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Survival of the most transferable at the top of Jacob’s Ladder: Defining
and testing the !B97M(2) double hybrid density functional

Narbe Mardirossian
1
and Martin Head-Gordon

1, 2, a)

1)Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California,
Berkeley, California 94720, USA
2)Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720,
USA

A meta-generalized gradient approximation, range-separated double hybrid (DH) density functional with
VV10 non-local correlation is presented. The final 14-parameter functional form is determined by screen-
ing trillions of candidate fits through a combination of best subset selection, forward stepwise selection,
and RANSAC outlier detection. The MGCDB84 database of 4986 data points is employed in this work,
containing a training set of 870 data points, a validation set of 2964 data points, and a test set of 1152
data points. Following an xDH approach, orbitals from the !B97M-V density functional are used to com-
pute the second-order perturbation theory correction. For comparison, !B97M(2) is benchmarked against
a variety of leading double hybrid density functionals, including B2PLYP-D3(BJ), B2GPPLYP-D3(BJ),
!B97X-2(TQZ), XYG3, PTPSS-D3(0), XYGJ-OS, DSD-PBEP86-D3(BJ), and DSD-PBEPBE-D3(BJ).
Encouragingly, the overall performance of !B97M(2) on nearly 5000 data points clearly surpasses that of
all of the tested density functionals. As a Rung 5 density functional, !B97M(2) completes our family of
combinatorially optimized functionals, complementing B97M-V on Rung 3, and !B97X-V and !B97M-V
on Rung 4. The results suggest that !B97M(2) has the potential to serve as a powerful predictive tool for
accurate and e�cient electronic structure calculations of main-group chemistry.

I. INTRODUCTION

Kohn-Sham density functional theory (DFT) is nowa-
days the predominant form of electronic structure
theory1–3, because relatively simple and computation-
ally e�cient functionals, while approximate, are accu-
rate enough to be useful for simulating chemical struc-
ture, properties, and reactivity in systems ranging from
molecules to materials. In DFT, all energy terms are
evaluated exactly, apart from non-classical exchange
and correlation (XC) which must be modeled via ap-
proximate XC functionals. Unfortunately, such func-
tionals are not systematically improvable in the same
sense as wavefunction-based electronic structure the-
ory, where the addition of more terms to a trial func-
tion guarantees a lower energy. However, function-
als can nonetheless be categorized onto the five rungs
of Perdew’s metaphorical “Jacob’s Ladder” according
to the sophistication of the components used for their
construction4. This classification has proven to be use-
ful because the best functional at each rung typically
improves over the best functional from the rung be-
low, as demonstrated by recent comprehensive assess-
ments of accuracy3,5. In order to account for long-range
dispersion forces, damped atom-pairwise corrections6

or non-local density-density correlation functionals7 are
typically appended to functionals at each rung.
The functionals on the highest rung (Rung 5) are

called “double hybrids” because they include a depen-
dence on occupied orbitals (which is su�cient to char-
acterize exact or wavefunction exchange) as well as a
dependence on virtual orbitals (to describe wavefunc-
tion correlation). Within generalized Kohn-Sham the-
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ory, such functionals are potentially exact8. In practice,
the inclusion of some fraction of second-order perturba-
tion theory (PT2) can be justified based on Görling-
Levy perturbation theory9. The simplest form that a
double hybrid can take is given in Equation 1.

EDH = cxE
exact

x
+cx,DFTE

DFT

x
+ccE

PT2
c

+cc,DFTE
DFT

c

(1)
The fraction of exact exchange is determined by the

coe�cient, cx, while the fraction of the PT2 energy
is controlled by the coe�cient, cc. It is straightfor-
ward to satisfy the uniform electron gas constraints,
namely, cx + cx,DFT = 1 and cc + cc,DFT = 1. The
first modern double hybrid functional that used Kohn-
Sham orbitals to compute the PT2 contribution was
developed by Grimme in 2006 and termed B2PLYP10.
This functional is perhaps the most widely used double
hybrid today, especially when combined with dispersion
corrections11 such as DFT-D3(0)12 and DFT-D3(BJ)13.
B2PLYP is defined with cx = 0.53, cx,DFT = 0.47,
cc = 0.27, and cc,DFT = 0.73, where the DFT exchange
functional is B88 and the DFT correlation functional is
LYP. Another early approach was taken by Ángyán and
coworkers with the RSH+MP2 method14.
Since 2006, around 75 double hybrids have been pro-

posed – most of them containing a few empirical pa-
rameters, but a few containing theoretically justified pa-
rameters. Some of the more widely used empirical dou-
ble hybrid functionals are B2PLYP10, B2GPPLYP15,
!B97X-2(TQZ)16, XYG39, DSD-BLYP-D317, PTPSS-
D3(0)18, PWPB95-D318, XYGJ-OS19, DSD-PBEP86-
D3(BJ)20, and DSD-PBEPBE-D3(BJ)20. Some non-
empirical functionals include PBE0-DH21, PBE0-222,
1DH-BLYP23, LS1DH-PBE24, and PBE-QIDH25. It
is beyond the scope of this paper to review these
functionals18, but a few key points should be noted.
First, based on statistics gathered from more than 50
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existing double hybrid density functionals, the average
percentage of exact exchange is 64%, while the aver-
age percentage of PT2 correlation is 32%. It is evident
that non-local PT2 correlation in double hybrids enables
a significantly higher fraction of exact exchange than
is found in standard Rung 4 hybrids (typically around
20%). B2PLYP and its descendants remain very widely
used26, and involve optimizing orbitals based on ne-
glecting the PT2 component of the functional (orbital-
optimized double hybrids27 use the entire functional,
at significantly greater cost). However, a very success-
ful double hybrid, the XYG3 functional9 introduced a
modified approach (called xDH), which involves using
fixed orbitals from a successful lower rung functional
(B3LYP in the case of XYG3), and performing a single
shot correction for non-local correlation using these or-
bitals, as well as a repartitioning of the semi-local DFT
energy. A number of other double hybrids have subse-
quently followed this approach28.

A vast amount of literature is dedicated to the de-
termination of e↵ective density functional forms, and,
broadly, this can be done in one of two ways: non-
empirically (via constraint satisfaction) or empirically
(via fitting). It is also possible to combine aspects of
both. The training of density functional parameters has
historically been carried out via a least-squares proce-
dure. A handful of linear functional forms are opti-
mized on a training set and the optimal form (based
on a goodness-of-fit or related measure) is selected for
publication. Recently, we introduced an approach to
screen up to billions of potential functional forms in
order to select the most transferable fit29–31. A vast
number of functional forms are trained on a training
set and ranked based on their performance on a vali-
dation set (a test of transferability). Finally, a small
fraction of the best performers are further tested on a
test set in order to determine the best candidate for
publication. Initially, this approach was applied32 to
generalized gradient approximation (GGA) functionals
on Rung 2, but no significant advantage was gained over
the best existing functionals in the same class (e.g., B97-
D). However, a very e↵ective Rung 4 hybrid GGA was
achieved, termed !B97X-V29. By contrast, because of
the huge dimensionality of the space of Rung 3 meta-
GGAs, a considerable improvement in predictive power
was achieved via this approach to define the B97M-V
functional30, and subsequently the Rung 4 meta-GGA
hybrid, !B97M-V31. The Rung 4 functionals both em-
ploy a range-separated treatment of exact exchange33,
treating long-range exchange exactly, where semi-local
DFT is expected to be poorest. !B97M-V may be the
most accurate Rung 4 functional proposed to date.

The objective of this work is to adapt the combinato-
rial training procedure to develop a Rung 5 functional
which combines the richness of the meta-GGA space
with non-local PT2 correlation and range-separated ex-
act exchange. Additionally, the “-V” component of
the functionals mentioned above, namely the VV10
dispersion functional7, will be included as it proved
essential to achieving high accuracy for non-covalent

interactions7,34,35. The overall strategy is outlined in
the remainder of this section. To ensure a good start-
ing point, the orbitals from a self-consistent !B97M-V
calculation will be used to evaluate the double hybrid
XC energy:

Exc = Ex + Ec (2)

The exchange component, Eq. 3, contains a semi-
local meta-GGA contribution, a fraction, cx, of short-
range (sr) exact exchange, and full (100%) long-range
(lr) exact exchange.

Ex = EmGGA

x,sr
+ cxE

exact

x,sr
+ Eexact

x,lr
(3)

The correlation component contains same-spin (ss)
and opposite-spin (os) semi-local meta-GGA contribu-
tions, as well as a fraction, cV V 10, of non-local VV10
dispersion, and a fraction, cPT2, of non-local PT2 en-
ergy.

