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Abstract 

Compound Activity Mapping: Integrating Chemical and Biological Profiling 

for the Functional Annotation of Natural Product Libraries 

By Kenji Kurita 

 Natural products research has had a significant impact on human-health and 

our understanding of the natural world as a pillar of pharmacognosy, organic 

chemistry, ecology, and chemical biology. But while this science has yielded 

countless discoveries such as penicillin, taxol, and artimesinin and will continue to 

improve quality of life around the world, the idea that natural products is a panacea of 

chemical diversity has been challenged by problems including the endless rediscovery 

of known compounds, the immense time required to isolate and elucidate structures, 

and the need for large amounts of scarce compounds to exceed the ever raising bar of 

biological annotation for drug approval. This thesis will provide examples of the use 

of integrated biological and chemical annotation of natural product libraries for the 

comprehensive functional annotation of natural product libraries, a new platform to 

expedite the dereplication and structural assignment of natural products libraries, and 

a study using genome annotation tools to look at the diversity of secondary metabolite 

biosynthetic gene clusters across a large set of cultured bacterial clades. Each chapter 

will discuss how using these modern techniques enabled the discovery of the 

quinocinnolinomycins (3.1-3.4), the elucidation of the aryl-polyenes (APEEC and 

APEVF), and the deeper understanding of the biological effects and constitution of 

natural products libraries through the dereplication of phencomycin. The net result of 
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all these technologies is that they change natural products research from an intensely 

focused effort to discover the most potent compounds for a particular disease, to a 

hypothesis and data driven exploration of the subtle interactions of secondary 

metabolites within biological settings. 
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1. CONNECTING PHENOTYPE AND CHEMOTYPE: HIGH-CONTENT 

DISCOVERY STRATEGIES FOR NATURAL PRODUCTS RESEARCH 

1.1. Introduction 

 Natural products have historically played a major role in the discovery and 

development of a diverse array of therapeutics including antibiotics, anticancer 

agents, antifungal drugs and analgesics. The modern era of natural products discovery 

has been driven in large part by continued innovation in both bioassay screening 

systems and analytical methods for the discovery of secondary metabolites with 

unique structures and biological properties. These efforts have led to an impressive 

diversity of new drugs, and the discovery of countless bioactive small molecules with 

value as chemical probes and sources of inspiration for medicinal chemistry 

campaigns. However, despite significant developments in these areas, natural 

products discovery is still challenged by a number of issues that have hampered the 

field for over 50 years.  

 In 1981, Drs. Matthew Suffness and John Douros from the U.S. National 

Cancer Institute published an opinion piece in Trends in Pharmacological Sciences,1 

in which they presented some of the problems and solutions associated with the then 

“new” field of anticancer drug discovery from natural sources, and discussed their 

outlook for the future. Reading their paper, it is remarkable how many of the 

challenges they identified remain substantial barriers to efficient discovery of 

bioactive natural products today. In this review of strategies for high-content 
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biological and chemical characterization in natural product discovery, we will begin 

by revisiting some of the issues raised by Drs. Suffness and Douros in 1981, and 

briefly discuss our interpretations of these issues for the field as we see them in 2015. 

 

 “…most active materials are undetectable, and those that are tend to be discovered 

repeatedly.” 

 

 The issue of re-isolation was a problem then, and remains a significant 

challenge today. Despite dramatic advances in analytical hardware (high-field 

cryoprobe NMR and benchtop accurate mass LC-MS systems) it is a rare student that 

has not isolated a known compound at some time during their Ph.D. studies. Owing to 

of the large number of compounds now isolated from natural sources, rediscovery is 

becoming the norm rather than the exception in many instances. A number of 

metabolomics approaches have been developed to circumvent this issue, as will be 

discussed in more detail below, but new methods are still required to integrate these 

approaches with biological data in order to identify compounds with the highest value 

as novel bioactive lead compounds.  

 

“…cytotoxicity tests are sensitive to any cell killing substance and give many false 

leads.” 
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 Traditional colorimetric live/dead assays say nothing about target, with the 

result that active extracts from these assays must be selected based on raw potency, 

rather than mechanistic behavior. Given that even some new compounds will likely 

hit targets for which there are already drugs on the market, it is important that modern 

natural products discovery programs take advantage of multi-parametric profiling 

tools for screening where possible, and use these methods for the targeted discovery 

of compounds with novel biological functions. A number of unbiased biological 

profiling platforms are discussed below, including examples of their use for the 

discovery or characterization of natural products with unique biological properties. 

 

“The design and development of in vitro screens which are specific for detection of 

key mechanisms of drug action is a challenging task.” 

 

 This issue has largely been resolved, thanks to the development of a vast array 

of target- and pathway-based high-throughput screening platforms. However, because 

many of these assay platforms are relatively complex or time-consuming to run, it is 

still true that mechanistic assays are hard to implement broadly. There is therefore 

still a need for the creation of new unbiased screening tools that characterize 

bioactive extracts in terms of broad mode of action (MOA) classifications, as a 

complement to the two extremes of live/dead cytotoxicity, and target-based screening 

methods. 
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“The isolation and purification of active compounds present in minute quantities in a 

crude extract is a time consuming and difficult task…” 

 

 Just as was true in 1981, natural products discovery remains difficult! Despite 

the advances in hardware mentioned above and the development of numerous 

derivatization, labeling, and analytical methods for compound identification, detailed 

and unequivocal determination of the constitution and configuration of complex 

natural products is a time-consuming task that typically requires a significant 

investment of resources and material. The development of integrated tools that 

consider both biological MOA predictions and chemical constitution of natural 

products extracts is beginning to provide solutions to this issue by ensuring that 

compounds selected for full structural characterization are of the highest priority in 

terms of both structural and/or biological novelty. The third section of this review will 

discuss this integrated approach, including both the advantages and current 

limitations of these strategies. 

 If the 20th century was the age of structure-driven natural products discovery, 

then the 21st century promises to be the age of function-driven natural products 

research. There remains a high degree of value in “old” natural products for which the 

biological attributes remain poorly characterized, but deriving accurate functional 

information for natural products libraries on a global scale remains a major challenge. 

This review will cover methods for untargeted chemical and biological 

characterization, and will present a perspective on future directions for the integration 
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of these analytical platforms for the de novo prediction of natural product structures 

and MOAs from complex screening libraries. 

1.2. Chemical Characterization Strategies 

1.2.1. Preamble. 

 Chemical characterization of natural products has progressed dramatically 

from early studies, which relied heavily on degradation, derivatization and the 

synthesis of structural subunits to solve chemical structures2 to the modern scenario 

where even the largest and most complex structures can be determined using 

microscale analytical techniques.3,4 Although many of these methods have seen 

incredible development since the creation of the earliest instruments5-7 this review 

will focus on the broad characterization of natural product libraries, rather than the 

development of techniques to aid in the structure determination for individual 

compounds. For recent reviews of the development of MS technologies and the use of 

NMR-based metabolomics in natural products, see Carter,8 Jarmusch and Cooks,7  

and Robinette et al.9 

 Thin-layer chromatography (TLC) emerged as the first method for 

parallelized characterization of natural product extracts, and is still widely used as a 

rapid, low-resolution method for profiling chemical constitution of natural product 

extracts; however, high-performance liquid chromatography (HPLC) and hyphenated 

techniques have all but completely replaced TLC for most natural products discovery 

applications, because of their increased resolution and greater information content 
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(Figure 1-1).10-12 The use of HPLC retention time in combination with ultraviolet and 

visible absorbance spectra allows the profiling and comparison of extracts within any 

screening library and has been used widely by industry and academia. In an early 

example Miller et al. used stream splitting and automated fraction collection in a 

compound-by-compound bioactivity and dereplication process for the discovery of 

clavulanic acid,13,14 paving the way for adoption of this approach by many other 

research groups. The primary disadvantages of these techniques are that HPLC 

protocols are time-consuming, analysis and dereplication are performed on a 

compound-by-compound basis, and saving fractions is not practical for large 

libraries.10 

 The rapid improvement in resolution and throughput introduced by ultra-

performance liquid chromatography (UPLC), bench-top HRMS, and advances in 

NMR experimentation and technologies like 1.7 mm cryogenic NMR probes have 

recently changed the chemical characterization landscape of natural products libraries 

from a compound-by-compound dereplication process to a situation where analysis 

can reveal an unbiased global view of all metabolites in a given library, as will be 

described below. 

1.2.2. Mass Spectrometric Profiling Methods.  

 Owing to its sensitivity and relatively high throughput, MS-based techniques 

have come to the forefront of rapid chemical characterization. Studies have 

demonstrated the coverage and accuracy of such techniques for representative fungal 

compound libraries (Figure 1-1).15 The use of multivariate statistical methods such as 
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principal component analysis has also been used to discover unique compounds from 

MS-based untargeted analysis of libraries of Myxococcus xanthus strains and 

Ascidian-associated Actinomycetales.16,17 Similarly, traditional metabolomics 

platforms including versions of XCMS have been used to discover novel compounds 

from organisms as well studied as Streptomyces coelicolor.18 In this last study 

structural characterization was assisted by the use of tandem MS, which allowed 

structural information to be incorporated into MS-based dereplication and discovery. 

More recently, MS2 fragmentation pattern matching has been used to develop 

Molecular Networking as a dereplication strategy for identifying known compounds 

and ascribing structural classes to unknown metabolites.19,20 The use of MS 

fragmentation patterns for compound identification is a standard tool in traditional 

metabolomics analysis (e.g., electron impact fragmentation in most GC-MS systems). 

However, the use of relative mass differences in fragmentation spectra to connect 

compounds from a given structural family, coupled with network analysis to visualize 

the relatedness of analytes in a given sample set, provide new opportunities for the 

rapid characterization and visualization of the metabolic capacity of sets of samples 

regardless of source origin or the availability of pure compound standards for every 

analyte. Finally, Müller and co-workers have developed a new approach to the 

acquisition of MS2 data for complex natural product samples, which generates a 

“scheduled precursor list” of features present in extracts of microbial cultures but not 

the corresponding medium blanks, and uses this list to direct subsequent MS2 data 

acquisition.21 Advances such as this improve the coverage of relevant molecules over 
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traditional MS2 selection methods that rely on signal intensity for fragmentation 

selection, and are indicative of the new approaches to data acquisition being 

developed. These techniques are moving the field towards the comprehensive 

untargeted metabolomics profiling of complex natural products mixtures. 

1.2.3. Nuclear Magnetic Resonance Profiling Methods.  

 While less common than MS-based techniques, developments in NMR 

experimentation and instrumentation have led to a significant rise in the use of NMR-

based metabolomics for the profiling of crude extracts in recent years. The discovery 

of iotrochotrazine by 1H NMR comparisons of extracts enriched for compounds 

obeying Lipinski’s “rule of five” exemplifies the utility of this strategy.22 Similar to 

MS approaches, standardized acquisition and databases can be used to identify 

chemical constituents from crude mixtures.23 The primary advantages of NMR-based 

chemical profiling over MS-based strategies are that (1) the analysis is quantitative, 

unlike MS-based approaches where poor ionization or ion suppression by other 

metabolites can preclude the observation of all constituents in an extract, and that (2) 

structural information is more readily derived from the data, particularly if 1H spectra 

are augmented with TOCSY or phase-sensitive HSQC experiments (Figure 1-1). The 

structural information inherent in two-dimensional (2D) experiments has been used 

extensively for the characterization of chemical components of insect and spider 

venom, fireflies, and ladybugs.24-27 Integration of NMR spectroscopy with biological 

data has been used to identify pheromones in Caenorphabditis elegans through 

differential analysis by 2D NMR spectroscopy (DANS).28 Similar to MS-based 
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metabolomics strategies, this study was able to identify specific signals corresponding 

to the ascarosides that have synergistic effects with other pheromones and were 

therefore unidentifiable by activity-guided fractionation. This elegant approach lays 

the foundation for integrating biological and chemical profiling for the discovery of 

molecules correlated with a specific phenotype in a given biological assay. 

 

 

Figure 1-1: A summary of advantages and limitations of common chemical profiling 
strategies for natural products libraries. 
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1.3. Profiling Strategies for Biological Characterization. 

1.3.1. Preamble.  

 Natural product screening has made significant progress since the early 

development of disk diffusion assays for microbial pathogens and colorimetric 

live/dead screens for mammalian cell lines. Recent developments in screening 

hardware and informatics now offer a wealth of readily accessible tools for the 

detailed biological characterization of compound libraries against almost any target 

system. These advances are providing opportunities for the early mode of action 

(MOA) prediction for bioactive compounds, which in turn is driving a “function-first” 

selection process for lead discovery and development (Figure 2).29 

Although there are many examples of innovative screening systems for specific 

molecular targets and processes, we will restrict our focus in this review to unbiased 

assay systems that offer tools for the broad classification of bioactive compounds 

independent of specific MOAs, because of the inherent value that these tools offer the 

natural products chemist in terms of early global characterization of complex natural 

product libraries. Within this general area, the majority of development has been 

focused on four main target systems: mammalian cancer cell lines, yeast, bacteria and 

early vertebrate models. Each of these will be discussed in turn, highlighting recent 

advances and the advantages and limitations of each system for natural products 

research. 
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1.3.2. Mammalian Cell Screening. 

 Multiparametric screening in mammalian cells was first pioneered as a 

systematic strategy for the evaluation of compound mode of action by the 

development of the NCI 60-cell-line screen from 1985-1990.30 This platform is the 

original “high-content” screening platform for natural products research, and has been 

used successfully to determine the MOAs of numerous natural products. For example, 

extracts containing salicylihalamides, potent vacuolar ATP-ase inhibitors, were first 

identified based on their particular NCI 60-cell-line profile.31 This platform is still in 

regular use and is very information rich, but is logistically impractical for widespread 

library screening, given the quantities of material required to screen against the entire 

60-cell-line panel, and the inherently low throughput of such a system. 

 In recent years, cytological profiling, broadly defined as multiparametric 

evaluation of cellular response to compound treatment, has gained increasing 

attention as a complement to target-based and colorimetric live/dead screening 

assays. Cytological profiling is most commonly performed on mammalian cell lines, 

and can incorporate a variety of analytical techniques, including microarrays, MS-

based metabolomics, gene signatures, and high-content automated microscopy.32-36 

Several of these approaches have been employed for the investigation of natural 

product libraries, as outlined below. 

1.3.2.1. Image-Based Screening. 

 Image-based screening was first widely adopted in industry because early 

systems were expensive, and required substantial informatics support to analyze the 
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resulting image files. More recently, the hardware cost has dropped and the analytical 

software has improved, making this a routine tool in academic screening centers. 

Image-based screening has been used to develop a number of unbiased whole cell 

phenotypic screening platforms.32,37 In our own laboratory we have developed a 

modified version of the platform initially reported by Altschuler and co-workers32 in 

order to create a tool suitable for the examination of complex natural product 

libraries.38 This tool characterizes cell morphology using a set of structural and cell 

cycle fluorescent stains to extract hundreds of size and shape metrics for cells under 

drug pressure at sub-lethal concentrations. Subsequent informatics analysis compares 

these size and shape metrics to those for untreated control cells, and uses the 

differences in these values to create a numerical fingerprint that provides a graphical 

representation of the phenotypic differences between treated and control cells.  

We have demonstrated that this tool can be used to classify the MOA of active 

constituents from complex natural product mixtures. Subsequent image-guided peak 

library fractionation can be used to pinpoint active compounds, and directly verify the 

cytological profiling signatures of these individual constituents, making the platform 

a powerful one for the discovery of natural products with unique phenotypic profiles 

(Figure 1-2). 

 A complementary approach that uses a combination of fluorescence and 

brightfield imaging for the characterization of cellular phenotypes was recently 

reported by Osada and co-workers.39 This platform, termed MorphoBase, uses 

imaging data for two cell lines (HeLa and srcts-NRK) to characterize the phenotypic 
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effect of compounds on cell development, and compares these phenotypic profiles to 

those of over 200 reference compounds of known mode of action to make direct 

predictions about the pathways or processes being disrupted by test 

compounds/extracts. MorphoBase has been used in conjunction with a proteomic 

profiling platform termed ChemProteoBase40 for the de novo prediction of the mode 

of action of a new fungal metabolite, pyrrolizilactone.41 In this work, both 

MorphoBase and ChemProteoBase identified strong clustering between 

pyrrolizilactone and test compounds known to inhibit proteasome function. 

Subsequent in vitro evaluation of 20S proteasome function confirmed this prediction, 

with the strongest inhibition of trypsin-like activity, providing an elegant 

demonstration of the use of unbiased profiling platforms for the direct prediction of 

bioactive natural products of unknown MOA. 

 Overall, image-based screens offer a large amount of biological annotation for 

natural product screening libraries in a format and timeframe that is appropriate for 

medium-throughput primary screens that number in the thousands of wells. We 

expect that the continuing improvements in screening hardware and software tools 

(e.g., the ability to perform high-throughput live cell imaging) will further lower the 

barrier to entry for these screening platforms, and that image-based profiling is likely 

to become a mainstay of future natural product discovery programs. 

  



 

 14 

 

Figure 1-2: (Above) Images of control cells, test cells treated with purified natural products, and their 
corresponding cytological profiles. (Below) Example of the use of cytological profiling-driven peak 

library screening and bioactive compound discovery for piericidin A, an inhibitor of the mitochondrial 
electron transport chain. 

 

1.3.2.2. Gene Expression Profiling Platforms 

In addition to image-based approaches, a number of powerful gene profiling methods 

have been developed that are of relevance to the natural products community. The 
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“Connectivity Map”, developed by researchers at the Broad Institute, was the first 

MOA profiling tool to compare the gene expression profiles of test compounds to a 

set of known bioactive molecules.42 This platform is finding widespread use in the 

biomedical community beyond the prediction of compound MOAs, and has already 

been cited over 1000 times since its publication in 2006. In the natural products area, 

this system has been used to profile compounds from a range of sources, including a 

recent study that used Connectivity Map profiles to compare the bioactivity of intact 

Gila monster venom to the drug Byetta®, which is a synthetic derivative of a lead 

compound derived from this venom mixture currently in clinical use to treat 

diabetes.43 

 Another gene profiling method recently applied to the characterization of 

natural product modes of action is the Functional Signal Ontology (FUSION) system 

developed by researchers at the University of Texas Southwestern Medical Center.44 

This powerful platform uses the gene expression signatures of six key genes in 

HCT116 cells, as well as two genes with low variance as internal controls, to map the 

effect of treatment with either miRNAs, siRNAs, or natural product extracts. The 

team was able to demonstrate that these selected genes displayed non-colinearity of 

response under different treatment conditions, but that treatments of siRNAs or 

miRNAs from related pathways gave related FUSION signatures, and that FUSION 

signature matching can be used to accurately characterize the pathways targeted by 

specific bioactive natural products. More recently, this platform has been used to 

identify DDR2 as the molecular target of a new family of alkaloid natural products, 
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discoipyrroles A – D, demonstrating the power of this untargeted approach for 

molecular target determination for natural products.45 

1.3.3. Yeast Profiling. 

 The baker’s yeast, Saccharomyces cerevisiae, is a popular model system for 

studying mammalian cell biology thanks to the conservation of many of the genes 

implicated in human disease.46 Saccharomyces cerevisiae has therefore become a 

powerful model organism for studying the mode of action of bioactive small 

molecules.47 This has been aided by the creation of an ordered 5100-member gene 

deletion mutant library for all non-essential genes,48-50 that permits the systematic 

evaluation of the effect of test compounds on gene deletion mutants for the prediction 

of compound MOAs. Coupled with the systematic evaluation of synthetic interactions 

between 5.4 million gene-gene pairs that has created a comprehensive gene 

interaction network map for S. cerevisiae,50-52 this platform now represents a mature 

and powerful strategy for exploring chemical genetic properties of small molecules, 

including natural products. 

