. Using Algorithm 1, one can compute a 6× 6 change of basis
matrix such that the elements in PSDS3

6 have the stated form.

The next theorem is our main theorem in this section.

Theorem 3.6.1. Let f ∈ R[x, y, z] be a smooth symmetric quartic. Then there are precisely
3 (possibly complex) symmetric matrices Q of rank 3 such that f = [x]TQ[x] and D(σ)Q =
QD(σ) for all σ ∈ S3. Moreover, if f is SOS, there are exactly 2 such PSD matrices of rank
3. These correspond to the two vertices of the two-dimensional symmetry adapted Gram
spectrahedron KS3

f . Furthermore, the boundary of KS3
f is defined by two curves, a parabola

and a hyperbola. Other than the two vertices, the points along the hyperbola give rank 4
matrices while those along the parabola are rank 5 matrices.

Proof. Let

f(x1, x2, x3) = a
∑
i

x4i + b
∑
i 6=j

x3ixj + c
∑
i<j

x2ix
2
j + d

∑
i 6=j 6=k,j<k

x2ixjxk

where a, b, c, d are fixed coefficients. Writing f = [x]TQ[x] and equating coefficients we get
that a = q11, b = 2q14, c = 2q12 + q44, and d = 2q16 + 2q45. If we plug these into the
block-diagonalized matrix in Proposition 3.6.2 we see that the symmetry adapted Gram
spectrahedron KS3

f consists of positive semidefinite matrices of the form
a+ 2q12 b+ q16 0 0 0 0
b+ q16 c+ d− 2q12 − 2q16 0 0 0 0

0 0 a− q12 b
2
− q16 0 0

0 0 b
2
− q16 c− d

2
− 2q12 + q16 0 0

0 0 0 0 a− q12 b
2
− q16

0 0 0 0 b
2
− q16 c− d

2
− 2q12 + q16

 .

Hence, KS3
f is the intersection of two spectrahedra:

K1 = {(q12, q16) :

(
a+ 2q12 b+ q16
b+ q16 c+ d− 2q12 − 2q16

)
� 0} (3.8)
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K2 = {(q12, q16) :

(
a− q12 b

2
− q16

b
2
− q16 c− d

2
− 2q12 + q16

)
� 0} (3.9)

To prove the first statement in our theorem we ignore the condition that these matrices need
to be positive semidefinite. The above 6 × 6 matrix has rank three if and only if the two
2 × 2 matrices have rank one. Thus their determinants must be zero. This gives us two
quadratics in the variables q12 and q16 which we homogenize using a new variable q:

p1 = −4q212 − 4q12q16 − q216 + q((−2a+ 2c+ 2d)q12 + (−2a− 2b)q16) + q2(ac+ ad− b2)
p2 = 2q212 − q12q16 − q216 + q((−2a− c+ d/2)q12 + (a+ b)q16) + q2(ac− ad/2− b2/4).

By Bezout’s theorem, the projective plane curves defined by p1 and p2 intersect at exactly 4
complex points. Setting q = 0, we consider the solutions to the equations

0 = −4q212 − 4q12q16 − q216 = −(2q12 + q16)
2

0 = 2q212 − q12q16 − q216 = (2q12 + q16)(q12 − q16).

We see that there is only one solution, giving us [q12 : q16 : q] = [1 : −2 : 0] as the intersection
point at the line at infinity. The remaining three points are obtained by setting q = 1 which
gives us back the determinants of the two submatrices. This proves the first statement.

Next we consider the spectrahedra K1 and K2. For fixed a, b, c, d, K1 is defined by the
inequalities

(a+ 2q12)(c+ d− 2q12 − 2q16)− (b+ q16)
2 ≥ 0

a+ 2q12 ≥ 0

c+ d− 2q12 − 2q16 ≥ 0.

The first quadratic can be rewritten as

(
q12 q16 1

) −4 −2 −a+ c+ d
−2 −1 −a− b

−a+ c+ d −a− b ac+ ad− b2

q12q16
1

 ≥ 0.

Since the determinant of the upper left 2×2 matrix is zero, the curve defined by this quadric
is a parabola [33, Table 5.3]. Moreover, the lines a + 2q12 = 0 and c + d − 2q12 − 2q16 = 0
are tangent to the curve at the points (−a

2
,−b) and (b + c

2
+ d

2
,−b) respectively. As we

vary a, b, c, d, the region defined by the first inequality moves between only two of the four
connected components in the complement of the two lines as illustrated below:
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Moreover, by the last two inequalities, K1 is nonempty when the parabola is in the bottom
region, as in the left most figure. It is worth noting that this is the generic case and that there
is one more possibility. If the determinant of the above matrix is zero, i.e., (a+2b+c+d)2 = 0,
then the quadric defines a double line [33, Table 5.3], (a − c − d + 4q12 + 2q16)

2 = 0. This
double line intersects the lines a + 2q12 = 0 and c + d − 2q12 − 2q16 = 0 at the same point.
Thus K1 is a ray, starting from this intersection point and going out to (∞,−∞):

We can do a similar analysis of K2 which is defined by the inequalities

(a− q12)(c−
d

2
− 2q12 + q16)− (

b

2
− q16)2 ≥ 0

a− q12 ≥ 0

c− d

2
− 2q12 + q16 ≥ 0

We rewrite the first quadratic as

(
q12 q16 1

) 2 −1
2

−a− c
2

+ d
4

−1
2

−1 a
2

+ b
2

−a− c
2

+ d
4

a
2

+ b
2
− b2

4
+ ac− ad

2

q12q16
1

 .

This is a hyperbola (or a pair of crossing lines) because the leading 2 × 2 minor is nonzero
[33, Table 5.3]. Again the two additional inequalities define lines that are tangent to the
curve and give K2 as the left most component of the hyperbola:
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We now see that for a generic symmetric ternary quartic that is SOS, the symmetry
adapted Gram spectrahedron KS3

f is the intersection of the parabola and one component of
the hyperbola.

The two points in KS3
f where these curves intersect are the two vertices corresponding to

rank three matrices. If we move along the boundary defined by the parabola, we get rank 5
matrices, because on these points the matrix block corresponding to the parabola has rank
1 while the two blocks corresponding to the hyperbola are each rank 2. A similar argument
shows that matrices along the hyperbola have rank 4.

