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We introduce a new model for multiple scattering of polarized light by statistically isotropic and mirror-
symmetric particles, which we call the generalized Kubelka–Munk (gKM) approximation. It is obtained through
a linear transformation of the system of equations resulting from applying the double spherical harmonics
approximation of order one to the vector radiative transfer equation (vRTE). The result is a 32 × 32 system
of differential equations that is much simpler than the vRTE. We compare numerical solutions of the vRTE
with the gKM approximation for the problem in which a plane wave is normally incident on a plane-parallel
slab composed of a uniform absorbing and scattering medium. These comparisons show that the gKM approxi-
mation accurately captures the key features of the polarization state of multiply scattered light. In particular,
the gKM approximation accurately captures the complicated polarization characteristics of light backscattered
by an optically thick medium composed of a monodisperse distribution of dielectric spheres over a broad range of
sphere sizes. © 2017 Optical Society of America

OCIS codes: (290.5855) Scattering, polarization; (290.4210) Multiple scattering; (030.5620) Radiative transfer.

https://doi.org/10.1364/JOSAA.34.000153

1. INTRODUCTION

Multiple scattering of polarized light is a fundamental problem
with broad applications, such as optics in the ocean, the atmos-
phere, and biological tissues [1]. Because scattering by a single
particle causes nontrivial changes to the polarization state of
light, polarization-resolved measurements provide valuable in-
sight into the optical properties of a multiple scattering medium.
The key to interpreting polarization-resolved measurements is
developing a quantitative understanding of fundamental mech-
anisms underlying the multiple scattering of polarized light.

The vector radiative transfer equation (vRTE) provides a
complete mathematical description of the 4-vector containing
the Stokes parameters that give the polarization state of light
[2]. In the vRTE, each of the Stokes parameters satisfies an
integro-differential equation. Coupling between the Stokes
parameters is due to scattering through the 4 × 4 phase matrix
and possibly through boundary conditions. Analytical solutions
of the vRTE are only available for relatively simple problems.
For more practical problems, one must use numerical methods
to compute solutions [3–7]. Nonetheless, simpler models that
accurately approximate the vRTE are extremely useful for
polarimetry applications. Simpler models provide an opportu-
nity to gain valuable physical insight through the determination
of the key mechanisms of the problem. This insight, in turn,

can be used to solve practical problems more effectively and
efficiently. For example, Soloviev et al. [8] introduced an
approximation to the vRTE, allowing for efficient tomographic
reconstructions using polarized light.

Recently, the authors have derived the Kubelka–Munk (KM)
or two-flux approximation for the scalar, one-dimensional radi-
ative transfer equation [9]. A key step in that derivation was
applying the double spherical harmonics method of order one
(DP1) and linearly transforming that result to obtain the so-
called generalized Kubelka–Munk (gKM) equations. The gKM
equations form a 4 × 4 system of differential equations. The KM
equations form a 2 × 2 system, which is obtained as an asymp-
totic approximation of the gKM equations in the strong scatter-
ing limit. The gKM equations were shown to give better
approximations than the KM equations over a broader range of
optical properties. The gKM approximation has been further ex-
tended to the scalar, three-dimensional radiative transfer equa-
tion [10]. This three-dimensional extension was shown to be
an effective method for approximating the spatial characteristics
of transmitted and backscattered light.

Here, we apply the gKM approximation method to the
vRTE. The result is a 32 × 32 system of differential equations
that provides a simple model to study multiple scattering
of polarized light. We use this approximation to study the
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polarization characteristics of light propagation and scattering
in a slab composed of a random distribution of monodisperse
spheres. We validate this approximation by comparison to full
numerical solutions of the vRTE. First, we study the spatial
and polarization characteristics of light inside a slab with
Rayleigh scattering. For this problem, we show that the gKM
approximation is quantitatively accurate. Next, we study the
polarization properties of light backscattered by a half-space.
Characterizing the polarization state of backscattered light is
a particularly challenging problem since it contains a mixture
of all orders of scattering—from first-order scattering to diffu-
sion. For this problem, we show that the gKM approximation
accurately captures the polarization characteristics of backscat-
tered light, including the phenomenon known as circular
polarization memory.

The extension of gKM approximation to the vRTE provides
valuable insight into the depolarization of light due to strong
multiple scattering. An asymptotic analysis of the vRTE for
strongly scattering media gives a full description for the multi-
scale behavior of this problem [11]. In particular, this theory
shows that polarized light that has penetrated deep into a
strongly scattering medium becomes unpolarized and isotropic.
Moreover, the spatial characteristics of the intensity are mod-
eled by the scalar diffusion approximation. In contrast, the
polarization characteristics of scattered light are due entirely
to scattering in the so-called boundary layer, which is a spatial
region localized to superficial depths beyond the boundary.
These two solutions are connected using the method of
matched asymptotics. In this context, the gKM approximation
provides a simple model to study the transition from shallow
(boundary layer) to deep (diffusion) penetration depths, lead-
ing to depolarization.

