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ABSTRACT

Exponential integrators are a well-known class of time integration methods that
have been the subject of many studies and developments in the past two decades.
Surprisingly, there have been limited efforts to analyze their stability and efficiency
on non-diffusive equations to date. In this paper we apply linear stability analysis to
showcase the poor stability properties of exponential integrators on non-diffusive
problems. We then propose a simple repartitioning approach that stabilizes the
integrators and enables the efficient solution of stiff, non-diffusive equations. To
validate the effectiveness of our approach, we perform several numerical experi-
ments that compare partitioned exponential integrators to unmodified ones. We
also compare repartitioning to the well-known approach of adding hyperviscosity
to the equation right-hand-side. Overall, we find that the repartitioning restores
convergence at large timesteps and, unlike hyperviscosity, it does not require the
use of high-order spatial derivatives.

1. Introduction
In the past two decades, exponential integrators [24] have emerged as an attractive alternative to both

fully implicit and semi-implicit methods [18, 28, 33, 34]. The growing interest in exponential integrators is
jointly driven by new method families [5, 14, 28, 31, 22, 23, 30, 24, 37, 6, 8] and by advances in algorithms
for computing the associated exponential functions [2, 3, 10, 19, 12, 21, 36, 35, 17, 11, 20].

The purpose of this paper is to study the stability limitations of exponential integrators on problems with
no diffusion, and to propose a repartitioning strategy that improves stability without damaging accuracy.
At first glance, investigating the stability of exponential integrators may seem unfruitful since the methods
have already been used to successfully solve a range of stiff partial differential equations including purely
dispersive ones [28, 34, 18]. However, as was recently described in [15], exponential integrators possess linear
stability regions for non-diffusive problems that are on par with those of explicit methods. These instabilities
are often very small in magnitude, which explains why they can sometimes go unnoticed. In this work we
will present two simple equations that excite instabilities in exponential integrators, and then demonstrate
how a simple repartitioning approach can be used to stabilize them.

Our motivation for pursuing this work goes beyond simply stabilizing integrators. In particular, we
believe that incorporating exponential integrators into parallel-in-time frameworks has the potential to
produce new and efficient parallel methods for solving large scale application problems. These methods will
be of particular interest if exponential integrators can also be used to achieve meaningful parallel speedup
for equations with little to no diffusion. Unfortunately, we have found that the effectiveness of exponential
integrators in parallel frameworks is significantly hindered by the stability issues discussed in this paper.
Therefore, in this preliminary work, we propose a strategy for overcoming this problem.

In light of this goal we will focus on three integrator families that can be immediately used within parallel
frameworks. In particular, we will analyze: (1) exponential Runge-Kutta (ERK) methods [32, 14], which can
be used to construct exponential Parareal methods, (2) exponential spectral deferred correction methods
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(ESDC) [6], which are the exponential equivalents of the classical SDC methods used in the Parallel Full
Approximation Scheme in Space and Time (PFASST) framework [16], and (3) exponential polynomial block
methods (EPBMs) [8] that allow for parallel function evaluations. Lastly, we note that the stability issues
we describe affect many other families of exponential integrators, and therefore the developments from this
paper can also be used to improve the efficiency of any serial exponential integrators for hyperbolic and
non-diffusive problems.

The outline of this paper is as follows. In Section 2 we provide a brief overview of exponential integrators
and the three families of methods that will be the subject of this work. In Section 3 we then introduce a
simple one-dimensional, nonlinear partial differential equation that leads to severe stepsize restrictions for
exponential integrators. Next, in Section 4, we use linear stability analysis to showcase the poor stability
properties of exponential integrators on non-diffusive equations. Lastly, in Section 5, we propose a simple
repartitioning approach to stabilize exponential integrators, and compare it against the commonly applied
practice of adding hyperviscosity.

2. Exponential integrators
Exponential integrators [24] are a family of time integration methods with coefficients that can be written

in terms of exponential functions of a linear operator. They have proven to be highly suitable for solving
stiff systems and, in certain situations, they can outperform both fully-implicit and linearly-implicit methods
[18, 28, 33, 34, 21]. Nearly all exponential integrators can be classified into two subfamilies: unpartitioned
and partitioned. Unpartitioned exponential integrators [25, 40, 41, 38, 6, 8] can be used to solve the generic
differential equation y′ = F (y) and require the exponentiation of the local Jacobian of F (y) at each timestep.
In contrast, partitioned exponential integrators [5, 14, 31, 23, 6, 8] are designed to solve the semilinear initial
value problem

y′ = Ly +N(t,y), y(t0) = y0, (1)

and only require exponential functions involving the autonomous linear operator L.
In this work we will focus exclusively on partitioned exponential integrators. All partitioned exponential

integrators can be derived by applying the variation of constants formula to (1), yielding

y(t0 + ∆t) = e∆tLy0 +

∫ t0+∆t

t0

e(t−τ)LN(τ,y(τ))dτ, (2)

and then approximating the nonlinear term using a polynomial. For example, to obtain the first-order
partitioned exponential Euler method,

yn+1 = e∆tLyn +

∫ 1

0

e(1−s)∆tLN(tn,yn)ds, (3)

with stepsize ∆t, we approximate the nonlinear term N(s,y) in (2) with a zeroth-order polynomial
p(s) = N(tn, yn) and then rewrite the integrand in local coordinates using τ = ∆ts+ tn. Higher order
exponential multistep, Runge-Kutta, and general linear methods can be constructed by approximating N
with a higher-order polynomial that respectively uses previous solution values, previous stage values, or any
combination of the two.