Remark 4. Theorem 3.6.1 illustrates one of three cases, namely, the case where f is SOS
when the two quadrics defined by the determinants of the matrices in K1 and K2 intersect
at three real points, two of which give PSD matrices. If f is not SOS, then we have two
additional situations. The first is that the curves only intersect at one real point and two
complex points, and the second case is when the curves have three real intersection points. In
the latter, even though there are three real points, none of them correspond to a PSD matrix.
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As mentioned above, the Gram spectrahedron of an SOS ternary quartic f has 8 vertices
of rank three. Let the Steiner graph be the graph on these vertices whose edges represent
edges of the Gram spectrahedron. For a generic SOS ternary quartic the Steiner graph is
K4tK4, the disjoint union of two complete graphs on 4 vertices [59]. Moreover, the matrices
along those edges are of rank at most 5. It is not known whether the Steiner graph coincides
with all edges of the Gram spectrahedron. However, it is clear from Theorem 3.6.1 that,
generically, there are no edges of the symmetry adapted Gram spectrahedron contributing
to the edges of the Steiner graph.

Corollary 3.6.1. The Steiner graph of the symmetry adapted Gram spectrahedron of a
generic symmetric SOS ternary quartic f is the disjoint union of two vertices.

Proof. By Theorem 3.6.1, KSn
f has two vertices. Thus, either both vertices are in one

complete graph K4 or each graph contains one of the two vertices. If it were the former,
then KSn

f would also contain the corresponding edge. This is, however, the interior of the
symmetry adapted Gram spectrahedron and all matrices there are rank 6. Thus no such
edge of matrices of rank 5 exists, i.e. the vertices are each in different complete graphs.

The vertices of the Gram spectrahedron of f or of its symmetry adapted version when
f is G-invariant are not the end of the story. The boundary of these spectrahedra are very
interesting and the work to unearth it is only starting. In the symmetric ternary quartics
case, the boundary consists of the union of a piece of a parabola and a piece of a hyperbola.
It is an interesting question how a typical SOS decomposition would look like if we used
an SDP solver for KSn

f . It is not difficult to run simulations. Below are the results of such
computations. We generated random symmetric ternary quartics and ran SDPs until we
found 16 that were SOS. For each of these 16 polynomials we randomly generated 1000
objective functions and ran an SDP for each of them. The ranks of the corresponding 1000
optimal SOS matrices are shown in Figure 3.6.
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Figure 3.1: Distribution of ranks for SOS decomposition of 16 symmetric ternary quartics

Remark 5. Computational data can provide some insight about the normal fan of the sym-
metry adapted Gram spectrahedron. In the generic case for a positive ternary quartic, the
normal fan will be something like the following:

Hence a random cost function is more likely to return a rank three or a rank five solution
than a rank 4 solution, as reflected by the data.

We close this section with a characterization of all symmetric ternary quartics that are
SOS. First we provide necessary linear conditions on the coefficients of such a polynomial.
Then we report on a full characterization in a form which can be used to certify whether a
symmetric ternary quartic is SOS.
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Proposition 3.6.3. If a symmetric ternary quartic

f(x1, x2, x3) = a
∑
i

x4i + b
∑
i 6=j

x3ixj + c
∑
i<j

x2ix
2
j + d

∑
i 6=j 6=k,j<k

x2ixjxk

with real coefficients a, b, c, d is SOS, then

a) a ≥ 0,

b) a+ c ≥ 0,

c) a+ 2b+ c+ d ≥ 0.

Proof. The first two conditions follow from projecting the polyhedron defined by linear
inequalities obtained from the four diagonals in (3.8) and (3.9). The third condition comes
from applying quantifier elimination on the defining inequalities of K1 in (3.8).

Example 3.6.1. As mentioned, the conditions in Proposition 3.6.3 are not sufficient. Let
a = 1, b = 2, c = 1, and d = 0. Certainly, a, a + c, and a + 2b + c + d are all nonnegative,
but the corresponding polynomial,

f(x1, x2, x3) =
∑
i

x4i + 2
∑
i 6=j

x3ixj +
∑
i<j

x2ix
2
j

is not SOS. In particular, f(1,−2, 1) = −9.

Additional conditions are not easy to find. The task is to project the spectrahedron
K1 ∩ K2 onto the (a, b, c, d)-space. Given that this 6-dimensional spectrahedron is a cone,
one method is to consider the projection of an affine slice. We do this for q16 = 1. Then for
any (a, b, c, d) in this projection, the corresponding polynomial is SOS and so is any positive
scaling of that polynomial. However, for a complete description, we must also consider the
projection when q16 = 0 and q16 = −1. In this way, we can find an exact description (up to
positive scaling) of the semialgebraic set defined by the projection of the three affine slices
when q16 = 1, q16 = 0, and q16 = −1 using quantifier elimination. The result is the union of
158 basic semialgebraic sets, each defined with polynomial inequalities and equations up to
degree 4. We encourage the interested reader to visit

https://math.berkeley.edu/∼ishankar/SOSSymTernQuartic.html

for a code that will check if a given point (a, b, c, d) is contained in this set, and thus are
the coefficients of an SOS polynomial. There one may also see the full description of the
projected slices of the spectrahedron.

https://math.berkeley.edu/~ishankar/SOSSymTernQuartic.html
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Symmetric Ternary Sextics

Here V = R[x1, x2, x3]3 and we consider symmetric ternary sextics.

Proposition 3.6.4. The symmetry adapted PSD cone PSDS3
10 consists of 10× 10 symmetric

matrices of the form 
Q

Q

Q

Q


where each

Q =

 q11 + 2q12
√

2(q14 + q16 + q18)
√

3q110√
2(q14 + q16 + q18) q44 + q45 + q46 + 2q47 + q49

√
6q410√

3q110
√

6q410 q1010



Q =

 q11 − q12
√
2
2

(2q14 − q16 − q18)
√
6
2

(q16 − q18)√
2
2

(2q14 − q16 − q18) q44 + q45 − 1
2
q46 − q47 − 1

2
q49

√
3
2

(q46 − q49)√
6
2

(q16 − q18)
√
3
2

(q46 − q49) q44 − q45 + 1
2
q46 − q47 + 1

2
q49


Q = q44 − q45 − q46 + 2q47 − q49

is positive semidefinite.

