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Numerical studies of the transmission of light through a two-dimensional
randomly rough interface

Ø. S. Hetland,1,* A. A. Maradudin,2 T. Nordam,1 P. A. Letnes,1 and I. Simonsen1,3

1Department of Physics, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
2Department of Physics and Astronomy, University of California, Irvine, California 92697, USA

3Surface du Verre et Interfaces, UMR 125 CNRS/Saint-Gobain, F-93303 Aubervilliers, France
(Received 14 December 2016; published 7 April 2017)

The transmission of polarized light through a two-dimensional randomly rough interface between two dielectric
media has been much less studied, by any approach, than the reflection of light from such an interface. We have
derived a reduced Rayleigh equation for the transmission amplitudes when p- or s-polarized light is incident on
this type of interface, and have obtained rigorous, purely numerical, nonperturbative solutions of it. The solutions
are used to calculate the transmissivity and transmittance of the interface, the mean differential transmission
coefficient, and the full angular distribution of the intensity of the transmitted light. These results are obtained
for both the case where the medium of incidence is the optically less dense medium and in the case where
it is the optically more dense medium. Optical analogs of Yoneda peaks observed in the scattering of x rays
from metallic and nonmetallic surfaces are present in the results obtained in the former case. For p-polarized
incident light we observe Brewster scattering angles, angles at which the diffuse transmitted intensity is zero in
a single-scattering approximation, which depend on the angle of incidence in contrast to the Brewster angle for
flat-surface reflection.

DOI: 10.1103/PhysRevA.95.043808

I. INTRODUCTION

In the theoretical and experimental studies of the interaction
of an electromagnetic wave with a two-dimensional randomly
rough dielectric surface, the great majority have been devoted
to the reflection problem [1–3], and less attention has been paid
to studies of the transmission of light through such surfaces.
Greffet [4] obtained a reduced Rayleigh equation for the
transmission amplitudes in the case where light incident from
vacuum is transmitted through a two-dimensional randomly
rough interface into a dielectric medium, and obtained a
recursion relation for the successive terms in the expansions
of the amplitudes in powers of the surface profile function.
Kawanishi et al. [5], by the use of the stochastic functional
approach, studied the case where a two-dimensional randomly
rough interface between two dielectric media is illuminated
by p- and s-polarized light from either medium. Properties
of the light transmitted through, as well as reflected from,
the interface were examined. This theoretical approach is
perturbative in nature and can be applied only to weakly rough
surfaces. Nevertheless, Kawanishi et al. obtained several in-
teresting properties of the transmitted light that are associated
with the phenomenon of total internal reflection when the
medium of transmission is the optically denser medium. These
include the appearance of Yoneda peaks in the intensity of the
transmitted light as a function of the angle of transmission for
a fixed value of the angle of incidence. Yoneda peaks are sharp
asymmetric peaks at the critical polar angle of transmission
for which the wave number of incidence turns nonpropagating
when the medium of transmission is the optically more dense
medium. Although well known in the scattering of x rays
from both metallic [6–9] and nonmetallic [10–13] surfaces,

*oyvind.hetland@ntnu.no

the paper by Kawanishi et al. apparently marks their first
explicit appearance in optics. Yoneda peaks were recently
observed experimentally for a configuration of reflection from
a randomly rough dielectric interface, when the medium of
incidence was the optically denser medium [14]. The physical
origin of the Yoneda peak phenomenon is not clear [15].

For p-polarized incident light Kawanishi et al. also ob-
served angles of zero scattering intensity, to first order in
their approach, in the distributions of the intensity of the
incoherently reflected and transmitted light. Due to their
resemblance to the Brewster angle in the reflectivity from
a flat interface, they dubbed these angles the “Brewster
scattering angles.” These were observed, in both reflection and
transmission, for light incident from either medium, and were
found to be strongly dependent on the angle of incidence. The
Brewster scattering angles can be observed to be part of the
mechanisms that result in a strong dependence on polarization
in the scattering distributions of incoherently scattered light.
Nieto-Vesperinas and Sánchez-Gil [16] observed this strong
dependence on polarization in their numerical investigations
of incoherent transmission through one-dimensional dielectric
surfaces, but they did not investigate this dependence any
further.

Soubret et al. [17] also obtained a reduced Rayleigh
equation for the transmission amplitudes in the case where
light incident from one dielectric medium is transmitted into
a second dielectric medium through a two-dimensional ran-
domly rough interface. However, only perturbative solutions
of this equation were obtained by them, and only for vacuum
as the medium of incidence.

In this paper we present a theoretical study of the trans-
mission of light through a two-dimensional randomly rough
interface between two dielectric media, free from some of the
limitations and approximations present in the earlier studies
of this problem. We obtain a reduced Rayleigh equation for
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FIG. 1. Sketch of the scattering geometry assumed in this work.
The figure also shows the coordinate system used, angles of incidence
(θ0,φ0) and transmission (θt ,φt ), and the corresponding lateral wave
vectors k‖ and q‖.

the transmission amplitudes in the case where light incident
from a dielectric medium whose dielectric constant is ε1

is transmitted through a two-dimensional randomly rough
interface into a dielectric medium whose dielectric constant
is ε2. The dielectric constant ε1 can be larger or smaller
than the dielectric constant ε2. Thus effects associated with
total internal reflection are included in the solutions of this
equation. Instead of solving the reduced Rayleigh equation as
an expansion in powers of the surface profile function, in this
work we obtain a rigorous, purely numerical, nonperturbative
solution of it. This approach enables us to calculate the
transmissivity and transmittance of the system studied, the
in-plane co- and cross-polarized, and the out-of-plane co- and
cross-polarized incoherent (diffuse) scattering contributions
to the mean differential transmission coefficient, and the full
angular dependence of the total scattered intensity, all in a
nonperturbative fashion.

Numerical studies of similar systems and phenomena,
obtained through a corresponding numerical method but in
reflection, have previously been reported in Refs. [14,15]. Both
Yoneda peaks and Brewster scattering angles were reported
and discussed in-depth in Ref. [15], and an experimental
observation of Yoneda peaks were presented in Ref. [14]. As
such, the currently presented work serves to add to the fuller
understanding of the scattering behavior of randomly rough
dielectric interfaces.

II. SCATTERING SYSTEM

The system we study in this paper consists of a dielectric
medium (medium 1), whose dielectric constant is ε1, in the
region x3 > ζ (x‖), and a dielectric medium (medium 2), whose
dielectric constant is ε2, in the region x3 < ζ (x‖) (Fig. 1). Here
x‖ = (x1,x2,0) is an arbitrary vector in the plane x3 = 0, and
we assume that both ε1 and ε2 are real and positive.

The surface profile function ζ (x‖) is assumed to be a single-
valued function of x‖ that is differentiable with respect to
x1 and x2, and constitutes a stationary, zero-mean, isotropic,
Gaussian random process defined by

〈ζ (x‖)ζ (x ′‖)〉 = δ2W (|x‖ − x′
‖|), (1)

where W (x‖) is the normalized surface height autocorrelation
function, with the property that W (0) = 1. The angle brackets
here and in all that follows denote an average over the ensemble
of realizations of the surface profile function. The root-mean-
square height of the surface is given by

δ = 〈ζ 2(x‖)〉 1
2 . (2)

The power spectrum of the surface roughness g(k‖) is defined
by

g(k‖) =
∫

d2x‖W (x‖) exp(−ik‖ · x‖), (3)

where k‖ = (k1,k2,0) is a lateral wave vector, k‖ = |k‖|, and
x‖ = |x‖|. We will assume for the normalized surface height
autocorrelation function W (x‖) the Gaussian function

W (x‖) = exp

(
−x2

‖
a2

)
, (4)

where the characteristic length a is the transverse correlation
length of the surface roughness. The corresponding power
spectrum is given by

g(k‖) = πa2 exp

(
−k2

‖a
2

4

)
. (5)

III. REDUCED RAYLEIGH EQUATION

The interface x3 = ζ (x‖) is illuminated from the region
x3 > ζ (x‖) (medium 1) by an electromagnetic wave of fre-
quency ω. The total electric field in this region is the sum of
an incoming incident field and an outgoing scattered field,

E>(x|ω) = E0(k‖) exp[iQ0(k‖) · x]

+
∫

d2q‖
(2π )2

A(q‖) exp[iQ1(q‖) · x], (6)

while the electric field in the region x3 < ζ (x‖) is an outgoing
transmitted field,

E<(x|ω) =
∫

d2q‖
(2π )2

B(q‖) exp[iQ2(q‖) · x]. (7)

In writing these equations we have introduced the functions

Q0(k‖) = k‖ − α1(k‖)x̂3, (8a)

Q1(q‖) = q‖ + α1(q‖)x̂3, (8b)

Q2(q‖) = q‖ − α2(q‖)x̂3, (8c)
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where (i = 1,2)

αi(q‖) =
⎧⎨
⎩

√
εi

(
ω
c

)2 − q2
‖ , q‖ � √

εi ω/c,

i

√
q2

‖ − εi

(
ω
c

)2
, q‖ >

√
εi ω/c.

(9)

Here q‖ = (q1,q2,0), q‖ = |q‖|, and a caret over a vector
indicates that it is a unit vector. A time dependence of the field
of the form exp(−iωt) has been assumed, but not indicated
explicitly.

The boundary conditions satisfied by these fields at the
interface x3 = ζ (x‖) are the continuity of the tangential
components of the electric field,

n × E0(k‖) exp[ik‖ · x‖ − iα1(k‖)ζ (x‖)]

+
∫

d2q‖
(2π )2

n × A(q‖) exp[iq‖ · x‖ + iα1(q‖)ζ (x‖)]

=
∫

d2q‖
(2π )2

n × B(q‖) exp[iq‖ · x‖ − iα2(q‖)ζ (x‖)], (10)

the continuity of the tangential components of the magnetic
field,

n × [iQ0(k‖) × E0(k‖)] exp[ik‖ · x‖ − iα1(k‖)ζ (x‖)]

+
∫

d2q‖
(2π )2

n × [iQ1(q‖) × A(q‖)]

× exp[iq‖ · x‖ + iα1(q‖)ζ (x‖)]

=
∫

d2q‖
(2π )2

n × [iQ2(q‖) × B(q‖)]

× exp[iq‖ · x‖ − iα2(q‖)ζ (x‖)], (11)

and the continuity of the normal component of the electric
displacement,

ε1n · E0(k‖) exp[ik‖ · x‖ − iα1(k‖)ζ (x‖)]

+ε1

∫
d2q‖
(2π )2

n · A(q‖) exp[iq‖ · x‖ + iα1(q‖)ζ (x‖)]

= ε2

∫
d2q‖
(2π )2

n · B(q‖) exp[iq‖ · x‖ − iα2(q‖)ζ (x‖)]. (12)

The vector n ≡ n(x‖) entering these equations is a vector
normal to the surface x3 = ζ (x‖) at each point of it, directed
into medium 1:

n(x‖) =
(

−∂ζ (x‖)

∂x1
, − ∂ζ (x‖)

∂x2
,1

)
. (13)

Strictly speaking the continuity of the tangential compo-
nents of the electric and magnetic fields across the interface,
Eqs. (10) and (11), are sufficient (and necessary) boundary
conditions on electromagnetic fields [18]. Hence the conti-
nuity of the normal components of the electric displacement
[Eq. (12)] and the magnetic induction are redundant. However,
the inclusion of Eq. (12) enables us to eliminate the scattering
amplitude A(q‖) from consideration, and thus to obtain an
equation that relates the transmission amplitude B(q‖) to the
amplitude of the incident field E0(k‖). This we do in the
following manner.