In this work we will be concerned with three specific families of exponential integrators.

1. Exponential Runge-Kutta (ERK) methods from [14, 31] accept a single input, compute s stage values,
and produce a single output. These methods attempt to achieve a high order of accuracy in the fewest
number of stages, and the coefficients have been derived by satisfying nonlinear order conditions. In
this work, we will consider the fourth-order exponential Runge-Kutta method ETDRK4-B from [31]
which will be referred to simply as ERK4.

2. Exponential spectral deferred correction (ESDC) methods [6] are a class of arbitrary order time
integration schemes that iteratively improve a provisional solution by solving an integral equation
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Domain: x ∈ [−4π, 4π], t ∈ [0, 40]

Boundary conditions: periodic

Spatial discretization: Fourier pseudo-spectral

Number of spatial grid points: Nx = 128

Dealiasing: 3
2
rule (see for example [13, p. 84])

Table 1
Numerical parameters for the ZDS equation (4).

that governs the error. All ESDC methods can be written as ERK methods with a large number of
stages. In this paper we will consider a 6th-order ESDC method with four Gauss-Lobatto nodes that
takes six correction iterations; we will refer to this method as ESDC6.

3. Exponential polynomial block methods (EPBM) [8] are multivalued, exponential general linear methods
that advance a set of q different solution values at each timestep. The input values are approximations to
the solution at different time points, and the outputs are computed by approximating the nonlinearity
in (1) using a high-order polynomial that interpolates the nonlinearity at the input values. The methods
can be constructed at any order of accuracy and allow for parallel function evaluations. Here we
consider a fifth-order composite EPBM that is constructed using Legendre nodes and is run using an
extrapolation factor of α = 1.

The formulas for all three exponential integrators are contained in Appendix A, and Matlab code for
running all the numerical experiments can be downloaded from [7].

3. A motivating example
We begin by showcasing a simple one dimensional nonlinear partial differential equation that causes

stability problems for exponential integrators. Specifically, we consider the zero-dispersion Schrödinger
equation (ZDS)

iut + iuxxx + 2u|u|2 = 0

u(x, t = 0) = 1 + 1
100 exp(3ix/4).

(4)

This complex-valued, dispersive partial differential equation models optical pulses in zero dispersion fibers
[1] and is obtained by replacing the second derivative in the canonical nonlinear Schrödinger equation with
an iuxxx term.

We equip the ZDS equation with periodic boundary conditions in x and integrate to time t = 40 using
a Fourier pseudo-spectral method. To simplify the computation of the exponential functions, we solve the
equation in Fourier space where the linear derivative operators are diagonal and (4) reduces to the semilinear
equation (1) with

L = diag(ik3) and N(û) = 2F(abs(F−1(û)). ∗ F−1(û))

where k is a vector of Fourier wavenumbers and F denotes the discrete Fourier transform. The full numerical
parameters are summarized in Table 1.

In Figure 1 we show the solution obtained by integrating in time using 2000 steps of the ERK4 method.
For comparison we also compute the solution using the fourth-order implicit-explicit method from [29]
named ARK4(3)6L[2]SA, which we will simply refer to as IMRK4. Instabilities are clearly visible in the
ERK4 solution while the IMRK4 solution is clean. Even more surprisingly, the problem is only mildly stiff.
By using 2000 timesteps, or equivalently h = 2× 10−2, the spectral radius of the linear operator ρ(hL) is
only 23.1525; note that we are computing the spectral radius for the lower 2/3 of modes where antialiasing
is not applied.
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To make matters worse, instabilities persists in the ERK4 integrator across a range of coarse timesteps
and only disappear when the stepsize has been reduced by a factor of approximately ten. In Figure 2 we
show convergence diagrams for the ERK4, ESDC6, and EPBM5 integrators. For reference we also include
IMRK4 and classical explicit RK4. The reference solution was calculated using RK4 with 200,000 timesteps,
and the relative error in all our plots is defined as ‖yref − y‖∞/‖yref‖.

At coarse timesteps the exponential integrators either generate completely inaccurate solutions or are
outright unstable. Proper convergence is only achieved when one uses timesteps that are nearly on par with
those required to keep explicit RK4 stable. Conversely, the IMRK4 method converges at slightly higher than
fourth-order across the full range of timesteps. Lastly, we want to emphasize that this problem presents
the same stability challenges for a wide range of exponential integrators. Though we have not completed
an exhaustive experiment with all known partitioned exponential integrators, all the families of integrators
that we have tested exhibit similar behavior on this problem.

ERK4 – Physical IMRK4 – Physical

ERK4 – Fourier IMRK4 – Fourier

Figure 1: Solution to the ZDS equation in physical and Fourier space using the ERK4 and the IMRK4 integrators that are
both run using 2000 timesteps. In physical space the square of the two-norm of the solution is plotted, while in Fourier
space we show the log of the absolute value of the Fourier coefficients.
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ZDS Convergence Diagram

Figure 2: A convergence diagram for ERK4, ESDC6, and EPBM5 methods on the ZDS equation. We also include the
IMRK4 method and classical explicit fourth-order RK4. At coarse timesteps, instabilities lead to a total loss of convergence
for ERK4 and ESDC6 and cause EPBM5 to be completely unusable. These limitations make all three exponential integrators
only marginally more stable than the fully explicit RK4. Conversely, the IMRK4 method converges across the full range of
timesteps and exhibits more than fourth convergence for this problem (approximately 4.5).

