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nt§ sting the wB97M(2) double hybrid density functional
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VV10 non-local correlation is presented. The final 14-parameter functional form is determined by screen-

A meta-generalized gradient approximation, range-separated double hybr:i}DH) density functional with

and RANSAC outlier detection. The MGCDB84 database of 4986 dat

ints

employed in this work,

ing trillions of candidate fits through a combination of best subset selec orhqvird stepwise selection,

containing a training set of 870 data points, a validation set of 2964 4lata points,
data points. Following an xDH approach, orbitals from the wB97TM-Y densi
pute the second-order perturbation theory correction. For comparison;
a variety of leading double hybrid density functionals, includi
wBITX-2(TQZ), XYG3, PTPSS-D3(0), XYGJ-0OS, DSD-PB
Encouragingly, the overall performance of wB97M(2) on neatly, 50
all of the tested density functionals. As a Rung 5 density functional,
combinatorially optimized functionals, complementing B97M:V on%
on Rung 4. The results suggest that wB97M(2) has ttﬁiotentl

nd a test set of 1152
ty functional are used to com-
2) is benchmarked against
3(BJ), B2GPPLYP-D3(BJ),
J), 'and DSD-PBEPBE-D3(BJ).
data points clearly surpasses that of
B97M(2) completes our family of
ung 3, and wB97X-V and wB97TM-V
serve as a powerful predictive tool for

—

36-

accurate and efficient electronic structure calculations ‘gf maiﬂjroup chemistry.

I. INTRODUCTION

Kohn-Sham density functional theory (DFT) is n

theory!' 3, because relatively simple and comp

on
ally efficient functionals, while approximate are&(’tc} ~

rate enough to be useful for simulating cherieal struc-
ture, properties, and reactivity in systems ranN
erms

a trial func-
HotWwever, function-
to the five rungs
“Jaceb’s Ladder” according

components used for their
ification has proven to be use-
1al at each rung typically

als can nonetheless be
of Perdew’s metaphori

dispersietiuforées, dainped atom-pairwise corrections®

or non-local density-density correlation functionals” are
d to functionals at each rung.

fun als on the highest rung (Rung 5) are
he\‘@)u.kle hybrids” because they include a depen-
occupied orbitals (which is sufficient to char-
acterize ‘exact or wavefunction exchange) as well as a
dependence on virtual orbitals (to describe wavefunc-
tion correlation). Within generalized Kohn-Sham the-

a)Electronic mail: mhg@cchem.berkeley.edu

t
= ion

days the predominant form of electronic structua\beiky

o
ory, sueh functionals are potentially exact®. In practice,
inclusion of some fraction of second-order perturba-
eory (PT2) can be justified based on Gorling-
perturbation theory®. The simplest form that a
double hybrid can take is given in Equation 1.

EDH = CIE;wGCt—i-CI’DFTEEFT+CCE5T2+CC,DFTECDFT
(1)

The fraction of exact exchange is determined by the
coefficient, c¢,, while the fraction of the PT2 energy
is controlled by the coefficient, c.. It is straightfor-
ward to satisfy the uniform electron gas constraints,
namely, ¢, + ¢z, prr = 1 and ¢, + ¢ ppr = 1. The
first modern double hybrid functional that used Kohn-
Sham orbitals to compute the PT2 contribution was
developed by Grimme in 2006 and termed B2PLYP10.
This functional is perhaps the most widely used double
hybrid today, especially when combined with dispersion
corrections!! such as DFT-D3(0)'2 and DFT-D3(BJ)*3.
B2PLYP is defined with ¢, = 0.53, ¢y prr = 047,
ce = 0.27, and ¢, prr = 0.73, where the DFT exchange
functional is B88 and the DFT correlation functional is
LYP. Another early approach was taken by Angyan and
coworkers with the RSH+MP2 method!'4.

Since 2006, around 75 double hybrids have been pro-
posed — most of them containing a few empirical pa-
rameters, but a few containing theoretically justified pa-
rameters. Some of the more widely used empirical dou-
ble hybrid functionals are B2PLYP!?, B2GPPLYP'?,
wBITX-2(TQZ)'%, XYG3° DSD-BLYP-D3!'7, PTPSS-
D3(0)!%, PWPB95-D3!8, XYGJ-0S*°, DSD-PBEPS6-
D3(BJ)?°, and DSD-PBEPBE-D3(BJ)?°. Some non-
empirical functionals include PBEO-DH?!', PBE0-222,
1DH-BLYP??, LS1DH-PBE?*, and PBE-QIDH?®. It
is beyond the scope of this paper to review these
functionals'®, but a few key points should be noted.
First, based on statistics gathered from more than 50
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Ai@g clouble hybrid density functionals, the average inferactions>®°°. The overall strafegy is outlined in
enta

ge of exact exchange is 64%, while the aver-

Pub hghigrgentage of PT2 correlation is 32%. It is evident

L

that non-local PT2 correlation in double hybrids enables
a significantly higher fraction of exact exchange than
is found in standard Rung 4 hybrids (typically around
20%). B2PLYP and its descendants remain very widely
used?®, and involve optimizing orbitals based on ne-
glecting the PT2 component of the functional (orbital-
optimized double hybrids?” use the entire functional,
at significantly greater cost). However, a very success-
ful double hybrid, the XYG3 functional® introduced a
modified approach (called xDH), which involves using
fixed orbitals from a successful lower rung functional
(B3LYP in the case of XYG3), and performing a single
shot correction for non-local correlation using these or-
bitals, as well as a repartitioning of the semi-local DFT
energy. A number of other double hybrids have subse-
quently followed this approach?®.

A vast amount of literature is dedicated to the de-
termination of effective density functional forms, and,
broadly, this can be done in one of two ways: non-
empirically (via constraint satisfaction) or empirically
(via fitting). It is also possible to combine aspects of

historically been carried out via a least-squares proce-
dure. A handful of linear functional forms are i=

b

mized on a training set and the optimal form ,(base
on a goodness-of-fit or related measure) is selec H\fﬁr
publication. Recently, we introduced an a 0™
ms \in
as

proa
screen up to billions of potential functional, fer
order to select the most transferable fit?° 3.

number of functional forms are trained“en ining
set and ranked based on their performancesen a “vali-
dation set (a test of transferabili Finally, ‘& small
fraction of the best performers afe furt tested on a
test set in order to determinefthésbest candidate for

publication. Initially, this
generalized gradient apprgd i6n (G

) functionals
on Rung 2, but no signifignt advantage was gained over
the best existing function 1%.& e class (e.g., B97-
D). However, a very £ffective Rumg 4 hybrid GGA was
achieved, termed X-NV?°. By contrast, because of
the huge dimensiénality ‘ef the space of Rung 3 meta-
GGAs, a considésablg/improvement in predictive power

was achieve x;% thi appfoach to define the B97M-V
functional®§ and subséquently the Rung 4 meta-GGA

treatin long—rasge exchange exactly, where semi-local
to be poorest. wB9TM-V may be the
ung 4 functional proposed to date.

m t‘ag?

Th jeaﬁve of this work is to adapt the combinato-
rial training procedure to develop a Rung 5 functional
which combines the richness of the meta-GGA space
with non-local PT2 correlation and range-separated ex-
act exchange. Additionally, the “-V” component of
the functionals mentioned above, namely the VV10
dispersion functional”, will be included as it proved
essential to achieving high accuracy for non-covalent

both. The training of density functional parameters hawx

the remainder of this section. To ensure a good start-
ing point, the orbitals from a self-consistent wB97TM-V
calculation will be used to evaluate the double hybrid
XC energy:

E,.=E,+E, (2)

The exchange component, Eq. 3, contains a semi-
local meta-GGA contribution, a fraction, c,, of short-
range (sr) exact exchar?g, and full (100%) long-range
(Ir) exact exchange.