We take the vector cross product of Eq. (10)
with ε1Q0(p‖) exp[−ip‖ · x‖ + iα1(p‖)ζ (x‖)], then multiply
Eq. (11) by −iε1 exp[−ip‖ · x‖ + iα1(p‖)ζ (x‖)], and finally
multiply Eq. (12) by −Q0(p‖) exp[−ip‖ · x‖ + iα1(p‖)ζ (x‖)],
where p‖ is an arbitrary wave vector in the plane x3 = 0. When
we add the three equations obtained in this way, and integrate
the sum over x‖ we obtain an equation that can be written in
the form

ε1{Q0(p‖) × [VE(p‖|k‖) × E0(k‖)] + VE(p‖|k‖) × [Q0(k‖) × E0(k‖)] − Q0(p‖)[VE(p‖|k‖) · E0(k‖)]}

+ ε1

∫
d2q‖
(2π )2

{Q0(p‖) × [VA(p‖|q‖) × A(q‖)] + VA(p‖|q‖) × [Q1(q‖) × A(q‖)] − Q0(p‖)[VA(p‖|q‖) · A(q‖)]}

=
∫

d2q‖
(2π )2

{ε1Q0(p‖) × [VB(p‖|q‖) × B(q‖)] + ε1VB(p‖|q‖) × [Q2(q‖) × B(q‖)] − ε2Q0(p‖)[VB(p‖|q‖) · B(q‖)]}, (14)

where we define

VE(p‖|k‖) = V(−α1(p‖) + α1(k‖)|p‖ − k‖), (15a)

VA(p‖|q‖) = V(−α1(p‖) − α1(q‖)|p‖ − q‖), (15b)

VB(p‖|q‖) = V(−α1(p‖) + α2(q‖)|p‖ − q‖), (15c)

with

V(γ |Q‖) =
∫

d2x‖n(x‖) exp(−iQ‖ · x‖) exp[−iγ ζ (x‖)].

(16a)

It is shown in Appendix A that

V(γ |Q‖) = I (γ |Q‖)

γ
(Q‖ + γ x̂3) − (2π )2δ(Q‖)

Q‖
γ

, (16b)

where

I (γ |Q‖) =
∫

d2x‖ exp(−iQ‖ · x‖) exp[−iγ ζ (x‖)]. (17)

When Eqs. (15) and (16) are substituted into Eq. (14), the
latter becomes

(2π )2δ(p‖ − k‖)2ε1
k‖ · (p‖ − k‖)

−α1(p‖) + α1(k‖)
E0(k‖)

= (ε1 − ε2)
∫

d2q‖
(2π )2

I (−α1(p‖) + α2(q‖)|p‖ − q‖)

−α1(p‖) + α2(q‖)

×
{

−ε1

(
ω

c

)2

B(q‖) + [Q0(p‖) · B(q‖)]Q0(p‖)

}
. (18)

043808-3



HETLAND, MARADUDIN, NORDAM, LETNES, AND SIMONSEN PHYSICAL REVIEW A 95, 043808 (2017)

In obtaining this result we have used the result that the singular
term of VB(p‖|q‖) does not contribute to the right-hand side
of Eq. (14), since p‖ = q‖ leaves −α1(p‖) + α2(q‖) nonzero
(see Appendix A). If we note that

−α1(p‖) + α1(k‖) = k‖ · (p‖ − k‖)

α1(k‖)
+ O((p‖ − k‖)2), (19)

the left-hand side of Eq. (18) becomes (2π )2δ(p‖ −
k‖)2ε1α1(k‖)E0(k‖). Thus we have an equation for the trans-
mission amplitude B(q‖) alone:

t =
∫

d2q‖
(2π )2

I (−α1(p‖) + α2(q‖)|p‖ − q‖)

−α1(p‖) + α2(q‖)

×
{

−ε1

(
ω

c

)2

B(q‖) + [Q0(p‖) · B(q‖)]Q0(p‖)

}

= (2π )2δ(p‖ − k‖)
2ε1α1(k‖)

ε1 − ε2
E0(k‖). (20)

We now write the vectors E0(k‖) and B(q‖) in the forms

E0(k‖) = ê(i)
p (k‖)E0p(k‖) + ê(i)

s (k‖)E0s(k‖), (21a)

where

ê(i)
p (k‖) = c√

ε1ω
[k̂‖α1(k‖) + x̂3k‖], (21b)

ê(i)
s (k‖) = x̂3 × k̂‖, (21c)

and

B(q‖) = ê(t)
p (q‖)Bp(q‖) + ê(t)

s (q‖)Bs(q‖), (22a)

where

ê(t)
p (q‖) = c√

ε2ω
[q̂‖α2(q‖) + x̂3q‖], (22b)

ê(t)
s (q‖) = x̂3 × q̂‖. (22c)

In these expressions E0p(k‖) and E0s(k‖) are the amplitudes of
the p- and s-polarized components of the incident field with
respect to the plane of incidence, defined by the vectors k̂‖
and x̂3. Similarly, Bp(q‖) and Bs(q‖) are the amplitudes of the
p- and s-polarized components of the transmitted field with
respect to the plane of transmission defined by the vectors q̂‖
and x̂3.

Our goal is to express Bp(q‖) and Bs(q‖) in terms of
E0p(k‖) and E0s(k‖). To this end we introduce three mutually
perpendicular unit vectors:

â0(p‖) = c√
ε1ω

[p̂‖ − x̂3α1(p‖)], (23a)

â1(p‖) = c√
ε1ω

[p̂‖α1(p‖) + x̂3p‖], (23b)

â2(p‖) = x̂3 × p̂‖. (23c)

We now take the scalar product of Eq. (20) with each of
these three unit vectors in turn, after E0(k‖) and B(q‖) have
been replaced by the right-hand sides of Eq. (21a) and (22a),
respectively. The results are

â0(p‖) · t: 0 = 0, (24a)

â1(p‖) · t:∫
d2q‖
(2π )2

I (−α1(p‖) + α2(q‖)|p‖ − q‖)

−α1(p‖) + α2(q‖)

×
{

−
√

ε1

ε2
[α1(p‖) p̂‖ · q̂‖ α2(q‖) + p‖q‖]Bp(q‖) + √

ε1
ω

c
α1(p‖) [p̂‖ × q̂‖]3 Bs(q‖)

}

= (2π )2δ(p‖ − k‖)
2ε1α1(k‖)

ε1 − ε2
E0p(k‖), (24b)

â2(p‖) · t:∫
d2q‖
(2π )2

I (−α1(p‖) + α2(q‖)|p‖ − q‖)

−α1(p‖) + α2(q‖)

{
− ε1√

ε2

ω

c
[p̂‖ × q̂‖]3 α2(q‖)Bp(q‖) − ε1

ω2

c2
p̂‖ · q̂‖Bs(q‖)

}

= (2π )2δ(p‖ − k‖)
2ε1α1(k‖)

ε1 − ε2
E0s(k‖). (24c)

These equations represent linear relations between Bp,s(q‖) and E0p,s(k‖) which we write in the form (α = p,s, β = p,s)

Bα(q‖) =
∑

β

Tαβ(q‖|k‖)E0β(k‖). (25)

On combining Eqs. (24) and (25) we find that the transmission amplitudes {Tαβ(q‖|k‖)} are the solutions of the equation∫
d2q‖
(2π )2

I (−α1(p‖) + α2(q‖)|p‖ − q‖)

−α1(p‖) + α2(q‖)
M(p‖|q‖)T(q‖|k‖) = (2π )2δ(p‖ − k‖)

2α1(k‖)

ε2 − ε1
I2, (26)
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where

M(p‖|q‖) =
( 1√

ε1ε2
[α1(p‖) p̂‖ · q̂‖ α2(q‖) + p‖q‖] − 1√

ε1

ω
c
α1(p‖) [p̂‖ × q̂‖]3

1√
ε2

ω
c

[p̂‖ × q̂‖]3 α2(q‖) ω2

c2 p̂‖ · q̂‖

)
, (27a)

T(q‖|k‖) =
(

Tpp(q‖|k‖) Tps(q‖|k‖)

Tsp(q‖|k‖) Tss(q‖|k‖)

)
, (27b)

and

I2 =
(

1 0
0 1

)
. (27c)

Equation (26) is the reduced Rayleigh equation for the transmission amplitudes.