4. Linear stability
In this section we use linear stability analysis [43, IV.2] to study the stability properties of exponential

integrators on non-diffusive problems. Since we are considering partitioned integrators, we analyze stability
for the non-diffusive, partitioned Dalquist equation

y′ = iλ1y + iλ2y, y(0) = y0, λ1, λ2 ∈ R. (5)

This equation is a special case of the partitioned Dahlquist equation with λ1, λ2 ∈ C that was used to study
the general stability of both implicit-explicit [4, 39, 26] and exponential integrators [5, 14] including ERK4
[31], ESDC [6] and EPBMs [8].

We can relate the partitioned Dalquist equation to a general nonlinear system, by observing that (1) can
be reduced to a decoupled set of partitioned Dahlquist equations provided that N(t, y) is an autonomous,
diagonalizable linear operator that shares all its eigenvectors with L. Though this assumption does not hold
true for general nonlinear systems, the partitioned Dahlquist equation has nevertheless proven invaluable
for studying stability.

When solving (5) with a partitioned exponential integrator, we treat the term iλ1y exponentially and
the term iλ2y explicitly. A one-step exponential integrator like ERK or ESDC then reduces to the scalar
iteration,

yn+1 = R(ik1, ik2)yn where k1 = hλ1, k2 = hλ2, (6)

while a multivalued integrator like EPBM5 reduces to a matrix iteration

y[n+1] = M(ik1, ik2)y[n] (7)

where M(ik1, ik2) ∈ Cq×q and q represents the number of input values. The stability region S includes all
the (k1, k2) pairs that guaranteed a bounded iteration. For the scalar case we simply need a stability function
R with magnitude less than one, so that

S =
{

(k1, k2) ∈ R2 : |R(ik1, ik2)| ≤ 1
}
. (8)
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ERK4 ESDC6 EPBM5

|R(ik1, ik2)| ≤ 1 |R(ik1, ik2)| ≤ 1.01

Figure 3: Stability regions S (top row) and stability functions R(ik1, ik2) (bottom row) of the ERK4, ESDC6, and EPBM5
methods for 0 ≤ k1 ≤ 60. To improve readability, the k2 axis is scaled differently for each method. In the top row we show
the the proper stability region in dark gray and an extended stability region in light gray that allows for a small amount of
instability.

For the multivalued case, we require the matrix M(ik1, ik1) to be power bounded. Therefore, we redefine
the stability function as R(ik1, k2) = ρ(M(ik1, ik1)) where ρ denotes the spectral radius. On the boundary,
we must take special care to ensure that any eigenvalues of magnitude one are non-defective.

Since we are only considering real-valued λ1 and λ2 in (5), we can visualize the stability regions for
non-diffusive problems using a simple two-dimensional plot. Moreover, all the integrators we consider have
stability functions that satisfy R(ik1, ik2) = R(−ik1,−ik2). Therefore, we only need to consider k1 ≥ 0.
This same approach was used in [9] to visualize the stability of parareal integrators based on implict-explicit
Runge-Kutta methods.

In Figure 3 we show the stability regions S and the stability functions R(ik1, ik2) for the ERK4, ESDC6,
and EPBM5 methods. If we exclude the line k2 = 0, which corresponds to N(t,y) = 0 in (1), then the
stability regions of all three exponential integrators are disjoint. This characteristic is extremely undesirable
and explains the severe timestep restrictions we experienced when solving the ZDS equation.

Interestingly, the magnitude of the instabilities is very small, and allowing R(ik1, ik2) to grow marginally
larger than one leads to fully connected regions. However, this observation has little practical significance
since we have already seen one example where unmodified exponential integrators produce unusable results.
Nevertheless, this phenomenon suggests that exponential integrators will converge successfully on sufficiently
small integration intervals that do not allow instabilities to fully manifest. As we will see in Subsection 5.3,
this likely explains the existence of successful convergence results found in the literature.
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Another interesting feature of the stability region is the behavior near the line k2 = 0. Since all exponential
integrators treat the linear term exactly, the stability functions all satisfy R(ik1, 0) = 1, which pins the
stability function right on the border of stability along the k2 = 0 line. Therefore, even small values of
k2 can easily perturb the stability function above one. However, unlike explicit methods, the instabilities
decrease in magnitude as k1 increases. This is due to the asymptotic behavior of the exponential integral
that approximates the nonlinearity in (2); namely for any finite k2,

lim
k1→±∞

∣∣∣∣k2

∫ 1

0

eik1(s−1)p(s)ds

∣∣∣∣ ∼ 1

|k1|
for any polynomial p(s). (9)

To prove this result one simply needs to apply integration by parts.

5. Improving stability through repartitioning
We now introduce a simple repartitioning strategy to eliminate the stability limitations described in the

previous two sections. In short, we propose to repartition the system (1) as

y′ = L̂y + N̂(t,y) (10)

where

L̂ = L + εD, N̂(t,y) = N(t,y)− εDy, (11)

and D is a diffusive operator. The repartitioned system (10) is mathematically equivalent to (1), however a
partitioned exponential integrator now exponentiates L̂ instead of the original matrix L.