 Synthetic lethality screening uses the hypersensitivity of single gene deletion 

mutants to treatment with test compounds to indirectly report on compound molecular 

targets. If a single gene is non-essential, but treatment of that deletion strain with a 

bioactive small molecule causes lethality, then the small molecule must disrupt a 

compensatory pathway that is complementary to the function of the deleted gene 

product. By using the susceptibility of gene deletion mutants to test compounds in 

conjunction with the global genetic interaction network map, it is therefore in theory 
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possible to determine the specific target of any individual compound, provided that 

this target has a homologue in S. cerevisiae, and that the compound is active against 

this yeast protein. 

 There have been several recent examples of the use of this technology for the 

determination of natural product MOAs, including the discovery that the macrocyclic 

lipopeptide papuamide B targets phosphatidylserine in yeast,53 and the determination 

that the marine sponge metabolite girolline targets Elongation Factor 2, and therefore 

exerts its anti-inflammatory activity through inhibition of protein synthesis at the 

elongation step.54 

1.3.4. Antibiotic Profiling. 

 Antimicrobial assays were some of the earliest assays used in natural products 

discovery, including the original serendipitous discovery of penicillin, and are still in 

widespread use around the world for the early characterization of natural product 

extract libraries. Although simple assays such as disk diffusion, cross streak, and 

well-plate liquid culture growth assays against individual pathogens are rapid and 

cheap, the number of published natural products with antibiotic activities now means 

that rates of rediscovery using these methods are extremely high. To overcome this 

limitation, a number of unbiased antibiotic screening platforms have been developed 

that provide multi-parametric characterization of the effects of natural product 

extracts on bacterial cell development. These tools provide direct information about 

compound class and/or MOA for active constituents, and can be used to rapidly triage 
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large natural product libraries so that development effort is focused on those few 

extracts with highest potential for the discovery of new classes of antibiotics. 

1.3.4.1. BioMAP Screening 

 The BioMAP screening platform, developed in our laboratory in 2012, uses a 

panel of Gram-positive and Gram-negative bacterial pathogens to create activity 

profiles across the panel, in analogous fashion to the NCI 60-cell-line screen 

described above.55 By comparing these BioMAP profiles to profiles for a suite of 

commercially available antibiotics, it is possible to identify extracts that contain 

members of known classes of antibiotics, and to prioritize extracts with unique 

BioMAP signatures for further development. We have used this platform to discover 

new classes of antibiotics,55 and to profile large numbers of pure compounds and 

extracts from collaborative partners from academia and industry. This technology is 

readily transferable to any research laboratory with access to basic microbiology 

facilities and a standard plate reader, and has successfully been implemented by other 

research groups, including institutions in developing nations such as Indonesia. 

1.3.4.2. Bacterial Cytological Profiling. 

 Although BioMAP profiling is very efficient at identifying extracts with 

unique antibiotic profiles, it does not provide information about the molecular targets 

or MOAs of these active constituents. To address this issue, a number of research 

groups have turned to image-based screening to explore antibiotic MOA profiles. 

MOA determination using cell imaging is challenging for bacterial targets, because 
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bacterial cells are typically 100  times smaller than mammalian targets such as HeLa 

cells, making it technically difficult to acquire images of high enough resolution for 

cytological profiling in a high-throughput manner. In addition, most automated 

microscopy systems do not have pre-programmed modules to directly score images of 

bacterial cells, complicating the analytical component of this approach. 

Notwithstanding these challenges, two bacterial cytological profiling strategies have 

recently been reported.  

 The first, developed in our laboratory, uses high-throughput imaging of a 

chromosomally GFP-tagged strain of V. cholerae at 40 x magnification and a bespoke 

image analysis software platform to quantify cell size and shape features.56 These size 

and shape features are used to provide a numerical description of the phenotypes of 

individual cells under varying concentrations of either test extracts or training set 

antibiotics of known MOA. The progression of phenotypes is then compared to those 

for the training set antibiotics and these phenotypic “trajectories” used to predict 

compound MOAs. In the initial study 58 antibiotics were profiled to generate the 

training set phenotypic trajectories. Comparing these trajectories to those of a set of 

natural product extracts identified four bioactive compounds with predicted MOAs. 

Of these, three (novobiocin, cosmomycin D, cycloprodigiosin) had predicted MOAs 

that concurred with previous literature, while the fourth (pentachloropseudilin) had its 

MOA predicted for the first time. 

 In a second study, cells were examined at higher magnification, using FM4-64 

to stain cell membranes, DAPI to stain the nucleus, and SYTOX green to stain cells 
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with permeabilized membranes.57 The platform was used to examine the effects on 

cell morphology of 41 antibiotics from 26 separate structural classes, and was able to 

demonstrate a strong clustering of compounds by phenotype that closely paralleled 

the known MOAs for these compounds. In addition, the authors examined a novel 

antibiotic natural product, spirohexenolide A, and proved that it rapidly collapses the 

proton motor force using a combination of bacterial cytological profiling and 

complementary secondary assays. This approach provides more detailed information 

about cell shape and the fate of specific cellular components, but at a lower 

throughput than the previous study. The development of motorized SCLM stages and 

automated 100 x water immersion objectives offer new opportunities for further 

method development in this area, though this has yet to be applied to natural product 

MOA determination. 

1.3.5. Zebrafish Imaging. 

 In vivo imaging represents another substantial advance for natural product 

screening. Just as the early conotoxin screening in whole animals revealed a wealth of 

neurological activities for individual components of these complex mixtures,58 so in 

vivo screening in zebrafish (Danio rerio) is providing a new strategy for the broad 

evaluation of natural products libraries. Advantages of this strategy include: a whole 

animal response; the ability to simultaneously measure both efficacy and off-target 

toxicity; the identification of developmental defects; the measurement of neurological 

and behavioral factors; and the ability to perform live animal time-resolved assays 

that look at temporal effects of compounds on animal health and survival.59 
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 Although zebrafish have now been used for a wide array of targeted assays,60-

62 and as a tool for downstream target identification or validation,63 there are still few 

examples of untargeted phenotypic screening in zebrafish, particularly for natural 

products. 

One innovative system that has recently been developed incorporates both in vivo 

zebrafish screening and micro-scale fractionation for the simultaneous bioassay and 

physical characterization of plant extracts.64,65 This system has been used to identify 

both angiogenesis inhibitors from African plant extracts,66 and anticonvulsant 

compounds from Philippine medicinal plant Solanum torvum.67 

 Zebrafish screening has also been developed in industry, with Novartis 

reporting the results from profiling their in-house collection of 12,000 purified natural 

products.68 This impressive study, likely the largest of its kind, identified 114 

phenotypic hits from this primary screen, including 50 compounds that caused 

developmental arrest without necrosis. This set of compounds contained molecules 

known to disrupt the mitochondrial electron transport chain, leading the authors to 

hypothesize a similar mechanism for other compounds displaying this phenotype. 

Subsequent transcriptional profiling of these compounds revealed that many of them 

did indeed target specific complexes of the mitochondrial electron transport chain, but 

also revealed instances where these two profiling systems did not agree, highlighting 

the importance of careful secondary screening for MOA predictions derived from 

high-throughput multiparametric profiling primary screens.  
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 Certainly, the development of new screening systems in live animal models 

offers the potential for the rapid and detailed profiling of complex libraries, with the 

capacity to examine broader physiological characteristics of extracts and lead 

compounds than is possible using simple cell-based or enzyme assays. It will be 

interesting to see how these tools continue to evolve in the coming years as assay 

platforms develop in terms of liquid handling and image/ phenotype analysis.  

1.3.6. Multiparametric Screens and the Future of Natural Products 

Screening. 

 Overall, multi-parametric screening tools are offering new opportunities to the 

natural products community for the rapid and efficient classification of complex 

natural product libraries. These tools provide new methods for the early prioritization 

of extracts and compounds with unique biological properties, and are a valuable 

complement to traditional live/dead screening systems for the discovery of next-

generation therapeutic lead compounds. With the widespread availability of screening 

centers in academic institutions, development and implementation of these screening 

tools is well within the reach of most natural products research groups. Given the 

obvious benefit that such screening methods offer for natural products discovery, we 

expect that these approaches will enjoy increasing prominence within the natural 

products community in the coming years.  
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1.4. Integrating Chemical Characterization and Biological Profiling Datasets 

1.4.1. Preamble. 

 Bioinformatics tools are becoming essential in natural products research, as 

advances in experimental throughput and the complexity of data obtained from 

genomic, chemical, and biological profiling make manual interpretation difficult or 

impossible. As previously mentioned, many laboratories have now developed 

sophisticated platforms to discover and classify biosynthetic gene clusters, to connect 

biosynthetic gene clusters to their gene products, and to classify complex small 

molecule libraries based on their chemical signatures.20,28,69-71  Recently, the 

integration of proteomics, metabolomics, and genomics has allowed genes, enzymes, 

and their small molecule products to be connected informatically for the discovery of 

bioactive compounds,72 providing examples of how integrated multiparametric 

profiling can be used to solve complex analytical problems, such as the connection of 

genes to molecules. While these techniques are powerful and have significantly 

advanced our understanding of natural products genomics and biosynthesis, there are 

a number of difficulties that preclude the facile integration of multiparametric 

chemical and biological screening information for natural products discovery.  

1.4.2. Challenges with Multiparametric Data Integration. 

 The requirement for the integration of chemical constitution and biological 

screening techniques favors MS based chemical profiling strategies because of their 

throughput, resolution, and sensitivity; however, most developed metabolomics 
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techniques require binary control and experimental groups looking for the correlation 

of genes with a defined outcome. Therefore, these analyses require the library to be 

manually curated. Instead, integrated profiling strategies require the use of untargeted 

metabolomics approaches that report on the presence of all constituents, whether or 

not the structures of all of these components are known. These tools can be developed 

with relative ease to create lists of individual components (defined by retention time 

and HRMS properties) and their distribution throughout the natural products library, 

but, connecting these components to specific structures is a much more challenging 

task which currently hampers the use of this approach for broad scale library 

characterization.  

1.4.2.1. Concentrations, Timescales and the Analysis of Mixtures.  

 Since natural products libraries are extremely complicated mixtures, often 

with large variations in the concentration of different analytes, dynamic range is an 

issue for both screening and metabolomics platforms. This large variation in 

concentrations requires both the chemical profiling strategy and the biological screen 

to be sensitive, but to have the ability to characterize compounds at a range of 

concentrations. Typically, this is done by selecting a concentration for profiling that 

gives useful data for the majority of extracts, and performing a second profiling 

experiment at higher dilution factor for extracts that give either a strongly cidal 

readout in the profiling assay, or a saturated signal in the chemical analysis (typically 

a problem for accurate mass analyses such as ESI-qTOF). Furthermore, it is important 

that the analyses are configured such that the lower limits of detection are similar for 
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the two systems. This is important because without this bioactive compounds can be 

ignored, either because they were observed in the metabolomics system but not 

classified as active, or because the extract was classified as active, but the compound 

concentration was below the detection limit in the chemical analysis.  

1.4.2.2. Technical Requirements for the Integration of High-Content 

Datasets. 

 Some of the major challenges in integrating high-content datasets involve how 

the data are processed and integrated. Generalizable strategies for either chemical or 

biological annotation such as those described above are useful; however, directly 

integrating data from these analytical platforms is often difficult or impossible using 

existing tools. For example, while multivariate statistical methods such as principal 

component analysis are effective for discovering unique compounds from MS-based 

metabolomics libraries, it is difficult to confidently assign biological information to 

the resulting components when these statistical methods are extended to include high-

content screening.  

 It is our opinion that an integration strategy should aim to correlate every 

detectable chemical feature with undefined phenotypes or screening profiles. In this 

way, the data should draw hypotheses about the biological activity of each detectable 

compound in the library for a global view of the chemical and chemical-genetic 

potential in the library. This resource would be invaluable for dereplicating known 

compounds, identifying modes of action, finding new biological activities using 

orthogonal screens, and discovering new compounds. For example, when newly 
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developed biological screens are relatively low throughput, we can avoid re-screening 

samples containing frequent nuisance molecules like hydroxamic acid-containing 

metal chelators, pan-specific kinase inhibitors like staurosporine, or grossly cytotoxic 

anthracyclines by cherry picking the natural products library to avoid extracts 

previously annotated by multiparametric screening systems as containing these 

compound classes. The prediction of the broad MOAs of bioactive molecules can also 

be useful to avoid inclusion of extracts containing compounds with potential negative 

host interactions such as those associated with DNA damage, highlighting just a 

couple of situations where the target-independent characterization of biological and 

chemical properties of natural products libraries can be used to improve the discovery 

workflow for next-generation natural products-based therapeutics. 

1.5. Introduction to CAM and Chemical and Biological Data Integration. 

 We have recently developed a new integrated profiling platform, termed 

Compound Activity Mapping (CAM), which profiles natural products libraries using 

a combination of image-based cytological profiling and untargeted UPLC-TOF 

metabolomics to directly identify and characterize all bioactive constituents of any 

natural products screening library against HeLa cells (Figure 4). This tool is capable 

of generating networks that cluster extracts and their bioactive constituents based on 

biological and chemical similarities, such that each cluster contains a list of related 

compounds predicted to cause a specific phenotypic effect on HeLa cell development, 

and the extracts that contain these bioactive constituents. Using this tool we are 

discovering a wealth of new bioactive constituents from our microbially-derived 
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natural products library, as well as providing phenotypic annotations for a large 

number of known compounds, some of which have not previously been characterized 

in terms of mammalian cell MOA.  

 

Figure 1-3: A cartoon representation of the integration of biological and chemical 
profiling demonstrating how the combined data may be used to find bioactive 

constituents from complex natural product extracts. 

 

 The rest of this thesis will discuss the development and application of CAM to 

the Linington Lab extract libraries as well as touch upon collaborative work in which 

bioinformatic analysis of bacterial genomic data was used for compound discovery. 

First, the hypothesis, preliminary results, and the proof of concept experiments will 

be described (Chapter 2). The true power of CAM will be illustrated by its application 

for the discovery of quinocinnolinomycin from an extract library derived from marine 

sediment samples collected as part of the Panama International Cooperative 

Biodiversity Group (Chapter 3). The discussion of CAM will conclude with 

expansion of CAM to include more of the Linington Lab extract library, its use in 
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collaboration with BioSortia, and the future third generation CAM platform which 

will incorporate MS2 and MSe data (Chapter 4). The final chapter will address genes 

to molecules approaches to natural product discovery and structure the elucidation of 

the aryl-polyenes, efforts by our lab to sequence 50 bacterial genomes, the specific 

sequencing and analysis of the abyssomycin gene cluster. 

1.6. Future Perspective on “Big Data” in Natural Product Discovery 

 A rapid expansion in the resolution and throughput of academic screening 

data is currently taking place as high-throughput screening centers become more 

prevalent in universities and research institutes. Coupled with increasingly affordable 

and reliable MS tools and advances in the use of NMR methods for direct analysis of 

complex mixtures, we are poised to “open the box” on natural product discovery and 

transition from the traditional “grind and find” model, to a scenario in which we 

possess a priori knowledge about the constitution and MOA of all bioactive 

constituents of any screening library in advance of the isolation and detailed 

biological evaluation of individual compounds. Expansion of this approach to include 

whole genome sequence data for producing organisms is an obvious next step for 

improving the accuracy and coverage of molecular identification, and is close to 

becoming a reality as robust and affordable sequencing and genome assembly 

methods come of age. By extending this strategy from single profiling approaches to 

the integration of multiple profiling methods, each of which provides complementary 

but orthogonal information about the constitution and function of secondary 

metabolites from natural products libraries, we can now consider the possibility of 
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developing universal characterization methods that describe the precise constitutions 

and biological activities of all members of any complex natural product library. The 

implications of developing such tools are widespread, with many fields set to benefit. 

Areas of future application of these technologies include chemotaxonomy, chemical 

ecology and interspecies interactions, botanicals research, natural product drug 

discovery, and human microbiome research, to name a few. The era of “Big Data” is 

here for natural products; it is already changing the field, and we are only beginning 

to see the impact that multiparametric biological and chemical evaluation of will have 

on natural products discovery. It is an exciting time to be involved in natural products 

research, and we are fascinated to see what new discoveries this next generation of 

sophisticated tools will bring.  
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2. INTEGRATING SECONDARY METABOLOMICS AND PHENOTYPIC 

SCREENING 

2.1. Introduction: 

Natural products are a valuable source of compounds for drug discovery 

because of their structural complexity, chemical diversity, and selectivity for specific 

biological targets. For these reasons natural products and their derivatives represent 

almost three quarters of FDA approved cancer treatments; however, traditional 

natural products drug discovery suffers from high rates of rediscovery and challenges 

with identification of molecular targets.1,2 In addition, the identification of individual 

bioactive constituents from complex mixtures often requires multiple rounds of 

purification, drastically slowing the discovery process and making natural product 

libraries poorly compatible with modern high-throughput screening programs. 

Despite the difficulties of natural products drug discovery, natural product libraries 

continue to be integrated with modern screening techniques because of natural 

products’ inherent wealth of chemical diversity. If natural product libraries are to 

remain an integral part of modern drug discovery there is therefore a pressing need to 

develop new methods for the prioritization of leads from high-throughput screens. 

Big data “Omics” systems have revolutionized data acquisition and analysis in 

almost all fields of the physical sciences and have provided a foundation to answer 

broader questions about biological and ecological systems. While earlier studies 

typically focused on evaluating small numbers of genes, proteins, or metabolites, 

recent approaches are becoming more complex. The field of natural products is no 
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exception. Recent studies have covered a range of approaches including the use of 

meta-omic characterization of marine microbial communities to identify biosynthetic 

gene clusters responsible for the production of the clinical anticancer drug ET-743,3 

the use of an informatic search algorithm “iSNAP” for Non-ribosomal Peptide 

(NRPS) de-replication,4 and the creation of platforms like AntiSMASH5 and 

NaPDoS6 for the rapid identification, annotation, and phylogenetic analysis of 

biosynthetic gene clusters from genomic and meta-genomic sequence data. However, 

to date, these systems have not integrated biological and chemical datasets into a 

single platform. 

Recently we developed a high-content image-based phenomics screen for the 

discovery of bioactive natural products from complex mixtures.7 Using this system 

we clustered marine microbially derived prefractions based on mechanistic class, and 

demonstrated that the phenotypic profiles of purified individual constituents are 

consistent with the phenotypes induced by the crude prefractions. This “function-

first” approach to natural products discovery helps eliminate the high rates of 

rediscovery but is slow because chemical annotation of each prefraction still requires 

extensive follow-up, making the examination of large libraries labor intensive. This 

new study extends the system by integrating data from ultraperformance liquid 

chromatography coupled time-of-flight mass spectrometry (UPLC TOF-MS) in order 

to correlate biological phenotypes with the chemical constitution of test prefractions. 

UPLC-MS has become a mainstay for investigating chemical constituents in 

biological and environmental samples because of its broad applicability to a range of 
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analytes, and the value of the information it provides in terms of resolution, 

sensitivity, and mass accuracy. The subsequent generation and use of database 

systems for searching and comparing compounds from mass spectrometric 

experiments is essential for natural products drug discovery and has been applied for 

discovery,8 compound identification9, bacterial strain de-replication,10 and high-

throughput profiling.11,12 This analysis has reduced the high rates of rediscovery and 

aided in compound identification; however, the data interpretation is not often 

automated and the analysis of large libraries of samples is difficult because of the 

enormous numbers of MS features detected in each run. We are able to distill the 

pertinent bioactive m/z features from a large MS dataset by integrating biological 

screening data. Integrating the biological data allows us to create filters by associating 

mass to charge (m/z) features with specific phenotypes and eliminating features with 

no observed activity in the phenotypic screen. 

