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Abstract Market-based policies to address fossil fuel-related externalities including
climate change typically operate by raising the price of those fuels. Increases in
energy prices have important consequences for a typical U.S. household that spent
almost $4,000 per year on electricity, fuel oil, natural gas, and gasoline in 2005. A
key question for policymakers is how these consequences vary over different regions
and subpopulations across the country—especially as adjustment and compensation
programs are designed to protect more vulnerable regions. To answer this question,
we use non-publicly available data from the U.S. Consumer Expenditure Survey over
the period 1984–2000 to estimate long-run geographic variation in household use of
electricity, fuel oil, natural gas, and gasoline, as well as the associated incidence of a
$10 per ton tax on carbon dioxide (ignoring behavioral response). We find substantial
variation: incidence from the tax range from $97 dollars per year per household in
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New York County, New York to $235 per year per household in Tensas Parish,
Louisiana. This variation can be explained by differences in energy use, carbon
intensity of electricity generation, and electricity regulation.

1 Introduction

U.S. households account for approximately 20% of the energy consumed in the
United States, spending an average of almost $4,000 per household per year on
electricity, fuel oil, natural gas, and gasoline.1 Meanwhile, policymakers confronting
issues of energy security, rising energy prices, and environmental protection are
focusing on market-based policies, such as energy taxes or cap and trade programs
that raise energy prices. For example, an analysis of cap and trade bills before the
110th Congress found prices of between $20 and $50 per ton of carbon dioxide (CO2)

and increases in fossil energy prices of 15–60% (Paltsev et al. 2007).2

A priori there is no reason to believe that the incidence of market-based policies
in the energy sector will be uniform across the United States, as there are significant
variations in climate, electricity generation, and historical fuel use. Yet, no fine-
scale publicly available spatial data on household energy use exist, because published
microdata has the geographic identifiers removed to protect respondents’ confiden-
tiality. In this paper, thanks to an agreement with the Bureau of Labor Statistics
giving us access to such geographic identifiers, we quantify the geographic variation
in energy use and the potential regional impacts of policies that could raise energy
prices—particularly those policies related to carbon emissions.

Understanding the spatial incidence and distribution of energy policies is impor-
tant for at least two reasons. First, if variation among regions is significantly smaller
than variation within regions, then regional concerns need not necessarily figure into
policy design. But if it is large, as we hypothesize, quantifying this variation can
help policymakers design a more equitable program, presumably with more aid and
assistance focused on those regions facing greater impacts. Regions that drive more,
that are more dependent on coal-based electricity, or that require air conditioning
all will face relatively higher burdens under a market-based climate policy. This
is particularly relevant for the political economy of carbon regulation: government
representation is organized by geography, and members of Congress will want to
know whether their constituents will bear an “unfair” burden (Borenstein 2007;
Mufson 2007).

Second, with an increasing emphasis on local initiatives, understanding the re-
gional incidence of energy price increases can help with the analysis of state and
regional initiatives such as the Regional Greenhouse Gas Initiative in the Northeast
or California’s new tailpipe standards (RGGI 2005; CARB 2002).

1Between 2000 and 2005, expenditures on energy rose over 30%, from $2,985 in 2000 to $3,887 in
2005. This data is available at <http://www.bls.gov/cex/home.htm>. Last accessed April 12, 2007.
2Note that market-based policies that place a price on CO2 emissions can both raise prices paid by
fossil energy consumers and depress prices received by fossil energy producers. The aforementioned
study shows that typically the bulk of the price effect falls on consumers.

http://www.bls.gov/cex/home.htm
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Despite the policy relevance of regional variation in household impacts of energy
price increases, there has been little effort to quantify regional patterns of household
energy use. State-level data on residential energy use are available from the Energy
Information Administration (EIA, www.eia.doe.gov) for more recent periods, but
residential end-use is not disaggregated by fuel type, which is an important dimension
when investigating the incidence of carbon taxes. Furthermore, states are not neces-
sarily the most interesting geographic unit. States like California, New York, and
Florida have potentially important variation within their borders and dense urban
areas often times cross state lines (e.g., Metropolitan New York, Washington, Kansas
City, and Philadelphia).