To improve stability, we seek a matrix D so that the eigenvalues of L̂ have some small negative real-
component. We start by first assuming that L is diagonalizable so that L = UΛU−1 and then select

D = −Uabs(Λ)U−1. (12)

Although this choice may be difficult to apply in practice, it is very convenient for analyzing the stability
effects of repartitioning. If we apply (12) to the Dahlquist test problem (5), then D = −|λ1| and we obtain
the repartitioned non-diffusive Dahlquist equation

y′ = (iλ1 − ε|λ1|)︸ ︷︷ ︸
L̂

y + (iλ2 + ε|λ1|)y︸ ︷︷ ︸
N̂(t,y)

. (13)

The associated stability region for an exponential integrator is

S =
{

(k1, k2) ∈ R2 :
∣∣∣R̂(k1, k2)

∣∣∣ ≤ 1
}
, (14)

R̂(k1, k2) = R (ik1 − ε|k1|, ik2 + ε|k1|) , (15)

where R is the stability function of the unmodified integrator. By choosing

ε = 1/ tan(π2 + ρ) for ρ ∈ [0, π2 ), (16)

the single eigenvalue of the partitioned linear operator L̂ is now angled ρ radians off the imaginary axis into
the left half-plane. Conversely, the “nonlinear” operator N̂(t, y) has been rotated and scaled into the right
half-plane. Therefore, in order for the method to stay stable, the exponential functions of L̂ must damp the
excitation that was introduced in the nonlinear component.

In Figure 4 we show the stability regions for ERK4, ESDC6, and EPBM5 after repartitioning with
different values of ρ. Rotating the linear operator by only ρ = π/2048 radians (≈ 0.088 degrees) already
leads to large connected linear stability regions for all three methods. This occurs because the magnitude of
the partitioned stability function R̂(k1, k2) along the line k2 = 0 is now less than one for any k1 6= 0. In fact,
by increasing ρ further, one introduces additional damping for large k1. Therefore, under repartitioning,
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high-frequency modes will be damped, while low frequency modes will be integrated in a nearly identical
fashion to the unmodified integrator with ρ = 0. Excluding scenarios where energy conservation is critical,
the damping of high-frequency modes is not a serious drawback since large phase errors in the unmodified
integrator would still lead to inaccurate solutions (supposing the method is stable in the first place).

Repartitioning cannot be applied indiscriminately and as ρ approaches π
2 one obtains an unstable

integrator. To highlight this phenomenon more clearly, we show magnified stability regions in Figure 5,
in which we selected sufficiently large ρ values to cause stability region separation for each method. From
these results we can see that the maximum amount of allowed repartitioning is integrator dependent, with
ESDC6 allowing for the most repartition and EPBM5 the least.

Finally, we note that this repartitioning technique can also be applied to implicit-explicit methods.
However, on all the methods we tried, we found that the repartitioning rapidly destabilizes the integrator.
In Figure 6 we present the stability regions for IMRK4 using different ρ values and show that stability along
the k2 = 0 line is lost even for small ρ values. The stability region corresponding to ρ = 0 can be compared
with the stability regions of the exponential integrators in Figure 4 to see how the damping properties of a
repartitioned exponential methods compare to those of an IMEX method.
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ERK4 ESDC6 EPBM5

ρ
=

0
ρ
=
π
/
2
0
4
8

ρ
=
π
/
5
1
2

ρ
=
π
/
1
2
8

ρ
=
π
/
3
2

Figure 4: Stability regions S of the ERK4, ESDC6, and EPBM5 methods for various ρ values. On each plot, the x-axis
represents k1 and the y-axis represents k2. The color represents the log of |R̂(k1, k2)| from (15).
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ERK4 (ρ = π
4
) ESDC6 (ρ = π

3
) EPBM5 (ρ = π

6
)

Figure 5: Magnified stability regions that show the effects of adding too much repartitioning. Each integrator family has a
different amount of maximal repartitioning before the stability regions split along the k2 line. Amongst the three methods,
ESDC6 was the most robust and EPBM5 was the least robust.

ρ = 0 ρ = π
256

ρ = π
128

ρ = π
64

Figure 6: Stability regions for the repartitioned IMRK4 methods with four values of ρ. For even small values of ρ,
instabilities form along the k2 = 0 line near the origin, and for large values of ρ, the stability regions separates. The effect
appears for even smaller values of ρ, however we did not include these plots here, since the effect is not visible at this level
of magnification.
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5.1. Solving ZDS with repartitioning
We now validate our stability results by solving the ZDS equation (4) using several different choices

for the diffusive operator D. Since we are solving in Fourier space where L = diag(ik3), we can easily
implement (12) by selecting D = −diag(|k|3). However, for more general problems, it will often not be
possible to compute the eigenvalue decomposition of the operator L. Therefore, to develop a more practical
repartitioning, we consider a generic, repartitioned, semilinear partial differential equation

ut = L[u] + εD[u]︸ ︷︷ ︸
L̂[u]

+N(t, u)− εD[u]︸ ︷︷ ︸
N̂(t,u)

(17)

where the spatial discretizations of L̂[u] and N̂(t, u) become the L̂ and N̂(t,y) in (11), and the linear operator
D[u] is the continuous equivalent of the matrix D. A natural choice for a diffusive operator in one spatial
dimension is the even-powered derivative

D[u] =

{
∂ku
∂xk k ≡ 0 (mod 4),

−∂
ku
∂xk k ≡ 2 (mod 4).