Herein we show how Compound Activity Mapping has fundamentally altered 

our approach to the investigation of natural products libraries by overcoming many of 

the problems of natural products drug discovery including secondary chemical 

analysis throughput, high rates of rediscovery, and sample prioritization. The strategic 

combination of UPLC TOF-MS secondary metabolomics and high-content screening 

provides the first global evaluation of all bioactive compounds from a large library of 

complex mixtures for a specific biological system. While we have applied this 

approach to Cytological Profiling (CP), Compound Activity Mapping is designed to 

integrate UPLC-MS data with any orthogonal high-content assay, and as such we 
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imagine its application with whole cell/organism genomics,10 transcriptomics,13 and 

antibiotic profiling.14    

2.2. Hypothesis and Design: 

Current advances in high-content screening and MS based profiling strategies 

have drastically improved traditional live or dead screens and bioassay guided 

fractionation methods for natural products discovery, but there are still many 

drawbacks to these techniques.1,2,15 Because natural product libraries are complex 

mixtures of unknown constitution and titer, it is often unclear whether samples with 

different bioactivities are distinct because they contain different secondary 

metabolites with differing modes of action, are mixtures of compounds, or contain the 

same compound at varying concentrations. Similarly, these same properties of natural 

product libraries make MS data acquisition and analysis difficult because there can be 

hundreds of peaks of different magnitudes with no clear indication of which 

compounds are bioactive.  

The central assumption of modern natural products discovery is that 

individual molecules, or families of molecules, from natural products libraries are 

responsible for both the measured biological effects in assays and the chemical 

signatures from spectrophotometer experiments, typically coupled to 

ultraperformance liquid chromatography (UPLC). It follows that the biological and 

MS data from the same extract should be reciprocally related by chemical 

constitution; therefore, we hypothesize that by using informatics techniques, it should 

be possible to correlate mass spectral features with specific, but not predefined, 
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biological phenotypes, and to use these data to predict the molecular constitution and 

phenotypic activity of specific molecules directly from complex mixtures. To test this 

hypothesis we developed Compound Activity Mapping, an interactive software tool 

that integrates data from high content screens with a   database of validated mass to 

charge (m/z) features from a set of standard UPLC-coupled TOF-MS experiments 

(Figure 2-1). 

By estimating the biological activity for each of the validated m/z features, 

Compound Activity Mapping is able to filter prefraction MS data so that hundreds of 

observed features are reduced to a small number of pertinent features that are 

predicted to induce the phenotype observed in cells treated with that prefraction. To 

gain a global view of the bioactivity and chemical constitution of complex natural 

product libraries, Compound Activity Mapping uses MS data to augment the 

prefraction’s CP fingerprint so that prefractions that induce similar phenotypes and 

have the same validated m/z features appear as a cluster in a network diagram. The 

combination of these two techniques allows us to quickly triage commonly 

encountered bioactive molecules and generate hypotheses about which m/z features 

drive the activity in prefractions with unique bioactivities. In order to confirm the 

fidelity of our system we examined a 312-member subset from our prefractionated 

marine natural products library that had been previously screened in our in house CP 

assay and partially chemically annotated.3,7  

In order to overcome some of the technical difficulties associated with the MS 

analysis of natural products libraries such as concentration differences between 
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samples and varying numbers of unknown analytes in each sample, we created an 

alternate approach to technical replicates and peak alignment that we refer to as 

feature validation (Chapter 2.5.4.1). A single MS experiment can yield hundreds of 

signals after molecular feature extraction (MFE). Comparing multiple runs in 

different ionization modes and detector settings adds even more complexity. The 

validation method we developed allows us to store only the highest quality data from 

two technical replicates and combine positive and negative ionization mode data and 

eliminates extraneous peaks due to detector ringing from exceptional concentrations 

of certain compounds. 

Targeted and nontargeted MS based metabolomics have been used to identify 

molecular markers for disease states and have been used to identify secondary 

metabolites from producing organisms; however, in most cases, the number of 

experimental test groups was relatively low and static. Some recent examples in the 

field of natural products include the use of nontargeted metabolomics to discover new 

secondary metabolites from Streptomyces coelicolor and Myxococcus xanthus after 

media source perturbation and targeted mutagenesis, respectively.8,16,17 These studies 

successfully used integrated MS-based metabolomics approaches, but with static 

independent variables: samples from one organism were either perturbed, or they 

were not. We have expanded on this approach using high-content screening to allow 

us to examine a natural products library by neither limiting nor defining the 

phenotypic profiles. Instead of comparing secondary metabolites between just two 



 

 45 

groups, we correlate thousands of compounds with any number of known and 

unknown potential modes of action, as defined by the phenotypic profiles. 

To integrate the validated MS data for each prefraction with the corresponding 

biological data we start by estimating the biological activity of individual mass 

features by creating a synthetic fingerprint that is the average of the biological 

fingerprints of prefractions that contain that feature (Chapter 2.5.4.3). We use two 

metrics to quantify the overall activity of an m/z feature and its biological specificity 

that we have termed “activity score” and “cluster score.” The activity score is 

calculated from the synthetic fingerprint and is the sum of the square of the individual 

biological parameters and represents the severity of the phenotype of a particular m/z 

feature. The cluster score describes the consistency of the biological phenotypes 

induced by prefractions that contain the m/z feature (Chapter 2.5.4.4). If an m/z 

feature has a high cluster and activity score, it indicates that the prefractions 

containing that m/z feature induce a similar, strong phenotype, and therefore, that the 

m/z feature likely drives the activity of those prefractions in which it is present. The 

corollary is that if a feature has a low cluster and activity score, it is present in 

extracts with different phenotypes and on average has little to no activity (e.g. 

primary metabolites that are present in many prefractions). 

One of the modules of Compound Activity Mapping plots m/z features in 

Cartesian coordinates with activity score on the vertical axis, the cluster score on the 

horizontal axis with the color of the dot corresponding to the retention time. These 

activity plots allow the user to quickly analyze prefractions because m/z features 
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associated with strong and consistent phenotypes stand out from those associated with 

many different or weak phenotypes. By filtering m/z features based on activity score 

and cluster score following blank subtraction, Compound Activity Mapping considers 

and outputs only those features that are candidates for the observed bioactivity.  

Compound Activity Mapping filters and plots are useful tools for carefully 

examining individual prefractions and prefractions with similar bioactivities; 

however, this piecewise method does not provide a broad view of the entire dataset. 

In contrast, network analysis is a powerful tool for analyzing correlated data that can 

display both global trends and fine-scale information about the behaviors of 

individual constituents. There are many examples in which combinations of 

proteomics, transcriptomics, and metabolomics networks have been used to discover 

relationships within datasets including the identification of shifts in Bacillus subtilis 

regulation between two carbon sources,5,18 and the use of “Molecular Networks” to 

identify classes of compounds from tandem mass spectrometry experiments based on 

fragmentation pattern similarities.6,19 We have modified these approaches 

significantly to incorporate two independent datasets by using chemical similarity 

observed as shared m/z features to link samples displaying similar phenotypes.  
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Figure 2-1: A flowchart depicting the workflow of Compound Activity Mapping from the Mass Hunter 
software to customoized graphical outputs. 

 

For our study system, biologically related samples can be linked together by 

similarity scores and chemically related samples can be linked by shared m/z features. 

However it is not obvious whether samples far from each other in the biological 

fingerprint network are distinct because they have different chemistries, or if they 
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share the same compounds but at different titers. Also, in networks that only include 

mass feature relatedness, there is no delineation between clusters defined by 

biologically active or inactive compounds. To simultaneously use information from 

both datasets, we created an algorithm to reposition the n-order biological fingerprints 

by shared chemistry from the MS data that we have termed vector compression. First, 

a table of m/z feature connections between prefractions is created from the validated 

and filtered MS data to make a connectivity table. For each prefraction, we calculate a 

vector to every other prefraction with which it shares chemistry in the connectivity 

table. Each vector is weighted based on the likelihood that the m/z feature shared by 

the two prefractions are responsible for the observed phenotype of both samples 

based on the phenotypes of the two prefractions and the synthetic fingerprint of the 

analyte. These vectors are then normalized by the number of shared features to limit 

the movement of prefractions based on families of compounds or compounds with 

many adducts. In order to limit the change of the prefraction’s fingerprint based on 

any one vector, we scaled each vector twice: once by the largest likelihood observed 

for that prefraction and again by the largest likelihood observed for all prefractions. 

Finally, each prefraction’s connection vectors are summed, normalized by the number 

of vectors, and added to the prefraction fingerprint to move the fingerprint in n-

dimensional space. Iterations of this algorithm augment each sample’s 

fingerprint/position in the network, gradually drawing together samples with related 

bioactivity and shared m/z features whose synthetic fingerprints closely resemble 

those of the prefractions (Figure 2-2).  
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Figure 2-2: Network representations of the extracts clustered by the similarity of their cytological 
profile. a) before vector compression b) after vector compression and c) after vector compression with 

the known active metabolites from each cluster. 
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Following vector compression, repositioning based on related phenotypes and 

MS features, relationships between prefractions can be visualized using a network 

diagram. The prefractions, represented by nodes, are connected by edges that can be 

defined by the similarity of two nodes’ augmented biological fingerprint or by shared 

m/z features.  In this way it is easier to develop hypotheses about related samples and 

the molecular features responsible for inducing observed phenotypes. This 

visualization allows the user to condense biological clusters of prefractions that share 

the same chemistry at varying concentrations and to separate biological clusters of 

varying chemistry with similar modes of action.  

2.3. Results and Discussion: 

 In order to test Compound Activity Mapping we applied it to a 312-member 

microbial extract library that had been previously partially chemically annotated.7 

Compound Activity Mapping can accurately predict which chemical constituents 

drive the observed CP phenotypes in samples containing either a single bioactive 

compound, mixtures of bioactive compounds, or previously unknown bioactive 

compounds. We are able to overcome many of the pitfalls of traditional natural 

products discovery by using networks to analyze the entire library and annotate 

clusters possessing distinct biological and chemical properties. Using these integrated 

biological and chemical fingerprints we can distinguish large clusters defined by the 

presence of known bioactive natural products, identify previously unknown 

relationships between samples, and prioritize chemically and biologically distinct 

prefractions for future lead discovery. 
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2.3.1. Network Analysis of Chemical and Biological Datasets:  

 Using the network analysis modules of Compound Activity Mapping we can 

visualize the original CP data as groups of prefractions (nodes) that are connected by 

edges if their fingerprints are closely related - have a Pearson correlation greater than 

0.9 (Figure 2-2). The network approach improves upon hierarchical clustering 

approaches because it does not constrain the high-content data to a single dimension; 

however, distributing the dataset based solely on biological phenotype is not always 

accurate because there are still prefractions that do not group correctly according to 

previous annotation and the MS data. After each cycle of vector compression, we can 

track the changes in biological fingerprints as a function of iteration by observing the 

creation and destruction of edges.  After 749 iterations, equilibrium is reached: from 

this point on very few new edges are created or destroyed (Figure 2-2). The resulting 

network contains eight large (greater than five nodes) clusters that are biologically 

and chemically distinguished by the presence of frequently encountered microbial 

natural products (anthracyclines, bafilomycins, ferrioxamines, etc.).  The prefractions 

present in these clusters are consistent with previous annotation and many 

discrepancies between the presence of known compounds and misleading 

arrangement in hierarchical clustering are removed. Chemical and biological network 

analysis also accounts for differences in phenotypes that could arise from 

concentration variation and mixtures of bioactive compounds while leaving the 

phenotypes of prefractions with no biologically significant shared chemistry 

unaltered. 
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2.3.2. Cluster Annotation:  

 The most prominent cluster that is defined by the presence of a single 

compound is the cluster containing the pan-specific kinase inhibitor staurosporine 

(yellow circles, Figure 2-2). Based on the biological and chemical datasets, 

Compound Activity Mapping predicts a single m/z feature shared amongst 

prefractions 1502D, 1502E, 1502F, 1504E, 1505D, 1505E, 1513D, 1513E, 1526D, 

1526F, 1530C, 1530D, and 1530E corresponding to the [M + H]+ adduct of 

staurosporine (Figure 2-3). This result is consistent with the annotation for several of 

these prefractions previously reported by Schulze et al.7,8 To experimentally validate 

the predicted activity of staurosporine, we examined a dilution series of a commercial 

sample of staurosporine by CP to determine the phenotypic effects of the pure 

compound across a broad concentration range. Encouragingly, the synthetic 

fingerprints for the [M + H]+ and the [M + Na]+ adducts of staurosporine from the 

Compound Activity Mapping predictions both closely resemble the fingerprint of the 

pure compound at 0.43 µM (Figure 2-4). This result shows that Compound Activity 

Mapping is able to accurately predict the phenotypic effects of specific bioactive 

secondary metabolites directly from natural products libraries, and can connect 

chemical and biological attributes of specific metabolites from the primary screening 

data of complex extracts.  
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Figure 2-3: (a) Total Compound Chromatograms (TCC) for 14 prefractions in the staurosporine 
cluster. Visually, no single m/z feature can be identified as the common bioactive constituent from the 
aligned TCCs. (b) CP fingerprints for each of the prefractions. (c) Extracted Ion Chromatograms (EIC) 

for the [M + H]+ adduct of staurosporine. (d) The synthetic fingerprint of the [M+H]+ adduct of 
staurosporine and the fingerprint of commercial staurosporine (0.43 µM). 

 

The presence of multiple bioactive compounds in some prefractions is to be 

expected for natural products libraries, where initial extracts are of unknown 

constitution and titer. Whole genome sequencing has shown that many Actinobacteria 

contain upwards of 35 biosynthetic gene clusters,9,20 any of which may be producing 

secondary metabolites under a given set of fermentation conditions. To demonstrate 

that Compound Activity Mapping can accurately characterize prefractions containing 

multiple bioactive metabolites, we examined a case that exhibited ‘mixed-mode’ 

phenotype in the original CP screen. 

 Prefraction 1504E initially displayed a distinct phenotype to the other 

prefractions in the test set. Examination of the UPLC-MS data for this prefraction 
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revealed the presence of two frequently occurring features.  These features were 

identified as the  [M + H]+ adduct of staurosporine and the [M + Na]+ adduct of 

bafilomycin A1, based on molecular formulae and retention time matches with 

previously reported compounds.7,10 Although both compounds are potently bioactive 

against mammalian cells (pan-specific kinase inhibitor and vacuolar ATPase 

inhibitor, respectively), the CP fingerprint for the original prefraction was not 

representative of the biological activities of either metabolite. However, the predicted 

synthetic fingerprints for each of these metabolites share significant similarities with 

the CP profiles of the respective pure compounds (0.83 and 0.64 Pearson similarity 

scores for staurosporine and bafilomycin), demonstrating that this method is effective 

at directly predicting the biological behaviors of individual constituents in complex 

mixtures of metabolites with different modes of action, even if the CP fingerprint of 

the prefraction does not accurately represent the fingerprints of either of the 

individual constituents (Figure 2-4).  
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Figure 2-4: (a) The activity plot visually shows active m/z features, with highlighted [M+H]+ of 
staurosporine (green) and the [M+H]+ of bafilomycin A1 (blue). (b) From top to bottom: TCC of 

1504E, EIC of staurosporine [M+H]+, and EIC of bafilomycin A1 [M+H]+. (c) Structures of 
bafilomycin A1 (top) and staurosporine. (bottom) (d) Observed and synthetic CP fingerprints of both 
bafilomycin A1 and staurosporine, as well as the mixed-mode phenotype observed with 1504E. (E) 

Cell images used to generate the original CP fingerprints. 
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2.3.3. Annotation of compounds with multiple phenotypes:  

 Anthracyclines represent a large family of compounds that are frequently 

encountered in Actinobacterial natural products discovery. This class of compounds 

is well represented among the prefractions in our screening library, but is split into 

two distinct clusters in the network diagram (Fig. 3), despite containing significant 

shared chemistry. We hypothesized that this difference in phenotype was due to 

concentration differences between the prefractions, leading to intermediate vs. end-

point phenotypes for the two cluster classes. We envisioned that at a specific 

concentration the effect of treatment with anthracyclines would switch from a classic 

G1-S stall to an apoptotic phenotype. To test this hypothesis we performed a dilution 

series of prefraction 1498D and observed a rapid transition in phenotype within a 4-

fold dilution window (Figure 2-5).  This observation indicates that, while in many 

instances cytological profiles remain constant over wide concentration gradients, 

these clusters can become segregated where defined phenotypic shifts occur with 

changing concentration. As the annotation of the platform with known compounds 

matures, we predict that these clusters will afford additional value, in that they will 

report on relative concentrations of specific metabolites, in addition to providing 

structural and biological information about active constituents. Thus the anthracycline 

example illustrates how Compound Activity Mapping is able to retain and report on 

phenotypic information, even in situations where compound concentrations are 

significantly different.  
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Figure 2-5: Cytological profiles of a 2-fold dilution series of 1498F clearly illustrating how 
anthracycline compounds may have multiple distinct phenotypes at different concentrations 

 

Figure 2-6: Cytological profiles from two anthracycline clusters (a) fractions exhibiting G1/S stall (b) 
fractions causing apoptosis. 
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2.3.4. Examining Unknown Clusters:  

 The main advantage of Compound Activity Mapping is that it allows the 

correlation of biological data based on shared chemistry in order to identify 

prefractions with novel bioactivity and chemistry. For example, the cluster containing 

prefractions B, C, D, and F from extract 1509 did not contain compounds previously 

identified in our library (Teal circles, Figure 2-7). Comparing the activity plots of the 

prefractions, one compound is present in all four prefractions . Isolation of the 

compound defined by the m/z feature ([M+H]+ = 283.0714, rt = 1.75 min) revealed 

the known bioactive compound phencomycin by HR-TOFMS and 1H NMR.11,12,21 The 

related metabolite 1,6-dicarbomethoxy phenazine ([M+H]+ = 297.0873, rt = 1.96 

min), which shares the same UV profile and a similar synthetic fingerprint, was also 

isolated and confirmed by 1H NMR. Several other m/z features appear in the output 

for 1509D in addition to phencomycin and 1,6-dicarbomethoxy phenazine, some with 

even higher activity and cluster scores; however, by tracking the values of the 

weighting function through iterations of our chemical and biological redistribution 

algorithm, we were able to demonstrate that the phenazine compounds were 

responsible for the observed bioactivity due to the large log order differences in the 

feature likelihood scores between the phenazine features and all others (red and blue 

lines for phenazines, versus green, navy and yellow lines, Figure 2-7). Following 

mass-guided purification of both metabolites their activities were examined by CP. 

Both phencomycin and 1,6-dicarbomethoxy phenazine [M+H]+ possessed CP 

fingerprints with high similarities to both the predicted synthetic fingerprints, and the 
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fingerprint of the original prefraction (Figure 2-7), demonstrating that compound 

activity mapping can accurately predict the identities of unknown bioactive 

constituents, and that the predicted biological properties correlate well with the actual 

bioactivity fingerprints for the pure materials. 

It is important to note that prior to chemical and biological integration the 

phenazine-containing prefractions were dispersed throughout the DNA cluster, 

suggesting that their mechanism of action involved DNA damage or the obstruction 

of core replication or transcription processes. Previous work has indicated that 

phencomycin is capable of binding DNA, leading to a G1/S mitotic stall. Examination 

of the images of cells treated with phencomycin and 1,6-dicarbomethoxy phenazine 

show a decrease in mitotic cells (reduced pHH3 staining) and a concomitant decrease 

in cells actively undergoing DNA synthesis (reduced EdU staining) indicating a G1/S 

stall phenotype that is common to modulators of DNA synthesis (Figure 2-7). 