Proof. The multiplicities of the trivial, standard, and alternating irreducible representations
are three, three, and one, respectively. Algorithm 1 provides a change of basis matrix T such
that every positive semidefinite matrix Q = (qij) that commutes with D(σ) for σ ∈ S3 is of
the above form after computing T TQT .

It has been proved by Scheiderer [69, Corollary 3.5] that every generic ternary sextic that
is SOS admits a representation using four squares; in other words, the corresponding Gram
spectrahedron has extreme rays consisting of matrices of rank 4. Our main theorem in this
section establishes four as the minimal rank for generic symmetric ternary sextics that are
SOS using the technology of Gröbner bases.

Theorem 3.6.2. Let f ∈ R[x1, x2, x3]6 be a generic symmetric polynomial. If f is SOS, the
symmetry adapted Gram spectrahedron has extreme points consisting of matrices of rank 4.

Proof. The polynomial f is parametrized by 7 coefficients which we call a1, a2, . . . , a7. It is
also represented as f = [x]TQ[x] by a 10 × 10 symmetric matrix Q = (qij). After equating
coefficients and using a symmetry adapted basis we get a block-diagonal Q where

Qf =

 a1 + 2q12
√

2(a2
2

+ q16 + q18)
√

3q110√
2(a2

2
+ q16 + q18) α

√
6q410√

3q110
√

6q410 a7 − 6q49
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Qf =

 a1 − q12
√
2
2

(a2 − q16 − q18)
√
6
2

(q16 − q18)√
2
2

(a2 − q16 − q18) β1
√
3
2

(a5
2
− q12 − q49)√

6
2

(q16 − q18)
√
3
2

(a5
2
− q12 − q49) β2


Qf = a3 −

a4
2
− a5

2
+ a6 + q12 − 2q16 − 2q18 + q110 − q49 − 2q410

where

α = a3 +
a4
2

+
a5
2

+ a6 − q12 − 2q16 − 2q18 − q110 + q49 − 2q410

β1 = a3 +
a4
2
− a5

4
− a6

2
+
q12
2
− 2q16 + q18 − q110 −

q49
2

+ q410

β2 = a3 −
a4
2

+
a5
4
− a6

2
− q12

2
− 2q16 + q18 + q110 +

q49
2

+ q410.

Now, to get a matrix of rank of 3, we have four cases:

a) Trivial block has rank 3 and all other blocks have rank zero.

b) Trivial block has rank 2 and the alternating block has rank 1.

c) Trivial block and standard block have rank 1 each.

d) Standard block and alternating block have rank 1 each.

In the first case we set all of the linear forms in the standard block and the alternating block
to zero and eliminate qij from the ideal generated by these polynomials using a Gröbner
basis. The elimination ideal contains

a5 − 2a1 − 2a3 + 2a2 = 0.

This means that a generic symmetric f will not have symmetry adapted representation of
rank 3 as in the first case. The other three cases can be similarly investigated. For instance,
in the second case we get the following relation on the coefficients:

− 10a1a
2
2−

5

4
a32 + 10a1a2a3−

5

2
a22a3− 4a1a

2
3 +

5

2
a22a4− 3a2a3a4 +

3

4
a2a

2
4−

1

2
a3a

2
4 + 12a1a2a5

+
1

4
a22a5 − 6a1a3a5 + 3a2a3a5 − 2a2a4a5 + a3a4a5 −

1

4
a24a5 − 3a1a

2
5 +

5

4
a2a

2
5 −

1

2
a3a

2
5 +

1

2
a4a

2
5

−1

4
a35−2a1a2a6+a

2
2a6+4a1a3a6+a2a4a6−a2a5a6−a1a26−3a1a2a7−a22a7+2a1a3a7+a1a5a7 = 0.

The fourth case yields one linear and six cubic relations in a1, . . . , a7. In the third case, a
lengthy computation in Macaulay 2 [36] gives a single polynomial of degree 14 with 6672
terms. Thus we see that SOS representations with three or fewer squares will only appear
in very special cases of symmetric ternary sextics.
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This theorem establishes that we should expect to get a rank four SOS representation
of symmetric ternary sextics. However, it is important to understand what one would get if
an SDP were run on KS3

f . This question is related to the geometry of the boundary of KS3
f ,

and in order to shed some light on this geometry we present some experimental results.
Figure 3.6 is obtained as follows: After generating 100 random symmetric ternary sextics,

we determined that only 12 of these were SOS according to our numerical SDP returning an
optimal solution. For each of these 12 symmetric ternary sextics, we re-ran the SDP for 1000
distinct, randomly generated linear objective functions. Then we computed the rank of the
output matrix by SVD with a cutoff tolerance of 10−7. Each histogram shows the rank of the
optimal matrix. This and other similar experiments we have conducted show that choosing
a random linear functional to minimize resulted most commonly in a solution matrix of rank
6. However, for some polynomials other ranks were not unusual. For example, for several
polynomials, over 100 of the 1000 objective functions picked out an optimal solution whose
rank was judged to be 4.

Figure 3.2: Distribution of ranks for SOS decomposition of symmetric ternary sextics
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Chapter 4

An SOS counterexample to an
inequality of symmetric functions

It is known that differences of symmetric functions corresponding to various bases are nonneg-
ative on the nonnegative orthant exactly when the partitions defining them are comparable
in dominance order. The only exception is the case of homogeneous symmetric functions
where it is only known that dominance of the partitions implies nonnegativity of the cor-
responding difference of symmetric functions. It was conjectured by Cuttler, Greene, and
Skandera in 2011 that the converse also holds, as in the cases of the monomial, elementary,
power-sum, and Schur bases [24]. In this chapter we provide a counterexample, showing that
homogeneous symmetric functions break the pattern. We use semidefinite programming to
find an explicit sums of squares decomposition of the polynomial H44 −H521 as a sum of 41
squares. This rational certificate of nonnegativity disproves the conjecture, since a polyno-
mial which is a sum of squares cannot be negative, and since the partitions 44 and 521 are
incomparable in dominance order.

4.1 Preliminaries

Symmetric Polynomials

Symmetric polynomials are of vital importance in representation theory and combinatorics.
With respect to sums of squares, we saw in Chapter 3 that the structure of this invari-
ant subspace can be exploited and it is for this reason that we are interested in studying
symmetric polynomials. The space of symmetric polynomials has various commonly used
bases and we begin this chapter by defining the symmetric polynomials which make up these
bases, namely the monomial, elementary, power-sum, homogeneous and Schur symmetric
polynomials. For more details the reader is encouraged to reference Chapter 7 of [74].

We begin with the monomial symmetric polynomials. Let λ = (λ1, . . . , λk) be a partition
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of n. Then the monomial symmetric function with respect to λ is

mλ(x) =
∑

α=σ(λ1,...,λk)

xα

where we sum over all distinct permutations of (λ1, . . . , λk). For example,

m(1)(x1, . . . , xn) =
∑
i

xi

m(1,1)(x1, x2, x3) = x1x2 + x1x3 + x2x3

m(4,2,2)(x1, . . . , xn) =
∑

i,j,k:i<k,j<k

x4ix
2
jx

2
k.

Next we define the elementary symmetric functions as

eλ =

λk∏
i=1

eλi

where eλi is the sum of all products of λi distinct variables. For example

e(3,1,1)(x1, x2, x3) = (x1x2x3)(x1 + x2 + x3)
2

e(2,2)(x1, x2, x3) = (x1x2 + x1x3 + x2x3)
2.

The (complete) homogeneous symmetric polynomials are similarly defined as

hλ =

λk∏
i=1

hλi

where hλi is the sum of all monomials of λi variables. For instance,

h(3,1,1)(x1, x2) = (x31 + x21x2 + x1x
2
2 + x32)(x1 + x2)

2

h(2,1)(x1, x2, x3) = (x21 + x1x2 + x1x3 + x22 + x2x3 + x23)(x1 + x2 + x3).

Notice that in all the polynomials we have defined so far the degree is the positive integer
that λ partitions. This is true as well for the power-sum symmetric polynomials which we
define as follows,

pλ =

λk∏
i=1

pλi

where pλi =
∑

j x
λi
j . Some examples are,

p(6)(x1, . . . , xn) = x61 + . . .+ x6n
p(3,1)(x1, . . . , xn) = (x31 + . . .+ x3n)(x1 + . . .+ x3).
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Finally we end with the Schur polynomials, which are defined quite differently then the
other symmetric polynomials thus far. There are various ways to define it, but we will use
the follow definition. Let λ = (λ1, . . . , λk). A semistandard Young tableaux T of shape λ is
a Young diagram which has numbers 1, . . . , n in the boxes such that these numbers weakly
increase along each row and strictly increase down each column. Then

sλ(x) =
∑
T

xT =
∑
T

xt11 · · · xtnn

where we sum over all semistandard Young tableaux T of shape λ and where each ti counts
how many times i appears in T . Take for example s(2,2)(x1, x2, x3). The semistandard Young
tableaux are

1 1

2 2
,

1 1

2 3
,

1 1

3 3
,

1 2

2 3
,

1 2

3 3
, and

2 2

3 3
.

The first tableaux has two 1’s and two 2’s and the corresponding monomial is x21x
2
2. Thus

s(2,2)(x1, x2, x3) = x21x
2
2 + x21x

2
3 + x22x

2
3 + x21x2x3 + x1x

2
2x3 + x1x2x

2
3

and is indeed symmetric.

4.2 Symmetric Function Inequalities

In the article Inequalities for Symmetric Means [24], by Cuttler, Greene, and Skandera,
Muirhead-type inequalities are classified for the different common bases of symmetric func-
tions. We briefly provide some definitions in order to state our main Theorem 4.2.2. As
done above, let mλ, eλ, pλ, hλ, and sλ denote the monomial, elementary, power-sum, homo-
geneous, and Schur polynomials, respectively, associated to a partition λ. Given a symmetric
polynomial g(x), the term-normalized symmetric polynomial is

G(x) :=
g(x)

g(1)

where g(1) is the symmetric polynomial evaluated on the all ones vector. By Gλ ≥ Gµ,
we mean that Gλ(x1, . . . , xn) ≥ Gµ(x1, . . . , xn) on the nonnegative orthant. That is, the
inequality holds for any number of variables n, but only for xi ≥ 0, i = 1, . . . , n. We
denote the term-normalized symmetric polynomials for monomial, elementary, power-sum,
homogeneous, and Schur polynomials by Mλ, Eλ, Pλ, Hλ, and Sλ, respectively. The following
theorem is a summary of known results on Muirhead-type inequalities (special cases of which
go back to Maclaurin, Muirhead, Newton, and Schur), which are proven in [24, 43, 54, 73].
In particular, the arithmetic-geometric mean inequality is a special case.
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Theorem 4.2.1. Let λ and µ be partitions such that |λ| = |µ|. Then

Mλ ≤Mµ ⇐⇒ µ � λ
Eλ ≤ Eµ ⇐⇒ λ � µ
Pλ ≤ Pµ ⇐⇒ µ � λ
Sλ ≤ Sµ ⇐⇒ µ � λ

whereas µ � λ implies that Hλ ≤ Hµ, i.e.,

Hλ ≤ Hµ ⇐= µ � λ.

The converse for the homogeneous symmetric functions statement was conjectured in
[24]. The authors also reported that for d = |λ| = |µ| = 1, 2, . . . , 7 their conjecture had been
proven. For d = 8 and higher, the question was unresolved.

Theorem 4.2.2. A degree-minimal counterexample exhibiting a polynomial Hµ − Hλ ≥ 0
with λ, µ incomparable in dominance order is provided by H44 −H521.