(18)

This operator can be easily implemented for different spatial discretizations and boundary conditions.
Moreover, it can be generalized to higher dimensional PDEs by adding partial derivatives in other dimensions.

The only remaining question is how to choose k. To avoid increasing the number of required boundary
conditions, it is advantageous if k is smaller than or equal to the highest derivative order found in L[u].
Therefore, in addition to (12), we also consider two additional repartitionings for the ZDS equation that are
based on the zeroth and the second spatial derivative of u(x, t). Below, we describe each repartitioning in
detail, and in Figure 7 we also plot the spectrum of the corresponding repartitioned linear operators L̂.

• Third-order repartitioning. The diffusive operators are

D[u] = F−1(|k|3) ∗ u (Continuous – physical space), (19)

D = −diag(|k|3) (Discrete – Fourier space), (20)

where F−1 denotes the inverse Fourier transform and ∗ is a convolution. This choice is equivalent to
(12). We choose ε according to (15), so that the eigenvalues of L̂ = L + εD lie on the curve

rei(π/2+ρ) ∪ rei(3π/2−ρ) (r ≥ 0).

For this repartitioning we select ε using ρ = π
2048 ,

π
512 ,

π
128 , and

π
32 .

• Second-order repartitioning. The diffusive operators are

D[u] = uxx (Continuous – physical space), (21)

D = −diag(k2) (Discrete – Fourier space), (22)

and we again choose ε according to (15). Compared to the previous choice, second-order repartitioning
over-rotates eigenvalues with magnitude less then one, and under-rotates eigenvalues with magnitude
larger than one. Therefore we require larger ρ values to achieve similar damping effects as third-order
repartitioning (see Figure 7); in particular we select ε using ρ = π

256 ,
π
64 ,

π
16 , and

π
4 .

• Zeroth-order repartitioning. The diffusive operators are

D[u] = −u (Continuous – physical space), (23)
D = −I (Discrete – Fourier space). (24)

This choice translates every eigenvalue of the linear operator L by a fixed amount ε into the left-hand
plane. We consider ε = 1, 2, 4 and 8.
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In Figures 8 we present convergence diagrams for ERK4, ESDC6, and EPBM5 using each of the
three repartitioning strategies. Overall, repartitioning resolved the stability issues and enabled the use of
exponential integrators for efficiently solving the ZDS equation. We summarize the results as follows.

Third-order repartitioning. Adding even a small amount of third-order repartitioning immediately improves
the convergence properties of the exponential integrators. For ρ = π/128, all integrators achieve proper
convergence across the full range of stable timesteps. Moreover, adding additional repartitioning does not
damage the accuracy so long as the underlying method remains stable.

Second-order repartitioning. Second-order repartitioning is able to achieve nearly identical results to third-
order repartitioning, provided that larger ρ-values are used. Overall, the results are not surprising since the
spectrums of the corresponding linear operators shown in Figure 7 look very similar. The main disadvantage
of second-order repartitioning is that ρ needs to tuned to ensure that the highest modes have been sufficiently
rotated.

Zeroth-order repartitioning. Zeroth order repartitioning is extremely simple to implement, however it is
also the least effective at improving convergence and preserving accuracy. A small ε does not introduce
enough damping and the convergence curves are improved but not fully restored. On the other hand,
large ε values stabilize stiff modes, however since all the eigenvalues are shifted by an equal amount, the
repartitioning damages the accuracy of non-stiff modes. This leads to convergence curves that have been
shifted to the left since we have effectively worsened the error constant of the exponential integrator. Zeroth-
order repartitioning also negatively impacted the sensitivity of the integrator to roundoff errors, and we were
unable to obtain the solution with a relative error of less than approximately 10−8.
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D = −diag
(
|k|3

)

D = −diag
(
k2

)

D = −I

Figure 7: Spectrum of the repartitioned linear operator L̂ = L + εD, for three choices of D and multiple ε. In the first
two plots ε is selected according to (16). The choices of ρ for the second-order repartitioning where selected to achieve
comparable damping to third-order repartitioning.
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Figure 8: Convergence diagrams for the repartitioned ERK4, ESDC6, and EPBM5 integrators on the ZDS equation using
third, second, and zeroth order repartitioning. For reference we also include the unpartitioned IMRK4 integrator in each
plot. The columns correspond to different choices for the matrix D, and each row to different integrators. Color denotes
the value of ρ from (16) for the first two columns and the value of ε for the third column.
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5.2. Comparing repartitioning to hyperviscosity
Time dependent equations with no diffusion are known to cause stability issues for numerical methods,

and a commonly applied strategy is to add a hyperviscous term to the equation right-hand-side (see for
example [27, 42]). To avoid destroying the convergence properties of an integrator of order q, the magnitude
of this term is typically proportional to the stepsize of the integrator ∆t raised to the power of q + 1.

In the context of the continuous semilinear partial differential equation

ut = L[u] +N(t, u) (25)

this is equivalent to considering a new equation with a vanishing diffusive operator D̃[u] added to the
right-hand-side so that

ut = L[u] + (∆t)q+1γD̃[u] +N(t, u), (26)

where γ is a constant that controls the strength of the diffusion. One then approximates the solution to (25)
by numerically integrating (26). The improvement to stability comes from the fact that we have replaced
the original discretized linear operator L with L̃ = L + (∆t)q+1γD̃.

Unlike repartitioning, we are no longer adding and subtracting the new operator. We must therefore
ensure that D[u] does not damage the accuracy of slow modes as they typically contain the majority of
useful information. For this reason, D[u] is generally chosen to be a high-order even derivative since these
operators have a negligible effect on low frequencies while causing significant damping of high frequencies.

To compare the differences between repartitioning and hyperviscosity, we re-solve the ZDS equation
using ERK4 with hyperviscosity of orders four, six, and eight. Since ERK4 is a fourth-order method, we
take q = 4. In Figure 9 we show convergence diagrams for these experiments. We immediately see that
hyperviscosity is only effective when a sufficiently high-order spatial derivative is used. In particular, fourth-
order hyperviscosity fails to improve stability for small γ and completely damages the accuracy of the
integrator for larger γ. Sixth-order hyperviscosity offers a marginal improvement at coarse stepsizes, but
also damages accuracy at fine stepsizes. Eighth-order hyperviscosity with γ = 1010 is the only choice that
achieves results comparable to repartitioning.

In summary, repartitioning offers two key advantages. First, it does not require the use of high-order
spatial derivatives, and second, it is less sensitive to overdamping. These advantages are both due to the
fact that repartitioning does not modify the underlying problem, while hyperviscosity is only effective if the
modified problem (26) closely approximates the original problem (25). We discuss both points in more detail
below.

Sensitivity to overdamping. When adding hyperviscosity, it is critical to select the smallest possible γ that
suppresses instabilities. Selecting larger γ causes the solutions of (25) and (26) to grow unnecessarily far
apart, and leads to a time integration scheme that converges more slowly to the solution of (26). In a
convergence diagram, excessive hyperviscosity does not reduce the order-of-accuracy of an integrator, but
it will lead to a method with a larger error constant. This phenomenon appears prominently in Figure 9,
where ERK4 methods with too much hyperviscosity consistently performed worse than all other methods
at fine timesteps (e.g. see graphs for ω = 106).

In contrast, second-order and third-order repartitioning are significantly more flexible since they allow for
a greater amount of over-partitioning without any significant damage to the accuracy or stability. Excessively
large ε values can still cause the stability region separation shown in Figure 5, however such values are unlikely
to be used in practice, since they lead to a partitioned linear operator with eigenvalues that have a larger
negative real part than imaginary part. Zeroth-order repartitioning is most similar to hyperviscosity since
large values of ε also damage the error constant of the method; however, the effects are significantly less
pronounced.

Importance of high-order spatial derivatives. When adding hyperviscosity we must ensure that the small
eigenvalues of the modified linear operator L̃ closely approximate those of L, or we risk altering the
dynamics of slow modes. Therefore, we require a small γ for low-order hyperviscous terms. However, this
creates a dilemma: choosing a small γ may not eliminate the instabilities while choosing a large γ damages
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accuracy. This is exactly why we were not able to efficiently stabilize the ZDS equation using fourth-order
hyperviscosity.

In contrast, repartitioning does not require that the small eigenvalues of L̂ closely approximate those of
L, since the nonlinear term counteracts any changes. This is perhaps most easily explained by considering the
Dahlquist equation (5). If |λ| = |λ1 +λ2| is small (i.e. the mode is slow), then an exponential integrator will
integrate the system accurately so long as |λ1| and |λ2| are also small. Hence, we can freely redistribute the
wavenumber between λ1 anz λ2. This allows us to repartition using second-order diffusion without loosing
accuracy.

D̃ = −diag(k4), γ = 104ω D̃ = −diag(k6), γ = 102ω D̃ = −diag(k8), γ = ω

Figure 9: Convergence plots for ERK4 with hyperviscosity added to the linear operator; for convenience we write γ in
terms of a new parameter ω. Low-order hyperviscosity is unable stabilize the integrator, while a properly selected 8th-order
diffusion yields results that are nearly identical to repartitioning.

5.3. Long-time integration of Korteweg-de Vries
The ZDS equation (4) causes considerable difficulties for unmodified exponential integrators even on

short timescales when the dynamics are simple. However, this does not imply that repartitioning is always
necessary for solving dispersive equations. In fact, there are many reported results in the literature where
exponential integrators converge successfully without requiring any modifications; several examples include
[28], [34], and [18].

As discussed in Section 4, the instabilities of exponential integrators are very small in magnitude and
can therefore go unnoticed for long periods of time. To explore this further, we present a final numerical
experiment where we solve the Korteweg-de Vries (KDV) equation from [44]

∂u

∂t
= −

[
δ
∂3u

∂x3
+

1

2

∂

∂x
(u2)

]
u(x, t = 0) = cos(πx), x ∈ [0, 2]

(27)

where δ = 0.022. The boundary conditions are periodic, and we discretize in space using a 512 point
Fourier spectral method. As with the ZDS equation, we solve in Fourier space where the linear operator
L = diag(iδk3).

This exact problem was used in both [6] and [8] to validate the convergence of ERK, ESDC, and EPBM
methods. In the original experiments the equation was integrated to time 3.6/π. On these timescales ERK4,
ESDC6, and EPBM5 all converge properly and show no signs of instability. We now make the problem more
difficult to solve by extending the integration interval to t = 160. The longer time interval increases the
complexity of the solution and allows for instabilities to fully manifest.

In Figure 10 we show how the relative error of both unpartitioned and partitoned ERK4, ESDC6, and
EPBM5 methods evolves in time. To produce the plot, we run all integrators using 56000 timesteps and
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compare their outputs to a numerically computed reference solution at 30 equispaced times between t = 0
and t = 160.

On short timescales all unmodified exponential integrators are stable and no repartitioning is required.
However, on longer timescales, repartitioning becomes necessary. Moreover, the maximum time horizon
before instabilities dominate differs amongst the integrators. The unmodified EPBM5 method is the first
integrator to become unstable around t = 20. The unmodified ERK4 method is more robust and remains
stable until approximately time t = 55, while the unmodified ESDC6 method remains stable across almost
the entire time interval. Unlike the ZDS example, the time to instability is now correlated to the size of the
methods stability region.

Adding zeroth-order, second-order, or third-order repartitioning stabilizes all the methods, and does
not damage the accuracy in regions where the unmodified integrator converged. Furthermore, the accuracy
differences between the three repartitioning strategies is effectively negligible. Lastly, the repartitioning
parameters described in the legend of Figure 10 allow us to compute the solution at even longer times; we
tested all methods out to time t = 1000, after which we did not look further, and found that all partitioned
method configurations remained stable.

6. Summary and conclusions
In this work we studied the linear stability properties of exponential integrators on stiff equations with

no diffusion, and showed that without any modifications, exponential integrators are inherently unstable at
large stepsizes. Moreover, we demonstrated that the severity of the instabilities varies across problems and
integrator families.

The main contribution of this paper is the introduction of a simple repartitioning approach that
resolves the stability issues and improves convergence for stiff non-diffusive equations. Compared to the
common practice of adding hypervisocity, repartitioning provides better accuracy and does not require
introducing high-order spatial derivatives. Furthermore, there is no need to solve a modified equation;
instead repartitioning introduces a pre-specified amount of numerical dissipation directly into an exponential
integrator.

The applications of this work are two-fold. First, repartitioning is a useful tool for any practitioner
experiencing stability issues when applying exponential integrators on hyperbolic or dispersive equations.
The simplest way to apply repartitioning is to solve an equation using a range of different repartitioning
terms until the desired result is achieved. Alternatively, one can study the linear stability properties of
an integrator, and then compute the spectrum of the equation’s linear operator to determine a suitable
repartitioning term and constant ε.

The second application of this work relates to exponential integrators and parallel-in-time frameworks
where effect of instabilities becomes much more significant. In followup works we will apply this repartitioning
strategy within the Parareal and PFASST frameworks to solve non-diffusive equations.

Acknowledgements
The work of Buvoli was funded by the National Science Foundation, Computational Mathematics

Program DMS-2012875. The work of Minion was supported by the U.S. Department of Energy, Office of
Science, Office of Advanced Scientific Computing Research, Applied Mathematics program under contract
number DE-AC02005CH11231.

References
[1] G. P. Agrawal, Nonlinear fiber optics, in Nonlinear Science at the Dawn of the 21st Century, Springer, 2000, pp. 195–211.
[2] A. H. Al-Mohy and N. J. Higham, A new scaling and squaring algorithm for the matrix exponential, SIAM Journal

on Matrix Analysis and Applications, 31 (2010), pp. 970–989.
[3] , Computing the action of the matrix exponential, with an application to exponential integrators, SIAM journal on

scientific computing, 33 (2011), pp. 488–511.
[4] U. M. Ascher, S. J. Ruuth, and B. T. Wetton, Implicit-explicit methods for time-dependent partial differential

equations, SIAM Journal on Numerical Analysis, 32 (1995), pp. 797–823.

T Buvoli et al.: Preprint submitted to Elsevier Page 17 of 23



On the Stability of Exponential Integrators for Non-Diffusive Equations

KDV Solution Plot

Error vs. Time

Integrator: ERK4 ESDC6 ESDC6

Repartitioning: γ = 0 D = −diag(|k3|), ρ = π
64

D = −diag(k2), ρ = π
3

D = −I, γ = 16

Figure 10: Relative error versus time for the KDV equation (27) solved using ERK4, ESDC6, and EPBM5 with 56000
timesteps. Each integrator is shown using a different line marker. The blue curves denote unpartitioned integrators, while
shades of gray denote various repartitionings. The differences in relative error between different repartitionings is very small,
so the gray lines almost entirely overlap.

[5] G. Beylkin, J. M. Keiser, and L. Vozovoi, A new class of time discretization schemes for the solution of nonlinear
PDEs, Journal of Computational Physics, 147 (1998), pp. 362–387.

[6] T. Buvoli, A class of exponential integrators based on spectral deferred correction, SIAM Journal on Scientific Computing,
42 (2020), pp. A1–A27.

[7] T. Buvoli, Codebase for “Exponential Integrators for Non-Diffusive Problems”, (2021). https://github.com/buvoli/
exp-non-diffusive.