Ec = EmGGA

c,ss
+EmGGA

c,os
+cV V 10E

V V 10
c,nl

+cPT2E
PT2
c,nl

(4)

Definitions for the terms in the equations above can be
found in Section V of Ref. 31.
The main results of this paper are the chosen func-

tional form, selected for optimal transferability using an
adaptation of the combinatorial approach briefly men-
tioned above, the resulting parameters, and an assess-
ment of the final functional against existing hybrids and
double hybrids. The rest of the paper is organized as
follows. The approach to combinatorial training and
testing is reviewed in Section II in order to place it
in the context of other machine learning and statisti-
cal approaches. The computational details regarding
the database as well as calculation settings are given in
Section III, while a thorough account of the design pro-
cedure followed to obtain !B97M(2) is given in Section
IV. This is followed by a brief comparison to other exist-
ing density functionals in Section V and a summary of
the now-complete family of combinatorially optimized
density functionals in Section VI.

II. COMBINATORIAL SELECTION: SURVIVAL OF
THE MOST TRANSFERABLE

The combinatorial approach used previously31 com-
bines statistical tools known as best subset selection
(BSS), also known as least-squares optimization with
L0-norm regularization, and forward stepwise selection
(FSS) to explore the vast space of potential functionals.
A very large number of candidate functional forms are
trained using a training set and ranked based on their
performance on a validation set (a test of transferabil-
ity). Finally, a small fraction of the best performers are
further tested on a test set in order to determine the
best final candidate.
The idea of best subset selection36 is fundamentally

very simple. Given a set of n features (or coe�cients),
all 2n � 1 combinations are trained in order to deter-
mine the optimal choice based on predetermined crite-
ria. For example, given a total of n = 3 linear features
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(e.g, {x1, x2, x3}), all 23 � 1 = 7 combinations would
be fit ({x1}, {x2}, {x3}, {x1, x2}, {x1, x3}, {x2, x3},
{x1, x2, x3}). If the number of features is not excessively
large, it is possible to comprehensively explore the en-
tire space of parameters without approximations. For
example, in 1997, Becke introduced the semi-empirical
B97 functional37, which contains three separate power
series (Equation 5) enhancing the corresponding UEG
energy density for exchange, same-spin correlation, and
opposite-spin correlation:

f (u) =
NX

j=0

cju
j . (5)

In Equation 5, the variable, u ⇡ �s
2

1+�s2
, is a finite do-

main transformation of the dimensionless spin-density
gradient, s ⇡ |r⇢|

⇢4/3 , where � is an empirical nonlinear
parameter.
Assuming the same value of N across all three com-

ponents, applying BSS to the optimization of the B97
density functional involves n = 3(N + 1) features and
23(N+1) � 1 total combinations. For a typical value of
N = 4, this equates to 32,767 least squares fits, which
is indeed manageable32 (and was carried out during the
optimization of the !B97X-V functional29).
For su�ciently largeN , however, performing all 2n�1

least squares fits becomes intractable. The meta-GGA
parameter space that was recently explored for both
B97M-V and !B97M-V is a prominent example of when
this limit can be exceeded. A typical power series en-
hancement factor for a meta-GGA density functional is
two-dimensional, as given in Equation 6:

f (w, u) =
N

0X

i=0

NX

j=0

cijw
iuj . (6)

In Equation 6, the variable, w ⇡ t�1
t+1 , is a finite do-

main transformation of the dimensionless ratio of the
UEG kinetic energy density to the exact kinetic energy

density, t = ⌧
UEG

⌧
, where ⌧UEG = 3

5

�
6⇡2

�2/3
⇢5/3.

The number of features increases to n = 3(N 0 +
1)(N + 1), for a total of 23(N

0+1)(N+1) � 1 possibili-
ties. Therefore, even for N 0 = N = 4, the total number
of fits exceeds 1022. During the development of B97M-
V and !B97M-V, values of N 0 = 8 and N = 4 were
explored, for a total of more than 1040 candidate fits.
Clearly, performing 1040 or even 1022 least-squares fits
is entirely impractical.
A way to circumvent this bottleneck is to use forward

stepwise selection38. With FSS, all
�
n

1

�
one-parameter

fits are generated, and the most influential feature based
on predetermined criteria is identified. This feature
is then frozen and

�
n�1
1

�
two-parameter fits (one fixed

variable and one free variable) are performed, and so
on. A third option, which was used to develop B97M-V
and !B97M-V (and the present functional), involves a
combination of BSS and FSS. BSS is applied up to the
largest manageable number of parameters, p, and then
the FSS procedure takes over in order to sample fits

with more parameters. For example, given n = 50 fea-
tures and the ability to perform a maximum of a billion
fits, one can begin with

�50
1

�
= 50 one-parameter fits

and continue through
�50
8

�
= 536, 878, 650 8-parameter

fits. At this point, since
�50
9

�
is larger than a billion, the

FSS procedure takes over and
�50�1

8

�
= 450, 978, 066 9-

parameter fits are performed with the most significant
feature from the previous optimization fixed. Another
way to represent the total number of fits given a cer-
tain number of features, n, is

P
n

p

�
n

p

�
, which makes it

easier to see that there are
�
n

1

�
1-parameter fits,

�
n

2

�

2-parameter fits,
�
n

3

�
3-parameter fits, and so on.

In this work, N 0 and N are both set to 4, for a total
of 75 features coming from the semi-local DFT compo-
nents (exchange, same-spin correlation, and opposite-
spin correlation). Additionally, exact exchange, VV10,
and PT2 each contribute a single parameter, for a total
of 78 features. Two constraints are permanently ap-
plied. First, in the exchange energy, Eq. 3, the uniform
electron gas limit is satisfied via:

cx + cx,00 = 1. (7)

Second, in the correlation energy, Eq. 4, we constrain
the total contribution of the two types of non-local cor-
relation to be unity:

cPT2 + cV V 10 = 1. (8)

Finally, two features, cx and cPT2, are invariably in-
cluded in all of the fits (their values are not frozen).
This is to uphold the definition of a double hybrid,
which is a functional that depends on both occupied
and virtual orbitals.
With these constraints in place, the total number of

fits with a fixed number of parameters, p+2, is
�76�2

p

�
.

The current implementation that carries out this pro-
cedure is capable of performing (on average) 1000 fits
per second per core on a 64-core node, assuming all 64-
cores are utilized. Recursion relations are used to break
down the full set of requested fits into a number that
is manageable per core (⇡ 108 � 109). Given the total
number of available features (74), the largest optimiza-
tion attempted in this work is

�74
10

�
= 718, 406, 958, 841,

with recursion relations applied to break the task into
no more than 109 fits per core. This results in 1786 sep-
arate processes that perform between 108 and 109 fits
each, and take at most a week of elapsed time to com-
plete. Therefore, performing on the order of a trillion
fits is manageable in the span of a week given full use
of a cluster with around 2000 cores.
In this work, a combination of BSS, FSS, and the

RANSAC outlier detection method39 is used in order
determine an optimal choice of features for a double
hybrid functional, as well as their values, given the lim-
itation of a relatively small number ( 103�104) of high-
quality data points that can be used for training, val-
idation, and testing. This limitation arises due to the
fact that the computation of reference values (typically
CCSD(T)/CBS or better) is very costly, and chemi-
cal space is intractably vast. Therefore, any database
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used for such purposes will certainly not fully char-
acterize (and may even misrepresent) the diversity of
chemical space. In past work, it became evident that
when working in the space of meta-GGA functionals,
the least-squares residuals from the initial guess are un-
reliable predictors for the performance of the final, self-
consistently optimized functional, and therefore it was
necessary to update the feature matrix with a guess that
more closely resembled the final functional form. Nat-
urally, this is an inconvenience that would ideally be
avoided. The xDH approach we will follow (using fixed
!B97M-V orbitals) does not have this issue, since the
orbitals are pre-defined and thus fixed throughout the
optimization of the parameters. The parameter opti-
mization procedure simply determines the partitioning
of the SCF and PT2 energies. As a result of this sim-
plification, it is also possible to utilize other supervised
machine learning tools such as Lasso (L1-norm regu-
larization) and Ridge Regression (L2-norm regulariza-
tion). The former approach attempts to return a sparse
vector from the original feature matrix while the latter
penalizes large parameter values and thus results in a
model with many well-behaved coe�cients. Finally, the
RANSAC outlier detection method mentioned above is
applied to identify outliers in the training data. Such
data points may include those that are multi-reference
in nature, or those with very large magnitudes (i.e., ab-
solute atomic energies).