B, = BT Y e EUY + EER (3)

The correlatio
and opposite- % semi=local meta-GGA contribu-
s

1, ¢yvio, of non-local VV10
dispersion, andiaffraesion, cprs, of non-local PT2 en-

ergy.

GGA GGA VV10 PT2
EC = Ec +bm +CVV10EC,7LZ +CPT2EC,TLZ (4)

5 c,08

De‘nitions for the terms in the equations above can be
und- Sgaion V of Ref. 31.
e mhain results of this paper are the chosen func-
rm, selected for optimal transferability using an
tation of the combinatorial approach briefly men-
ioned above, the resulting parameters, and an assess-
t of the final functional against existing hybrids and
double hybrids. The rest of the paper is organized as
llows. The approach to combinatorial training and
testing is reviewed in Section II in order to place it
in the context of other machine learning and statisti-
cal approaches. The computational details regarding
the database as well as calculation settings are given in
Section III, while a thorough account of the design pro-
cedure followed to obtain wB97M(2) is given in Section
IV. This is followed by a brief comparison to other exist-
ing density functionals in Section V and a summary of
the now-complete family of combinatorially optimized
density functionals in Section VI.

Il.  COMBINATORIAL SELECTION: SURVIVAL OF
THE MOST TRANSFERABLE

The combinatorial approach used previously®' com-
bines statistical tools known as best subset selection
(BSS), also known as least-squares optimization with
L0-norm regularization, and forward stepwise selection
(FSS) to explore the vast space of potential functionals.
A very large number of candidate functional forms are
trained using a training set and ranked based on their
performance on a validation set (a test of transferabil-
ity). Finally, a small fraction of the best performers are
further tested on a test set in order to determine the
best final candidate.

The idea of best subset selection3® is fundamentally
very simple. Given a set of n features (or coefficients),
all 2" — 1 combinations are trained in order to deter-
mine the optimal choice based on predetermined crite-
ria. For example, given a total of n = 3 linear features



This manuscript was accepted by J. Chem. Phys. Click here to see the version of record.

Aipl, T2, acg}), all 2° — T = 7 combinations would
fit ({71}, {22}, {23}, {71, 22}, {21,235}, {72, 23},

Pub Hmh:rng }). If the number of features is not excessively

large, it is possible to comprehensively explore the en-
tire space of parameters without approximations. For
example, in 1997, Becke introduced the semi-empirical
B97 functional®”, which contains three separate power
series (Equation 5) enhancing the corresponding UEG
energy density for exchange, same-spin correlation, and
opposite-spin correlation:

u) = chuj. (5)

2 . 0 .
In Equation 5, the variable, u ~ 11‘:52, is a finite do-
!

main transformation of the dimensionless spin-density
gradient, s ~ Lz/psl
parameter.

Assuming the same value of N across all three com-
ponents, applying BSS to the optimization of the B97
density functional involves n = 3(N + 1) features and
23(N+1) _ 1 total combinations. For a typical value of
N = 4, this equates to 32,767 least squares fits, which
is indeed manageable3? (and was carried out during the
optimization of the wBI7TX-V functional??).

For sufficiently large N, however, performing all 27—
least squares fits becomes intractable. The meta-G

where v is an empirical nonlinear

hancement factor for a meta-GGA density fu
two-dimensional, as given in Equation

ZZ ‘W\ (6)

In Equation 6, the variablegw = 1Y
main transformation of thé c (,/nsiOI oss ratio of the
UEG kinetic energy densi xdct kinetic energy

flw,u) =

density, t = 72 , where TL 67r2)2/3 o5/3.
The number of féatures increases to n = 3(N’
(N + 1), 23N HDINHD) 1 possibili-

ties. Therefore,
the development of B97M-
of N = 8 and N = 4 were
ore than 10%° candidate fits.
or even 10?? least-squares fits

erated, and the most mﬂuentlal feature based
termined criteria is identified. This feature
is then frozen and ("Il) two-parameter fits (one fixed
variable and one free variable) are performed, and so
on. A third option, which was used to develop B97TM-V
and wB9TM-V (and the present functional), involves a
combination of BSS and FSS. BSS is applied up to the
largest manageable number of parameters, p, and then
the FSS procedure takes over in order to sample fits

with more parameters. For example, given n = 50 fea-
tures and the ability to perform a maximum of a billion
fits, one can begin with (%) = 50 one-parameter fits

and continue through (580) = 536,878,650 8-parameter
fits. At this point, since (590) is larger than a billion, the
FSS procedure takes over and (508_1) = 450,978,066 9-
parameter fits are performed with the most significant
feature from the previous optimization fixed. Another
way to represent the t number of fits given a cer-
tain number of features is , which makes it
easier to see that there Nl -parameter fits, (g)
2-parameter fits, (" 3-parameter fits, and so on.
are both set to 4, for a total
of 75 features com the semi-local DFT compo-
nents (exchangejsamesgpin correlation, and opposite-
spin correla nﬁdditi ally, exact exchange, VV10,
tribiite a single parameter, for a total
constraints are permanently ap-

§ exchange energy, Eq. 3, the uniform
is satisfied via:

In this work,

Cy + Cz,00 = 1 (7)

Sdeqnd , In the correlation energy, Eq. 4, we constrain
\Q{g:‘o&t contribution of the two types of non-local cor-
re

NG

ion to be unity:
cpr2 +cvvio =1 (8)

inally, two features, ¢, and cprs, are invariably in-
" luded in all of the fits (their values are not frozen).
This is to uphold the definition of a double hybrid,
which is a functional that depends on both occupied
and virtual orbitals.

With these constraints in place, the total number of
fits with a fixed number of parameters, p + 2, is (76;2).
The current implementation that carries out this pro-
cedure is capable of performing (on average) 1000 fits
per second per core on a 64-core node, assuming all 64-
cores are utilized. Recursion relations are used to break
down the full set of requested fits into a number that
is manageable per core (=~ 108 — 10?). Given the total
number of available features ( 747) the largest optimiza-
tion attempted in this work is (10) = 718,406,958, 841,
with recursion relations applied to break the task into
no more than 10° fits per core. This results in 1786 sep-
arate processes that perform between 10% and 10° fits
each, and take at most a week of elapsed time to com-
plete. Therefore, performing on the order of a trillion
fits is manageable in the span of a week given full use
of a cluster with around 2000 cores.

In this work, a combination of BSS, FSS, and the
RANSAC outlier detection method®® is used in order
determine an optimal choice of features for a double
hybrid functional, as well as their values, given the lim-
itation of a relatively small number ( 10® —10%) of high-
quality data points that can be used for training, val-
idation, and testing. This limitation arises due to the
fact that the computation of reference values (typically
CCSD(T)/CBS or better) is very costly, and chemi-
cal space is intractably vast. Therefore, any database
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Aipr such purposes will certainly not Iully char-
rize (and may even misrepresent) the diversity of

Pubughlng space. In past work, it became evident that

shen-working in the space of meta-GGA functionals,
the least -squares residuals from the initial guess are un-
reliable predictors for the performance of the final, self-
consistently optimized functional, and therefore it was
necessary to update the feature matrix with a guess that
more closely resembled the final functional form. Nat-
urally, this is an inconvenience that would ideally be
avoided. The xDH approach we will follow (using fixed
wB97M-V orbitals) does not have this issue, since the
orbitals are pre-defined and thus fixed throughout the
optimization of the parameters. The parameter opti-
mization procedure simply determines the partitioning
of the SCF and PT2 energies. As a result of this sim-
plification, it is also possible to utilize other supervised
machine learning tools such as Lasso (L1-norm regu-
larization) and Ridge Regression (L2-norm regulariza-
tion). The former approach attempts to return a sparse
vector from the original feature matrix while the latter
penalizes large parameter values and thus results in a
model with many well-behaved coefficients. Finally, the
RANSAC outlier detection method mentioned above is
applied to identify outliers in the training data. Suc

data points may include those that are multi- reference
in nature, or those with very large magnitudes (i.e. ab

solute atomic energies).