IV. MEAN DIFFERENTIAL TRANSMISSION COEFFICIENT

The differential transmission coefficient ∂T /∂t is defined such that (∂T /∂t )dt is the fraction of the total time-averaged
flux incident on the interface that is transmitted into the element of solid angle dt about the direction of transmission (θt ,φt ).
To obtain the mean differential transmission coefficient we first note that the magnitude of the total time-averaged flux incident
on the interface is given by

Pinc = −Re
c

8π

∫
d2x‖

{
E∗

0(k‖) ×
[

c

ω
Q0(k‖) × E0(k‖)

]}
3

exp{[−iQ∗
0(k‖) + iQ0(k‖)] · x}

= −Re
c2

8πω

∫
d2x‖{|E0(k‖)|2Q0(k‖) − [E∗

0(k‖) · Q0(k‖)]E0(k‖)}3

= Re
c2

8πω

∫
d2x‖α1(k‖)|E0(k‖)|2

= S
c2

8πω
α1(k‖)|E0(k‖)|2. (28)

In this result S is the area of the x1x2 plane covered by the randomly rough surface, and the integrand in the first line is the
time-averaged three-component of the complex Poynting vector [19]. The minus sign on the right-hand side of the first equation
compensates for the fact that the three-component of the incident flux is negative, and we have used the fact that α1(k‖) is real,
so that Q0(k‖) is real, and E∗

0(k‖) · Q0(k‖) = 0.
In a similar fashion we note that the total time-averaged transmitted flux is given by

Ptrans = −Re
c

8π

∫
d2x‖

∫
d2q‖
(2π )2

∫
d2q ′

‖
(2π )2

{
B∗(q‖) ×

[
c

ω
Q2(q′

‖) × B(q′
‖)

]}
3

× exp{−i(q‖ − q′
‖) · x‖ − i[α2(q ′

‖) − α∗
2 (q‖)]x3}

= −Re
c2

8πω

∫
d2q‖
(2π )2

{B∗(q‖) × [Q2(q‖) × B(q‖)]}3 exp[2 Im α2(q‖)x3]

= −Re
c2

8πω

∫
d2q‖
(2π )2

{|B(q‖)|2Q2(q‖) − [B∗(q‖) · Q2(q‖)]B(q‖)}3 exp[2 Im α2(q‖)x3]

= Re
c2

32π3ω

∫
d2q‖|B(q‖)|2α2(q‖) exp[2 Im α2(q‖)x3]

−Re
ic4

16π2ε2ω3

∫
d2q‖Im α2(q‖)q2

‖ |Bp(q‖)|2 exp[2 Im α2(q‖)x3]. (29)

The second term vanishes since it is the real part of a pure
imaginary number. Thus we have

Ptrans = c2

32π3ω

∫
q‖<

√
ε2

ω
c

d2q‖α2(q‖)|B(q‖)|2. (30)

The vectors k‖ and q‖ can be expressed in terms of the polar
and azimuthal angles of incidence (θ0,φ0) and transmission

(θt ,φt ), respectively, by

k‖ = √
ε1

ω

c
sin θ0(cos φ0, sin φ0,0), (31a)

q‖ = √
ε2

ω

c
sin θt (cos φt , sin φt ,0). (31b)
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From these results it follows that

d2q‖ = ε2

(
ω

c

)2

cos θtdt , (32)

where dt = sin θtdθtdφt . The total time-averaged transmit-
ted flux becomes

Ptrans = ε
3/2
2 ω2

32π3c

∫
dt cos2 θt [|Bp(q‖)|2 + |Bs(q‖)|2]. (33)

Similarly, the total time-averaged incident flux, Eq. (28),
becomes

Pinc = S

√
ε1c

8π
cos θ0[|E0p(k‖)|2 + |E0s(k‖)|2]. (34)

Thus, by definition, the differential transmission coefficient is
given by

∂T

∂t

= 1

S

ε
3/2
2

ε
1/2
1

(
ω

2πc

)2 cos2 θt

cos θ0

|Bp(q‖)|2 + |Bs(q‖)|2
|E0p(k‖)|2 + |E0s(k‖)|2 . (35)

When we combine this result with Eq. (25) we find that the
contribution to the differential transmission coefficient when
an incident plane wave of polarization β, the projection of
whose wave vector on the mean scattering plane is k‖, is
transmitted into a plane wave of polarization α, the projection
of whose wave vector on the mean scattering plane is q‖, is
given by

∂Tαβ(q‖|k‖)

∂t

= 1

S

ε
3/2
2

ε
1/2
1

(
ω

2πc

)2 cos2 θt

cos θ0
|Tαβ(q‖|k‖)|2. (36)

Since we are considering the transmission of light through a
randomly rough interface, it is the average of this function over
an ensemble of realizations of the surface profile function that
we need to calculate. This is the mean differential transmission
coefficient, which is defined by〈

∂Tαβ(q‖|k‖)

∂t

〉
= 1

S

ε
3/2
2

ε
1/2
1

(
ω

2πc

)2 cos2 θt

cos θ0
〈|Tαβ(q‖|k‖)|2〉.

(37)

If we write the transmission amplitude Tαβ(q‖|k‖) as the sum
of its mean value and the fluctuation from this mean,

Tαβ(q‖|k‖) = 〈Tαβ(q‖|k‖)〉 + [Tαβ(q‖|k‖) − 〈Tαβ(q‖|k‖)〉],
(38)

then each of these two terms contributes separately to the mean
differential transmission coefficient,〈

∂Tαβ(q‖|k‖)

∂t

〉
=

〈
∂Tαβ(q‖|k‖)

∂t

〉
coh

+
〈
∂Tαβ(q‖|k‖)

∂t

〉
incoh

,

(39)

where〈
∂Tαβ(q‖|k‖)

∂t

〉
coh

= 1

S

ε
3/2
2

ε
1/2
1

(
ω

2πc

)2 cos2 θt

cos θ0
|〈Tαβ(q‖|k‖)〉|2

(40)

and〈
∂Tαβ(q‖|k‖)

∂t

〉
incoh

= 1

S

ε
3/2
2

ε
1/2
1

(
ω

2πc

)2 cos2 θt

cos θ0
[〈|Tαβ(q‖|k‖) − 〈Tαβ(q‖|k‖)〉|2〉]

= 1

S

ε
3/2
2

ε
1/2
1

(
ω

2πc

)2 cos2 θt

cos θ0
[〈|Tαβ(q‖|k‖)|2〉 − |〈Tαβ(q‖|k‖)〉|2].

(41)

The first contribution describes the refraction of the incident
field, while the second contribution describes the diffuse
transmission.

V. TRANSMISSIVITY AND TRANSMITTANCE

In the following we will refer to transmittance as the
fraction of the power flux incident on the rough surface that
is transmitted through it, and transmissivity as the fraction
of the power flux incident on the rough surface that is
transmitted coherently and copolarized through it. To obtain
the transmissivity of the two-dimensional randomly rough
interface we start with the result that

〈Tαβ(q‖|k‖)〉 = (2π )2δ(q‖ − k‖)δαβTα(k‖). (42)

The presence of the δ function is due to the stationarity of the
randomly rough surface, the Kronecker symbol δαβ arises from
the conservation of angular momentum in the transmission
process, and the result that Tα(k‖) depends on k‖ only through
its magnitude is due to the isotropy of the random roughness.

With the result given by Eq. (42), the expression for
〈∂Tαβ(q‖|k‖)/∂t 〉coh given by Eq. (40) becomes〈

∂Tαα(q‖|k‖)

∂t

〉
coh

= ε
3/2
2

ε
1/2
1

(
ω

c

)2 cos2 θt

cos θ0
|Tα(k‖)|2 δ(q‖ − k‖),

(43)

where we have used the result

[(2π )2δ(q‖ − k‖)]2 = (2π )2δ(0) (2π )2δ(q‖ − k‖)

= S(2π )2δ(q‖ − k‖) (44)

in obtaining this expression. We next use the result

δ(q‖ − k‖) = 1

k‖
δ(q‖ − k‖) δ(φt − φ0)

= 1√
ε1ε2

(
c

ω

)2
δ(θt − �t ) δ(φt − φ0)

sin θ0 cos �t

(45)

to obtain〈
∂Tαα(q‖|k‖)

∂t

〉
coh

= ε2

ε1

cos �t

sin θ0 cos θ0
|Tα(k‖)|2δ(θt − �t ) δ(φt − φ0), (46)

where the polar angle for the specular direction of transmission
has, according to Snell’s law, been denoted

�t ≡ sin−1

(√
ε1

ε2
sin θ0

)
. (47)
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The transmissivity, Tα(θ0), for light of α polarization is defined
by

Tα(θ0) =
∫ π

2

0
dθt sin θt

∫ π

−π

dφt

〈
Tαα(q‖|k‖)

∂t

〉
coh

= ε2

ε1

cos �t sin �t

sin θ0 cos θ0
|Tα(k‖)|2

∫ π
2

0
dθtδ(θt − �t )

=
⎧⎨
⎩

√
ε2
ε1

cos �t

cos θ0
|Tα(k‖)|2, 0 <

√
ε1/ε2 sin θ0 < 1,

0, otherwise.

(48)

In writing this expression we have used the result that
sin �t = √

ε1/ε2 sin θ0, and that sin θ0 is a monotonically
increasing function of θ0 for 0◦ < θ0 < 90◦, and so therefore
is sin �t . We see from Eq. (48) that when ε1 > ε2 the
transmissivity is nonzero for angles of incidence satisfying
0 < θ0 < sin−1(

√
ε2/ε1), and vanishes for angles of incidence

satisfying sin−1(
√

ε2/ε1) < θ0 < π/2. This result is a conse-
quence for transmission of the existence of a critical angle for
total internal reflection, namely θ�

0 = sin−1(
√

ε2/ε1). In the
case where ε1 < ε2, the transmissivity is nonzero in the entire
range of angles of incidence, 0 < θ0 < π/2.

The function Tα(k‖) is obtained from Eq. (42), with the aid
of the result that (2π )2δ(0) = S, in the form

Tα(k‖) = Tα

(√
ε1

ω

c
sin θ0

)
= 1

S
〈Tαα(k‖|k‖)〉. (49)

In addition to the transmissivity (48) that depends only on the
copolarized light transmitted coherently by the rough interface,
it is also of interest to introduce the transmittance for light of
β polarization defined as

Tβ(θ0) =
∑

α=p,s

Tαβ(θ0), (50a)

where

Tαβ(θ0) =
∫ π

2

0
dθt sin θt

∫ π

−π

dφt

〈
Tαβ(q‖|k‖)

∂t

〉
. (50b)

In light of Eq. (39), the transmittance obtains contributions
from light that have been transmitted coherently as well as in-
coherently through the rough interface, Tβ(θ0) = Tβ(θ0)coh +
Tβ(θ0)incoh, and both co- and cross-polarized transmitted
light contribute to it. Moreover, with Eq. (48), and since
cross-polarized coherently transmitted light is not allowed
[see Eq. (42)], the coherent contribution to transmittance for
light of β polarization equals the transmissivity for light of β

polarization: Tβ(θ0)coh = Tβ(θ0). Therefore, Eq. (50a) can be
written in the form

Tβ(θ0) = Tβ(θ0) +
∑
α=p,s

Tαβ(θ0)incoh. (51)

It remains to remark that in cases where the incident
light is not purely p or s polarized, the transmittance and
transmissivity of the optical system will have to be calculated
on the basis of weighted sums of the expressions in Eqs. (48)
and (50) where the weights reflect the fraction of p and s

polarization associated with the incident light.