III. COMPUTATIONAL DETAILS

The database used in this work contains 84 datasets
(Table I) and 4986 data points, and is named the Main-
Group Chemistry DataBase (MGCDB84)3. These
datasets have been compiled from the benchmarking ac-
tivities of numerous groups, including Grimme, Herbert,
Hobza, Karton, Martin, Sherrill, and Truhlar. The ref-
erence data are typically estimated to be at least 10
times more accurate than the very best available den-
sity functionals, so that robust and meaningful conclu-
sions can be drawn. Of the 84 datasets, 82 are catego-
rized into eight datatypes: NCED, NCEC, NCD, IE, ID,
TCE, TCD, and BH. The two datasets that are excluded
from the datatype categorization are AE18 (absolute
atomic energies) and RG10 (rare-gas dimer potential en-
ergy curves). The first three datatypes (NCED, NCEC,
and NCD) pertain to non-covalent interactions (NC),
the next two datatypes (IE and ID) pertain to isomer-
ization energies (I), the next two datatypes (TCE and
TCD) pertain to thermochemistry (TC), and the last
datatype pertains to barrier heights (BH). Since the
eight datatypes will be heavily referenced in this work,
we specify the types of interactions that belong to each
category, as well as the origin of the abbreviations. The
datatype abbreviations begin with letters correspond-
ing to one of the four main categories: NC, I, TC, or
BH. Appending one of the four main categories with
the letter ’E’ indicates that the interactions within are
considered to be “easy” cases (not very sensitive to self-

interaction error or strong correlation), while the let-
ter ’D’ indicates that the interactions are considered to
be “di�cult”. Finally, for the non-covalent interactions
only, the presence of a fourth letter, either ’D’ or ’C’, in-
dicates the presence of dimers or clusters, respectively.
Regarding the datatypes, NCED contains 18 datasets
and 1744 data points, NCEC contains 12 datasets and
243 data points, NCD contains 5 datasets and 91 data
points, IE contains 12 datasets and 755 data points,
ID contains 5 datasets and 155 data points, TCE con-
tains 51 datasets and 947 data points, TCD contains
7 datasets and 258 data points, while BH contains 8
datasets and 206 data points. Overall, the training set
contains 870 data points, the validation set contains
2964 data points, and the test set contains 1152 data
points.
The def2-QZVPPD basis set106 is used without

counterpoise corrections throughout. A (99,590) grid
(99 radial shells with 590 grid points per shell) is
used throughout except for AE18 and RG10, where a
(500,974) grid is used. The SG-1 grid107 is used to cal-
culate the contribution from the VV10 non-local cor-
relation functional7 throughout, except for AE18 and
RG10, where a (75,302) grid was used. All of the cal-
culations were performed with a development version
of the Q-Chem 4 software package108. For the MP2
calculations, the frozen core approximation is utilized,
along with the appropriate auxiliary basis set for def2-
QZVPPD.
An in-house Python implementation of BSS and FSS

is used, while RANSAC is used as implemented in sci-
kit learn109. For all RANSAC applications in this work,
a minimum sample size of 75% is utilized, the outlier
threshold is 10 kcal/mol, and the maximum number of
random trials is set to 10,000.

IV. DESIGN OF !B97M(2) AND INTERNAL
ASSESSMENT

As mentioned previously, the orbitals from an
!B97M-V calculation serve as the foundation upon
which the !B97M(2) functional is built. In order to
begin the optimization procedure, a series of decisions
regarding the functional form must be made. For the
range-separation parameter, !, a value of 0.3 is used
(as in the !B97X-V and !B97M-V functionals). For
the VV10 damping parameter, b, an analysis110 of past
double hybrids with VV10 indicated that on average
the parameter is valued at 10. Therefore, b = 10 is used
without further optimization (since b is a nonlinear pa-
rameter). Similarly, the parameter that controls the C6

coe�cients in VV10, C, is set to 0.01 as in !B97X-V
and !B97M-V. The !B97M-V orbitals are used to com-
pute the PT2 contribution, the semi-local contributions
(or features), and the VV10 energy. The lattermost
is computed non-self-consistently. There are two nearly
equivalent options for defining the energy of such a func-
tional. The first is as a perturbation to the !B97M-V
energy, while the second is as a combination of VV10,
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Name Set Datatype # Description �E (kcal/mol) Ref.
A24 Train NCED 24 Binding energies of small non-covalent complexes 2.65 40
DS14 Train NCED 14 Binding energies of complexes containing divalent sulfur 3.70 41
HB15 Train NCED 15 Binding energies of hydrogen-bonded dimers featuring ionic groups common in biomolecules 19.91 42
HSG Train NCED 21 Binding energies of small ligands interacting with protein receptors 6.63 43,44

NBC10 Train NCED 184 PECs for BzBz (5), BzMe (1), MeMe (1), BzH2S (1), and PyPy (2) 1.91 44–47
S22 Train NCED 22 Binding energies of hydrogen-bonded and dispersion-bound non-covalent complexes 9.65 44,48
X40 Train NCED 31 Binding energies of non-covalent interactions involving halogenated molecules 5.26 49

A21x12 Validation NCED 252 PECs for the 21 equilibrium complexes from A24 1.43 50
BzDC215 Validation NCED 215 PECs for benzene interacting with two rare-gas atoms and eight first- and second-row hydrides 1.81 51
HW30 Validation NCED 30 Binding energies of hydrocarbon-water dimers 2.34 52
NC15 Validation NCED 15 Binding energies of very small non-covalent complexes 0.95 53
S66 Validation NCED 66 Binding energies of non-covalent interactions found in organic molecules and biomolecules 6.88 54,55

S66x8 Validation NCED 528 PECs for the 66 complexes from S66x8 5.57 54
3B-69-DIM Test NCED 207 Binding energies of all relevant pairs of monomers from 3B-69-TRIM 5.87 56
AlkBind12 Test NCED 12 Binding energies of saturated and unsaturated hydrocarbon dimers 3.14 57

CO2Nitrogen16 Test NCED 16 Binding energies of CO2 to molecular models of pyridinic N-doped graphene 3.84 58
HB49 Test NCED 49 Binding energies of small- and medium-sized hydrogen-bonded systems 14.12 59–61
Ionic43 Test NCED 43 Binding energies of anion-neutral, cation-neutral, and anion-cation dimers 69.94 62

H2O6Bind8 Train NCEC 8 Binding energies of isomers of (H2O)6 46.96 63,64
HW6Cl Train NCEC 6 Binding energies of Cl�(H2O)n (n = 1� 6) 57.71 63,64
HW6F Train NCEC 6 Binding energies of F�(H2O)n (n = 1� 6) 81.42 63,64

FmH2O10 Validation NCEC 10 Binding energies of isomers of F�(H2O)10 168.50 63,64
Shields38 Validation NCEC 38 Binding energies of (H2O)n (n = 2� 10) 51.54 65

SW49Bind345 Validation NCEC 31 Binding energies of isomers of SO4
2�(H2O)n (n = 3� 5) 28.83 66

SW49Bind6 Validation NCEC 18 Binding energies of isomers of SO4
2�(H2O)6 62.11 66

WATER27 Validation NCEC 23 Binding energies of neutral and charged water clusters 67.48 67,68
3B-69-TRIM Test NCEC 69 Binding energies of trimers, with three di↵erent orientations of 23 distinct molecular crystals 14.36 56

CE20 Test NCEC 20 Binding energies of water, ammonia, and hydrogen fluoride clusters 30.21 69,70
H2O20Bind10 Test NCEC 10 Binding energies of isomers of (H2O)20 (low-energy structures) 198.16 64
H2O20Bind4 Test NCEC 4 Binding energies of isomers of (H2O)20 (dod, fc, fs, and es) 206.12 67,68,71,72

TA13 Train NCD 13 Binding energies of dimers involving radicals 22.00 73
XB18 Train NCD 8 Binding energies of small halogen-bonded dimers 5.23 74

Bauza30 Validation NCD 30 Binding energies of halogen-, chalcogen-, and pnicogen-bonded dimers 23.65 75,76
CT20 Validation NCD 20 Binding energies of charge-transfer complexes 1.07 77
XB51 Validation NCD 20 Binding energies of large halogen-bonded dimers 6.06 74

AlkIsomer11 Train IE 11 Isomerization energies of n = 4� 8 alkanes 1.81 78
Butanediol65 Train IE 65 Isomerization energies of butane-1,4-diol 2.89 79

ACONF Validation IE 15 Isomerization energies of alkane conformers 2.23 68,80
CYCONF Validation IE 11 Isomerization energies of cysteine conformers 2.00 68,81
Pentane14 Validation IE 14 Isomerization energies of stationary points on the n-pentane torsional surface 6.53 82