The elucidation of the phenazine structures demonstrates Compound Activity 

Mapping’s ability to synthesize meaningful correlations between multi-parametric 

chemical and biological datasets in order to discover relationships between 

prefractions that were not obvious in either dataset alone. Had phencomycin not been 

previously discovered by traditional screening methods, this result would illustrate 

Compound Activity Mapping’s ability to identify and biologically characterize novel 

bioactive secondary metabolites in an automated high throughput manner.10,13 
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Figure 2-7(a) The activity plot of 1509D contains several active m/z features. (b) Likelihood scores for 
m/z features plotted as a function of iteration (two of the most likely features are overlapped, with cyan 
being visible over red). Color-coding between plots was done by compound when it could be assigned 
or by m/z feature otherwise. Note: the most active compound shown in the activity plot is not shown in 

the likelihood plot because it falls to zero (undefined in log-scale) within several iterations. (c) 
Structures of phencomycin and 1,6-dicarbomethoxy phenazine. (d) Cell images from DMSO control, 

prefraction 1509D, pure phencomycin 133 µM, and pure dicarbomethoxy phenazine 67 µM. (e) 
Fingerprints of pure phencomycin and dicarbomethoxy phenazine compared with the original 1509D 

prefraction and the calculated synthetic fingerprints of the [M+H]+ adducts of phencomycin and 
dicarbomethoxy phenazine. 

 



 

 61 

2.3.5. Limitations and Considerations:  

 While this new strategy greatly aids in the analysis of high-throughput high-

content biological screening results in conjunction with MS data, there are three 

limitations worth addressing. First, if a m/z feature is detected in only one prefraction, 

then its synthetic fingerprint will be identical to that of the prefraction and no 

correlation analysis with other prefractions can be performed. We anticipate that as 

Compound Activity Mapping matures with the inclusion of additional library 

members, the number of unique m/z features will decrease and truly unique features 

will therefore represent important lead molecules that can be directly selected for 

further analysis. Second, if a compound y is only expressed in conjunction with a 

more broadly expressed molecule x that has a strong phenotype, the true phenotype of 

y may be masked by the dominate activity of x. Compound y will still be listed as 

active and presented in the activity plots, but the synthetic fingerprint will likely not 

represent the true activity of the molecule. This is an inherent limitation of the 

technology but, again, expansion of the datasets by increasing the number of 

prefractions analyzed should reduce the probability of encountering metabolites only 

as co-expressed pairs. Third, at this time Compound Activity Mapping cannot 

identify in source fragmentation and is only based on MS1 data. Expansion of this 

technology to include tandem MS could aid in feature alignment and the 

identification of compound families. Informatics strategies for such an approach are 

now well established, making this a realistic and accessible improvement to the 

platform for research teams with access to the required mass spectrometry hardware.    
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2.4. CONCLUSIONS: 

 Herein we have demonstrated that Compound Activity Mapping is able to 

overcome several of the traditional limitations of natural product drug discovery 

through the correlation and integration of large orthogonal chemical and biological 

datasets. Through the application of this automated high throughput tool to a 312-

member prefraction plate from our library of marine-derived microbial extracts, we 

have demonstrated that Compound Activity Mapping is able to predict the active 

constituent(s) of bioactive mixtures directly from primary screening data, and to 

enable the grouping of prefractions into both known and unknown chemical and 

biological clusters. In this way, both the constitution and mode of action of extracts 

are elucidated at the primary screening stage. This reverses the traditional process of 

natural product drug discovery by providing researchers with hypotheses about all 

compounds in all extracts prior to lead selection and prioritization. We have applied 

Compound Activity Mapping to natural products and CP; however, it is designed to 

integrate any MS based dataset with any high-content dataset and we imagine its use 

in a variety of fields including environmental studies, chemical ecology, and genome-

guided natural products discovery.  
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2.5. METHODS: 

2.5.1. Library Preparation:  

 Cell culture, extraction, and prefractionation is described in detail by Schulze, 

et al.7,13 Microbes were isolated from marine sediment off the west coast of the United 

States, American Samoa, and Hawaii, grown under standard fermentation conditions 

with XAD-16 resin, extracted with 1:1 methanol/dichloromethane, and fractionated 

on a reverse phase C18 column with an eleutropic series of water and methanol. These 

fractionated extracts or prefractions were dried and resuspended in 1 mL of 

dimethylsulfoxide and diluted 1:5 in DMSO for CP screening and 1:50,000 in 50% 

v/v methanol/water into Corning V bottom 96 well plates for MS analysis.  

2.5.2. UPLC TOF-MS:  

 UPLC TOF-MS experiments were performed using an Agilent 1260 binary 

pump in low dwell volume mode, an Agilent column oven heated to 45° C, and an 

Agilent 6230 Time-of-flight Mass Spectrometer with an electrospray ionization (ESI) 

source. One μL of sample, dissolved in 50% v/v methanol/water, was injected onto a 

1.8 µm particle size, 50 x 2.3 mm I.D., ZORBAX RRHT column. Each sample was 

subjected to a water-acetonitrile gradient from 10% to 90% organic over 4 min with a 

1.5 min hold at 90% organic before a 3 min re-equilibration. The flow rate was 

maintained at 0.8 mL/min. Formic acid, 200 µL/L, was added to both the water and 

the acetonitrile. Water, 1 mL/L, was added to the acetonitrile. 
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The mass spectrometer was run with a detector range from 100 to 1700 m/z. 

The ESI source was operated with a desolvation temperature of 350° C and a drying 

gas flow rate of 11 L/min. The fragmentor voltage was held at 135 V. In positive ESI 

mode, the capillary voltage was ramped from 2500 V at 0 min to 2750 V at 1 min, 

and to 3000 V at 3 min.  In negative ESI mode, the capillary voltage was held at 2750 

V. Each sample was run in both positive and negative ESI source modes and in both 

high resolution (4GHz) and extended dynamic range (2GHz) detector modes. We 

selected peaks using the Find By Molecular Feature algorithm in Agilent Mass 

Hunter Software with raw ion cutoff of 300 counts and a compound cutoff of 1000 

counts.  Selected peaks were exported in a CEF file containing isotopic abundance, rt, 

and metadata. 

2.5.3. Cytological Profiling:  

 Methods for cell culture and staining are identical to those presented by 

Schulze, et al. 7,14 HeLa cells were plated in two 384-well plates and incubated for 24 

hours at 37°C. The plates were then stained with either nuclear or cytoskeletal stain 

sets. Finally, plates were imaged with a 10x objective lens with four images per well 

for each stain wavelength in a plate. Prefraction-treated wells were compared with 

DMSO-treated wells affording a 248-parameter fingerprint for each prefraction-

treated well indicating the positive or negative perturbations in each parameter. 
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2.5.4. Compound Activity Mapping:  

 Unless stated otherwise, m/z feature alignment between samples uses high-

resolution mass (ppm), retention time, and an isotope pattern matching method 

adapted from Pluskal et al. 22 

2.5.4.1. MS Data Validation:  

 We developed a decision tree to align m/z retention time (rt) pairs between 

extended dynamic range (2 GHz) and high-resolution (4 GHz) detector modes in 

order to store the most reliable data from both positive and negative electrospray 

ionization (ESI) experiments. After initial data acquisition, processing, and CEF file 

(peak list) output, we align and subtract MeOH blank and SYP media run peaks using 

20 ppm, 0.4 minutes, and 0.5 isotopic score difference windows from the sample 

prefraction run peak lists. We also remove detector ringing from peaks above the 

detector saturation limit by removing all peaks within 0.4 minutes and 1 mass unit of 

the most abundant peak in saturated data. Then we align peaks between 4 GHz and 2 

GHz modes with 10 or 20 ppm, 0.4 minutes, 0.5 isotopic score difference windows. 

In order to store only the most accurate data, each aligned peak is assigned a tag that 

indicates whether or not the m/z feature is present or present and saturated in both 4 

GHz and 2 GHz modes. We use a decision tree to select the best value for aligned 

features, with priority being given to m/z values that are not saturated from the 4 GHz 

data. We store post-validated m/z features in a SQLite database for rapid indexing 

during incorporation with biological data. 
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2.5.4.2. Integrating TOF-MS Data and Cytological Profiling Data:  

 In order to integrate the CP and MS datasets, each m/z feature stored in the 

database is ascribed a synthetic fingerprint, an activity score, and a cluster score. 

2.5.4.3. Synthetic Fingerprints:  

 The synthetic fingerprint of an MS feature is a set of pairs, one for each 

attribute measured in cytological profiling, where each pair is the average and 

standard deviation of the attribute value for the set prefractions that contain that MS 

feature.  

 

𝐹 = 𝑓!, 𝑓!,… , 𝑓!!!, 𝑓!  

𝑓! = 𝑎!,𝑎!,… ,𝑎!!!,𝑎!  

𝑆𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐𝐹𝑖𝑛𝑔𝑒𝑟𝑝𝑟𝑖𝑛𝑡 𝑓 = 𝑎!,𝜎!! , 𝑎!,𝜎!! ,… , 𝑎!!!,𝜎!!!! , 𝑎!,𝜎!!  

Equation 2-1: calculation of the synthetic fingerprint where F is a set of fractions f1-fj each with 
attributes a1-an. The average and standard deviation for each attribute across all the fractions is stored 

in a set of two value lists. 

2.5.4.4. Activity Score:  

 From the synthetic fingerprint we calculate an activity score that is defined as 

the sum of the square of the means of each attribute.  

𝑨𝒄𝒕𝒊𝒗𝒊𝒕𝒚𝑺𝒄𝒐𝒓𝒆 𝒇𝒌  𝒐𝒓  𝒇𝒆𝒂𝒕𝒖𝒓𝒆 = 𝒂𝒊𝟐
𝒏

𝒊!𝟏

  

 

Equation 2-2: The activity score is calculated as the magnitude of the cytological profile vector. 
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2.5.4.5. Cluster Score:  

 We also calculate a cluster score for each MS feature that is the average of the 

Pearson correlations between all combinations of two biological fingerprints of the 

prefractions that contains that MS feature.  

 

𝑪𝒍𝒖𝒔𝒕𝒆𝒓𝑺𝒄𝒐𝒓𝒆 𝒇𝒆𝒂𝒕𝒖𝒓𝒆 =
𝑷𝒆𝒂𝒓𝒔𝒐𝒏 𝒇𝒑, 𝒇𝒒

𝟑𝒋
𝒒!𝟏

𝒋
𝒒!𝟏 − 𝒋

𝒋𝟐 − 𝒋
  

 

Equation 2-3: The pairwise Pearson correlation between each fraction containing a particular m/z 
features is cubed, summed, and divided by the number of relationships in order to calculate the cluster 

score or the consistency of the m/z features biological phenotype. 

 

2.5.5. Biological and Chemical Fingerprints:  

 We identify correlations between the chemical and biological datasets and 

visualize the entire dataset by incorporating chemical relatedness into the biological 

fingerprints. To use information from both datasets we created an algorithm to 

reposition the n-order biological fingerprints by shared chemistry from the MS 

dataset. A table of m/z feature connections between samples is created from the 

validated and filtered MS data to make a connectivity table. The algorithm then 

repositions each of the prefractions in n-dimensional space using weighted difference 

vectors between two prefractions containing the same m/z feature. The weighting is 

calculated based on the likelihood that the m/z feature connecting the two prefractions 

is responsible for the observed phenotype of both samples. In order to limit the 

change of the prefraction’s fingerprint based on any one vector, we scaled the vectors 
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twice: once by the largest weighting observed for that prefraction and again by the 

largest weighting observed for all the prefractions. Each prefraction is then moved by 

the sum of the m/z connection vectors. Performing multiple iterations of this 

algorithm augments each sample’s fingerprint/position in the network such that 

samples with related bioactivity and shared m/z features are drawn together (Figure 

2-2).   

2.5.6. Network Visualization:  

 We use NetworkX in python to create and edit networks and Gephi to 

visualize and analyze networked data. In all networks shown, nodes represent 

prefractions and edges connect nodes if the prefractions have Pearson correlations 

greater than 0.9. Using Gephi, we visually rank nodes by size proportional to 

prefraction activity score, and identify distinct clusters (represented by different 

colors) using network modularity with weighted edges and a resolution of one. We 

use Gephi’s built in Force Atlas algorithm to distribute nodes 2-dimensionally with 

default parameters except: repulsion of 1,000, attraction of 15, gravity of 60, and 

adjust by sizes.  
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3. COMPOUND ACTIVITY MAPPING: SECOND GENERATION 

PLATFORM FOR THE INTEGRATION OF SECONDARY 

METABOLOMICS AND HIGH-CONTENT SCREENING 

3.1. Introduction: 

 Notwithstanding the historical importance of natural products in drug 

discovery1 the field is facing a number of challenges that impact the relevance of 

natural products research in modern biomedical science.  Among these are the 

increasing rates of rediscovery of known classes of natural products, and the high 

rates of attrition of bioactive natural products in secondary assays due to limited 

information about compound modes of action in primary whole cell assays.2 

Although many pharmaceutical companies recognize that natural products are an 

important component of drug discovery programs because of the different 

pharmacologies of natural products and synthetic compounds,3 there is a reluctance to 

return to “grind and find” discovery methods. Therefore there is a strong need for 

technologies that address these issues and provide new strategies for the discovery of 

lead compounds with unique structural and/or biological properties.2 

While natural product libraries are generally considered to be better suited to 

whole cell screens than target-based screening methods, traditional approaches based 

on live/dead assays for bioactivity guided fractionation are slow and have low 

probabilities of finding compounds with unique biological properties because the 

modes of action of lead compounds are not investigated until late in the discovery 

process. The challenge with whole cell screening is that target identification is often a 
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complex and time-consuming process, even with the latest advances in proteomic, 

metabolomic, and affinity capture methods.  More generally, natural product drug 

discovery is difficult in any assay system because extract libraries are typically 

complex mixtures of small molecules in varying titers, making it difficult to 

distinguish biological outcomes.4 This is compounded by issues of additive effects of 

multiple bioactive compounds, and the presence of nuisance compounds that cause 

false positives in assay systems. In order to address these issues our laboratory has 

recently developed several image-based screening platforms that are optimized for 

natural product discovery.5-8 The cytological profiling platform optimized by Schulze 

et al. characterizes the biological activities of extract library members using 

untargeted phenotypic profiling, and uses the phenotypic profiles of natural products 

extracts and training set compounds of known mode of action to characterize this 

bioactivity landscape.9,10 This cytological profiling tool forms the basis of the 

biological characterization component of the Compound Activity Mapping (CAM) 

platform, as described below. 

In the area of chemical characterization of natural product libraries, untargeted 

metabolomics is gaining attention as a method for evaluating the chemical 

constitution of natural products libraries.11-14 This approach has been used 

successfully for strain prioritization and preliminary extract dereplication; however, 

this approach typically requires in-house compound databases that take years to 

create and are often not transferable. Modern “genes-to-molecules” and untargeted 

metabolomics approaches taking advantage of PCA and MS2 spectral comparisons 
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have also been developed in order to quickly dereplicate complex extracts and 

distinguish noise and nuisance compounds from new molecules.15-18 Finally, targeted 

approaches have expanded the coverage and information content of tandem mass 

spectrometry-based approaches to secondary metabolomics.12 Unfortunately, while 

these techniques are well suited to the discovery of new chemical scaffolds, they are 

unable to describe the function or biological activities of the compounds they 

identify. Therefore, there is still a need for new approaches to systematically identify 

novel bioactive scaffolds from complex mixtures. 

In order to overcome some of these outstanding challenges we developed a 

platform called CAM that integrates phenotypic screening information from our 

cytological profiling assay with untargeted metabolomics data on the extract library 

to directly predict the identities and biological activities of all bioactive compounds in 

a given extract library directly from complex mixtures. By correlating individual 

mass signals with specific phenotypes from the high-content cell-based screen the 

CAM algorithm allows the prediction of the identities and modes of action of these 

biologically active molecules, which in turn provides a mechanism for the rational 

selection of lead compounds for further development based on biological and/or 

chemical properties.  Chapter 2 of this thesis described in detail the first generation of 

this platform and the pilot study on a well-characterized subset of the Linington Lab 

library. To evaluate the utility of this platform for natural products discovery we 

examined a 234-member NP extract library, from which we derived 58,032 biological 

measurements and 10,977 mass spectral features (Figure 3-1). Using an updated 
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version of the Platform for the integration of these data led to the creation of a 

Compound Activity Map for this library comprised of 13 clusters containing 16 

compounds from 11 compound classes, as well as the discovery of four new 

compounds, quinocinnolinomycins A - D, which are first example of microbial 

natural products containing the unusual cinnoline core. 

 

 

Figure 3-1: Illustration of how CAM enables discovery. (A) Network of extracts (light blue) connected 
by edges to m/z features (red) detected in the extract. (B) Scaled down histograms of the Activity and 

Cluster Scores for all m/z features with cutoffs indicated as red lines. (C) Network displaying m/z 
features associated with consistent bioactivity. (D) Zoom in of the staurosporine cluster with extracts 

and relevant adducts labeled. 

 This chapter will describe the impetus for Panama compound library, provide 

a brief description of the rational for colony selection, and discuss the improvements 

to CAM which simplify the integration and analysis, remove any data augmentation 

that are introduced by “vector compression”, and change the network visualization 

strategy. Importantly, several molecules like staurosporine, rifamycin, echinomycin, 

and bafilomycin A1 that were used for the validation of the original platform are 

present in this second library and are easily identified illustrating that the general 

strategy for sample processing, data acquisition, analysis, and integration yield 

predictable and reproducible results. 
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3.2. Generating the Linington Panama Compound Library: 

3.2.1. Background: 

 Over four years other lab members went to Panama in order to collect 

sediment samples from marine environments around the coasts of Panama and share 

the results of screening campaigns with collaborators in the Panama International 

Cooperative Biodiversity Group. This collaborative effort between many United 

States (U.S.) universities, U.S. companies, and Panamanian institution works to 

discover new anticancer, antiparasite, immunomodulatory, neuromodulatory and 

agrochemical lead compounds as well as provide technology transfer to Panamanian 

institutions. The U.S. National Institutes of Health and the U.S. National Science 

Foundation fund ICBG programs in many scientifically developing countries around 

the world. The Linington Lab contributed to this work by producing compound 

libraries of Actinomycetales bacteria extracts from Panamanian Marine sediment 

samples.  

 At the onset, Bailey J. Dickey worked as an undergraduate volunteer to 

develop the first 96-well plate containing 52 prefractions of 13 bacterial extracts. 

DOW Agro and EISAI Pharmaceuticals evaluated these prefractions for biological 

activity. The extracts were also screened in the relatively green cytological profiling 

assay. From this Bailey identified several anthracycline producing strains as potent 

cytotoxins.  RLPA-1002D had interesting activity in CP as well as in EISAI’s 

undisclosed assay and was therefore prioritized for analysis. A peak library7 was 
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performed and the lead molecule was identified as lobophorin B identified by Fenical 

et al.19 

3.2.2. Isolation and Growth: 

 It is important to discuss the rational behind the selection of colonies because 

the strains chosen to make the library determine the diversity and number of 

secondary metabolites and strain libraries picked by different people have distinct 

chemical profiles. In order to produce an extract library with high numbers of 

secondary metabolites, strains were isolated from media specific for Actinomycetales. 

Actinomycetales is an order of bacteria associated with soil and marine sediment that 

contain the biomedically import genera Salinospora, Micromonospora, Nicardia, 

Streptomyces, Saccharopolyspora, and Frankia responsible for producing many 

commercial antibiotics, as well as several pathogenic strains like Mycobacterium 

tuberculosis, Corynebacterium diptheriae, and Propionibacterium acnes. The G + C 

content of Actinomycetales genomes is often as high as 70% while the size and shape 

of the genomes can range from small circular genomes of 2 Mb to 10 Mb genomes 

with multiple linear chromosomes. Natural products chemists have studied this order 

extensively because many of the members dedicated up to 5 % of their genomes to 

secondary metabolite production with greater than 20 distinct biosynthetic gene 

clusters. 