The remainder of this paper is as follows. In Section 2, we
describe the boundary value problem for the vRTE we study
here. In Section 3, we apply the DP1 approximation to the
vRTE and derive the gKM approximation. In addition, we
show that the gKM approximation reduces to the scalar KM
equations in the limit of strong scattering. In Section 4, we
show comparisons of numerical results from the gKM approxi-
mation with those from the full vRTE for the case of Rayleigh
scattering. In particular, we show that the gKM approximation
accurately captures the spatial and polarization characteristics of
multiply scattered light. In Section 5, we study backscattering
by a half-space composed of a monodisperse distribution of di-
electric spheres. For this problem, we show that the gKM
approximation accurately captures the complicated behavior
of the polarization state as the size of the spheres varies. We
give our conclusions in Section 6. Appendix A gives details
about the phase matrix.

2. VECTOR RADIATIVE TRANSFER EQUATION

Let ŝ denote the direction of propagation of an electromagnetic
wave. Consider the orthonormal coordinate system, �êl ; êr�,
perpendicular to ŝ with ŝ × êl � êr . We denote the complex
amplitudes of the electric field in this coordinate system
by El and Er . For that case, the Stokes parameters are
defined as

I � hElE�
l � ErE�

r i;
Q � hElE�

l − ErE�
r i;

U � hElE�
r � ErE�

l i;
V � ihElE�

r − ErE�
l i; (1)

where h·i denotes statistical averaging, and i � ffiffiffiffiffi
−1

p
. These

Stokes parameters give a complete description of the polariza-
tion state of light.

Let I � �I ; Q;U ; V � denote the vector of Stokes parame-
ters. The vRTE governs I in a medium that absorbs, scatters,
and emits light. For a scattering medium composed of sta-
tistically isotropic and mirror-symmetric particles, it is given
by [2]

μ
dI
dτ

� I � ϖ0

Z
2π

0

Z
1

−1
Z �μ; μ 0;φ − φ 0�I�μ 0;φ 0; τ�dμ 0dφ 0;

(2)

where μ � cos θ is the cosine of the polar angle θ, φ is the
azimuthal angle, τ is the optical depth, ϖ0 is the single scatter-
ing albedo, and Z is the 4 × 4 phase matrix giving the trans-
formation from a Stokes vector incident in the direction given
by �μ 0;φ 0� to a Stokes vector scattered in the direction given by
�μ;φ�. We give the expansion for Z that we use throughout this
paper in Appendix A.

We seek the solution of Eq. (2) in the plane-parallel slab,
0 < τ < τ0. We prescribe a plane wave incident normally on
the boundary at τ � 0 through the boundary condition

I�μ;φ;0�� 1

2π
I0δ�μ−1� on 0<μ≤1 and 0≤φ≤2π; (3)

where I0 gives the polarization state of the incident light.
Additionally, we prescribe that no light enters into the medium
at τ � τ0 through the boundary condition

I�μ;φ;τ0��0 on −1≤μ<0 and 0≤φ≤2π: (4)

Although we focus on this specific problem in which a plane
wave is incident normally on the plane-parallel slab, the
approximation method we discuss below can take into account
light incident on the slab at oblique angles.

Because of the delta function appearing in boundary con-
dition Eq. (3), we split I into the following sum:

I � Ir � Id ; (5)

where Ir is the reduced Stokes vector, and Id is the diffuse
Stokes vector. The reduced Stokes vector satisfies

μ
dIr
dτ

� Ir � 0; (6)

subject to boundary condition Eqs. (3) and (4). It is given by
Ir � �2π�−1I0δ�μ − 1�e−τ. Consequently, Id satisfies

μ
dId
dτ

� Id � ϖ0

Z
2π

0

Z
1

−1
Z �μ; μ 0;φ − φ 0�

× Id �μ 0;φ 0; τ�dμ 0dφ 0 �ϖ0Je−τ; (7)

subject to

Id �μ;φ; 0� � 0; on 0 < μ ≤ 1 and 0 ≤ φ ≤ 2π; (8)

and
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Id �μ;φ;τ0�� 0; on −1≤ μ< 0 and 0≤φ≤ 2π; (9)

where J is given by

J � 1

2π

Z
2π

0

Z �μ; 1;φ − φ 0�I0dφ 0: (10)

As a particular case of the slab problem described above,
we consider also the half-space problem corresponding to
0 < τ < ∞. For this problem, we solve Eq. (7) subject to
boundary condition Eq. (8) and the condition that Id → 0
as τ → ∞. For this half-space problem, we study the backscat-
tered light given by Id evaluated at τ � 0.