I1Il. COMPUTATIONAL DETAILS

The database used in this work contain Msets
(Table T) and 4986 data points, and is named the Main-
Group Chemistry DataBase ( These

84

datasets have been compiled fro 1?1%‘markmg ac-
tivities of numerous groups, ingludin 1e, Herbert,
Hobza, Karton, Martin, Shefri lar. The ref—
erence data are typically£stimated be at least 10
times more accurate th ¢ verywbest available den-
sity functionals, so that 'on meaningful conclu-
sions can be drawn. Of‘t} 84 datasets, 82 are catego-
s:"NCED, NCEC, NCD, IE, ID,
he datasets that are excluded
ategorization are AE18 (absolute
atomic energies)an }J(rare—gas dimer potential en-
ergy curves)y The fisgt three datatypes (NCED, NCEC,
ain T& non-covalent interactions (NC),

es (IE and ID) pertain to isomer-
S\(I), the next two datatypes (TCE and
0 thermochemistry (TC), and the last
dataty p\talns to barrier heights (BH). Since the
atatypes will be heavily referenced in this work,

iy the types of interactions that belong to each
category, as well as the origin of the abbreviations. The
datatype abbreviations begin with letters correspond-
ing to one of the four main categories: NC, I, TC, or
BH. Appending one of the four main categories with
the letter 'E’ indicates that the interactions within are
considered to be “easy” cases (not very sensitive to self-

from the dataty

inferaction error or strong correlation), while the let-
ter 'D’ indicates that the interactions are considered to
be “difficult”. Finally, for the non-covalent interactions
only, the presence of a fourth letter, either "D’ or 'C’, in-
dicates the presence of dimers or clusters, respectively.
Regarding the datatypes, NCED contains 18 datasets
and 1744 data points, NCEC contains 12 datasets and
243 data points, NCD contains 5 datasets and 91 data
points, IE contains 12 datasets and 755 data points,
ID contains 5 datasets apd 155 data points, TCE con-

tains 51 datasets and 947 data points, TCD contains
7 datasets and 258 a%i)m , while BH contains 8

datasets and 206 dafa points. Overall, the training set
poiats, the validation set contains
test set contains 1152 data

basis set'? is used without
ctions throughout. A (99,590) grid
ith 590 grid points per shell) is
used thr hout xcept for AE18 and RG10, where a
(500,974) gr used. The SG-1 grid!°7 is used to cal-
culage the-eontribution from the VV10 non-local cor-
ation fuﬁtional7 throughout, except for AE18 and
Where a (75,302) grid was used. All of the cal-
5 were performed with a development version
-Chem 4 software package!®®. For the MP2
lculatlons the frozen core approximation is utilized,
g with the appropriate auxiliary basis set for def2—
QZVPPD

“« An in-house Python implementation of BSS and FSS

is used, while RANSAC is used as implemented in sci-
kit learn!®. For all RANSAC applications in this work,
a minimum sample size of 75% is utilized, the outlier
threshold is 10 kcal/mol, and the maximum number of
random trials is set to 10,000.