 The different genera have distinct morphologies; however, the 

Actinomycetales order can be generally be identified by several traits that were used 

to select colonies: first, the presence of aerial hyphae; second, spore formation; third, 
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colonies that dig into the plate; fourth, zones of inhibition. One of the most distinct 

morphological features of Actinomycetales is the presence of small aerial hyphae that 

are visible under higher (40-100 X) magnification and give the colonies a fuzzy 

appearance at lower magnifications. A useful trick for determining if the colony is 

just out of focus is to slowly pan with the fine focus of the microscope. Fungi also 

have similar structures that are easily distinguished by the presence of distinct nodes 

connected by the hyphae. Besides hyphae, Actinomycetales often appear to dig into 

the plate rather than grow on the surface as Escherichia coli. Also, to the naked eye, 

many strains appear dry and textured on the surface rather than slimy. These 

topographical features are often accompanied by spore-formation that gives the 

colonies a chalky appearance after they have grown for several weeks.   

 Finally, my selections were heavily biased towards colonies that exhibited 

zones of inhibition. These colonies appeared as if they had halos around them on the 

isolation plate. This, hypothetically, indicates that the colony is producing some 

compound to prevent the growth of other bacteria and fungus that is diffusing through 

the agar. It is important to note that some colonies were selected based on the 

presence of a zone of inhibition alone. 

3.3. Significantly Altered Methods: 

 This methods section will focus on experimental conditions that have changed 

significantly from the previous version of the platform because general methods for 

CAM were outlined thoroughly in Chapter 2. 
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3.3.1. Bioactivity Profiling:  

3.3.1.1. Cytological Profile Screening:  

 Methods for cell culture and staining were used as previously reported.7,10 

HeLa cells were plated in two 384-well plates, compound plates were pinned into 

those cultures, and incubated for 24 hours at 37 °C. The plates were then fixed and 

stained with either nuclear or cytoskeletal stain sets. Finally, plates were imaged with 

a 10x objective lens with four images per well for each stain. Extract-treated wells 

were compared with DMSO-treated wells affording a 248-parameter fingerprint for 

each prefraction-treated well indicating the positive or negative perturbations in each 

parameter. 

3.3.1.2. Death Dilutions:  

 Before submitting each screening plate for journaling, the raw imaging data 

were used to count the number of cells in each well. In some instances treatment of 

cells with prefractions resulted in significant cell death precluding the determination 

of accurate cytological profiles. The prefractions that caused a reduction in cell count 

outside of three standard deviations of control wells were submitted for serial dilution 

and rescreening. For prefractions that elicited a response with acceptable cell counts, 

the journaled cytological profiles were used for data integration and clustering. For 

the prefractions that caused a three standard deviation reduction in the number of 

cells, the cytological profile of the first dilution with a cell count within three 
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standard deviations of the mean control cell count was used for clustering and 

integration (Figure 3-2). 

 

Figure 3-2: Graph of the plate normalized cell count plotted as a function of dilution factor with the 
absolute cutoff 0.43 plotted for several example extracts. Extract 1022E was diluted again such that the 

cell counts reached the acceptable levels before adding the cytological profiles to the plate data. 

 

3.3.2. Chemical Profiling: 

3.3.2.1. MS Data Alignment:  

 The m/z feature comparisons between samples were performed using high-

resolution mass (ppm), retention time, and an isotope pattern matching method 

adapted from Pluskal et al.20 We developed a decision tree to align m/z retention time 

(rt) pairs between extended dynamic range (2 GHz) and high-resolution (4 GHz) 

detector modes to select the most accurate data between 2 and 4 GHz modes from 

both positive and negative electrospray ionization (ESI) experiments (Figure 3-3). 
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After initial data acquisition, processing, and CEF file (peak list) output, MeOH blank 

and SYP media run peaks were aligned and removed using 20 ppm, 0.4 minutes, and 

0.5 isotopic score difference windows from the sample prefraction run peak lists. 

Detector ringing from peaks above the detector saturation limit was removed by 

eliminating all peaks within 0.4 minutes and 1 mass unit of the most abundant peak in 

saturated data. Then peaks were aligned between 4 GHz and 2 GHz modes with 7 or 

20 ppm, 0.4 minutes, 0.5 isotopic score difference windows. In order to store only the 

most accurate data, each aligned peak is assigned a tag that indicates whether or not 

the m/z feature is present and not saturated or present and saturated in both 4 GHz and 

2 GHz modes (Figure 3-3). Priority is given to m/z values that are not saturated from 

the 4 GHz data. We store post-validated m/z features in a SQLite database for rapid 

indexing during incorporation with biological data. 
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Figure 3-3: The decision tree for m/z feature alignment and scoring displaying how peaks are 
compared across mass spectrometry experiments of the same prefraction in the same ionization mode. 
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3.3.3. Data Integration: 

 In order to integrate the cytological profiling and metabolomics datasets, each 

m/z feature stored in the database is ascribed a synthetic fingerprint, an activity score, 

and a cluster score, which together predict the biological activity of each feature as 

described in Chapter 2.  

3.3.3.1. Network Visualization:  

 We use NetworkX in python to create and edit networks and Gephi to 

visualize and analyze networked data. In general, blue nodes represent prefractions 

and are connected to red nodes representing the m/z features detected in those 

prefractions. Using Gephi, we visually rank nodes by size proportional to prefraction 

activity score or m/z feature activity score, and identify distinct clusters (represented 

by different colors) using network modularity with weighted edges and a resolution of 

one. We use Gephi’s built-in Force Atlas 2 algorithm to distribute nodes two-

dimensionally with default parameters except: approximate repulsion of 0.2, scaling 

of 10, gravity of 2, and prevent overlap (Figure 3-1 and Figure 3-7). This unbiased 

method was used rather than the vector compression display of just the prefractions 

because it is information rich and avoids altering the data in any way besides filtering 

biologically uninteresting molecules.  

3.3.4. Fermentation and Isolation of Quinocinnolinomycins: 

 Bacteria frozen stock of strain RL11-047-HVF-B was struck out on solid 

media (DIFCO TM Marine Broth 37.4 g and 18.0 g of agar). Colonies were 
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inoculated into a capped 40 ml culture tube with 7.0 ml of liquid media containing 

31.2 g of instant ocean, 10.0 g of Soluble Starch, 4.0 g of yeast extract, and 2.0 g of 

peptone per liter of water. All liquid media cultures were maintained at r.t. and 

shaken at 210 r.p.m. After 4 days 6 ml from the small-scale culture were used to 

inoculate 60.0 ml of the same media in a 250 ml wide neck Erlenmeyer flask with a 1 

cm diameter metal spring coil and milk filter top. After 4 days 45 ml of this medium-

scale culture were inoculated into 1 L of media in a 2.8 L wide mouth Fernbach flask 

containing a large spring coil and then topped with a milk filter. This culture was 

grown for 5 days.  

 The cells were then filtered using a glass filter, washed with sterile water, 

transferred to a 1.0 L Erlenmeyer flask, and extracted with 250 ml of 1 to 1 

dichloromethane in methanol. The cell debris was filtered off and the extract solution 

was evaporated under vacuum. This dried extract was prefractionated using the 

eluotropic series of methanol water described in the methods section. The 80% 

methanol fraction was dried under vacuum and resuspended in minimal methanol and 

centrifuged. The supernatant was purified by HPLC on a (Phenomonex Kinetix 2.6 

µm XB-C18 100 x 4.6 mm) using a gradient of MeCN:H2O + 0.02% formic acid 

(50% MeCN for 2 min, 50%-65% MeCN over 20 min) at a flow rate of 2 ml min-1. 

The peaks at minutes 8, 14, 15, 17 and 18 (diazaquinomycin C, and 

quinocinnolinomycin A-D respectively) were collected separately and dried under 

vacuum (Figure 3-4). 
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Figure 3-4: HPLC-DAD trace of RLPA-2003D with peaks labeled. Compounds 3.1-
3.4 are labeled 1-4.  The first two peaks are isomers that have the same m/z = 

400.2592 and the second two peaks are isomers with the m/z = 414.2756. 
  

m/z 400.2592 m/z 414.2756m/z 383.1970

200 Min5.0 10.0 15.0

(1) (2) (3)(4)diazaquinomycin C
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3.3.5. Synthesis of (S) and (R)-MTPA Esters (5, 6) of 

Quinocinnolinomycin A:  

 In two vials with teflon septa pierced by a blunt needle containing a small stir 

bar, 1.0 mg of compound 3.1 was dried under vacuum. The vessel was flushed with 

argon and 0.200 mL of dry pyridine was added to each. The R and S MTPA-Cl were 

added in 6 fold excess, each to one of the vials, and the reaction was run for 1 hour at 

RT. The reaction was quenched by addition of a drop of methanol. The products were 

run through silica plugs, eluted with dichlormethane, and dried under vacuum.  The 

subsequent products were purified by HPLC by (Eclipse XDB-C18 5μm 4.6 x 150 

mm) reverse phase column on a gradient of using a gradient of MeOH:H2O + 0.02% 

formic acid (60%-100% MeOH over 16 min) at a flow rate of 2 mL min-1. The S-ester 

eluted at 11 minutes while the R ester eluted at 15 minutes. 

3.4. Results:  

3.4.1. Cytological Profiling:  

 Preliminary screening generated 234 prefraction cytological profiles of which 

50 were serially diluted and rescreened based on low cell count (see methods). After 

these samples were diluted 57 of the 234 profiles had activity scores greater than 10, 

with 13 discrete clusters with Pearson correlations < 0.875 (Figure 3-5). 
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Figure 3-5: A network representation of the cytological profiling data. Prefractions 
that induce phenotypes with a Pearson correlation greater than 0.875 are connected 

and colored using Gephi’s modularity package. 
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3.4.2. Metabolomics:  

 After media and blank subtraction, 10,977 features were stored into the mass 

feature sequel database. Of these, 346 were eliminated because they appeared in 

greater than ten percent of prefractions and 5310 singletons were removed, affording 

5321 filtered features for network analysis. 

3.4.3. Integration:  

 To integrate the biological and chemical datasets synthetic fingerprints, cluster 

scores, and activity scores were generated for each m/z feature in the database. An 

illustration of how these metrics are calculated for each m/z, retention time (rt) pair is 

shown in Figure 3-6. In this example, the phenotypes induced by extracts containing 

the [M + Na]+ adduct of staurosporine are shown in an all-on-all matrix. Some of the 

phenotypes differ significantly. This is either due to differences in the concentration 

of staurosporine in the extracts, or the presence of other bioactives in the extracts.  

The activity score remains high because this metric only takes into account the 

magnitude of the fluctuations from the controls, while the cluster score is somewhat 

lower than expected. The average activity score is 4.66 with a standard deviation of 

5.53 and the average cluster score is 0.13 with a standard deviation of 0.14. The [M + 

H]+
 adduct of staurosporine was used to define the cutoff for acceptable value of the 

activity score because it serves as a positive control and its activity score of 10.00 is 

approximately one standardization above the mean. The cluster score cutoff of 0.10 

was defined by choosing a value above the median cluster score of 0.087. This value 

was chosen to account for differences in concentration and mixtures of metabolites 
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while still filtering a large percentage of the total features. Histograms and plots of all 

m/z feature activity scores and cluster scores are shown in Figure 3-8. 

 These results were used to generate activity plots for each prefraction, 

displaying m/z features as points on the graph, with the activity score on the y-axis 

and cluster score on the x-axis as seen in Figure 3-12. The color of each point 

corresponds to the retention time of that m/z feature. The activity and cluster score 

metrics were used to filter the m/z feature database to select for features that were 

correlated with strong and consistent phenotypes with activity scores greater than 10 

and cluster scores greater than 0.10 respectively. After applying these filters 634 

features remained that represented the m/z features predicted to be responsible for the 

observed bioactivites. A network was then generated from these 634 features in 

which extract nodes are connected to their corresponding m/z feature nodes by edges 

(Figure 3-7). The size of the node is defined by the activity score of the extract or half 

the activity score of the m/z feature for easy visualization. Clusters could then be 

assigned using the modularity feature of Gephi based on connectivities. From this we 

are able to observe 13 unique clusters, each of which contained the mass spectral 

features for the natural products predicted to be responsible for the bioactivity of the 

extracts (Figure 3-7). 
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Figure 3-6: (above) Table of Pearson correlations of the cytological profiles for 
extracts in which the m/z feature (m/z = 489.1896, rt = 1.59) was detected. In each 

cytological profile, yellow stripes correspond to positive perturbations in the observed 
cytological attribute and blue stripes correspond to negatively perturbed attributes. 
(below) Calculated synthetic fingerprint, activity score, and cluster score of m/z = 

489.1896. 
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Figure 3-7: The same network from Figure 3-1 with the extracts and m/z features colored assigned by 
Gephi modularity function. Each cluster is annotated with a representative molecule from each of the 

confirmed families of compounds. m/z features with activity scores less than 10 and clusters scores less 
than 0.10 were removed from the network.
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Figure 3-8: Graphs displaying the activity and cluster score values of each m/z 
feature. (a and c) depict activity and cluster score respectively versus feature count. (b 
and d) histograms of # of m/z features versus activity and cluster scores respectively. 
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3.5. Results and Discussion:  

CAM provides a powerful new technology for the characterization of natural 

product libraries for bioactive compound discovery. Within the 234 extracts 

examined in this study, 57 have cytological profiles with activity scores above 10. All 

of these extracts possess associated m/z features from the metabolomic analysis that 

are predicted to be responsible for the observed activities, indicating that CAM can be 

successfully applied to the broad systematic characterization of complex screening 

libraries. 

In general, these active clusters fall into one of three classes: clusters where 

the activity is caused by a single known natural product class; clusters where the 

activity is caused by the presence of multiple classes of known bioactives, and 

clusters where the activity is caused by bioactives that have no matches to available 

databases of microbially-derived natural products.  

3.5.1. Clusters Containing Single Bioactives:  

One example of a cluster driven by the presence of a single known bioactive 

class is the cluster containing extracts RLPA2008C, E and F (Figure 3-7). It is clear 

from the network that the chemical constitutions of RLPA2008C, E and F are distinct 

from the rest of the library. Three of the m/z features in this cluster were consistent 

with the [M + H]+, [M-H]-, and [M+Na]+ adducts of a compound with the molecular 

formula C62H86N12O16.  Searching the AntiMarin database (a comprehensive database 

of microbial and marine-derived natural products) identified actinomycin D as a 

match with the molecular formula. Clustering the synthetic fingerprints of these 
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features with the cytolofical profiles of the ENZO compound library strongly 

supported this result (Figure 3-9), with extracts RLPA2008C, E and F also clustering 

closely with the pure actinomycin D standard. The identification was confirmed by 

coinjection with a commercial standard of actinomycin D, which possessed the same 

m/z features and retention time as the predicted hits from the extract. 

A second example of clustering driven by the presence of a single bioactive 

compound is the cluster containing extracts RLPA1011E, RLPA1011F, RLPA2005E 

and RLPA2005F (Figure 3-7). In this case the activity plot for RLPA1011F reveals 

seven m/z features consistent with the single molecular formula C28H26N4O3. 

Comparison of this formula to the AntiMarin database reveals a match to the pan-

specific kinase inhibitor staurosporine. This assignment was confirmed by co-

injection with an authentic standard of staurosporine, which had a retention time and 

HRMS signals that matched those for the bioactive components in these extracts.   
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Figure 3-9: The cytological profiles of the ENZO compound library with synthetic 
fingerprints (the predicted cytological profiles of m/z features). The first cluster 

contains m/z features corresponding to the compounds staurosporine and echinomycin 
while the second contains m/z features corresponding to actinomycin D. 

 

3.5.2. Clusters Containing Multiple Bioactives.  

Although extracts 1011E and F were correctly predicted to contain 

staurosporine, examination of the Compound Activity Map and activity plots for 

extracts RLPA2005E and F revealed a second set of two m/z features predicted to 

contribute strongly to the observed biological activities of these extracts. These new 

m/z features were consistent with a compound with the molecular formula 

C51H64N12O12S2, which corresponded to the DNA-intercalator echinomycin. Presence 

of this second bioactive metabolite was also confirmed by co-injection with a 

standard.  
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Importantly, although these three situations (staurosporine only, staurosporine 

and echinomycin) are all in one connected “super-cluster” because they are related by 

the extracts in which they are found, they resolve into individual sub-clusters based 

on the interconnectivities of the extract nodes and m/z features. This demonstrates 

that CAM can resolve even convoluted situations involving mixtures of compounds 

with fundamentally different biological mechanisms of action and provide useful 

characterization of bioactive metabolites even in situation where mixtures of 

bioactives cause phenotypic responses that are not closely related to either compound 

individually. The synthetic fingerprints of the m/z features corresponding to 

staurosporine cluster closely with the pure compound from the ENZO library and are 

readily distinguishable from those of the echinomycin (Figure 3-9). 

 A second example of clusters containing multiple bioactive metabolites is 
provided by the cluster containing extracts RLPA2021C, E and F. In this instance the 

cluster contains a large number of candidate m/z features, many of which are 
consistent with different members of two separate classes of natural products: the 

fluorenone-containing fluostatins, and the macrolide antibiotic rosaramicins (Figure 
3-7). This situation is significantly more complex than the previous example, with 
multiple members of two separate bioactive compound classes contributing to the 
overall phenotypes observed for these extracts. Isolation and NMR evaluation of 

representative members of these two compound classes (fluostatin C,D, and J and 
Rosaramicin) confirmed their initial assignments, and permitted the evaluation of 

each compound class as pure compounds in the cytological profiling assay. The 
fluostatins all clustered closely with kinase inhibitors,21,22 while rosaramicins induced 

only a very weak phenotype that is consistent with their previous annotation as 
antibiotics and not cytotoxic agents (Figure 3-10 and  

Figure 3-11).23 CAM was able to identify the fluostatins as the correct bioactive 

constituent, but because the fluostatins and the rosaramicins always appeared 

together, the macrolides were called as a false positive. This limitation of the platform 

can be resolved by analyzing larger libraries of extracts from similar organisms 
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because this will reduce the probability that two compounds will always be co-

expressed. Once each constituent appears individually in the dataset, inactive 

compounds will display lower activity and cluster scores, eventually excluding them 

from the network.  

 

Figure 3-10: The cytological profiles of the ENZO compound library clustered with 
the purified fluostatins C, D, and J. The compound name is followed by the in well 

μM concentration. 
 
 

 

 

 
Figure 3-11: The cytological profiles of the ENZO compound library with the 

purified rosaramicin. The compound name is followed by the in well μM 
concentration. 
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3.5.3. Discovery of and Structure Determination of 

Quinocinnolinomycin:  

 In addition to the annotation of known bioactive metabolites, CAM is well 

suited to the discovery of novel compounds and the characterization of their 

biological attributes. Within this set of 234 extracts a number of unique clusters with 

high activity scores and no matches in the AntiMarin database were identified. We 

elected to explore one such cluster containing extracts RLPA2003E and F, because it 

contained just five m/z features that were common to both extracts. Examination of 

the activity plot highlighted one m/z feature with high activity and cluster scores (m/z 

= 400.2590, r.t. = 3.50 min, activity score 13.12, cluster score 0.57) that was 

prioritized for chemical analysis (Figure 3-12). LCMS analysis of this extract 

revealed the presence of two peaks with m/z features at 400.2590 amu and similar UV 

profiles, as well as two additional peaks that possessed the same UV profiles but had 

m/z values of 414.2756, suggestive of the presence of a family of related compounds.  
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Figure 3-12: The prioritization, isolation, and confirmation of the quinocinnolinomycins A-D (3.1-3.4). 
(A) m/z features plotted on a graph of Activity Score and Cluster Score. The color of the dot 

corresponds to the retention time of the m/z feature with the color bar and scale below in minutes. (B) 
Isolated cluster from Figure 3-1 and Figure 3-7 with the extract labels and m/z for the m/z features. (C) 

HPLC trace of the RLPA-2003E and the isolation of 3.1-3.4 (Figure 3-13). (D) Cell images of pure 
compounds screened as a 2-fold dilution series for quinocinnolinomycins A and B in both stain sets 

compared to images of vehicle (DMSO) wells. (E) Comparison of the synthetic and actual cytological 
fingerprints of the pure compounds. 
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 The molecular formulae C23H33N3O3 and C24H35N3O3 were determined based 

on the strong consensus between the [M + H]+ and [M + Na]+ m/z features for each set 

of two constitutional isomers. The earliest eluting compound with the molecular 

formula C23H33N3O3 was solved by NMR analysis, using a combination of 1H, 13C, 

gCOSY, gHSQC, gHMBC, and 1D-TOCSY spectra.  Consideration of the 1H-NMR 

spectrum indicated the presence of two vinylic and two aromatic signals, an aryl 

amine, one N-methyl doublet, two methyl doublets, and multiple overlapping 

resonances in a methylene envelope at 1.32 – 1.20 ppm. Interpretation of the 13C and 

gHSQC spectra confirmed the presence of two ketones and four aromatic/quaternary 

carbons. The planar structure of the tail of the molecule was assigned from either side 

of the methylene region using gCOSY and HMBC correlations. 1D-TOCSY from the 

H11 proton to the H21 was used to confirm that the allyl oxymethine was connected 

to the tail through the methylene region.  