3. DOUBLE SPHERICAL HARMONICS METHOD
AND THE GENERALIZED KUBELKA–MUNK
APPROXIMATION

Boundary condition Eq. (8) prescribes Id only on the hemi-
sphere of directions pointing into the half-space corresponding
to μ > 0, while boundary condition Eq. (9) prescribes Id only
over μ < 0. These motivate us to represent Id in terms of
its components over the two hemispheres corresponding to
μ ≷ 0, which we denote by I� � Id ��μ;φ; τ� for 0 < μ ≤ 1,
respectively. The double spherical harmonics approximation
(DPN ) corresponds to approximating I� as truncated expan-
sions in an orthogonal basis defined on the hemisphere,
f0 < μ ≤ 1; 0 ≤ φ ≤ 2πg. For the DP1 approximation, we
have the following explicit approximation [10]:

I��μ;φ; τ� ≈ 1

2π

X4
n�1

Φn�μ;φ�I�n �τ�; (11)

where Φ1�1, Φ2�
ffiffiffi
3

p �2μ−1�, Φ3 �
ffiffiffi
3

p �1 − �2μ − 1�2	1∕2
cos φ, and Φ4 �

ffiffiffi
3

p �1 − �2μ − 1�2	1∕2 sin φ. Note that in
Eq. (11), the basis functions, Φn, for n � 1; 2; 3; 4, are scalar
and the expansion coefficients, In, are 4-vectors containing the
components of the Stokes vector projected onto the corre-
sponding basis function. The DP1 approximation given by
Eq. (11) gives an explicit dependence on the angle variables,
μ and φ. It is accurate when the angular variations of the
Stokes vectors I� are sufficiently smooth.

We obtain a system of equations for these expansion coef-
ficients by multiplying each of the basis functions to Eq. (7)
and integrating over the hemisphere, f0<μ≤1;0≤φ≤2πg.
The result of these operations is the following 32 × 32 system:�

A 0

0 −A

�
d

dτ

�Ψ�

Ψ−

�
�

�Ψ�

Ψ−

�

� ϖ0

�
S�1� S�2�

S�3� S�4�

��Ψ�

Ψ−

�
�ϖ0

�Γ�

Γ−

�
e−τ : (12)

We call Eq. (12) the polarized DP1 system. Here, Ψ� �
�I�1 ; I�2 ; I�3 ; I�4 � is the 16-vector containing the four expansion
4-vectors in Eq. (11). Let J� � J��μ;φ� for 0 < μ ≤ 1.
Then, the subvectors Γ�

n for n � 1; 2; 3; 4 of Γ� �
�Γ�

1 ;Γ�
2 ;Γ�

3 ;Γ�
4 � in Eq. (12) are defined according to

Γ�
n �

Z
2π

0

Z
1

0

J��μ;φ�Φn�μ;φ�dμdφ; n � 1; 2; 3; 4: (13)

The system given in Eq. (12) is to be solved with the boundary
conditions

Ψ��0� � 0; (14a)

Ψ−�τ0� � 0: (14b)

These boundary conditions are derived by projecting boundary
condition Eqs. (8) and (9) onto the basis functions, Φn
for n � 1; 2; 3; 4.

The diagonal blocks of the matrix appearing on the left-
hand side of Eq. (12) are given in terms of A � M ⊗ I4,
where ⊗ denotes the Kronecker product, I4 is the 4 × 4 iden-
tity matrix, and M is the 4 × 4 matrix whose entries are

Mij �
1

2π

Z
2π

0

Z
1

0

Φi�μ;φ�Φj�μ;φ�μdμdφ (15)

for i; j � 1; 2; 3; 4. These integrals and the Kronecker product
can be readily computed to obtain

A � 1

2

2
66664

I4 1ffiffi
3

p I4 0 0

1ffiffi
3

p I4 I4 0 0

0 0 I4 0

0 0 0 I4

3
77775: (16)

Each of the 16 × 16 matrices, S�1�, S�2�, S�3�, and S�4�, appear-
ing in the right-hand side of Eq. (12) are defined in terms of the
phase matrix, Z . Let us write each of these matrices as a 4 × 4
block matrix:

S�k� �

2
666664

S�k�11 S�k�12 S�k�13 S�k�14

S�k�21 S�k�22 S�k�23 S�k�24

S�k�31 S�k�32 S�k�33 S�k�34

S�k�41 S�k�42 S�k�43 S�k�44

3
777775
; k � 1; 2; 3; 4: (17)

Each block, S�k�mn for m; n;� 1; 2; 3; 4, is a 4 × 4 matrix. We
denote the 16 entries of Z by Zmn�μ; μ 0;φ − φ 0� for
m; n � 1; 2; 3; 4. We denote the �i; j�th entry of the 4 × 4
matrix, S�k�mn, by �S�k�mn	ij. We now define the 16 entries of the
S�1� matrix as