VI. RESULTS AND DISCUSSIONS

Calculations were carried out for two-dimensional ran-
domly rough dielectric surfaces defined by an isotropic
Gaussian height distribution of rms height δ = λ/20 and an
isotropic Gaussian correlation function of transverse correla-
tion length a = λ/4. The incident light consisted of a p- or
s-polarized plane wave of wavelength λ (in vacuum) and well-
defined angles of incidence (θ0,φ0). The dielectric medium
was assumed to be a photoresist defined by the dielectric
constant ε = 2.6896. The azimuthal angle of incidence was
φ0 = 0◦ in all simulation results presented in this work;
this choice for φ0 is somewhat arbitrary, since, due to the
isotropy of the roughness, results for another choice of φ0

can be obtained from the results presented here by a trivial
rotation. Realizations of the surface profile function ζ (x‖)
were generated [1,20] on a grid of Nx×Nx = 321×321 points.
The surfaces covered a square region of the x1x2 plane of
edge L = 25λ, giving an area S = L2. With these spatial
parameters, the corresponding momentum space parameters
used in the simulations were �q = 2π/L for the discretization
intervals in momentum space, and the largest momentum value
that was resolved was Q = 6.4ω/c.

The reduced Rayleigh equation (26) was solved numeri-
cally by the method described in detail in Ref. [2], so only a
summary of this method will be presented here. In evaluating
the q‖ integral in Eq. (26), the infinite limits of integration
were replaced by finite limits |q‖| < Q/2, and the integration
was carried out by a two-dimensional version of the extended
midpoint rule [21, p. 161] applied to the circular subsection of
a grid in the q1q2 plane which is determined by the Nyquist
sampling theorem [21, p. 605] and the properties of the discrete
Fourier transform [2]. The function I (γ |q‖) was evaluated
by expanding the integrand in Eq. (17) in powers of ζ (x‖)
and calculating the Fourier transform of ζ n(x‖) by the fast
Fourier transform [2]. For these expansions we used the first
N = 18 terms. The resulting matrix equations were solved by
LU factorization and back substitution, using the ScaLAPACK
library [22].

These calculations were carried out for a large number Np of
realizations of the surface profile function ζ (x‖) for an incident
plane wave of p or s polarization. For each surface realization
the transmission amplitude Tαβ (q‖|k‖) and its squared modulus
|Tαβ(q‖|k‖)|2 were obtained. An arithmetic average of the Np

results for these quantities yielded the mean values 〈Tαβ (q‖k‖)〉
and 〈|Tαβ(q‖|k‖)|2〉 entering Eq. (41) for the mean differential
transmission coefficient, and related quantities [see Eqs. (49)
and (51)].

Investigating the energy conservation of our simulation
results can be a useful test of their accuracy. In combining
simulation results from the current work with corresponding
results obtained for the mean differential reflection coefficient
〈∂Rαβ/∂s〉 through the use of the computationally similar
methods presented in Ref. [15], we may add the total reflected
and transmitted power for any lossless system. When the
reflectance is added to the transmittance for any of the systems
investigated in the current work, it is found that the results
of these calculations satisfy unitarity with an error smaller
than 10−4. This testifies to the accuracy of the approach used,
and it is also a good indicator for satisfactory discretization.
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FIG. 2. Contribution to the incoherent component of the mean differential transmission coefficient from the in-plane, copolarized
transmission of p- and s-polarized light incident normally [(θ0,φ0) = (0◦,0◦)] on the random vacuum-dielectric interface, as a function of
the angle of transmission θt . (a) The medium of incidence is vacuum [ε1 = 1; ε2 = 2.6896]; (b) the medium of incidence is the dielectric
[ε1 = 2.6896; ε2 = 1]. Negative values of θt correspond to light transmitted in the azimuthal direction of φt = 180◦. Results for (in-plane)
cross-polarized transmission have not been indicated since they are generally suppressed in the plane of incidence. The results presented
as solid lines were obtained on the basis of numerical solutions of the reduced Rayleigh equation (26) for an ensemble of 5000 surface
realizations. The dashed curves represent the result of the small amplitude perturbation theory (52) to first order, assuming polarization as
indicated for the solid lines of the same color. The specular direction of transmission is indicated by the vertical dash-dotted line at θt = 0◦, and
in Fig. 2(a), the vertical dotted lines at θt = ±θ�

t indicate the position of the critical angle where θ�
t = sin−1(

√
ε1/ε2) ≈ 37.6◦ for the parameters

assumed. The wavelength of the incident light in vacuum was λ. The rough interface was assumed to have a root-mean-square roughness of
δ = λ/20, and it was characterized by an isotropic Gaussian power spectrum (3) of transverse correlation length a = λ/4. In the numerical
calculations it was assumed that the surface covered an area L×L, with L = 25λ, and the surface was discretized on a grid of 321×321 points.

It should be noted, however, that unitarity is a necessary, but
not sufficient, condition for the correctness of the presented
results. Through a preliminary investigation, unitarity seemed
to be satisfied to a satisfactory degree for surfaces with a root
mean square roughness up to about two times larger than the
roughness used in obtaining the results presented in this paper,
if the correlation function was kept the same.

A. Normal incidence

In Fig. 2 we display the mean differential transmission
coefficient (MDTC) in the plane of incidence as a function
of the polar angle of transmission when the random surface
is illuminated from the vacuum at normal incidence by p-
and s-polarized light, Fig. 2(a), and when it is illuminated
from the dielectric medium, Fig. 2(b). Only results for in-
plane [q‖ ‖ k‖] copolarized transmission are presented, since

in-plane cross-polarized transmission is suppressed due to the
absence of a contribution from single-scattering processes. An
ensemble of 5000 realizations of the surface profile function
was used to produce the averaged results presented in each of
these figures.

From Fig. 2(a) it is observed that the curves display both
maxima and minima in the p → p transmission spectrum,
and peaks in the s → s transmission spectrum. In contrast,
the curves presented in Fig. 2(b) are featureless, and are
nearly identical. The presence of these features, and others
in subsequent figures, can be understood if we calculate
the contribution to the MDTC from the light transmitted
incoherently through the random interface as an expansion
in powers of the surface profile function. This calculation,
outlined in Appendix B, yields the result that to lowest nonzero
order in ζ (x‖) we have

〈
∂Tpp(q‖|k‖)

∂t

〉
incoh

= δ2

π2
(ε2 − ε1)2ε

1/2
1 ε

5/2
2

(
ω

c

)2 cos2 θt

cos θ0
g(|q‖ − k‖|) 1

|dp(q‖)|2 |α1(q‖)(q̂‖ · k̂‖)α2(k‖) + q‖k‖|2 α2
1(k‖)

|dp(k‖)|2 , (52a)

〈
∂Tps(q‖|k‖)

∂t

〉
incoh

= δ2

π2
(ε2 − ε1)2 ε

5/2
2

ε
1/2
1

(
ω

c

)4 cos2 θt

cos θ0
g(|q‖ − k‖|) |α1(q‖)|2

|dp(q‖)|2 ([q̂‖ × k̂‖]3)2 α2
1(k‖)

|ds(k‖)|2 , (52b)

〈
∂Tsp(q‖|k‖)

∂t

〉
incoh

= δ2

π2
(ε2 − ε1)2 ε

1/2
2

ε
1/2
1

(
ω

c

)4 cos2 θt

cos θ0
g(|q‖ − k‖|) 1

|ds(q‖)|2 ([q̂‖ × k̂‖]3)2 α2
1(k‖)|α2(k‖)|2

|dp(k‖)|2 , (52c)

〈
∂Tss(q‖|k‖)

∂t

〉
incoh

= δ2

π2
(ε2 − ε1)2 ε

3/2
2

ε
1/2
1

(
ω

c

)6 cos2 θt

cos θ0
g(|q‖ − k‖|) 1

|ds(q‖)|2 (q̂‖ · k̂‖)2 α2
1(k‖)

|ds(k‖)|2 , (52d)
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where the functions dα(q‖) and dα(k‖) for α = p,s are
presented in Eqs. (B11) and (53). In the following we will refer
to Eq. (52) as the results of small amplitude perturbation theory
(SAPT) to first order. Results from numerical evaluations
of Eq. (52) for normal incidence and in-plane transmission
[q̂‖ ‖ k̂‖] are displayed as dashed lines in Fig. 2 and several
figures to follow. For Fig. 2 we have not included results
for transmission out of plane [q̂‖ · k̂‖ = 0], since, for normal
incidence, the results for copolarized in-plane transmission
are identical with the results for cross-polarized out-of-plane
transmission. We notice in passing that the unit vectors
q̂‖ = q‖/q‖ and k̂‖ = k‖/k‖ are well defined also for θt = 0◦
and θ0 = 0◦, respectively, as follows from Eq. (31).

From Fig. 2 it is observed that the single-scattering
perturbation theory reproduces fairly well the overall shape
of the MDTC for in-plane copolarized transmission, at least
for the level of roughness assumed in producing these results.
However, there is a difference in amplitude between the
simulation results and the curves produced from perturbation
theory, in particular when ε1 < ε2.

The results from SAPT can be further analyzed in order to
understand all features seen in Fig. 2. With the aid of q‖ =√

ε2(ω/c) sin θt , dα(q‖) can be written in the form

dp(q‖) = √
ε2

ω

c

{
ε2

[(
ε1 − ε2

ε2

)
+ cos2 θt

] 1
2

+ ε1 cos θt

}
,

(53a)

ds(q‖) = √
ε2

ω

c

{[(
ε1 − ε2

ε2

)
+ cos2 θt

] 1
2

+ cos θt

}
, (53b)

and from k‖ = √
ε1(ω/c) sin θ0, dα(k‖) can be expressed as

dp(k‖) = √
ε1

ω

c

{
ε1

[(
ε2 − ε1

ε1

)
+ cos2 θ0

] 1
2

+ ε2 cos θ0

}
,

(53c)

ds(k‖) = √
ε1

ω

c

{[(
ε2 − ε1

ε1

)
+ cos2 θ0

] 1
2

+ cos θ0

}
. (53d)

We see from Eqs. (53a) and (53b) that when ε1 is greater than
ε2, both dp(q‖) and ds(q‖) are real continuous monotonically
decreasing functions of θt , and so therefore are |dp(q‖)|2 and
|ds(q‖)|2. This leads to smooth dependencies of the MDTC
on the angle of transmission [Fig. 2(b)]. However, when ε1

is smaller than ε2, the first term in the expressions for dp(q‖)
and ds(q‖) vanishes for a polar angle of transmission θt = θ�

t

defined by cos θ�
t = [(ε2 − ε1)/ε2]