 The remaining C9N3O2 belong to the headgroup. The attachment to the tail 

was assigned by gHMBC correlations from the vinylic protons at δ 7.01 and 7.22 to 

the carbons at positions 3 and 4 and gHMBC correlations from the aromatic proton on 

position 4 at δ 8.11 to the carbon at position 9. One of the ketones could be placed at 

position 5 based on gHMBC correlations from the aromatic resonance at δ 8.11.   

The resonance at δ 5.80 could be assigned to the vinylic proton at position 6 

between the two ketones that form the quinone based on gHMBC correlations to the 

carbons at positions 4a, 5, 7, and 8. The gHMBC correlation from the N-methyl at δ 
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2.84 to the carbons at positions 6, 7, and 8 placed the relative orientation of the 

vinylic amine. Finally, the incorporation of the remaining atoms (CN2) could only 

satisfy the requirement for three additional degrees of unsaturation by inclusion of the 

quaternary carbon at position 8a and two heteroaromatic nitrogens in positions 1 and 

2, thus completing the structural assignment. The ‘R’ stereochemistry of 

quinocinnolinomycin A was solved using Mosher’s ester method (Figure 3-15 and 

Table 3-1), and this assignment extended to quinocinnolinomycins B-D based on their 

common biosynthetic origin and the consistency in the sign of the circular dichroism 

spectra (Figure 3-16).  

 

Figure 3-13: Structure elucidation of quinocinnolinomycins A-D (3.1-3.4). (A) The core and tails of 
quinocinnolinomycins A-D are displayed in order. (B) The structure of quinocinnolinomyin A (3.1) is 

displayed. The positions are numbered based on the cinnoline core. (D) ∆δSR values for the MTPA 
ester analysis of the secondary alcohol to assign the absolute configuration. 
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Table 3-1/Figure 3-14: Tabulated NMR data from 3.1-3.4. All spectra were acquired in DMSO-d6 at 
600 MHz and 150 MHz for 1H and 13C respectively. The structure of the core of the 

quinocinnolinomycins and each of the different tails displayed and numbered for clarity. 
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Figure 3-15: Quinocinnolinomycin A (3.1) is displayed with the ∆δSR values for the 
modified Mosher’s ester method. Shielding from in the phenyl ring in the suggested 
major comformer displayed below causes the affected protons to be shifted upfield  

for that particular diastereomer. 

  

Table 3-2: Tabulated 1H NMR data for (3.1, 3.5, and 3.6). All spectra were acquired in DMSO-d6 at 
600 MHz. 

Position (3.1) δH S-Ester (3.5) δH R-Ester (3.6) δH ∆δSR = δS - δR

4 8.11 8.11 8.24 -0.13
4a
5
6 5.8 5.81 5.82 -0.01
7
8
8a
9 7.01 6.91 7.12 -0.2

10 7.22 7.17 7.27 -0.1
11 4.27 5.77 5.77 0
12 1.54 1.84 1.77 0.07
13 1.37 1.37 1.19 0.18
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Figure 3-16: CD spectra for the four quinocinnolinomycins 3.1-3.4. All four analogues have the same 
sign in the range of light absorption indicating that the absolute configurations are the same.  
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3.5.4. Mechanism of Action of the Quinocinnolinomycins:  

 Purified quinocinnolinomycins A-D where rescreened as two-fold dilution 

series (166.7μM – 2.5 nM) in the cytological profiling assay (Figure 3-17). 

Clustering these cytological profiles with those of the ENZO compound library 

training set revealed a distinct cluster containing all four analogues over a range of 

concentrations between 0.3 and 83.3 µM along with the known compounds 

thapsigargin (calcium ATPase inhibitor),24 tunicamycin (N-linked protein 

glycosylation inhibitor),25 lycorine (ribosome inhibitor),26 and brefeldin A (ARF 

GTPase inhibitor). 27 While the precise molecular targets of these compounds differ, 

they are all mechanistically related because they all affect the function of different 

components of the endoplasmic reticulum (ER) and result in ER stress and the 

induction of the protein unfolding response.28-30 Active concentrations of 

quinocinnolinomycins A – D are present within this cluster with Pearson correlations 

to the other training set compounds on the order of 0.6 – 0.7, indicating very close 

matches between these cytological profiling fingerprints. These data strongly suggest 

that the quinocinnolinomycins have a mode of action that causes ER stress. Moderate 

ER stress may be mitigated by macroautophagy (autophagy) in mammalian cells and 

can lead to cell death or survival depending on the context, and is an active area of 

research for future cancer therapies.29-32  Further studies to elucidate the precise 

molecular target of the quinocinnolinomycins will expand our understanding of the 

cellular processes involved with ER stress, the unfolded protein response, and 

autophagy with direct implications for human disease. 
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Figure 3-17: The cytological profiles of the ENZO compound library clustered with 
the purified quinocinnolinomycins (3.1-3.4) in a dilution series. The compound name 
is followed by the in well μM concentration. The strong similarity of the cytological 
fingerprints of the quinocinnolinomycins (3.1-3.4) with compounds known to cause 
endoplasmic reticulum stress (thapsigargin, tunicamycin, lycorine, and brefeldin A) 

suggest that (3.1-3.4) have a similar mechanism of action. 
 

3.6. Limitations and Caveats of CAM: 

3.6.1. The Acquisition of the MS Data is Too Slow: 

 Due to the length of the runs and the need to acquire data in both 2 GHz (high 

dynamic range) and 4 GHz (high resolution) modes in order to get accurate masses 
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over a large concentration range, each 96-well plate requires four cycles for a total of 

56 hours of continuous data acquisition and for the instrument to be cleaned and 

calibrated four times. Running the instrument continuously, this timeline would be 

reasonable to generate spectra for the whole 6,000 member library; however, the 

constant use puts significant strain on the instrumentation, resulting in frequent 

interruptions and long delays. In the next chapter I will discuss improvements to the 

UPLC methods as well as the use of the waters Aquity UPLC SYNAPT MS to 

improve acquisition time, the need for replicates, frequent and high strain on the 

system. 

3.6.2. Mass Spectrometry Is Not A Universal Detection Technique: 

 While ESI-TOF MS is able to detect the molecular ion for most organic 

compounds, there are some molecules that either do not ionize under the soft 

ionization conditions, or undergo in source transformations that are not easily 

predicted and complicate the assignment of a molecular formula. One known species 

missing from the raw data is the molecular ion for cycloprodigiosin. This compound 

was previously isolated from RLPA-2001C,D, and E as a hit from a peak library in 

the cytological profiling assay. The compound was later shown to have antibiotic 

activity in the vibrio cholera biofilm assay.6 Also, the fractions containing 

cycloprodigiosin exhibit striking phenotypes in CP. The absence of this particular 

compound could be due to concentration, but at the dilution used in the assay, the 

pigment is visible to the naked eye. 
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3.6.3. Singletons: 

 One limitation of the platform, as we have implemented it, is that compounds 

that are only observed in one extract are discarded during the data integration. This is 

done because no significant correlations can be made between the activity and the 

presence of the compound if the compound only appears once in the library. 

Unfortunately this results in the elimination of many of the features that could be 

driving activity. In the future, investigating singletons from each active extract that 

does not share any other m/z features with any other extract should be a top priority. 

3.6.4. Death Dilutions Lead to False Negative Loss of Biologically Active 

Compounds: 

 The death dilution series are absolutely necessary for the accurate prediction 

of the mode of action of compounds directly from the crude extracts; however, there 

are examples in which this process led to the elimination of biologically active 

compounds. Extracts RLPA-1012E and F and RLPA-1022E and F contain analogues 

of the rakacidin family of compounds. Rakacidin A and B were isolated and 

characterized by NMR from 1012E.33,34 The pure compounds were screened in a 2-

fold dilution series and exhibited activity, but the cell count curve showed a 

precipitous decline over a 4-fold dilution. Correspondingly the extract activity score 

dropped to 6.20 at a dilution with an acceptable total cell count. This activity is 

consistent with the previously reported activity of these compounds because they 

exhibit an 1,000-fold selectivity for hypoxic cancer cells and off target effects at high 

concentrations.21,35Performing the dilutions to reach a cell count greater than three 
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standard deviations from the mean control cell count caused the activity score for 

rakicidin A and B to drop to 2.36, below the filter threshold, and for the m/z feature to 

be removed from the network analysis.  

 This result both demonstrates that the death dilutions are effective for the 

elimination of cytological profiles of empty wells and observing the proper 

mechanism of action of compounds. In this case, the compounds should exhibit little 

to no effect at reasonable concentrations and the dilution process was effective at 

correcting for the overtly cytotoxic off target effects. Extracts exhibiting this dilution 

sensitive activity should be prioritized for screening in other assays that may reveal 

their true mechanism of action. 

3.7. Conclusion: 

By predicting the identity and mode of action of all detectable metabolites 

from complex extracts CAM aims to expedite the discovery process changing the 

traditional “blind” discovery model to a hypothesis-driven approach to novel 

bioactive compound discovery. CAM drastically reduces the time required to go from 

a hit in an assay to a lead molecule by minimizing iterative bioassay guided 

fractionation and screening steps, and allows hypothesis-driven exploration of NP 

libraries by providing a global view of compound diversity and activity across any 

library. In this study, analysis of the 234-member library revealed 13 unique clusters 

based on chemical and biological similarities. We were able to confirm the identities 

of 16 compounds from these clusters using a combination of analytical approaches, 
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providing a detailed molecular picture of the bioactivity landscape for this extract 

library in this biological assay.  

The discovery of quinocinnolinomycins A - D highlights the utility of this 

platform for novel compound discovery and mode of action characterization. The 

cluster containing extracts RLPA2003E and F is distinct in the Compound Activity 

Map and contained m/z features suggesting the presence of unique compounds 

correlated with a strong and distinct phenotype. These data strongly suggested that 

these mass features should be prioritized for structure elucidation, leading to the 

discovery of this new structural class of natural products with accurately predefined 

biological activities. 

3.8. NMR Data:  
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Figure 3-18: 1H NMR of 3.1 in DMSO-d6. 
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Figure 3-19: 13C NMR of 3.1 in DMSO-d6. 
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Figure 3-20: COSY of 3.1 in DMSO-d6. 
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Figure 3-21: HMBC of 3.1 in DMSO-d6. 
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Figure 3-22: HSQC of 3.1 in DMSO-d6. 
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Figure 3-23: 1H NMR of 3.2 in DMSO-d6. 
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Figure 3-24: 13C NMR of 3.2 in DMSO-d6. 
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Figure 3-25: 1H NMR of 3.3 in DMSO-d6. 
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Figure 3-26: COSY of 3.3 in DMSO-d6. 
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Figure 3-27: HSQC of 3.3 in DMSO-d6. 
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Figure 3-28: HMBC of 3.3 in DMSO-d6. 

  

H
M

BC
 o

f q
ui

no
ci

nn
ol

in
om

yc
in

 C
 (3

.3
) a

t 6
00

 M
H

z 
in

 D
M

SO
-d

6



 

 123 

Figure 3-29: 13C NMR of 3.3 and 3.4 in DMSO-d6. 
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Figure 3-30: 1H NMR of 3.4 in DMSO-d6. 
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Figure 3-31: 1H NMR of fluostatin J in CDCl3. 
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Figure 3-32: 13C NMR of fluostatin D and J in CDCl3. 
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Figure 3-33: 1H NMR of fluostatin C in DMSO-d6. 
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Figure 3-34: 1H NMR of rosaramicin in CDCl3. 
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Figure 3-35: 13C NMR of rosaramicin in CDCl3. 
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4. ONE STEP NATURAL PRODUCTS DISCOVERY: INTEGRATED 

STRUCTURE MATCHING AND MODE OF ACTION 

CHARACTERIZATION OF INDIVIDUAL METABOLITES FROM 

NATURAL PRODUCT LIBRARIES 

4.1. Introduction: 

 The preceding chapters have addressed the application of Compound Activity 

Mapping (CAM) to individual 384-well plates and have shown that this method 

enables rapid and reliable dereplication and discovery, but has several limitations. 

The use of other mass spectrometers with tandem mass spectrometry capabilities and 

expanded dynamic range can address several of the problems with the current 

platform by increasing the reliability of peak binning and eliminating the need for 

multiple acquisitions at different detector settings. Not only can MS/MS spectra 

provide solutions to some of the shortcomings of CAM, the added structural 

information can confidently identify related compounds based on the similarity of 

their MS2 fingerprints and connect these related species across samples. Combining 

these benefits with CAM’s biological annotation capabilities promises to drastically 

improve the discovery workflow by providing comprehensive biological activity as 

well as structural information for every detectable compound in every extract for any 

natural product library.  

 This chapter will begin by looking at the statistics of the data already acquired 

on the Linington Extract Library, discuss the Global Natural Products Social 

Molecular Networking platform for MS2 spectral comparisons and compound 
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dereplication with examples of the direct integration of this system with CAM, and 

briefly discuss future generations of the platform using Waters mass spectrometers 

and the UNIFI data analysis software. 

4.2. Expanding the Library Coverage: 

4.2.1. Preamble: 

 The end goal for CAM is to analyze the entire Linington sample collection in 

order to know the identity and mode of action of every molecule from every sample. 

While the analysis of the entire library is beyond the scope of this thesis, performing 

the data integration on the samples for which MS data has already been acquired is 

straightforward thanks to the design of the platform. Combining the 96 well plates 

containing 624 extracts from 104 organisms revealed that there is significant 

secondary metabolite overlap between the microbes collected in the United States 

(including American Samoa and Hawaii) and the microbes isolated from marine 

sediment from Panama. There are also small and large clusters that are specific for 

multiple organisms from each plate indicating that while the library is likely to 

contain redundancy, increasing the number of samples should increase the diversity 

of observed secondary metabolites. For example the phenazines from 

RLUS_384_1487_1538-CR04 (Plate 4) discussed in Chapter 2 and the 

quinocinnolinomycins and actinomycins from Panama extract library 

RLPA_384_1001_2032-CR01 (RLPA) discussed Chapter 3 are present as distinct 



 

 136 

clusters while the compounds present in both plates form large clusters of extracts 

with overlapping chemistry (Figure 4-1). 

 

 

Figure 4-1: A network of all analyzed extracts from RLPA and RLUS libraries connected to m/z 
features contained within those extracts and colored by the modularity algorithm in Gephi. All 

previously identified compounds are still present in the network and are labeled. There is a significant 
amount of overlap for some common metabolites such as staurosporine, microferrioxamines, 

bafilomycin, and nonactin. 
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4.2.2. Discussion of Data Statistics: 

4.2.2.1. Library Diversity and Singletons: 

  Central to the hypothesis on which CAM is based is the idea that as the 

number of samples increases, there is likely to be a significant amount of metabolite 

overlap between extracts. This should reduce the number of false positives because 

metabolites that appear to be active just because they are biosynthesized once 

alongside an active compound will, on average, have no bioactivity and be filtered 

out during the analysis process. Also, the singletons problem should become less 

frequent. This will result in very few m/z features belonging to just one extract, and 

therefore, any singleton should be prioritized as chemically distinct. In order to test 

this hypothesis the metadata for the three plates were analyzed by creating individual 

and combined databases and performing the biological integration.  

 Analysis of these data supports the general hypothesis that as the library 

expands the number of unique m/z features will decrease. When all the extract data 

are combined, there are 23,228 m/z features, including singletons, with only 150 

appearing in greater than 10% of the extracts. Individually there are 10,977, 8,544, 

and 10,276 features for Panama, Plate 4, and RLUS_384_2163_2214-CR17 (Plate 

17) respectively for a total of 29,797. This means that 6,569 features were common 

between all three plates. While it is unnecessary to define how many of these 6,569 

m/z, retention time (rt) pairs were present in all three plates or present in just two 

plates, this strongly indicates that there is a large amount of redundancy between 

plates with up to 28 % of the m/z features occurring in more than one plate. Similarly, 
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from all the plates there are 11,684 m/z features that were present in 2 extracts from 

that plate and were present in less than 10% of the total extracts from all three plates. 

These represent all the non-singleton features that are not from either systematic 

contamination or primary metabolites. There were 5,321, 4,507, and 3,734 features 

from Panama, Plate 4, and Plate 17 respectively for a total of 13,562 features 

indicating that there are approximately 1,878 or 16 % of the features that are common 

to samples within plates and across plates. These data suggest that a comprehensive 

dataset including all 6,000 Linington Lab extracts is likely to contain several 

instances of every m/z feature in the database. 

 Less common metabolites are also likely to be redundant in the library. There 

were 5,310, 3,995, and 5,625 singletons from Panama, Plate 4, and Plate 17 

respectively for a total of 14,930 total; however, upon combination of the plates there 

were only 11,394 total singletons. Suggesting that there are 3,536 or 15 % of the 

features that are present only once per plate but are present in more than one plate. 

All these data support the redundancy hypothesis and indicate that the predictive 

power and accuracy of CAM will increase as the size of the library increases. 

4.2.2.2. Activity and Cluster Score Comparison: 

 Adding more extracts also affected the frequency distributions of activity and 

cluster scores (Figure 4-2). From the Panama plate RLPA, the mean activity score 

was 4.66 with a standard deviation of 5.53 and the mean cluster score was 0.13 with a 

standard deviation of 0.14. For all the extracts the mean activity score was 5.95 with a 

standard deviation of 6.76 and the mean cluster score was 0.12 with a standard 
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deviation of 0.15. The higher activity score and lower cluster score is from the 

inconsistency in the death dilutions.  The extracts from Plate 4 were diluted using 

Nuclear Count Tranfluor EdU to report on cell count. The fingerprint of the dilution 

closest to the LD50 was used for biological profile integration. Plate 17 data was not 

dilute at all. As discussed in Chapter 2 and Chapter 3, selecting the proper dilution is 

critical for the accurate prediction of a mechanism of action; however, the combined 

data provides a useful insight into the flexibility of CAM.  

 

 

Figure 4-2: Histograms of the biological integration metrics cluster score and activity score for the 
Panama Plate (RLPA) and all the data (RLALL). 
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 The inconsistency in dilutions selection can be resolved in the future, but the 

resulting network indicates that even with partial dilution data, CAM can provide 

accurate predictions of the bioactive constituents in an extract (Figure 4-1). This is 

important because it means that the system is robust to batch effects and partial data. 

Therefore, discovery and dereplication can be performed in real time as the library is 

being processed through the platform. 

4.3. GNPS – Global Natural Products Social Molecular Networking: 

4.3.1. Preamble: 

 The major advances in natural products over the next 20 years will come from 

the ability to leverage the swaths of data collected by modern instruments and 

biological screens to ask questions that are fundamental to our understanding of the 

function of secondary metabolites in ecology and biomedical research. Generally, 

these approaches will allow researchers to more quickly arrive structural and 

functional annotation in order to avoid the expensive process of compound structure 

elucidation and target identification. While the overarching focus of our lab is to 

identify potential uses for new and old compounds as molecular probes or 

therapeutics, the Dorrestein Lab at the University of California in San Diego focuses 

primarily on the use of tandem mass spectrometry data to rapidly profile classes of 

metabolites from live organisms, libraries, and even human skin.1-4 We were invited 

by Professor Dorrestein to participate in a flagship study in which they began creating 

a centralized platform for the storage and analysis of natural products MS2 data from 
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labs all around the world. The platform they call Global Natural Product Social 

Molecular Networking (GNPS) aims to take the information that remains hidden in 

laboratory notebooks, in-house databases, and papers and make it all generally 

available in the same way that the National Center for Biotechnology Information 

(NCBI) has curated databases of nucleotide and protein sequence information. 