�S�1�mn	ij �
1

2π

Z
2π

0

Z
1

0

Φi�μ;φ�
Z

2π

0

Z
1

0

Zmn�μ; μ 0;φ − φ 0�

×Φj�μ 0;φ 0�dμ 0dφ 0dμdφ; (18)

for i; j � 1; 2; 3; 4 and m; n � 1; 2; 3; 4. The entries of S�2�,
S�3�, and S�4� are given by

�S�2�mn	ij �
1

2π

Z
2π

0

Z
1

0

Φi�μ;φ�
Z

2π

0

Z
1

0

Zmn�μ; −μ 0;φ − φ 0�

×Φj�μ 0;φ 0�dμ 0dφ 0dμdφ; (19)

�S�3�mn	ij �
1

2π

Z
2π

0

Z
1

0

Φi�μ;φ�
Z

2π

0

Z
1

0

Zmn�−μ; μ 0;φ − φ 0�

×Φj�μ 0;φ 0�dμ 0dφ 0dμdφ; (20)

and

�S�4�mn	ij �
1

2π

Z
2π

0

Z
1

0

Φi�μ;φ�
Z

2π

0

Z
1

0

Zmn�−μ; −μ 0;φ − φ 0�

×Φj�μ 0;φ 0�dμ 0dφ 0dμdφ; (21)
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respectively, for i; j � 1; 2; 3; 4 and m; n � 1; 2; 3; 4. We use
the expansion for Z given in Appendix A and compute the
integrals above using Gauss–Legendre quadrature in μ and
the repeated trapezoid rule in φ.

A. Generalized Kubelka–Munk Approximation

The gKM approximation for the scalar radiative transfer equa-
tion is the transformation of DP1 approximation to directly
model the diffuse fluxes, F��τ�, traveling in the positive and
negative ẑ directions, respectively. It was introduced as an in-
termediate step in the derivation of the KM approximation
from the scalar radiative transfer equation [9]. The diffuse
fluxes, F��τ�, are given in terms of the intensities I� (first
components in the vectors I�) as [12]

F��τ� �
Z

2π

0

Z
1

0

I��μ;φ; τ�μdμdφ: (22)

Let I�n denote the first components of the vectors I�n for
n � 1; 2; 3; 4, appearing in Eq. (11). Substituting the DP1
approximation,

I� ≈
1

2π

X4
n�1

Φn�μ;φ�I�n �τ�; (23)

into Eq. (22), we find that

F��τ� ≈ 1

2
I�1 �τ� �

1

2
ffiffiffi
3

p I�2 �τ�: (24)

Notice that this approximation of F� as a linear combination
of I�1 and I�2 is the same as multiplying the first row of A, given
in Eq. (16), to Ψ�. It is for this reason that we introduce the
linear transformation, Y� � AΨ�. Applying this change of
variables in Eq. (12), we obtain the polarized gKM equations:

d

dτ
Y� � −C �1�Y� � C �2�Y− �ϖ0Γ�e−τ; (25a)

−
d

dτ
Y− � −C �3�Y� � C �4�Y− �ϖ0Γ−e−τ; (25b)

where C �1� � �I16 −ϖ0S�1��A−1, C �2� � ϖ0S�2�A−1, C �3� �
ϖ0S�3�A−1, and C �4� � �I16 −ϖ0S�4��A−1. Here, I16 denotes
the 16 × 16 identity matrix. The system given in Eq. (25) is
to be solved with the following boundary conditions:

Y��0� � 0; (26a)

Y−�τ0� � 0: (26b)

We propose the system of equations given in Eq. (25) subject to
boundary condition Eq. (26) as a model for multiple scattering
of polarized light. Instead of solving the vRTE, this polarized
gKM approximation is just a 32 × 32 system. Boundary con-
ditions for this system are prescribed naturally because they are
defined over the half-ranges on which boundary conditions for
the vRTE are prescribed. Consequently, they do not require the
introduction of additional approximations beyond the projec-
tion onto the basis functions, fΦng. The main complication in
using this model is computing the matrix entries for C �1�, C �2�,
C �3�, and C �4� and the Γ� vectors. However, those can all be
computed as a preprocessing step. In fact, this boundary value
problem can be solved using the same method used for the

scalar problem [9,10]. The only difference is that the size of
the system is larger.

B. Strong Scattering Limit

By studying the gKM approximation for the scalar radiative
transfer equation in the strong scattering limit, we have ob-
tained the KM approximation [9]. By applying this same meth-
odology to Eq. (25), we will presumably derive a polarized
version of the KM approximation. A complete analysis of this
problem is given elsewhere [13]. We summarize the re-
sults here.

Consider the homogeneous problem for Eq. (12). We
seek solutions for the homogeneous problem of the form
�Ψ�;Ψ−� � �U;V�eλτ resulting in the following generalized
eigenvalue problem:

λ

�
A 0

0 −A

��
U

V

�
�

�
U

V

�
� ϖ0

�
S�1� S�2�

S�3� S�4�

��
U

V

�
: (27)

The eigenvalues, λ, in Eq. (27) come in ± pairs, so that for every
eigenvalue λ, another eigenvalue is −λ. By studying Eq. (27) in
the asymptotic limit of strong scattering corresponding to
ϖ0 → 1−, we find that for the smallest eigenvalues in magni-
tude,�λ → 0�. The eigenvectors for these vanishing eigenval-
ues are completely unpolarized. Furthermore, it can be shown
by projecting Eq. (12) onto these completely unpolarized
eigenvectors that we obtain the scalar KM approximation:

dF�

dτ
� −�K � S�F� � SF −; (28a)

−
dF −

dτ
� −�K � S�F − � SF�; (28b)

with S � 3
4
�1 − g� − �1 −ϖ0�, and K � 2�1 −ϖ0�.

In fact, these results show that there is no polarized version
of the KM approximation. Attempting to derive one simply
leads to the scalar KM approximation. This result is consistent
with the results from diffusion theory for polarized light in
which the diffusion approximation applies to completely unpo-
larized light and is therefore just the scalar diffusion approxi-
mation [11]. Therefore, the KM approximation is inadequate
for modeling multiple scattering of polarized light, except in the
extreme case in which light is completely unpolarized due to
strong multiple scattering.

4. RAYLEIGH SCATTERING

To test the accuracy of the gKM approximation, we first con-
sider Rayleigh scattering, in which the sizes of the particles in
the medium are much smaller than the wavelength. This case is
the simplest to study the multiple scattering of polarized light.
Appendix A gives the expansion coefficients for Rayleigh scat-
tering explicitly.

We solve the boundary value problem for the vRTE com-
prised of Eq. (7) subject to boundary condition Eqs. (8) and (9)
using the discrete ordinate method described in Ref. [14].
To compare results from the vRTE with those from the
gKM approximation, we compute the following quantities:

F�
I �τ� �

Z
2π

0

Z
1

0

I��μ;φ; τ�μdμdφ; (29)
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F�
Q �τ� �

Z
2π

0

Z
1

0

Q��μ;φ; τ�μdμdφ; (30)

F�
U �τ� �

Z
2π

0

Z
1

0

U ��μ;φ; τ�μdμdφ; (31)

F�
V �τ� �

Z
2π

0

Z
1

0

V ��μ;φ; τ�μdμdφ: (32)

We solve the gKM system given by Eq. (7) subject to boundary
condition Eq. (26) using the same method described for the
scalar problem [9]. From the solution Y��τ�, we extract the
subvectors Y�

1 �τ� and use the first, second, third, and fourth
components as approximations of F�

I , F�
Q , F�

U , and F�
V ,

respectively.
We plot example results from these computations in Fig. 1.

For these results, we have set τ0 � 10, ϖ0 � 0.99, and the
incident polarization state to be linear with I0 � �1; 1; 0; 0�.
For Rayleigh scattering with linear incident polarization, U �
V � 0 identically, so we do not plot F�

U and F�
V in Fig. 1. The

first column of Fig. 1 shows plots of F�
I (top row) and F�

Q
(bottom row). The second column of Fig. 1 shows plots of
F −
I (top row) and F −

Q (bottom row). The results from the
vRTE solution are plotted as solid circle symbols, and the re-
sults from the gKM approximation are plotted as solid curves.

The results shown in Fig. 1 show excellent agreement be-
tween the vRTE solution and the gKM approximation over
0 ≤ τ ≤ 10. The gKM approximation accurately captures
the qualitative behavior of the vRTE solution. Quantitative
errors are most apparent for F�

Q, but they are relatively small.
In fact, we find that the maximum errors made by the gKM
approximation are less than 1% for F�

I and less than 5%
for F�

Q.

In Fig. 2, we show results when the incident polarization state
is right-handed circularly polarized with I0 � �1; 0; 0; 1�.
All other parameters are the same as for Fig. 1. For this problem,
U � 0 identically, so we do not plot those results in Fig. 2.
In these results, we see that the gKM approximation accurately
captures the behavior of V for 0 ≤ τ ≤ 10 in addition to I
and Q . In fact, we find that the maximum errors made by
the gKM approximation for this problem are less than 1%
for F�

I , 5% for F�
Q, and 2% for F�

V .
By studying the vRTE with Rayleigh scattering, we find

that the gKM approximation is qualitatively and quantitatively
accurate. It captures both the spatial variations and polarization
changes due to multiple scattering. For example, the results
shown in Figs. 1 and 2 demonstrate that light becomes depo-
larized as the penetration depth increases. In particular,
F�
Q;V → 0 for τ > 5 for both of these results. It is known that

strong multiple scattering leads to the loss of polarization in-
formation at deep penetration depths. This depolarization is
exactly what we found in studying the strong scattering limit
of the gKM approximation.