Under confidentiality agreements with the Bureau of Labor Statistics, we use non-
publicly available data from the U.S. Consumer Expenditure Survey (CES) over the
period 1984–2000 to estimate geographic variation in household use of electricity,
fuel oil, natural gas, and gasoline, as well as the associated emissions of carbon.
Although the non-parametric kernel “smoother” we employ can create estimates at
an arbitrary spatial scale across the United States and improve our understanding of
the interactions between economic activity and geography, we focus on county-level
estimates of annual household use of the four main fuels. But one can easily use the
same technique for other levels of detail, such as congressional districts and postal
zip codes. In addition to mapping fuel use, we estimate the associated incidence of a
$10 per ton carbon dioxide tax as a means to illustrate the potential value in having
finer-scale carbon dioxide emissions data to design carbon policies.

We note that our primary effort is not to estimate the behavioral response to
market-based mitigation policies, which have been well-studied elsewhere in the
literature—including the responsiveness of the residential sector to higher energy
prices (Dahl 1993).3 Instead, we wish to demonstrate the regional variation in
burden. Behavioral responses, estimated in the aggregate, can then be layered on
top of the regional variation, a calculation we do in the text.

2 Methods

Even with the CES data pooled over 15 years, the geographic coverage is not
complete enough to compute county or even sub-state averages at a sufficiently fine
level of detail. Out of more than 3,100 counties in the lower 48 states, the CES
has sampled households in only 666 over this period; these 666 sample counties are
disproportionately in urban areas, leaving large areas of the rural west unsampled.
If data were available at the level of detail for every region (county) that interests
us, we could simply use those averages. Alternatively, we could construct simple
regressions of energy use on household demographic variables and dummy-variables
for each region, again allowing us to pick out county averages—this time, controlling
for demographics. Here, the coefficients on the regional dummy-variables would

3While a behavioral response is likely, the degree to which previous estimates that were calculated
during a period when consumer choices were limited due to regulations on energy efficiency is
unclear as many consumers might have been “forced” to choose greater levels of efficiency than
they otherwise preferred.

http://www.eia.doe.gov
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provide the information we sought. But because the data are thin or non-existent
over wide areas of less populated, rural areas, these techniques are not appropriate.

Depending on the questions asked, the literature on estimating household (or
unit-level) energy demand utilizes a wide variety of techniques. For example,
research focused on durable equipment purchases and long-run versus short-run
demand responses typically use two-stage reduced form models that capture the
purchase decision and decision on how to use the equipment (Baker and Blundell
1991; Bernard et al. 1996; Dubin and McFadden 1984). On the other hand, fore-
casting energy use often entails detailed demographic models (Raupach et al. 2007;
O’Neill and Chen 2002). In both cases, regional variation (if present) is addressed
using dummy variables for broad geographic identifiers available in the data. Where
regional variation has been the object of a statistical effort, demographic and degree-
day data has often been used to substitute for detailed geographic information using
econometric modeling (typically geographic identifiers are removed from available
data for confidentiality reasons).4

Spatial econometric analysis is another approach suited for cases where interest
centers on a regression model and there is a need to address spatial autocorrelation
and heteroskedasticity in the residuals (Anselin 1988; Anselin et al. 2004). The
spatial econometric approach is comparable to our formulation when we employ the
demographic information.5 However, given our simple focus on the data’s spatial
pattern itself, we utilize a non-parametric, kernel regression (Silverman 1986). Here,
the term “regression” is almost misleading; this technique provides a transparent way
to estimate local energy as an average of spatially near observations and a statistically
consistent framework to construct standard errors and handle covariates.

In other words, kernel regression applied to spatial data creates an estimate of
energy use at a particular geographic point based on an average of energy use at
nearby, sampled points. It also allows for the fact that data for some of the sampled
counties, with many more observations than others, contains less sampling error
compared to other sampled counties with fewer observations.

We begin with a sample of observations of fuel quantities Y1,. . . , YI in a set of
sampled counties 1,. . . ,I located at coordinates x1,. . . ,xI . We assume

Yi = f (xi) + ei (1)

where f (x) describes the relevant spatial pattern of fuel use, and ei are errors with
E[ei] = 0. Given our knowledge of the number of observations collected for each

4Various researchers have used localized information—on household characteristics, fuel use, or
climate data (heating/cooling degree days) at the county or finer level—coupled with regression mod-
els of aggregate data on these variables to spatially disaggregate data without detailed geographic
identifiers. See, for example, May et al. (1996), Osborn et al. (1999).
5In our demographic model, we construct an initial estimate of the regional energy use pattern and
then we estimate a demographic model of energy use in a second stage with the spatial effects netted
out. This is analogous to a spatial econometric approach that first estimates the spatial correlation
pattern, then estimates the regression model on a transformed data set that is independently and
identically distributed. This approach is very similar to a geographically weighted regression (for
more information on these type of analysis, see Fotheringham et al. 2002).
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county, ni, we assume E
[
e2

i

] = σ 2
/

ni, where α2 is the variance associated with an
individual household observation.

Our estimate of energy use at an arbitrary point x, f̂ (x), given our set of I
observations is

f̂ (x) =
I∑

i=1

(
niwi∑
j n jw j

)

· Yi =
I∑

i=1

(
niw

(‖x − xi‖
/

b (x)
)

∑
j n jw

(∥∥x − x j
∥
∥/

b (x)
)

)

· Yi (2)

where ‖x − xi‖ is the Euclidian distance between points x and xi, w() is the “kernel”
or weighting function, and b(x) is the “bandwidth” that can vary over location x. We
include the number of observations ni in the weighting scheme, because there are ni

observations of Yi located at xi. By doing so, we are weighting county observations by
their precision (one over the variance), which is proportional to ni. Note that kernel
regression is simply a weighted average, where the art is defining the kernel function
and bandwidth (Watson 1964; Nadraya 1964).6

As a weighted average, it is straightforward to compute the variance associated
with our estimator. First we estimate the sampling error for individual observations,
σ̂ 2 (x) given by
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where σ 2
i are observations of sampling error in observed counties. Then, we divide

this sampling error for individual observations by the effective number of observa-
tions used to compute f̂ (x) implied by an estimate of the observation density ĝ (x),
chosen bandwidth b(x), and total number of observations in the sample n, namely
ĝ (x) nb 2 (x).7

Turning to the kernel function, we can limit our search by noting that the function
should be non-negative and monotonically decreasing, so that weights are never
negative and decrease as distance increases.8 There are still many possibilities, in-
cluding constant, linear, quadratic, and Gaussian functions. We choose the Gaussian
function where w(d/b) = exp(−(d/b)2). The effect of this function is that, relative to
the weight at a distance of zero, the weight at d/b = 0.5 is 0.78, the weight at d/b =
1 is 0.37, and the weight at d/b = 2 is 0.02. The principal advantage of this function is
that it is not piecewise defined and therefore quite smooth—a useful property when
we next determine the bandwidth.

To choose the bandwidth, we use cross validation (Stone 1974) that minimizes
the difference between the predicted and observed values at the sample points xi.
That is, pick b to minimize

∑I
i=1

(
Ŷi − Yi

)2, where Ŷi is the predicted value using

6We can alternatively estimate the regional variation controlling for demographics by replacing Yi

in Eq. (2) with Yi − β̂zi where zi are covariates and β̂ is an partial regression coefficient on the
covariates. This is further discussed in the Electronic supplementary material.
7Imagine a two-dimensional box of size b(x) by b(x) with observations spread out with ĝ (x) n per
square unit.
8Negative weights have been proposed as a way to reduce bias but they also introduce many
problems; see Section 3.6 of Silverman (1986).
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all observations except the ith one (see Electronic supplementary material for more
information).