IV. DESIGN OF wB97M(2) AND INTERNAL
ASSESSMENT

As mentioned previously, the orbitals from an
wB97M-V calculation serve as the foundation upon
which the wB97M(2) functional is built. In order to
begin the optimization procedure, a series of decisions
regarding the functional form must be made. For the
range-separation parameter, w, a value of 0.3 is used
(as in the wB97X-V and wB97M-V functionals). For
the VV10 damping parameter, b, an analysis''? of past
double hybrids with VV10 indicated that on average
the parameter is valued at 10. Therefore, b = 10 is used
without further optimization (since b is a nonlinear pa-
rameter). Similarly, the parameter that controls the Cg
coefficients in VV10, C, is set to 0.01 as in wB97X-V
and wB97M-V. The wB97M-V orbitals are used to com-
pute the PT2 contribution, the semi-local contributions
(or features), and the VVI10 energy. The lattermost
is computed non-self-consistently. There are two nearly
equivalent options for defining the energy of such a func-
tional. The first is as a perturbation to the wB97M-V
energy, while the second is as a combination of VV10,
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Name Set Datatype| # Description AEFE (kcal/mol) Ref.
A24 Train NCED |24 Binding energies of small non-covalent complexes 2.65 40
DS14 Train NCED | 14 Binding energies of complexes containing divalent sulfur 3.70 41
HB15 Train NCED | 15 | Binding energies of hydrogen-bonded dimers featuring ionic groups common in biomolecules 19, 42
HSG Train NCED |21 Binding energies of small ligands interacting with protein receptors 6. 43,44
NBC10 Train NCED |184 PECs for BzBz (5), BzMe (1), MeMe (1), BzH»S (1), and PyPy (2) 1.91 44-47
S22 Train NCED |22 Binding energies of hydrogen-bonded and dispersion-bound non-covalent complexes 9.65 44,48
X40 Train NCED |31 Binding energies of non-covalent interactions involving halogenated molecules 5.26 49
A21x12 Validation| NCED |252 PECs for the 21 equilibrium complexes from A24 1.43 50
BzDC215 Validation| NCED |215|PECs for benzene interacting with two rare-gas atoms and eight first- and second-row hydrides 1.81 51
HW30 Validation| NCED | 30 Binding energies of hydrocarbon-water dimers 2.34 52
NC15 Validation| NCED | 15 Binding energies of very small non-covalent complexes 0.95 53
S66 Validation| NCED | 66 Binding energies of non-covalent interactions found in organic molecules and lecules 6.88 54,55
S66x8 Validation| NCED [528 PECs for the 66 complexes from S66x8 5.57 54
3B-69-DIM Test NCED (207 Binding energies of all relevant pairs of monomers from 3B-69-TRIM 5.87 56
AlkBind12 Test NCED |12 Binding energies of saturated and unsaturated hydrocarbon dimers . 3.14 57
CO2Nitrogenl6 Test NCED | 16 Binding energies of CO2 to molecular models of pyridinic N-do; graphe 3.84 58
HB49 Test NCED |49 Binding energies of small- and medium-sized hydrogen-bonded syste 14.12 59-61
Tonic43 Test NCED |43 Binding energies of anion-neutral, cation-neutral, and anioﬁa‘rion 69.94 62
H206Bind8 Train NCEC | 8 Binding energies of isomers of (H20)s 46.96 63,64
HW6CL Train NCEC | 6 Binding energies of C1™ (H20), (n =146 57.71 63,64
HW6F Train NCEC | 6 Binding energies of F~ (H20),, (n = ¥~ 81.42 63,64
FmH2010 Validation| NCEC | 10 Binding energies of isomers of F~ (H20)10 168.50 63,64
Shields38 Validation| NCEC | 38 Binding energies of (H20), (n =2 = \ 51.54 65
SW49Bind345 Validation| NCEC | 31 Binding energies of isomers of S04~ (H50),, (n'=.3 — 5) 28.83 66
SW49Bind6 Validation| NCEC | 18 Binding energies of isomers of OﬁHzO 6 62.11 66
WATER27 Validation| NCEC | 23 Binding energies of neutral and charged water cluster: 67.48 67,68
3B-69-TRIM Test NCEC [ 69 | Binding energies of trimers, with three different orientagions of 23 inct molecular crystals 14.36 56
CE20 Test NCEC | 20 Binding energies of water, ammonia, and hydrogen fluoride clusters 30.21 69,70
H2020Bind10 Test NCEC | 10 Binding energies of isomers of (H20)z0 (low-energy sfructures) 198.16 64
H2020Bind4 Test NCEC | 4 Binding energies of isomers of (H20)20.(dod, fc,fs; and es) 206.12 67,68,71,72
TA13 Train NCD 13 Binding energies of d‘ers involving radicals 22.00 73
XB18 Train NCD 8 Binding energies of small cn—‘]:%d dimers 5.23 74
Bauza30 Validation| NCD 30 Binding energies of halogen-, chalcogen-, and pni€ogen-bonded dimers 23.65 75,76
CT20 Validation| NCD 20 omplexes 1.07 T
XB51 Validation| NCD [ 20 en-bonded dimers 6.06 74
AlkIsomerl11 Train IE 11 4 — 8 alkanes 1.81 78
Butanediol65 Train IE 65 tane-1,4-diol 2.89 79
ACONF Validation 1E 15 [kane conformers 2.23 68,80
CYCONF Validation 1IE 11 Is: sies of cysteine conformers 2.00 68,81
Pentanel4 Validation IE 14 Isomerization energies of stati points on the n-pentane torsional surface 6.53 82
SW49Rel345 Validation 1E 31 Tsomerization energies of 042~ (H20),, (n =3 —5) 1.47 66
SW49Rel6 Validation 1E 18 Tsomerizagion energies of SO4%~ (H20)s 1.22 66
H2016Rel5 Test 1IE 5 Isomeriz rgies of 0)16 (boat and fused cube structures) 0.40 83
H2020Rel10 Test IE 10 ization ies of (H20)20 (low-energy structures) 2.62 64
H2020Rel4 Test 1IE 4 E ati nn&ies of (H20)20 (dod, fc, fs, and es) 5.68 67,68,71,72
Melatonin52 Test 1E 52 omerization energies of melatonin 5.54 84
YMPJ519 Test, 1E 519 I energies of the proteinogenic amino acids 8.33 85
EIE22 Train D 22 somerization energies of enecarbonyls 4.97 86
Styrened5 Train 1D 45 Isomerization energies of CsHg 68.69 87
DIE60 Validation ID 60 Isomert: ies of reactions involving double-bond migration in conjugated dienes 5.06 88
ISOMERIZATION20 | Validation ID 20 Isomerization energies 44.05 89
C20C24 Test 1D 8 ization energies of the ground state structures of Cap and Cay 36.12 90
AlkAtom19 Train TCE 19 K n = 1 — 8 alkane atomization energies 1829.31 78
BDE99nonMR Train TCE | 83 Bond dissociation energies (SR) 114.98 89
G21EA Train TCE < Adiabatic electron affinities of atoms and small molecules 40.86 68,91
G211P Train TCE 36 Adiabatic ionization potentials of atoms and small molecules 265.35 68,91
TAE140nonMR Train TCE 4 |124 Total atomization energies (SR) 381.05 89
AlkIsod14 Validation| TC, 14 n = 3 — 8 alkane isodesmic reaction energies 10.35 78
BH76RC Validation| T 30, | Reaction energies from HTBH38 and NHTBH38 30.44 68,92,93
EA13 Validation CE 1 Adiabatic electron affinities 42.51 94
HAT707nonMR. | Validation |4 TCE & / Heavy-atom transfer energies (SR) 74.79 89
1P13 Validatio< E 13 \ Adiabatic ionization potentials 256.24 94
NBPRC Validation| T 12 Reactions involving NHs/BH3z and PHs/BHj3 30.52 18,68,95
SN13 Validafi TCE 3 Nucleophilic substitution energies 25.67 89
BSR36 TCE Hydrocarbon bond separation reaction energies 20.06 18,96
HNBrBDE18 CE 18 Homolytic N-Br bond dissociation energies 56.95 97
WCPT6 TCE 6 Tautomerization energies for water-catalyzed proton-transfer reactions 7.53 98
BDE99IMR Validatio: TCD |16 Bond dissociation energies (MR) 54.51 89
HAT707MR Validation ) 202 Heavy-atom transfer energies (MR) 83.41 89
TAE140MR Validation 16 Total atomization energies (MR) 147.20 89
CD 6 Homodesmotic reactions involving platonic hydrocarbon cages, CnH, (n = 4,6,8,10,12,20) 136.71 99
TCD 6 Isodesmic reactions involving platonic hydrocarbon cages, CnH, (n = 4,6,8,10,12,20) 96.19 99
TCD 6 Isogyric reactions involving platonic hydrocarbon cages, C,H, (n = 4,6,8,10,12,20) 356.33 99
TCD 6 Total atomization energies of platonic hydrocarbon cages, ChH, (n =4,6,8,10,12,20) 2539.27 99
BH 26 Barrier heights of pericyclic reactions 23.15 68,100
BH 20 Barrier heights for cycloreversion of heterocyclic rings 46.40 101
BH 24 Diverse barrier heights 28.34 15,102
Validation BH 20 Cycloreversion reaction energies 22.31 103
Validation BH 38 Hydrogen transfer barrier heights 16.05 93
Validation BH 38 Non-hydrogen transfer barrier heights 33.48 92
. Test. BH 13 Barrier heights for proton exchange in water, ammonia, and hydrogen fluoride clusters 28.83 69,70
WP'I‘W Test BH 27 Barrier heights of water-catalyzed proton-transfer reactions 38.73 98
w Train - 18 Absolute atomic energies of hydrogen through argon 148,739.00 104
RG10 Validation 569 PECs for the 10 rare-gas dimers involving helium through krypton 1.21 105

TABLE I."Summary of the 84 datasets that comprise MGCDB84.%> The datatypes are explained in Section III. The sixth
column contains the root-mean-squares of the dataset reaction energies. PEC stands for potential energy curve, SR stands for
single-reference, MR stands for multi-reference, Bz stands for benzene, Me stands for methane, and Py stands for pyridine.
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Ai"an 't exchange, and a reparameterization of the
i-local space. The former option provides slightly

Pu blqagrﬁ(n(gj lity, because wB97M-V may contain variables

L

that arc not optimal for the double hybrid functional.
For example, wB97M-V contains the coeflicient, c; 10,
with a value of 0.259. Any perturbation to the wB97M-
V energy would necessarily contain that feature either
with the original coefficient of 0.259 or an updated value
if the combinatorial approach selects c; 19 as an optimiz-
able parameter. Unless the value of ¢, 19 is constrained
to be -0.259, the final energy will directly involve a con-
tribution from ¢, 10. Since starting from a complete
repartitioning of the semi-local space avoids this issue,
the latter option is chosen for this work.

The weighting scheme used for wB97M(2) is similar
to that used for wB97M-V. Initially, each data point is
given a weight that corresponds to the inverse of the
product of the number of data points in the associated
dataset and the root-mean-square of the reaction en-
ergies in the associated dataset. These values can be
found in the fourth and sixth columns of Table I, respec-
tively. Within each of the datatypes, the weights are
normalized by dividing by the smallest weight, and then
exponentiated such that they lie between 1 and 2. For

est transferabilify. Either 10- or II-parameter choices
represent minimally parameterized functionals that are
promising candidates. However, the weighted validation
error continues to decline even with 16 and 17 param-
eter fits, and despite the additional parameters, there
is some argument that the best such functionals offer
significantly improved overall results. However, caution
is needed because the greater the number of parame-
ters, the more likely it is that the best functional on
the validation set will not’ perform comparably well on
the independent test sett Tm addition, it is possible that
outlier data in the trai 'HNS biased the parame-

ters.

, these best fits are then refit
t Usin RANSAC outlier detection

SACumethod takes each set of vari-
s«tle fitting procedure a number of
identify outliers based on the criteria
specifiediin Sectig; I. For a given set of features, once

To explore thesg iss

on the training se ot

the RANSAC procedure is complete, a new set of coef-
ficignts is the It, along with a list of the data points
thabgete deemed outliers. The new coefficients are a re-
t of simply fitting to the training set with the original
i , h these outliers removed. Because the out-

wel
the determination of the weights only, AE18 is include icr detaction is performed using the fits that performed
in the TCE datatype. Finally, the eight datatypes get a “\_bestwofl the validation set, the weighted validation set

multiplicative weight based on intuition: 0.1 for T Dy\r(?r can no longer be meaningfully used to assess the

1 for TCE, 10 for NCD, ID, and BH, and 100 for NCE
and NCEC, and 1000 for IE. As RG10 does not g
to a datatype, the bound (attractive) data points r d(ﬁ
a weight of 10,000, while the unbound (reptlsiye) data
points receive a weight of 1. These weights aN

define the weighted RMSDs for the trairi Wi ,

and test sets.

A series of BSS optimizations are performed“within
the aforementioned space of 74 ayailable features, up to
10 features. The training setAs d for)the fits and
transferability assessment isgperformedion the valida-
tion set. Since the exact exth and PT2 coefficients
are mandatory, this resugtin 3- throfigh 12-parameter
unbiased fits. Within ea /}N?h(ig. all 1,799,579,064
(774) fits), the top 1050 ts sed on the weighted

aved. At (13)7 it is necessary
s, and the freezing is done
ivéness he parameter in reducing
the validati singe transferability is the most
important aspect of: these fits. In order, the follow-
ing features age frozgn to arrive at up to 17-parameter
05,205 Ccos,015 Cx,20- At this pOint7
10,000 (based on weighted validation
17-parameter fits.

validation error)
to start freezin,
based on the e

ocedure produces the data shown in Figure 1,
e%ighted validation error is plotted for the
0 9- through 17-parameter fits. These results
represent the double hybrid analog of the way in which
our rung 3 (B97M-V) and rung 4 (wB97M-V) function-
als were developed. One should focus on the curve de-
fined by the best functional (lowest weighted validation
error) with each number of distinct parameters. This
is a basis for selecting a functional that exhibits great-

modified fits. Instead, the resulting fits are ranked us-
ing the (completely independent) weighted test set er-

“«. ror. The fit with the best test set performance is what

we finally select as the wB97M(2) density functional.

For the 90,000 fits pictured in Figure 1, RANSAC is
individually applied to redetermine the values of the co-
efficients with the outliers removed. This procedure pro-
duces the data shown in Figure 2, where the weighted
test error is plotted. Since the test set is indeed an inde-
pendent assessment, there is a minimum in the weighted
test error at 14 parameters, and this fit corresponds to
the wB97M(2) density functional. The RANSAC pro-
cedure removes 11 data points from the training set
(of 870), and these specific data points are: the abso-
lute atomic energies of nitrogen, oxygen, fluorine, neon,
sodium, magnesium, and aluminum, the ionization po-
tential of beryllium, two isomers from the Styrene45
dataset (isomers 38 and 40), and the binding energy
of HF-CO™. Inspecting Figure 1 shows that while our
chosen form is optimal, its margin of superiority against
other contenders is small. There are roughly half a
dozen other contenders whose overall performance is
within 2% of our choice, and hundreds within 10%, so
the optimal choice is certainly dependent upon the com-
position of the test set as well as the chosen optimization
procedure. Our view is that wB97M(2) is one represen-
tative of the best candidates, balanced across the dif-
ferent datatypes by the weights and constraints that we
have imposed.

The wB97M(2) functional contains approximately
62% short-range exact exchange and 34% PT2 corre-
lation. Relative to the parent wB97M-V functional, the
fraction of short-range exact exchange is about 4 times
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Ccsls,oo U.04340 [Ccos,00 | U.40102 Cx 0.02194
Cess, 10 -1.17724 Ccos,20 2.30490 CvVvVi10 0.65904
Coss.20 |-3.67267 | Ceos01|-1.94794 | cpra |0.34096
Ceos,02 | 3.24910
Ccos,22 —2.26280

| Co,41 | U-(UT67

TABLE II. The optimized parameters that define the
wB97M(2) density functional. The first two columns cor-
respond to semi-local meta-GGA exchange, the next two
columns correspond to semi-local meta-GGA same-spin cor-
relation, the next two columns correspond to semi-local
meta-GGA opposite-spin correlation, and the final two
columns correspond to the short-range exact exchange con-
tribution, the VV10 nonlocal correlation contribution, and
the PT2 contribution.

higher, which will reduce self-interaction error. All of
the optimized parameters are given in Table II. The pa-
rameters are numerically very well-behaved, all of them
smaller than 5 in magnitude. The inhomogeneity cor-
rection factors (ICF) are also very well-behaved. For
exchange, the ICFs are bound by 0.37 and 1.73, clearly
obeying the Lieb-Oxford bound of 2.273. For same-spin
correlation, the ICF is bound by -4.31 and 0.65, while
for opposite-spin correlation, the ICF is bound by 0.16

smoothly varying. Since both zeroth order contribu-

and 2.77. Therefore, the resulting functional is ver)\;El

parameterization, it is interesting to see their gralues.
The value of ccss,00 is 0.548 while the value of ccsg 004
0.462, which are each much less than 1 (thegalue

meta-GGA that obeys the uniform electron'g

reduces the need for semi-local DFT cor
The first tests of wB97M(2) are against o
alternatives, as summarized in Fi This testing
ectiveness of
lumpn, wB9I7M(2)
w/ RANSAC, corresponds en functional
form. The first interesting co arise?n is to compare
this to the same fit excexé thou use of RANSAC.
This is shown in the ad aNumn. For the most
part, the two model pe‘rﬁm comparably; however, for
el with RANSAC performs

removal of a handful of ab-

ded energy differences. As a re-
tatype does not contain the AE18
Xomic energies. Furthermore, the
ier heights is also improved. Per-

minder, the{TCE d
dataset of abselute

}(yrd and fourth columns of Figure 3 (GGA and
em\p‘loy standard linear regression correspond-
specified expansion of the power series. These
two double hybrid models are fit to both the training
and validation sets. The GGA model contains more fit-
ted parameters than wB97M(2), yet no dependence on
the kinetic energy density. As expected, this model is
almost always worse than wB97M(2), particularly for
the independent test set. The meta-GGA model shown

is a functional Thaf is expanded up to quadratic order in
both the density gradient and the kinetic energy den-
sity. This results in a functional with twice as many
parameters as wB97M(2). Since it is trained on the
training and validation sets, it performs better for these
two datasets, but its weighted test error is more than
30% larger than that of wB97M(2), indicating signifi-
cantly poorer transferability. Across the full dataset, it
is also significantly worse for the IE, TCE, and TCD
datatypes.