SW49Rel345 Validation IE 31 Isomerization energies of SO4
2�(H2O)n (n = 3� 5) 1.47 66

SW49Rel6 Validation IE 18 Isomerization energies of SO4
2�(H2O)6 1.22 66

H2O16Rel5 Test IE 5 Isomerization energies of (H2O)16 (boat and fused cube structures) 0.40 83
H2O20Rel10 Test IE 10 Isomerization energies of (H2O)20 (low-energy structures) 2.62 64
H2O20Rel4 Test IE 4 Isomerization energies of (H2O)20 (dod, fc, fs, and es) 5.68 67,68,71,72
Melatonin52 Test IE 52 Isomerization energies of melatonin 5.54 84
YMPJ519 Test IE 519 Isomerization energies of the proteinogenic amino acids 8.33 85
EIE22 Train ID 22 Isomerization energies of enecarbonyls 4.97 86

Styrene45 Train ID 45 Isomerization energies of C8H8 68.69 87
DIE60 Validation ID 60 Isomerization energies of reactions involving double-bond migration in conjugated dienes 5.06 88

ISOMERIZATION20 Validation ID 20 Isomerization energies 44.05 89
C20C24 Test ID 8 Isomerization energies of the ground state structures of C20 and C24 36.12 90

AlkAtom19 Train TCE 19 n = 1� 8 alkane atomization energies 1829.31 78
BDE99nonMR Train TCE 83 Bond dissociation energies (SR) 114.98 89

G21EA Train TCE 25 Adiabatic electron a�nities of atoms and small molecules 40.86 68,91
G21IP Train TCE 36 Adiabatic ionization potentials of atoms and small molecules 265.35 68,91

TAE140nonMR Train TCE 124 Total atomization energies (SR) 381.05 89
AlkIsod14 Validation TCE 14 n = 3� 8 alkane isodesmic reaction energies 10.35 78
BH76RC Validation TCE 30 Reaction energies from HTBH38 and NHTBH38 30.44 68,92,93
EA13 Validation TCE 13 Adiabatic electron a�nities 42.51 94

HAT707nonMR Validation TCE 505 Heavy-atom transfer energies (SR) 74.79 89
IP13 Validation TCE 13 Adiabatic ionization potentials 256.24 94

NBPRC Validation TCE 12 Reactions involving NH3/BH3 and PH3/BH3 30.52 18,68,95
SN13 Validation TCE 13 Nucleophilic substitution energies 25.67 89
BSR36 Test TCE 36 Hydrocarbon bond separation reaction energies 20.06 18,96

HNBrBDE18 Test TCE 18 Homolytic N–Br bond dissociation energies 56.95 97
WCPT6 Test TCE 6 Tautomerization energies for water-catalyzed proton-transfer reactions 7.53 98

BDE99MR Validation TCD 16 Bond dissociation energies (MR) 54.51 89
HAT707MR Validation TCD 202 Heavy-atom transfer energies (MR) 83.41 89
TAE140MR Validation TCD 16 Total atomization energies (MR) 147.20 89
PlatonicHD6 Test TCD 6 Homodesmotic reactions involving platonic hydrocarbon cages, CnHn (n = 4, 6, 8, 10, 12, 20) 136.71 99
PlatonicID6 Test TCD 6 Isodesmic reactions involving platonic hydrocarbon cages, CnHn (n = 4, 6, 8, 10, 12, 20) 96.19 99
PlatonicIG6 Test TCD 6 Isogyric reactions involving platonic hydrocarbon cages, CnHn (n = 4, 6, 8, 10, 12, 20) 356.33 99
PlatonicTAE6 Test TCD 6 Total atomization energies of platonic hydrocarbon cages, CnHn (n = 4, 6, 8, 10, 12, 20) 2539.27 99
BHPERI26 Train BH 26 Barrier heights of pericyclic reactions 23.15 68,100
CRBH20 Train BH 20 Barrier heights for cycloreversion of heterocyclic rings 46.40 101
DBH24 Train BH 24 Diverse barrier heights 28.34 15,102
CR20 Validation BH 20 Cycloreversion reaction energies 22.31 103

HTBH38 Validation BH 38 Hydrogen transfer barrier heights 16.05 93
NHTBH38 Validation BH 38 Non-hydrogen transfer barrier heights 33.48 92

PX13 Test BH 13 Barrier heights for proton exchange in water, ammonia, and hydrogen fluoride clusters 28.83 69,70
WCPT27 Test BH 27 Barrier heights of water-catalyzed proton-transfer reactions 38.73 98
AE18 Train – 18 Absolute atomic energies of hydrogen through argon 148,739.00 104
RG10 Validation – 569 PECs for the 10 rare-gas dimers involving helium through krypton 1.21 105

TABLE I. Summary of the 84 datasets that comprise MGCDB84.3 The datatypes are explained in Section III. The sixth
column contains the root-mean-squares of the dataset reaction energies. PEC stands for potential energy curve, SR stands for
single-reference, MR stands for multi-reference, Bz stands for benzene, Me stands for methane, and Py stands for pyridine.
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PT2, exact exchange, and a reparameterization of the
semi-local space. The former option provides slightly
less flexibility, because !B97M-V may contain variables
that are not optimal for the double hybrid functional.
For example, !B97M-V contains the coe�cient, cx,10,
with a value of 0.259. Any perturbation to the !B97M-
V energy would necessarily contain that feature either
with the original coe�cient of 0.259 or an updated value
if the combinatorial approach selects cx,10 as an optimiz-
able parameter. Unless the value of cx,10 is constrained
to be -0.259, the final energy will directly involve a con-
tribution from cx,10. Since starting from a complete
repartitioning of the semi-local space avoids this issue,
the latter option is chosen for this work.

The weighting scheme used for !B97M(2) is similar
to that used for !B97M-V. Initially, each data point is
given a weight that corresponds to the inverse of the
product of the number of data points in the associated
dataset and the root-mean-square of the reaction en-
ergies in the associated dataset. These values can be
found in the fourth and sixth columns of Table I, respec-
tively. Within each of the datatypes, the weights are
normalized by dividing by the smallest weight, and then
exponentiated such that they lie between 1 and 2. For
the determination of the weights only, AE18 is included
in the TCE datatype. Finally, the eight datatypes get a
multiplicative weight based on intuition: 0.1 for TCD,
1 for TCE, 10 for NCD, ID, and BH, and 100 for NCED
and NCEC, and 1000 for IE. As RG10 does not belong
to a datatype, the bound (attractive) data points receive
a weight of 10,000, while the unbound (repulsive) data
points receive a weight of 1. These weights are used to
define the weighted RMSDs for the training, validation,
and test sets.

A series of BSS optimizations are performed within
the aforementioned space of 74 available features, up to
10 features. The training set is used for the fits and
transferability assessment is performed on the valida-
tion set. Since the exact exchange and PT2 coe�cients
are mandatory, this results in 3- through 12-parameter
unbiased fits. Within each run (e.g., all 1,799,579,064�74
7

�
fits), the top 10,000 fits (based on the weighted

validation error) are saved. At
�74
10

�
, it is necessary

to start freezing parameters, and the freezing is done
based on the e↵ectiveness of the parameter in reducing
the validation error, since transferability is the most
important aspect of these fits. In order, the follow-
ing features are frozen to arrive at up to 17-parameter
fits: ccos,00, ccss,20, ccos,20, ccos,01, cx,20. At this point,
we have the top 10,000 (based on weighted validation
error) 1- through 17-parameter fits.

This procedure produces the data shown in Figure 1,
where the weighted validation error is plotted for the
top 10,000 9- through 17-parameter fits. These results
represent the double hybrid analog of the way in which
our rung 3 (B97M-V) and rung 4 (!B97M-V) function-
als were developed. One should focus on the curve de-
fined by the best functional (lowest weighted validation
error) with each number of distinct parameters. This
is a basis for selecting a functional that exhibits great-

est transferability. Either 10- or 11-parameter choices
represent minimally parameterized functionals that are
promising candidates. However, the weighted validation
error continues to decline even with 16 and 17 param-
eter fits, and despite the additional parameters, there
is some argument that the best such functionals o↵er
significantly improved overall results. However, caution
is needed because the greater the number of parame-
ters, the more likely it is that the best functional on
the validation set will not perform comparably well on
the independent test set. In addition, it is possible that
outlier data in the training set has biased the parame-
ters.