Notice also that the circular polarization state of F −
V is

negative. Negative values of F −
V indicate that the circular polari-

zation component of backscattered light has flipped its handed-
ness from right to left. This change in the circular polarization
of backscattered light is expected since reflections of circularly
polarized light change its handedness.

Fig. 1. Comparison of the results from the vRTE with the gKM
approximation with Rayleigh scattering due to linearly polarized inci-
dent light corresponding to Stokes vector I0 � �1; 1; 0; 0�. The first
column plots the components of F��τ� � �F�

I ; F
�
Q �, and the second

column plots the components of F− � �F −
I ; F

−
Q�. For this problem,

F�
U � F�

V � 0 identically, so we do not plot them here. Solid circle
symbols correspond to the vRTE solution, and solid curves correspond
to the gKM approximation.

Fig. 2. Comparison of the results from the vRTE with the gKM
approximation with Rayleigh scattering due to circularly polarized
incident light corresponding to Stokes vector I0 � �1; 0; 0; 1�. The
first column plots the components of F��τ� � �F�

I ; F
�
Q ; F

�
V �, and the

second column plots the components of F− � �F −
I ; F

−
Q ; F

−
V �. For this

problem, F�
U � 0 identically, so those results are not shown here.

Solid circle symbols correspond to the vRTE solution, and solid curves
correspond to the gKM approximation.
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5. BACKSCATTERING BY A MONODISPERSE
DISTRIBUTION OF DIELECTRIC SPHERES

To evaluate the accuracy of this gKM approximation beyond
Rayleigh scattering, we compare results from this approxima-
tion to numerical solutions of the vRTE using the code devel-
oped by Mishchenko et al. [7]. This code computes the 4 × 4
reflection matrix for the half-space, 0 < τ < ∞, by solving the
vector Ambartsumian’s nonlinear integral equation. The solu-
tion of this problem gives the Stokes vector exiting the half-
space, Id at τ � 0 for −1 ≤ μ < 0 and 0 ≤ φ ≤ 2π. We solve
this problem for a medium composed of a monodisperse dis-
tribution of dielectric spheres and evaluate that result for the
case of normal incidence. To compare results from the vRTE
with those from the gKM approximation, we compute

F−�0� �
Z

2π

0

Z
1

0

I−�μ;φ; 0�μdμdφ; (33)

using the same numerical quadrature rule used in that
code. The components of this vector are denoted by
F−�0� � �F −

I �0�; F −
Q�0�; F −

U �0�; F −
V �0��.

In the following results, the wavelength is λ � 0.55 μm, the
relative refractive index of the spheres is m � 1.44, and the
sphere radius varies within the interval 0.01 μm ≤ a ≤ 1 μm.
In addition, we have set ϖ0 � 0.99. To compute the phase
matrix, Z needed to compute Eqs. (18)–(21), we have used
the expansion coefficients for Z , discussed in Appendix A, that
are generated using the method described by Mishchenko
et al. [15].

For the gKM approximation, we solve Eq. (25) subject to
boundary condition Eq. (26) as we have done for the previous
results for Rayleigh scattering. To compute the entries of the
matrices, C �1�, C �2�, C �3�, and C �4�, we use the same expansion
coefficients for Z used to compute the solution of the vRTE.
Upon solution of the gKM system, we extract from Y−�0� the
subvector, Y−

1�0�, and use the first, second, third, and fourth
components as approximations of F −

I �0�, F −
Q�0�, F −

U �0�, and
F −
V �0�, respectively.
In Fig. 3, we show plots of F −

I �0� (left) and F −
Q�0� (right)

as a function of the nondimensional Mie size parameter,
χ � 2πa∕λ, due to Stokes vector I0 � �1; 1; 0; 0� incident
on the half-space. The results from the vRTE are plotted as
dashed curves, and the results from the gKM approximation
are plotted as solid curves. For this problem, in which linearly
polarized light is incident normally on the boundary, the
integrals of U and V with respect to φ over 0 ≤ φ ≤ 2π
are zero identically [16]. It follows from Eq. (33) that
F −
U �0� � F −

V �0� � 0. For this reason, we do not show results
for F −

U �0� or F −
V �0� in Fig. 3.

Because ϖ0 is fixed for this problem, the value of F −
I �0�

computed from the vRTE is constant for all values of χ.
In other words, the power backscattered by the half-space is
independent of the size of the spheres in the medium. On the
other hand, the value of F −

I �0� computed using the gKM
approximation has errors since it varies with χ. Rayleigh scat-
tering corresponds to χ ≪ 1 and corresponds to nearly iso-
tropic scattering. However, for large values of χ, scattering is
highly anisotropic. The gKM approximation for the scalar
problem was shown to lose accuracy when the anisotropy factor

grew large, especially for backscattering [9,10]. The anisotropic
scattering due to the Mie spheres of varying sizes certainly con-
tributes to the errors made by the gKM approximation shown
in Fig. 3. In fact, the gKM approximation for F −

I �0� exhibits
errors between 0.35% and 1.60% over the values of χ consid-
ered here.