 The two key components of the system are the GNPS database and Molecular 

Networking for data visualization and exploration. The GNPS database is structured 

so that users can add raw data to the database in the form of MZXML formatted files 

and may choose to annotate compounds by the scan number in which the parent mass 

appears. In this way, all the MS2 data from every known compound from all the labs 

can be collected, stored in one central location, and explored. The compounds are 

assigned classifications (Gold, Silver, and Bronze) based on whether there is extra 

structural data to support and corresponding publications to support the assignment. 

Also, because ionization, adduct formation, fragmentation, and therefore the MS2 

fingerprints of compounds can change dramatically on different systems under 

different conditions, the database stores a large amount of metadata about the 

acquisitions including the instrument, detected adduct, ionization source, and strain 

information for the producing organism. As part of the project, I traveled to San 

Diego for three weeks and added 14 Gold level annotations to the GNPS library from 

the Panamanian extracts. In addition, I acquired the raw spectra from all 234 extracts 

and these were added to the GNPS library database. 
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 One of the advantages of GNPS and all open, crowd-sourced information 

(even in the social media forms of Facebook, Twitter, etc.) is that the addition of raw 

spectra from extracts allows for information about rarefaction, coexpression of 

metabolites, and overall metabolite diversity to be explored in an open and accessible 

format. Any user can query the database to find out if their spectra match other 

spectra, regardless of whether they are annotated or not. While the coexpression of 

two metabolites may not be of interest to the data collector, this information that 

would otherwise be inaccessible in a hard drive is available for others for their 

scientific pursuits. What’s more, as the dataset is continually updated and users are 

notified monthly if others have identified peaks from their library or if others have 

proposed alternate assignments, creating a living set of data that becomes richer and 

more informative as more users add their knowledge. 

 So far the discussion has focused on a database format that is searchable 

through online tools, but much of the power of GNPS relies on the visualization of 

datasets using molecular networks in which parent m/z peaks can be connected by the 

similarity of their MS2 profiles.1 This technique has been rapidly adopted by in the 

field of natural products and has been used in everything from discovery of new 

molecules from well studied organism like Streptomyces coelicolor,5 to the detection 

of siderophores in white nose syndrome that is killing millions of bats from the 

United States,6 to integrated genomics approaches connecting molecules to the gene 

clusters that encode them.3 Originally, the algorithms were used for the clustering of 

similar peptides from proteomics data in order to identify proteins more quickly using 
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database searches.7,8 Following this, these same principles were applied to small 

molecule peptides9 and later to all types of small molecules1 produced by living 

colonies. Overall the system works well for the broad characterization of large, 

ionizable molecules from natural product libraries and produces appealing and easily 

interpretable data outputs.  

 This platform is effective, widely adopted, and will be instrumental in 

modernizing the field of natural products; however, it is not without its limitations. 

As mentioned before, different instruments, run by different people, with different 

conditions will always yield slightly different results. The metadata that is stored will 

help to understand these differences in parent mass ionization and MS2 spectra, but 

adjusting the parameters within GNPS and Molecular Networks to give the most 

informative data is far from an exact science. For example, the parameters cosine 

score of the MS2 fingerprints and the number of peaks required for a positive 

identification change the connectivity of the molecular networks outputs and the 

number of identifications in GNPS significantly. Choosing too strict values misses 

identifications, but overly lenient settings cause the system to take far too long to 

analyze the data and will produce spurious results. More work is needed to create 

ways of analyzing the data so that these parameters can be set more intelligently.  

4.3.2. Panama Library of Compounds: 

 From the 234 extracts analyzed 200,370 parent m/z peaks were detected with 

acceptable MS2 fingerprints. The blanks were removed by assigning those spectra to 

group 1 in GNPS and then using a filter in cytoscape to remove any parent m/z node 
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that belongs to the blank group. After blank removal 187,448 nodes remain in the 

network table and are only assigned to group 2. This amount of data cannot be easily 

displayed and crashes the Cytoscape Viewer. Using filters for the data allows 

pertinent information to be viewed from the whole library. For example, of the 

187,448, only 66 had MS2 spectrum cosine scores >= 0.7 and 4 matching peaks with 

known compounds in the GNPS library. These nodes are displayed with their Library 

ID name in Figure 4-3.  

 The GNPS website allows you to change many of the parameters used for 

linking parent m/z nodes together as well as whether or not to display nodes with 

acceptable MS2 spectra but no connections in the dataset. Unless otherwise stated the 

following parameters were used to create molecular networks from GNPS: cosine 

score >= 0.6; min peaks = 3; parent m/z range of 0.2 Daltons; Ion Tolerance = 0.5 

Daltons Minimum cluster size 1. Adjusting these parameters can significantly change 

the data output and is adjusted on a dataset by dataset basis. These are the default 

settings recommended for large datasets.  
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Figure 4-3: A network of all nodes from the Panama library identified by the MS2 
similarity searches from the GNPS libraries with the standard settings for analyzing 

large datasets. 
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4.3.3. Compound Activity Mapping, GNPS, and Molecular Networks: 

 To pare down the number of nodes in the network so that the dataset may be 

visually represented and enriched only for bioactive components, the CAM data was 

directly integrated with the molecular network. First a table of all the m/z features 

from CAM with activity scores greater than 10 and cluster scores greater 0.15 was 

exported from CAM. This table was then compared to the node table exported from 

GNPS. Parent m/z nodes present in the table from CAM were assigned to group 3 (as 

previously discussed group 1 contained nodes present in the blank runs and group 2 

contained all the extract nodes). This new group contained only parent m/z nodes that 

were predicted to be responsible for the observed bioactivity. The twice-filtered 

molecular networking data for the Panama extract library is displayed in   Figure 4-4.  

 Using the bioactivity filter enabled the exploration of the data in cytoscape 

and the analysis of the hybrid system. Comparing the manual identification to the 

MS2 GNPS database identifications showed the utility and limitations of GNPS 

dereplication. GNPS was able to correctly match 9 out of 10 previously known 

compounds and identify phenazine-1-carboxylic acid that was previously not 

dereplicated Figure 4-3. The only compound that is known to be in the active extracts 

that was not identified was the vacuolar-ATPase bafilomycin A1. Molecular networks 

displayed the m/z and two parent m/z features differing by 14 amu; however, the 

database did not identify the [M+Na]+ as bafilomycin A1 (Figure 4-5). As the 

database grows and more compounds are entered the identification of common 

metabolites like bafilomycin should be routine. Differential ionization and 
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fragmentation between instruments and collision cell energies will always result in 

different fragmentation patterns and the intensity of fragment ions, but as more users 

enter known compounds into library from different instruments, this problem should 

also be at least partially resolved. 
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  Figure 4-4: Molecular network of all the parent mass nodes with acceptable MS2 fingerprints that are 
also predicted to be active in compound activity mapping. The large proportion of unconnected nodes 
in the network indicates that many of the masses in this compound library are structurally distinct, or 
either the displayed metabolite or related family members were not at concentrations sufficient for the 

consistent detection of fragment ions.  
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Figure 4-5: Identified structures from manually assigned from CAM and identified by GNPS. (A) 
Expansion of the network showing only active parent m/z nodes with MS2 cosine similarity scores 
greater than 0.6. The compounds that were previously identified by CAM are labeled. (B) Active 

parent m/z nodes identified by comparison of MS2 spectra from the available GNPS libraries. 

A) 

B) 
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4.3.4. Investigation of the Extracts of Individual Organisms: 

 Molecular networking is also useful for displaying compound families from 

one or several organisms Figure 4-6 and Figure 4-7. For example, examining the 

extract RLPA-2003, the parent m/z features for diazaquinomycin C and 

quinocinnolinomycin A-D belong to two distinct clusters. Other analogues of 

diazaquinomycin C are clearly present in the extract of RLPA-2003, but the MS2-

based clustering provides a way to dereplicate these compounds without further 

purification or the need to do coinjections. A second example of the utility of the MS2 

based clustering in combination with bioactivity profiling is the extract RLP-2021 

(Figure 4-7). The compound rosaramicin and its analogues have been heavily 

studied10-12 and derivatized because of their antibiotic activity and are now easily 

distinguished from the parent m/z nodes corresponding to the fluostatins.13 CAM did 

not previously have the ability to distinguish compounds based on structural 

similarity and displayed these compounds in a large single cluster. Now these 

compounds as well as desferrioxamine B appear in the Cytoscape viewer, are 

positively identified by GNPS, and are connected to related compounds.  
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Figure 4-6: Molecular network of extract RLPA-2003. The parent m/z nodes predicted to be active by 
Compound Activity Mapping are highlighted in yellow. Previously derreplicated compound clusters 

are labeled with the positively identified natural product. 
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Figure 4-7: Molecular network of extract RLPA-2021. The parent m/z nodes 

predicted to be active by Compound Activity Mapping are highlighted in yellow. 
Previously derreplicated compound clusters are labeled with the positively identified 

natural product.  
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4.4.  Waters Collaboration: 

 While it is beyond the scope of this thesis to discuss the future integration of 

MSe data into CAM, a brief discussion of the capabilities of Waters Unifi system and 

its application to the Panama library will provide a glimpse into the future of the 

platform. Over the last year we have worked closely with the technology 

development department at Waters to use their new MS technologies to explore our 

natural product library. Through many conference calls and a trip to Milford to visit 

their department and perform method optimization, we have developed methods for 

the next generation of CAM including the use of MSe. Briefly, MSe is a technology 

that is similar to other tandem MS experiments that use collision assisted dissociation 

to fragment parent ions; however, instead of selecting for one m/z at a time to be 

fragmented, all ions are fragmented. The MS switches rapidly between two modes: 

low energy mode in which parent m/z features are detected, and high energy mode in 

which all observable fragments are detected. The fragment ions are aligned as best as 

possible to parent ions using the chromatogram and the data can be analyzed similarly 

to MS2 fragmentation data.  

 There are several distinct advantaged to MSe over MS2. The biggest advantage 

is that fragmentation data is collected for every detectable parent ion. Data dependent 

MS2 acquisitions can only fragment the ten most concentrated ions at any one time. 

This limits the number of metabolites that can be detected severely because co-eluting 

peaks will be lost if the titres or relative ionization are dramatically different. Also, 

focusing one ion at a time limits the number of scans that can be acquired for each 
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molecule, reducing the quality of data. The primary disadvantage to this strategy is 

that, at the moment, assigning fragment ions to precursors remains a challenge and 

the data output is not straightforward making this technique difficult to directly 

integrate with CAM. 

  It has already been shown that CAM is able to predict the parent masses 

responsible for biological activity and that these masses can be grouped by structural 

similarity based on MS2 fingerprints; however, this analysis is complicated and 

requires a lot of steps. In order to re-integrate the information obtained in compound 

activity mapping into a user friendly walk up instrument, we will integrate a custom 

compound structure database with the fragment identification capabilities included in 

Unifi. By building an atlas of all bacterial natural products and using structural 

similarity to cluster families of molecules in a network, we will use related parent 

masses to map m/z features from extracts to predicted families.  

 These families can be imported into the Unifi scientific libraries and the MSe 

fingerprints of these natural products can be automatically analyzed by Unifi (Figure 

4-8). For example, when a small library of compounds identified in the Panama Plate 

were imported as a scientific library, surfactin was readily identified and the structure 

was confirmed accurately by Unifi without user input. This example shows how, 

combined with CAM and a comprehensive natural products atlas, Unifi can enable 

comprehensive dereplication, lead confirmation and biological activity prediction.  
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Figure 4-8: A screen capture from the Waters Unifi Natural Products Solutions Program. Top window 
contains the list of identified masses with surfactin highlighted. The left window shows the extracted 

ion chromatogram (EIC) for surfactin identified from RLPA-2010E. The upper right window is 
average spectrum of the low-energy (MS1) scans over the time window from the EIC. The identified 
peaks highlighted in green are related [M+H]+ and [M+Na]+ adducts of the same parent mass. The 
lower right window shows the average of the high-energy (MSe) spectra with the signals identified 

with their corresponding structure fragments. 
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5. GENES TO MOLECULES AND BACK AGAIN: GENOME MINING 

APPROACHES TO NATURAL PRODUCTS DISCOVERY 

5.1. Introduction: 

 The biosynthesis of natural products continues to be extensively studied due 

to the importance of secondary metabolites for biomedical applications, as well as for 

the fundamental understanding of the role these molecules play in the natural 

environment. Understanding the significant role of the human microbiome in human 

health through microbe-microbe and microbe-host interactions has also bolstered the 

field of bacterial biosynthesis.1 The use of genomic information combined with the 

improvements in analytical technologies has ushered in a new era of natural products 

discovery and has provided a glimpse into the outstanding potential for accessing new 

chemistry through the isolation and heterologous expression of “cryptic” or 

unexpressed metabolites in standard microbiology hosts.2 The investigation of 

individual and related gene clusters have been extensively studied as a method for 

production optimization,3 derivatization,4 bioengineering,5 and the metagenomic 

annotation of producing strains.6 Overviews of the synthetic machinery used in these 

applied studies has been highlighted in many reviews and is beyond the scope of this 

discussion,7,8 but as our understanding of how the modules involved in biosynthesis 

may be connected increase,9 the potential for plug and play heterologous expression 

of novel natural products will become a reality.10 

 While this expanding subdiscipline of natural products is increasingly 

accessible due to the continuously declining cost of genomic sequencing and 



 

 159 

assembly, the identification of biosynthetic gene clusters has been limited to a subset 

of the classes of natural products.11-15 In order to expand the breadth of detectable 

gene clusters, the Fischbach group at the University of California at San Francisco, in 

collaboration with Professor Marnix H. Medema of the University of Groningen, The 

Netherlands, developed a Hidden Markov Model based method to expand upon 

antiSMASH, a similar online tool developed by these labs, to detect more classes of 

gene clusters in order to create a global census of all bacterial biosynthetic gene 

clusters from 1,154 sequenced bacterium for which the sequence data is publicly 

available.15-17 

 Briefly, the new ClusterFinder algorithm takes nucleotide sequences and 

converts them into Pfam domains or protein family domains. Pfam domains are 

assigned by comparison to a database of assigned protein families using the HMMER 

package.18 Each domain is assigned a probability of being part of a gene cluster based 

on the frequency at which it appears in a database of 732 manually curated known 

biosynthetic gene clusters in reference to the preceding and subsequent domain. 

While it may seem that this system would bias for gene clusters similar to those in the 

training set, ClusterFinder has low training set bias because each gene is broken up 

into small segments. These segments (domains) are continuously reused to create 

different types of secondary metabolites, and therefore the presence of homologous 

domains in tandem may be used to find new classes of biosynthetic gene clusters. 

 The ClusterFinder algorithm was used to identify biosynthetic gene clusters 

from 1,154 sequenced genomes representing all publically available sequenced 
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bacterial genomes. From these genomes 33,351 putative biosynthetic gene clusters 

were identified, 10,742 with high confidence and 22,627 with low confidence.  An 

all-by-all matrix of the evolutionary distance between clusters was then constructed 

of the high confidence identifications. This matrix was used to create a network of the 

gene clusters.19 Several well-studied families of gene clusters are taxonomically 

widely distributed across bacteria taxonomy. These families include NRPS-

independent siderophores, O-Antigens, capsular polysaccharides, and carotenoids, 

which are all distinguished in the network (Figure 5-1).20-23 While it was expected that 

there would be several small families of gene clusters specific for closely related 

strains, there was large, unidentified family containing 1,021 gene clusters that was 

widely distributed across many bacterial clades. This chapter will describe the 

characterization of this family of gene clusters that produce aryl-polyenes (APEs). 

The APE family is the largest family of gene clusters even exceeding the carotenoids 

with 870 gene clusters (Figure 5-1, Figure 5-2, and Figure 5-3).24  
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Figure 5-1: A similarity network of high confidence biosynthetic gene clusters (nodes) connected if 
their similarity score19 is greater than 0.5. The edges are weighted by this similarity score. The largest 
connected component contains 72% of the gene clusters and contains oligosaccharides, nonribosomal 

peptides (NRPs), polyketides/lipids indicating that these types of biosynthetic gene clusters are 
common to many different families of gene clusters. The genes are colored based on gene cluster type 

and taxonomically widely distributed gene clusters such as NRPS-independent siderophores, O-
Antigens, capsular polysaccharides, and carotenoids are circled on the graph. The APEs are also 

circled. Adapted from Cimermancic et al.24 
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Figure 5-2: A phylogenetic tree of the 1,154 organisms used in the biosynthetic gene cluster analysis 
with the high confidence gene clusters arrayed as colored bars around the outside of the cladogram and 

the circles within the tree indicating the amount of diversity at each node. The Gene clusters are 
colored based on the class with the same color key as in Figure 5-1. Organisms in which an APE 

related biosynthetic gene cluster was predicted are labeled with a red bar on the outside of the circle. 
APE genes are distributed widely across clades of gram-negative bacteria. Adapted from Cimermancic 

et al.24  
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 This gene cluster family could be split into three distantly related subfamilies. 

Only subfamily three contained gene clusters for which the product had been 

identified. These products, flexirubin25,26 and xanthomonoadin,27-29 are aryl polyenes 

(APE)s and have been extensively studied, but the relationship between these gene 

clusters had not been previously identified. The family and three subfamilies are 

extremely widely dispersed across gram-negative bacteria with 36.4% of the strains 

from a typical genera containing a related gene cluster; however, subfamilies 1 and 2 

had no known small molecule products. One example for each subfamily was chosen 

for characterization in order to understand the relationship between these extremely 

common related gene clusters. The isolation and structure elucidation of the APEEC 

and APEVF molecules is presented in this chapter. 

5.2. Structure Assignment: 

 In order to characterize the compounds produced by the flexirubin like 

families 1 and 2 Dr. Jan Claesen of the Fischbach Laboratory at the University of 

California at San Francisco, Mission Bay amplified the 15.5 kb gene cluster 

containing 18 genes from Escherichia coli strain CFT073 into a plasmid (Figure 

5-3).30,31 Colonies of E. coli Top10 transformed with this plasmid exhibited a strong 

yellow pigment. The plasmid was maintained using antibiotic resistance cassettes and 

the transformed strain was used to isolate the gene product from family 1, APEEC. 

The product from family 2, APEVF, was isolated from Vibrio fischeri strain ES114 

WT. The gene cluster was confirmed by knocking out the gene cluster from the WT 
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strain and heterologous expression. The strains described above were shipped to 

UCSC for growth and chemical characterization. 
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Figure 5-3: The subfamily identification, gene cluster analysis, pigment confirmation, and small 

molecule product structures of the APEs. (A) The three subfamilies of 1,021 gene clusters in the APE 
family divided into the three subfamilies. The heatmap represents the presence of Clusters of 

Orthologous Groups (COGs) generated by OrthoMCL32 using the adapted distance metric19 where grey 
represents one COG and dark grey represents the presence of two or three COGs. The locations of the 

clusters from E. coli CFT073, V. fischeri ES114, Xanthomonas campestri, and Flavoacterium 
johnsonii, are indicated. (B) Structures of the new APEEC, APEVF, xanthomonadin, and flexirubin. (C) 

Cell pellets from the strains used for the isolation and confirmation of the APE gene clusters. V. 
fischeri WT, E. coli Top10 expressing APEVF, and the E. coli Top10 expressing multiple copies of the 
E. coli CFT073 APE gene cluster all appear yellow, while vector controls and knockouts of the same 

strains do not show significant yellow pigmentation. (D) The gene cluster blueprints with protein 
segments labeled for the four organisms highlighted in part A of this figure. The collapsed region in 

the flexirubin gene cluster represents the alkyl tail of the molecule not shown in part B. Adapted from 
Cimermancic et al.24  
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5.2.1. HPLC Based Polyene-Production Control Experiment:  

 In order to determine if the compounds from subfamilies 1 and 2 were being 

produced in culture and to optimize the extraction conditions, medium scale 50 mL 

cultures were grown and extracted. Consistent with the results displayed in Figure 

5-3-C the V. fischeri ES114 and E. coli Top10 expressing the CFT073 APE gene 

cluster clearly produce pigment based on HPLC-DAD monitoring 441 nm Figure 5-4. 