Finally, it is int eswpare the Lasso and

iné learning models. These mod-

¢ hyperparameter, «, is minimized
shnd then the model is trained
and validation set using the op-
rpara?eter. The Lasso result is particularly
interesting begause the number of resulting non-zero pa-
rar@e;rsni fortuitously 14, which is the same number

pa e‘:.as as in the final model. Therefore, com-
wBI?M(2) with the Lasso result is relevant. For
e datatypes, wB97M(2) performs better, par-

for IE, TCE, and TCD. Comparing Lasso and
egression is also interesting, since the latter re-

idge

é\wi-ns all 76 parameters in the feature matrix. For this

specific application, Ridge Regression performs slightly
etter than Lasso, but its thermochemistry performance
is still subpar relative to wB97M(2). Overall, both ma-
chine learning models perform more than 20% worse on
the independent test set relative to wB97M(2), although
they do outperform the meta-GGA model on the test
set. It is evident that our design approach has yielded
better results than are possible from either fitting with
an assumed form (e.g. the GGA or meta-GGA model)
or using standard machine learning methods.

It is worth mentioning that a variety of different ap-
proaches were considered during the development of
wB97M(2) — approaches that were ultimately aban-
doned in favor of the final functional form. One such
endeavor was the exploration of attenuated MP2!!! in-
stead of canonical MP2. However, the results indicated
that little to no attenuation performed better than any
attenuated form, despite the known limitations of MP2
for long-range correlation, and the presence of VV10.
Furthermore, we also attempted to train a regularized
form of MP2, with a level shift in the denominator,
which would make the method more robust in the limit
of small HOMO-LUMO gaps. We also tried relaxing the
constraint that cppo+cyy10=1, but this produced fits
that tested 5-10% worse than their constrained coun-
terparts. Finally, it is noteworthy that at the beginning
of this project, we had intended to develop a non-xDH
functional, but realized early on that this approach was
not amenable to the combinatorial design methodology
because the resulting fits were highly sensitive to the
choice of initial orbitals.
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FIG. 1. Weighted validation error (in kcal/mol) plotted 'nﬁgnum er of fitted parameters for the top 10,000 fits for each
number of parameters considered (up to 17). All training data ded in the fitting process, and the resulting parameters

are subsequently applied to the validation set, as degeribed insdetail in the text. Improvement in the validation performance
of the best functional is not monotonic with the nu N}Ix{a eters. However, improvements are still occurring up to 17

parameters.
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FIG. 2. Weighted test error (in kcal/mol) plotted against the number of fitted parameters, where the parameters are obtained
after application of the RANSAC procedure to the training set, as described in the text. The independent test set results
show a minimum at the best 14 parameter functional, which is selected to define the wB97M(2) double hybrid functional.



' wB97M(2) WBI7M(Z)  GGA MGGA Lasso (a=1e-6) Ridge (a=5e-3)
w/ RANSAC w/o RANSAC N=4 N'=N=2 N'=N=4 N'=N=4
f param. 14 14 16 28 14 76
I‘§ b]nrgl 3.53 3.22 3.04 3.65 3.36
212 2.07 199 220 2.08
W. lest 4.34 4.64 55 5.57 5.30
NCED 0.16 0.16 0.16 0.17 0.16
NCEC 0.40 0.39 0.39 0.44 0.46
NCD 0.59 0.63 0.60 0.65 0.68
IE 0.13 0.15 0.20 0.18 0.17
D 1.56 1.58 153 144 1.55
TCE 1.62 191 220 181 2.09
TCD 351 3.65 3.98 3.89 3.96
BH 0.92 1.07 0.86 1.01 1.00

FIG. 3. Performance of the 14-parameter RANSAC-derived
fit for wB97TM(2) (first column) against the same fit with-
out RANSAC (second column), non-combinatorial GGA and
meta-GGA double hybrids fitted to both training and vali-
dation sets (third and fourth columns), and results from the
Lasso and Ridge Regression machine learning procedures
(see text for details). The first row gives the number of
parameters in each functional. Subsequent rows show the
weighted RMS errors for the training, validation and test
sets (kcal/mol), and RMS errors (kcal/mol) for each of the
datatypes across the entire database (see Section III for the
meaning of the acronyms).

V. EXTERNAL ASSESSMENT AGAINST EXISTING
HYBRIDS AND DOUBLE HYBRIDS

The next stage of assessment is to compare the, erfor—
mance of the wB97M(2) density functional againg
isting double hybrids, as well as hybrid densi

Instead of showing vast tables th
all 84 datasets, we summarize t
figures. The first figure (Fig

The second figure (Figure
lection of specific datase{5 m thegotal of 84 that com-
prise the database. \

The errors containéd in 1gure are geometric means
of the RMSDs f individual dataset belonging
i will be referred to as GM-
he value for NCED is the geo-

18 NCED dataset RMSDs. We
use this measure in%fa of an RMSD across all 1744
ints (

data mnto two simple

izes the re-

NCED ata r example) so that datasets that
have afi overwhelming number of data points do not

much fluence on the statistics. The last two
extracted from 81 potential energy curves

m the BzDC215, S66x8, and NBC10 datasets.
fains mterpolated equlhbrlum bond lengths for
these 8IRPECs while EBE contains interpolated equi-
librium binding energies for these 81 PECs. As with
the other columns, these values are geometric means
across the appropriate RMSDs for the three included
datasets. Finally, the “Overall” column is an attempt
at devising a single metric to portray the performance
of a functional. Essentially, it is a geometric mean of

em. Phys. Click here to see the version of record .L

00100 ] Tk Ing- p. | Year Ref.

B3LYP-D3(BJ) 20 0 0 CH | GGA |D3(BJ)|1993/2011| 13,112

M06-2X-D3(0) 5 0 0 GH |meta-GGA| D3(0) | 2006 | 113

wBITX-V 16.7-100 (0.3) 0 0 RSH| GGA |vvio| 2014 |29

wBYTM-V 15-100 (0.3) 0 0 RSH [meta-GGA| VV10 | 2016 [ 31
B2PLYP-D3(BJ) 53 27 27 | GDH| GGA |D3(BJ)|2006/2011) 10,13
B2GPPLYP-D3(BJ) 65 36 36 |GDH| GGA [D3(BJ)[2008/2011| 13,15

wBITX-2(TQZ)  [63.62-100 (0.3)| 52.93 | 4471 |RSDH| GGA | Nome | 2009 |16

¢ 80.33 3211 | 3211 |GDH| GGA | Nome | 2009 |9

50 375 375 | GH |meta-GGA| D3(0) | 2011 |18

77.31 0 43.64 |GDH| GGA | Nome | 2011 |19

69 22 52 |GDH| GGA [D3By)| 2013 |20

DSD-PBEPBE- m(m) 68 13 55 |GDH| ccA  [D3BI)| 2013 |20
wBITM(2) 62-100 (0.3) 34 34 |RSDH|meta-GCQA| VVIO | 2018 | PW.

TABLE III. Details for the 11 density functionals chosen for
comparison to wB97M(2). The second column indicates the
percentage of exact exchziihé: a single value indicates that
the hybridization is glob. ile a range (e.g., 15-100) in-
dicates that the hybridization is“sange-separated, with the
first value being th :;?Atage of short-range exact ex-
change, and the secon ue being the percentage of long-

range exact exchan lue in parentheses is w). The
third and four

uble hybrid, and RSDH stands for range-
brid). The sixth column indicates the
ined in the functional. The seventh column
h‘ztype of dispersion correction, with D3(0) and
refer ng to Grimme’s D3 method using the origi-
function and the Becke-Johnson damping func-

ion, re ectlvely7 and VV10 referring to the Vydrov and van
\ ‘hisfnon-local correlation functional.

four geometric means, where each of the four geomet-

ic means corresponds to a type of chemical interac-
tion. The first type is non-covalent interactions, and
includes the NCED, NCEC, NCD, EBL, and EBE val-
ues from Figure 4, the second type is isomerization en-
ergies and includes the IE and ID values from Figure
4, the third type is thermochemistry and includes the
TCE and TCD values from Figure 4, and finally the
last type is barrier heights and is simply the BH value.
For the datatypes NCED through BH, as well as EBE,
the units are in kcal/mol. EBL is in Angstrom, and the
“Overall” metric uses mixed units.