Figure 3 shows that the gKM approximation accurately cap-
tures the complicated behavior of F −

Q�0�. This qualitative
agreement indicates that the gKM approximation accurately
captures the polarization characteristics of backscattered light.
To study the extent to which the gKM approximation does so,
we consider the linear polarization ratio (LPR), defined as

LPR � F −
I �0� � F −

Q�0�
F −
I �0� − F −

Q�0�
: (34)

The LPR gives the ratio of horizontal linearly polarized light
to vertical linearly polarized light, so LPR � 1 corresponds to
equal amounts of horizontally and vertically linear polarization
in the polarized diffuse reflectance. From the data shown in
Fig. 3, we find that the relative error made by the gKM approxi-
mation of the LPR compared to the vRTE are less than 1% for
these results.

In Fig. 4, we show plots of F −
I �0� (top left), F −

Q�0� (top
right), F −

U �0� (bottom left), and F −
V �0� (bottom right) as a

function of χ due to Stokes vector I0 � �1; 0; 0; 1� incident
on the half-space, corresponding to right-handed circularly
polarized light. The results from vRTE are plotted as dashed
curves, and the results from the gKM approximation are plot-
ted as solid curves. In contrast to the case in which linearly
polarized light is incident normally on the half-space, we obtain
nontrivial results for all four components of F−�0� defined in
Eq. (33). However, for circularly polarized light incident nor-
mally on a half-space, Stokes parameters I and Q are decoupled
from Stokes parameters U and V [16]. Just as in the previous
case, the gKM approximation for F −

I �0� computed from the
vRTE solution exhibits errors between 0.35% and 1.60% over
the values of χ considered here.

The bottom two plots in Fig. 4 for F −
U �0� and F −

V �0� show
that gKM approximation accurately captures the polarization
characteristics of backscattered light across this range of χ val-
ues. Regarding specifically circular polarization, we find that
the gKM approximation accurately captures the changes in

Fig. 3. Plot of F −
I �0� (left) and F −

Q �0� (right) due to Stokes vector
I0 � �1; 1; 0; 0� incident on the half-space as a function of the
nondimensional Mie size parameter, χ � 2πa∕λ. The wavelength
is λ � 0.55 μm, and the relative refractive index is m � 1.44. For
this problem, F −

U �0� � F −
V �0� � 0 identically, so we do not plot

them here.
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sign of F −
V �0� across the range of χ values considered here.

In particular, it accurately captures the change of F −
V �0� from

negative (left-handed circular) to positive (right-handed circu-
lar) at χ ≈ 1.5.

Just as we discussed with Rayleigh scattering, it is intuitive to
expect that F −

V �0� is negative since circular polarization of re-
flected light flips its handedness (in this case, from right to left).
However, it has been observed that circularly polarized light
backscattered by moderate to large spheres does not exhibit this
change in handedness. For that case, backscattered light is said
to exhibit circular polarization memory [17]. The change in
handedness from left to right at χ ≈ 1.5 in the bottom plot
of Fig. 4 is due to this phenomenon. Forward-peaked scattering
associated with moderate to large sphere radii causes polariza-
tion memory [18]. From Fig. 4, we see that the gKM approxi-
mation accurately captures the onset of circular polarization
memory as χ increases as well as the complicated behavior be-
yond that initial transition at χ ≈ 1.5.

To study the accuracy of the gKM approximation in char-
acterizing the polarization state of backscattered light, we con-
sider the degree of polarization (DOP) for this data, defined as

DOP �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�F −

Q�0�	2 � �F −
U �0�	2 � �F −

V �0�	2
q

∕F −
I �0�; (35)

as a function of χ. A plot of DOP computed using the vRTE
results (dashed curves) and the gKM approximation (solid
curves) appears in Fig. 5. For 0 < χ ≤ 3, we find that errors
made by the gKM approximation in computing the DOP are
less that 5%. For 3 < χ ≤ 5.5, errors are less than 10%. The
maximum error attained is 21% for χ ≈ 11. The likely reason
for the increase in error for larger χ is that the gKM approxi-
mation given in Eq. (11) is too simple to take into account
forward-peaked scattering associated with larger values of χ.
A higher-order approximation may achieve better quantitative
results. Nonetheless, we find that the gKM approximation ac-
curately captures the qualitative features of the polarization

characteristics of backscattered light and offers a quantitatively
accurate model for small-to-moderate-sized spheres.

6. CONCLUSIONS

We have introduced the gKM approximation for the vRTE.
It is a 32 × 32 system of differential equations derived from
linear transforming the system of equations resulting from ap-
plying the double spherical harmonics method of order one
to the vRTE. Consequently, it is much simpler to solve than
the vRTE.

We compared results from the gKM approximation with
numerical solutions of the vRTE with Rayleigh scattering.
Those results show that the gKM approximation accurately
captures the spatial and polarization characteristics of light
propagation and scattering in a slab composed of Rayleigh
scatterers. Moreover, we found that the gKM approximation
provides quantitatively accurate results with maximum errors
of less than 5%.

Additionally, we have used the gKM approximation to study
the polarization characteristics of light backscattered by a half-
space composed of a monodisperse distribution of spheres. We
compared results from the gKM approximation with numerical
solutions of the vRTE for a broad range of the nondimensional
Mie size parameter values, 0 < χ < 12. For linearly polarized
incident light, we found that the gKM approximation for the
linear polarization ratio, LPR, is quantitatively accurate over a
very broad range of sphere sizes with relative errors of less than
1%. For circularly polarized incident light, we found that the
gKM approximation accurately captures the complicated fea-
tures of the polarization state of backscattered light, including
the transition into circular polarization memory for moderate
to large spheres. However, the gKM approximation is less ac-
curate quantitatively with respect to the DOP across the full
range of χ values considered here with a maximum error of
21%. For sphere sizes within the range 0 < χ ≤ 3, errors are
less than 5%. For this reason, we conclude that the gKM
approximation is most useful for this small to moderate range
of sphere sizes.

From these results, we have found that the gKM approxi-
mation captures the polarization characteristics of scattered
light accurately. Because this gKM approximation is the result
of a systematic derivation from the vRTE, it extends readily to
other problems. For example, we can extend the gKM approxi-
mation to the three-dimensional vRTE just as we have done for
the scalar problem [10]. The result would be a 32 × 32 system

Fig. 4. Plots of F −
I �0� (top left), F −

Q �0�, (top right), F −
U �0� (bottom

left), and F −
V �0� (bottom right) due to Stokes vector I0 � �1; 0; 0; 1�

incident on the half-space as a function of the nondimensional Mie
size parameter, χ � 2πa∕λ. The wavelength is λ � 0.55 μm, and
the relative refractive index is m � 1.44.

Fig. 5. Plot of the DOP defined in Eq. (35) for the data shown
in Fig. 4.
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of partial differential equations. This approximation can also be
extended to time-dependent problems to study the propagation
and scattering of pulses in a multiple scattering medium.

Because the gKM approximation is substantially easier to
solve than the vRTE, and it accurately captures the polarization
characteristics of backscattered light, we believe that this approxi-
mation will be very useful for practical applications that make use
of polarization-resolved measurements of scattered light.

APPENDIX A: THE PHASE MATRIX

Using the convention used by Siewert [4], the phase matrix,
Z�μ; μ 0;φ − φ 0�, is given by

Z�μ; μ 0;φ − φ 0� �
XL
m�0

1

2
�2 − δ0;m��Cm�μ; μ 0� cos m�φ − φ 0�

� Sm�μ; μ 0� sin m�φ − φ 0�	; (A1)

with

Cm�μ; μ 0� � Am�μ; μ 0� � DAm�μ; μ 0�D; (A2)

Sm�μ; μ 0� � Am�μ; μ 0�D − DAm�μ; μ 0�; (A3)
where

Am�μ; μ 0� �
XL
l�m

Pm
l �μ�BlPm

l �μ 0�; (A4)

and D � diagf1; 1; −1; −1g. The matrices, Pm
l �μ�, in Eq. (A4)

are defined as

Pm
l �μ� �

2
66664

Pm
l �μ� 0 0 0

0 Rm
l �μ� −Tm

l �μ� 0

0 −Tm
l �μ� Rm

l �μ� 0

0 0 0 Pm
l �μ�

3
77775; (A5)

with

Pm
l �cos θ� � d l

0;m�θ�; (A6)

Rm
l �cos θ� �

1

2
�d l

2;m�θ� � d l
−2;m�θ�	; (A7)

Tm
l �cos θ� �

1

2
�d l

2;m�θ� − d l
−2;m�θ�	; (A8)

with d l
km�θ� denoting the Wigner-d functions using the con-

vention of Varshalovich et al. [19].
Different scattering laws in Eq. (A5) are defined through the

matrices Bl , which have the form

Bl �

2
66664

βl γl 0 0

γl αl 0 0

0 0 ζl −εl

0 0 εl δl

3
77775: (A9)

For Rayleigh scattering, we have

β0 � 1; (A10)

β2 � �1 − ρ�∕�2� ρ�; (A11)

α2 � 6�1 − ρ�∕�2� ρ�; (A12)

γ2 � −
ffiffiffi
6

p
�1 − ρ�∕�2� ρ�; (A13)

δ1 � 3�1 − 2ρ�∕�2� ρ�; (A14)

with ρ denoting the depolarization ratio [20]. All other terms
are zero identically. For other scattering laws, we used the
method described by Mishchenko et al. [15] to generate these
expansion coefficients.
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