To explore these issues, these best fits are then refit
on the training set using the RANSAC outlier detection
method. The RANSAC method takes each set of vari-
ables and performs the fitting procedure a number of
times in order to identify outliers based on the criteria
specified in Section III. For a given set of features, once
the RANSAC procedure is complete, a new set of coef-
ficients is the result, along with a list of the data points
that were deemed outliers. The new coe�cients are a re-
sult of simply fitting to the training set with the original
weights, with these outliers removed. Because the out-
lier detection is performed using the fits that performed
best on the validation set, the weighted validation set
error can no longer be meaningfully used to assess the
modified fits. Instead, the resulting fits are ranked us-
ing the (completely independent) weighted test set er-
ror. The fit with the best test set performance is what
we finally select as the !B97M(2) density functional.

For the 90,000 fits pictured in Figure 1, RANSAC is
individually applied to redetermine the values of the co-
e�cients with the outliers removed. This procedure pro-
duces the data shown in Figure 2, where the weighted
test error is plotted. Since the test set is indeed an inde-
pendent assessment, there is a minimum in the weighted
test error at 14 parameters, and this fit corresponds to
the !B97M(2) density functional. The RANSAC pro-
cedure removes 11 data points from the training set
(of 870), and these specific data points are: the abso-
lute atomic energies of nitrogen, oxygen, fluorine, neon,
sodium, magnesium, and aluminum, the ionization po-
tential of beryllium, two isomers from the Styrene45
dataset (isomers 38 and 40), and the binding energy
of HF–CO+. Inspecting Figure 1 shows that while our
chosen form is optimal, its margin of superiority against
other contenders is small. There are roughly half a
dozen other contenders whose overall performance is
within 2% of our choice, and hundreds within 10%, so
the optimal choice is certainly dependent upon the com-
position of the test set as well as the chosen optimization
procedure. Our view is that !B97M(2) is one represen-
tative of the best candidates, balanced across the dif-
ferent datatypes by the weights and constraints that we
have imposed.

The !B97M(2) functional contains approximately
62% short-range exact exchange and 34% PT2 corre-
lation. Relative to the parent !B97M-V functional, the
fraction of short-range exact exchange is about 4 times
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cx,00 0.37806 ccss,00 0.54846 ccos,00 0.46152 cx 0.62194
cx,20 0.28193 ccss,10 -1.17724 ccos,20 2.30490 cV V 10 0.65904
cx,30 -0.21886 ccss,20 -3.67267 ccos,01 -1.94794 cPT2 0.34096
cx,01 0.13642 ccos,02 3.24910
cx,41 0.70767 ccos,22 -2.26280

TABLE II. The optimized parameters that define the
!B97M(2) density functional. The first two columns cor-
respond to semi-local meta-GGA exchange, the next two
columns correspond to semi-local meta-GGA same-spin cor-
relation, the next two columns correspond to semi-local
meta-GGA opposite-spin correlation, and the final two
columns correspond to the short-range exact exchange con-
tribution, the VV10 nonlocal correlation contribution, and
the PT2 contribution.

higher, which will reduce self-interaction error. All of
the optimized parameters are given in Table II. The pa-
rameters are numerically very well-behaved, all of them
smaller than 5 in magnitude. The inhomogeneity cor-
rection factors (ICF) are also very well-behaved. For
exchange, the ICFs are bound by 0.37 and 1.73, clearly
obeying the Lieb-Oxford bound of 2.273. For same-spin
correlation, the ICF is bound by -4.31 and 0.65, while
for opposite-spin correlation, the ICF is bound by 0.16
and 2.77. Therefore, the resulting functional is very
smoothly varying. Since both zeroth order contribu-
tions for correlation (ccss,00 and ccos,00) end up in the
parameterization, it is interesting to see their values.
The value of ccss,00 is 0.548 while the value of ccos,00 is
0.462, which are each much less than 1 (the value for a
meta-GGA that obeys the uniform electron gas limit).
This result shows how the presence of PT2 correlation
reduces the need for semi-local DFT correlation.

The first tests of !B97M(2) are against other design
alternatives, as summarized in Figure 3. This testing
constitutes an internal assessment of the e↵ectiveness of
our chosen design strategy. The first column, !B97M(2)
w/ RANSAC, corresponds to our chosen functional
form. The first interesting comparison is to compare
this to the same fit except without the use of RANSAC.
This is shown in the adjacent column. For the most
part, the two models perform comparably; however, for
thermochemistry, the model with RANSAC performs
significantly better, since the removal of a handful of ab-
solute atomic energies leads to much better performance
overall on relevant bonded energy di↵erences. As a re-
minder, the TCE datatype does not contain the AE18
dataset of absolute atomic energies. Furthermore, the
performance for barrier heights is also improved. Per-
haps most importantly, the weighted test error is signif-
icantly smaller, indicating better transferability.

The third and fourth columns of Figure 3 (GGA and
mGGA) employ standard linear regression correspond-
ing to the specified expansion of the power series. These
two double hybrid models are fit to both the training
and validation sets. The GGA model contains more fit-
ted parameters than !B97M(2), yet no dependence on
the kinetic energy density. As expected, this model is
almost always worse than !B97M(2), particularly for
the independent test set. The meta-GGA model shown

is a functional that is expanded up to quadratic order in
both the density gradient and the kinetic energy den-
sity. This results in a functional with twice as many
parameters as !B97M(2). Since it is trained on the
training and validation sets, it performs better for these
two datasets, but its weighted test error is more than
30% larger than that of !B97M(2), indicating signifi-
cantly poorer transferability. Across the full dataset, it
is also significantly worse for the IE, TCE, and TCD
datatypes.

Finally, it is interesting to compare the Lasso and
Ridge Regression machine learning models. These mod-
els were applied in the same space as the combinato-
rial search, namely, up to quartic power contributions
(N 0 = N = 4). The hyperparameter, ↵, is minimized
on the validation set, and then the model is trained
on both the training and validation set using the op-
timal hyperparameter. The Lasso result is particularly
interesting because the number of resulting non-zero pa-
rameters is fortuitously 14, which is the same number
of parameters as in the final model. Therefore, com-
paring !B97M(2) with the Lasso result is relevant. For
all of the datatypes, !B97M(2) performs better, par-
ticularly for IE, TCE, and TCD. Comparing Lasso and
Ridge Regression is also interesting, since the latter re-
tains all 76 parameters in the feature matrix. For this
specific application, Ridge Regression performs slightly
better than Lasso, but its thermochemistry performance
is still subpar relative to !B97M(2). Overall, both ma-
chine learning models perform more than 20% worse on
the independent test set relative to !B97M(2), although
they do outperform the meta-GGA model on the test
set. It is evident that our design approach has yielded
better results than are possible from either fitting with
an assumed form (e.g. the GGA or meta-GGA model)
or using standard machine learning methods.

It is worth mentioning that a variety of di↵erent ap-
proaches were considered during the development of
!B97M(2) – approaches that were ultimately aban-
doned in favor of the final functional form. One such
endeavor was the exploration of attenuated MP2111 in-
stead of canonical MP2. However, the results indicated
that little to no attenuation performed better than any
attenuated form, despite the known limitations of MP2
for long-range correlation, and the presence of VV10.
Furthermore, we also attempted to train a regularized
form of MP2, with a level shift in the denominator,
which would make the method more robust in the limit
of small HOMO-LUMO gaps. We also tried relaxing the
constraint that cPT2+cV V 10=1, but this produced fits
that tested 5-10% worse than their constrained coun-
terparts. Finally, it is noteworthy that at the beginning
of this project, we had intended to develop a non-xDH
functional, but realized early on that this approach was
not amenable to the combinatorial design methodology
because the resulting fits were highly sensitive to the
choice of initial orbitals.
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FIG. 1. Weighted validation error (in kcal/mol) plotted against the number of fitted parameters for the top 10,000 fits for each
number of parameters considered (up to 17). All training data is included in the fitting process, and the resulting parameters
are subsequently applied to the validation set, as described in detail in the text. Improvement in the validation performance
of the best functional is not monotonic with the number of parameters. However, improvements are still occurring up to 17
parameters.

FIG. 2. Weighted test error (in kcal/mol) plotted against the number of fitted parameters, where the parameters are obtained
after application of the RANSAC procedure to the training set, as described in the text. The independent test set results
show a minimum at the best 14 parameter functional, which is selected to define the !B97M(2) double hybrid functional.
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ωB97M(2)
w/ RANSAC

ωB97M(2)
w/o RANSAC

GGA
N=4

mGGA
N'=N=2

Lasso (α=1e-6) 
N'=N=4

Ridge (α=5e-3)
N'=N=4

# of param. 14 14 16 28 14 76
W. Train 3.53 3.22 3.87 3.04 3.65 3.36

W. Validation 2.12 2.07 2.20 1.99 2.20 2.08
W. Test 4.34 4.64 6.14 5.75 5.57 5.30
NCED 0.16 0.16 0.18 0.16 0.17 0.16
NCEC 0.40 0.39 0.47 0.39 0.44 0.46
NCD 0.59 0.63 0.82 0.60 0.65 0.68

IE 0.13 0.15 0.21 0.20 0.18 0.17
ID 1.56 1.58 1.53 1.44 1.73 1.55

TCE 1.62 1.91 2.20 1.81 2.30 2.09
TCD 3.51 3.65 4.39 3.98 3.89 3.96
BH 0.92 1.07 1.11 0.86 1.01 1.00

FIG. 3. Performance of the 14-parameter RANSAC-derived
fit for !B97M(2) (first column) against the same fit with-
out RANSAC (second column), non-combinatorial GGA and
meta-GGA double hybrids fitted to both training and vali-
dation sets (third and fourth columns), and results from the
Lasso and Ridge Regression machine learning procedures
(see text for details). The first row gives the number of
parameters in each functional. Subsequent rows show the
weighted RMS errors for the training, validation and test
sets (kcal/mol), and RMS errors (kcal/mol) for each of the
datatypes across the entire database (see Section III for the
meaning of the acronyms).

V. EXTERNAL ASSESSMENT AGAINST EXISTING
HYBRIDS AND DOUBLE HYBRIDS

The next stage of assessment is to compare the perfor-
mance of the !B97M(2) density functional against ex-
isting double hybrids, as well as hybrid density function-
als. For this purpose, we have selected 7 well-recognized
double hybrid functionals, and 4 existing hybrids, as
summarized in Table III. Additionally, we compare
against the performance of the standard MP2 method.
Instead of showing vast tables that contain RMSDs for
all 84 datasets, we summarize the data into two simple
figures. The first figure (Figure 4) summarizes the re-
sults based on the datatypes described in Section III.
The second figure (Figure 5) contains RMSDs for a se-
lection of specific datasets from the total of 84 that com-
prise the database.

The errors contained in Figure 4 are geometric means
of the RMSDs for each individual dataset belonging
to a given datatype (these will be referred to as GM-
RMSDs). For instance, the value for NCED is the geo-
metric mean across all 18 NCED dataset RMSDs. We
use this measure instead of an RMSD across all 1744
NCED data points (for example) so that datasets that
have an overwhelming number of data points do not
have too much influence on the statistics. The last two
columns are extracted from 81 potential energy curves
(PEC) from the BzDC215, S66x8, and NBC10 datasets.
EBL contains interpolated equilibrium bond lengths for
these 81 PECs while EBE contains interpolated equi-
librium binding energies for these 81 PECs. As with
the other columns, these values are geometric means
across the appropriate RMSDs for the three included
datasets. Finally, the “Overall” column is an attempt
at devising a single metric to portray the performance
of a functional. Essentially, it is a geometric mean of

Functional cx · 100 (!) cc,ss · 100 cc,os · 100 Hyb. Ing. Disp. Year Ref.
B3LYP-D3(BJ) 20 0 0 GH GGA D3(BJ) 1993/2011 13,112
M06-2X-D3(0) 54 0 0 GH meta-GGA D3(0) 2006 113

!B97X-V 16.7-100 (0.3) 0 0 RSH GGA VV10 2014 29
!B97M-V 15-100 (0.3) 0 0 RSH meta-GGA VV10 2016 31

B2PLYP-D3(BJ) 53 27 27 GDH GGA D3(BJ) 2006/2011 10,13
B2GPPLYP-D3(BJ) 65 36 36 GDH GGA D3(BJ) 2008/2011 13,15

!B97X-2(TQZ) 63.62-100 (0.3) 52.93 44.71 RSDH GGA None 2009 16
XYG3 80.33 32.11 32.11 GDH GGA None 2009 9

PTPSS-D3(0) 50 37.5 37.5 GH meta-GGA D3(0) 2011 18
XYGJ-OS 77.31 0 43.64 GDH GGA None 2011 19

DSD-PBEP86-D3(BJ) 69 22 52 GDH GGA D3(BJ) 2013 20
DSD-PBEPBE-D3(BJ) 68 13 55 GDH GGA D3(BJ) 2013 20

!B97M(2) 62-100 (0.3) 34 34 RSDH meta-GGA VV10 2018 P.W.

TABLE III. Details for the 11 density functionals chosen for
comparison to !B97M(2). The second column indicates the
percentage of exact exchange: a single value indicates that
the hybridization is global, while a range (e.g., 15-100) in-
dicates that the hybridization is range-separated, with the
first value being the percentage of short-range exact ex-
change, and the second value being the percentage of long-
range exact exchange (the value in parentheses is !). The
third and fourth columns indicate the percentage of same-
spin and opposite-spin MP2 correlation energy. The fifth
column indicates the type of hybridization (GH stands for
global hybrid, RSH stands for range-separated hybrid, GDH
stands for global double hybrid, and RSDH stands for range-
separated double hybrid). The sixth column indicates the
ingredients contained in the functional. The seventh column
indicates the type of dispersion correction, with D3(0) and
D3(BJ) referring to Grimme’s D3 method using the origi-
nal damping function and the Becke-Johnson damping func-
tion, respectively, and VV10 referring to the Vydrov and van
Voorhis non-local correlation functional.

four geometric means, where each of the four geomet-
ric means corresponds to a type of chemical interac-
tion. The first type is non-covalent interactions, and
includes the NCED, NCEC, NCD, EBL, and EBE val-
ues from Figure 4, the second type is isomerization en-
ergies and includes the IE and ID values from Figure
4, the third type is thermochemistry and includes the
TCE and TCD values from Figure 4, and finally the
last type is barrier heights and is simply the BH value.
For the datatypes NCED through BH, as well as EBE,
the units are in kcal/mol. EBL is in Angstrom, and the
“Overall” metric uses mixed units.
Considering the data in Figure 4, it is evident that

there are many interesting aspects to consider in the
comparison of !B97M(2) against the existing function-
als. The most apples-to-apples comparison is between
!B97M(2) (Rung 5) and !B97M-V (Rung 4) because
we have developed them both using very similar ap-
proaches, and the former is a correction to the latter.
It is therefore significant that !B97M(2) matches or
reduces the errors of !B97M-V across every category
that we have examined, with the overall reduction being
more than 28%. While the double hybrid is computa-
tionally more costly, this is a very significant narrowing
of the error distribution, particularly as !B97M-V is
the best existing Rung 4 functional based on our recent
assessment3. Based on this statistical assessment, there
is no downside to using !B97M(2) relative to !B97M-V.
The largest improvements in !B97M(2) relative to

!B97M-V are for thermochemistry (both TCE and
TCD), barrier heights (BH), di�cult non-covalent inter-
actions (NCD), and isomerization energies (ID). These
are ascribable to improvements in the correlation func-



10

Functional Overall NCED NCEC NCD IE ID TCE TCD BH EBL EBE
MP2 2.07 0.54 0.58 0.61 0.33 2.42 4.96 14.70 4.87 0.116 1.32

B3LYPͲD3(BJ) 1.75 0.25 2.06 0.95 0.41 3.99 2.94 6.95 5.04 0.023 0.32
M06Ͳ2XͲD3(0) 1.38 0.30 2.57 0.65 0.37 2.00 2.34 9.44 2.06 0.084 0.35
B2PLYPͲD3(BJ) 1.23 0.18 0.83 0.57 0.26 2.98 2.14 7.03 3.17 0.024 0.23

XYGJͲOS 1.08 0.40 1.29 0.38 0.34 1.10 2.07 5.71 1.74 0.066 0.56
PTPSSͲD3(0) 1.08 0.21 1.00 0.45 0.13 2.32 1.93 8.20 2.23 0.076 0.25

XYG3 1.05 0.37 0.87 0.35 0.31 2.19 2.06 4.82 1.54 0.048 0.49
B2GPPLYPͲD3(BJ) 1.05 0.19 0.98 0.51 0.23 2.60 1.93 7.73 1.90 0.022 0.23
ʘB97XͲ2(TQZ) 0.97 0.34 1.40 0.51 0.12 1.46 1.98 8.29 1.66 0.026 0.50

ʘB97XͲV 0.97 0.17 0.50 0.61 0.15 1.55 2.35 5.56 2.44 0.043 0.17
DSDͲPBEP86ͲD3(BJ) 0.96 0.30 1.37 0.54 0.15 1.60 1.56 5.84 1.63 0.043 0.54
DSDͲPBEPBEͲD3(BJ) 0.94 0.28 0.81 0.37 0.20 1.63 2.00 4.40 1.62 0.040 0.56

ʘB97MͲV 0.69 0.15 0.42 0.53 0.11 1.32 1.56 4.15 1.48 0.019 0.17
ʘB97M(2) 0.49 0.14 0.36 0.32 0.11 0.97 0.96 2.71 0.84 0.019 0.14

FIG. 4. Performance of 8 double hybrid density functionals, 4 hybrid density functionals, as well as MP2 for the datatypes in
the MGCDB84 database. The errors are geometric means of the RMSDs (in kcal/mol) for each individual dataset belonging
to a given datatype.

NCD ID TCD
Functional S66x8 HB49 Shields38 3BͲ69ͲTRIM TA13 Butanediol65 YMPJ519 Styrene45 AlkAtom19 TAE140nonMR HAT707MR BHPERI26 DBH24

MP2 0.94 0.29 0.54 1.57 2.02 0.11 0.41 3.17 5.28 9.59 26.55 8.20 7.30
B3LYPͲD3(BJ) 0.31 0.59 3.21 0.74 3.85 0.29 0.49 7.09 1.39 4.25 4.02 1.55 5.39
M06Ͳ2XͲD3(0) 0.31 0.53 2.34 0.64 1.39 0.18 0.50 2.97 7.72 2.98 6.25 1.79 1.08
B2PLYPͲD3(BJ) 0.18 0.31 1.57 0.45 1.76 0.14 0.28 4.77 5.89 2.49 6.62 1.93 2.39

XYGJͲOS 0.71 0.30 1.80 1.32 0.84 0.12 0.33 1.46 10.43 3.44 4.18 2.51 1.04
PTPSSͲD3(0) 0.20 0.21 1.42 0.44 1.75 0.09 0.33 1.96 0.64 3.42 5.72 0.55 2.44

XYG3 0.59 0.29 0.93 1.00 0.71 0.12 0.29 3.29 4.02 2.75 2.68 0.85 1.07
B2GPPLYPͲD3(BJ) 0.21 0.28 1.57 0.46 1.26 0.11 0.23 3.98 6.40 2.62 9.86 1.68 0.97
ʘB97XͲ2(TQZ) 0.30 0.35 2.79 0.76 1.27 0.08 0.23 1.88 12.37 3.55 10.80 2.42 1.44

ʘB97XͲV 0.21 0.29 0.70 0.39 2.88 0.04 0.30 3.95 1.69 2.95 4.82 2.75 1.75
DSDͲPBEP86ͲD3(BJ) 0.34 0.31 2.01 0.70 1.29 0.05 0.24 1.28 0.67 2.33 11.03 2.63 1.16
DSDͲPBEPBEͲD3(BJ) 0.34 0.25 0.46 0.63 1.22 0.12 0.31 1.50 2.75 2.94 10.94 2.32 1.48

ʘB97MͲV 0.11 0.23 0.48 0.32 2.75 0.04 0.32 1.92 0.91 2.23 4.18 1.44 1.46
ʘB97M(2) 0.11 0.15 0.15 0.27 1.08 0.06 0.14 1.40 0.21 1.61 3.20 0.65 0.65

NCED NCEC IE TCE BH

FIG. 5. Performance of 8 double hybrid density functionals, 4 hybrid density functionals, as well as MP2 for a selection
of datasets from the MGCDB84 database. The errors are standard RMSDs (in kcal/mol) across the data points in the
corresponding dataset.

tional, as well as to reductions in self-interaction er-
ror (particularly for the di�cult categories). The im-
proved TCD performance relative to !B97M-V is wor-
thy of comment, because its di�cult designation is due
to its mostly multi-reference data, and one might expect
higher exact exchange to lead to poorer performance.
We believe the key reason is the use of !B97M-V or-
bitals to compute the PT2 contribution, which is fur-
ther reinforced by the fact that XYGJ-OS and XYG3
(both xDH-type functionals that use B3LYP orbitals)
also perform reasonably well, whereas standard double
hybrids like PTPSS-D3(0) and !B97X-2(TQZ) perform
poorly. Finally we observe that there is virtually no im-
provement in !B97M(2) relative to !B97M-V for easy
non-covalent interaction energies and isomerization en-
ergies, perhaps consistent with the fact that PT2 cor-
relation o↵ers no advantage over the VV10 non-local

correlation functional for dispersion interactions.

An alternate view of the relative success of xDH func-
tionals is o↵ered by Grimme in Ref. 18. In this work,
it is concluded that the improved performance of xDH
double hybrids is not due to “better orbitals” but rather
the small fraction of exact exchange in the initial or-
bitals, which yields a smaller occupied–virtual orbital
gap and thus results in a larger amount of “e↵ective”
PT2 correlation.

Comparisons of !B97M(2) against other double hy-
brids are also very interesting. This is not strictly
an apples-to-apples comparison because !B97M(2) was
trained on part of this data, but since only 14 parame-
ters are involved, and the dataset contains almost 5000
data points, we expect this influence to be minor. How-
ever, to provide full transparency, we provide a similar
figure of GM-RMSDs (Figure 6) that involves only the
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Functional NCED NCEC NCD IE ID TCE TCD BH
MP2 0.47 0.58 0.51 0.32 3.98 3.88 14.70 3.93

B3LYPͲD3(BJ) 0.23 2.56 0.82 0.38 4.58 2.87 6.95 5.70
M06Ͳ2XͲD3(0) 0.32 2.45 0.53 0.45 3.08 1.88 9.44 2.54
B2PLYPͲD3(BJ) 0.18 0.91 0.56 0.25 3.59 1.74 7.03 3.31

XYGJͲOS 0.36 1.49 0.29 0.34 1.53 1.63 5.71 1.62
PTPSSͲD3(0) 0.24 1.01 0.49 0.13 3.37 1.82 8.20 2.42

XYG3 0.33 1.07 0.33 0.31 2.77 1.80 4.82 1.45
B2GPPLYPͲD3(BJ) 0.19 1.07 0.51 0.22 3.23 1.42 7.73 2.11
ʘB97XͲ2(TQZ) 0.33 1.48 0.47 0.13 2.10 1.33 8.29 1.87

ʘB97XͲV 0.15 0.62 0.38 0.14 2.06 2.15 5.56 2.42
DSDͲPBEP86ͲD3(BJ) 0.28 1.46 0.53 0.20 2.39 1.28 5.84 1.98
DSDͲPBEPBEͲD3(BJ) 0.26 1.02 0.42 0.21 2.41 1.53 4.40 1.64

ʘB97MͲV 0.14 0.54 0.33 0.12 2.06 1.31 4.15 1.55
ʘB97M(2) 0.14 0.38 0.31 0.12 1.36 0.84 2.71 0.83

FIG. 6. Performance of 8 double hybrid density functionals,
4 hybrid density functionals, as well as MP2 for the valida-
tion and test components of the MGCDB84 database. The
errors are geometric means (in kcal/mol) of the RMSDs for
each individual dataset belonging to a given datatype.

datasets in the validation and test sets. Relative to
other double hybrids, !B97M(2) is the best performer
by a wide margin. The second and third best double
hybrids are DSD-PBEPBE-D3(BJ) (92% larger over-
all GM-RMSD) and !B97X-2(TQZ) (98% larger overall
GM-RMSD), followed closely by three other function-
als that have roughly 114% larger overall GM-RMSD.
This very large gap has four main origins, which con-
tribute multiplicatively. First is the fact that !B97M(2)
is a correction to the already very accurate !B97M-V
hybrid meta-GGA, which itself outperforms all other
tested double hybrids. A zero correction would already
be superior. Second is the fact that this is the first dou-
ble hybrid functional that is semi-empirically designed
using full semi-local meta-GGA functionality – our own
tests in Figure 3 (e.g., column 3 vs column 4) already
show the clear advantage relative to semi-local GGA
functionality. Third is the fact that combinatorial de-
sign (including the RANSAC refinement) has not pre-
viously been applied to double hybrid functionals (one
measure of improvement is comparing columns 1 and 4
of Figure 3). Finally, the use of VV10 and PT2 corre-
lation together is likely to be important for accurately
evaluating weak interactions.
Finally, it is interesting that based on the overall mea-

sure, MP2 is the worst-performing method considered.
However, MP2 does have its strong points, namely the
NCD and ID categories, where the inclusion of 100% ex-
act exchange is advantageous. It is also noteworthy that
these calculations are performed without counterpoise
(CP) corrections, so it is likely that CP-corrected MP2
will perform slightly better for the NCED and NCEC
datatypes. Given how crude MP2 itself is, it is therefore
likely that use of better non-local wavefunction corre-
lation corrections could lead to potentially significant
further improvements in future double hybrid function-
als.
Turning to Figure 5, there is also much that can be

said, but we shall limit ourselves to a few comments.