We certify the nonnegativity of this polynomial on R3
≥0 by writing a related polynomial

explicitly as a sum of 41 squares with rational coefficients. Specifically, the polynomial we
exhibit an SOS polynomials is

(
H44 −H521

)
(x21, x

2
2, x

2
3) =

1

9450

(
17x161 + 9x141 x

2
2 + x121 x

4
2 + 18x101 x

6
2 + 60x81x

8
2 + 18x61x

10
2 + x41x

12
2 + 9x21x

14
2

+ 17x162 + 9x141 x
2
3 − 32x121 x

2
2x

2
3 − 6x101 x

4
2x

2
3 + 11x81x

6
2x

2
3 + 11x61x

8
2x

2
3

− 48x41x
10
2 x

2
3 − 32x21x

12
2 x

2
3 + 9x142 x

2
3 + x121 x

4
3 − 48x101 x

2
2x

4
3 − 22x81x

4
2x

4
3

− 5x61x
6
2x

4
3 − 22x41x

8
2x

4
3 − 48x21x

10
2 x

4
3 + x122 x

4
3 + 18x101 x

6
3 + 11x81x

2
2x

6
3

− 5x61x
4
2x

6
3 − 5x41x

6
2x

6
3 + 11x21x

8
2x

6
3 + 18x102 x

6
3 + 60x81x

8
3 + 11x61x

2
2x

8
3

− 22x41x
4
2x

8
3 + 11x21x

6
2x

8
3 + 60x82x

8
3 + 18x61x

10
3 − 48x41x

2
2x

10
3 − 48x21x

4
2x

10
3

+ 18x62x
10
3 + x41x

12
3 − 32x21x

2
2x

12
3 + x42x

12
3 + 9x21x

14
3 + 9x22x

14
3 + 17x163

)
.

Remark 6. Of course, there are other ways to show that a polynomial is nonnegative.
However, Theorem 4.2.2 states something stronger. Not only is it nonnegative, but also
a sum of squares. An ongoing research topic belonging to the general context of Hilbert’s
17th Problem is to understand the difference between sums of squares and nonnegativity, see
[7, 6, 8, 10, 16, 22] to name only a few. As an interesting example, the degrees of irreducible
components of the boundary of the SOS cone are Gromov-Witten numbers (see [11, 51]).

Remark 7. We refer the reader to [74, Ch. 7] for details on symmetric functions, but
we give some brief comments on the homogeneous symmetric functions, since they are the
main focus in this chapter. The homogeneous and elementary symmetric functions hλ and
eλ are in many ways dual. By the fundamental theorem of symmetric functions, the ed are
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algebraically independent and generate the algebra of symmetric functions Λ. Therefore, an
algebra endomorphism ω : Λ→ Λ is uniquely defined by specifying the images ω(ed). Defining
ω(ed) = hd gives an involution ω2 = id of Λ sending ω(eλ) = hλ and ω(hλ) = eλ. While
the transition matrices between the bases (mλ) and (eλ) are matrices with entries in {0, 1},
those for (mλ) and (hλ) are matrices with entries in N. This also reflects the combinatorial
interpretations related to placing balls in boxes without or with repetition. See [74, Sections
7.5, 7.6] for more details.

We leave the proof of Theorem 4.2.2 to the end of the chapter in Section 4.5. Instead we
begin in Section 4.3 by describing our approach of finding a counterexample and extracting an
exact rational SOS certificate. In Section 4.4, we provide many additional counterexamples
that have been certified via numerical means. While our proof of Theorem 4.2.2 is provided
by an explicit list of polynomials which square and sum to (H44 −H521) (x21, x

2
2, x

2
3), in fact

we found many numerical counterexamples in degrees 8, 9, and 10. We expect that most
of these numerical counterexamples, could, with some effort, be converted into provably-
correct sums of squares using exact rational arithmetic, as we did for H44 − H521. Section
4.4 displays a poset showing how the dominance partial order on partitions would need to be
modified in order to correctly reflect nonnegativity, at least as suggested by our numerical
counterexamples. It would be very interesting to see if some modification of dominance order
could achieve the correct nonnegativity relationships.

4.3 Methods

In this section we outline the steps taken to find the counterexample given in Theorem 4.2.2.
In order to find such a counterexample, we must search over pairs of partitions (µ, λ) that
are incomparable in dominance order and such that (Hλ − Hµ) ≥ 0, specifically searching
over partitions of 8 and polynomials in R[x1, x2, x3]. To this end, we first recognize that
we can certify nonnegativity on the nonnegative orthant by replacing the variables with
squares. That is, to certify that (Hλ−Hµ)(x1, x2, x3) ≥ 0 for all x ∈ R3

≥0, we instead search
for polynomials (Hλ −Hµ)(x21, x

2
2, x

2
3) which are SOS. See Lemma 4.5.1 in Section 4.5 for a

proof.
Now we may utilize the well-known machinery of sums of squares discussed in Chapter

3, the study of which has a long history. See, for example, [9] for more on the theory. We
will specifically use Proposition 4.3.1 below, a well-known and extremely important fact in
sums of squares. Indeed it is a slight specialization of Theorem 3.1.2. Let SN+ denote the
cone of N × N symmetric positive semidefinite matrices in the space of N × N symmetric
matrices SN .

Proposition 4.3.1. Let h be a homogeneous polynomial of degree 2d in n variables, h ∈
R[x1, . . . , xn]2d. Let [x] be a vector containing all N =

(
n+d−1

d

)
monomials of degree d. Then

h is a sum of squares exactly when there exists some Q ∈ SN+ such that

h(x1, . . . , xn) = [x]TQ[x].



CHAPTER 4. AN SOS COUNTEREXAMPLE TO AN INEQUALITY OF
SYMMETRIC FUNCTIONS 72

Proposition 4.3.1 tells us that writing a polynomial as a sum of squares is equivalent to
solving a semidefinite program (SDP). That is, we must find a positive semidefinite matrix Q
that also satisfies the linear constraints defined by equating the coefficients of h(x1, . . . , xn)
and [x]TQ[x]. Unfortunately, SDP solvers return numerical solutions, i.e. a matrix with
floating point entries. In particular, the matrix will (almost) never exactly reproduce the
desired polynomial, a problem when searching for an exact counterexample. We illustrate
this with the following running example.

Example 4.3.1. An attempt to reproduce the polynomial (H21 − H111)(x
2
1, x

2
2, x

2
3), whose

nonnegativity follows from Theorem 4.2.1, produced the following polynomial with floating
point coefficients

1

54
x61+

1

54
x62+

(
7.888609052210118× 10−31

)
x31x

2
2x3+

(
7.888609052210118× 10−31

)
x21x

3
2x3

+
(
3.944304526105059× 10−31

)
x31x2x

2
3 − 0.05555555555555555x21x

2
2x

2
3

+
(
3.944304526105059× 10−31

)
x1x

3
2x

2
3 +

(
3.944304526105059× 10−31

)
x21x2x

3
3

+
(
3.944304526105059× 10−31

)
x1x

2
2x

3
3 +

1

54
x63

even though the desired polynomial is

1

54
x61 +

1

54
x62 −

1

18
x21x

2
2x

2
3 +

1

54
x63.