We make one further modification by allowing b to vary by location based on the
density of observations. That is, where there are fewer observations we use a larger
bandwidth. In particular, we specify b (xi) = (

ĝ (xi)
/

ḡ
)−1/5 b , where ĝ (xi) is again an

estimate of the density of observations at point xi, ḡ is the geometric mean of the
density estimate, and b , again, is a global bandwidth parameter now chosen by cross
validation with the specified spatial variation.9 We considered further estimates of
local bandwidths, attempting to numerically minimize estimated mean-squared error
but with little success. The supplementary material includes additional details on the
adaptive-bandwidth approach.

We use the adaptive cross-validation approach to compute bandwidths for each
fuel independently. This same fuel-specific adaptive bandwidth is also used to
estimate the variance in household fuel demand, and, in turn, the variance of our
county-level estimates.

For each of the three primary fuels, we compute CO2 incidence by multiplying
estimated fuel demand by the carbon content of the fuel and the reference price
of CO2 used in our analysis ($10 per ton). Electricity is considerably more compli-
cated because not only does the carbon content of electricity vary by location, the
pricing of that carbon content varies depending on whether a particular region has
competitive or regulated electricity markets. To provide a realistic estimate of how
much consumers will be affected by a market-based CO2 policy, we use regional
estimates of electricity price impacts associated with a given CO2 price and apply
that to our reference CO2 price of $10 per ton (Burtraw and Palmer 2006). The CO2

incidence associated with electricity is then the estimated county-level electricity
demand multiplied by this change in regional electricity prices.

We describe the methods for including covariates in Eq. (1), the data used to run
ordinary least squares regressions of household demographics and characteristics
on the use of each of the four fuels, and the regression results in the Electronic
supplementary material. Overall, the regression results are compelling for a number
of reasons. Although one always has to be careful not to place too much emphasis
on R2 values, the model’s explanatory power is within reasonable limits. Second, the
parameter estimates are largely consistent across the fuels, although the estimates
for fuel oil do not perform as well.

3 Results

Figure 1 shows our estimates for the patterns of electricity, natural gas, fuel oil, and
gasoline use at the county level. The scale on each figure indicates both the energy use
and associated incidence from a $10 per ton carbon dioxide emissions tax, except in
the case of electricity, where carbon intensity varies by location. Figure 2 shows total
CO2 incidence and CO2 incidence of electricity only with and without demographic
controls. CO2 incidence refers to the amount fuel prices will rise based on a given

9Although the intuition that we want a larger bandwidth where the density is smaller is straightfor-
ward, the specific exponent −1/5 is not; see Silverman (1986), p. 104.
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A: Natural gas 

B. Fuel oil 

Fig. 1 Regional fuel use and carbon dioxide tax incidence. Note: panel (a) is natural gas (carbon
emissions are calculated by converting to MMBTU and multiplying by 11.7), panel (b) is fuel oil
(carbon emissions are 19.6 per gallon), panel (c) is gasoline (carbon emissions are 22.4 per gallon),
and panel (d) is the quantity of fuel use for electricity. The carbon dioxide incidence for electricity is
illustrated in Fig. 2 panel (b), as it depends on the generation of electricity
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C. Gasoline 

D. Electricity

Fig. 1 (continued)

CO2 price and is directly proportional to the carbon content of the fuels. The CO2

incidence for electricity is more complex, depending on the market structure in a
given region (see Electronic supplementary material).