1
2 , or, equivalently, when

sin θ�
t = √

ε1/ε2, and becomes pure imaginary as θt increases
beyond the angle

θ�
t = sin−1

√
ε1

ε2
, (54)

which is the critical angle for total internal reflection in the
corresponding, inverse, flat-surface system where ε1 → ε2

and ε2 → ε1. The functions |dp(q‖)|−2 and |ds(q‖)|−2 in
Eq. (52) therefore display asymmetric peaks at the polar
angle of transmission θt = θ�

t . For s → s copolarized in-plane
(incoherent) transmission at normal incidence we therefore see
sharp peaks in the MDTC at this polar angle both for forward

and backward scattered light [Fig. 2(a)]. The same peaks will
then also be visible for p → s cross-polarized out-of-plane
transmission at normal incidence. However, in the case of
p → p copolarized transmission we instead see dips at θ�

t in
Fig. 2(a). In the case of the first-order SAPT results, the MDTC
does indeed go to zero at this “critical” polar angle. This is due
to the zeros in Eq. (52a), specifically the zeros in the function

F (q‖|k‖) = |α1(q‖)(q̂‖ · k̂‖)α2(k‖) + q‖k‖|2. (55)

For normal incidence [k‖ = 0] and in-plane transmission [q‖ ‖
k‖], the function F (q‖|k‖) is zero for α1(q‖) = 0. This is the
case for q‖ = √

ε1ω/c [Eq. (9)], which corresponds to θt = θ�
t

in the medium of transmission when ε2 is greater than ε1.
Finally, in the case of s → p cross-polarized transmission,
we will also see dips at θ�

t due to the simple factor α1(q‖) in
Eq. (52b), but this factor is zero at this angle of transmission
regardless of the angle of incidence.

The peaks observed in Fig. 2(a) where ε1 < ε2 are the
optical analogs of the Yoneda peaks observed in the scattering
(in reflection) of x rays from both metallic [6–9] and non-
metallic [10–13] surfaces, later described as “quasi-anomalous
scattering peaks” in the two-dimensional numerical work
by Kawanishi et al. [5]. The Yoneda peaks were originally
observed as sharp peaks for incidence close to the grazing
angle, as the difference in the dielectric constants of the
two scattering media is very small at x-ray frequencies. In
the following, by Yoneda peaks we will mean well-defined
maxima in the angular distribution of the intensity of the
transmitted light at, or slightly above, the critical polar angle in
the medium of transmission for which the wave number turns
nonpropagating in the medium of incidence, when ε1 < ε2. A
more detailed discussion on Yoneda peaks in reflection and in
general can be found in Ref. [15].

Because the Yoneda peaks and the minima given by Eq. (55)
are present in the expressions for the MDTC obtained in
the lowest order in the surface profile function, the second,
they can be interpreted as single-scattering phenomena, not
multiple-scattering effects. This is supported by the qualitative
similarity between the plots presented in Fig. 2. We specify that
the polar angle of transmission where the Yoneda phenomenon
can be observed is determined only by the ratio of the dielectric
constants of the two media; it does not, for instance, depend
on the polar angle of incidence.

We now turn to the angular intensity distributions of the
transmitted light. In Figs. 3 and 4 we present simulation
results for the contribution to the MDTC from the light
that has been transmitted incoherently through the randomly
rough interface, that display the full angular distribution of
this contribution. These two figures were obtained under
the assumption that the angles of incidence were (θ0,φ0) =
(0◦,0◦); cuts along the plane of incidence of these angular
intensity distributions result in the curves presented in Fig. 2.
Therefore, the parameters assumed in producing the results
of Figs. 2(a) and 3 are identical, and so are the parameters
assumed in obtaining Figs. 2(b) and 4.

All angular intensity distributions presented in this work,
including those in Figs. 3 and 4, are organized in the same
fashion. They are arranged in 3×3 subfigures where each row
and column of the array correspond to the angular distribu-
tion of the incoherent component of the mean differential
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FIG. 3. Incoherent component of the mean differential transmission coefficient, showing the full angular intensity distribution as a function
of the lateral wave vector of the light transmitted from vacuum into a dielectric medium separated by a rough interface. The angles of incidence
are (θ0,φ0) = (0◦,0◦). Notice the rapid changes in intensity around the polar angle θt = θ�

t = sin−1(
√

ε1/ε2) corresponding to q‖ = √
ε1ω/c.

The position of the specular direction in transmission is indicated by white dots. The parameters assumed for the scattering geometry and
used in performing the numerical simulations have values that are identical to those assumed in obtaining the results of Fig. 2(a). The in-plane
intensity variations in Figs. 3(b) and 3(f) are the curves depicted in Fig. 2(a). The star notation, e.g., p → �, indicates that the polarization
of the transmitted light was not recorded. Furthermore, in, e.g., Fig. 3(g), the open circle in ◦ → � symbolizes that the incident light was
unpolarized; this simulation result was obtained by adding half of the results from Figs. 3(a) and 3(d). [Parameters: ε1 = 1.0, ε2 = 2.6896;
δ = λ/20, a = λ/4.]

transmission coefficient for a given state of polarization of
the transmitted and incident light, respectively. The lower
left 2×2 corner of such figures corresponds to the cases
where β-polarized incident light is transmitted by the rough
interface into α-polarized light, denoted β → α in the lower
left corner of each subfigure, where α = p,s and the same
for β. Moreover, the first row corresponds to results where
the polarization of the transmitted light was not recorded
(indicated by �); such results are obtained by adding the
other two results from the same column. The last column of
the angular intensity distribution figures corresponds to the
situation when the incident light is unpolarized (indicated

by an open circle, ◦); these results are obtained by adding
half of the other two results present in the same row. For
instance, the subfigure in the upper right corner, labeled ◦ → �,
refers to unpolarized light (the open circle) transmitted by the
surface into light for which we do not record the polarization
(the star). It should be stressed that even if the polarization
of the transmitted light is not recorded, it does not mean that
the transmitted light is unpolarized; in general this is not the
case as can be seen by, for instance, inspecting Fig. 3.

When both the incident and transmitted light are linearly
polarized, the lower left 2×2 corners of Figs. 3 and 4 show that
the angular distributions of the incoherent component of the
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FIG. 4. Same as Fig. 3, but for light incident from the dielectric side onto the interface with vacuum. The in-plane intensity variations in
Figs. 4(b) and 4(f) are the curves depicted in Fig. 2(b). [Parameters: ε1 = 2.6896, ε2 = 1.0; δ = λ/20, a = λ/4.]

FIG. 5. (a) Same as Fig. 2(a) but for angles of incidence (θ0,φ0) = (21.1◦,0◦). (b) Same as (a) but for out-of-plane scattering [φt = ±90◦].
Results for combinations of the polarizations of the incident and scattered light for which the scattered intensity was everywhere negligible
have been omitted. [Parameters: ε1 = 1.0, ε2 = 2.6896; δ = λ/20, a = λ/4.]
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FIG. 6. Same as Fig. 3, but for the angles of incidence (θ0,φ0) = (21.1◦,0◦).

mean differential transmission coefficients take on dipolelike
patterns oriented along the plane of incidence for copolariza-
tion and perpendicular to it for cross polarization. We note
that such patterns are a consequence of our definitions of the
polarization vectors, and that similar patterns have recently
been observed in reflection [2,15,23]. It was already concluded
based on Fig. 2 that the in-plane, copolarized transmission is
rather different for p and s polarization when the medium of
incidence is vacuum, and rather similar when the medium
of incidence is the dielectric. Not surprisingly, a similar
conclusion can be drawn by inspecting the copolarized angular
intensity distributions depicted in the β → β subfigures of
Figs. 3 and 4 (β = p,s). For normal incidence, the angular
intensity distributions for cross- and copolarized transmission
are intimately related to each other, but only if they share
the same polarization state of the transmitted light; in fact, the
former distributions are 90◦ rotations of the latter. For instance,
for scattering into s-polarized light, this can be understood if
we note from Eqs. (52c), (52d), and (27) [see also Eq. (B13)
of Appendix B] that to the lowest nonzero order in ζ (x‖) we

have〈
∂Tsp(q‖|k‖)

∂t

〉
incoh

= δ2

π2
(ε2 − ε1)2ε

1/2
1 ε

5/2
2

(
ω

c

)2 cos2 θt

cos θ0

× g(|q‖ − k‖|) |Msp(q‖|k‖)|2α2
1(k‖)

|ds(q‖)|2|dp(k‖)|2 ,

(56a)〈
∂Tss(q‖|k‖)

∂t

〉
incoh

= δ2

π2
(ε2 − ε1)2 ε

3/2
2

ε
1/2
1

(
ω

c

)2 cos2 θt

cos θ0

× g(|q‖ − k‖|) |Mss(q‖|k‖)|2α2
1(k‖)

|ds(q‖)|2|ds(k‖)|2 ,

(56b)

where the matrix elements Msp(q‖|k‖) and Mss(q‖|k‖) are
presented in Eq. (27). For normal incidence, dp(0)/

√
ε1ε2 =

ds(0) and Msp(q‖|0) out of plane equals Mss(q‖|0) in
plane. This means that 〈∂Tsp(q‖|0)/∂t 〉incoh will equal
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〈∂Tss(q′
‖|0)/∂t 〉incoh if q‖, after a rotation by an angle of

90◦, equals q′
‖. A similar argument can be used to relate

the angular distribution of 〈∂Tps(q‖|0)/∂t 〉incoh to a 90◦
rotation of the angular distribution of 〈∂Tpp(q‖|0)/∂t 〉incoh.
This symmetry property of the angular intensity distributions at
normal incidence is readily observed in Figs. 3 and 4. Hence
we conclude that the regions of high intensity observed in
the cross-polarized angular intensity distribution in Fig. 3(c)
around the out-of-plane direction are also Yoneda peaks; their
origin is due to the peaking factor |ds(q‖)|−2 versus transmitted
wave number, identical to what we found for the in-plane peaks
in the copolarized transmitted light.