In fact, Hurwitz proved nonnegativity of this polynomial via sums of squares [43].

Therefore, in order to find an exact sum of squares certificate of nonnegativity, we must
make adjustments. To satisfy Proposition 4.3.1 we must replace the entries of the matrix
itself, while staying in the PSD cone, and continuing to satisfy the requirements of mTQm =
h exactly. One approach to this problem is to use continued fractions to find the best rational
approximation (with some user-specified bound B on the size of the denominator) to the
entries of the matrix. Geometrically, the SDP may return a matrix on or near the boundary
of the PSD cone. By rounding the floating point entries to rational numbers, we risk moving
outside the cone, resulting in a matrix which is not positive semidefinite. Therefore, many
times this rational rounding procedure will fail.

Remark 8. In general, rational certificates for polynomials with rational coefficients do
not always exist. This was shown by Scheiderer in [70] where he provided explicit minimal
examples of degree 4 polynomials in 3 variables. Since the polynomial in Theorem 4.2.2 is
of degree 16, there is no a priori reason to believe it must have a rational sum of squares
representation.

Several approaches to this rational rounding problem have been developed. The package
SOS has a rational rounding procedure built-in, but for our polynomial the package returned
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an error stating that the rational rounding had failed. The software RealCertify [49],
based on [48], uses a hybrid numeric-symbolic algorithm for finding rational approximations
for polynomials lying in the interior of the SOS cone. In correspondence with Mohab Safey El
Din, we learned that RealCertify failed to terminate for our problem. However, in [48] they
also describe and compare complexity of several different algorithms, including geometric
critical point methods. Safey El Din reported that the geometric critical point methods
were successful on our problem, providing a second confirmation of the nonnegativity of our
polynomial, although not of its SOS-ness.

Remark 9. Another approach would be to search directly for the matrix using exact arith-
metic as in [40] with the package SPECTRA for Maple. However, for a problem of our size,
this approach is not promising. Indeed we let SPECTRA run for several days, and it did not
terminate. Ours is a feasibility problem, but when optimizing a linear function for a ratio-
nal SDP, the entries of the optimal solution matrix will be algebraic numbers. In [56] the
algebraic degree of an SDP is introduced. For generic inputs, this degree depends only on
the rank r of the solution matrix, the size n of the symmetric matrices, and the dimension
m of the affine subspace. In [35] the authors give an exact formula for the algebraic degree.
If n = 45,m = 129, r = 41 (which corresponds to our problem), their formula yields the
following 74 digit number:

27986928303724394857777762195272647267703276932951767224059513477726952420.
Example 4.3.2. (continued) Returning to the example above, the output of the SDP for
(H21 − H111)(x

2
1, x

2
2, x

2
3) was the following matrix, for which we print only the first three of

ten columns:

1
54

0 0
0 0.018518456551295637 1.4472934340259067× 10−17

0 1.4472934340259067× 10−17 0.018518456551295637
−0.009259228275647818 −3.1517672055168234× 10−14 3.1499353284307314× 10−14

−1.4472934340259067× 10−17 7.150822547960123× 10−18 7.150822547960123× 10−18

−0.009259228275647818 3.1499353284307314× 10−14 −3.1517672055168234× 10−14

3.1517672055168234× 10−14 −0.009259228275647818 −3.1506504106855275× 10−14

−3.1506504106855275× 10−14 3.1499353284307314× 10−14 −0.009259259448737624
−3.1506504106855275× 10−14 −0.009259259448737624 3.1499353284307314× 10−14

3.1517672055168234× 10−14 −3.1506504106855275× 10−14 −0.009259228275647818

· · ·


Using continued fractions with denominator bound B = 150 we obtain the following (prefer-

able) matrix:

Q =
1

108



2 0 0 −1 0 −1 0 0 0 0
0 2 0 0 0 0 −1 0 −1 0
0 0 2 0 0 0 0 −1 0 −1
−1 0 0 2 0 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0
−1 0 0 −1 0 2 0 0 0 0

0 −1 0 0 0 0 2 0 −1 0
0 0 −1 0 0 0 0 2 0 −1
0 −1 0 0 0 0 −1 0 2 0
0 0 −1 0 0 0 0 −1 0 2
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With [x]T = (x31, x
2
1x2, x

2
1x3, x1x

2
2, x1x2x3, x1x

2
3, x

3
2, x

2
2x3, x2x

2
3, x

3
3), we can calculate [x]TQ[x],

obtaining
1

54

(
x61 + x62 − 3x21x

2
2x

2
3 + x63

)
which is exactly (H21 − H111)(x

2
1, x

2
2, x

2
3), as desired. Since Q is positive semidefinite, by

carrying out LDLT factorization we obtain the following sum of squares representation of
(H21 −H111)(x

2
1, x

2
2, x

2
3):

1

216

(
2x31 − x1x22 − x1x23

)2
+

1

216

(
2x21x2 − x32 − x2x23

)2
+

1

72

(
x1x

2
2 − x1x23

)2
+

1

72

(
x32 − x2x23

)2
+

1

216

(
2x21x3 − x22x3 − x33

)2
+

1

72

(
x22x3 − x33

)2
.

Of course, the expression of a polynomial as a sum of squares is not unique. For example,
this same polynomial appears as a sum of squares of binomials in [43] and also as a sum of
squares of binomials and one trinomial in [64].

x61 + x62 + x63 − 3x21x
2
2x

2
3 = (x31 − x1x22)2 + (x33 − x22x3)2

+
1

2
(x21x2 − x32)2 +

1

2
(x2x

2
3 − x32)2 +

3

2
(x21x2 − x2x23)2

= (x21x2 − x32)2 + (x21x3 − x33)2 +
7

4
(x1x

2
2 − x1x23)2

+
1

4
(x1x

2
2 + x1x

2
3 − 2x31)

2

As noted in the discussion above, for H44−H521, existing tools do not return a numerical
matrix which can be successfully rounded. Our solution to this problem depended crucially
on two things, using the real zeros of the polynomial, and using symmetry. In particular, we
used the symmetry reduction techniques developed by Gatermann and Parrilo in [32] which
we briefly describe now.