The estimated pattern of natural gas use in Fig. 1, panel a, is clearly concentrated
in the Midwest, and rather sparse in the South. This is consistent with EIA estimates
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A: Total Carbon incidence 

B: Electricity only 

Fig. 2 Total carbon tax incidence. Note: panel (a) is the carbon dioxide tax incidence across all fuels,
panel (b) is carbon dioxide tax incidence for electricity only, panel (c) is the total, and panel (d) is
carbon dioxide tax incidence for electricity after controlling for household demographics

in Table 1,10 showing use in the Midwest to be two to three times use in the South
and West. Compared to the other fuels in Fig. 1, we also find more local variation

10The census regions are Northeast (ME, NH, VT, MA, RI, NY, PA, NJ, CT), Midwest (OH, MI,
IN, IL, WI, MN, IA, MO, ND, SD, NE, KS), South (DE, MD, DC, WV, VA, NC, SC, GA, FL, KY,
TN, AL, MS, LA, AR, OK, TX), and West (WA, OR, CA, NV, MT, ID, WY, UT, CO, AZ, NM,
AK, HI). We do not include Hawaii and Alaska in our analysis.
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C. Total carbon incidence for median household

D. Electricity only for median household

Fig. 2 (continued)

in natural gas usage, with adjacent counties sometimes using significantly different
levels of natural gas.

Our estimates of fuel oil use in Fig. 1, panel b, show what we would expect:
heavy use in New England and the upper peninsula of Michigan, trailing down
into portions of New York, New Jersey, and Pennsylvania, but otherwise virtually
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Table 1 Annual household consumption estimates relative to EIA estimates

Median county Mean county Std. errors EIA 2001 EIA 1997 EIA 1993*

Electricity (kWh)
Northeast 6,303 6,454 117 7,354 6,780 6,731
Midwest 8,501 9,012 202 9,210 8,681 8,688
South 13,694 13,192 310 14,163 13,276 12,980
West 6,481 7,710 241 7,916 8,294 8,052
National 8,796 9,762 233 10,332 9,822 9,615

Natural gas (therms)
Northeast 430 384 59 470 489 543
Midwest 769 716 120 712 875 827
South 192 216 67 289 307 347
West 435 405 88 369 416 444
National 383 406 82 440 502 527

Fuel oil (gallons)
Northeast 137 165 15 199 276 267
Midwest 11 11 5 17 30 37
South 1 10 3 11 15 23
West 2 8 4 3 7 11
National 4 40 6 46 69 74

Gasoline (gallons)
Northeast 798 801 7 868 705 695
Midwest 904 906 11 1,074 918 857
South 953 955 13 1,104 974 908
West 1,001 967 14 982 880 882
National 915 916 12 1,025 886 846

Note: The source for regional electricity, natural gas, and fuel oil is the Energy Information
Administration (EIA), Residential Energy Consumption Survey (http://www.eia.doe.gov/emeu/
recs/), and the source for gasoline is EIA Household vehicle energy use survey (http://
www.eia.doe.gov/emeu/rtecs/nhts_survey/2001). All years of the two surveys align, except that the
gasoline survey is 1994 not 1993 (labeled with an *). The EIA estimates are average consumption
for a household in the region and our estimates include both averages and medians (across county
estimates). EIA estimates have been adjusted for a slight discrepancy between EIA and BLS
household definitions (“housing unit” versus “consuming units”) and the RTECS basis of “household
with a vehicle”

nothing.11 Within these states, however, household use varies considerably within
each state as does use across states. For example, in Maine, there is a 30% difference
between the highest and lowest counties. Given New York’s varied landscape, it is
no surprise that it has significant within-state variation both in terms of percentage
differences and levels. Although sporadic use exists here and there, there is little
evidence of use in the South and West.