When ε1 < ε2, Yoneda peaks may actually be observed
for a wide range of azimuthal angles of transmission. For
instance, at normal incidence, and when unpolarized incident
light is transmitted through the surface into s-polarized light,
the Yoneda peaks occur around θt = θ�

t (or q‖ = √
ε1ω/c)

independent of the value of the azimuthal angle of transmission
φt , and they will have constant height [Fig. 3(i)]. Similarly,
when unpolarized light is transmitted into p-polarized light
for the same scattering system, one observes from Fig. 3(h)
that a circular groove exists at q‖ = √

ε1ω/c. For normal
incidence (k‖ = 0), the amplitudes of 〈∂Tpp(q‖|k‖)/∂t 〉incoh

and 〈∂Tps(q‖|k‖)/∂t 〉incoh at the position of the groove will be
zero according to (52a) and (52b). As mentioned earlier, this is
due to the factor α1(q‖), which vanishes when q‖ = √

ε1ω/c.
It should be observed from Figs. 3(g)–3(i) and 4(g)–4(i),

that at normal incidence, and due to the isotropy of the surface,
unpolarized incident light will be transmitted by the surface
into rotationally symmetric intensity distributions independent
of whether the transmitted light is p or s polarized. When
unpolarized light is incident from the dielectric, there are only
minor differences in the intensity distributions of the p- and
s-polarized transmitted light [Figs. 4(h) and 4(i)]. However,
when the light is incident from vacuum, Figs. 3(h) and 3(i)
show pronounced differences in their intensity distributions.

B. Non-normal incidence

We now address the situation when θ0 �= 0◦, and we start
our discussion by assuming that the light is incident from
vacuum onto its rough interface with the dielectric. In Fig. 5
we present the MDTC for light that has been transmitted
incoherently (a) in plane and (b) out of plane by the surface
for θ0 = 21.1◦, and in Fig. 6 we present the corresponding
full angular intensity distributions. Figures 5 and 6 show that
the Yoneda peaks are still prominent, but their amplitudes are
no longer independent of the azimuthal angle of transmission,
as was found for normal incidence. For s → s transmission,
Figs. 5(a) and 6(f), it is found that the Yoneda peak amplitudes
are higher in the forward transmission plane than in the
backward plane, and the former peaks have a higher amplitude
than they had for normal incidence. Moreover, the Yoneda
peaks visible in cross-polarized p → s transmission, Fig. 6(c),
that for normal incidence were located symmetrically out of
plane, are now moving into the forward transmission plane.
The amplitude of 〈∂Tpα(q‖|k‖)/∂t 〉incoh when q‖ = √

ε1ω/c,
which was essentially zero for normal incidence, no longer
vanishes everywhere as can be seen in Fig. 5 and the second
row of subfigures in Fig. 6, but we do still observe a local

minimum in the transmitted intensity into p-polarized light at
the position of the Yoneda peaks, and this intensity is, in the
plane of incidence, substantially lower than the corresponding
intensity for transmission into s-polarized light.

Further inspection of Fig. 5 for p → p copolarized
transmission reveals that the local minimum found in plane
in the backscattering direction (φt = 180◦), has shifted its
position away from the critical polar angle of θ�

t . To first
order in SAPT, for which the transmitted intensity at this
local minimum is zero, this shift is due to behavior in the
function F (q‖|k‖) [Eq. (55)] that deserves a more thor-
ough discussion. When k‖ �= 0, F (q‖|k‖) can only cause
〈∂Tpp(q‖|k‖)/∂t 〉incoh to vanish for q‖ · k‖ < 0 (backward
scattering). Specifically, for in-plane backward scattering
[q̂‖ · k̂‖ = −1], 〈∂Tpp(q‖|k‖)/∂t 〉incoh will be zero for angles
of transmission

�B(θ0) = sin−1

(
ε1

ε2

√
ε2

ε1
− sin2 θ0

)
. (57)

Note that for normal incidence, θ0 = 0◦, Eq. (57) reduces
to �B(0◦) = sin−1 √

ε1/ε2, which becomes θ�
t when ε1 <

ε2. Figure 7 shows the dependence of �B on θ0 for both
configurations of the dielectric and vacuum, provided that φt =
180◦. In this figure, the critical angle θ�

t has been indicated
on both axes as black dash-dotted lines. Corresponding plots
of �B but for incoherent reflection from the rough interface
[Eq. (56) in Ref. [15]] have been included in the figure
as thicker colored dashed lines. For ε1 = 1.0, ε2 = 2.6896,
and θ0 = 21.1◦, Eq. (57) gives �B(21.1◦) ≈ 36.5◦, in good
agreement with what we observe in Fig. 5.

The transmission angles defined by �B were first men-
tioned in the literature by Kawanishi et al. [5], where the
angular values of �B in both reflection and transmission
were explored through a stochastic functional approach for
two-dimensional surfaces. They chose to call the angles at

FIG. 7. Dependence of the in-plane Brewster scattering angle
�B on the polar angle of incidence θ0 for φt = 180◦ [Eq. (57)].
Corresponding results, but for �B in reflection and φs = 0◦ as
provided by Eq. (56) in Ref. [15], are included as dashed lines for
completeness. The critical angle θ�

t has been indicated on both axes
as black dash-dotted lines.
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FIG. 8. (a) Same as Fig. 2(a) but for angles of incidence (θ0,φ0) = (66.9◦,0◦). (b) Same as (a) but for out-of-plane scattering [φt = ±90◦].
Results for combinations of the polarizations of the incident and scattered light for which the scattered intensity was everywhere negligible
have been omitted. [Parameters: ε1 = 1.0, ε2 = 2.6896; δ = λ/20, a = λ/4.]

FIG. 9. Same as Fig. 3, but for the angles of incidence (θ0,φ0) = (66.9◦,0◦).
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which the first-order contribution (according to their approach)
to 〈∂Tpα(q‖|k‖)/∂t 〉incoh vanishes the Brewster scattering
angles, as a generalization of the Brewster angle (polarizing
angle) in reflection for a flat surface. In what follows,
following Kawanishi et al., we will refer to the polar angles
of transmission in the plane of incidence at which p- and
s-polarized light is transmitted diffusely (incoherently) into
light of any polarization with zero, or nearly zero, intensity,
the Brewster scattering angles. This is consistent with our
previous investigation into the Brewster scattering angles in
reflection, as presented in Ref. [15].

The Brewster angle θB is defined by the zero in the
reflectivity from a flat surface, for p polarization at the angle of
incidence given by θ0 = θB = tan−1(

√
ε2/ε1). For one set of

{ε1,ε2}, there is hence only one Brewster angle for incidence
in a given medium. However, in contrast, we would like to
stress the fact that the Brewster scattering angles for p → p

scattering are present for a wide range of angles of incidence,
given by Eq. (57) for in-plane transmission.

We now let the polar angle of incidence increase to θ0 =
66.9◦, as presented in Figs. 8 and 9. These figures show that
p-polarized transmitted light gives a significant, maybe even
dominant, contribution to the in-plane transmitted intensity at
the position of the Yoneda peak in the forward transmission
plane (φt = φ0). This is in sharp contrast to what was found
when θ0 = 0◦ and θ0 = 21.1◦, where s-polarized transmitted
light gave the most significant contribution to the in-plane
transmitted intensity at the position of the Yoneda peaks. To
explain this behavior in the current context, we will again be
assisted by Eq. (52a), from which it follows that at the position
of the Yoneda peaks〈

∂Tpp(q‖|k‖)

∂t

〉
incoh

∣∣∣∣
q‖=√

ε1ω/c

∝ k2
‖

|dp(k‖)|2 , (58)

where we used α1(
√

ε1ω/c) = 0 in obtaining this result.
For normal incidence, Eq. (58) predicts that the p → p

transmission should go to zero, consistent with what we have
seen. However, as the polar angle of incidence is increased, the
function on the right-hand side of Eq. (58) will grow quickly,
particularly as one approaches grazing incidence. This has the
consequence that 〈∂Tpp(q‖|k‖)/∂t 〉incoh, for increasing polar
angle of incidence, will go from dipping to peaking at the
position of the Yoneda peaks, q‖ = √

ε1ω/c. This will not
happen for the s → p transmitted light since to lowest order
in the surface profile function its intensity is proportional to
α1(q‖), which will always be zero at the position of the Yoneda
peaks [see Eq. (52c)].

To illustrate this behavior, we study the copolarized
transmitted intensity at the position of the Yoneda peak in
the forward transmission plane, (θt ,φt ) = (θ�

t ,φ0), by defining
the quantity

Yα(θ0) ≡
〈
∂Tαα(q‖|k‖)

∂t

〉
incoh

∣∣∣∣
q‖=√

ε1
ω
c

k̂‖

. (59)

Figure 10 presents simulation results for Yα(θ0) as a function of
polar angle of incidence for transmission through the vacuum-
dielectric system. This figure shows, as is consistent with the
preceding discussion, that Yp(θ0) increases more rapidly than
Ys(θ0) for moderate angles of incidence; moreover, for an angle

FIG. 10. Simulation results for the in-plane, copolarized con-
tribution to the mean DTC at the Yoneda peak in the forward
transmission plane as measured by the function Yα(θ0) defined in
Eq. (59). Results for the same angles of incidence, but obtained
through SAPT, are included as dashed lines. [Parameters: ε1 = 1.0,
ε2 = 2.6896; δ = λ/20, a = λ/4.]

of incidence of about 62◦ and greater, we find that Yp(θ0) �
Ys(θ0) for the dielectric constants assumed in the current work.
The reason for the nonzero Yp(θ0 = 0◦) is multiple scattering
effects which were included consistently in the nonperturbative
simulation technique used to obtain the solid-line results of
Fig. 10.

Also of interest in the figures presented for θ0 = 66.9◦

is the position of the Brewster scattering angle �B , which
is now shifted even farther away from the critical angle θ�

t .
From Eq. (57) we calculate that �B(66.9◦) ≈ 30.3◦, in good
agreement with the observed value in Fig. 8. This Brewster
scattering angle is close to its limiting value for grazing
incidence for the dielectric constants currently investigated:
�B(90◦) ≈ 28.9◦ [Fig. 7].

We now turn our attention to the inverse system where light
is again incident from the dielectric side of the rough interface.
For this system, Fig. 11 presents the (a) in-plane and (b) out-of-
plane distributions of the MDTC for a polar angle of incidence
θ0 = 34.1◦. As we compare Figs. 11 to 2(b), the observation
made for the vacuum-dielectric system that an increase in θ0

will result in the majority of the light being transmitted into
the forward transmission plane seems also to hold true for the
dielectric-vacuum system. This is expected for weakly rough
surfaces like the ones we are investigating, as the main weight
of the MDTC to first order in SAPT depends on the power-
spectrum factor in Eq. (52), a modified Gaussian centered at
the angular position of the coherently transmitted light.