To start, we wish to take advantage of the fact that H44−H521 is a symmetric polynomial.
That is to say, it is invariant under the action of the symmetric group. There is a great deal
of literature on the subject of symmetric polynomials and sums of squares, including [10, 17,
22, 32, 34], to name only a few. In particular, we specialize Proposition 3.3.1 to our setting
as follows:

Theorem 4.3.1. Given an orthogonal linear representation of the symmetric group Sn,
σ : Sn → Aut(SN), consider a semidefinite program whose objective and feasible matrices
are invariant under the group action. Then the optimal value of the SDP is equal to the
optimal value of the same SDP restricted to its fixed point subspace, {X ∈ SN : X =
σ(g)X, ∀g ∈ Sn}.

In our case, the S3 action on the space of polynomials in three variables induces an
action on the symmetric matrix of our SDP, where group elements act on the symmetric
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matrix by conjugation. More specifically, for each g ∈ S3, let ρ(g) be the associated matrix
that permutes the monomials of degree 8 in 3 variables. Then the induced action sends a
symmetric 45× 45 matrix X → ρ(g)TXρ(g). Note that ρ(g) is an orthogonal matrix. Then
the fixed-point subspace for our particular SDP is

F = {X : Xρ(g) = ρ(g)X, ∀g ∈ S3}.

Theorem 4.3.1 guarantees that if a solution exists to our SDP, a solution also exists if we
restrict to this fixed-point subspace. Thus we force our matrix Q to commute with the
elements of our group, obtaining better constraints on our semidefinite program. Indeed, we
further simplify our SDP with additional linear constrains via Lemma 4.5.2, but leave the
details in Section 4.5. The resulting simplified SDP returns a positive semidefinite matrix to
which we can successfully apply the rational rounding described above. Upon factoring the
matrix using exact, rational arithmetic we obtain an explicit sum of squares representation
for H44 −H521 evaluated at (x21, x

2
2, x

2
3).

4.4 Poset of SOS Certifications

Theorem 4.2.2 offers a counterexample in the pair of partitions (521, 44). We provide an
exact, rational certificate of nonnegativity by applying rational rounding to the numerical
solution returned by the SDP solver, and then factoring the resulting matrix to obtain a
provably-correct expression of (H44 − H521)(x

2
1, x

2
2, x

2
3) as a sum of squares. However, our

search over other pairs of partitions returned many other counterexamples, in degrees 8, 9,
and 10. We left these other counterexamples in floating point, though we found an exact,
rational SOS certificate in the case of H44−H521. Below we provide a partially ordered set of
all differences of term-normalized homogeneous symmetric polynomials of degree 8, 9, 10 in
three variables that are SOS. That is, for each arrow going from λ to µ,

(
Hµ−Hλ

)
(x21, x

2
2, x

2
3)

is an SOS polynomial, as certified numerically.
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The black arrows coincide with the dominance order, and therefore certify that these
polynomials are not only nonnegative as stated in Theorem 4.2.1, but in fact SOS. Addi-
tionally, the blue arrows (numerically) certify SOS-ness for incomparable pairs of partitions,
i.e. each blue arrow is a counterexample to the conjecture.

Remark 10. A natural question arises: Is there another partial order on the set of partitions
which matches the poset of nonnegativity relations amongst the Hλ above? A first idea
would be to modify the dominance (also called majorization) order slightly, to incorporate
the correct relationships among the Hλ. Since dominance order is related to the cumulative
sums produced by the vectors

(1, 0, 0, 0, . . . ), (1, 1, 0, 0, . . . ), (1, 1, 1, 0, . . . ), . . .

perhaps a modification of the components of these vectors might be a step in the correct
direction. Such a modification might also be informed by the relationship of the homogeneous
symmetric functions to the other usual bases.
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Remark 11. If we fix the degree and let the number of variables n go to infinity, the homoge-
neous symmetric functions behave like the elementary symmetric functions. This is because
the number of square free terms will dominate the number of monomials with squares for
very large n. Thus, as n increases, we will likely see fewer counterexamples. An interesting
question is whether the conjecture is true asymptotically i.e. does Hλ ≤ Hµ imply µ � λ for
large enough n?

4.5 Proof of Theorem 4.2.2

As outlined in Section 4.3, our proof relies on Proposition 4.3.1 and on the following well-
known fact.

Lemma 4.5.1. Consider a polynomial H(x1, . . . , xn). Define another polynomial

h(x1, . . . , xn) = H(x21, . . . , x
2
n).

If h can be written as a sum of squares, then H is nonnegative on the nonnegative orthant.

Proof. Suppose

h =
∑

diq
2
i

for positive di > 0 and polynomials qi(x1, . . . , xn). Then h is nonnegative on all of Rn. By way
of contradiction, assume there is some point (a1, . . . , an) ∈ Rn

≥0 where H(a1, . . . , an) < 0.
This implies that there exist real numbers

√
a1, . . . ,

√
an. But then h(

√
a1, . . . ,

√
an) =

H(a1, . . . , an) < 0, contradicting the nonnegativity of h.

We also use one more lemma to impose additional constrains and help further reduce the
size of our SDP, thus ensuring we can apply rational rounding.

Lemma 4.5.2. If x∗ is a (nonzero) real root of the polynomial h = [x]TQ[x], which we write
as a sum of squares using the factorization of Q, then the monomial vector [x] evaluated at
x∗ must be in the nullspace of Q.

Proof. This follows from 0 = h(x∗) = [x]|T(x∗)Q[x]|(x∗) and the fact that Q is positive semidef-
inite.