Gasoline usage shown in Fig. 1, panel c, shows remarkably little variation. From
a high of 1,090 gallons per year in Texas to a low of 790 gallons in New York
and Maine, gasoline use fluctuates (geographically) much less than any other fuel.
EIA estimates confirm the relative uniformity of gasoline use. Perhaps predictably,
southern California, the Houston–Dallas corridor in Texas, and Atlanta show higher

11Despite lower use per household in New York, New Jersey, and Pennsylvania, total fuel oil use is
larger in these states than in New England because of their higher populations.

http://www.eia.doe.gov/emeu/recs/
http://www.eia.doe.gov/emeu/recs/
http://www.eia.doe.gov/emeu/rtecs/nhts_survey/2001
http://www.eia.doe.gov/emeu/rtecs/nhts_survey/2001
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household usage, and the more densely populated northeastern region shows some
of the lowest.12

Looking at panel d in Fig. 1, the principal observation is that electricity usage
in the South and Southeast is much higher than most other regions of the country.
This understandably arises from the need to operate air conditioning units most of
the summer and drives usage to more than 11,000 kWh in the South. According to
EIA, air conditioning and space heating comprise 26% of the end-use consumption
of residential electricity consumption in 2001. Another observation is the degree of
heterogeneity within each state and census region. For example, the western census
region has highs of about 10,700 kWh in the Washington and Oregon and lows of
about 7,000 kWh in California.

With natural gas, fuel oil, and gasoline, we can easily convert fuel use to emissions
using CO2 coefficients from the Department of Energy and then multiply by $10
per ton to get predicted CO2 incidence levels. However, when we shift to carbon
emissions from electricity production in Fig. 2, panel B, we need to take into account
the location and type of generation. The implication is that the pattern we observe in
fuel use does not directly map onto CO2 incidence.

Although coal-fired power plants lead to high levels of carbon emissions per
kilowatt-hour, hydropower in the Northwest and nuclear power in parts of New Eng-
land and the Southeast have no emissions. Natural gas generation contains roughly
half the carbon emissions per Btu compared to coal and has a considerably lower heat
rate/higher conversion efficiency. In addition to the generation mix, differences in
market structure are equally important in deriving CO2 incidence measures because
market structure affects how electricity prices will change in response to underlying
fuel price changes. In particular, the Northeast is deregulated, and prices are set by
the marginal producer in the market (sometimes gas, sometimes coal).The South, on
the other hand, is regulated and prices are set at average cost, across all fuels, by
regulators. Other regions face some mix of regulation and deregulation. The result
of these differences is a concentration of electricity-related household CO2 incidence
in the Texas–Louisiana region as well as around southern Indiana and Ohio. The
southern census region has an average incidence level approximately 65% greater
than the northeastern region, which has the lowest mean level.

Figure 2, panel a, aggregates up the CO2incidence of the $10 per ton CO2 tax
across the four fuels, and we find average CO2 incidence levels per household ranging
from $240 per year in portions of the southern plains and Texas to less than $120 in
the Northeast and scattered throughout the West. Table 2 presents the differences
in incidence within each census region. These results sharply focus the concerns we
noted at the outset: climate change policies that attempt to discourage carbon dioxide
by raising the price of fossil fuels in relation to their CO2 emissions will have different
effects on households in different parts of the country. Impacts in some regions of the

12As a check on our results, we can aggregate up our estimates to total gasoline consumption as
follows. First, we take our national average of about 900 gallons per household over 1984–2000 and
multiply it by 110 million households, which yields about 100 billion gallons. Next, we account for the
fact that non-household motor-gasoline use accounts for about 15% of total gasoline use, yielding
115 billion gallons of total demand. Finally, when we adjust for the 10% growth from our sample
period to 2001 and the 10% since, we have roughly total annual motor gasoline consumption as
found in Annual Energy Review 2006, Washington: Energy Information Administration.
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Table 2 Annual household
incidence of a $10/t CO2 tax
by census region

Min Mean Median Max
County County County County

All energy
Northeast 97.58 132.87 131.09 172.43
Midwest 126.52 172.57 171.91 218.35
South 117.64 169.82 171.23 235.44
West 105.84 142.72 144.49 173.29
National 97.58 157.42 155.24 235.44

Electricity
Northeast 15.54 24.62 21.56 54.03
Midwest 36.64 52.69 52.26 96.93
South 27.44 72.21 72.42 129.12
West 13.50 34.00 28.67 77.67
National 13.50 50.21 51.25 129.12

country are double the impact in others, and impacts in some counties are double the
impacts in other counties within the same region.

The flip side of CO2 incidence is that the counties with higher incidence have
greater levels of household carbon emissions or are “dirtier” than other coun-
ties. The counties with total incidence greater than the 95 percent quartile are
in Louisiana, Oklahoma, Arkansas, Texas, Kansas, Missouri, and Alabama. The
cleanest counties—those with incidence levels less than the 5 percent quartile—
are mostly in New York, Washington, Oregon, Idaho, Vermont, Pennsylvania, and
Nevada. The median county is Santa Cruz County in Arizona with total incidence of
$116.

So far our discussion has ignored the fact that the CES collects extensive data on
the characteristics of households participating in the survey. Many of these—notably
income and household size—would be expected to have a large influence on energy
use. To the extent that there is substantial and persistent regional variation in these
characteristics, the influence of these characteristics will be associated purely with
regional variation based on the preceding approach.

Whether we want to estimate regional variation in CO2 incidence controlling
for this regional variation in household characteristics depends on the particular
question. If we ask about the regional incidence of higher energy prices, there is no
need to control for these variables; we simply need to look at the regional patterns
of energy use. However, we could ask how the energy use of a particular kind of
household would vary depending on where it is located. In this case we would want
to hold constant characteristics and isolate the effect of geographic variation. For
example, policymakers might be interested in how low-income households might be
affected in different parts of the country.

Figure 2, panels c and d, illustrate the incidence levels of the median household
(e.g., median income, household size, etc.) if you placed them in any particular
county.13 Overall, the strong geographical patterns found in panels a and b remain,
but the tax burdens are lower, everything else equal, reflecting the skewed distrib-
ution of income and its impact on energy demand (median income is roughly half

13Note that the variation in Fig. 2 panels c and d would be the same for any type of household based
on our model of energy use; only the level varies with demographic characteristics.
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mean income). The amount of relative variation (ratio of highest to lowest values) is
similar in panels c and d, reflecting the fact that the bulk of overall variation is driven
by geography, not demographic differences.14

Although the patterns of energy use and CO2 incidence appear to coincide with
our intuition, it is useful to verify our estimates against other sources. Unfortunately,
we are not aware of another set of estimates at the county level. Table 1 compares our
estimates aggregated (using population weights) to census regions versus household
average levels produced by the EIA in 1993, 1997, and 2001. In general, we find that
the pattern of our mean aggregate estimates generally matches the EIA within the
standard error of our estimates.15 The notable discrepancies are lower estimates in
our data for natural gas and fuel oil everywhere but the West.

There are several potential explanations for these discrepancies in Table 1. First,
our sample covers 1984–2000 versus available EIA data on regional household
energy use, which is only available for 1993, 1997, and 2001. Looking at national
data from EIA indicates this difference explains about one-quarter of the total
discrepancy for natural gas (and does nothing for fuel oil). A second explanation
is that the CES oversamples urban areas16 and urban households are less likely to
use natural gas and especially fuel oil. This effect is corrected in the demographic
model where a control variable for urban/rural is used to predict fuel use.

As noted earlier, these estimates ignore any behavioral response. That is, the
estimates assume consumers pay higher energy costs without investing in higher effi-
ciency equipment or choosing to forego energy services. In reality, we would expect
both to occur, with larger responses as more time elapses and capital stock turns over.
Any of these kinds of mitigation efforts necessarily improve the consumers’ outcome
relative to no behavioral response—in this way our estimates provide an upper bound
on actual impacts. Further, assuming behavioral responses are roughly proportional,
say, offsetting 15% of the initial impact absent any adjustment, the relative impacts
across counties will remain the same. Those counties with relatively high impacts will
continue to experience relatively high impacts.