The Brewster scattering angle can be found also when the
light is incident from the dielectric side. For the parameters in
Fig. 11, we find that 〈∂Tpp(q‖|k‖)/∂t 〉incoh, to first order in
SAPT, vanishes at the polar angle of �B(34.1◦) ≈ 40.2◦ for
φt = 180◦. A similar result is presented in the work by Nieto-
Vesperinas and Sánchez-Gil [Fig. 12 in Ref. [16]], but the
Brewster scattering phenomenon is not mentioned explicitly
in this work.
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FIG. 11. (a) Same as Fig. 2(b) but for angles of incidence (θ0,φ0) = (34.1◦,0◦). (b) Same as (a) but for out-of-plane scattering [φt = ±90◦].
Results for combinations of the polarizations of the incident and scattered light for which the scattered intensity was everywhere negligible
have been omitted. [Parameters: ε1 = 2.6896, ε2 = 1.0; δ = λ/20, a = λ/4.]

FIG. 12. Same as Fig. 4, but for the angles of incidence (θ0,φ0) = (34.1◦,0◦).
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FIG. 13. Same as Fig. 4, but for the angles of incidence (θ0,φ0) = (45.0◦,0◦). Note that for the corresponding flat interface system there
would have been zero transmission, since the incident field will experience total internal reflection due to θ0 > θ�

t ≈ 37.6◦. For this reason
there is no white dot indicating the specular direction of transmission in this case. For this rough interface system, the light that is transmitted
is induced by the surface roughness.

Figures 12 and 13 present the full angular distributions
of the MDTC for angles of incidence (θ0,φ0) = (34.1◦,0◦)
and (θ0,φ0) = (45.0◦,0◦), respectively. The distributions in
Figs. 12 and 13 are rather smooth with few, if any, surprising
characteristics. It should be noted that the polar angle of
incidence θ0 = 45.0◦ is larger than the critical angle for total
internal reflection, θ�

0 = sin−1(
√

ε2/ε1) ≈ 37.6◦, so, for the
equivalent planar system, no light would have been transmitted
at all; the nonzero intensity distributions observed in Fig. 13
are therefore all roughness induced.

C. Transmissivity and transmittance

Turning now to the transmissivity [defined in Eq. (48)] of
the randomly rough interface, we present in Fig. 14(a) the
transmissivity as a function of the polar angle of incidence
θ0 when the interface is illuminated from vacuum by p-
and s-polarized light. The transmissivity when the interface

is illuminated from the dielectric is presented in Fig. 14(b).
In Fig. 14(a), the transmissivity for incident light of both
polarizations is nonzero for all values of θ0, and tends to
zero at a grazing angle of incidence θ0 ≈ 90◦. In contrast,
the vanishing of the transmissivity for incident light of both
polarizations for angles of incidence greater than the critical
angle for total internal reflection, θ�

0 = sin−1(
√

ε2/ε1), which
evaluates to θ�

0 ≈ 37.6◦ for the assumed values of the dielectric
constants, is clearly seen in Fig. 14(b). The transmissivity is
larger for p-polarized light than it is for s-polarized light,
irrespective of the medium of incidence. This is consistent
with the result that the reflectivity of a dielectric surface is
larger for s-polarized light than for p-polarized light [15].
Even if the transmissivity curves presented in Fig. 14 closely
resemble the functional form of the transmissivity obtained
for equivalent flat interface systems (the Fresnel transmission
coefficients, quantified by the dashed lines in Fig. 14), we
remark that there are differences. For instance, from Fig. 14
one observes that Tp(θ0) < 1 for all angles of incidence, while
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FIG. 14. (a) Transmissivities Tα(θ0) of a two-dimensional randomly rough vacuum-dielectric interface (ε1 = 1, ε2 = 2.6896) for p- and
s-polarized light as functions of the polar angle of incidence. (b) The same as in 14(a), but for a dielectric-vacuum interface (ε1 = 2.6896, ε2 = 1).
The quantity T F

α (θ0) indicates the Fresnel transmission coefficient (flat surface transmissivity). The critical angle θ0 = θ�
0 = sin−1(

√
ε2/ε1) for

total internal reflection for the equivalent planar dielectric-vacuum system is indicated by the vertical dashed line, with the values assumed for
the dielectric constants θ�

0 ≈ 37.6◦. The roughness parameters assumed in obtaining these results are the same as in Fig. 2.

for the equivalent flat interface systems the transmissivity will
be unity at the Brewster angle located around the maxima of
Tp(θ0) in Fig. 14.

We now focus on the contribution to the transmittance from
the light that has been transmitted incoherently through the
surface; in Eq. (51), this is the last term denoted by Tβ(θ0)incoh

for incident light of β polarization. Small amplitude pertur-
bation theory, through Eq. (52), will again assist us in the
interpretation of the results. The transmittance from vacuum
into the dielectric is depicted in Fig. 15(a). In this situation,
for which ε1 < ε2, the functions |dp(k‖)|−2 and |ds(k‖)|−2 are
both monotonically increasing functions of k‖ (or θ0), and the
transmittances Tβ(θ0)incoh (β = p,s) are hence slowly varying

functions of the angles of incidence, consistent with what is
observed in Fig. 15(a).

Figure 15(b) presents the transmittance Tβ(θ0)incoh as a
function of the polar angle of incidence when the incident
medium is the dielectric, and it is found that this quantity
displays interesting features. For instance, in s polarization,
a sharp maximum is observed for an angle of incidence
a little smaller than 40◦, and for this angle of incidence
the contribution to the transmittance from the light being
transmitted incoherently is about twice the value at normal
incidence. This behavior can be understood on the basis of
Eq. (52d). As a function of the polar angle of incidence (or
k‖), the expression for 〈∂Tss(q‖|k‖)/∂t 〉incoh in this equation

FIG. 15. θ0 dependence of the contribution to the transmittance from p- and s-polarized incident light that has been transmitted incoherently
through a two-dimensional randomly rough surface. This quantity is for β-polarized incident light defined by the last term of Eq. (51), i.e.,
Tβ (θ0)incoh = Tβ (θ0) − Tβ (θ0). The scattering systems assumed in obtaining these results were (a) vacuum dielectric (ε1 = 1, ε2 = 2.6896)
and (b) dielectric vacuum (ε1 = 2.6896, ε2 = 1). The critical angle θ0 = θ�

0 for total internal reflection in the equivalent flat dielectric-vacuum
system is indicated by the vertical dashed line. The roughness parameters assumed were the same as in Fig. 2. Several simulations were run
with small perturbations in the surface length L in order to obtain transmittance data with higher angular resolution (data points are indicated
by the solid dots).
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will have a maximum when |ds(k‖)|−2 is peaking. This
happens when k‖ = √

ε2ω/c, or equivalently, when θ0 = θ�
0 .

The expression for the s → p cross-polarized MDTC will
also go through a maximum at the same critical angle [see
Eq. (52b)], and so, therefore, will Ts(θ0)incoh. This explains the
functional dependence of Ts(θ0)incoh on the angle of incidence.
From Fig. 15(b) it is also observed that the two curves behave
differently around θ0 = θ�

0 . While the transmittance Ts(θ0)incoh

is monotonically increasing in the interval 0◦ < θ0 < θ�
0 and

monotonically decreasing in the interval θ�
0 < θ0 < 90◦, this

is not the case for the transmittance of p-polarized incident
light. Similar to the case of s-polarized incident light, the
rapid dependence on the angle of incidence of Tp(θ0)incoh

around θ0 = θ�
0 is due to the factor |dp(k‖)|−2 present in

Eqs. (52a) and (52c). However, unlike in the case of s-polarized
incident light, the cross-polarized contribution to the MDTC,
〈∂Tsp(q‖|k‖)/∂t 〉incoh, Eq. (52c), will go to zero at the critical
angle θ0 = θ�

0 due to the factor α2(k‖) that is present in the
expression for it. Therefore, for p-polarized incident light,
the transmittance will have a contribution from copolarized
transmission which peaks at the critical angle of incidence,
and a contribution from cross polarization that has a dip down
to zero at the critical angle, and it is the sum of the two that
results in the functional form observed in Fig. 15(b).

VII. CONCLUSIONS

In the current work we have investigated the transmission
of light through a two-dimensional, randomly rough interface
between two semi-infinite dielectric media. A derivation of
the reduced Rayleigh equation for the amplitudes of light
transmitted both coherently and incoherently was presented
together with expressions for the mean differential transmis-
sion coefficient, transmissivity and transmittance. The RRE
enables a nonperturbative, purely numerical solution of the
surface scattering problem, under the Rayleigh hypothesis. As
an example of the numerical implementation of the RRE, the
full angular distribution for both co- and cross-polarized inco-
herent components of the MDTC were reported together with a
discussion on the angular dependence of the transmissivity and
transmittance, for configurations of vacuum and an absorption-
less dielectric separated by a randomly rough interface with a
Gaussian power spectrum and correlation function.

Yoneda peaks, peaks in the incoherent MDTC at the critical
polar angle in the medium of transmission where the wave
number in the medium of incidence turns nonpropagating,
were shown in all cases of transmission into the denser
medium. These peaks are a dominating feature in the dis-
tribution of s-polarized diffusely transmitted light for a wide
range of azimuthal angles of scattering, but are suppressed for
the p-polarized counterpart when the angle of incidence is at,
or close to, normal incidence. The suppression of p-polarized
incoherent scattering in plane in the backscattering direction
(φt = 180◦) was found to be of special interest, since the
angular position of the local scattering minimum in the MDTC
was shown to be dependent on the angle of incidence. This
phenomenon, called the “Brewster scattering angle” due to
its similarity with the flat-surface Brewster angle, was also
observed when the medium of incidence was the dielectric.
This is consistent with the findings of Kawanishi et al. [5].

The development and behavior of both Yoneda peaks and
Brewster scattering angles were investigated over a wide range
of angular parameters, and all observed features were explored
through small amplitude perturbation theory.

Small amplitude perturbation theory, to lowest order in the
surface profile function, was shown to reproduce our numerical
results qualitatively to a high degree of accuracy, both through
analytical arguments and a numerical implementation of that
theory. This leads us to believe that the features presented in
the results can be interpreted as single-scattering effects.

The physical origin of the Yoneda peak phenomenon is still
not clear, neither from the existing literature on the topic nor
from the results obtained in the present detailed study of it.
We have concluded that it is a single-scattering phenomenon.
In addition, our results contradict the explanation for the
existence of the Yoneda peaks given by Gorodnichev et al. [8],
who argue that the peaks arise from the multiscale rough-
ness of the surface, which requires that the surface height
autocorrelation function should be modeled by a sum of
Gaussian functions, rather than by just one. In contrast,
the numerical results of the present study, as well as the
results of first-order small-amplitude perturbation theory, show
explicitly that the representation of W (x‖) by a single Gaussian
function, Eq. (4), is sufficient to produce the Yoneda peaks.
Therefore, a systematic study of the physical origin of the
Yoneda peaks, and their dependence on polarization, will be
left for subsequent work.