Proof of the main Theorem 4.2.2. We ran a semidefinite program to find a symmetric posi-
tive semidefinite matrix whose factorization could produce a sums of squares representation
for H44 − H521 evaluated at x21, x

2
2, x

2
3. By Lemma 4.5.1 this certifies the non-negativity of

H44 − H521 on the non-negative octant. By Proposition 4.3.1, the existence of a matrix
which exactly reproduces our polynomial is equivalent to the existence of a sums of squares
representation. Also by Proposition 4.3.1, we impose linear constraints on the entries of our
unknown matrix Q to require that [x]TQ[x] exactly matches the coefficients of our desired
polynomial. By Theorem 4.3.1, we impose linear constraints to force our unknown matrix
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Q to commute with the action of the symmetric group on the space of symmetric 45 × 45
matrices. Finally, by Lemma 4.5.2, we incorporate 4 linearly independent vectors [x]|(x∗),
coming from real zeros of our polynomial, to obtain more linear conditions on our SDP.
The output is a numerical matrix sufficiently located in the PSD cone such that continued
fractions rational approximation yields a matrix with exact, rational entries. This matrix
remains positive semidefinite and produces our desired polynomial via [x]TQ[x]. We pause to
emphasize that without using symmetry, and without using real zeros, the numerical output
of the SDP was not accurate enough to recover an exact solution. Only by using symmetry
and real zeros were our methods successful. The entries of this 45 × 45 matrix include ra-
tional numbers with quite large denominators. Therefore we do not print the matrix here.
Rather, we refer the reader to the co-author’s website [39] for the explicit matrix.

To give the reader a feel for the matrix, the first row is:(
17

9450
, 0, 0, − 4

1433
, 0, − 4

1433
, 0, 0, 0, 0,

5

6699
, 0,

1

484
, 0,

5

6699
, 0, 0, 0, 0, 0, 0,

1

5516
,

0,
4

6655
, 0,

4

6655
, 0,

1

5516
, 0, 0, 0, 0, 0, 0, 0, 0,

157747519610069845105323375343

7800425434777364748948750531770400
,

0, − 1

2243
, 0, − 490859542561433043273727488474533399

1004640661046807224753241364163337033424
, 0, − 1

2243
, 0,

157747519610069845105323375343

7800425434777364748948750531770400

)
In order to produce an explicit sum of squares representation for (H44−H521)(x

2
1, x

2
2, x

2
3)

it remains to factor this matrix. We factored the matrix using exact, rational arithmetic,
obtaining from this factorization an explicit sum of squares representation. The first poly-
nomial which is to be squared and linearly combined with other squares is displayed below.
The others can be found in a .txt file at [39], along with the required (positive) coefficients.
For those averse to squaring and summing by hand, we also provide open-source computer
code that squares and sums them, verifying Theorem 4.2.2. We have also made this code
available at the “mathrepo” hosted by Max Planck Institute for Mathematics in the Sciences
at https://mathrepo.mis.mpg.de/soscounterexample/index.html.

https://mathrepo.mis.mpg.de/soscounterexample/index.html
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4605419240763602856075916837234045570536179818486337018319281394377295

47993109370744358093263776366419533489066684222682143432782500766944216
x7
1x2

− 1302314037803046313255311795382548501141402236228879297620871691257074336598417

7369150355385188173743144552068464620468501008189426176987169325021222725489728
x5
1x

3
2

− 1302314037803046313255311795382548501141402236228879297620871691257074336598417

7369150355385188173743144552068464620468501008189426176987169325021222725489728
x3
1x

5
2

+
4605419240763602856075916837234045570536179818486337018319281394377295

47993109370744358093263776366419533489066684222682143432782500766944216
x1x

7
2

− 50984253124688929255958546913886462493468582355009036545135651731904625

191972437482977432373055105465678133956266736890728573731130003067776864
x5
1x2x

2
3

+ x3
1x

3
2x

2
3

− 50984253124688929255958546913886462493468582355009036545135651731904625

191972437482977432373055105465678133956266736890728573731130003067776864
x1x

5
2x

2
3

− 14501649058686817280526502723849668219220268526201662418929955838792199757943

74143210859800577976256596722743277540321426588463408289289567524830644860352
x3
1x2x

4
3

− 14501649058686817280526502723849668219220268526201662418929955838792199757943

74143210859800577976256596722743277540321426588463408289289567524830644860352
x1x

3
2x

4
3

+
5437035811814876899195863129168499484298662586364259319969151352416367123384855

64825494532529077215896724731477274708183844806416358400684005156046068663292451
x1x2x

6
3
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[43] Adolf Hurwitz. “Über den Vergleich des arithmetischen und des geometrischen Mit-
tels.” In: Journal für die reine und angewandte Mathematik 108 (1891), pp. 266–268.

[44] Boris V. Kotzev. “Determinantal ideals of linear type of a generic symmetric matrix”.
In: J. Algebra 139.2 (1991), pp. 484–504. issn: 0021-8693.

[45] Monique Laurent. “Cuts, matrix completions and graph rigidity”. In: vol. 79. 1-3, Ser.
B. Lectures on mathematical programming (ismp97) (Lausanne, 1997). 1997, pp. 255–
283.

[46] Robert Lazarsfeld. Positivity in algebraic geometry. I. Vol. 48. Ergebnisse der Mathe-
matik und ihrer Grenzgebiete. 3. Folge. Springer-Verlag, Berlin, 2004, pp. xviii+387.

[47] Ian G. Macdonald. Symmetric functions and Hall polynomials. Second. Oxford Classic
Texts in the Physical Sciences. With contribution by Andrey V. Zelevinsky and a
foreword by Richard Stanley, Reprint of the 2008 paperback edition. The Clarendon
Press, Oxford University Press, New York, 2015, pp. xii+475. isbn: 978-0-19-873912-8.

[48] Victor Magron and Mohab Safey El Din. “On exact Polya and Putinar’s represen-
tations”. In: ISSAC’18—Proceedings of the 2018 ACM International Symposium on
Symbolic and Algebraic Computation. ACM, New York, 2018, pp. 279–286.

[49] Victor Magron and Mohab Safey El Din. “RealCertify: A Maple package for certifying
non-negativity”. In: arXiv: https://arxiv.org/abs/1805.02201 (2018). url: https://
arxiv.org/abs/1805.02201.

[50] Laurent Manivel et al. Complete Quadrics: Schubert Calculus for Gaussian Models and
Semidefinite Programming. To appear in Le Matematiche on Linear Spaces of Sym-
metric Matrices. arXiv preprint arxiv.org/abs/2011.08791. 2020. arXiv: 2011.08791.

[51] Davesh Maulik and Rahul Pandharipande. “Gromov-Witten theory and Noether-Lefschetz
theory”. In: A celebration of algebraic geometry. Vol. 18. Clay Math. Proc. Amer. Math.
Soc., Providence, RI, 2013, pp. 469–507.

[52] Laura Menini, Corrado Possieri, and Antonio Tornambè. “A linear algebra method to
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