Consulting the literature (Dahl 1993) we find short run elasticities of around
0.15 and longer-run elasticities approaching unity or higher. These values suggest
that, in the short run, the pattern of impacts is unlikely to be much different than
indicated in Figs. 1 and 2 with only 15% of the impact on energy prices offset by lower
energy consumption. In the longer run, reduced energy use might fully offset higher

14This may not be true, however, at the very detailed level—in a particular county and year and for a
particular fuel. For instance, when we look at variation driven by solely by demographics (based on
the 2000 Census and our demographic control estimates), we find factors of 2, 3, 1.6, and 3 for natural
gas, fuel oil, gasoline, and electricity, respectively, between the lowest and highest estimates. We
find, therefore, that the demographic variation is no larger than the geographic variation we found
for all fuels except perhaps gasoline (comparing Fig. 2a and c). Having said that, the demographic
factors suggest it is possible that at a fine level, demographic data could reveal additional variation.
A recent study that lends support to our methods and results was a cross-country analysis that found
that access to natural resources and weather were significant explanatory variables in explaining
differences in emissions even between countries with very similar income levels (Neumayer 2002).
15A (small) portion of the difference in the West is because EIA includes Hawaii and Alaska in their
estimates and we do not.
16The purpose of the Consumer Expenditure Survey is to provide expenditure weights for the
Consumer Price Index, which is turn constructed for various metropolitan areas.
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energy prices. In this case, mitigation costs would be reflected in lower welfare (from
reduced energy services) and higher capital costs (for greater energy efficiency).
It seems reasonable that these costs would continue to be roughly equal to some
fraction of the initial impact on fuel expenditures.17

4 Discussion

Increases in energy prices—whether arising from carbon policies or from other
world/national events—will have different impacts on households in different regions
of the country. Electricity use is higher in the South, fuel oil is used almost entirely
in the Northeast, and natural gas is much more prevalent in the Midwest. Gasoline
usage fluctuates very little.

Policymakers need to be keenly aware of these differences as they contemplate
climate change policies that would put a price on CO2 emissions. Such policies place a
heavier burden on regions where geography and history have led to higher emissions
per household. The South requires air conditioning. The Midwest is reliant on coal
for electricity generation. Californians drive more.

Using data from the CES over the period 1984–2000, this paper has tried to
quantify exactly how much these regional differences matter. While general patterns
are well-known, our analysis implies that one size does not fit all. In fact, we find that
there exists considerable variation in the type of fuel used and the average level of
use across regions, states, and even counties. We also find substantial variation in the
incidence of a CO2 tax. This variation can be explained both by differences in energy
use as well as differences in the carbon intensity of electricity generation.

An interesting observation is that the regions of the country where incidence is
lower—the Northeast and West Coast—happen to be those where recent initiatives
have been implemented to address climate change through state programs. Whether
the lower incidence is partly responsible for those efforts or whether it reflects a much
longer-term trend toward cleaner/more efficient energy use is unclear.

What do our results quantitatively imply about the regional incidence of climate
change policies? The overall result for carbon emissions is that households in the
Northwest United States would likely bear half the burden of households in the
Midwest and Texas where per household incidence is almost double. If equity is
a concern, policymakers will need to contemplate ways that this burden can be
equalized—a process that most likely would occur in the design phase of the policy.
We should point out, however, that while the focus of this work has been regional
incidence, it is also important to consider the distribution across other key household
variables, such as income (Dinan 2000) and more generally, how one might measure
interregional equity (Rose and Zhang 2004).

17With roughly linear marginal mitigation costs and a unitary long-run elasticity, it is easy to

show that the long-run net cost impact would be x
(

1 + 1
2 x

)/
(1 + x), where x is the original, frac-

tional increase in energy costs. Here, the long-run impact is some fraction of the original impact x,
reflecting the cost of fuel savings that range linearly between the original price p and new, higher
price (1 + x)p.
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