Considering the data in Figure 4, it is evident that
there are many interesting aspects to consider in the
comparison of wB97M(2) against the existing function-
als. The most apples-to-apples comparison is between
wBI97M(2) (Rung 5) and wB97M-V (Rung 4) because
we have developed them both using very similar ap-
proaches, and the former is a correction to the latter.
It is therefore significant that wB97M(2) matches or
reduces the errors of wB97TM-V across every category
that we have examined, with the overall reduction being
more than 28%. While the double hybrid is computa-
tionally more costly, this is a very significant narrowing
of the error distribution, particularly as wB97M-V is
the best existing Rung 4 functional based on our recent
assessment®. Based on this statistical assessment, there
is no downside to using wB97M(2) relative to wBITM-V.

The largest improvements in wB97M(2) relative to
wB97TM-V are for thermochemistry (both TCE and
TCD), barrier heights (BH), difficult non-covalent inter-
actions (NCD), and isomerization energies (ID). These
are ascribable to improvements in the correlation func-
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AI P [ Functional NCEC
| MP2 058 0.61
Publishing” g3 yp pa(ey) 2.06 0.023 0.32
MO06-2X-D3(0) 138 | 0.30 2.00 2.34 9.44 2.06|0.084 0.35
B2PLYP-D3(BJ) 123 | 0.18 083 057 0.26 2.98 2.14 7.03 3.17|0.024 0.23
XYGJ-0S 1.08 | 040 1.29 0.38 0.34 1.10 2.07 571 1.74|0.066 0.56
PTPSS-D3(0) 1.08 | 021 100 045 013 2.32 1.93 820 2.23|0.076 0.25
XYG3 1.05 | 0.37 0.87 035 0.31 2.19 2.06 0.49
B2GPPLYP-D3(BJ)) | 1.05 | 019 0.98 051 0.23 2.60 1.93 0.23
wB97X-2(TQ2) 097 | 034 140 051/012 1.46 0.50
wB97X-V 097 | 017 050 0.61 0.15 1.55
DSD-PBEP86-D3(BJ)) | 0.96 | 0.30 1.37 0.54 0.15 1.60 0.043 0.54
DSD-PBEPBE-D3(BJ) 0.81 037 0.20 1. 0.040 0.56
wBI7M-V
wB9I7M(2)

FIG. 4. Performance of 8 double hybrid density functionals, 4 hybridfdensity nals, as well as MP2 for the datatypes in
the MGCDB84 database. The errors are geometric means of the RMSDs (indkcal /mol) for each individual dataset belonging

to a given datatype.
] -
4 S

NCED NCEC NCD D TCE TCD BH
Functional S66x8_HB49| Shields38 _3B-69-TRIM [ TA13 iol6 p styreneas [ AllkAtom19 TAE140nonMR | HAT707MR] BHPERI26 DBH24
MP2 ] [~ 5.28
B3LYP-D3(B)) 139 4.25 402 155 539
M06-2x-D3(0) | 031 7.72 2.98 6.25 179 108
B2PLYP-D3(BJ)) | 018 031| 157 . ! 5.89 249 6.62 193 239
XYGJ-0S 071 030| 180 L . 3.44 418 251 | 1.04
PTPSS-D3(0) 020 021 142 ! 3.42 &_ 2.44
XYG3 059 029]| 093 1.00 029 329 4.02 2.75 085 107
B2GPPLYP-D3(B)) | 021 028] 157 0.46 0.23 3.98 6.40 262 9.86 168 097
wB97X-2(TQz) [ 030 035|279 o076 0.23 1.88 355 10.80 242 144
WBY7X-V 021 029| 070 030 3.95 1.69 2.95 482 275 175
DSD-PBEP86-D3(BJ) 0.24 233 11.03 263 116
DSD-PBEPBE-D3(BJ) 031 1.50 2.75 2.94 10.94 232 148
wB97M-V 223 4.18 144 146

wB9I7M(2)

of datasets from the MG 84 databaSe. The errors are standard RMSDs (in kcal/mol) across the data points in the
corresponding dataset.

tional, as well agfto reductions in self-interaction er- correlation functional for dispersion interactions.
or the difficult categories). The im-

elative to wB97M-V is wor-
its difficult designation is due

An alternate view of the relative success of xDH func-
tionals is offered by Grimme in Ref. 18. In this work,
it is concluded that the improved performance of xDH
double hybrids is not due to “better orbitals” but rather
the small fraction of exact exchange in the initial or-
bitals, which yields a smaller occupied—virtual orbital
gap and thus results in a larger amount of “effective”
PT2 correlation.

Comparisons of wB97M(2) against other double hy-

brids are also very interesting. This is not strictly
e PTPSS-D3(0) and wBI7X-2(TQZ) perform an apples-to-apples comparison because wB97M(2) was
trained on part of this data, but since only 14 parame-
ters are involved, and the dataset contains almost 5000
data points, we expect this influence to be minor. How-
ever, to provide full transparency, we provide a similar
figure of GM-RMSDs (Figure 6) that involves only the

hybrids
poorly. Finally we observe that there is virtually no im-
provement in wB97M(2) relative to wBI7TM-V for easy
non-covalent interaction energies and isomerization en-
ergies, perhaps consistent with the fact that PT2 cor-
relation offers no advantage over the VV10 non-local
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Flinctional NCED NCEC NCD 1IE ID TCE
MI2 0.58 0.51 0.32
IS'ﬁiﬁY -13(BJ) 0.23 0.38 2.87 6.95
MO06-7-D3(0) 0.32 0.53 3.08 1.88 9.44 2.54
B2PLYP-D3(BJ) 0.18 0.91 0.56 0.25 3.59 1.74 7.03 3.31
XYGJ-0S 0.36 1.49 0.29 0.34 1.53 1.63 5.71 1.62
PTPSS-D3(0) 0.24 1.01 0.49 0.13 3.37 1.82 8.20 242
XYG3 0.33 1.07 1 0.33 0.31 2.77 1.80 4.82 1.45
B2GPPLYP-D3(BJ) | 0.19 1.07 0.51 0.22 3.23 142 7.73 2.11
wB97X-2(TQZ) 0.33 1.48 0.47 0.13 2.10 1.33 8.29 1.87
wB97X-V 0.15 0.62 0.38 0.14 2.06 2.15 5.56 2.42
DSD-PBEP86-D3(BJ) | 0.28 1.46 0.53 0.20 2.39 1.28 5.84 1.98
DSD-PBEPBE-D3(BJ) | 0.26 1.02 0.42 0.21 2.41 1.53 4.40 1.64
wB97M-V 0.14 0.54 0.33 0.12 2.06 1.31 4.15 1.55
wB9I7M(2) 0.14 0.38 0.31 0.12 1.36 0.84 2.71 0.83

FIG. 6. Performance of 8 double hybrid density functionals,
4 hybrid density functionals, as well as MP2 for the valida-
tion and test components of the MGCDB84 database. The
errors are geometric means (in kcal/mol) of the RMSDs for
each individual dataset belonging to a given datatype.