With the small scale extraction protocol in hand, large scale cultures could be started 

and prepared for APE isolation. 

5.2.1.1. HPLC Based Polyene-Production Experimental: 

 Escherichia coli strains were grown in LB media buffered with 50 mM TRIS 

at pH 7.5. Kanamycin and ampicillin were added at a final concentration of 50 µg/mL 

to maintain plasmids, and when necessary 1.5% agar was added to make solid media. 

V. fischeri ES114 and Vibrio fischeri ES114 ∆APE were grown in LBS media made 

with 50 mM TRIS buffer pH 7.5, 20 g of sodium chloride, 3 mL of glycerol, 10 g of 

tryptone, and 5 g of yeast extract per liter of media.  Xanthomonas campestri was 

cultured in NYGB media made from 5 g of peptone, 3 g of yeast extract, and 20 g of 

glycerol. E. coli strains were grown at 37 °C and shook at 250 rpm. V. fischeri strains 

and X. campestri were grown at 30 °C and shook at 120 rpm. Each organism was 

inoculated into 10 ml of the appropriate media in a 50 mL culture tube and incubated 

for 8h. Then a 10% inoculum was used to inoculate 50 mL of media. Cultures were 

grown to saturation at 24 h, transferred to 50 mL falcon tubes, and spun down at 7830 
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rpm for 20 min. The supernatant was carefully decanted, the cell pellets were frozen 

in liquid nitrogen, and lyophilized. 

 The dried cells were extracted by transferring them to a 20 mL amber 

scintillation vial containing 5.0 mL of 2:1 methylene chloride/methanol and stirring 

them vigorously. After 1 h, 2.0 ml 0.5 M potassium hydroxide was added and stirred 

for 1 h to hydrolyze the pigments. The solutions were neutralized with 2.0 M sulfuric 

acid, the organic layer was collected by liquid/liquid separation in a 50 mL separatory 

funnel and then dried over sodium sulfate. The solution was filtered and dried under a 

stream of nitrogen. The dried extracts were suspended in 0.2 mL of acetone (HPLC 

grade), transferred to 0.5 mL eppendorf tubes, spun down for 5 min at 3,000 rpm, and 

transferred to an insert in an amber LCMS vial. 

 Samples were subjected to a gradient of 30% acetonitrile in water with 0.02% 

formic acid to 90% acetonitrile over 20 min, after a 2 min initial hold, and then a 3 

min 100% acetonitrile wash. Samples were injected on a C18 RP 2.6 micron particle 

size 100 mm x 4.6 mm Kinetix column (Phenomenex, USA) using an Agilent 1200 

HPLC with diode array detector.  

5.2.2. Special Considerations for Structure Elucidation: 

 Difficulties in the isolation of related aryl-polyenes from Lysobacter 

enzymogenes are well known.33 To date structure elucidation efforts for this class of 

compounds have relied primarily on infrared spectroscopy (IR), ultraviolet 

spectroscopy (UV), mass spectrometry (MS), and some chemical manipulations, but 

due to the light sensitivity and limited material, no NMR spectra have previously 
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been reported.27 By developing isolation conditions that rigorously exclude exposure 

to light, we isolated sufficient material to complete the first solution NMR 

characterization of a molecule of this type, and have confirmed all elements of the 

structure elucidation through careful and exhaustive examination of 1D and 2D NMR 

spectra.  

Figure 5-4: HPLC injections monitoring 441 nm for the presence of APE production. (Above) V. 
fischeri ES114 WT extract and V. fischeri ES114 ∆APE extract overlaid. (Below) Extracts of E. coli 
TOP10 with heterologous expression of the E. coli APE gene cluster, an empty plasmid, and without 
plasmid. The chromatograms and the color of the cells in Figure 5-3 show that the expression of APE 

is dependent on the presence of the identified gene clusters. 
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5.2.3. The Aryl Polyene from Family 1, E. coli: 

 The pure APEEC, a red amorphous powder, was determined to have a 

molecular formula of C21H22O3 based on the observation of the [M-H]- adduct at 

321.1496 m/z (∆ppm = -0.310) and analysis of one and two-dimensional NMR 

experiments. The chemical formula was confirmed based on 1H NMR (Figure 5-10) 

and HSQC (Figure 5-13) assignment of 15 aromatic and vinylic protons, one aromatic 

methyl singlet, one methoxy singlet, and one potential broad singlet phenolic proton 

at 8.43 ppm (Figure 5-5). From the TOCSY (Figure 5-16) spectrum it was clear that 

the molecule contained two independent spin systems. One spin system was defined 

as a phenyl ring with a 1,2,4 substitution pattern based on classical H18-H19 ortho-

coupling constants (3JHH = 7.2 Hz), meta-coupling between H15 and H19 (4JHH = 2.1 

Hz), and HMBC (Figure 5-14) correlations from H19 and H20 to C17, H19 and H20 

to C15, the aromatic methyl singlet to C15 and C16, and the phenolic proton to C17 

and C16 (Figure 5-6). The second spin system was defined as a long conjugated 

polyene terminating at a methyl ester and the 1,2,4-phenyl ring. The terminus of the 

polyene chain at the phenyl ring was identified based on HMBC signals from H15 

and H19 to C13 as well as ROESY (Figure 5-15) signals between H15 and H13, and 

H19 and H13.  

 The methyl ester was identified via an HMBC correlation from the singlet 

methoxy proton signal at 3.70 ppm to the quaternary carbon C1 at 167.7 ppm. Protons 

H2 (doublet, 1H 5.93 ppm 3JHH = 15.2 Hz; 13C 120.5 ppm) and H3 (doublet of 

doublets, 1H 7.33 ppm 3JHH = 15.1, 11.4; 13C 145.1 ppm) displayed strong COSY 
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(Figure 5-12) correlations to one another, and both possessed HMBC correlations to 

the ester carbonyl at C1. These chemical shifts and coupling constants are indicative 

of the presence of an alpha-beta unsaturated ester. The assignment of the polyene 

chain continued through H4 based on HMBC and COSY correlations. Of the 

remaining C8H7 one quaternary carbon is contained in the phenyl ring connecting the 

aromatic functionality to the polyene, leaving the remaining constituents (C7H7; all 

between 1H 6.85 – 6.40 ppm and 13C 126 – 138 ppm) as a contiguous all-trans 

polyene chain connecting the aromatic head group with the methyl ester tail. The all-

trans configuration is suggested by the absence of the ‘cis peak’ centered around 340 

nm in the UV spectrum that is a diagnostic marker for alkene chains that possess at 

least one region of non-linear (angulated) region of lesser symmetry, caused by the 

presence of cis-olefin(s).34  

 

Figure 5-5: The structure of the APEEC polyene. 
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Figure 5-6: The structure of APEEC with COSY (dashed lines) and HMBC (solid 

lines) correlations. 

 

5.2.4. Aryl Polyene from Family 2, V. fischeri: 

 APEVF, a red amorphous powder, was determined to have a molecular formula 

of C22H24O3 based on the observation of the [M-H]- adduct at 335.1652 m/z (∆ppm = 

0.0) and analysis of one and two-dimensional NMR experiments (Figure 5-7). 

Comparison of the NMR spectra in acetone-d6 to that of APEEC in acetone-d6 

indicated that the polyene segments of the two molecules were very similar based on 

related chemical shifts (Figure 5-10 and Figure 5-17). To alleviate solubility issues, 

one and two-dimensional experiments were repeated in DMSO-d6. The alpha-beta 

unsaturated methyl ester motif was assigned based on both COSY (Figure 5-19) 

correlations between H2 (doublet, 1H 5.97 ppm 3JHH = 15.2 Hz) and H3 (doublet of 

doublets, 1H 7.31 ppm 3JHH = 15.2, 11.5) and HMBC (Figure 5-21) signals from both 

H2 and H3 to C1 at 166.7 ppm, as well as HMBC correlation from the methoxy 

proton singlet at 3.66 ppm to ester carbonyl C1 (Figure 5-8). As with the previous 
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correlations to C4 and C3 as well as an HMBC correlation to C5 from H3 (assigned 

in conjunction with HSQC data, Figure 5-7 and Figure 5-8). 

 The one aromatic singlet in the downfield region of the spectrum (H15, H19; 

1H 7.06 ppm; 13C 126.7 ppm) integrated for two protons, suggesting a 1,2,4,6-tetra-

substituted symmetric aromatic group.  The aromatic methyl singlet (1H 2.15 ppm; 

13C 16.3 ppm) integrating for six protons and the phenol signal at 8.47 ppm suggested 

para substitution of the polyene and phenolic OH moieties, with the methyl groups 

either ortho or meta to the phenolic OH. An HMBC correlation from singlet aromatic 

protons H15 and H19 to C13, coupled with through space ROESY (Figure 5-22) 

correlations between H13 and H15/H19 proved that the substitution pattern of the 

phenol was 1,2,4,6 substituted. As with the previous structure assignment, completion 

of the structure elucidation was accomplished by consideration of the remaining 

double bond equivalents and the chemical shifts for the 1H and 13C resonances for the 

remaining atoms, which unequivocally determined that the aromatic head group and 

the methyl ester tail be connected via a linear polyene chain.  

 

Figure 5-7: The structure of the APEVF. 
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Figure 5-8: The structure of the APEVF derived polyene with COSY (dashed lines) and HMBC  (solid 
lines) correlations. 

5.2.5. All-trans Conjugated Polyenes: 

 Consideration of the UV-profiles of the isolated peaks APEEC and APEVF with 

previously reported data on alpha and beta carotenoids suggests and all-trans 

structure for both molecules.34-37 A cis-double bond within extended polyene chains 

breaks the linearity of the molecule, resulting in a shorter chain and new absorption 

axis. The result is what is known as a cis-peak in the UV spectra between 310 and 

370 nm. In both the V. fischeri and E. coli UV-profiles there is little or no absorbance 

between 310-370 nm, indicating all-trans configurations for both structures (Figure 

5-9). 
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Figure 5-9: The UV-Vis absorbance spectrum for APEEC and APEVF without the presence of the cis-
peak from 310 to 370 nm. 

5.2.6. Mass Spectrometry: 

 Compounds were analyzed on an Agilent UPLC-ESI-TOF mass spectrometer, 

comprising a 1260 binary pump in low dwell volume mode, an Agilent column oven 

heated to 45°C, and an Agilent 6230 Time-of-flight Mass Spectrometer with an 

electrospray ionization (ESI) source. A sample of 1 µL, dissolved in 50% v/v 

methanol/water, was injected onto a 1.8 µm particle size, 50 x 2.3 mm I.D. Zorbax 

RRHT column. Each sample was subjected to a MeCN:H2O gradient from 10% to 

90% MeCN over 4 min followed by 1.5 min at 90% MeCN at a flow rate of 0.8 mL 

min-1. Formic acid, 200 µl/L, was added to both the water and the acetonitrile. Water, 

1 mL min-1, was added to the acetonitrile. The mass spectrometer was run with a 

detector mass range of 100 to 1700 m/z. The ESI source was operated with a 

desolvation temperature of 350 C and a drying gas flow rate of 11 L min-1. The 

fragmentor voltage was held at 135 V. In positive ESI mode, the capillary voltage 

was ramped from 2500 V at 0 min to 2750 V at 1 min, and to 3000 V at 3 min.  In 
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negative ESI mode, the capillary voltage was held at 2750 V. Each sample was run in 

high-resolution (4GHz) detector mode.  

5.3. Growth and Purification: 

5.3.1. Fermentation of E. coli Strains: 

 Cultures were grown in LB Broth Miller from Fisher containing tryptone 10 g, 

yeast extract 5 g, sodium chloride 10 g, buffered with 50 mM TRIS at pH 7.5 per L of 

media. After autoclaving the media and letting it cool to 60 °C, kanamycin and 

ampicillin were added via sterile filtration at final concentrations of 50 µg/mL to 

maintain plasmids. When necessary, 1.5% agar was added to prepare solid media. For 

large-scale preparation the following growth process was repeated eight times, 4 L 

per iteration, to produce a total of 32 L of culture. Bacteria were grown on solid 

media at 37°C overnight after streaking them on solid media. Colonies were used to 

inoculate 10 mL of media in a 50 mL culture tube. Cultures were grown in the dark at 

37°C and shaken at 250 rpm. After 8 h the small-scale culture was used to inoculate 

100 mL of antibiotic-containing media in a 250 mL wide neck Erlenmeyer flask and 

grown under the same conditions overnight. Finally 50 mL of this medium-scale 

culture was used to inoculate 1 L that was subsequently grown for 3 days, spun down 

at 4000 rpm at 4 °C for 20 min, transferred to a 50 mL falcon tube, and lyophilized. 

After the cells were spun down, all the subsequent steps were conducted in the dark 

with the use of red LED headlamp. 
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5.3.2. Fermentation of V. fischeri Strains: 

 Vibrio fischeri strain ES114 was grown in LBS media: 10 g tryptone, 5 g of 

yeast extract, 20 g of NaCl, 3 mL of glycerol, buffered in 50 mM Tris-HCl at pH 7.5 

per L of media. When necessary, 1.5% agar was added to prepare solid media. 

Colonies were struck out on solid plates and left overnight at RT. Single colonies 

were inoculated into 7 mL of media in a 40 mL culture tube and shaken at RT 

overnight at 100 rpm. This small scale was inoculated into 50 mL of media in a wide 

neck Erlenmeyer flask for 18 h at which time 35 mL was transferred into 1.0 L of 

media in a 2.8 L wide neck flask and shaken for 3 days. The cells were pelleted and 

lyophilized before extraction. 

5.3.3. Extraction: 

 The same process was used to extract both E. coli and V. fischeri separately. 

The dried cell pellets were split into two 1 L Erlenmeyer flasks containing 500 mL of 

1:2 methanol/dichloromethane, shaken for 1 h at 180 rpm, stirred vigorously with a 

magnetic stir bar for 1 hour, then vacuum filtered, and the solution concentrated to 

dryness under vacuum. The cell debris was re-extracted three times in this fashion 

and all extracts for each strain were combined into a 1 L round bottom flask. The 

dried extract was suspended in 400 mL of 1:2 methanol/dichloromethane at room 

temperature. A saponification reaction was performed on each extract by stirring the 

solution rapidly with a magnetic stir bar and adding 200 mL of 0.5 M potassium 

hydroxide. The reaction was carried out for 1 h at which time the mixture was 

neutralized with 2.0 M sulfuric acid to pH 7.0 and transferred to a 2 L separatory 
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funnel. The organic layer was collected, washed three times with brine, once with 

deionized water, dried over sodium sulfate, transferred through a paper filter into a 

500 mL round bottom flask, and concentrated to dryness under vacuum. The dried 

extracts were suspended in 10 mL of acetone and carried forward to purification.  

5.3.4. Purification: 

 E.coli materials were purified on RP-HPLC using a two step purification 

protocol. Firstly, crude material was purified on a semi-prep RP column 

(Phenomenex Synergi Fusion-RP, 250 x 10 mm, 10 µm) using a gradient of 

acetonitrile MeCN:H2O + 0.02% formic acid (32% MeCN for 26 min, 100% MeCN 

for 9 min,  20% MeCN for 2 min, and a 9 minute re-equilibration) at a flow rate of 4 

mL min-1. The peak eluting at 16 min displaying a strong UV absorbance at 441 nm 

was collected and re-purified using an analytical column (Phenomonex Kinetix 2.6 

µm XB-C18 100 x 4.6 mm) using a gradient of MeCN:H2O + 0.02% formic acid 

(50% MeCN for 2 min, 50%-65% MeCN over 20 min) at a flow rate of 2 mL min-1.  

APEEC, the peak eluting at 16 min that displayed the correct UV spectra, was 

collected, dried under vacuum, and stored at -20°C in a 5 mL amber vial. Standard 

one and two-dimensional NMR experiments were performed on a Varian 600 MHz 

cryoprobe NMR in acetone-d6. 

 The V. fischeri extract was first purified by RP-HPLC analytical column 

(Phenomonex Kinetex 5µm XB-C18 250 x 4.6 mm) using a gradient of MeCN:H2O + 

0.02% formic acid (50%-60% MeCN  2 min, 60%-73.8% MeCN over 11 min, 73.8%-

95% over 1 min, 95%-100% over 3 min, 100% for 1 min) at a flow rate of 2 mL min-
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1. The peak at 9.5 min with absorbance at 441 nm was collected and re-purified on an 

analytical column (Phenomonex Synergi 10 µm Fusion-RP 250 x 4.6 mm) using a 

gradient of methanol (MeOH):H2O + 0.02% formic acid (50% MeOH for 2 min, 

50%-90% MeOH over 15 min, 100% MeOH for 2 min) at a flow rate of 2 mL min-1. 

APEVF, the peak eluting at 18 min that displayed the correct UV spectra, was 

collected, dried under vacuum, and stored at -20°C in a 5 ml amber vial. Standard one 

and two-dimensional NMR experiments were performed on a Varian 600 MHz 

cryoprobe NMR in both acetone-d6 and DMSO-d6. 

5.4. NMR Spectra for APEEC and APEVC: 
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Figure 5-10: 1H-NMR of APEEC in acetone-d6. 

  

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

6.
0

6.
5

7.
0

7.
5

8.
0

8.
5

9.
0

f1
 (p

pm
)

E.
co

li P
ol

ye
ne

 A
ce

to
ne

 6
00

 M
Hz

 P
ro

to
n

H
CH

3

O
H

H
HH

O

O
H 3

C

H

H

H

H

H

H
H

H

H

H
H



 

 180 

Figure 5-11: Expansion of the 1H-NMR of APEEC in acetone-d6. 
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Figure 5-12: COSY of APEEC in acetone-d6.  
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Figure 5-13: HSQC of APEEC in acetone-d6. 
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Figure 5-14: HMBC of APEEC in acetone-d6. 
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Figure 5-15: ROESY of APEEC in acetone-d6. 
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Figure 5-16: TOCSY of APEEC in acetone-d6.  
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Figure 5-17: 1H NMR of APEVF in DMSO-d6.  
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Figure 5-18: Expansion of the 1H NMR of APEVF in DMSO-d6. 

5.
0

5.
1

5.
2

5.
3

5.
4

5.
5

5.
6

5.
7

5.
8

5.
9

6.
0

6.
1

6.
2

6.
3

6.
4

6.
5

6.
6

6.
7

6.
8

6.
9

7.
0

7.
1

7.
2

7.
3

7.
4

7.
5

7.
6

7.
7

7.
8

7.
9

8.
0

8.
1

8.
2

8.
3

8.
4

8.
5

8.
6

8.
7

8.
8

8.
9

9.
0

f1
 (p

pm
)

V.
fis

ch
er

i P
ol

ye
ne

 D
M

SO
 6

00
 M

Hz
 P

ro
to

n 

H
CH

3

O
H

H
CH

3

H

O

O
H 3

C

H

H

H

H

H

H
H

H

H

H
H



 

 188 

 

Figure 5-19: COSY of APEVF in DMSO-d6. 
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Figure 5-20: HSQC of APEVF in DMSO-d6. 
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Figure 5-21: HMBC of APEVF in DMSO-d6. 
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Figure 5-22: ROESY of APEVF in DMSO-d6. 
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