Overall, by examining the individual datasets, both sup-
port for, and illustrative deviations from the overall con-
clusions reported in Figure 4 can be seen. Two datasets
where !B97M(2) is most impressive are the Shields38
dataset from the NCEC category and the AlkAtom19
dataset from the TCE category (second best functional
has more than 300% larger error in both cases). At the
other extreme, for example, in the (self-interaction sen-
sitive) TA13 dataset from the NCD category, the best
overall result belongs to XYG3, and all tested double
hybrids outperform !B97M-V! The major purpose of
presenting these results is to remind the reader that the
overall statistics that we have mainly focused on repre-
sent the typical cases, but individual results will vary,
as reflected in the outcomes for sample datasets.

VI. RECOMMENDATIONS AND SUMMARY

The !B97M(2) double hybrid (Rung 5) density func-
tional presented in this work completes our family of
combinatorially optimized functionals, complementing
B97M-V on Rung 3, and !B97X-V and !B97M-V
on Rung 4. Regarding proper use of the functional,
!B97M(2) should be used with the def2-QZVPPD ba-
sis set without counterpoise corrections, and its grid
requirements are as follows: the (75,302)/SG-0 grid is
recommended as a viable coarse option (particularly for
quick calculations), the (99,590)/SG-1 grid is recom-
mended as the fine option if results near the integration
grid limit are required, while for most applications, the
medium-sized (75,590)/SG-1 grid can serve as a com-
promise between these two limits.
The data presented here establishes that !B97M(2)

is perhaps the most accurate density functional yet de-
fined for main-group chemistry, and that !B97M(2) is
significantly more accurate than the !B97M-V func-
tional which it corrects. While still not a viable solu-
tion for problems with genuinely strong correlations, or
as accurate as high-level wavefunction-based quantum
chemistry114 such as complete basis set limit CCSD(T),
!B97M(2) is a very promising tool for a wide spectrum
of chemical applications. One way of seeing the im-
provements that have been obtained is via the best re-
sults yet reported at each rung of Jacob’s Ladder of
density functionals across the MGCDB84 database, as
shown in Figure 7. There are statistically significant
reductions in RMSD upon ascending each additional
rung of the ladder, with !B97M(2) sitting at the highest
level yet achieved for DFT, to our knowledge. However,
these statistical improvements come with a high compu-
tational price, in the form of the need to evaluate exact
exchange at Rung 4, and non-local PT2 correlation at
Rung 5. The latter changes the formal computational
scaling of the calculation to fifth order in molecular size
from no worse than cubic at Rung 4.
Due to the increased computational cost of a dou-

ble hybrid, it is interesting to compare timings between
B97M-V, !B97M-V, and !B97M(2) in order to deter-
mine the extent to which the addition of exact exchange
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Empty AO BF RI BF B97M-V !B97M-V !B97M(2)//PT2 only
C6H6 840 1852 2020 8840 66

AT-WC 1566 3698 10770 61630 729
H2O20 2640 5740 32430 179220 6372

TABLE IV. Timings (in seconds) for B97M-V, !B97M-V,
and the PT2 component of !B97M(2) for three systems:
(1) hexane from AlkAtom19, (2) adenine-thymine (Watson-
Crick geometry) from S22, and the dodecahedron water
20mer from H2O20Bind4. The number of atomic orbital
basis functions (def2-QZVPPD) is given in the second col-
umn, while the number of auxiliary basis functions used for
the resolution-of-the-identity (RI) expansions is given in the
third column. The calculations are performed in Q-Chem 5.0
with four threads, and the SCF timings are averaged across
two iterations and multiplied by 10 in order to represent a
full SCF calculation consisting of 10 iterations.

and PT2 a↵ect the e�cacy of calculations. For this
purpose, we selected three model systems: (1) hexane
from AlkAtom19, (2) adenine-thymine (Watson-Crick
geometry) from S22, and the dodecahedron water 20mer
from H2O20Bind4. The calculations are performed in
Q-Chem 5.0 with four threads. The def2-QZVPPD AO
basis set and the accompanying RI-MP2 basis set is uti-
lized, and the SCF timings are averaged across two iter-
ations and multiplied by 10 in order to represent a full
SCF calculation consisting of 10 iterations.

The timings displayed in Table IV are encouraging,
since they demonstrate that at least up to 3000 ba-
sis functions, the PT2 component is not a bottleneck.
For the water 20mer, even a semi-local functional like
B97M-V is more expensive to evaluate than the PT2
component, with the former requiring 3243 seconds per
SCF iteration (9 hours for 10 iterations), and the latter
requiring less than 2 hours to complete. With exact ex-
change included, 10 SCF iterations will take more than
2 days, compared to the PT2 computation time of only 2
hours. Therefore, if one can a↵ord to run a hybrid func-
tional such as !B97M-V, it is very likely that !B97M(2)
using the RI approximation is plausible.

Knowledge of the relative accuracy and costs of func-
tionals at Rungs 2-5 can inform their e↵ective use in
workflows to solve computational chemistry problems.
In the first instance, for example, a suitably accurate
Rung 5 functional such as !B97M(2) might be applied
to refine the relative energies at stationary points along
a chemical reaction mechanism via single point calcula-
tions. Such calculations are very small in number rela-
tive to the hundreds or even thousands of calculations
necessary to refine the geometry at all relevant station-
ary points, or the evaluation of vibrational frequencies
to obtain zero point energies and vibrational partition
functions. For smaller systems where geometry opti-
mizations are feasible with double hybrids, it will be
very interesting to assess whether there are useful im-
provements with !B97M(2) relative to other hybrids
and double hybrids in the future. Finally, the very en-
couraging results reported here provide strong incentive
for the future development of more e�cient methods to
evaluate double hybrid DFT energies as well as analytic

derivatives.
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Functional Rung Overall NCED NCEC NCD IE ID TCE TCD BH EBL EBE
ʘB97M(2) 5 0.49 0.14 0.36 0.32 0.11 0.97 0.96 2.71 0.84 0.019 0.14
ʘB97MͲV 4 0.69 0.15 0.42 0.53 0.11 1.32 1.56 4.15 1.48 0.019 0.17
ʘB97XͲV 4 0.97 0.17 0.50 0.61 0.15 1.55 2.35 5.56 2.44 0.043 0.17
B97MͲrV 3 1.23 0.18 0.57 1.10 0.24 4.24 1.88 5.47 3.12 0.030 0.16
B97ͲD3(BJ) 2 2.49 0.45 3.20 1.25 0.62 5.04 3.43 8.88 7.67 0.040 0.49
SPW92 1 6.51 1.91 27.76 5.11 1.26 5.58 10.13 32.20 15.53 0.202 1.48

FIG. 7. A realization of Jacob’s Ladder as determined by the performance of several functionals on the MGCDB84 database
of 5000 data points. SPW92 represents the local spin-density approximation (LSDA) on Rung 1, B97-D3(BJ) represents the
generalized gradient approximation (GGA) on Rung 2, B97M-rV represents the meta-generalized gradient approximation
(meta-GGA) on Rung 3, !B97X-V and !B97M-V represent GGA and meta-GGA hybrids, respectively, on Rung 4, and
!B97M(2) represents the double hybrids on Rung 5. The datatypes are described in Section III and the statistical measure
is described in Section V.
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75A. Bauzá, I. Alkorta, A. Frontera, and J. Elguero, Journal of
Chemical Theory and Computation 9, 5201 (2013).

76A. O. de-la Roza, E. R. Johnson, and G. A. DiLabio, Journal
of Chemical Theory and Computation 10, 5436 (2014).

77S. N. Steinmann, C. Piemontesi, A. Delachat, and C. Cormin-
boeuf, Journal of Chemical Theory and Computation 8, 1629
(2012).

78A. Karton, D. Gruzman, and J. M. L. Martin, The Journal of
Physical Chemistry A 113, 8434 (2009).

79S. Kozuch, S. M. Bachrach, and J. M. L. Martin, The Journal
of Physical Chemistry A 118, 293 (2014).

80D. Gruzman, A. Karton, and J. M. L. Martin, The Journal of
Physical Chemistry A 113, 11974 (2009).

81J. J. Wilke, M. C. Lind, H. F. Schaefer, A. G. Csaszar, and
W. D. Allen, Journal of Chemical Theory and Computation 5,
1511 (2009).

82J. M. L. Martin, The Journal of Physical Chemistry A 117,
3118 (2013).
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