As an investigation of the quality of the numerical results
presented in this paper, unitarity (energy conservation) [19]
was found to be satisfied with an error smaller than 10−4 when
the scattered energies from both reflection and transmission
were added, for the roughness parameters and configurations
used.

Calculations of the transmission of light through two-
dimensional randomly rough surfaces are challenging, and
hence they are still often carried out by means of perturbative
and approximate methods. Our approach, through the reduced
Rayleigh equations, represents a step towards more accurate
but still computationally viable solutions of the problem.
This paper complements our previously published work [15]
on the reflection of light from a randomly rough dielectric
interface.
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APPENDIX A: EVALUATION OF V(γ |Q‖)

In this Appendix we outline the calculation of the vector
V(γ |Q‖) defined by Eq. (16a). From Eqs. (16a) and (17) it
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follows immediately that

V3(γ |Q‖) = I (γ |Q‖). (A1)

The remaining two components of V(γ |Q‖) can be obtained
by expanding exp (−iγ ζ (x‖)) in powers of the surface profile
function and integrating the resulting series term by term
(α = 1,2)

Vα(γ |Q‖) = −
∫

d2x‖ exp(−iQ‖ · x‖)ζα(x‖) exp[−iγ ζ (x‖)]

= −
∫

d2x‖ exp(−iQ‖·x‖)ζα(x‖)
∞∑

n=0

(−iγ )n

n!
ζ n(x‖)

= −
∞∑

n=0

(−iγ )n

(n + 1)!

∫
d2x‖ exp(−iQ‖·x‖)

∂ζ n+1(x‖)

∂xα

= − i

γ

∞∑
m=1

(−iγ )m

m!

∫
d2x‖ exp(−iQ‖·x‖)

∂ζm(x‖)

∂xα

.

(A2)

Introducing the Fourier representation of the mth power of the
surface profile function,

ζm(x‖) =
∫

d2P‖
(2π )2

ζ̂ (m)(P‖) exp(iP‖ · x‖), m � 1, (A3)

into Eq. (A2), and evaluating the two resulting integrals after
changing their order, yields

Vα(γ |Q‖) = Qα

γ

∞∑
m=1

(−iγ )m

m!
ζ̂ (m)(Q‖)

= Qα

γ

[ ∞∑
m=0

(−iγ )m

m!
ζ̂ (m)(Q‖) − (2π )2δ(Q‖)

]

= I (γ |Q‖)

γ
Qα − (2π )2δ(Q‖)

Qα

γ
. (A4)

In the last step we have used the result that

I (γ |Q‖) =
∞∑

n=0

(−iγ )n

n!
ζ̂ (n)(Q‖) (A5)

and ζ̂ (0)(Q‖) = (2π )2δ(Q‖). Equation (A5) follows readily
from Eq. (17) by expanding the latter in powers of the surface
profile function and integrating the resulting series term by
term.

By combining Eqs. (A1) and (A4) we arrive at the final
result

V(γ |Q‖) = I (γ |Q‖)

γ
(Q‖ + γ x̂3) − (2π )2δ(Q‖)

Q‖
γ

. (A6)

We note that the last term of Eq. (A6), due to the presence of
the factor δ(Q‖)Q‖, will contribute only if Q‖ = 0. Therefore,
γ must also be zero; in all other cases this term will vanish.
For this reason, we will refer to the second term of Eq. (A6)
as the singular contribution to V(γ |Q‖).

Technically, V(γ |Q‖) is a distribution [24]; for instance,
for the special case ζ (x‖) = 0 it follows from Eq. (16) that
V(γ |Q‖) = (2π )2δ(Q‖)x̂3 (which is independent of γ ). As
is true for any distribution, it cannot appear alone in a
mathematical expression and should therefore not be evaluated
for a single argument as if it were an ordinary function; instead
a distribution can only be evaluated after being multiplied
by some (test) function. This has the consequence that the
singular term of V(γ |Q‖) may not necessarily lead to a “real”
singularity when evaluating the distribution. We will indeed
see that this is what happens in our case.

APPENDIX B: EXPANSION OF T (q‖|k‖) IN POWERS
OF THE SURFACE PROFILE FUNCTION

In this Appendix we outline the derivation of Eq. (52). We
begin with the expansions

I (γ |Q‖) =
∞∑

n=0

(−iγ )n

n!
ζ̂ (n)(Q‖), (B1)

where

ζ̂ (n)(Q‖) =
∫

d2x‖e−iQ‖·x‖ζ n(x‖), (B2a)

ζ̂ (0)(Q‖) = (2π )2δ(Q‖), (B2b)

and

T(q‖|k‖) = 2α1(k‖)
∞∑

n=0

(−i)n

n!
t(n)(q‖|k‖). (B3)

In the last equation the superscript n denotes the order of the
corresponding term in powers of ζ (x‖). When Eqs. (B1) and
(B3) are substituted into Eq. (26), the latter becomes

∞∑
m=0

m∑
n=0

(−i)m

m!

(
m

n

) ∫
d2q‖
(2π )2

[−α1(p‖) + α2(q‖)]n−1ζ̂ (n)(p‖ − q‖)M(p‖|q‖) t(m−n)(q‖|k‖) = (2π )2δ(p‖ − k‖)
1

ε2 − ε1
I2. (B4)

When we equate terms of zero order in ζ (x‖) on both sides of this equation we obtain

1

−α1(p‖) + α2(p‖)
M(p‖|p‖) t(0)(p‖|k‖) = (2π )2δ(p‖ − k‖)

1

ε2 − ε1
I2. (B5)

With the aid of the relation

1

−α1(p‖) + α2(p‖)
= α1(p‖) + α2(p‖)

(ω/c)2(ε2 − ε1)
, (B6)
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Eq. (B5) can be rewritten in the form(
1√
ε1ε2

[ε2α1(p‖) + ε1α2(p‖)] 0

0 α1(p‖) + α2(p‖)

)(
t (0)
pp (p‖|k‖) t (0)

ps (p‖|k‖)

t (0)
sp (p‖|k‖) t (0)

ss (p‖|k‖)

)
= (2π )2δ(p‖ − k‖)I2, (B7)

from which we obtain (
t (0)
pp (q‖|k‖) t (0)

ps (q‖|k‖)

t (0)
sp (q‖|k‖) t (0)

ss (q‖|k‖)

)
= (2π )2δ

(
q‖ − k‖

)⎛⎝
√

ε1ε2

ε2α1(k‖)+ε1α2(k‖) 0

0 1
α1(k‖)+α2(k‖)

⎞
⎠. (B8)

For m � 1, Eq. (B4) can be written as

1

−α1(p‖) + α2(p‖)
M(p‖|p‖)t(m)(p‖|k‖) +

∫
d2q‖
(2π )2

[−α1(p‖) + α2(q‖)]m−1ζ̂ (m)(p‖ − q‖)M(p‖|q‖) t(0)(q‖|k‖)

+
m−1∑
n=1

(
m

n

)∫
d2q‖
(2π )2

[−α1(p‖) + α2(q‖)]n−1ζ̂ (n)(p‖ − q‖)M(p‖|q‖) t(m−n)(q‖|k‖) = 0. (B9)

If we use the result that the matrix M(p‖|p‖) is diagonal and hence easily inverted, and that the matrix t(0)(q‖|k‖) is given by
Eq. (B8), we can simplify Eq. (B9) into

t(m)(p‖|k‖) = −(ε2 − ε1)[−α1(p‖) + α2(k‖)]m−1ζ̂ (m)(p‖ − k‖)

( √
ε1ε2

dp(p‖) 0

0 1
ds (p‖)

)⎛
⎝

√
ε1ε2Mpp(p‖|k‖)

dp(k‖)
Mps (p‖|k‖)

ds (k‖)√
ε1ε2Msp(p‖|k‖)

dp(k‖)
Mss (p‖|k‖)

ds (k‖)

⎞
⎠

−(ε2 − ε1)
m−1∑
n=1

(
m

n

)∫
d2q‖
(2π )2

[−α1(p‖) + α2(q‖)]n−1ζ̂ (n)(p‖ − q‖)

⎛
⎝

√
ε1ε2Mpp(p‖|q‖)

dp(p‖)

√
ε1ε2Mps (p‖|q‖)

dp(p‖)
Msp(p‖|q‖)

ds (p‖)
Mss (p‖|q‖)

ds (p‖)

⎞
⎠t(m−n)(q‖|k‖),

(B10)

where

dp(p‖) = ε2α1(p‖) + ε1α2(p‖), (B11a)

ds(p‖) = α1(p‖) + α2(p‖). (B11b)

Equation (B10) allows t(m)(p‖|k‖) to be obtained recursively in terms of t(m−1)(p‖|k‖), . . . ,t(1)(p‖|k‖).
When m = 1, we obtain from Eq. (B10) the result

t(1)(q‖|k‖) = − (ε2 − ε1)ζ̂ (1)(q‖ − k‖)

⎛
⎜⎝

ε1ε2Mpp(q‖|k‖)
dp(q‖)dp(k‖)

√
ε1ε2Mps (q‖|k‖)
dp(q‖)ds (k‖)

√
ε1ε2Msp(q‖|k‖)
ds (q‖)dp(k‖)

Mss (q‖|k‖)
ds (q‖)ds (k‖)

⎞
⎟⎠. (B12)

The matrix elements {Mαβ(q‖|k‖)} are given by Eq. (27a).
In view of Eq. (B3) we find that through terms linear in the surface profile function

T(q‖|k‖) = (2π )2δ
(
q‖ − k‖

)⎛⎝
√

ε1ε2

dp(k‖) 0

0 1
ds (k‖)

⎞
⎠2α1(k‖)

+ i(ε2 − ε1)ζ̂ (1)(q‖ − k‖)

⎛
⎝ ε1ε2Mpp(q‖|k‖)

dp(q‖) dp(k‖)

√
ε1ε2Mps (q‖|k‖)
dp(q‖) ds (k‖)

√
ε1ε2Msp(q‖|k‖)
ds (q‖) dp(k‖)

Mss (q‖|k‖)
ds (q‖) ds (k‖)

⎞
⎠2α1(k‖) + O(ζ 2). (B13)

The substitution of these results into Eq. (41) and the use of 〈ζ̂ (Q‖)ζ̂ (Q‖)∗〉 = Sδ2g(|Q‖|) yields Eq. (52).
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