T Buvoli et al.: Preprint submitted to Elsevier Page 18 of 23

https://github.com/buvoli/exp-non-diffusive
https://github.com/buvoli/exp-non-diffusive


On the Stability of Exponential Integrators for Non-Diffusive Equations

[8] T. Buvoli, Exponential polynomial block methods, SIAM Journal on Scientific Computing, 43 (2021), pp. A1692–A1722.
[9] T. Buvoli and M. L. Minion, IMEX Runge-Kutta Parareal for non-diffusive problems, Appearing in “Parallel-in-Time

Integration Methods”, Springer (arXiv preprint arXiv:2011.01604), (2021).
[10] M. Caliari, L. Einkemmer, A. Moriggl, and A. Ostermann, An accurate and time-parallel rational exponential

integrator for hyperbolic and oscillatory PDEs, Journal of Computational Physics, (2021), p. 110289.
[11] M. Caliari, P. Kandolf, A. Ostermann, and S. Rainer, Comparison of software for computing the action of the

matrix exponential, BIT Numerical Mathematics, 54 (2014), pp. 113–128.
[12] , The Leja method revisited: Backward error analysis for the matrix exponential, SIAM Journal on Scientific

Computing, 38 (2016), pp. A1639–A1661.
[13] C. Canuto, M. Y. Hussaini, A. Quarteroni, A. Thomas Jr, et al., Spectral methods in fluid dynamics, Springer-

Verlag, 1988.
[14] S. M. Cox and P. C. Matthews, Exponential time differencing for stiff systems, Journal of Computational Physics,

176 (2002), pp. 430–455.
[15] N. Crouseilles, L. Einkemmer, and J. Massot, Exponential methods for solving hyperbolic problems with application

to collisionless kinetic equations, Journal of Computational Physics, 420 (2020), p. 109688.
[16] M. Emmett and M. Minion, Toward an efficient parallel in time method for partial differential equations, Communica-

tions in Applied Mathematics and Computational Science, 7 (2012), pp. 105–132.
[17] S. Gaudreault, G. Rainwater, and M. Tokman, KIOPS: A fast adaptive Krylov subspace solver for exponential

integrators, Journal of Computational Physics, 372 (2018), pp. 236 – 255.
[18] I. Grooms and K. Julien, Linearly implicit methods for nonlinear PDEs with linear dispersion and dissipation, Journal

of Computational Physics, 230 (2011), pp. 3630–3650.
[19] T. S. Haut, T. Babb, P. G. Martinsson, and B. A. Wingate, A high-order time-parallel scheme for solving wave

propagation problems via the direct construction of an approximate time-evolution operator, IMA Journal of Numerical
Analysis, 36 (2015), pp. 688–716.

[20] N. J. Higham and E. Hopkins, A catalogue of software for matrix functions. version 3.0, (2020).
[21] M. Hochbruck and C. Lubich, On Krylov subspace approximations to the matrix exponential operator, SIAM Journal

on Numerical Analysis, 34 (1997), pp. 1911–1925.
[22] M. Hochbruck and A. Ostermann, Explicit exponential Runge–Kutta methods for semilinear parabolic problems, SIAM

Journal on Numerical Analysis, 43 (2005), pp. 1069–1090.
[23] , Exponential Runge–Kutta methods for parabolic problems, Applied Numerical Mathematics, 53 (2005), pp. 323–339.
[24] , Exponential integrators, Acta Numerica, 19 (2010), pp. 209–286.
[25] M. Hochbruck, A. Ostermann, and J. Schweitzer, Exponential Rosenbrock-type methods, SIAM Journal on

Numerical Analysis, 47 (2009), pp. 786–803.
[26] G. Izzo and Z. Jackiewicz, Highly stable implicit–explicit Runge–Kutta methods, Applied Numerical Mathematics, 113

(2017), pp. 71–92.
[27] C. Jablonowski and D. L. Williamson, The pros and cons of diffusion, filters and fixers in atmospheric general

circulation models, Numerical techniques for global atmospheric models, (2011), pp. 381–493.
[28] A. Kassam and L. Trefethen, Fourth-order time stepping for stiff PDEs, SIAM J. Sci. Comput, 26 (2005), pp. 1214–

1233.
[29] C. A. Kennedy and M. H. Carpenter, Additive Runge–Kutta schemes for convection–diffusion–reaction equations,

Applied numerical mathematics, 44 (2003), pp. 139–181.
[30] S. Koikari, Rooted tree analysis of Runge–Kutta methods with exact treatment of linear terms, Journal of computational

and applied mathematics, 177 (2005), pp. 427–453.
[31] S. Krogstad, Generalized integrating factor methods for stiff PDEs, Journal of Computational Physics, 203 (2005),

pp. 72–88.
[32] S. Krogstad, Generalized integrating factor methods for stiff PDEs, Journal of Computational Physics, 203 (2005),

pp. 72–88.
[33] J. Loffeld and M. Tokman, Comparative performance of exponential, implicit, and explicit integrators for stiff systems

of ODEs, Journal of Computational and Applied Mathematics, 241 (2013), pp. 45–67.
[34] H. Montanelli and N. Bootland, Solving periodic semilinear stiff PDEs in 1D, 2D and 3D with exponential integrators,

arXiv preprint arXiv:1604.08900, (2016).
[35] J. