
UC Davis
UC Davis Electronic Theses and Dissertations

Title
Enhancing Estimation and Uncertainty Quantification in Stochastic Optimization:
Importance Sampling and Bootstrap Resampling

Permalink
https://escholarship.org/uc/item/5f40q6q5

Author
Chen, Xiaotie

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5f40q6q5
https://escholarship.org
http://www.cdlib.org/

Enhancing Estimation and Uncertainty Quantification in Stochastic Optimization:
Importance Sampling and Bootstrap Resampling

By

Xiaotie Chen
DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

APPLIED MATHEMATICS

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

David L Woodruff, Chair

Jesus De Loera

Thomas Strohmer

Committee in Charge

2024

i

© Xiaotie Chen, 2024. All rights reserved.

Contents

Abstract iv

Acknowledgments v

Chapter 1. Introduction 1

1.1. Motivation and Background 1

1.2. Contributions and Organization 3

Chapter 2. Recourse Function Estimation: Importance Sampling using Surrogate Modeling 5

2.1. Introduction 5

2.2. Monte Carlo Method for Stochastic Optimization 6

2.3. Importance Sampling with Surrogate Modeling 10

2.4. Adaptive Importance Sampling with Surrogate Modeling 14

2.5. Experimental Results 21

Chapter 3. Optimality Gap Estimation for Multi-Stage Stochastic Programming 34

3.1. Introduction 34

3.2. Prerequisites 37

3.3. MRP Estimators for the Optimality Gap 41

3.4. Sequential Sampling Procedure 47

Chapter 4. Uncertainty Quantification in Optimization: Bootstrap and Bagging Methods 53

4.1. Introduction 53

4.2. Bootstrap and Bagging Method 55

4.3. Asymptotic Theory 58

4.4. Smoothed Point Estimator 70

4.5. Smoothed Bootstrap and Smoothed Bagging 73

Chapter 5. Uncertainty Quantification in Optimization: Software Implementations 77

ii

5.1. boot-sp: Software for data-based stochastic programming 77

5.2. Summary Experiment for Smoothed Bootstrap and Smoothed Bagging 79

5.3. Parameter Selection for Smoothed Bootstrap 83

5.4. Parameter Selection for Smoothed Bagging 85

5.5. Summary of non-smoothed Method Comparisons 87

Chapter 6. Conclusion 93

Bibliography 95

iii

Abstract

This dissertation explores the applications of Monte Carlo and Bootstrap methods in stochastic

optimization, focusing on enhancing computational efficiency and accuracy in solution evaluation

and uncertainty quantification. For the purpose of computing the expected value of a stochastic

optimization problem via simulation, we propose a method to efficiently construct importance

sampling distributions using surrogate modeling. This method significantly reduces the need for

repeated evaluations of the objective function, which are typically computationally intensive due

to the reliance on optimization algorithms. Our method outperforms traditional Monte Carlo

estimation and achieves significant speed-ups with good parallel efficiency. Additionally, we explore

Monte Carlo sampling algorithms that utilize known distributions to construct confidence intervals

around the optimality gap in two-stage and multi-stage stochastic programs. In scenarios where

the distribution of uncertainty remains unknown, we discuss bootstrap and bagging algorithms

that rely solely on sampled data to provide both a consistent sample-average solution and accurate

confidence interval estimates. These methods are enhanced by integrating distribution estimation

into resampling techniques to improve the precision of estimations under uncertainty. We also

offer open-source software implementations of these algorithms. Extensive empirical studies show

the effectiveness of the smoothed bootstrap and bagging methods, particularly for constructing

confidence intervals with small data sets.

iv

Acknowledgments

First and foremost, I would like to express my deepest gratitude to my advisor, Prof. David L.

Woodruff, for his guidance, support, and understanding over the past several years. His patience

and insight have profoundly shaped my entire graduate study experience. Without his invaluable

mentorship, the completion of this dissertation would not have been possible.

I am also grateful to Prof. Jesus De Loera and Prof. Thomas Strohmer for their invaluable

service on my dissertation committee, and for the help and suggestions I have received from them

throughout the years. Additionally, I would like to express my gratitude to Prof. Miles Lopes for

introducing me to the Bootstrap world and for his early guidance in my Ph.D. career.

I would like to extend my gratitude to the colleagues and friends I met during my studies at

Davis for their support at various stages of my PhD journey. I am particularly thankful for the

friendships I have developed with Joseph Pappe and Dongmin Roh. I am truly lucky to have

met you both. My PhD experience would have been completely different without your constant

companionship and support.

I am also deeply grateful to my dearest friends: Yiqi Wang, Yiwen Wang, Wenqi Wu, and

Xinyuan Zhang. Despite the long distance between us, I cherish every moment we have spent

together and all the conversations we have shared over the years.

And although he may not understand the extent of his contribution, I must extend my heartfelt

thanks to my cat BoBo. His mere presence, comforting purrs, and patient companionship have been

a pillar of emotional support during some of the most challenging moments of this journey, especially

throughout the pandemic.

Lastly, special thanks go to my partner, Weidi Zhang. Thank you for your love and for being

by my side. And to my family, my constant source of inspiration and support. Your endless

encouragement and unconditional love have shaped who I am - I am here because of you.

v

CHAPTER 1

Introduction

1.1. Motivation and Background

Stochastic programming (SP) involves modeling optimization problems under uncertainty. The

uncertainty may arise from the variability in data inputs or the absence of essential data, such

as the future product demands, when decisions are required. The field of stochastic optimization

has been widely applied across various sectors, including energy planning [79,100], supply chain

management [3,88], finance [103], and transportation and logistics [36,81], and there has been a

relatively rich literature on how to formulate and solve a stochastic program [10,52,82,87].

An illustrative example is the two-stage stochastic programming model, which can be formulated

z˚ “ min
x

Eξrgpx, ξqs,(1.1)

s.t. x P X,

where gpx, ξq is the optimal value of the second-stage problem

gpx, ξq “ min
y

hpx, ξq,(1.2)

s.t. y P Y px, ξq,

here X and Y px, ξq denote the feasible regions for the first stage solution x and the second stage

solution y, respectively.

The two-stage stochastic programming makes decisions in two phases: the first stage occurs

before the uncertainty is revealed, where a decision is made based on available information. The

second stage takes place after the uncertainty has been revealed, allowing for adjustments to the

initial decision based on the outcomes of the uncertain parameters.

In practical applications, it is often unrealistic to enumerate all possible scenarios due to the vast

scale of the problem or the inaccessibility of the underlying parameter distributions. Consequently,

it becomes necessary to approximate the stochastic optimization problem. To this end, recent

1

research has increasingly explored sampling methods to computationally address problems that are

technically intractable.

For example, in situations where the problem parameters are random variables with known

distributions, the sample average approximation (SAA) approach [54,80,84] has been employed

to approximate the problem. The SAA method involves generating a finite number of scenarios

according to the data distribution, then solving the deterministic optimization problem for these

scenarios. The SAA formulation for the two-stage stochastic programming problem is given by

min
x

1

N

ÿ

i

gpx, ξiq,

s.t. x P X,

where ξi are samples drawn from the distribution of ξ, and the function g is as defined in (1.2).

When ξi are independently and identically distributed (i.i.d.), this approximation is referred to as

the standard Monte Carlo approximation.

The discussion of asymptotic properties of the SAA solutions obtained can be found in works

such as [28,31,92,94]. In addition, a series of papers [20,21,49] have discussed the importance

sampling scheme for estimating the function value. In terms of uncertainty quantification, studies

[24,64,67] use sampling methods to construct confidence intervals for the optimality gap of a given

candidate solution; meanwhile, [7,8,41] have developed sequential sampling methods that produce

a series of candidate solutions and estimate the quality of the corresponding solution.

For the integration of sampling within optimization algorithms, [46] and [74] incorporate sam-

pling within the branch-and-bound algorithm and use stochastic upper and lower bound estimators

to prune the search tree. A stochastic cutting plane method detailed in [44] employs sampling-based

cutting planes within the L-shape method for stochastic programming. Additionally, [43] discusses

sampling methods for assessing solution quality and developing stopping rules in the context of

stochastic cutting plane.

While sampling methods are effective for situations with known probability distributions, chal-

lenges arise when the underlying distributions of random variables are unknown. In these cases,

statistical inference must depend entirely on available data samples. This is where bootstrap meth-

ods come into play.

2

Bootstrap techniques utilize resampling from a single dataset to generate multiple simulated

samples. It offers a practical alternative to traditional Monte Carlo-based statistical inference

methods, especially when dealing with i.i.d. samples from an unknown distribution. The bootstrap

method operates by initially drawing a random sample from the original dataset, which acts as

a miniature representation of the entire population. Each bootstrap sample is then generated by

randomly selecting observations from this initial sample with replacement. This process is repeated

to construct a distribution of bootstrap samples. If the initial sample is adequately representative,

then multiple resamplings effectively simulate the process of drawing multiple samples directly

from the original population. Consequently, the statistical estimates obtained from these bootstrap

samples can approximate those of the true distribution.

Since introduced in [29], bootstrap methods have been widely used for statistical inference;

see [22, 30, 91] for a comprehensive introduction. In the area of stochastic programming, an

early work of [41] used bootstrap to develop stopping rules for the Stochastic Decomposition

algorithm. Eichhorn and Romisch [31] and Lam and Qian [59] proposed the use of bootstrap and

related resampling methods to derive confidence intervals for the optimal function value. Anitescu

and Petra [2] discussed some of the theoretical properties of the bootstrap confidence interval for

stochastic programming.

1.2. Contributions and Organization

The dissertation is structured as follows. Chapter 2 is based on the work in [17]. In Chapter 2,

we explore the Monte Carlo (MC) method and variance reduction techniques that have been used

to estimate the function value for a candidate solution when the underlying distribution of the

random variable is known. We propose a method for efficiently constructing importance sampling

distributions using surrogate modeling. This method addresses the computational challenges en-

countered with the traditional MC method by minimizing the number of evaluations required for

the objective function and leveraging parallelism to significantly reduce runtime. We also include

experimental results to support the proposed method. In Chapter 3, we introduce Monte Carlo

sampling algorithms that construct confidence intervals around the optimality gap for two-stage and

multi-stage stochastic programming when an unlimited number of scenarios can be sampled. This

chapter is based on the pre-print [14]. In Chapter 4, we describe bootstrap and bagging methods

3

for stochastic programming that use only sampled data to obtain both a consistent sample-average

solution and a consistent estimate of confidence intervals for the optimality gap. The underlying

distribution from which the samples are drawn is not required. In addition, we introduce innova-

tions that integrate distribution estimations with resampling techniques to improve estimations for

optimization problems under uncertainty. In Chapter 5, we describe the software we developed for

data-based stochastic programming using bootstrap and bagging methods as outlined in Chapter 4.

The software is open source and available on Github. We also provide extensive numerical results

for method comparison. The methods, software, and comprehensive numerical results showcased

here are informed by our work in [15,16]. Finally, in Chapter 6, we conclude the dissertation and

address the remaining questions.

4

https://github.com/boot-sp/boot-sp.git

CHAPTER 2

Recourse Function Estimation: Importance Sampling using

Surrogate Modeling

2.1. Introduction

The evaluation of the function value given a first-stage candidate solution px is crucial in sto-

chastic programming. By carefully assessing this function value, decision makers can effectively

quantify the expected costs, benefits, or risks associated with the initial decision px, taking into

account various scenarios of uncertainty. Furthermore, the iterative steps in the decomposition

methods for optimizing stochastic programming, such as Stochastic Dual Dynamic Programming

(SDDP) [79] and the L-shape method [99], rely heavily on the effective evaluation of the recourse

function. Specifically, in SDDP, this evaluation is central to updating the value function approxi-

mations, while in the L-shaped method, it is essential for generating and refining Benders cuts that

iteratively improve the solution quality of the master problem.

In this chapter, we address the problem of evaluating the function value of a stochastic pro-

gramming problem stated abstractly as

z˚ “ min
x
Eppξqrgpx, ξqs,

where constraints are implicitly incorporated into the function values, and the function g is designed

to account for complex structures and future states. The distribution of the random variable ξ is

denoted by ppξq. Given a candidate solution px, our objective is to determine the expected function

value:

(2.1) pz “ Eppξqgppx, ξq.

5

2.2. Monte Carlo Method for Stochastic Optimization

The evaluation of the expectation in (2.1) can be computationally challenging and time-consuming,

as it often involves nested optimization problems within an integral. Moreover, obtaining exact so-

lutions for these integrals is frequently intractable in practical settings, especially when the random

variables are continuous. In such situations, Monte Carlo estimation is often employed as an effec-

tive alternative. Monte Carlo estimation offers a practical method for approximating the function

when exact solutions are elusive. It utilizes random sampling to provide estimates that converge

to the true value as the number of samples increases. A standard Monte Carlo method involves

taking a set of N samples of the random variable ξ1, . . . , ξN and approximating the integral pz with:

(2.2) pzMC “
1

N

ÿ

gppx, ξiq

It is well-known that the standard error of such Monte Carlo estimators can be expressed as

SEppzMCq “
σgppx,ξq
?
N

,

where σgppx,ξq represents the standard deviation of the function g at px. Therefore, when the function

g exhibits high variance, the basic Monte Carlo method can require a large number of samples

to achieve the desired level of precision, with each sample corresponding to a computationally

expensive optimization problem.

Many variance reduction techniques have been applied alongside the basic Monte Carlo method

to enhance its efficiency and accuracy [46], including:

‚ Control Variates: This method utilizes an additional variable, known as the control variate,

with a known expected value. By establishing a correlation between this control variate

and the function g, it is possible to refine the estimate by adjusting for the difference

between the known expected value of the control variate and its observed average. With

a carefully chosen control variate and an appropriate scaling factor γ, the variance in the

estimate can be reduced [40,71].

‚ Stratified Sampling: Stratified sampling first divides the domain into different strata, then

draws samples from each strata to ensure a more uniform and representative distribution

of samples across the entire domain. A classic approach within stratified sampling is the

6

Latin Hypercube Sampling, where the domain of each input variable is divided into equally

probable intervals. Samples are then selected so that each interval of every variable has

exactly one sample [33,45,68].

Figure 2.1. Latin Hypercube Sampling in two dimensions with 4 Points

‚ Quasi-Monte Carlo: Quasi-Monte Carlo methods employ low-discrepancy sequences, such

as Halton and Sobol sequences, to reduce the gaps and clusters typically found in random

samples. This approach results in a more evenly distributed set of samples across the

domain, hence reducing the variance in the estimation of integrals [27,57,62,73].

‚ Importance Sampling: Importance sampling involves a change of variables and the adop-

tion of a different probability distribution, referred to as the importance sampling distri-

bution and denoted as qpξq. In this way, the function value pz in (2.1) can be expressed

as:

pz “ Eppξqgppx, ξq

“

ż

gppx, ξqppξqdξ

“

ż

gppx, ξqppξq

qpξq
¨ qpξqdξ

“ Eqpξq

gppx, ξqppξq

qpξq
.

7

Figure 2.2. Comparison of random sequences: Pseudorandom, Sobol, and Halton
sequences, each generated with 256 points. The Sobol and Halton sequences exhibit
reduced clustering and a more uniform distribution compared to pseudorandom
sequences.

Then, instead of using (2.2) for evaluation, we can generate samples from this importance

distribution qpξq and construct our estimate as follows:

(2.3) pzIMC “
1

N

ÿ

i

gppx, ξiqppξiq

qpξiq

In theory, as long as the support of the original probability p is adequately covered by

the support of the importance sampling distribution q (i.e., ppξq ą 0 ùñ qpξq ą 0),

8

utilizing Equation (2.3) will yield an unbiased estimate. Nonetheless, selecting a suitable

q is crucial to avoid the need for excessively large estimation sample sizes.

The Monte Carlo method has long been used in stochastic programming to approximate the

function values [10, 46], with most of them focusing mainly on the basic Monte Carlo method

[54, 92]. The literature on importance sampling in the area of stochastic programming starts

with a series of papers [20, 21, 49] that introduced an importance sampling scheme, based on

strong assumptions. They assumed that the cost surface can be approximated using an additive,

separable model that considers marginal costs in each dimension alongside a base cost. Under

these assumptions, they constructed importance sampling distributions for each dimension and

aggregated the estimates from these dimensions to derive the final approximation.

Parpas et al. [76] proposed a method that does not rely on the assumptions of additive mod-

els. They directly generated samples from the optimal distribution q˚pξq in Equation (2.4) using

a Markov Chain Monte Carlo (MCMC) algorithm. Subsequently, they used these samples to “re-

cover” or reconstruct an approximation of q˚pξq using a kernel density estimation (KDE) algorithm,

resulting in pqM . Once this approximation was reconstructed, Equation (2.3) could be employed to

approximate pz. However, the limitation of the MCMC-IS method [76] is that it often requires a

large number of samples generated by the MCMC algorithm to obtain a good approximation of q˚.

Furthermore, many of the generated samples are discarded, which can be computationally wasteful.

In Section 2.3 and 2.4, we propose a method for efficiently constructing importance sampling

distributions using surrogate modeling. We then utilize these specially designed distributions to

estimate the function value pz. A software implementation of the methods called smais is avail-

able at https://github.com/DLWoodruff/SMAIS.git. Our approach aims to address these key

considerations:

‚ Efficient use of Function Evaluations: Our methods are designed to minimize the wasted

evaluation of the function gppx, ξq. Since these evaluations often require the use of opti-

mization algorithms and can be computationally expensive, minimizing their computation

is crucial for efficient estimation.

‚ Parallelism: We aim to exploit parallelism to achieve reductions in run-time.

Our ideas are inspired by techniques in surrogate optimization; see [37] for an overview. Surro-

gate optimization deals with scenarios where function evaluations can be even more computationally

9

https://github.com/DLWoodruff/SMAIS.git

demanding compared to our context. Additionally, our work has connections to response surface

methodology, where function evaluations sometimes involve physical experiments, but not always.

In [4] a response surface methodology (RSM) was proposed for the sensitivity analysis of two-

stage stochastic programming problems. In particular, the RSM enables efficient identification of

the sensitivity to changes in first-stage variables. The paper uses a quadratic response surface and

reports good results. Latin hypercube sampling is advocated as a variance reduction technique.

The idea of combining surrogate model with importance sampling was previously explored in the

area of engineering design optimization, mostly focused on analyzing the failure rate. Peherstorfer

et al. [104] uses importance sampling with surrogate models, with a specific application to failure

rate/yield estimation in certain systems. See also [77,97]. However, the methods developed for

failure rate estimation do not directly translate to stochastic programming, as they primarily focus

on generating a distribution for the failure region, while in stochastic programming the entire region

needs to be considered for optimization.

2.3. Importance Sampling with Surrogate Modeling

The selection of an appropriate qpξq can significantly reduce the variance of the estimator. It

has been demonstrated that the optimal importance sampling distribution takes the form:

(2.4) q˚pξq “
|gppx, ξq|ppξq

Eppξq|gppx, ξq|
.

In scenarios where the function g is non-negative, it simplifies to

q˚pξq “
gppx, ξqppξq

pz
,

making q˚pξq a zero-variance estimator. This implies that a perfect estimate of pz could theoretically

be obtained with just a single observation ξ0, as

pz “
gppx, ξ0qppξ0q

q˚pξ0q
.

Nevertheless, it is essential to note that determining the exact form of q˚pξq directly is imprac-

tical without knowing beforehand the exact value of pz “ Eppξq|gppx, ξq|, which is precisely what we

aim to evaluate in the first place.

10

As a workaround, we seek to construct an importance sampling distribution q that closely

mirrors the ideal q˚, particularly targeting areas where |gppx, ξq| exhibits significant values. A

straightforward strategy to achieve this involves iteratively computing the value |gppx, ξq|ppξq on

various realizations of ξ; then we use these computed values to construct an approximate distri-

bution. However, this direct computation can be quite resource intensive, especially when dealing

with complex functions such as gppx, ξq.

To address this computational challenge, we leverage Surrogate Modeling techniques. Surro-

gate models are simplified and computationally efficient approximations that mimic the behavior

of the original complex and often expensive-to-evaluate models (the function g in our context).

They are commonly used in experiments and simulations in engineering design to speed up the

decision-making process and reduce the computational burden. Examples of common approxima-

tion techniques include the following:

‚ Polynomial Response Surfaces (PRSM): PRSM models the response of a function using

a polynomial equation of its input variables. It constructs a surface that approximates

the target function across the input space by fitting polynomial terms of varying degrees,

where the choice of degree depends on the complexity and the nature of the relationship

between inputs and outputs.

‚ Radial Basis Functions (RBF): The RBF method models the target function as a linear

combination of basis functions, each associated with a point in the training set. The value

of the basis function depends solely on the distance between the prediction point and the

corresponding training point.

‚ Kriging (KRG): In Kriging, the model is formed as a weighted sum of observed values. The

weights are determined by the proximity and spatial configuration of the data points in

relation to the prediction location. These weights are calculated from a spatial correlation

model derived from the observed data.

‚ Artificial Neural Networks (ANN): ANNs model the relationship between inputs and out-

puts through layers of interconnected nodes or neurons, where each connection represents

a weight. The network learns by adjusting these weights to minimize the error between

the predicted and actual outputs.

11

For a comprehensive exploration of Surrogate Modeling techniques, including those not listed

here, readers are encouraged to refer to [37].

To effectively construct an importance sampling distribution that approximates the optimal

sampling function q, we create a surrogate model, referred to as s. This surrogate model s is used

in place of the function g to construct an importance sampling distribution qs, such that

(2.5) qspξq “
|spξq|ppξq

ş

Ω |spξq|ppξq
.

In particular, qs exhibits structural similarities to q˚ in Equation (2.4). In essence, spξq acts as a

substitute for gpξq in the importance sampling distribution.

The importance sampling with surrogate modeling (SM-IS) procedure for estimating pz can be

outlined as follows:

(1) Training Sample Generation: Generate a set of training samples, tξiu
M
i“1, using strat-

ified sampling methods such as Latin Hypercube Sampling. A diverse set of samples is

important for achieving accurate surrogate modeling.

(2) Surrogate Model Construction: For each training sample, compute yi “ gppx, ξiq. With

the input-output pairs pξi, yiq, construct the surrogate model s.

(3) Importance Sampling Distribution Creation: Use the surrogate model s to craft an

importance sampling distribution, denoted as qs, defined as follows:

(2.6) qspξq “
|spξq|ppξq

ş

Ω |spξq|ppξq
,

where the denominator’s integration is estimated using Monte Carlo methods. This esti-

mation relies solely on s without the need for direct access to g. Given that evaluating spξq

is generally much more computationally economical than evaluating gpξq, the computation

of the denominator is correspondingly cost-effective.

(4) Final Estimation: Use rejection sampling, as discussed in Section 2.3.1, to draw N

points tξ1, . . . , ξNu from the distribution qs. Estimate pz with the sampled points using

pzIMC “
1

N

ÿ

i

gppx, ξiqppξiq

qspξiq

This step involves evaluating the original function g. A more accurate approximation

of qs to q˚ can reduce the number of samples needed to obtain a stable estimate.

12

2.3.1. Sampling From the Constructed Distribution. To estimate the function value

using the importance sampling distribution constructed in Step 3 of the SM-IS procedure,

qspξq “
|spξq|ppξq

ş

Ω |spξq|ppξq
,

it is necessary to draw samples from qspξq. Given that the constructed sampling distribution in-

volves the surrogate model s and may take a complicated form, direct sampling may not be feasible.

Therefore, we employ rejection sampling. The rejection sampling method facilitates drawing ran-

dom samples from a target distribution that is difficult to sample from directly, especially when

the distribution lacks a closed form or is difficult to work with.

The core idea of rejection sampling is to initially sample from a simpler, auxiliary distribution

π, which can be easily simulated. Then each sampled point is accepted or rejected based on a

probability proportional to the ratio of the target probability density to the proposal probability

density, multiplied by a normalization constant κ. This constant κ is chosen as the smallest number

such that κπpξq ě qspξq for all ξ, thus ensuring that the scaled proposal distribution covers the

target distribution. In this way, the accepted samples conform to the target distribution.

For simplicity, we adopt a uniform distribution as our auxiliary distribution π, from which the

proposal samples are drawn randomly. Instead of traditional quasi-random proposal samples for

acceptance-rejection, [34] propose the use of Generalized Fibonacci Lattices. These lattices ensure

that the proposal samples cover the state space more uniformly and help to avoid the frequent

clusters and gaps that occur with random samples. In practice, other low-discrepancy sequences,

such as Sobol and Halton sequences, have also demonstrated better coverage compared to random

sequences, as shown in Section 2.2.

The subroutine for drawing samples from the constructed importance sampling distribution

qspξq using rejection sampling with low-discrepancy sequences is outlined for completeness. We

assume that the domain of the random variable ξ is a multi-dimensional box B. For detailed

methodology, we refer readers to [34].

(1) Generate Samples: Draw a large number K of samples from the multi-dimensional box

B using low-discrepancy sequences.

(2) Evaluate Integral: Evaluate the integral
ş

Ω |spξq|ppξq dξ for qspξq and compute the max-

imum value, denoted M , of qspξq using the K samples.

13

(3) Compute Scaling Factor: Compute the rejection scaling factor κ as

κ “ M ˆ AreapBq.

(4) Proposal Sampling: Independently draw a sample pξ using a low-discrepancy sequence

from B. In addition, generate a uniform random number u from 0 to 1.

(5) Accept or Reject: If u ď
qsppξq

κπppξq
, accept pξ as a sample from qs; otherwise, reject it and

repeat the process.

2.4. Adaptive Importance Sampling with Surrogate Modeling

In the SM-IS algorithm, both the size of the training sample set in Step 1 and the size of the

evaluation sample set in Step 4 are explicitly predetermined. The number of evaluation samples

used in Step 4 directly affects the quality of the final estimator pzIMC . However, finding a suitable

sample size that balances accuracy and computational efficiency depends on the quality of the

surrogate model s, which is determined by both the quantity and quality of the training samples

drawn in Step 1. Inadequate sampling in Step 1 may yield a suboptimal approximation of the

function g, while an excessive number of samples can lead to an inefficient use of computational

resources.

Instead of adhering to a fixed number of training and evaluation samples, an adaptive, multi-

fidelity approach can be more beneficial. This means that during the surrogate model construction

step, we increase the number of samples based on the quality of the current constructed surrogate

model, until we build an acceptable one. Similarly, in the final estimation step, we may adaptively

draw samples from the constructed importance sampling distribution qs, until the estimation pzIMC

converges. The idea of adaptive sampling for surrogate modeling has continuously drawn attention

in the engineering community [66, 72, 101, 102], where most of them are designed for specific

applications and do not apply directly in the stochastic programming setting. Adaptive sampling

unrelated to importance sampling has been explored in stochastic programming, by, e.g., [42]

and [9].

We provide a general framework for adaptive importance sampling with surrogate modeling

(SM-AIS) in the following algorithm, and discuss the criteria for assessing the efficacy of the con-

structed surrogate model and for determining the appropriate stopping rule in later subsections.

14

1. Initialization:

‚ Initialize the iteration index, k “ 0

‚ Generate the initial training sample set Ξ0 “ tξiu
M
i“1 (e.g., using Latin hypercube

sampling).

‚ Evaluate yi “ gppx, ξiq for each training sample.

2. Construct Surrogate Model:

‚ Construct a surrogate model sk mapping ξi to yi “ gppx, ξiq for each sample in the

training set Ξk. The tyiu values have already been obtained in the previous step(s).

3. Construct Importance Sampling Distribution qks :

‚ Construct the current importance sampling distribution as:

(2.7) qks pξq “
|skpξq|ppξq

1
K

ř

j |skprξjq|pprξjq
,

Here trξju are some random samples drawn from the domain of the random variable

ξ using the regular Monte Carlo method or the quasi-Monte Carlo method. The

denominator in the expression of qks pξq serves as an approximation of the integral
ş

Ω |skpξq|ppξq that determines the proper scaling of the importance sampling distri-

bution. Although an accurately estimated integral of
ş

Ω |skpξq|ppξq is essential, this

estimation, involving only the surrogate model sk, is generally not computationally

intensive compared to calculations involving g.

4. Assess Surrogate Model Quality:

‚ Assess the quality of the surrogate models as discussed in Section 2.4.1.

‚ If the quality of the surrogate model satisfies the predetermined stopping criteria,

proceed to Step 6.: Final Estimation.

‚ Otherwise, continue to the next step: Refine the Surrogate Model.

5. Refine Surrogate Model:

‚ Choose some additional training samples. Add these to the training set Ξk to form a

new training set Ξk`1. The choice of the additional training samples is discussed in

Section 2.4.2.

‚ Increase the iteration index: k “ k ` 1

‚ Return to step 2.

15

6. Final Estimation:

‚ Adaptively sample from qks using rejection sampling as detailed in Section 2.3.1 to

collect evaluation samples tξiu and periodically estimate the function value pz with

Equation (2.3). Continue until convergence is achieved. The stopping criteria are

detailed in Section 2.4.3.

This method follows the principles of multi-fidelity approaches. Initially, we generate a low-

fidelity estimate of the importance sampling distribution qs to accelerate the computational process.

Subsequently, for our final estimate (2.3), we use a high-fidelity assessment to ensure an unbiased

approximation. The concept of multi-fidelity models has seen application in different areas [70,78].

More recently, [1] discusses the theoretical aspect of multi-fidelity importance sampling.

2.4.1. Surrogate Model Assessment. Evaluating the quality of surrogate models is crucial

in their development and refinement, as it directly impacts the accuracy and reliability of the es-

timates. We propose two approaches for assessing the quality of the surrogate models. The first

approach relies on quantifying the error of the surrogate model, offering a direct measure of the

model’s accuracy in replicating the true responses. The second approach is based on the estimation

of the variance of the final estimator, which indicates the consistency and stability of the estimator.

2.4.1.1. Direct Error-Based Assessment. To construct an effective surrogate model, the primary

goal is to ensure that its associated importance sampling distribution,

qks pξq “
|skpξq|ppξq

1
K

ř

j |skprξjq|pprξjq
,

aligns with the optimal sampling function

q˚pξq “
|gpξq|ppξq

ş

Ω |gpξq|ppξq
.

Given this objective, a direct and natural approach for surrogate model assessment involves eval-

uating the maximum absolute error, or the Linf norm, between the surrogate function s and the

true function g. More specifically, we focus on quantifying the discrepancy between the function

|skpξq|ppξq and |gpξq|ppξq,

ϵs “ sup
ξPΩ

ˇ

ˇ|skpξq|ppξq ´ |gpξq|ppξq
ˇ

ˇ,

16

as a measure of the accuracy of the surrogate model. Our selection of absolute error over relative

error is in accordance with the principles of importance sampling. This choice allows a greater

tolerance for errors in areas of lesser significance, i.e. areas with lower q values, thereby focusing

our computational resources and efforts on areas with high q values, ensuring that our surrogate

model achieves a high degree of precision in important regions.

To estimate the error ϵs, we draw a manageable set of samples and compute the corresponding

absolute error between |spξjq|ppξjq and |gpξjq|ppξjq for each sampled ξj . The composition of these

samples is twofold: A portion (of cardinality Mq) is drawn according to the importance sampling

distribution of the surrogate model qs, ensuring that the surrogate model’s approximations are

precise in areas it identifies as crucial. The remainder of the samples (of cardinality Mr) is drawn

from a uniform distribution across the domain of the random variable ξ, which helps verify the

model’s overall performance and guards against over-fitting to the training samples.

The decision to refine the surrogate model s further is guided by a stopping criterion centered on

whether the maximum absolute error across the assessment samples exceeds a predefined threshold.

This threshold may be expressed either as a fixed absolute number or, as we have found effective

in our experiments, in the form of

cβ ˆ max |gpξjq|ppξjq,

where cβ represents a predetermined scaling factor. Implementing a threshold in this manner

simplifies the adjustment of the threshold value, aligning with our goal to develop an importance

sampling distribution that emphasizes accuracy in critical regions characterized by high qs values.

2.4.1.2. Variance-Based Assessment. An alternative method to evaluate the surrogate model

focuses on examining the variance of the final estimator pzIMC . This strategy is based on the

understanding that a high-quality surrogate model will yield a final estimator with lower variance.

Consequently, assessing this variance serves as an indirect but effective way to gauge the accuracy

of the surrogate model s and inform its further refinement. Specifically, with the surrogate model s

and the associated importance sampling distribution qs, the convergence rate of the final estimator

pzIMC in Equation (2.3) is expressed as O
´

σs?
N

¯

, as pzIMC is the average of N independent samples.

17

The variance σ2s is determined by

(2.8) σ2s “ Eqs

ˆ

gppx, ξqppξq

qspξq

˙2

´

ˆ

Eqs

gppx, ξqppξq

qspξq

˙2

.

Hence, we can develop a stopping criterion for the refinement of the surrogate model s, predi-

cated on the variance σ2s descending below a specified threshold.

To this end, we draw a modest collection of samples tξ̃iu
Me
i“1 from qs (of cardinality Mq). The

variance σ2s is then estimated either by direct computation:

(2.9) σ̃2s “
1

Mq ´ 1

ÿ

i

˜

gppx, ξ̃iqppξ̃iq

qpξ̃iq
´ z̃

¸2

,

where

z̃ “
1

Mq

ÿ

i

gppx, ξ̃iqppξ̃iq

qpξ̃iq
.

It should be emphasized that this approach may be more prone to over-fitting the training

samples, making it appropriate only when a substantial initial training sample set is utilized, where

there is sufficient coverage of regions considered potentially significant. In practical applications,

combining variance-based evaluation with direct error-based assessment can yield the most effective

results.

2.4.2. Additional Training Sample Selection. The selection of additional training sam-

ples is inherently informed by the assessment of the quality of the surrogate model. To maximize

computational efficiency, our approach emphasizes the reuse of samples that have already con-

tributed to the evaluation of the surrogate model. It is important to highlight that adding extra

samples inevitably incurs some computational cost for retraining the surrogate model s. However,

we avoid the need for repeated evaluations of the function value g, which can be costly, for these

new samples, since these evaluations are already completed during the assessment phase.

As we want to allocate our computational resources to make significant accuracy improvements,

we have explored two primary approaches for selecting additional training samples. The first

involves selecting a fixed number or proportion of samples, identified during the assessment phase,

that demonstrate the largest errors. The second method focuses on samples whose errors exceed

a specific threshold in the form of cβ ˆ max |gpξiq|ppξiq, as mentioned in Section 2.4.1.1. Through

18

practical application, we have observed that prioritizing samples with errors above a predetermined

threshold, thus excluding those with minimal errors, results in a more balanced surrogate model.

2.4.3. Final Estimation and Confidence Interval Construction. In the final estimation

step, we employ a dynamic process for sampling from the importance sampling distribution qs, and

periodically estimate the function value based on the collected samples. The estimator is given by:

pzIMC “
1

N

ÿ

i

gppx, ξiqppξiq

qspξiq
.

Note that this approach allows for the simultaneous construction of confidence intervals for the

true function value pz around the estimate pzIMC using the Central Limit Theorem. These intervals

are expressed as:

rpzIMC ´ t1´α{2rσs, pzIMC ` t1´α{2rσss,

where t1´α{2 refers to the student-t distribution.

At the same time, it also facilitates the estimation of the total number of samples required to

meet a specified error tolerance. Since the estimator pzIMC is a sample average estimator, according

to the central limit theorem, it converges to a normal distribution with mean pz and variance σ2s{N ,

at a rate of O
´

σs?
N

¯

. Here, σ2s is the associated variance as defined in (2.8).

In this way, To determine the sample size Ns,ϵ necessary for achieving an error tolerance ϵ, we

use the formula

Ns,ϵ “

S

ˆ

Z1´α{2 ¨ σs

ϵ

˙2
W

,

where Z1´α{2 is the z-score associated with a predefined confidence level. That is, with a sample

size of Ns,ϵ and probability of 1 ´ α, the error in the final estimator pzIMC will be less than ϵ.

Although we do not have direct access to the variance σs, we can derive an initial estimation of

the variance, rσs, from an early subset of samples drawn from the importance sampling distribution

qs. This preliminary variance estimation gives us a projection of the approximate number of

samples, rNs,ϵ, to achieve our target precision.

As the adaptive sampling process progresses, each additional sample drawn incrementally refines

our estimates of rσs and rNs,ϵ. Simultaneously, it updates the confidence intervals for the true function

value, pz.

19

2.4.4. Parallelization of the Algorithm. The main algorithm lends itself well to paralleliza-

tion, which can significantly reduce overall execution time. Here is an outline of the components of

the algorithm that are suited for parallel execution.

‚ Initialization: The generation of the initial training sample set Ξ0 “ tξiu
M
i“1 and the

evaluation of their function values gppx, ξiq can be easily parallelized, as the generation of

each sample and the evaluation of the function value are independent of other samples.

The initial sampling such as Latin hypercube sampling can be distributed across multiple

processors, with each processor generating a subset of the total samples independently.

‚ Construct Surrogate Model: The potential for parallelizing this surrogate model train-

ing process largely depends on the type of surrogate model used and its parallelization

capabilities. For instance, neural networks and certain implementations of Kriging can

be trained in parallel by leveraging multiple processing units to handle batches of data

or to compute model parameters concurrently. In cases where the surrogate model or the

training methodology does not inherently support parallelization, alternative strategies,

e.g. parallelizing the hyper-parameter tuning, can be explored.

‚ Construct Importance Sampling Distribution qks : Constructing the importance sam-

pling distribution qks requires the evaluation of the value |skpξ̃jq| ˚ ppξ̃jq over a reasonably

large set of samples, which can be processed in parallel as each calculation is independent.

In our parallelization experiments, we allocated the computation of |skpξ̃jq| ˆ ppξ̃jq among

all accessible processors, subsequently gathering the outcomes to obtain the proper scaling

of the importance sampling distribution qks .

‚ Assess Surrogate Model Quality: The surrogate model’s quality assessment involves

the use of rejection sampling from qks , a technique well-suited for parallel execution. In

our experiments, each worker is tasked with examining Ba samples per batch, determining

whether each sample should be accepted or rejected. This workflow is maintained across

all workers until a collective total of Mq samples has been drawn from qks .

‚ Final Estimation: The final estimation phase adopts a similar approach to the quality

assessment step, employing parallelized rejection sampling from the importance sampling

distribution, complemented by function evaluations. In our implementation, each worker

is assigned the task of evaluating Be samples within a batch to decide their acceptance.

20

For the samples that are accepted, the subsequent step involves calculating the weighted

function value gppx,ξiqppξiq
qspξiq

. The process is carried out uniformly by all workers, continuing

until the stopping criteria are met. The final estimation of the function value pz is achieved

by aggregating the calculated results from all contributing workers.

2.5. Experimental Results

In this section, we present the experimental results for the adaptive importance sampling with

surrogate modeling (SM-AIS) method. To generate random candidate solutions px for evaluating

function values, we applied a sample average approximation to the original stochastic programming

problems using a limited set of scenarios. Then each candidate solution px was used to evaluate

the efficacy of our SM-AIS method. Our proposed method was compared against two alternative

approaches.

The first comparative method is the regular Monte Carlo (MC) method, wherein sampling is

conducted according to the original probability distribution, denoted as p. We adopted rejection

sampling with Sobol sequences to work with distribution p, allowing us to handle various types of

distribution functions. Utilizing Sobol sequences enables more uniform sampling across the space

and has shown greater efficiency than uniform random sampling, particularly in high-dimensional

scenarios. To facilitate rejection sampling, we start by estimating a scaling factor. This involves

preliminary sampling from p to approximate its maximum value, which we then utilize to derive

an estimated scaling factor.

The second method is the Markov Chain Monte Carlo Importance Sampling (MCMC-IS)

method, as proposed by [76]. This method involves generating samples from the optimal dis-

tribution q˚pξq using MCMC and then approximating this distribution with kernel density estima-

tion (KDE). We use a normal distribution as our proposal distribution, experimenting with both

constant variance and adaptive Metropolis techniques [38]. Preliminary parameter tuning was

conducted for the fixed-variance approach, and the best-performing setup was selected for method

comparison.

For our proposed Adaptive Importance Sampling with Surrogate Modeling (SM-AIS) method,

there is a wide option of surrogate models. In the experiments reported below, we adopt the kriging

method because it leverages both the sampled data and the inherent correlation patterns among

21

the samples. Thus, it is capable of effectively approximating non-linear functions. Although we

tested other types of surrogate models, we did not observe a significant difference in performance,

provided that an ample number of samples is used for training.

2.5.1. Problem Examples. We conducted experiments over four different example problems.

2.5.1.1. NewsVendor. The NewsVendor problem involves finding the optimal order quantity

to maximize profit or minimize costs while considering the balance between lost sales and excess

inventory. In our experiment, we used the two-stage stochastic program example provided in [65],

where the uncertain demand ξ follows a triangular distribution. In the first stage, the order quantity

x is selected without knowing the actual demand ξ. Subsequently, in the second stage, decisions

yξ are made regarding the quantity to sell to minimize the costs associated with inventory that

remains unsold. The problem can be formulated as:

maximize
x,yξ

x´ 2x` Eξr5yξ ´ 0.1px´ yξqs

subject to yξ ď x, @ξ P Ξ

0 ď yξ ď dξ, @ξ P Ξ

x ě 0.

2.5.1.2. CVaR. CVaR, or Conditional Value at Risk, is a risk measure used in finance and

statistics to quantify the potential loss in the worst-case scenarios of an investment or portfolio.

It is defined with a parameter α, representing the expectation of losses in the worst α fraction of

outcomes. In our experiment we solve a p1 ´ αq-level CVaR problem as in [59]:

min
x

"

x`
1

α
E rmaxpξ ´ x, 0qs

*

where α “ 0.1 and ξ is drawn from a standard normal distribution.

2.5.1.3. Scalable Farmer. The original farmer example in [10] has three crops and three sce-

narios, where a farmer must decide at the beginning of the planting season how much of their land

to allocate to each crop. Our tested version is for stress-testing software such as [56]. Instance

configuration parameter numscens is added to scale up the number of scenarios. By incorporating

22

this parameter, the scalable instances can create any number of scenarios, so we can draw samples

of any size. The problem can be formulated as:

minimize
x,yξ,wξ

150x1 ` 230x2 ` 260x3 ` Eξrp238yξ1 ` 210yξ2q ´ p170wξ
1 ` 150wξ

2 ` 36wξ
3 ` 10wξ

4qs

subject to x1 ` x2 ` x2 ě 500,

ωξ
1x1 ` yξ1 ´ wξ

1 ě 200, @ξ P Ξ

ωξ
2x2 ` yξ2 ´ wξ

2 ě 240, @ξ P Ξ

ωξ
3x3 ´ wξ

3 ´ wξ
4 ě 0, @ξ P Ξ

wξ
3 ď 6000,

x, yξ, wξ ě 0, @ξ P Ξ,

where ξ represents the uncertainty associated with future yields and market prices, ωξ
i denotes the

yield per acre for each crop under scenario ξ, while xi specifies the number of acres allocated to

each crop. Further, yξi indicates the quantity of crops to be purchased to address any shortfall, and

wξ
i refers to the quantity of crops to be sold. All scenarios are grouped in threes, with a uniformly

distributed pseudorandom number added to the yield values of the original three scenarios.

We further introduced a new feature, denoted as “yield-cv,” which represents the coefficient of

variation of the crop yields. This inclusion offers the flexibility to introduce variability in problem

settings, and is universally applicable to all crops. In cases where it is not explicitly specified, the

distribution of the farmer example adheres to the original model with uniform distributions.

2.5.1.4. Multi Knapsack. The multi-knapsack problem originates from the stochastic program-

ming problem discussed in [98] and also explored in [52, Chapter 6]. It can be regarded as a

multidimensional newsvendor issue that includes substitution effects. In the initial stage, manufac-

turers make decisions on the product assortment and set inventory levels without precise knowledge

of future demand. Subsequently, in the second stage, once the actual demand is revealed, it allo-

cates products for both direct sales and substitutions to maximize profit. In our analysis, we focus

on the scenario that involves the sale of six products, each subject to a uniform substitution rate

of αij “ 10%. The problem can be formulated as follows:

23

maximize Eξ

«

ÿ

i

´cixi ` viy
ξ
i ` vizt

ξ
i ` gipxi ´ pyξi ` ztξi qq

ff

subject to yξi `
ÿ

j;j‰i

zξji ď dξi ,

zξij ď αijpd
ξ
j ´ yξj q,

ztξi “
ÿ

j;j‰i

zξij ,

xi, y
ξ
i , zt

ξ
i , w

ξ
i , z

ξ
ij ě 0.

Here, xi represents the quantity of production, while yi indicates the quantity sold. The variables

zij and zti denote the substitution sales of product i using product j and across all other products,

respectively. The parameter di denotes the demand for each product, ci is the associated produc-

tion cost, vi is the sale price, and gi reflects the salvage value of unsold products.

2.5.2. Parameter Values. In the interest of reproducibility, Tabe 2.1 shows the parameter

values used in experiments except when otherwise noted.

Symbol Name in smais NewsVendor CVaR Farmer Knapsack

M initial sample size 20 80 40 80
Mq assess size 20 20 40 40
Mr additional sample size 20 20 40 40
K sp integral size 2000 2000 10,000 1,000,000
cβ adaptive error threshold factor 0.1 0.1 0.1 0.1
N evaluation N 500 500 500 500

Table 2.1. Parameter Values Used in Experiments.

2.5.3. Method Comparison. For the CVaR problem, we evaluated the performance of three

methods: our proposed Adaptive Importance Sampling with Surrogate Modeling (SM-AIS), the

regular Monte Carlo (MC) method, and the Markov Chain Monte Carlo Importance Sampling

(MCMC-IS) method. Their effectiveness was assessed by measuring the deviation of the estimator

for the generated function value from the benchmark and the width of the confidence intervals

generated for pz, over various predetermined cutoff times. The benchmark value is achieved by

the conventional Monte Carlo method upon convergence. The methods were implemented in se-

rial, without parallelization. We will discuss potential performance improvements for the AIS-SM

24

method through parallelization in a later section. The experiments were carried out with Python

3.12.1 on a server with dual Intel(R) Xeon(R) Gold 5118 CPUs, 376 GB of RAM, running Ubuntu

22.04.3 LTS.

Due to the necessity for an initial run-time to establish its importance sampling distribution,

the MCMC Importance Sampling method does not provide estimations at early cut-off times. Con-

sequently, these instances are denoted by the symbol ‘-’ in the table. When the relative error is

less than 0.1%, we consider it to be negligible.

Table 2.2 demonstrates the varied effectiveness of sampling methods in addressing the CVaR

problem. Due to the significant disparity between the important region for CVaR estimation and

the original distribution p, the regular MC method can be extremely inefficient, and an effective

importance sampling distribution is necessary for fast estimation of the function value.

Cut-off Time (Seconds)
MC MCMC-IS SM-AIS

Error CI Width Error CI Width Error CI Width

100 0.22 0.99 - - 0.013 0.092
200 0.081 0.27 0.015 0.11 negligible 0.024
400 0.050 0.20 0.015 0.05 negligible 0.015

Table 2.2. Summary Table for CVaR, with the benchmark function value pz «

2.1155 obtained using numerical integration. The current result record MCMC-IS
method runs with 2500 samples for the hastings method. For the proposed SM-AIS
method, we start with an initial size of 80 training samples, and assess the surrogate
model via error-based estimation. The surrogate model meets the stopping criteria
within 6 iterations.

While the MCMC-IS method’s slower development of the importance sampling distribution

might seem a drawback, it still surpasses the basic MC method due to the usage of the importance

function. The SM-AIS method stands out for its rapid creation of an efficient importance sampling

distribution, leading to minimal errors and significantly tighter confidence intervals.

We also generated Figure 2.3, 2.4 and 2.5 to represent the convergence of confidence intervals

for the estimates obtained by the MC method, the MCMC-IS method, and the SM-AIS method

in the estimation of the Conditional Value at Risk (CVaR) over time. The red line represents the

trajectory of the integral estimate, and the shaded region encapsulates the 95% confidence inter-

val at different timestamps with different sample sizes. The SM-AIS method demonstrates faster

25

convergence to the accurate CVaR estimate and yields substantially tighter confidence intervals

compared to those produced by other approaches. Notably, with the importance sampling function

generated, both the MCMC-IS and SM-AIS methods require far fewer samples compared to the

MC method to achieve a stabilized confidence interval.

Figure 2.3. Convergence of the CVaR estimates over time using the MC method.
The red line represents the integral estimate of the CVaR, while the shaded area
delineates the 95% confidence interval. Annotations on the plot indicate the sample
size used at various time intervals.

26

Figure 2.4. Convergence of the CVaR estimates over time using the MCMC-IS
method. The red line represents the integral estimate of the CVaR, while the shaded
area delineates the 95% confidence interval. Annotations on the plot indicate the
sample size used at various time intervals.

Figure 2.5. Convergence of the CVaR estimates over time using the SM-AIS
method. The red line represents the integral estimate of the CVaR, while the shaded
area delineates the 95% confidence interval. Annotations on the plot indicate the
sample size used at various time intervals.

27

For the rest of the example problems, the efficiency of the MCMC-IS method is constrained by

the limited utility of the importance sampling distribution in relatively simple scenarios. Gener-

ation of the importance sampling distribution via the MCMC-IS approach is time-consuming and

does not offer sufficient evaluation efficiency improvements for certain problems. This challenge is

particularly evident for some multi-dimensional optimization problems, where optimally adjusting

the MCMC-IS method’s parameters proves difficult due to the Kernel Density Package available

for use in our Python implementation. Hence, for the rest of the examples, we primarily report the

time complexity advantage of our approach over the regular MC method.

As shown in Tables 2.3 and 2.4, in the NewsVendor problem and the farmer problem, the

regular Monte Carlo (MC) method achieves efficient convergence, yet the Adaptive Importance

Sampling with Surrogate Models (SM-AIS) method further excels by ensuring faster convergence

and significantly narrower confidence intervals.

Cut-off Time (Seconds)
MC SM-AIS

Error CI Width Error CI Width

20 2.7 16.7 0.3 0.4
100 1.3 8.2 negligible 0.1
200 0.6 5.7 negligible ă 0.1
400 0.8 4.0 negligible ă0.1

Table 2.3. Summary Table for NewsVendor, with the benchmark function value
pz « 558.6 obtained using regular MC with 20k samples. The current result record
MCMC-IS method runs with 1500 samples for the Hastings method. For the pro-
posed SM-AIS method, we start with an initial size of 20 training samples, and
assess the surrogate model via error-based estimation. The surrogate model meets
the stopping criteria within 2 iterations.

For multidimensional problems such as the multi-knapsack problem, building the importance

sampling distribution in Step 3 requires a substantial number of samples, denoted by K, to ac-

curately estimate the integral in the denominator. However, since the integral calculation only

involves evaluations of the surrogate model s, the process remains relatively cost-effective, despite

the requirement for extensive sampling. Table 2.5 suggests that our method effectively reduces the

variance of the final estimator, resulting in a more precise confidence interval. In Section 2.5.4,

we demonstrate how the incorporation of parallel computing strategies can markedly decrease the

computational time required by high-dimensional integration.

28

Cut-off Time (Seconds)
MC SM-AIS

Error CI Width Error CI Width

40 2126 4,125 87 418
200 575 1995 negligible 164
400 347 1397 negligible 117
800 104 1018 negligible 83

Table 2.4. Summary Table for Farmer, with the actual function value pz « 151, 600
obtained with 65k samples. The current result records MCMC-IS method run with
2000 samples for hastings method with a fixed step size. For the proposed Surrogate-
IS method, we start with an initial size of 20 training samples, and assess the
surrogate model via error-based estimation. The surrogate model meets the stopping
criteria within 2 iterations.

Cut-off Time (Seconds)
MC SM-AIS

Error CI Width Error CI Width

500 220 1,198 117 433
1000 53 862 41 121
1500 37 713 negligible 95

Table 2.5. Summary Table for Multi-Knapsack, with the actual function value pz «

24, 860 obtained with 20k samples. The current result records MCMC-IS method
run with 1000 samples for hastings method with a fixed step size. For the proposed
Surrogate-IS method, we start with an initial size of 80 training samples, and assess
the surrogate model via error-based estimation. The surrogate model meets the
stopping criteria within 2 iterations.

2.5.4. Parallel Speed Up. The SM-AIS method offers the advantage of straightforward par-

allelization, leading to considerable performance enhancements. To demonstrate, we present a

comparison between the parallelized and non-parallelized implementations of the SM-AIS method

when applied to the multi-knapsack problem. For this purpose, we employ a fixed set of parameters

and evaluate the run-time performance of the SM-AIS method across a variety of process counts.

Our implementation of parallelization was focused on three critical phases of SM-AIS: In Step

3, parallel processing was employed to evaluate the denominator when constructing the importance

sampling distribution qks ; Step 4 leveraged parallelism for performing rejection sampling for evaluat-

ing the surrogate model’s quality through error-based assessment; and in Step 6, parallel processes

were utilized once more for drawing samples from qks for the final estimation. Further discussion of

parallel implementation can be found in Section 2.4.4. In our experiments, the batch sizes were set

to Ba “ 200 for the quality assessment phase and Be “ 100 for the final estimation phase.

29

Number of Processes Runtime (seconds) Speed Up Factor
1 1037.278 1
2 524.380 1.978
4 289.270 3.587
8 155.382 6.675
12 107.249 9.672
16 89.374 11.609

Table 2.6. Runtime performance of the SM-AIS method for the multi-knapsack
problem using different numbers of processes. We used K “ 1000, 000 to evaluate
the denominator to construct the importance sampling distribution qks , and used
N “ 200 samples for the final estimation.

Table 2.6 outlines the runtime of the SM-AIS method under varying numbers of parallel pro-

cesses, and Figure 2.6 visually represents the scaling efficiency, both highlighting the effectiveness

of parallelization in reducing the runtime.

Figure 2.6. The Speed Up Factor for SM-AIS with Increasing Parallel Processes for
multi-knapsack example. The red line indicates the actual speed-up of the algorithm
as the number of processes increases, while the gray dashed line represents the ideal
linear speed-up.

2.5.5. Parameter Selection and Stability. In this section we report the result on various

parameter selections and how they affect the run-time and the accuracy of the final estimation for

30

the SM-AIS method.

2.5.5.1. Sample Size K for importance sampling distribution scaling. In practice, the parameter

K can be determined by verifying that the Monte Carlo integral of the probability density function

p with K samples is close to 1. The choice of sample size K is particularly important in Step

3, where it affects the evaluation of the integral of the surrogate model s over its domain. This

step determines the appropriate scaling for the importance sampling distribution introduced by the

surrogate model s. The size of K must be sufficiently large to ensure that the integral estimation

is reliable.

K Error CI Width MC integral for p
1000 negligible 0.22 1.000
100 2.14 0.23 0.995
10 82.40 0.19 0.873

Table 2.7. Influence of Sample Size K on Estimation Accuracy in the NewsVendor
Example, with the actual function value pz « 558.6. Here, M “ 20 samples were
used to construct the surrogate model employing kriging. The error in the final
estimation was calculated using N “ 100 samples. The surrogate model satisfied
the stopping criteria within 1 iteration.

Table 2.7 represents how varying parameter K in the NewsVendor Problem affects the bias in

the final estimations. In addition, it includes the results of the Monte Carlo integration p, which

serves as an empirical benchmark for determining K’s adequacy. The results reveal that while the

SM-AIS method still converges with an inadequately small K, it results in biased outcomes. In

contrast, achieving a Monte Carlo integral of p close to 1 indicates a minimal error in the final

estimation, thereby serving as a guide to select an appropriate K.

2.5.5.2. Scaling factor cβ for choosing additional training sample. The SM-AIS approach ex-

hibits relative robustness with respect to the scaling factor cβ used to determine the stopping

criteria and to select additional training samples. Its impact on overall performance remains min-

imal, provided that cβ is maintained within a practical range. Taking into account the problem’s

sensitivity and user preferences, a cβ set between 5% and 20% has proven to be both efficient and

effective based on practical experience. For the majority of our experiments, except those focused

31

on parameter sensitivity analysis, we used cβ “ 10%.

2.5.5.3. Choice of Surrogate Model Type. When selecting a surrogate model type, utilizing prior

knowledge from the application domain can certainly be advantageous, potentially improving the

surrogate model’s performance. This knowledge helps to choose a model type that is better suited

to grasp the essential features of the function or system being modeled. However, for the problems

we have experimented with, the surrogate model type’s influence on performance is not significant,

provided that an ample number of samples are available for training. This suggests that the ad-

equacy of the training data plays a more critical role than the specific choice of model type in

determining the effectiveness of the SM-AIS method.

2.5.5.4. Initial Sample Size and Assessment Sample size. Due to the adaptive framework of the

SM-AIS method, the choice of the initial sample sizeM for constructing the initial surrogate model

is relatively flexible, as long as an adequate number Mr of uniform random samples is used to

evaluate the quality of intermediate surrogate models and guide the decision on stopping criteria.

However, choosing a very small M may lead to a poor initial model, potentially causing detours

in the refinement process and increasing the iterations needed to meet the stopping criteria, thus

increasing the total evaluations of the function g required for model construction.

The sample size for assessing intermediate surrogate models is similarly adaptable, with the

caveat that it should not be too small to overlook significant errors in a deficient model or too large

to avoid wasting computational resources evaluating the function g. Nevertheless the number of

samples Mq drawn from the importance sampling distribution qs should ideally match or be less

than those used for constructing the model, as over-sampling from an underdeveloped model offers

little to no benefit for its enhancement.

In essence, the initial and assessment sample sizes for the SM-AIS method are adaptable, but

should be kept above a minimum to prevent early stopping and excessive sampling in the final

phase.

As an example, we examine the impact of varying initial sample sizes on the surrogate model

construction process and its subsequent effect on final estimations, using the farmer example.

We maintained consistency with the values shown in Table 2.1, with the exception of the initial

32

sample size M . Additionally, the number of samples, Mq, drawn from qs to evaluate the surrogate

model s, was set at minp20, 2Mq. Finally, to ensure an unbiased final estimation, we incorporated

Mr “ 40 additional uniformly distributed random samples for evaluation in each iteration. The

total number of function g evaluations required for constructing the surrogate model, in this case,

is M ` kpMq `Mrq, where k represents the iterations needed to meet the stopping criteria for the

construction of the surrogate model. We also provide runtime for constructing the surrogate model.

For the final evaluation, we set a fixed sample size of N “ 200 and reported the associated

error and confidence interval based on these N “ 200 samples. Table 2.8 summarizes the result. As

observed in the table, the accuracy of the final estimation remains largely unaffected by variations

in initial or assessment sample sizes, compared to the scale of the actual function value. However,

smaller initial sample sizes may require a greater number of iterations (k) to develop an acceptable

surrogate model, which in turn results in increased runtime.

M 40 20 8 3
k 1 1 2 3
Total g evaluation 100 80 120 141
RunTime(s) 10.88 8.43 12.66 15.44
Error negligible negligible negligible negligible
CI Width 839 650 1103 1543

Table 2.8. Influence of Initial Sample Size M on Estimation Efficiency in the
Farmer Example, with the actual function value pz « 151, 600. We draw minp20, 2Mq

samples from the intermediate surrogate models for error-based assessment, in ad-
dition to a fixed 40 uniformly random assessment samples. Error and CI width
obtained with N “ 200 final estimation samples.

33

CHAPTER 3

Optimality Gap Estimation for Multi-Stage Stochastic

Programming

3.1. Introduction

Another important aspect to consider for a candidate solution is its optimality gap. For a

general optimization problem formulated as

z˚ “ min
x
Eξrgpx, ξqs,

the optimality gap measures the deviation of the objective function value from the optimal, defined

by:

(3.1) G
px “ Eξrgppx, ξqs ´ min

x
Eξrgpx, ξqs.

A smaller optimality gap indicates a high-quality solution.

In this chapter, we focus on constructing confidence intervals for the optimality gap in multi-

stage stochastic programs (MSSP), following the work in [18]. These intervals are useful for sub-

sequent analysis and for making decisions about the allocation of computing resources.

3.1.1. Background. Amultistage stochastic program is an optimization problem that extends

two-stage stochastic programming to accommodate multiple stages of sequential decision-making

under uncertainty. At each stage, decision-makers respond based on the realized uncertainties up

to that point, with each decision influencing the subsequent choices and associated uncertainties.

This iterative decision-making process helps capture the complexity of real-world systems where

each sequential decision can significantly impact future outcomes. Originally proposed by [19],

it has been applied to a wide spectrum of areas, including energy planning [79], hydrothermal

scheduling [24], vehicle routing [50], financial modeling [105], supply chain management [51], and

many others.

34

Mak et al. [67] developed sampling-based upper and lower bound estimators to construct a

confidence interval on the optimality gap for two-stage stochastic programming based on asymp-

totic normality. Additional computational results can be found in, for example, [64]. Shapiro [93]

discussed the difficulty in extending such sampling methods to multistage linear programming

problems and proposed a conditional sampling procedure for constructing consistent lower bounds.

Chiralaksanakul and Morton [18] further proposed two Monte Carlo sampling methods to con-

struct upper bounds for the optimality gap in the case of stage-wise independence and stage-wise

dependence. Together with the lower-bound estimator based on conditional sampling, they are able

to provide a confidence interval for the optimality gap in multistage stochastic programming.

A few papers discussed how to assess the solution quality for multi-stage programming with the

additional assumption of inter-stage independence. These algorithms are mostly adaptations of the

SDDP algorithms [79]. Homem and Godinho [47] presented an alternative stopping criterion for

SDDP that is more statistically robust. Kozmik and Morton [58] showed that importance sampling

could be used to improve upper bound estimators in the risk-averse setting. Their work improves

the results of [95]. De et al. [24] proposed an algorithm that can construct a confidence interval of

the optimality gap using a single scenario tree.

In the following sections, we explore a Multiple Replication Procedure (MRP) designed to as-

sess the solution quality in multistage stochastic programming without the inter-stage independence

assumption, based on the work [18,67,93]. In addition, we discuss possible adaptations of Sequen-

tial Sampling techniques that estimate the optimality gap for multistage stochastic programming

for a sequence of candidate solutions, under an increased sample size. The sequential sampling

procedures were first proposed in [6,7,8] for two-stage stochastic programs.

A software implementation of both the MRP method and the Sequential Sampling method for

assessing the solution quality for MSSP is available as part of the mpi-sppy package [56], which is

available for download from https://github.com/Pyomo/mpi-sppy

3.1.2. Multistage Stochastic Program Formulation. The dynamic realization of uncer-

tainty in an MSSP is typically modeled as a stochastic process tξtu
T
t“2, where the realized values

ξt “ ξt are revealed at the end of stage t´ 1. Therefore, we refer to ξt and ξt only for t “ 2, . . . , T .

35

https://github.com/Pyomo/mpi-sppy

The realized values of the stochastic process up to and including stage t are denoted as

ξ⃗t “ pξ2, ξ3, . . . , ξtq .

When t “ T , ξ⃗T is known as a scenario.

At each stage t, a decision xt is made with only the knowledge of x⃗t´1 and ξ⃗t, and is in-

dependent of future decisions and realizations of ξt`1, . . . , ξT . This independence is known as

non-anticipativity. We use the notation x⃗t for 1 ď t ď T to represent the decisions for all stages up

to, and including, stage t, i.e.,

x⃗t “ px1, x2, . . . , xtq .

The multi-stage stochastic problem (MSSP) can be formulated recursively as

z˚ “ min
x1

Eξ2
rϕ2px1; ξ2qs,(3.2)

s.t. x1 P X1,

where for each t “ 2, . . . , T ´ 1, we have

ϕtpx⃗
t´1; ξ⃗tq “ min

xt

E⃗ξ
t`1rϕt`1ppx⃗t´1, xtq; ξ⃗

t`1
q|⃗ξ

t
“ ξ⃗ts,(3.3)

s.t. xt P Xt

´

x⃗t´1, ξ⃗t
¯

,

and the final stage (t “ T) optimizes the problem-specific objective function ϕ1
T , given all prior

decisions and the complete scenario ξ⃗T .

ϕT px⃗T´1; ξ⃗T q “ min
xT

ϕ1
T px⃗T ; ξ⃗T q,

s.t. xT P XT

´

x⃗T´1, ξ⃗T
¯

,

The feasible region constraints at each stage can be easily incorporated into the objective

function via extended representation,

gt`1px⃗t; ξ⃗t`1q “

$

’

&

’

%

ϕt`1px⃗t; ξ⃗t`1q, xt P Xtpx⃗
t´1, ξ⃗tq

8, otherwise.

36

This way, the MSSP problem (3.2) can be simplified to

(3.4) z˚ “ min
x1

Eξ2
rg2 px1; ξ2qs,

where for each t “ 2, . . . , T ´ 1, we have

(3.5) gtpx⃗
t´1; ξ⃗tq “ min

xt

E⃗ξ
t`1rgt`1ppx⃗t´1, xtq; ξ⃗

t`1
q|⃗ξ

t
“ ξ⃗ts,

and

gT px⃗T´1; ξ⃗T q “ min
xT

g1
T px⃗T ; ξ⃗T q

for some problem-specific objective function value.

For theoretical purposes, we will assume that we are dealing with stochastic programs with

relatively complete recourse, which means that for solution values that are feasible in earlier stages,

there exist feasible solution values in subsequent stages.

3.2. Prerequisites

In this section, we discuss several procedures that will be later used in constructing a confidence

interval around the optimality gap for MSSP.

For multi-stage problems, it is important to effectively model the uncertainty across multiple

decision-making stages. One approach to achieve this is through the construction of a scenario tree.

In a scenario tree, each node represents a specific state or decision point within the model, and

branches represent potential transitions between states, each associated with a specific probability.

The paths from the root to the leaves represent complete scenarios.

At each stage t, the scenarios that share the same realization up to that point converge at a

common node. Consequently, ξ⃗t can be regarded as a node in the scenario tree at stage t. We use

ξ⃗1 to represent the dummy root node of the scenario tree, whose descendant nodes are realizations

of ξ2. We emphasize here that ξ⃗1 is not a random variable, but merely a structural placeholder. For

any node ξ⃗t, we use Γpξ⃗tq to denote a general subtree rooted at ξ⃗t. Depending on the context, Γpξ⃗tq

can be generated by either incorporating the entire sequence of decisions and outcomes from the

original scenario tree, or by selectively sampling paths. We will discuss generating Γpξ⃗tq by sampling

in later sections. For a specific node ξ⃗t, we use Dpξ⃗tq to represent the set of its descendant nodes.

37

Figure 3.1. Example of scenario tree for a 4-stage stochastic programming prob-
lem.

The cardinality of the set Dpξ⃗tq is denoted as |Dpξ⃗tq|. We use F pξt|ξ⃗
t´1q to denote the conditional

distribution of ξt given the history up to stage t´ 1.

3.2.1. Conditional Sampling. For the simplified two-stage SP problem

z˚ “ min
x1

Eξ2
rg2 px1; ξ2qs,

the Monte Carlo approximation for a two-stage stochastic program is formulated as follows:

min
x1

1

N

ÿ

i

g2
`

x1; ξ
i
2

˘

,(3.6)

Here, ξi2 are i.i.d. realizations of the random variable ξ2. Due to the complex structure of the

scenario tree in multistage contexts, this Monte Carlo approximation for the two-stage SP problem

cannot be applied directly to multistage settings.

Following the work of [18,93], we describe a conditional sampling procedure that constructs a

subtree Γpξ⃗tq given any node ξ⃗t in the original scenario tree. This mimics the Monte Carlo approach

for the two-stage SP within a multistage framework.

We begin by sampling nt`1 observations pξt`1,1, . . . , ξt`1,nt`1q from the conditional distribution

F pξt`1|ξ⃗tq to form nt`1 descendant nodes pξ⃗t`1,1, . . . , ξ⃗t`1,nt`1q for ξ⃗t, where ξ⃗t`1,i “ pξ⃗t, ξt`1,iq for

38

t ě 2. Here, nt`1 is the sample size. In general the sample size associated with each node does not

need to be the same, but for simplicity, here we use nt to denote the uniform sample size for stage t.

Then for each node ξ⃗t`1,i, we again sample from the conditional distribution F pξt`2|ξ⃗t`1,iq to form

nt`2 descendants. We repeat the sampling process until we reach the leaf node, that is, t “ T . The

total number of nodes in stage τ is
śτ

j“t`1 nj . Note that here we do not specify how the conditional

sampling at each stage is conducted. For example, conditioned on pξ⃗t`1,1, . . . , ξ⃗t`1,nt`1q, the nodes

in stage t ` 2 may not be independent. However, we assume that the samples at each stage form

an unbiased estimation. In other words, we require that for each stage t in our generated subtree,

E⃗ξ
trgtpx⃗

t´1; ξ⃗
t
q|⃗ξ

t´1
s “ E

«

1

nt

nt
ÿ

i“1

gtpx⃗
t´1; ξ⃗t,iq|⃗ξ

t´1

ff

.

The above condition holds when the sampling is done in an i.i.d. manner, but other methods, for

example importance sampling, can achieve the same results.

Algorithm 1 contains the conditional sampling procedure.

Algorithm 1 Conditional Sampling Procedure for Constructing Subtrees

1: Input: stage t, node ξ⃗t, sequence of sample sizes tnτuTτ“t`1

2: Output: A subtree rooted at ξ⃗t

3: Initialize the subtree Γpξ⃗tq.
4: for τ “ t` 1 to T do
5: for all nodes ξ⃗τ´1,i in stage τ ´ 1 in Γpξ⃗tq do

6: Sample nτ observations pξτ,1, . . . , ξτ,nτ q from F pξτ |ξ⃗τ´1,iq

7: for j “ 1 to nτ do

8: Construct descendant node ξ⃗τ,j “ pξ⃗τ´1,i, ξτ,jq

9: Add ξ⃗τ,j to Γpξ⃗tq

10: return Γpξ⃗tq.

3.2.2. Optimization given a scenario tree. Given a finite scenario tree Γpξ⃗1q, we assume

that we can find an optimal solution for the following optimization problem:

pz˚ “ min
x1

1

n2

ÿ

ξ2,iPDpξ⃗1q

pg2px1; ξ2,iq,(3.7)

39

where for t “ 2, . . . , T ´ 1, pgt is recursively defined as

(3.8) pgtpx⃗
t´1; ξ⃗t,iq “ min

xt

1

nt`1

ÿ

ξt`1,jPDpξ⃗t,iq

pgt`1px⃗t; pξ⃗t,i, ξt`1,jqq,

and the objective function in the final stage pgT px⃗T´1, ξ⃗T,iq is consistent with the original MSSP

formulation as specified in (3.2).

When the original problem is represented by the finite scenario tree Γpξ⃗1q, the optimal value

derived from (3.7) aligns with that of (3.4). If the scenario tree Γpξ⃗1q is constructed using condi-

tional sampling as detailed in Algorithm 1, then the optimization problem expressed in (3.7) serves

as a Monte Carlo approximation to the original MSSP problem defined in (3.2).

3.2.3. Finding a Feasible Policy. In MSSP, a feasible solution is specified by a sequence

of decisions tpxiu
T
i“1 that satisfy all constraints at different stages in varying scenarios. While in

two-stage cases with complete recourse, it is relatively straightforward to find a feasible solution

that satisfies x2 P X2

´

x1, ξ⃗
2
¯

, this process is less trivial in a multistage context.

Suppose that a decision px1 for the first stage is obtained by solving an approximation of the

MSSP problem as given in (3.2). Given a specific scenario ξ⃗T , we are interested in identifying an as-

sociated feasible decision policy tpxiu
T
i“1 for different stages. This policy should be non-anticipative,

with each decision pxi meeting the stage-wise constraints.

To construct a feasible decision policy for ξ⃗T , we simulate the process of finding a solution for the

original problem, but this time in a roll out manner. Starting from stage two and proceeding to stage

T , at each stage t. we fix the decisions made up to that point, tpxiu
t´1
i“1. We then generate a subtree

Γpξ⃗tq rooted at the current scenario ξ⃗t using the conditional sampling method as in Algorithm 1.

The decision pxt at each stage t is then determined by solving the subsequent optimization problem,

pxt “ argmin
xt

1

nt`1

ÿ

ξt`1,iPDpξ⃗tq

pgt`1ppp⃗xt´1, xtq; pξ⃗t, ξt`1,iqq,(3.9)

where for τ “ t` 1, . . . , T ´ 1, pgτ is recursively defined as

(3.10) pgτ px⃗τ´1; ξ⃗τ,iq “ min
xτ

1

nτ`1

ÿ

ξτ`1,jPDpξ⃗τ,iq

pgτ`1ppx⃗τ´1, xτ q; pξ⃗τ,i, ξτ`1,jqq,

40

and pgT px⃗T´1; ξ⃗T,iq mirrors the objective function for the final stage of the original MSSP problem.

Since the subtrees generated at each stage are independent, the decisions we obtain are non-

anticipative.

We note here the similarity between the above problem and the one in Section 3.2.2. Indeed,

after we sample the subtree from a node, that subtree essentially defines a new MSSP problem.

The process is summarized as in Algorithm 2.

Algorithm 2 Generating a Feasible Solution

1: Input: First stage solution px1, scenario ξ⃗
T

2: Output: Feasible decision policy tpxiu
T
i“1

3: for t “ 2 to T do
4: Independently sample a new subtree Γpξ⃗tq with root ξ⃗t using Algorithm 1.
5: Solve the associated optimization problem (3.9).
6: Record the optimal value as pxt.

7: return tpxiu
T
i“1

3.3. MRP Estimators for the Optimality Gap

We begin by discussing the MRP estimators for two-stage stochastic programming problems,

then explore the challenges in directly extending these estimators to multi-stage stochastic pro-

gramming. Finally, we consider MRP estimators designed for multi-stage stochastic problems,

which are developed in a manner similar to those for two-stage problems.

3.3.1. MRP Estimators for Two-Stage SP. Considering a general form of a two-stage SP

problem

z˚ “ min
x1

Eξ2
rg2 px1; ξ2qs.

Given a candidate first stage solution px, one way to construct a point estimator for the optimality

gap G
px1

is to sample N i.i.d. observations ξ12 , ξ
2
2 , . . . , ξ

N
2 for ξ2, and then compute the associated

gap

(3.11) pGN ppxq “
1

N

N
ÿ

i“1

g2
`

px; ξi2
˘

´ min
x1

1

N

N
ÿ

i“1

g2
`

x1; ξ
i
2

˘

41

Considering the expected value, we have

Er pGN ppxqs “
1

N

N
ÿ

i“1

E
“

g2
`

px; ξi2
˘‰

´ E

«

min
x1

1

N

N
ÿ

i“1

g2
`

x1; ξ
i
2

˘

ff

ě E rg2 ppx; ξ2qs ´ min
x1

E

«

1

N

N
ÿ

i

g2
`

x1; ξ
i
2

˘

ff

“ E rg2 ppx; ξ2qs ´ min
x1

E rg2 px1; ξ2qs

“ E rg2 ppx; ξ2qs ´ z˚,

thus pGN ppxq is a conservative estimator that tends to overestimate the optimality gap. As the

construction of pGN ppxq involves optimization over a sample mean, traditional statistical analysis

for constructing confidence intervals does not directly apply. Nonetheless, this limitation can be

addressed by employing the batch means method. This statistical approach is commonly used in

Monte Carlo simulation to manage the correlations between simulation data. By segmenting the

Monte Carlo simulations into multiple batches, each consisting of independent sets of observations,

we can treat each batch’s output as an individual realization of the estimator. In estimating the

optimality gap for two-stage stochastic programming, we generate multiple independent estimators

pGk
N ppxq across Ng batches of observations ξk,12 , ξk,22 , . . . , ξk,N2 , for k “ 1, . . . , Ng. As these estima-

tors are independent and identically distributed, we can employ the Central Limit Theorem to

approximate a one-sided confidence interval for the optimality gap Specifically, the average of these

estimators is calculated as:

sG “
1

Ng

ÿ

k

pGk
N ppxq,

and their sample variance is:

s2g “
1

Ng ´ 1

ÿ

k

p pGk
N ppxq ´ sGq2.

The approximate p1 ´ αq-level confidence interval is then determined as:

(3.12) r0, sG `
tNg´1,αsg

a

Ng
s,

here tNg´1,α is the critical value from the student-t distribution.

The constructed point estimator sG and the resulting confidence interval are referred to as

the Multiple Replication Procedure (MRP) estimators, as they involve multiple replications. This

approach was first introduced by [67]. In situations where the computation of the MRP estimators

42

becomes costly for complex problems, [5] discusses the usage of a single or two replications to obtain

the estimators.

When only one replication is used, that is, when only one batch of scenarios is used, the point

estimator sG aligns with the expression in (3.11). Although in this scenario we cannot compute the

sample variance of the point estimators due to having only one estimator, by introducing pxN as the

optimal solution to the sampling problem minx1
1
N

řN
i“1 g2

`

x1; ξ
i
2

˘

and writing pGN ppxq in (3.11) as

pGN ppxq “
1

N

N
ÿ

i“1

rg2
`

px; ξi2
˘

´ g2
`

pxN ; ξi2
˘

s,

we can obtain a sample variance estimator as

(3.13) s2g “
1

N ´ 1

ÿ

i

”

`

g2
`

px; ξi2
˘

´ g2
`

pxN ; ξi2
˘˘

´ pGN ppxq

ı2

Due to the dependency between the optimal solution pxN and the scenario tξi2u, the point estimator

pGN ppxq can no longer be considered as a sample mean of independent samples. Nonetheless, it is still

possible to construct a confidence interval using one replication, following the same format as in

(3.12). The asymptotic validity of this confidence interval was established under certain conditions

in [5]

In practice, an estimator produced by a single batch of samples may not be accurate. Therefore,

[5] suggested using two replications to generate estimators by averaging the point estimators and

the sample variance estimators generated by the two batches, so that

sG1 “
1

2

´

pG1
N ` pG2

N

¯

,

and

s2g
1

“
1

2

`

s2g,1 ` s2g,2
˘

,

where pG¨
N and s2g,¨ are computed as in (3.11) and (3.13).

These estimators using one replication and two replications are referred to as Single Replication

Procedure (SRP) and Average 2 Replication Procedure (A2RP) estimators. We refer readers to [5]

for more details of the SRP and A2RP results.

43

3.3.2. MRP Estimators for Multi-Stage SP. The MRP estimators for the two-stage SP

do not extend directly to MSSP. The complication arises from the requirement to minimize the

average of 1
N

ř

i g2px1; ξ
i
2q across samples, where, in a multi-stage context, each function g2 may

exhibit considerable complexity.

In the following we discuss the MRP procedure for constructing a confidence interval around

the optimality gap for MSSP following [18], by considering an upper bound on the function value

associated with a given first-stage solution px1, and a lower bound on the optimal value. Note that

with our notation, the function value for a given first stage solution px1 is

Eξ2
rg2 ppx1; ξ2qs,

and the function value associated with a complete decision policy x⃗T under a given scenario ξ⃗T is

g1
T px⃗T ; ξ⃗T q.

3.3.2.1. Upper Bound . We start by identifying an upper bound for the function value. For

a given first stage decision px1, we can find a feasible solution x̃ppx1, ξ⃗
T q for all stages given any

scenario ξ⃗T using Algorithm 2. It is easy to see that Erg1
T px̃ppx1, ξ⃗

T
q; ξ⃗

T
qs is an upper bound for the

function value at px1, as it is feasible (assuming relatively complete recourse), but not necessarily

optimal. Therefore, we have

Erg1
T px̃ppx1, ξ⃗

T
q; ξ⃗

T
qs ě Eξ2

rg2 ppx1; ξ2qs

While it may not be possible to compute Erg1
T px̃ppx1, ξ⃗

T
q; ξ⃗

T
qs directly, we can form a point estimator

by generating nu i.i.d. scenarios. ξ⃗T,i, and compute the corresponding function values

wi “ g1
T px̃ppx1, ξ⃗

T,iq; ξ⃗T,iq.

Let Un “ 1
nu

řnu
i“1wi be the sample mean and s2u be the standard sample variance. Then, we may

derive an approximate one-sided confidence interval for Eg1
T px̃ppx1, ξ⃗

T
q; ξ⃗

T
q:

(3.14) Eξ2
g2 ppx1; ξ2q ď Eg1

T px̃ppx1, ξ⃗
T

q; ξ⃗
T

q ď Un `
tnu´1,αsu

?
nu

w.p. « 1 ´ α,

here tnu´1,α is the upper 1 ´ α quantile for a t-distribution with nu ´ 1 degrees of freedom.

44

We may also derive a point estimator for Eg1
T px̃ppx1, ξ⃗T q, ξ⃗T q by generating nu independent

sampled scenario trees Γpξ⃗1,iq using the conditional sampling method described in Section 3.2.1.

Each scenario tree can be regarded as a batch of scenarios, as each leaf node represents a scenario.

Although within each Γpξ⃗1,iq the scenarios are not i.i.d., we can still find an estimator using the

batch means method described above. Consider each tree Γpξ⃗1,iq, for the Ni leaf nodes on Γpξ⃗1,iq,

we find a feasible solution for each and compute the corresponding function values as twi,ju
Ni
j“1.

Aggregating the function values from the leaf nodes of Γpξ⃗1,iq provides us with a point estimator:

(3.15) Wi “
1

Ni

ÿ

j

wi,j

We note here that if two scenarios on the same tree share the same realizations up to stage t,

that is, if both paths go through node ξ⃗t, then we can sample one scenario tree Γpξ⃗tq to find pxt

at stage t for both scenarios, as long as the sampled scenario tree is constructed using unbiased

conditional sampling.

Now, let Un represent the sample mean for Wi and s2u the standard sample variance. Given

that the scenario trees are generated in an independent and identically distributed (i.i.d.) manner,

we can utilize the Central Limit Theorem (CLT) to establish an approximate one-sided confidence

interval for Eg1
T px̃ppx1, ξ⃗

T
q; ξ⃗

T
q using the same expression as (3.14):

(3.16) Eξ2
g2 ppx1; ξ2q ď Eg1

T px̃ppx1, ξ⃗
T

q; ξ⃗
T

q ď Un `
tnu´1,αsu

?
nu

w.p. « 1 ´ α,

3.3.2.2. Lower Bound . In a two-stage SP problem, by Jensen’s Inequality, it is evident that

Ermin
xPX

1

n

n
ÿ

i“1

gpx; ξiqs ď min
xPX

Er
1

n

n
ÿ

i“1

gpx; ξiqs

“ min
xPX

Ergpx, ξqs,

The same conclusion is applicable when we extend it to multistage stochastic programming. To

be exact, let z˚ be the optimal value for (3.2) and pz˚ be the optimal value for (3.7). Then we have

Erpz˚s ď z˚

45

This result can be established by applying Jensen’s inequality iteratively at each stage of the

decision-making process. For a detailed proof of this result, we refer readers to [18].

As in the previous case, directly computing Erpz˚s is generally not tractable. To find an estimator

for Erpz˚s, we sample nl independent scenario trees using the conditional sampling method described

in Section 3.2.1, and solve for the optimal value of the problem described in (3.7). In practice, for

certain types of problems, it may only be possible to compute a lower bound on the optimal value.

Denote the lower bounds as pℓ1, . . . , ℓnl
q. By computing the sample mean Ln and the standard

sample variance s2l of these lower bounds, we can construct an approximate one-sided confidence

interval as follows:

(3.17) z˚ ě Epz˚ ě Ln ´
tnl´1,αsl

?
nl

w.p. « 1 ´ α.

Here, tnl´1,α is the upper 1 ´ α quantile for a t-distribution with nl ´ 1 degrees of freedom.

3.3.2.3. Confidence interval. The confidence interval for the optimality gap in multistage sto-

chastic programming (MSSP) can be constructed by combining the upper bound obtained in Sec-

tion 3.3.2.1 with the lower bound from Section 3.3.2.2. Utilizing the Boole–Bonferroni inequality,

equations (3.16) and (3.17) together yield the following approximate p1 ´ 2αq-level confidence in-

terval for the optimality gap at px1:

„

0, Un ´ Ln `
tnu´1,αsu

?
nu

`
tnl´1,αsl

?
nl

ȷ

.

The construction of the upper bound involves sampling nu scenario trees, while the lower

bound requires sampling nl scenario trees. Although it is necessary for the trees within each bound

calculation to be independent, there is no requirement for independence across the two bounds.

This means that the same set of trees used to calculate the upper bound can also be utilized to

determine the lower bound. Instead of maintaining two separate sets of scenario trees for the upper

and lower bounds separately, employing the ”common random number” technique can effectively

reduce variance and enhance the efficiency in estimation of the optimality gap in MSSP. This

technique involves constructing ng independent scenario trees Γpξ⃗1,iq. For each scenario tree, we

derive a point estimator Wi for the upper bound using Equation (3.15) and the methods outlined

in Section 3.3.2.1, along with a lower bound ℓi as described in Section 3.3.2.2. The difference

46

Gi “ Wi ´ ℓi serves as an estimator for the optimality gap. Furthermore, let G and s2g be the

sample mean and sample variance of Gi. Since Γpξ⃗1,iq are constructed on an i.i.d. basis, we can

establish an approximate p1´αq-level confidence interval for the optimality gap using the formula:

(3.18)

„

0, G`
tng´1,αsg

?
ng

ȷ

,

where tng´1,α represents the 1 ´ α quantile of the t-distribution with ng ´ 1 degrees of freedom.

In Algorithm 3 we summarize the procedure for finding the optimality gap using the MRP

estimators for MSSP with common random number streaming.

Algorithm 3 MRP Confidence Interval Estimation

1: Input: First stage solution px1, sample size ng
2: Output:Approximate p1 ´ αq confidence level for optimality gap
3: Initialization
4: for i “ 1 to ng do

5: Independently sample scenario tree Γpξ⃗1,iq

6: Solve the approximate problem associated with Γpξ⃗1,iq
7: Denote the lower bound of the optimal function value as ℓi
8: Use tree traversal to find a feasible solution for each leaf node on Γpξ⃗1,iq as in Algorithm 2
9: Aggregate the corresponding function values to find the upper bound Wi

10: Compute Gi “ Wi ´ ℓi
11: Compute sample mean pG and sample variance s2g

12: return
”

0, pG`
tng´1,αsg

?
ng

ı

3.4. Sequential Sampling Procedure

Bayraksan, Morton and Pierre-Louis [7,8] introduced sequential sampling algorithms that de-

velop stopping rules for Monte Carlo sampling-based algorithms. These rules ensure high-quality

solutions with high probability once met. Unlike the MRP or A2RP estimators, which compute the

optimality gap for a fixed solution, the sequential sampling algorithms evaluate the optimality gap

in two-stage stochastic programming across a sequence of feasible solutions converging towards an

optimal limit point. This sequence can be generated by progressively solving sampling problems

with increasing sample sizes or by employing any other effective method. The sequential sampling

algorithms assess the optimality gap for each solution in the sequence. If this gap falls below a

predefined threshold, the process terminates with the current candidate solution. Otherwise, the

evaluation continues with the next solution, making use of a larger sample size.

47

The Sequential Sampling Procedure for two-stage stochastic programming is as follows, with

input parameters h ą h1 ą 0, ε ą ε1 ą 0, and p ą 0. Here, p is used to control the sample size.

Given K, it is possible to find p that minimizes nK . However, as shown in [7], given p, the variation

in sample size is actually moderate for different K. The parameter h is used to control the desired

width of the confidence interval, while h1 is used to control the trade-off between inflation in the

confidence interval and the sample size: the closer h1 is to h, the smaller the “inflation” of the

CI statement is, in trade of a larger sample size. In addition, ϵ, ϵ1 is used here to ensure finite

termination and theoretical convergence, and we require h ´ h1 to some extent to be proportional

to ϵ ´ ϵ1. The candidate solution is given as tpxku with at least one limit point. The parameter kf

controls the resample frequency.

Sequential Sampling Procedure for Two-Stage SP:

0. (Initialization) Set k “ 1, compute the sample size nk for the current iteration with

nk “

R

1

ph´ h1q2
pcp ` 2p ln2 kq

V

, cp “ max

#

2 ln

˜

ÿ

j

j´p ln j{
?
2πα

¸

, 1

+

,

and sample observations ξ1, ξ2, . . . , ξnk .

(1) Compute the point estimator Gk and the sample variance estimator s2k for the optimality

gap using (3.11) and (3.13).

(2) If tGk ď h1sk ` ε1u, then terminate and output the candidate solution pxk and a one-sided

CI on the optimality gap,

r0, hsT ` εs.

(3) Otherwise, set k “ k ` 1 and re-calculate nk. If kf divides k, sample new observations

ξ1, ξ2, . . . , ξnk that are independent of the previous iterations. Otherwise, sample addi-

tional nk ´ nk´1 observations ξnk´1`1, ξnk´1`2, . . . , ξnk from the distribution of ξ. Return

to the first step.

Since sequential sampling procedures involve estimating optimality gaps in Step 1, the work

in [7,8] is not directly applicable to multistage situations. In the following subsections, we outline

a straightforward extension to adapt these procedures for multistage contexts. The proposed adap-

tation includes the simplification of the Multistage Stochastic Programming (MSSP) problem by

the relaxation of non-anticipativity constraints, thus regarding the MSSPs as two-stage problems.

48

While the relaxation simplifies the application of sequential sampling methods, it is important to

note that due to these relaxed constraints, the confidence intervals obtained are in general not as

tight as those derived with the original, more complex multistage models.

3.4.1. Relative Width Sequential Sampling. To adapt the relative width sequential sam-

pling procedure for a multi-stage setting, it is necessary to develop methods for constructing point

estimators and sample variance estimators that are appropriate for multi-stage scenario trees, with

a set of sample scenarios. Point estimators can be formulated by determining an upper bound for

the function value following the approach used in MRP estimators, together with a lower bound

that corresponds to the optimal value of the MSSP problem for the given sampled scenarios.

To find a lower bound for the optimality gap, at each iteration k we sample nk scenarios

ξ⃗T,1, ξ⃗T,2, . . . , ξ⃗T,nk from the joint distribution tξtu
T
t“2 and construct a horsetail scenario tree, where

each sampled scenario represents root-to-leaf path without any overlap. This bypasses the non-

anticipativity constraints of the MSSP problem (3.2), except at the root node. In essence, the

discrete MSSP problem(3.7) for the horsetail scenario tree is equivalent to the following problem,

pz˚ “ min
x1PX1

#

1

nk

ÿ

i

min
x2,...,xT

ψ1
T px⃗T ; ξ⃗T,iq

+

,(3.19)

where

ψ1
T px⃗T ; ξ⃗T,iq “

$

’

&

’

%

f 1px⃗T , ξ⃗T,iq if xt P Xtpx⃗
t´1; ξ⃗t,iq for t “ 2, . . . , T ´ 1

8 otherwise

Since this is a relaxation of the original problem (3.2), we can expect the optimal solution for (3.19)

to be a valid (but possibly not consistent) statistical lower bound for problem (3.2). Algorithm 4

includes the procedure for finding the point estimator and the sample variance estimator for a

horsetail scenario tree.

Once we establish a method to compute point estimators and sample variance estimators for the

MSSP, these estimators can be integrated into the sequential sampling procedure to derive stopping

criteria for evaluating a series of candidate solutions within the MSSP framework. Algorithm 5

outlines our implementation of a multi-stage adaptation of the sequential sampling procedure in [7]

49

Algorithm 4 Optimality Gap Estimation with Horsetail Scenario Tree

1: Input: Candidate first stage solutions px1,k, scenario set ξ⃗T,1, . . . , ξ⃗T,nk

2: Output: Point estimator and variance estimator of the optimality gap for the input candidate
solution using horsetail scenario tree

3: for each scenario ξ⃗T,i do

4: Find a feasible solution p⃗xT,i as in Algorithm 2 and compute an upper bound using the

function value wi “ f 1
T pp⃗xT,i; ξ⃗T,iq

5: Solve problem associated with the horsetail scenario tree that is generated by the nk scenarios.
Denote the lower bound for the optimal function value as ℓ

6: Compute the optimality gap estimator Gk “ 1
nk

ř

ipwi ´ ℓq

7: Compute the variance estimator s2k “ 1
nk´1

ř

ipwi ´ ℓ´Gkq2

8: return Gk, s
2
k

Algorithm 5 Sequential Sampling

1: Input: Values for h ą h1 ą 0, ϵ ą ϵ1 ą 0, 0 ă α ă 1, p ą 0, candidate first stage solutions
tpx1,ku, resampling frequency kf .

2: Output: Candidate first stage solution px1,K that meets the stopping criteria, and a p1 ´ αq-
level CI on its optimality gap.

3: for k “ 1 to MaxIter do
4: Compute the sample size nk for the current iteration with

nk “

R

1

ph´ h1q2
pcp ` 2p ln2 kq

V

, cp “ max

#

2 ln

˜

ÿ

j

j´p ln j{
?
2πα

¸

, 1

+

5: if kf divides k then

6: Independently sample nk scenarios ξ⃗T,1, ξ⃗T,2, . . . , ξ⃗T,nk

7: else
8: Independently sample nk´nk´1 new scenarios ξ⃗T,nk´1`1, . . . , ξ⃗T,nk and bundle them with

the previously sampled scenarios ξ⃗T,1, ξ⃗T,2, . . . , ξ⃗T,nk´1

9: Use Algorithm 4 to compute the optimality gap estimator Gk and the variance estimator
sk for px1,k using the sampled scenarios

10: if Gk ď h1sk ` ϵ1 then
11: Set K “ k; break

12: return px1,K , p1 ´ αq-level CI r0, hsK ` ϵs

The main theorem in [7] states that for input parameters h, ϵ and ϵ1, the returned results for

a two-stage problem satisfies

lim inf
hÓh1

P
´

Eg1
T pp⃗xT,Kpξ⃗

T
q, ξ⃗

T
q ´ z˚ ď hsK ` ϵ

¯

ě 1 ´ α

In the context of multi-stage problems, while the underlying inequality remains consistent, the

resulting confidence interval is typically broadened due to the relaxation of the non-anticipativity

50

constraint. This is because the estimators derived from horsetail scenario trees tend to be conserva-

tive by nature. Further research is needed to develop methods for constructing sample scenario trees

that take into account the non-anticipativity constraints, with the aim of improving the accuracy

of both point estimators and sample variance estimators for the optimality gap.

3.4.2. Fixed Width Sequential Sampling. For relative width sequential sampling method

as described in Algorithm 5, the stopping criteria are met when the optimality gap of the candidate

solution falls below a user-specified fraction of the sample variance, so the width of the confidence

interval can be considered as a relative-width. Such stopping criteria may result in a wide confidence

interval when the sample variance is large, as mentioned in [8], who later proposed an alternative

stopping rule with the aim of finding an ϵ-optimal solution.

To be exact, let Gnpxq be the point estimator of the optimality gap, νnpxq the sampling error,

and hpnq the inflation factor that decreases to zero as n Ñ 0, their proposed stopping rule returns

the candidate solution when Gnpxq`νnpxq`hpnq ď ϵ. For an MSSP adaptation, the point estimator

Gnpxq can be computed in the same way as in Algorithm 5, and we use νnpxq “
tn´1,αsnpxq

?
n

as the

sampling error. Here, tn´1,α is the upper 1 ´ α quantile of a t-distribution with n ´ 1 degrees

of freedom. The procedure for fixed-width sequential sampling with horsetail scenario trees is in

Algorithm 6.

Algorithm 6 Fixed Width Sequential Sampling

1: Input: Sample size schedules tmku, tnku, inflation factor hpnq, resampling frequency knf , thresh-
old ϵ.

2: Output: Candidate first stage solution px1,K whose estimated optimality gap falls below ϵ.
3: for k “ 1 to MaxIter do
4: Independently sample a scenario tree withmk leaf nodes and solve the approximate problem

to obtain candidate first stage solution tpx1,ku

5: if knf divides k then

6: Independently sample nk scenarios ξ⃗T,1, ξ⃗T,2, . . . , ξ⃗T,nk

7: else
8: Independently sample nk´nk´1 new scenarios ξ⃗T,nk´1`1, . . . , ξ⃗T,nk and bundle them with

the previously sampled scenarios ξ⃗T,1, ξ⃗T,2, . . . , ξ⃗T,nk´1

9: Use Algorithm 4 to compute the optimality gap estimator Gk and the variance estimator
sk for px1,k using the sampled scenarios

10: if Gk `
tn´1,αsnpxq

?
n

` hpnq ď ϵ then

11: Set K “ k; break

12: return px1,K

51

3.4.3. Software Particulars. A version of the Multiple Replication Procedures and the Se-

quential Sampling Procedures for estimating the optimality gap for two-stage and multi-stage sto-

chastic programming problems is available within the mpi-sppy software. The software and problem

instances are available for download at https://github.com/Pyomo/mpi-sppy. Software docu-

mentation is available at readthedocs<https://mpi-sppy.readthedocs.io/en/latest/. Both

MRP and sequential sampling are supported by classes and functions that are consistent with the

mpi-sppy library, and there is also a command-line program for MRP confidence intervals. In

addition to the usual requirement of parameters, which are specified as a dictionary, the software

requires as input a function that returns a Pyomo [13,39] model instantiated with data for a given

scenario along with scenario tree information, which comes in the form of branching factors for

multi-stage problems.

The MRP program requires input of an px for the root node of the scenario tree, which is a

specification of values for the non-anticipative variables. The mpi-sppy library provides methods to

output px in a format that can be read by the MRP program, so the upper bound software used by

any method supported by mpi-sppy can create the solution. The mpi-sppy library has heuristics

for finding computing upper bounds given a scenario tree and does not require relatively complete

recourse. The sequential sampling software does not require px as input because it is one of the

outputs.

52

https://github.com/Pyomo/mpi-sppy
readthedocs <https://mpi-sppy.readthedocs.io/en/latest/

CHAPTER 4

Uncertainty Quantification in Optimization: Bootstrap and

Bagging Methods

4.1. Introduction

Many research articles on stochastic programming begin with the assumption that uncertain

data come from a known distribution F , and that one is able to sample as many samples as

they want from the distribution. In this chapter, we describe methods that do not rely on this

assumption, but use only sampled data to obtain both a consistent sample-average solution and

a consistent estimate of confidence intervals for the optimality gap. The underlying distribution

whence the samples come is not required.

For consistent estimators of a confidence interval around the objective function value, we rely

on bootstrap and bagging estimators. In addition, we consider various combinations of distribution

estimation and resampling (bootstrap and bagging) for obtaining samples used to estimate the op-

timality gap and a confidence interval (CI) for it. We make three contributions to ongoing research

in data-driven stochastic programming: a) most of the combinations of distribution estimation and

resampling result in algorithms that have not been published before, b) within the algorithms, we

describe innovations that improve performance, and c) we provide open-source software implemen-

tations of the algorithms. The end result is a significant improvement in the ability to use data to

estimate a confidence interval around the objective function value for a candidate solution to an

optimization problem under uncertainty.

For this chapter, we mainly focus on the abstract form of a stochastic optimization problem

using

(4.1) min
x
Eξrgpx, ξqs

We will consider examples with explicit constraints, but for now, we use notation where they are

implicit. The decision vector is x and the vector of uncertain data is ξ. Data known with certainty,

53

along with constraints, are captured in the specification of the function g. Our interest is when there

is a sample ZN “ tzi, i “ 1, . . . , Nu that can be used for a given x “ px to estimate the optimality

gap and its confidence interval. The subscript i indicates the ith vector; we never reference vector

elements in this chapter.

The optimality gap G
px for a decision px with respect to a distribution Q is expressed as:

G
pxpQq “ Eξ„Qrgppx, ξqs ´ min

x
Eξ„Qrgpx, ξqs.

For ease of notation, when Q is the empirical distribution derived from some sample set SN “

tsiu
N
i“1, we allow G

px to directly accept SN as input, so that

G
pxpSN q “

1

N

N
ÿ

i“1

gppx, siq ´ min
x

1

N

N
ÿ

i“1

gpx, siq.

We drop the subscript px when it does not cause confusion, and write the optimality gap function

as Gp¨q.

4.1.1. Literature. Bootstrap has been widely used for statistical inference since it was first

proposed by [29]. It can be used to construct confidence intervals when the underlying true distri-

bution remains unknown; see [30], [91], and [22] for a comprehensive introduction.

In the area of stochastic programming, an early work in [41] used bootstrap to develop stopping

rules for the Stochastic Decomposition algorithm. Subsequent studies, such as those of [31] and [59],

proposed the use of bootstrap and related resampling methods to derive confidence intervals for

the optimal function value. Anitescu et al. [2] discussed some theoretical properties of bootstrap

confidence intervals for stochastic programming. In contrast to the primary goal of a confidence

interval on the optimality gap, various software packages compute confidence intervals for the

value of a particular solution, which is an upper bound on the optimal solution; e.g., the sddp.jl

software [26]. Another use of bootstrap in stochastic programming is in Parmest [55], which is a

tool for model-based estimation of unobservable parameter values from experiments by minimizing

the squared error of model prediction. (In the use cases envisioned for the tool, the models involve

chemical processes, but it could be any model.) The tool also provides three methods for estimating

confidence intervals around the estimated parameter vector, one of which uses classical bootstrap.

54

The tool can be used to create scenarios for optimization under uncertainty and could provide

inputs for the estimation of confidence intervals for the optimality gap.

The classical bootstrap estimates a statistic of interest, say αpF q, by its empirical version

αpFnq. There is a literature that discusses the properties of smoothed bootstrap, where the discrete

distribution Fn is replaced with a smoothed distribution for estimation; see, for example, [23,96]

for theoretical discussions, and [35, 63] for application examples. The application of smoothed

bootstrap in the area of optimization remains limited.

The bagging method, also known as bootstrap aggregation, was proposed in [11] and has been

widely used in the machine learning community to produce accurate and robust predictions by

aggregating the predictions of multiple models, each using bootstrap samples from the original

dataset; see [12] for theoretical analysis. Smoothed bagging for classification and regression prob-

lems was proposed in [83], which included added noise in the resampled data. More recently, [59]

proposed the use of the bagging method to construct confidence intervals for a candidate solution

in stochastic programming.

Despite the limited application of smoothed bootstrap in optimization, there are works on

combining probability density estimation with stochastic optimization problems. For example, [48]

used the KM estimator to construct an empirical cumulative distribution function for censored data

in the newsvendor problem, and [76] used Markov chain Monte Carlo methods with kernel density

estimation algorithms to build a non-parametric importance sampling distribution for the recourse

function.

4.2. Bootstrap and Bagging Method

Below we discuss the bootstrap and bagging procedures for estimating confidence intervals on

optimality gaps for general stochastic programming problems. We do not describe algorithms for

finding a candidate solution px because that is already the subject of a large literature; see, e.g., [75].

Given a candidate solution px, we are interested in deriving a confidence interval for the opti-

mality gap. One may also be interested in deriving a confidence interval for the optimal function

value z˚, or for the function value for the candidate solution Eξrgppx, ξqs. It turns out that all these

estimators can be derived in a similar way as described in the following subsections.

55

For ease of notation, we assume that we can solve minx
1
N

řN
i“1 gpx, diq exactly by simply passing

the problem to a solver.

4.2.1. Classical Bootstrap Method. The bootstrap method is used for estimating the op-

timality gap in [31]. In the original paper, the bootstrap method is applied to find a confidence

interval for the optimal function value z˚, but the same method can be used for the optimality gap

with a minor modification.

At each bootstrap iteration, we resample from set ZN to obtain a bootstrap sample rZb
N , and

compute the corresponding optimality gap under the set rZb
N ,

G
pxpZN q “

1

N

N
ÿ

i“1

gppx, ziq ´ min
x

1

N

N
ÿ

i“1

gpx, ziq

Let ZN and ZN represent the random set and its realization, respectively. Each zi in ZN is

a realization from the distribution F . And let rZb
N be the random set whose elements obey the

empirical distribution of the set ZN . The classical bootstrap method is based on the theoretical

validation of the asymptotic similarity ([91]) between the two distributions, GpZN q ´ GpF q and

Gp rZb
N q ´ GpZN q, with the latter conditioned on one realization of the random variable ZN , which

is the random sample ZN . See [31, Corollary 4.1, Corollary 5.1] for a proof.

Algorithm 7 describes the procedure for finding an approximate confidence interval using the

classical bootstrap procedure, where the CI is centered on GpZN q, the gap associated with the set

ZN , and the quantile of bootstrap sampled gaps is used to derive the limits.

Algorithm 7 Classical Bootstrap

1: Input: A sample ZN “ tziu
N
i“1, number of batches B, and a candidate solution px

2: Compute the optimality gap associated with the set ZN

G
pxpZN q “

1

N

N
ÿ

i“1

gppx, ziq ´ min
x

1

N

N
ÿ

i“1

gpx, ziq

3: for b Ð 1 to B do
4: Resample from ZN to get the bootstrap set rZb

N “ trzb1, . . . , rzbNu

5: Compute the associated gap

Gp rZb
N q “

1

N

N
ÿ

i“1

gppx, rzbi q ´ min
x

1

N

N
ÿ

i“1

gpx, rzbi q

6: Compute the upper 1 ´ α-quantile ϱ1´α and lower α-quantile ϱα for tGp rZb
N q ´ GpZN qu

7: return rGpZN q ´ ϱ1´α,GpZN q ´ ϱαs as the p1 ´ 2αq confidence interval for the optimality gap
GpF q

56

If we replace the optimality gap G
pxpZN q with the optimal function value under the set ZN , that

is, minx
1
N

řN
i“1 gpx, ziq, and use minx

1
N

řN
i“1 gpx,rzbiq in place of Gp rZb

N q, then the above algorithm

can be used to find an approximate confidence interval for the optimal function value z˚. The same

argument applies to all the algorithms in the following subsections.

Note that there are a few variations on the classical bootstrap method, in that different metrics

can be used to derive the confidence interval from the resampled gaps Gp rZb
N q. For example, instead

of using the quantiles of Gp rZb
N q in one way or another, one can also use Gp rZb

N q to fit a standard

normal confidence interval. As in [29], one can compute the variance of Gp rZb
N q, denoted as s2, and

return rGpZN q ´ z1´αs,GpZN q ` z1´αss as the CI, with z1´α being the quantile of the standard

Gaussian variable.

4.2.2. Extended Bootstrap Method. Theoretically, the consistency of the estimated confi-

dence interval in Algorithm 7 may no longer stand if the stochastic program does not have a unique

solution. An extended two-stage bootstrap method that tackles such situations is developed in [31]

and shown in Algorithm 8. Note that the extended bootstrap method is only applicable if we are

able to sample from the unknown distribution F , which may not be possible in various settings,

but we include the algorithm here for completeness. The consistency of the extended bootstrap

method was proven in [31, Lemma 5.2] for the CI estimator for the optimal function value. As

with the classical bootstrap method, the same algorithm can be used to find a confidence interval

for the optimal function value by replacing the optimality gap function Gp¨q with the corresponding

empirical optimal function value.

Algorithm 8 Extended Bootstrap

1: Input: number of batches B, significance level α, and a candidate solution px
2: for b Ð 1 to B do
3: Independently sample from F to get set Zb “ tz1, . . . , pzNu and compute the corresponding

optimality GpZbq

4: Resample from Zb to get rZb “ trz1, . . . , rzNu and compute Gp rZbq

5: Compute the upper 1 ´ α{2-quantile ϱ1´α{2 and lower α{2-quantile ϱα{2 for tGp rZbq ´ GpZbqu

6: Independently sample from F to get ZN and ZN , each of size N
7: Compute the center of the confidence interval G “ 2 ˚ GpZN Y ZN q ´ GpZN q

8: return rG´ ϱ1´α{2, G´ ϱα{2s as the p1 ´ αq confidence interval for the optimality gap

4.2.3. Subsampling. The subsampling method for estimating the confidence interval of z˚

was briefly mentioned in [31]. The procedure is essentially the same as the classical bootstrap

57

method, except that a smaller subsampling size is adopted for resampling. Algorithm 9 details

the procedure for finding the confidence interval of the optimality gap, and the consistency of the

estimator is shown in [31, Section 5.3].

Algorithm 9 Subsampling

1: Input: A sample ZN “ tziu
N
i“1, number of batches B, sub-sample size k, significance level α,

and a candidate solution px
2: Compute the optimality gap associated with the set ZN

G
pxpZN q “

1

N

N
ÿ

i“1

gppx, ziq ´ min
x

1

N

N
ÿ

i“1

gpx, ziq

3: for b Ð 1 to B do
4: Resample from ZN without replacement to get set rZb of size k, rZb “ trz1, . . . , rzku

5: Compute Gp rZbq

6: Compute the upper 1´α{2-quantile ϱ1´α{2 and lower α{2-quantile ϱα{2 for t
?
kpGp rZbq´GpZN qqu

7: return rGpZN q ´

b

1
N ϱ1´α{2,GpZN q ´

b

1
N ϱα{2s as the p1 ´ αq CI for the optimality gap

4.2.4. Bagging. A bagging procedure proposed in [59] approximates the confidence interval

of the optimality gap without the need to sample for the entire population and without the need for

a unique solution. Compared with the bootstrap method, the bagging method is known to reduce

variance in general applications.

We note here that the bagging procedure described in [59] bears some similarity to the subsam-

pling method in Algorithm 9, as in both cases a smaller subsampling size is used. The difference

lies in how the confidence interval is formed: The subsampling method directly uses the quantiles

of the subsamples to derive a confidence interval, whereas the bagging procedure uses an empirical

version of the infinitesimal jackknife estimator for variance estimation.

Algorithm 10 illustrates the procedure for using bagging to find an approximate confidence

interval for the optimality gap. The original algorithm in [59] focuses on finding CI for the optimal

function value, and Algorithm 10 is a small variation of the original one.

4.3. Asymptotic Theory

In this section, we discuss the asymptotic convergence of the bootstrap method for a set of

convex optimization problems where the constraints can be expressed as the expectation over

58

Algorithm 10 Bagging-based Sampling

1: Input: A sample ZN , number of bags B, bag sample size k, significance level α, and a candidate
solution px

2: for b Ð 1 to B do
3: Resample from ZN to get a bagging set of size k, rZb

N “ trzb1, . . . , rzbku

4: Compute Gp rZb
N q “ 1

k

řk
i“1 gppx, rzbi q ´ minx

1
k

řk
i“1 gpx, rzbi q

5: Compute the mean of Gp rZb
N q as the center of the confidence interval:

G “
1

B

B
ÿ

b“1

Gp rZb
N q

6: Compute the error term:

rσ2 “

#

řn
i“1 ycov2i if with replacement
n2

pn´kq2

řn
i“1 ycov2i if without replacement

,

where

ycovi “
1

B

B
ÿ

b“1

pN b
i ´ k{nqpGgapp rZb

N q ´Gq,

and N b
i is the number of times the ith element of ZN appears in rZb

N .
7: Return rG´ z1´α{2rσ,G` z1´α{2rσs as the p1 ´ αq CI for the optimality gap GpF q, with z1´α{2

being the p1 ´ α{2q quantile of a standard normal variable.

certain functions as in [92]:

min
xPS

Eξrg0px, ξqs(4.2)

s.t. Eξrgipx, ξqs ď 0, i “ 1, . . . , r

Many stochastic problems can be represented with this formulation (see [32,61]). For general

results on the asymptotic convergence of bootstrap methods applicable to a wider range of stochastic

programming challenges, we refer the reader to [31].

4.3.1. Notations. We begin by establishing some notation that will facilitate the subsequent

analysis. Specifically, we use F to denote the unknown distribution of the random variable ξ, and

pFN to denote the empirical distribution of a set of observations ZN . We let x˚ be the optimal

solution for the SP problem and let z˚ be the optimal function value. In addition, let pxN be the

optimal value for the approximated SP problem with set ZN , so that pxN “ minx
1
N

ř

j g0px, zjq,

and let pzN be the corresponding function value pzN “ 1
N

ř

j g0ppxN , zjq.

59

For simplicity we define

fipxq “ Eξrgipx, ξqs, i “ 0, . . . , r.

Then problems we are considering can be rewritten as

min
xPS

f0pxq(4.3)

s.t. fipxq ď 0, i “ 1, . . . , r

When given a set of observations ZN “ tzi, i “ 1, . . . , Nu, the original problem(4.2) can be

approximated using a sample average approximation (SAA),

min
xPS

E
pFN pξq

rg0px, ξqs “
1

N

N
ÿ

j“1

g0px, zjq(4.4)

s.t. E
pFN pξq

rgipx, ξqs ď 0, i “ 1, . . . , r.

We introduce the notation

ψi,N pxq “ E
pFN pξq

rgipx, ξqs i “ 0, . . . , r

and express the approximated problem as

min
xPS

ψ0,N pxq(4.5)

s.t. ψi,N pxq ď 0, i “ 1, . . . , r.

here ψi,N pxq implicitly depends on the set ZN .

In addition, given a bootstrap sample rZb “ trz1, . . . ,rzNu that is i.i.d. sampled from the empirical

distribution pFN , the corresponding optimization problem is

min
xPS

1

N

N
ÿ

j“1

g0px,rzjq(4.6)

s.t.
1

N

N
ÿ

j“1

gipx,rzjq ď 0, i “ 1, . . . , r

60

We denote

rψi,N pxq “
1

N

N
ÿ

j“1

gipx,rzjq, i “ 0, . . . , r

to rewrite the bootstrap optimization problem as

min
xPS

rψ0,N pxq(4.7)

s.t. rψi,N pxq ď 0, i “ 1, . . . , r.

The following notations are utilized throughout the theoretical framework: CmpSq represents

the space of continuous functions defined on S with values in Rm. For brevity, when m “ 1, we

denote this space simply as CpSq. The Cartesian product space L is defined as CpSq ˆ ¨ ¨ ¨ ˆCpSq,

which constitutes the product of r ` 1 such spaces. The subset H within L comprises vectors

ξ “ pξ0, . . . , ξrq whose components are convex functions in an open neighborhood of S. Lastly, the

Lagrangian function is given by Lpx, λ, ζq “ ξ0pxq `
řr

i“1 λiζipxq, where x represents the decision

variables, λ the vector of Lagrange multipliers, and ζ the vector of functions from H.

4.3.2. Main Theorem. The main theorem is built upon the following assumptions::

a. S is compact and convex.

b. g0, . . . , gr are real valued and convex. The convexity of gi implies the convexity of fi and

ψi,N , and, in turn, implies that µ and Yn are in space L.

c. The Slater condition holds for program (4.3), which implies strong duality for convex

optimization.

d. The program (4.3) has a unique optimal solution x˚ and a unique Lagrange multiplier

vector λ˚

e. For every x P S the function gipx, ¨q is measurable for each i

f. For each i, for some point x0 P S, the expectation Eξ|gpx0, ξq|2 is finite

g. For each function gi, there exists a function bi, such that Eξrbipξq2s is finite and for all

x, y P S,

|gipx, ξq ´ gipy, ξq| ď bipξq}x´ y}

In addition, we need an assumption that corresponds to assumption (d) for the bootstrap

samples.

61

h. The approximated program (4.4) has a unique optimal solution pxN and a unique Lagrange

multiplier vector pλ with probability one.

The main theorem states as follows:

Theorem 4.3.1. Suppose that Assumptions (a)-(h) hold. Then

(4.8) lim inf
N,nBÑ8

Pr pGpF q P rϱα, ϱ1´αsq ě 1 ´ 2α.

Here ϱα and ϱ1´α are the output from Algorithm 7.

We will show the proof of this theorem at the end of the next section.

4.3.3. Preliminaries for the Proof of Theorem 4.3.1. Before proving the final result, we

need to introduce several additional notations and intermediate results that are required for the

proof.

We follow the work of [92] and work directly with the functions of programs (4.3) and (4.5)

instead of the corresponding empirical distributions. That is, define µ “ pf0, f1, . . . , frq to be

the Cartesian product of functions fi. Under assumption (g), µ is in L, the Cartesian product

of the space of continuous functions, and thus it belongs to the space Cr`1pSq. Similarly, define

YN “ pψ0,N , . . . , ψr,N q P L.

The key idea in the proof is to treat stochastic programs as elements of the function space L,

and to use an extended delta method on a functional that maps a program to the corresponding

optimality gap.

To that end, we introduce a linear functional sφ : L Ñ R that maps a vector ζ “ pζ0, ζ1, . . . , ζrq

to the corresponding function value for the candidate solution px,

sφpζq “ ζ0ppxq

Similarly sϕp¨q : L Ñ R is defined as a functional that returns the optimal function value of the

corresponding stochastic program (4.3), so

z˚ “ sϕpµq, pzN “ sϕpYN q

62

We use the notation γ to present a function that maps a vector in space L to the corresponding

optimality gap. That is, given a vector ζ “ pζ0, ζ1, . . . , ζrq P L,

(4.9) γpζq “ sφpζq ´ sϕpζq.

In this way, the actual optimality gap for a candidate solution px can be expressed as GpF q “ γpµq,

whereas the optimality gap under the set ZN is GpZN q “ γpYN q.

Theorem 4.3.2 (Converge in sampling). Suppose Assumptions (a)-(g) hold. Then

(4.10) n1{2pγpYnqq ´ γpµqq
D
Ñ N p0, ς2q.

Here N p0, ς2q is a normal variable with mean 0 and variance

(4.11) ς2 “ EξrKppx, x˚, λ˚, g, ξqs2 ´ tErKξppx, x˚, λ˚, g, ξqsu2,

with Kppx, x˚, λ˚, g, ξq being a random variable with respect to ξ,

Kppx, x˚, λ˚, g, ξq “ g0ppx, ξq ´ g0px˚, ξq ´
ÿ

i

λ˚
i gipx

˚, ξq.

Proof. We start by showing that γpζq is Hadamard directional differentiable at µ. sϕpζq is

Hadamard directional differentiable by (4.19) in Theorem 4.3.5. Since sφpζq is a linear functional,

it is easy to see that sφpζq is Hadamard differentiable at µ with

(4.12) sφ1
µpζq “ sφpζq.

Hence, by the definition of γpζq, it is also Hadamard differentiable at µ tangentially to the set H.

And for all the vectors ζ in the Bouligand Tangent cone TµpHq,

(4.13) γ1
µ,Hpζq “ sφpζq ´ Lpx˚, λ˚, ζq

Now under assumption (a)-(b) and (e)-(g), by Thm 4.3.8, we have n1{2pYN ´ µq converging to

a random element W in L, and W follows a vector-valued Gaussian process. That is, for any finite

collection x1, . . . , xm in S, tW px1q, . . . ,W pxmqu forms a jointly Gaussian. In particular, we have

63

W px˚q “ pw0px˚q, . . . , wrpx˚qq and W ppxq “ pw0ppxq, . . . , wrppxqq are jointly Gaussian. Therefore

using delta method as in [92] (Thm 2.1), we have

n1{2pγpYN q ´ γpµqq
D
Ñ γ1

µ,HpW q,

By (4.13), this implies that

n1{2pγpYN q ´ γpµqq
D
Ñ sφpW q ´ Lpx˚, λ˚,W q,

Equation (4.10) then follows by recognizing that the right-hand side in the above equation is a

normal variable with variance defined in (4.11). □

Before we state the convergence result for bootstrap, we introduce the notation

rYN “ p rψ0,N , . . . , rψr,N q

that represent the bootstrap program (4.7) as an element in space L. Conditioned on ZN , rYN is a

random functional w.r.t. rZb.

Theorem 4.3.3 (Converge in bootstrap). Suppose that Assumption (a)-(c), (e)-(h) holds. Then

conditioned on ZN , with probability one,

(4.14) n1{2pγprYnqq ´ γpYnqq
D
Ñ Np0, rς2q,

here Np0, rς2q is a normal variable with mean 0 and variance

(4.15) rς2 “ E
pFN pξq

rKppx, pxN , pλ, g, ξqs2 ´ rE
pFN pξq

Kppx, pxN , pλ, g, ξqs2,

with Kppx, pxN , pλ, g, ξq being a random variable with respect to ξ,

Kppx, pxN , pλ, g, ξq “ g0ppx, ξq ´ g0ppxN , ξq ´
ÿ

i

pλigippxN , ξq.

Proof. By (4.20) in Theorem 4.3.6 and (4.12) , γpζq is Hadamard differentiable at Yn tangen-

tially to the set H. And for all the vectors ξ in the Bouligand Tangent cone TµpHq,

64

(4.16) sγ1
YN ,Hpζq “ sφpζq ´ LppxN , pλ, ζq

Now for each i, for some fixed point x0 P S as in assumption (f), since Eξ|gipx0, ξq|2 is finite

under assumption (f)-(g), for N large enough, it follows easily from law of large number that

E
pFN pξq

rgipx0, ξq2s is finite with probability one. Similarly E
pFN pξq

|bipξq|2 is finite almost surely

under assumption (g). Therefore, from Thm 4.3.8, conditioned on ZN , n1{2prYN ´ YN q converge to

a random element ĂW in L, and ĂW follows a vector-valued Gaussian process. That is, for any finite

collection x1, . . . , xm in S, tĂW px1q, . . . ,ĂW pxmqu forms a jointly Gaussian. In particular, we have

ĂW ppxN q “ prz0ppxN q, . . . , rzrppxN qq and ĂW ppxq “ prz0ppxq, . . . , rzrppxqq being jointly Gaussian.

Therefore using delta method as in [92] (Thm 2.1), we have

n1{2pγprYN q ´ γpYN qq
D
Ñ γ1

µ,HpĂW q

That is,

n1{2pγprYN q ´ γpYN qq
D
Ñ sφpĂW q ´ LppxN , pλ,ĂW q.

Equation (4.14) then follows by recognizing that the right-hand side of the above equation is a

normal variable conditioned on ZN .

□

Theorem 4.3.4. Suppose Assumptions (a)-(g) stand. Then the bootstrap estimator is strongly

consistent in that

ρ8pHboot, H pFN
q Ñ 0 a.s.

here H
pFN

is the sample distribution

(4.17) H
pFN

pxq “ P tn1{2pGpZN q ´ GpF qq ď xu,

and correspondingly Hboot is the bootstrap distribution

(4.18) Hboot “ P tn1{2pGp rZbq ´ GpZN qq ď x|ZNu.

65

Proof. From Lemma 4.3.6.2 we have pxN Ñ x˚ and pλ Ñ λ˚. Recall that the function

Kppx, x, λ, g, ξq “ g0ppx, ξq ´ Lpx, λ, gq “ g0ppx, ξq ´ g0px, ξq ´
ÿ

i

λigipx
˚, ξq,

is continuous in its second and third variable, we have that

Kppx, pxN , pλ, g, ξq ÝÑ Kppx, x˚, λ˚, g, ξq.

Therefore by Lebesgue dominated convergence theorem, under assumption (f)-(g),

rς2{tE
pFN

rKppx, x˚, λ˚, g, ξqs2 ´ rE
pFN
Kppx, x˚, λ˚, g, ξqs2u Ñ 1

Now tE
pFN

rKppx, x˚, λ˚, g, ξqs2´rE
pFN
Kppx, x˚, λ˚, g, ξqs2u can be regarded as the sample variance

whose actual variance is ς2, therefore

E
pFN

rKppx, x˚, λ˚, g, ξqs2 ´ rE
pFN
Kppx, x˚, λ˚, g, ξqs2

ς2
Ñ 1

Combining the two equations yields that

lim rς2 “ ς2.

The strong consistency of the bootstrap estimator for the optimality gap then follows by recognizing

that n1{2pGpZN q ´ GpGqq and n1{2pGp rZbq ´ GpZN qq have the same limit distribution. □

Proof of Theorem 4.3.1. Theorem 4.3.4 guarantees that the bootstrap estimator is strongly

consistent in that

ρ8pHboot, H pFN
q Ñ 0 as.

where Hboot and H pFN
are defined in (4.18) and (4.17) respectively.

Therefore, if we use rϱ1´α and rϱα to denote the upper and lower quantiles for Gp rZbq ´ GpZN q,

then

lim inf
NÑ8

P prϱα ă GpZN q ´ GpF q ď rϱ1´αq ě 1 ´ 2α,

Algebraic manipulation yields

66

lim inf
NÑ8

P ppϱα ă GpF q ď pϱ1´αq ě 1 ´ 2α,

where pϱ1´α and pϱα are the upper and lower quantile for 2Gp rZbq ´ GpZN q.

The inequality (4.8) then follows from the Glivenko–Cantelli theorem which guarantees that

the empirical distribution of 2Gp rZbq ´ GpZN q converges uniformly to the actual distribution of the

same variable. □

4.3.4. Auxiliary theorem.

Theorem 4.3.5. Suppose that Assumptions (a)-(d) hold. Then the optimal value function sϕpζq

is Hadamard directionally differentiable at µ tangentially to the set H. And for all the vectors ζ in

the Bouligand Tangent cone TµpHq,

(4.19) sϕ1
µ,Hpζq “ Lpx˚, λ˚, ζq

Proof. We note that assumption (b) implies that fi are convex functions that µ is in space

L. The theorem is then a corollary from [92], which we include below as Theorem 4.3.7. □

Theorem 4.3.6. Suppose that Assumptions (a)-(c) and (h) hold. Then conditioned on ZN , the

optimal value function sϕpζq is Hadamard directionally differentiable at YN tangentially to the set

H. And for all the vectors ζ in the Bouligand Tangent cone TµpHq,

(4.20) sϕ1
YN ,Hpζq “ LppxN , pλ, ζq

Proof. We note that the convexity of gi implies the convexity of ψi,N , and in turn implies

that Yn is in space L, therefore the approximated problem (4.5) is convex.

Now suppose that v P S is the point satisfying fipvq ă ´ϵ for some fixed ϵ. The existence

of such a point is guaranteed by the Slater condition in assumption (c). By the Law of Large

Numbers, for each i “ 1, . . . , r, we have ϕi,N pvq Ñ fipvq a.s. As a result, ϕi,N pvq ă ´ ϵ
2 a.s. for N

large enough, so the Slater condition stands for the approximate problem (4.5) a.s.

The statement in the theorem then follows from Thm 4.3.7.

□

67

Lemma 4.3.6.1. Denote

fpxq “

$

’

&

’

%

f0pxq, if fipxq ď 0, i “ 0, . . . , r

8 otherwise

And

ψN pxq “

$

’

&

’

%

ψ0,N pxq, if ψi,N pxq ď 0, i “ 0, . . . , r

8 otherwise

Suppose Assumptions (a)-(g) stand. Then for any fixed q P S ,

(4.21) lim inf
N
ψN pxN q ě fpxq, for any sequence xN Ñ x

and

(4.22) lim sup
N
ψN pxN q ď fpxq, for some sequence xN Ñ x

Proof. By the law of large numbers, ψi,N pxq converges point-wise to fipxq. Under assumptions

(a) and (g), ψi,N pxq is a Lipschitz function defined on a compact set; hence, pointwise convergence

implies uniform convergence.

Suppose that β is a cumulative point of ψN pxN q. That is, there exists a subsequence tNmu8
m“1,

such that limψNmpxNmq “ β. If β “ 8, then the inequality (4.21) is trivially valid. Otherwise,

for each i, we have ψi,NmpxNmq ď 0. Since xNm Ñ x and ψi,Nm converge uniformly to fi, we have

fipxq ď 0, so that fpxq ă 8. Furthermore, from the uniform convergence of ψ0,Nm we also have

fpxq “ β. This yields

lim inf
N
ψN pxN q ě fpxq

Now, if fpxq “ 8, then inequality (4.22) trivially stands. Otherwise, suppose that fipxq ď 0

for each i. Under assumptions (b) and (c), there exists a point v satisfying fipvq ď ´ϵ ă 0 for some

fixed ϵ for i “ 1, . . . , r. Define

xN “ p1 ´ anqx` anv

By the convexity of fi, we have

fipxN q ď p1 ´ anqfipxq ` anfipvq ď ´anϵ ă 0 i “ 1, . . . , r

68

Since ψi,N converges uniformly to fi, there must exists a sequence an Ñ 0`, such that xN Ñ x

and ψi,N pxN q ď 0 for each i for N large enough. Then ψN pxN q “ ψ0,N pxN q is a bounded sequence

on a compact set, so there must exist a subsequence Nm, such that limψNmpxNmq “ β ă 8. The

uniform convergence of ψ0,Nm and the fact that fipxNmq ă 0 then implies that fipxq “ β. Hence

(4.22) stands by choosing qNm as the sequence.

□

Lemma 4.3.6.2. Suppose that Assumptions (a)-(g) hold. Then

pxN Ñ x˚,

and

pλ Ñ λ˚

where pxN is the optimal solution for (4.5) and pλ is the Lagrange multiplier associated with pxN .

Proof. By Lemma 4.3.6.1, ψ epi-converge to f . Since the epi-convergence of the functions

implies the convergence of the minimizers ([85] Theorem 7.33), we have pxN Ñ x˚. The convergence

of pλ comes from the duality.

□

For reference, we restate some existing results.

Theorem 4.3.7 ([92] Thm 3.4). Suppose that the program (4.3) is convex, S is compact,

and the Slater condition holds. Then the optimal value function sϕpζq is Hadamard directionally

differentiable at µ “ pf0, . . . , frq tangentially to the set H. And for all the vectors ζ in the Bouligand

Tangent cone TµpHq,

sϕ1
µ,Hpζq “ min

xPS˚pµq
max
λPΛpµq

Lpx, λ, ζq,

where S˚pµq is the set of optimal solutions of (4.3) and Λpµq is the set of Lagrange multipliers

satisfying the optimality conditions.

The next theorem requires these assumptions:

(1) The function g : S ˆ U Ñ Rm is continuous in the first variable and measurable in the

second.

69

(2) S is a compact set.

(3) There is a point x P S, such that E|gpx, dq|2 ă 8.

(4) There is a function b : U Ñ R with E|bpdq|2 ă 8, such that for all x, y P S,

gpx, dq ´ gpy, dq ď bpdq}x´ y}.

Theorem 4.3.8 ([53] A3). Suppose that the function g : S ˆ U Ñ Rm satisfies the above

four conditions. Then there exists a Gaussian random variable w taking values in the space of

continuous functions CmpSq, such that for any sequence tsiu with i.i.d. random variables,

?
n

«

1

n

n
ÿ

j“1

gpx, siq ´ Egpx, s1q

ff

d
Ñ w

4.4. Smoothed Point Estimator

In the classical bootstrap method, the confidence interval is constructed around the point

estimator GpZN q, which represents the optimality gap under the set ZN . This is based on the

idea that if one does not have access to the entire population F , and instead all that is available

is a sample ZN , then the optimality gap associated with ZN serves as a natural surrogate for

estimating GpF q. In contrast, the bagging method employs a different approach by generating

multiple estimators, each from a distinct subset of ZN , sampled with or without replacement. The

final estimator for the optimality gap is the average of these estimators, which helps to reduce

variance and increase stability.

For many important applications, using only the optimality gap associated with the empirical

distribution of ZN as a point estimator may be insufficient, especially when the sample size is small.

In this case, one may seek to use density estimation or probability distribution fitting tools to get

a better estimation of the optimality gap. Kernel density estimation and epi-spline fitting [86] are

two of the possible tools. The idea of using a smoothed estimator is also proposed in [48,76] in a

different setting.

We describe a general procedure for finding a point estimator, sG, for GpF q in Algorithm 11.

Instead of GpZN q, one may use sG from Algorithm 11 as a point estimator for the optimality gap.

For the form of fitted distribution, we assume that when given enough data points, the fitted

distribution should be able to recover the true distribution.

70

Algorithm 11 Distribution-based Point Estimator

1: Input: A sample ZN , replication R, sample size nc, form of distribution qF .

2: Fit a distribution function qFN using the set ZN .
3: for b Ð 1 to R do
4: Sample from the distribution qFN to get nc samples trzb1, . . . , rzbnc

u.

5: Compute Gb “ 1
nc

řnc
i“1 hppx, rzbi q ´ minx

1
nc

řnc
i“1 hpx, rzbi q.

6: Return G “ 1
R

řR
b“1Gb as a point estimator for the optimality gap GpF q.

The above algorithm to some extent provides a unified framework for estimating the optimality

gap for stochastic programming problems. We highlight two special cases that link Algorithm 11

back to the point estimators that have been used in the literature.

‚ Classical Bootstrap: If we do not incorporate smoothness into our form of distribution,

but instead use the empirical distribution of ZN as the fitted distribution, which assigns

an atom of probability with mass 1{N to each observation zi, then sampling from the

distribution qFN is equivalent to resampling from the data set ZN . In this case, with one

replication R “ 1 and nc “ N as the sample size, Algorithm 11 returns GpZN q as the point

estimator, which is the center of the confidence interval in the classical basic bootstrap.

‚ Classical Bagging: If we use the empirical distribution of ZN as qFN , but run multiple

replications (R ą 1) with possibly smaller resample size nc, then the returned sG is a

bagging estimator of the optimality gap. The bagging estimator is used as the center of

the confidence interval in [59,60], where a confidence interval is constructed around the

optimality gap in stochastic programming via bagging.

4.4.1. Point Estimator Comparisons. We present box plots that illustrate the performance

differences among various point estimators used to approximate the optimality gaps using Algo-

rithm 11 and compare these with the true optimality gap. The example problems utilized are

detailed in Section 2.5.1.

To simplify the presentation and enhance clarity, we use abbreviations for the estimators. The

BT estimator denotes the point estimator derived from the classical bootstrap method. This

estimator is constructed using a single batch that encompasses the entire sample set, ZN . The

BG estimator represents the point estimator from the classical bagging method. This estimator is

constructed using multiple batches, where each batch is sampled from the empirical distribution of

71

ZN . The prefix “S” indicates the application of the smoothed fitted distribution. Therefore, SBT

and SBG denote the smoothed versions of the BT and BG estimators, respectively.

The comparative performance of these estimators is as shown in Figures 4.1, 4.2, and 4.3.

While in the CVaR example in Figure 4.1, all of the point estimators tested exhibited a relatively

significant error when compared to the actual scale of the true optimality gap, in the farmer example

in Figure 4.2 and the multi-knapsack problem in Figure 4.3, the height of the box plots, which

represents the error in the point estimators, decreased as we introduce smoothness into the point

estimator. This reduction in variance suggests that these point estimators may be more effective

in approximating the optimality gap in these situations.

Figure 4.1. Results for CVaR problem based on 500 replications. The box-plot
displays the distribution of errors in the point estimators with respect to the actual
optimality gap 0.36. The size of the set ZN is fixed at N “ 40. The BT point
estimator is derived by directly computing the gap associated with the set ZN . The
S-BT estimator is estimated by resampling nc “ 8N data points from the fitted
distribution. For BG and S-BG, we use R “ 400 replications and the resample size
is nc “ 30.

Figure 4.2. Results for farmer problem based on 500 replications. The box-plot
displays the distribution of errors in the point estimators with respect to the actual
optimality gap 7648.32. The size of the set ZN is fixed at N “ 40. The BT point
estimator is derived by directly computing the gap associated with the set ZN . The
S-BT estimator is estimated by resampling nc “ 8N data points from the fitted
distribution. For BG and S-BG, we use R “ 400 replications and the resample size
is nc “ 30.

72

Figure 4.3. Results for multi-knapsack problem based on 500 replications. The
box-plot displays the distribution of errors in the point estimators with respect to
the actual optimality gap 2301.95. The size of the set ZN is fixed at N “ 40. The
BT point estimator is derived by directly computing the gap associated with the
set ZN . The S-BT estimator is estimated by resampling nc “ 8N data points from
the fitted distribution. For BG and S-BG, we use R “ 400 replications and the
resample size is nc “ 30.

4.5. Smoothed Bootstrap and Smoothed Bagging

In this section, we discuss the situations where we use a smooth function as the fitted distribu-

tion function qFN , and how the existing methods can be adapted to construct a confidence interval

around the smoothed point estimator for the optimality gap.

4.5.1. Smoothed Bootstrap. Instead of directly computing a point estimator GpZN q using

the dataset ZN as in classical bootstrap, an alternative approach is to employ a smoothed density

estimate, such as kernel density estimation, as depicted in Algorithm 11. This algorithm fits a

smoothed distribution qFN based on ZN . Subsequently, a large batch of samples is drawn from qFN

to obtain an estimation. In this case, the estimated center sG serves as a reliable approximation for

Gp qFN q, which, in turn, provides an estimation for GpF q.

Now, of course, the next question becomes how to construct a confidence interval around sG.

The most obvious way would be to directly apply the classical Algorithm 7 . That is, we use sG

in place of GpZN q in Algorithm 7, and the corresponding return should be a CI for the optimality

gap GpF q.

However, if we use a smoothed function for fitting the distribution function qFN , then it is

natural to introduce some smoothness to the bootstrap procedure as well, as in the practice of

the standard smoothed bootstrap. That is, instead of resampling from the empirical distribution

of ZN in Algorithm 7, we instead resample from qFN , a smoothed version of the empirical c.d.f.,

73

for bootstrap samples. We use the same smoothed distribution qFN for finding the center and for

estimating the confidence interval.

We describe in Algorithm 12 the procedure to find a CI for the optimality gap in conjunction

with the smoothed point estimator returned by Algorithm 11. We use a standard normal confidence

interval in our algorithm and estimate the width of the confidence interval by estimating the variance

of the limit distribution, but the percentile bootstrap interval or the bias-corrected and accelerated

bootstrap interval ([25]) could also be used here.

Algorithm 12 Smoothed Bootstrap

1: Input: A sample setZN , number of batches B, form of distribution qF , and a candidate solution
px

2: Output: Confidence interval on the optimality gap

3: Fit a smoothed distribution function qFN using the set ZN .

4: Run Algorithm 11 with the same qFN , R “ 1 and a sufficiently large resample size nc to find
the point estimator G.

5: for b Ð 1 to B do
6: Sample from distribution qFN to get a new set rZb

N “ trzb1, . . . , rzbNu.

7: Compute Gp rZb
N q “ 1

N

řN
i“1 hppx, rzbi q ´ minx

1
N

řN
i“1 hpx, rzbi q,

8: Compute the sample variance s2 for tGp rZb
N qu.

9: Return rG´ z1´αs,G` z1´αss as the confidence interval (CI).

Algorithm 12 is a small generalization of the classical smoothed bootstrap method, in that we

allow different options for the point estimator that serves as the center of the confidence interval.

When sG equals GpZN q, that is, when the empirical distribution is used in Algorithm 11 to provide

a point estimator, Algorithm 12 is identical to the classical smoothed bootstrap [30].

Since sG can essentially be regarded as a smoothed version of GpZN q, the same theory that is

used to support the classical smoothed bootstrap method can be used here to justify the asymptotic

consistency of the output of Algorithm 7. That is, conditioned on ZN “ ZN , let rZb
N be the random

set whose elements obey the distribution qFN , the distribution of Gp rZb
N q´ sG is asymptotically similar

to the distribution of sG´GpF q([23]). Notice that sG depends on qFN and hence in turn is correlated

to ZN .

4.5.2. Smoothed Bagging. The first few steps of the bagging algorithms conform with Algo-

rithm 11 for finding the center of the confidence interval as outlined in Section 4.4. The remaining

steps aim to construct an empirical version of the infinitesimal jackknife estimator of the variance,

which in turn guides the construction of the confidence interval.

74

Following the same argument as in the smoothed bootstrap, one may wish to introduce some

smoothness into the bagging estimator, especially when the sample size is small. So instead of

resampling from the set ZN to obtain the bagging sets, we resample from a fitted distribution qFN

to get the samples and compute the gaps, and take the average of the gaps as our point estimator.

As the infinitesimal jackknife estimator of the variance for the bagging estimator in Algorithm 10

does not directly apply to a smoothed bagging estimator, we seek an alternative approach to

estimate the variance using the results from [69]. In particular, consider Gk as a kernel function

Gkpz1, . . . , zkq that returns the optimality gap associated with scenarios tz1, . . . , zku, with

Gkpz1, . . . , zkq “
1

k

k
ÿ

i“1

hppx, ziq ´ min
x

1

k

k
ÿ

i“1

hpx, ziq

and let

ςc,k “ var pErGkpz1, . . . , zkq|z1 “ z1, . . . , zc “ zcsq ,

which is actually the covariance between two instances of the function h with c shared arguments.

By [69, Theorem 1], the variance of the bagging estimator can be estimated with

σ2 “
1

B

ˆ

k2B

n
ς1,k ` ςk,k

˙

,

with B being the number of bagging sets used to construct the point estimator.

The two variances ς1,k and ςk,k can be estimated using similar Monte Carlo methods as depicted

in [69, Section 3]. To estimate ς1,k, we start by randomly selecting one scenario rzp1q and fixing

z1 “ rzp1q, then choose BMC bagging sets t rZb1

Nu
BMC
b1“1 , each of size k and contains the fixed seed

scenario rzp1q. Because each bagging set corresponds to an associated optimality gap, the average of

the BMC gaps serves as a Monte Carlo approximation to the mean

ErGkpz1, . . . , zkq|z1 “ rzp1qs « sGp1q def
“

1

BMC

BMC
ÿ

b1“1

Gkp rZb1

N q.

We then repeat the above steps for BI times, each time with an independently selected fixed,

seed scenario rzpiq. The sample variance among the BI averaged gaps sGpiq can then be used as the

estimator for ς1,k,

ς1,k « varp sGp1q, . . . , sGpBIqq

75

The variance ςk,k can be estimated using a similar approach, by independently sampling B

bagging sets, and computing the variance of the corresponding bagging gaps. But instead of

computing the point estimator G and the variances ς1,k and ςk,k in three separate runs, we can

incorporate the three procedures into one by utilizing the BI ˚ BMC gaps (each fixed initial seed

scenario yields BMC gaps, and we have in total BI initial fixed seed scenarios) that are used to

estimate ς1,k. That is, after generating B “ BI ˚BMC bagging sets and finding an estimate for the

variance ς1,k, we take the average of those B gaps

G “
1

BI ˚BMC

ÿ

Gkp rZb
N q “

1

BI

BI
ÿ

b“1

sGpbq

to be our bagging estimator G, and use the sample variance of the B gaps as an estimation for ςk,k.

Algorithm 13 outlines the procedure for constructing a confidence interval around the smoothed

bagging estimator. The sample variance s1 is used to estimate ς1,k, and s2 is for ςk,k.

Algorithm 13 Smoothed Bagging with Variance Estimation

1: Input: A sample ZN , number of initial seed points BI , number of Monte Carlo simulations for
each initial point BMC , subsample size k, significance level α, and a candidate solution px

2: Output: Confidence interval on the optimality gap

3: Fit a smoothed distribution function qFN using the set ZN .
4: for b Ð 1 to BI do
5: Select initial seed point rzpbq by sampling from qFN .
6: for b1 Ð 1 to BMC do

7: Resample from qFN to get a bagging set of size k, rZb,b1

k “ trzb,b
1

1 , . . . , rzb,b
1

k u, including the

initial seed point rzpbq.

8: Compute Gp rZb,b1

k q “ 1
k

řk
i“1 hppx, rzb,b

1

i q ´ minx
1
k

řk
i“1 hpx, rzb,b

1

i q.

9: Compute the average of the BMC gaps, denoted as G
pbq
.

10: Compute the mean of G
pbq

as the center of the confidence interval:

G “
1

BI

BI
ÿ

b“1

G
pbq

“
1

BI ¨BMC

ÿ

Gp rZb,b1

k q

11: Compute the variance s21 for the BI averages G
pbq
.

12: Compute the variance s22 for all Gp rZb,b1

k q.
13: Compute combined variance s2:

s2 “
1

BI ¨BMC

ˆ

k2 ¨BI ¨BMC

N
s21 ` s22

˙

,

14: Return rG ´ z1´α{2s,G ` z1´α{2ss as the p1 ´ αq CI for the optimality gap GpF q, with z1´α{2

being the p1 ´ α{2q quantile for a standard normal variable.

76

CHAPTER 5

Uncertainty Quantification in Optimization: Software

Implementations

5.1. boot-sp: Software for data-based stochastic programming

We developed a Python software, boot-sp, for the bootstrap and bagging methods discussed

in Chapter 4. The software is accessible via https://github.com/boot-sp/boot-sp.git. The

boot-sp package is specifically designed to compute point estimators and confidence intervals for

the optimality gap in two-stage stochastic programs and is well-suited for conducting simulations

tailored to research needs.

The open-source software we describe here takes as input an optimization model and a data

sample for the uncertain parameters of the optimization model. A user of the software provides a

Python module that has a few procedures, the most important of which takes a sample of data, ξ, as

an argument, and returns a Pyomo model for gpx, ξq. The module also contains helper procedures

to deal with data processing related to the particular problem. As output, the software provides an

estimated solution, a confidence interval for the value of that solution, and a confidence interval for

the optimality gap, implying a confidence interval for the optimal objective function value. Hence, it

provides a mechanism for data-driven optimization of the expected value, which naturally includes

expectation-based risk measures such as CVaR.

The software currently supports the following methods:

‚ Classical Bootstrap,

‚ Extended Bootstrap,

‚ Subsampling,

‚ Bagging with replacement,

‚ Bagging without replacement,

‚ Smoothed Bootstrap, and

‚ Smoothed Bagging.

77

https://github.com/boot-sp/boot-sp.git

For both the Classical and Smoothed Bootstrap methods, the software provides options to gen-

erate confidence intervals based on standard normal assumptions or using quantile-based intervals.

Additionally, for the Smoothed Bootstrap and Smoothed Bagging methods, users can choose from

various forms of fitted distributions, such as kernel density estimation and epi-spline fitting, to tailor

the analysis to specific data characteristics and requirements. We are able to exploit the similarities

between the methods by creating parameterized functions that perform the calculations.

Figure 5.1 gives an overview of the top-level software components. The function solve routine

calls lower-level code in mpi-sppy and Pyomo to minimize functions of the form 1
N

ř

zjPZN
gppx, zjq.

The function evaluate scenarios calls lower-level code in mpi-sppy and Pyomo to evaluate ex-

pectations of the form such as 1
N

ř

zjPZN
gppx, zjq. The differences in methods are due to the way in

which these functions are used.

Figure 5.1. High level view of software organization.

The algorithms given in Section 4.2 and 4.5 have loops over B. In boot-sp, those loops are

parallelized using MPI. MPI offers advantages for distributed memory computers at the expense of

being difficult to install, particularly on Windows computers.

78

In most serious applications, we expect that boot sp.py and smoothed boot sp.py will be used

as a callable library. Nonetheless, the user boot.py program is provided to demonstrate the con-

cept of data-driven stochastic programming, so it provides full command line arguments. The main

contribution of boot-sp is bootstrap or bagging estimation of confidence intervals. Consequently,

it is expected the users will have other codes to find a candidate solution px. However, in order for

boot-sp to give a concrete illustration of the concept of data-driving stochastic programming, we

offer an option to call a function that uses mpi-sppy to compute px.

The simulate boot.py software is callable from the command line, but that is mainly for

illustration purposes. We also distribute the program simulate experiments.py that runs the

experiments in [15]. It calls simulate boot.py in a loop to compute the coverage and width

statistics for the confidence intervals.

5.2. Summary Experiment for Smoothed Bootstrap and Smoothed Bagging

We report on simulation experiments to measure the effect of various parameter settings and

algorithm design decisions. The relative running times of the algorithms and the quality of their

estimates are considered. Out-of-sample tests for the quality of an estimated px are fairly straight-

forward; however, evaluation of α-level confidence interval estimates of the optimality gap is more

complicated because their quality is a two-dimensional object. The dimensions are sometimes called

skill, which refers to the degree to which 1´α of subsequently observed data is within the interval,

and sharpness, which refers to the size of the interval. The time required to compute the estimates

adds a third dimension.

To simplify and enhance the clarity of our experimental outcomes, we employ abbreviations to

denote our suggested algorithms. Specifically, we use BT instead of “bootstrap algorithms”, and

BG instead of “bagging algorithms”. We utilize the prefix “S” to signify the application of the

smoothed fitted distribution, while the suffix “K/E” will indicate the choice between kernel density

estimation and epi-spline fitting. Furthermore, we append the suffix “Q” to BT when employing the

quantile method to create bootstrap confidence intervals. Since there were no substantial differences

in the results between bagging with replacement and bagging without replacement, the subsequent

figures and tables will exclusively display the results obtained using bagging with replacement,

which is indicated by the method label BG. Times are given in seconds.

79

Table 5.1 summarizes the distributions that are used in our algorithms and whether or not the

point estimators are obtained via aggregation in each method. The notation FN is used to represent

the empirical distribution derived from the sample, FN “ 1
N

ř

δzi , while
qFN is employed to denote

the fitted smoothed distribution function, which can be obtained through methods such as kernel

density estimation or epi-spline fitting.

Distribution Aggregated
Method Algorithm Used Point Estimator
BT 7 FN No

S-BT 12 qFN No
BG 10 FN Yes

S-BG 13 qFN Yes

Table 5.1. Method summary

We provide plots that compare the coverage rates and the length of the generated confidence

intervals for different methods.

Based on our initial set of experiments, we have observed that, at least for the three examples we

have tested, the proposed bagging algorithms provide better point estimators for the center of the

confidence intervals when compared with bootstrap methods. Consequently, this leads to a higher

coverage rate for the confidence intervals constructed by the bagging method. Within the distinct

categories of bootstrap and bagging, we have noticed that when we introduce a “smoothing” effect

by incorporating kernel density estimation instead of the empirical distribution for resampling, the

coverage rate increases with the length of the confidence interval. See Tables 5.2, 5.3, 5.4.

method N B k len-avg len-std coverage-2 coverage-1 time-avg time-std
BT 40 400 - 1.05 0.43 0.873 0.890 3.47 0.77
BT-Q 40 400 - 1.01 0.44 0.739 0.751 3.56 0.83
S-BT-K 40 400 - 1.24 0.47 0.907 0.951 9.26 0.33
BG 40 400 20 1.07 0.45 0.900 0.930 1.83 0.40
S-BG 40 10/40 20 1.39 0.61 0.912 0.983 5.40 0.42

Table 5.2. Results for CVaR based on 800 replications. coverage-2 reports the
coverage rate for the two-sided 90% interval, and coverage-1 reports the cover-
age rate for the one-sided 95% interval. The center for the smoothed bootstrap
method is estimated by resampling 16N data points from the fitted distribution.
The smoothed-bagging methods used BI “ 10 and BMC “ 40, so that the total
number of batches matches the one in the original bagging procedure.

80

Figure 5.2. Results for CVaR based on 500 replications. Two-sided CI reports the
coverage rate for the two-sided 90% interval, and One-sided CI reports the coverage
rate for the one-sided 95% interval. The center for the smoothed bootstrap method
is estimated by resampling 8N data points from the fitted distribution. The size of
the set ZN is fixed at N “ 40 and the number of bootstrap replications is fixed at
B “ 400. The sub-sample size for the bagging and the smoothed bagging methods
is k “ 30. The smoothed bagging methods used BI “ 10 and BMC “ 40, so that
the total number of batches matches the one in the original bagging procedure.

81

Figure 5.3. Results for farmer based on 500 replications. Two-sided CI reports the
coverage rate for the two-sided 90% interval, and One-sided CI reports the coverage
rate for the one-sided 95% interval. The center for the smoothed bootstrap method
is estimated by resampling 8N data points from the fitted distribution. The size of
the set ZN is fixed at N “ 40 and the number of bootstrap replications is fixed at
B “ 400. The sub-sample size for the bagging and the smoothed bagging methods
is k “ 30. The smoothed bagging methods used BI “ 10 and BMC “ 40, so that
the total number of batches matches the one in the original bagging procedure.

method N B k len-avg len-std coverage-2 coverage-1 time-avg time-std
BT 40 400 - 6776.44 896.65 0.897 0.945 22.23 3.98
BT-Q 40 400 - 6701.22 951.80 0.861 0.910 22.35 3.91
S-BT-K 40 400 - 3972.89 367.00 0.981 0.998 61.40 1.67
BG 40 400 20 6854.71 944.33 0.897 0.988 5.36 1.16
S-BG 40 10/40 20 7063.76 1107.77 1.000 1.000 25.21 1.53

Table 5.3. Results for farmer based on 800 replications. coverage-2 reports the
coverage rate for the two-sided 90% interval, and coverage-1 reports the coverage
rate for the one-sided 95% interval. The center for the smoothed bootstrap method is
estimated by resampling 8N data points from the fitted distribution. The smoothed-
bagging methods used BI “ 10 and BMC “ 40, so that the total number of batches
matches the one in the original bagging procedure

82

method N B k len-avg len-std coverage-2 coverage-1 time-avg time-std
BT 40 400 - 1243.45 365.85 0.924 0.975 39.47 1.13
BT-Q 40 400 - 1213.02 360.25 0.920 0.940 39.43 1.04
S-BT-K 40 400 - 1618.27 309.96 0.934 0.939 71.61 2.39
BG 40 400 20 1278.33 362.00 0.805 0.998 17.84 0.55
S-BG 40 10/40 20 1718.40 477.98 0.964 0.990 27.64 1.42

Table 5.4. Results for multi-knapsack based on 800 replications. coverage-2 re-
ports the coverage rate for the two-sided 90% interval, and coverage-1 reports the
coverage rate for the one-sided 95% interval. The center for the smoothed bootstrap
method is estimated by resampling 8N data points from the fitted distribution. The
smoothed-bagging methods used BI “ 10 and BMC “ 40, so that the total number
of batches matches the one in the original bagging procedure

Figure 5.4. Results for multi-knapsack problem based on 500 replications. Two-
sided CI reports the coverage rate for the two-sided 90% interval, and One-sided
CI reports the coverage rate for the one-sided 95% interval. The center for the
smoothed bootstrap method is estimated by resampling 8N data points from the
fitted distribution. The size of the set ZN is fixed at N “ 40 and the number of
bootstrap replications is fixed at B “ 400. The sub-sample size for the bagging and
the smoothed bagging methods is k “ 30. The smoothed bagging methods used
BI “ 10 and BMC “ 40, so that the total number of batches matches the one in the
original bagging procedure.

5.3. Parameter Selection for Smoothed Bootstrap

In our experiments regarding the parameters of Algorithm 12, we resample nc points from the

fitted smoothed distribution, and use the optimality gap associated with the nc points as our point

83

estimator sG. It can be seen from Tables 5.5 and 5.6 that enhanced performance is achieved by

resampling more data points from the fitted distribution, as increasing the resample size nc for

the center estimator corresponds to an increase in the coverage rates of the two-sided confidence

interval as well.

method nc coverage-2 coverage-1
S-BT-K 320 0.906 0.946
S-BT-K 200 0.880 0.958
S-BT-K 120 0.863 0.965

Table 5.5. Results for CVaR with α=0.05 based on 500 replications. The size of
the set ZN is fixed at N “ 40, and the number of batches for bootstrap replications
is fixed at B “ 400. Center estimated using varying nc data points. coverage-2
reports coverage rates for two-sided 90% confidence interval, and coverage-1 reports
coverage rates for one-sided 95% confidence interval. The length of the confidence
interval remains the same.

method nc coverage-2 coverage-1
S-BT-K 320 0.972 0.992
S-BT-K 200 0.958 0.988
S-BT-K 120 0.932 0.975

Table 5.6. Results for farmer with α=0.05 based on 500 replications. The size of
the set ZN is fixed at N “ 40, and the number of batches for bootstrap replications
is fixed at B “ 400. Center estimated using varying nc data points. coverage-2
reports coverage rates for two-sided 90% confidence interval, and coverage-1 reports
coverage rates for one-sided 95% confidence interval. The length of the confidence
interval remains the same.

For reference, we included the results for the smoothed bootstrap algorithm as in Algorithm 12,

but use the empirical point estimator GpZN q as the point estimator in constructing the confidence

interval. As seen in Table 5.7, the confidence interval utilizing the empirical point estimator GpZN q

as the center yields sub-optimal coverage rates and should be avoided in practice.

problem method coverage-2 coverage-1
CVaR S-BT-K 0.703 0.713
farmer S-BT-K 0.523 0.738

Table 5.7. Results with α=0.05 based on 500 replications. The size of the set ZN

is fixed at N “ 40, and the number of batches for bootstrap replications is fixed at
B “ 400.

84

Using the kernel density estimation works well for getting good results with the smoothed

bootstrap method, as shown in Table 5.8. It seems to be just as good as or even better than

using epi-spline fitting. We noticed that when we switch from epi-spline fitting to kernel density

estimation, the coverage rate increases with the same settings. By default, the bandwidth utilized

in the kernel density estimation within our code is determined by Scott’s rule [90]. However, before

finalizing the bandwidth selection, we visually inspect the results of the kernel density estimation to

ensure that the resulting curve strikes a balance between smoothness and avoiding over-smoothing.

We defer the exploration of the impacts of varying bandwidths to future research endeavors.

problem method len-avg coverage-2 coverage-1
CVaR S-BT-E 1.02 0.845 0.880
CVaR S-BT-K 1.23 0.906 0.946
farmer S-BT-E 3803.31 0.963 0.985
farmer S-BT-K 3978.63 0.972 0.992

Table 5.8. Results with α=0.05 based on 500 replications. The size of the set ZN

is fixed at N “ 40, and the number of batches for bootstrap replications is fixed at
B “ 400. The center for the smoothed bootstrap method is estimated by resampling
8N data points from the fitted distribution.

5.4. Parameter Selection for Smoothed Bagging

The bagging methods work well in constructing a confidence interval, even when we only have

a really small data set at hand. For example, in Table 5.9, with a sample size of N “ 20, one

is still able to apply the bagging methods to construct a confidence interval with a high coverage

rate. The introduced smoothness introduces more randomness into the problem, with increased

lengths for the confidence intervals and higher coverage rates with a small data set, as can be seen

in Table 5.9.

85

problem method B len-avg len-std coverage-2 coverage-1
CVaR BG 200 1.51 0.83 0.902 0.927
CVaR S-BG 10/40 1.86 1.08 0.860 0.973
CVaR S-BG 20/80 1.87 0.91 0.939 0.985
farmer BG 200 9564.85 1973.87 0.885 0.959
farmer S-BG 10/40 9907.56 1452.74 1.000 1.000
farmer S-BG 20/80 9826.73 897.56 1.000 1.000
knapsack BG 200 1920.37 616.58 0.743 0.998
knapsack S-BG 10/40 2366.64 697.35 0.887 0.995
knapsack S-BG 20/80 2451.05 495.75 0.950 0.998

Table 5.9. Results based on 800 replications. The size of the set ZN is fixed at
N “ 20, and the subsample size k “ N{2. Coverage-2 reports the coverage rate for
the two-sided 90% interval, and coverage-1 reports the coverage rate for the one-
sided 95% interval. For the smoothed bagging method, the first number in the B
column represents BI , and the second one is BMC .

Certainly, a larger dataset ZN results in an improved estimation of the confidence interval. In

Table 5.10, when we increase the sample size from N “ 20 to N “ 40, we observe reductions in

both the average length and the standard deviation of the interval without sacrificing the superior

coverage rate.

method N B len-avg len-std coverage-2 coverage-1
BG 20 200 1.51 0.83 0.902 0.927
S-BG 20 20/80 1.87 0.91 0.939 0.985
BG 40 200 1.10 0.47 0.900 0.926
S-BG 40 20/80 1.29 0.52 0.916 0.981

Table 5.10. Results for CVaR based on 800 replications. The subsample size k
is fixed at k “ N{2 .Coverage-2 reports the coverage rate for the two-sided 90%
interval, and coverage-1 reports the coverage rate for the one-sided 95% interval.

For the smoothed bagging algorithm, both a sufficiently large BI and a sufficiently large BMC

are required to obtain a good coverage without excessive long length in the confidence interval,

but as indicated in [69], it is more critical to use a large BMC to obtain an accurate estimation of

variance; see Table 5.11.

86

method B-I B-MC len-avg len-std coverage-2 coverage-1
S-BG 10 20 1.69 0.75 0.968 0.994
S-BG 10 100 1.22 0.62 0.879 0.968
S-BG 20 20 1.77 0.67 0.981 0.995
S-BG 20 100 1.30 0.54 0.934 0.980
S-BG 30 20 1.78 0.63 0.983 0.995
S-BG 30 100 1.33 0.51 0.949 0.984

Table 5.11. Results for CVaR based on 800 replications. The size of the set ZN is
fixed at N “ 40, and the subsample size k “ N{2. Coverage-2 reports the coverage
rate for the two-sided 90% interval, and coverage-1 reports the coverage rate for the
one-sided 95% interval. For the smoothed bagging method, the first number in the
B column represents BI , and the second one is BMC .

5.5. Summary of non-smoothed Method Comparisons

We demonstrate experiments on the algorithms over a few examples as detailed below. For

simulation purposes, we grant ourselves access to the actual distribution F of the random variable,

and approximate the theoretical optimal function value z˚ by drawing an extremely large number

of samples from the distribution F , then compute the corresponding optimal function value, which

we use as z˚ for the simulations.

‚ Small Schultz Examples

– Unique Solution: This example is from [89] and used in [31, p. 129]. Results are

shown in Table 5.12.

– Non-unique Solution: This example is a modified version of the previous problem

used in [31, p. 131]. This problem has multiple optima. Results are shown in

Table 5.13.

‚ CVaR: See Section 2.5.1 for the introduction to the CVaR example. Results are shown

in Table 5.14.

‚ Scalable Farmer: See Section 2.5.1 for the introduction to the farmer example. Results

are shown in Tables 5.15.

We replicate the execution of each algorithm a large number (e.g. 500) times with a fixed

candidate solution px. In each replication, a new set ZN is drawn independently from F , and the

algorithm is executed to return a p1 ´ 2αq confidence interval for the optimal function value z˚.

The coverage rate is then reported as the percentages of the confidence intervals that contain z˚

87

over the 500 runs. We also report the average length of the confidence intervals, denoted as “avg

len”, over the repeated experiments for each algorithm. The average length of the CIs to some

extent represents the sharpness of the intervals computed by the algorithms.

These experiments are intended mainly to illustrate that the software can be used for such

experiments. They do illustrate the unsurprising result that if the samples are too small, the

confidence intervals will not be very good. They also suggest that the method we call Extended,

which is sort of an afterthought in [31], does not seem to work all that well.

The results are mostly reasonable, but mixed and depend on the availability of enough data as

well as the choice of method and parameters. Detailed conclusions are beyond the scope of this

small study. A preliminary indication is that bagging might be the best thing to try first.

One other thing to note, though, concerns CVaR. Since CVaR considers the tail, getting good

confidence intervals requires a larger value of N . Perhaps for similar reasons, quantile-based inter-

vals do not seem to be as good as Gaussian.

88

method N B k avg len coverage
Classical gaussian 40 100 - 8.04 0.92
Classical gaussian 80 100 - 5.58 0.90
Classical gaussian 40 500 - 8.01 0.92
Classical gaussian 80 500 - 5.73 0.93
Classical quantile 40 100 - 7.82 0.88
Classical quantile 80 100 - 5.41 0.87
Classical quantile 40 500 - 7.97 0.90
Classical quantile 80 500 - 5.69 0.89
Bagging with replacement 40 100 16 9.36 0.93
Bagging with replacement 40 100 24 9.38 0.95
Bagging with replacement 40 100 32 9.42 0.96
Bagging with replacement 80 100 32 7.62 0.97
Bagging with replacement 80 100 48 7.39 0.97
Bagging with replacement 80 100 64 7.49 0.98
Bagging with replacement 40 500 16 8.21 0.90
Bagging with replacement 40 500 24 8.15 0.89
Bagging with replacement 40 500 32 8.26 0.91
Bagging with replacement 80 500 32 6.08 0.93
Bagging with replacement 80 500 48 6.05 0.95
Bagging with replacement 80 500 64 6.07 0.95
Bagging without replacement 40 100 16 9.32 0.95
Bagging without replacement 40 100 24 9.59 0.93
Bagging without replacement 40 100 32 9.43 0.94
Bagging without replacement 80 100 32 7.54 0.98
Bagging without replacement 80 100 48 7.83 0.98
Bagging without replacement 80 100 64 7.68 0.95
Bagging without replacement 40 500 16 8.42 0.91
Bagging without replacement 40 500 24 8.58 0.94
Bagging without replacement 40 500 32 8.60 0.93
Bagging without replacement 80 500 32 6.16 0.93
Bagging without replacement 80 500 48 6.29 0.95
Bagging without replacement 80 500 64 6.26 0.95
Subsampling 40 100 16 6.15 0.79
Subsampling 40 100 24 5.08 0.73
Subsampling 40 100 32 3.52 0.58
Subsampling 80 100 32 4.36 0.80
Subsampling 80 100 48 3.62 0.72
Subsampling 80 100 64 2.54 0.55
Subsampling 40 500 16 6.30 0.81
Subsampling 40 500 24 5.18 0.74
Subsampling 40 500 32 3.65 0.56
Subsampling 80 500 32 4.45 0.82
Subsampling 80 500 48 3.68 0.74
Subsampling 80 500 64 2.58 0.56
Extended 40 100 - 8.29 0.88
Extended 80 100 - 5.37 0.81
Extended 40 500 - 8.22 0.90
Extended 80 500 - 5.60 0.86

Table 5.12. Results for unique schultz (z˚ « -62.29) with α=0.1 based on 100
replications.

89

method N B k avg len coverage
Classical gaussian 40 100 - 7.92 0.90
Classical gaussian 80 100 - 5.46 0.91
Classical gaussian 40 500 - 7.89 0.89
Classical gaussian 80 500 - 5.60 0.93
Classical quantile 40 100 - 7.72 0.89
Classical quantile 80 100 - 5.30 0.86
Classical quantile 40 500 - 7.84 0.90
Classical quantile 80 500 - 5.57 0.92
Bagging with replacement 40 100 16 9.23 0.93
Bagging with replacement 40 100 24 9.24 0.94
Bagging with replacement 40 100 32 9.28 0.96
Bagging with replacement 80 100 32 7.45 0.96
Bagging with replacement 80 100 48 7.23 0.97
Bagging with replacement 80 100 64 7.32 0.97
Bagging with replacement 40 500 16 8.10 0.89
Bagging with replacement 40 500 24 8.02 0.89
Bagging with replacement 40 500 32 8.13 0.91
Bagging with replacement 80 500 32 5.95 0.92
Bagging with replacement 80 500 48 5.92 0.94
Bagging with replacement 80 500 64 5.94 0.94
Bagging without replacement 40 100 16 9.19 0.95
Bagging without replacement 40 100 24 9.43 0.93
Bagging without replacement 40 100 32 9.27 0.92
Bagging without replacement 80 100 32 7.38 0.98
Bagging without replacement 80 100 48 7.63 0.98
Bagging without replacement 80 100 64 7.50 0.96
Bagging without replacement 40 500 16 8.29 0.90
Bagging without replacement 40 500 24 8.44 0.91
Bagging without replacement 40 500 32 8.46 0.93
Bagging without replacement 80 500 32 6.03 0.93
Bagging without replacement 80 500 48 6.14 0.96
Bagging without replacement 80 500 64 6.11 0.94
Subsampling 40 100 16 6.04 0.82
Subsampling 40 100 24 4.99 0.72
Subsampling 40 100 32 3.45 0.61
Subsampling 80 100 32 4.28 0.81
Subsampling 80 100 48 3.52 0.76
Subsampling 80 100 64 2.48 0.57
Subsampling 40 500 16 6.21 0.83
Subsampling 40 500 24 5.10 0.78
Subsampling 40 500 32 3.59 0.60
Subsampling 80 500 32 4.36 0.83
Subsampling 80 500 48 3.60 0.78
Subsampling 80 500 64 2.52 0.56
Extended 40 100 - 8.16 0.86
Extended 80 100 - 5.16 0.81
Extended 40 500 - 8.08 0.88
Extended 80 500 - 5.45 0.89

Table 5.13. Results for nonunique schultz (z˚ « -61.36) with α=0.1 based on 100
replications.

90

method N B k avg len coverage
Classical gaussian 300 100 - 0.36 0.90
Classical gaussian 600 100 - 0.26 0.82
Classical gaussian 300 1000 - 0.36 0.94
Classical gaussian 600 1000 - 0.26 0.80
Classical quantile 300 100 - 0.35 0.50
Classical quantile 600 100 - 0.25 0.57
Classical quantile 300 1000 - 0.36 0.69
Classical quantile 600 1000 - 0.26 0.58
Bagging with replacement 300 100 120 0.63 1.00
Bagging with replacement 300 100 180 0.62 1.00
Bagging with replacement 300 100 240 0.62 1.00
Bagging with replacement 600 100 240 0.62 1.00
Bagging with replacement 600 100 360 0.63 1.00
Bagging with replacement 600 100 480 0.62 1.00
Bagging with replacement 300 1000 120 0.20 1.00
Bagging with replacement 300 1000 180 0.20 1.00
Bagging with replacement 300 1000 240 0.20 1.00
Bagging with replacement 600 1000 240 0.20 1.00
Bagging with replacement 600 1000 360 0.20 1.00
Bagging with replacement 600 1000 480 0.20 1.00
Bagging without replacement 300 100 120 0.81 1.00
Bagging without replacement 300 100 180 0.99 1.00
Bagging without replacement 300 100 240 1.39 1.00
Bagging without replacement 600 100 240 0.80 1.00
Bagging without replacement 600 100 360 0.99 1.00
Bagging without replacement 600 100 480 1.39 1.00
Bagging without replacement 300 1000 120 0.26 1.00
Bagging without replacement 300 1000 180 0.31 1.00
Bagging without replacement 300 1000 240 0.45 1.00
Bagging without replacement 600 1000 240 0.26 1.00
Bagging without replacement 600 1000 360 0.32 1.00
Bagging without replacement 600 1000 480 0.45 1.00
Subsampling 300 100 120 0.36 0.65
Subsampling 300 100 180 0.35 0.61
Subsampling 300 100 240 0.35 0.60
Subsampling 600 100 240 0.26 0.64
Subsampling 600 100 360 0.26 0.60
Subsampling 600 100 480 0.25 0.50
Subsampling 300 1000 120 0.36 0.67
Subsampling 300 1000 180 0.36 0.65
Subsampling 300 1000 240 0.36 0.62
Subsampling 600 1000 240 0.26 0.63
Subsampling 600 1000 360 0.26 0.62
Subsampling 600 1000 480 0.26 0.67
Extended 300 100 - 0.50 0.79
Extended 600 100 - 0.36 0.71
Extended 300 1000 - 0.51 0.85
Extended 600 1000 - 0.36 0.81

Table 5.14. Results for cvar (z˚ « 1.79) with α=0.1 based on 100 replications.

91

method N B k avg len coverage
Classical gaussian 30 100 - 28259.46 0.887
Classical gaussian 60 100 - 20181.52 0.892
Classical gaussian 30 1000 - 28294.08 0.885
Classical gaussian 60 1000 - 20272.41 0.907
Classical quantile 30 100 - 27343.29 0.870
Classical quantile 60 100 - 19645.95 0.877
Classical quantile 30 1000 - 28236.30 0.880
Classical quantile 60 1000 - 20235.36 0.905
Bagging with replacement 30 100 12 31422.27 0.932
Bagging with replacement 30 100 18 31257.34 0.938
Bagging with replacement 30 100 24 32061.31 0.932
Bagging with replacement 60 100 24 25164.00 0.955
Bagging with replacement 60 100 36 25298.68 0.953
Bagging with replacement 60 100 48 25285.28 0.950
Bagging with replacement 30 1000 12 28323.03 0.895
Bagging with replacement 30 1000 18 28489.61 0.902
Bagging with replacement 30 1000 24 28554.10 0.900
Bagging with replacement 60 1000 24 20614.13 0.907
Bagging with replacement 60 1000 36 20688.71 0.907
Bagging with replacement 60 1000 48 20751.51 0.905
Bagging without replacement 30 100 12 32638.99 0.935
Bagging without replacement 30 100 18 32640.54 0.920
Bagging without replacement 30 100 24 32558.19 0.930
Bagging without replacement 60 100 24 25546.72 0.965
Bagging without replacement 60 100 36 25369.97 0.963
Bagging without replacement 60 100 48 25711.17 0.970
Bagging without replacement 30 1000 12 29438.81 0.902
Bagging without replacement 30 1000 18 29629.62 0.905
Bagging without replacement 30 1000 24 29664.24 0.895
Bagging without replacement 60 1000 24 21069.04 0.915
Bagging without replacement 60 1000 36 21175.03 0.917
Bagging without replacement 60 1000 48 21287.06 0.922
Subsampling 30 100 12 21560.28 0.777
Subsampling 30 100 18 17703.34 0.680
Subsampling 30 100 24 12593.48 0.502
Subsampling 60 100 24 15389.09 0.785
Subsampling 60 100 36 12457.75 0.680
Subsampling 60 100 48 8943.31 0.500
Subsampling 30 1000 12 22124.33 0.797
Subsampling 30 1000 18 18209.22 0.690
Subsampling 30 1000 24 12877.64 0.510
Subsampling 60 1000 24 15739.58 0.790
Subsampling 60 1000 36 12903.63 0.700
Subsampling 60 1000 48 9166.89 0.525
Extended 30 100 - 26890.50 0.848
Extended 60 100 - 19620.82 0.863
Extended 30 1000 - 28080.65 0.870
Extended 60 1000 - 20435.31 0.875

Table 5.15. Results for farmer (z˚ « -132750.32) with α=0.1 based on 400 repli-
cations.

92

CHAPTER 6

Conclusion

The dissertation explored the applications of Monte Carlo and Bootstrap methods to stochastic

optimization.

Given a candidate solution for a stochastic optimization problem, we propose a method to

effectively compute the function value by constructing importance sampling distributions using

surrogate modeling. Our methods strive to reduce the need for evaluation of the recourse function

because these evaluations often require the use of optimization algorithms and can be computa-

tionally expensive. We show numerical results that demonstrate that the proposed method offers

a significant improvement over Monte Carlo sampling even when augmented by importance sam-

pling because the surrogate model allows for much faster evaluation than is required to solve an

optimization problem. We also demonstrate good parallel efficiency for up to 16 processors.

Nest, we focus on uncertainty quantification in stochastic optimization when the underlying

distribution is known, and we discussed Multiple Replication Procedures and Sequential Sampling

Procedures. These procedures are used to create confidence intervals around the optimality gap

of a given first-stage solution for two-stage and multi-stage stochastic programs. In addition, we

explore bootstrap and bagging methods, which utilize only sampled data to derive asymptotically

valid estimated solutions and quality assessments. We introduced various combinations of distri-

bution estimation and resampling techniques for data-driven stochastic programming problems.

Specifically, we adapt the smoothed bootstrap method and develop the smoothed bagging method

in the context of stochastic optimization. These algorithms are designed to acquire solutions and

calculate the confidence intervals for the optimality gap.

Finally, we introduce the software tool boot-sp developed for uncertainty quantification in sto-

chastic programming. This tool efficiently generates both a consistent sample-average solution and

reliable estimates of confidence intervals for the optimality gap using the discussed bootstrap and

bagging techniques. Our numerical experiments demonstrated the effectiveness of the smoothed

bootstrap and smoothed bagging methods in constructing confidence intervals for small datasets,

93

although with a longer computational time compared to empirical bootstrap and bagging algo-

rithms.

Despite the promising results, several questions remain open for further investigation. In terms

of evaluating function values using the importance sampling method with surrogate modeling,

future research should explore how to incorporate prior knowledge into the construction of the

surrogate.

Regarding uncertainty quantification with smoothed bootstrap and smoothed bagging, a pri-

mary area of inquiry involves determining which types of problem most benefit from the smoothness

effect introduced by the proposed algorithms. These methods present a trade-off between achiev-

ing high coverage rates and reducing computational time. Consequently, it becomes interesting

to explore the optimal number of bootstrap samples required to yield accurate estimations. An

additional experimental question addresses the common challenge of sample allocation: specifically,

determining the optimal distribution of finite samples between computing the candidate solution

and estimating confidence intervals.

94

Bibliography

[1] T. Alsup and B. Peherstorfer, Context-aware surrogate modeling for balancing approximation and sampling

costs in multifidelity importance sampling and bayesian inverse problems, SIAM/ASA Journal on Uncertainty

Quantification, 11 (2023), pp. 285–319.

[2] M. Anitescu and C. Petra, Higher-order confidence intervals for stochastic programming using bootstrapping,

tech. rep., Citeseer, 2011.

[3] A. Azaron, K. Brown, S. A. Tarim, and M. Modarres, A multi-objective stochastic programming approach

for supply chain design considering risk, International Journal of Production Economics, 116 (2008), pp. 129–

138.

[4] T. G. Bailey, P. A. Jensen, and D. P. Morton, Response surface analysis of two-stage stochastic linear

programming with recourse, Naval Research Logistics (NRL), 46 (1999), pp. 753–776.

[5] G. Bayraksan and D. P. Morton, Assessing solution quality in stochastic programs, Mathematical Program-

ming, 108 (2006), pp. 495–514.

[6] , Assessing solution quality in stochastic programs via sampling, in Decision Technologies and Applications,

Informs, 2009, pp. 102–122.

[7] , A sequential sampling procedure for stochastic programming, Operations Research, 59 (2011), pp. 898–

913.

[8] G. Bayraksan and P. Pierre-Louis, Fixed-width sequential stopping rules for a class of stochastic programs,

SIAM Journal on Optimization, 22 (2012), pp. 1518–1548.

[9] , Fixed-width sequential stopping rules for a class of stochastic programs, SIAM Journal on Optimization,

22 (2012), pp. 1518–1548.

[10] J. R. Birge and F. Louveaux, Introduction to stochastic programming, Springer Science & Business Media,

2011.

[11] L. Breiman, Bagging predictors, Machine learning, 24 (1996), pp. 123–140.

[12] P. Bühlmann and B. Yu, Analyzing bagging, The annals of Statistics, 30 (2002), pp. 927–961.

[13] M. L. Bynum, G. A. Hackebeil, W. E. Hart, C. D. Laird, B. L. Nicholson, J. D. Siirola, J.-P.

Watson, and D. L. Woodruff, Pyomo–optimization modeling in python, vol. 67, Springer Science & Business

Media, third ed., 2021.

[14] X. Chen, S. Cazaux, B. C. Knight, and D. L. Woodruff, Confidence interval software for multi-stage

stochastic programs. Optimization Online, 2021.

95

[15] X. Chen and D. L. Woodruff, Software for data-based stochastic programming using bootstrap estimation,

INFORMS Journal on Computing, 35 (2023), pp. 1218–1224.

[16] , Distributions and bootstrap for data-based stochastic programming, Computational Management Science,

21 (2024).

[17] , Importance sampling in optimization under uncertainty using surrogate models, in Proceedings of the

Winter Simulation Conference, 2024. To appear.

[18] A. Chiralaksanakul and D. P. Morton, Assessing policy quality in multi-stage stochastic programming,

Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, Institut für Mathematik,

2004.

[19] G. B. Dantzig, Linear programming under uncertainty, Management science, 1 (1955), pp. 197–206.

[20] G. B. Dantzig and P. W. Glynn, Parallel processors for planning under uncertainty, Annals of Operations

research, 22 (1990), pp. 1–21.

[21] G. B. Dantzig and G. Infanger, Multi-stage stochastic linear programs for portfolio optimization, Annals of

Operations Research, 45 (1993), pp. 59–76.

[22] A. C. Davison and D. V. Hinkley, Bootstrap methods and their application, Cambridge university press,

1997.

[23] D. De Angelis and G. A. Young, Smoothing the bootstrap, International Statistical Review/Revue Interna-

tionale de Statistique, (1992), pp. 45–56.

[24] V. L. De Matos, D. P. Morton, and E. C. Finardi, Assessing policy quality in a multistage stochastic

program for long-term hydrothermal scheduling, Annals of Operations Research, 253 (2017), pp. 713–731.

[25] T. J. Diciccio and J. P. Romano, A review of bootstrap confidence intervals, Journal of the Royal Statistical

Society Series B: Statistical Methodology, 50 (1988), pp. 338–354.

[26] O. Dowson and L. Kapelevich, Sddp.jl: A julia package for stochastic dual dynamic programming, INFORMS

Journal on Computing, 33 (2020), pp. 27–33.

[27] S. S. Drew and T. Homem-de Mello, Quas-monte carlo strategies for stochastic optimization, in Proceedings

of the 2006 winter simulation conference, IEEE, 2006, pp. 774–782.

[28] J. Dupacová and R. Wets, Asymptotic behavior of statistical estimators and of optimal solutions of stochastic

optimization problems, The annals of statistics, 16 (1988), pp. 1517–1549.

[29] B. Efron, Nonparametric estimates of standard error: the jackknife, the bootstrap and other methods,

Biometrika, 68 (1981), pp. 589–599.

[30] , The jackknife, the bootstrap and other resampling plans, SIAM, 1982.

[31] A. Eichhorn and W. Römisch, Stochastic integer programming: Limit theorems and confidence intervals,

Mathematics of Operations Research, 32 (2007), pp. 118–135.

[32] Y. M. Ermoliev and R.-B. Wets, Numerical techniques for stochastic optimization, Springer-Verlag, 1988.

96

[33] M. B. Freimer, J. T. Linderoth, and D. J. Thomas, The impact of sampling methods on bias and variance

in stochastic linear programs, Computational Optimization and Applications, 51 (2012), pp. 51–75.

[34] D. Frisch and U. D. Hanebeck, Rejection sampling from arbitrary multivariate distributions using generalized

fibonacci lattices, in 2022 25th International Conference on Information Fusion (FUSION), IEEE, 2022, pp. 1–7.

[35] R. Fuentes and A. Lillo-Bañuls, Smoothed bootstrap malmquist index based on dea model to compute

productivity of tax offices, Expert systems with applications, 42 (2015), pp. 2442–2450.

[36] R. A. Garrido, P. Lamas, and F. J. Pino, A stochastic programming approach for floods emergency logistics,

Transportation research part E: logistics and transportation review, 75 (2015), pp. 18–31.

[37] S. S. Garud, I. Karimi, and M. Kraft, Smart sampling algorithm for surrogate model development, Com-

puters & Chemical Engineering, 96 (2017), pp. 103–114.

[38] H. Haario, E. Saksman, and J. Tamminen, An adaptive metropolis algorithm, Bernoulli, (2001), pp. 223–242.

[39] W. E. Hart, J.-P. Watson, and D. L. Woodruff, Pyomo: Modeling and solving mathematical programs in

Python, Math. Program. Comput., 3 (2011).

[40] J. L. Higle, Variance reduction and objective function evaluation in stochastic linear programs, INFORMS

Journal on Computing, 10 (1998), pp. 236–247.

[41] J. L. Higle and S. Sen, Stochastic decomposition: An algorithm for two-stage linear programs with recourse,

Mathematics of operations research, 16 (1991), pp. 650–669.

[42] J. L. Higle and S. Sen, Stochastic decomposition: An algorithm for two-stage linear programs with recourse,

Mathematics of Operations Research, 16 (1991), pp. 650–669.

[43] J. L. Higle and S. Sen, Statistical approximations for stochastic linear programming problems, Annals of

operations research, 85 (1999), pp. 173–193.

[44] , Stochastic decomposition: a statistical method for large scale stochastic linear programming, vol. 8,

Springer Science & Business Media, 2013.

[45] T. Homem-de Mello, On rates of convergence for stochastic optimization problems under non–independent

and identically distributed sampling, SIAM Journal on Optimization, 19 (2008), pp. 524–551.

[46] T. Homem-de Mello and G. Bayraksan, Monte carlo sampling-based methods for stochastic optimization,

Surveys in Operations Research and Management Science, 19 (2014), pp. 56–85.

[47] T. Homem-de Mello, V. L. De Matos, and E. C. Finardi, Sampling strategies and stopping criteria for

stochastic dual dynamic programming: a case study in long-term hydrothermal scheduling, Energy Systems, 2

(2011), pp. 1–31.

[48] W. T. Huh, R. Levi, P. Rusmevichientong, and J. B. Orlin, Adaptive data-driven inventory control with

censored demand based on kaplan-meier estimator, Operations Research, 59 (2011), pp. 929–941.

[49] G. Infanger, Monte carlo (importance) sampling within a benders decomposition algorithm for stochastic linear

programs, Annals of Operations Research, 39 (1992), pp. 69—95.

97

[50] A. S. Kenyon and D. P. Morton, Stochastic vehicle routing with random travel times, Transportation Science,

37 (2003), pp. 69–82.

[51] E. Keyvanshokooh, S. M. Ryan, and E. Kabir, Hybrid robust and stochastic optimization for closed-loop

supply chain network design using accelerated benders decomposition, European Journal of Operational Research,

249 (2016), pp. 76–92.

[52] A. J. King, Modeling with stochastic programming, Springer, 2012.

[53] A. J. King and R. T. Rockafellar, Asymptotic theory for solutions in statistical estimation and stochastic

programming, Mathematics of Operations Research, 18 (1993), pp. 148–162.

[54] A. J. Kleywegt, A. Shapiro, and T. Homem-de Mello, The sample average approximation method for

stochastic discrete optimization, SIAM Journal on optimization, 12 (2002), pp. 479–502.

[55] K. A. Klise, B. L. Nicholson, A. Staid, and D. L. Woodruff, Parmest: Parameter estimation via pyomo,

in Proceedings of the 9th International Conference on Foundations of Computer-Aided Process Design, S. G.

Muñoz, C. D. Laird, and M. J. Realff, eds., vol. 47 of Computer Aided Chemical Engineering, Elsevier, 2019,

pp. 41–46.

[56] B. Knueven, D. Mildebrath, C. Muir, J. D. Siirola, J.-P. Watson, and D. L. Woodruff, A par-

allel hub-and-spoke system for large-scale scenario-based optimization under uncertainty, https://mpi-sppy.

readthedocs.io/en/latest/, (2021).

[57] M. Koivu, Variance reduction in sample approximations of stochastic programs, Mathematical programming,

103 (2005), pp. 463–485.

[58] V. Kozḿık and D. P. Morton, Evaluating policies in risk-averse multi-stage stochastic programming, Math-

ematical Programming, 152 (2015), pp. 275–300.

[59] H. Lam and H. Qian, Assessing solution quality in stochastic optimization via bootstrap aggregating, in 2018

Winter Simulation Conference (WSC), IEEE, 2018, pp. 2061–2071.

[60] , Bounding optimality gap in stochastic optimization via bagging: Statistical efficiency and stability, arXiv

preprint arXiv:1810.02905, (2018).

[61] G. Lan and Z. Zhou, Algorithms for stochastic optimization with expectation constraints, arXiv preprint

arXiv:1604.03887, (2016).

[62] P. L’Ecuyer and C. Lemieux, Recent advances in randomized quasi-monte carlo methods, Modeling uncer-

tainty: An examination of stochastic theory, methods, and applications, (2002), pp. 419–474.

[63] Y. Li and Y.-G. Wang, Smooth bootstrap methods for analysis of longitudinal data, Statistics in medicine, 27

(2008), pp. 937–953.

[64] J. Linderoth, A. Shapiro, and S. Wright, The empirical behavior of sampling methods for stochastic

programming, Annals of Operations Research, 142 (2006), pp. 215–241.

98

https://mpi-sppy.readthedocs.io/en/latest/
https://mpi-sppy.readthedocs.io/en/latest/

[65] M. Lubin, O. Dowson, J. Dias Garcia, J. Huchette, B. Legat, and J. P. Vielma, JuMP 1.0: Recent

improvements to a modeling language for mathematical optimization, Mathematical Programming Computation,

(2023).

[66] T. J. Mackman, C. B. Allen, M. Ghoreyshi, and K. Badcock, Comparison of adaptive sampling methods

for generation of surrogate aerodynamic models, AIAA journal, 51 (2013), pp. 797–808.

[67] W.-K. Mak, D. P. Morton, and R. K. Wood, Monte carlo bounding techniques for determining solution

quality in stochastic programs, Operations research letters, 24 (1999), pp. 47–56.

[68] M. D. McKay, R. J. Beckman, and W. J. Conover, A comparison of three methods for selecting values of

input variables in the analysis of output from a computer code, Technometrics, 42 (2000), pp. 55–61.

[69] L. Mentch and G. Hooker, Quantifying uncertainty in random forests via confidence intervals and hypothesis

tests, The Journal of Machine Learning Research, 17 (2016), pp. 841–881.

[70] A. Narayan, C. Gittelson, and D. Xiu, A stochastic collocation algorithm with multifidelity models, SIAM

Journal on Scientific Computing, 36 (2014), pp. A495–A521.

[71] B. L. Nelson, Control variate remedies, Operations Research, 38 (1990), pp. 974–992.

[72] C. Nentwich and S. Engell, Surrogate modeling of phase equilibrium calculations using adaptive sampling,

Computers & Chemical Engineering, 126 (2019), pp. 204–217.

[73] H. Niederreiter, Random number generation and quasi-Monte Carlo methods, SIAM, 1992.

[74] V. I. Norkin, G. C. Pflug, and A. Ruszczyński, A branch and bound method for stochastic global opti-

mization, Mathematical programming, 83 (1998), pp. 425–450.

[75] L. Ntaimo, Computational Stochastic Programming, To publish in Springer Optimization and its Applications,

2023.

[76] P. Parpas, B. Ustun, M. Webster, and Q. K. Tran, Importance sampling in stochastic programming: A

markov chain monte carlo approach, INFORMS Journal on Computing, 27 (2015), pp. 358–377.

[77] B. Peherstorfer, T. Cui, Y. Marzouk, and K. Willcox, Multifidelity importance sampling, Computer

Methods in Applied Mechanics and Engineering, 300 (2016), pp. 490–509.

[78] B. Peherstorfer, K. Willcox, and M. Gunzburger, Survey of multifidelity methods in uncertainty prop-

agation, inference, and optimization, Siam Review, 60 (2018), pp. 550–591.

[79] M. V. Pereira and L. M. Pinto, Multi-stage stochastic optimization applied to energy planning, Mathematical

programming, 52 (1991), pp. 359–375.

[80] E. L. Plambeck, B.-R. Fu, S. M. Robinson, and R. Suri, Sample-path optimization of convex stochastic

performance functions, Mathematical Programming, 75 (1996), pp. 137–176.

[81] W. B. Powell and H. Topaloglu, Stochastic programming in transportation and logistics, Handbooks in

operations research and management science, 10 (2003), pp. 555–635.

[82] A. Prékopa, Stochastic programming, vol. 324, Springer Science & Business Media, 2013.

99

[83] Y. Raviv and N. Intrator, Bootstrapping with noise: An effective regularization technique, Connection

Science, 8 (1996), pp. 355–372.

[84] S. M. Robinson, Analysis of sample-path optimization, Mathematics of Operations Research, 21 (1996),

pp. 513–528.

[85] R. T. Rockafellar and R. J.-B. Wets, Variational analysis, vol. 317, Springer Science & Business Media,

2009.

[86] J. O. Royset and R. J.-B. Wets, Fusion of hard and soft information in nonparametric density estimation,

European Journal of Operational Research, 247 (2015), pp. 532–547.

[87] A. Ruszczyński and A. Shapiro, Stochastic programming models, Handbooks in operations research and

management science, 10 (2003), pp. 1–64.

[88] T. Santoso, S. Ahmed, M. Goetschalckx, and A. Shapiro, A stochastic programming approach for supply

chain network design under uncertainty, European Journal of Operational Research, 167 (2005), pp. 96–115.

[89] R. Schultz, L. Stougie, and M. H. Van Der Vlerk, Solving stochastic programs with integer recourse by

enumeration: A framework using gröbner basis, Mathematical Programming, 83 (1998), pp. 229–252.

[90] D. W. Scott, Multivariate density estimation: theory, practice, and visualization, John Wiley & Sons, 2015.

[91] J. Shao and D. Tu, The jackknife and bootstrap, Springer Science & Business Media, 2012.

[92] A. Shapiro, Asymptotic analysis of stochastic programs, Annals of Operations Research, 30 (1991), pp. 169–

186.

[93] , Inference of statistical bounds for multistage stochastic programming problems, Mathematical Methods

of Operations Research, 58 (2003), pp. 57–68.

[94] , Statistical inference of multistage stochastic programming problems, Math. Methods of Oper. Res, 58

(2003), pp. 57–68.

[95] , Analysis of stochastic dual dynamic programming method, European Journal of Operational Research,

209 (2011), pp. 63–72.

[96] B. Silverman and G. Young, The bootstrap: to smooth or not to smooth?, Biometrika, 74 (1987), pp. 469–479.

[97] K. Song, Y. Zhang, X. Zhuang, X. Yu, and B. Song, Reliability-based design optimization using adaptive

surrogate model and importance sampling-based modified sora method, Engineering with Computers, 37 (2021),

pp. 1295–1314.

[98] H. Vaagen and S. W. Wallace, Product variety arising from hedging in the fashion supply chains, Interna-

tional Journal of Production Economics, 114 (2008), pp. 431–455.

[99] R. M. Van Slyke and R. Wets, L-shaped linear programs with applications to optimal control and stochastic

programming, SIAM Journal on Applied Mathematics, 17 (1969), pp. 638–663.

[100] S. W. Wallace and S.-E. Fleten, Stochastic programming models in energy, Handbooks in operations

research and management science, 10 (2003), pp. 637–677.

100

[101] N.-C. Xiao, M. J. Zuo, and C. Zhou, A new adaptive sequential sampling method to construct surrogate

models for efficient reliability analysis, Reliability Engineering & System Safety, 169 (2018), pp. 330–338.

[102] H. Xu, L. Liu, and M. Zhang, Adaptive surrogate model-based optimization framework applied to battery pack

design, Materials & Design, 195 (2020), p. 108938.

[103] X. Xu and J. R. Birge, Equity valuation, production, and financial planning: A stochastic programming

approach, Naval Research Logistics (NRL), 53 (2006), pp. 641–655.

[104] J. Yao, Z. Ye, and Y. Wang, Efficient importance sampling for high-sigma yield analysis with adaptive online

surrogate modeling, in 2013 Design, Automation & Test in Europe Conference & Exhibition (DATE), IEEE,

2013, pp. 1291–1296.

[105] W. T. Ziemba and R. G. Vickson, Stochastic optimization models in finance, Academic Press, 2014.

101

	Abstract
	Acknowledgments
	Chapter 1. Introduction
	1.1. Motivation and Background
	1.2. Contributions and Organization

	Chapter 2. Recourse Function Estimation: Importance Sampling using Surrogate Modeling
	2.1. Introduction
	2.2. Monte Carlo Method for Stochastic Optimization
	2.3. Importance Sampling with Surrogate Modeling
	2.4. Adaptive Importance Sampling with Surrogate Modeling
	2.5. Experimental Results

	Chapter 3. Optimality Gap Estimation for Multi-Stage Stochastic Programming
	3.1. Introduction
	3.2. Prerequisites
	3.3. MRP Estimators for the Optimality Gap
	3.4. Sequential Sampling Procedure

	Chapter 4. Uncertainty Quantification in Optimization: Bootstrap and Bagging Methods
	4.1. Introduction
	4.2. Bootstrap and Bagging Method
	4.3. Asymptotic Theory
	4.4. Smoothed Point Estimator
	4.5. Smoothed Bootstrap and Smoothed Bagging

	Chapter 5. Uncertainty Quantification in Optimization: Software Implementations
	5.1. boot-sp: Software for data-based stochastic programming
	5.2. Summary Experiment for Smoothed Bootstrap and Smoothed Bagging
	5.3. Parameter Selection for Smoothed Bootstrap
	5.4. Parameter Selection for Smoothed Bagging
	5.5. Summary of non-smoothed Method Comparisons

	Chapter 6. Conclusion
	Bibliography