datasets in the validation and test sets. Relative to
other double hybrids, wB97M(2) is the best performer
by a wide margin. The second and third best double
hybrids are DSD-PBEPBE-D3(BJ) (92% larger over*

all GM-RMSD) and wB97X-2(TQZ) (98% larger overall 5is
GM-RMSD), followed closely by three other functi - requ

als that have roughly 114% larger overall GM-RMSD.

is a correction to the already very accurate
hybrid meta-GGA, which itself outperfor
tested double hybrids. A zero correction
be superior. Second is the fact that this is the'fir:
ble hybrid functional that is semi irically designed
using full semi-local meta-GGA functionality — our own
tests in Figure 3 (e.g., column’3 vs“eplumn 4) already
show the clear advantage rélativef to i-local GGA
functionality. Third is ]tth/ factaghat ylnbinatorial de-
sign (including the RA refintendent) has not pre-
viously been applied e doubledaybrid functionals (one
measure of improve enﬁ} comparing columns 1 and 4
of Figure 3). Finally, thefuse of VV10 and PT2 corre-

ave its strong points, namely the
ies, where the inclusion of 100% ex-
nge is édvantageous. It is also noteworthy that

ationis are performed without counterpoise
corrections, so it is likely that CP-corrected MP2
form slightly better for the NCED and NCEC

likely that use of better non-local wavefunction corre-
lation corrections could lead to potentially significant
further improvements in future double hybrid function-
als.

Turning to Figure 5, there is also much that can be
said, but we shall limit ourselves to a few comments.

Overall, by examining the individual datasets, both sup-
port for, and illustrative deviations from the overall con-
clusions reported in Figure 4 can be seen. Two datasets
where wB97M(2) is most impressive are the Shields38
dataset from the NCEC category and the AlkAtom19
dataset from the TCE category (second best functional
has more than 300% larger error in both cases). At the
other extreme, for example, in the (self-interaction sen-
sitive) TA13 dataset from the NCD category, the best
overall result belongs to XYG3, and all tested double
hybrids outperform w -V! The major purpose of
presenting these resu 'Md the reader that the
overall statistics th. vi'e%ave mainly focused on repre-
sent the typical gases;«biit individual results will vary,
as reflected in the outconteg for sample datasets.

‘7\
VI. ENDATIONS AND SUMMARY

RE
The wBY\(2) double hybrid (Rung 5) density func-
tional presente

in this work completes our family of
ombi to;%lly optimized functionals, complementing
BYM-Vgon Rung 3, and wB97X-V and wB9TM-V
:}%g 4. Regarding proper use of the functional,
97M(2) should be used with the def2-QZVPPD ba-
without counterpoise corrections, and its grid
uirements are as follows: the (75,302)/SG-0 grid is
recommended as a viable coarse option (particularly for
uick calculations), the (99,590)/SG-1 grid is recom-
mended as the fine option if results near the integration
grid limit are required, while for most applications, the
medium-sized (75,590)/SG-1 grid can serve as a com-
promise between these two limits.

The data presented here establishes that wB97M(2)
is perhaps the most accurate density functional yet de-
fined for main-group chemistry, and that wB97M(2) is
significantly more accurate than the wB97M-V func-
tional which it corrects. While still not a viable solu-
tion for problems with genuinely strong correlations, or
as accurate as high-level wavefunction-based quantum
chemistry'* such as complete basis set limit CCSD(T),
wB97M(2) is a very promising tool for a wide spectrum
of chemical applications. One way of seeing the im-
provements that have been obtained is via the best re-
sults yet reported at each rung of Jacob’s Ladder of
density functionals across the MGCDB84 database, as
shown in Figure 7. There are statistically significant
reductions in RMSD upon ascending each additional
rung of the ladder, with wB97M(2) sitting at the highest
level yet achieved for DFT, to our knowledge. However,
these statistical improvements come with a high compu-
tational price, in the form of the need to evaluate exact
exchange at Rung 4, and non-local PT2 correlation at
Rung 5. The latter changes the formal computational
scaling of the calculation to fifth order in molecular size
from no worse than cubic at Rung 4.

Due to the increased computational cost of a dou-
ble hybrid, it is interesting to compare timings between
BI97M-V, wB97M-V, and wB97M(2) in order to deter-
mine the extent to which the addition of exact exchange
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TABLE IV. Timings (in seconds) for B97M-V, wB97M-V,
and the PT2 component of wB97M(2) for three systems:
(1) hexane from AlkAtom19, (2) adenine-thymine (Watson-
Crick geometry) from S22, and the dodecahedron water
20mer from H2020Bind4. The number of atomic orbital
basis functions (def2-QZVPPD) is given in the second col-
umn, while the number of auxiliary basis functions used for
the resolution-of-the-identity (RI) expansions is given in the
third column. The calculations are performed in Q-Chem 5.0
with four threads, and the SCF timings are averaged across
two iterations and multiplied by 10 in order to represent a
full SCF calculation consisting of 10 iterations.

and PT2 affect the efficacy of calculations. For this
purpose, we selected three model systems: (1) hexane
from AlkAtom19, (2) adenine-thymine (Watson-Crick
geometry) from S22, and the dodecahedron water 20mer
from H2020Bind4. The calculations are performed in
Q-Chem 5.0 with four threads. The def2-QZVPPD AO
basis set and the accompanying RI-MP2 basis set is uti-
lized, and the SCF timings are averaged across two iter:
ations and multiplied by 10 in order to represent a full
SCF calculation consisting of 10 iterations.

The timings displayed in Table IV are encowtaging,
since they demonstrate that at least up to 3 -
sis functions, the PT2 component is not a Jottle
For the water 20mer, even a semi-local fun
B97M-V is more expensive to evaluategthan tge
component, with the former requiring 32
SCF iteration (9 hours for 10 iterations),
requiring less than 2 hours to com,

hours. Therefore, if one can
tional such as wB97TM-V, i

tational chemistry problems.
mple, a suitably accurate
97M(2) might be applied

anism via single point calcula-
s are very small in number rela-
or even thousands of calculations

very interesting to assess whether there are useful im-
provements with wB97M(2) relative to other hybrids
and double hybrids in the future. Finally, the very en-
couraging results reported here provide strong incentive
for the future development of more efficient methods to
evaluate double hybrid DFT energies as well as analytic

VIl. ACKNOWLEDGEMENTS

This research was supported by the Director, Of-
fice of Science, Office of Basic Energy Sciences, of
the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231, with additional support from
Q-Chem Incorporated %ough NIH SBIR Grant No.
2R44GM096678. N.M. ¢ha

wmes MecClain for help-
Q\
Q

C )

ful discussions.

\\;

\




13

AIP :Functl NCED NCEC NCD ID TCE TCD
. TwBarm(2)| s
Publishing wBorMy | 2
wBI7X-V | 4 0.61 0.15 1.55
BO7M-rv | 3 1.10 0.24 4.24
B97-D3(BJ)| 2 1.25 0.62 5.04
spwo2 | 1

; on the MGCDB84 database

ng 1;9B97-D3(BJ) represents the
generalized gradient approximation (GGA) on Rung 2, B97M-rV represents the m a—g%ri}ralize radient approximation
(meta-GGA) on Rung 3, wB97X-V and wB97M-V represent GGA and meta-GGA hyhyrids, respectively, on Rung 4, and

wB97M(2) represents the double hybrids on Rung 5. The datatypes are described inSection ITI and the statistical measure

is described in Section V.
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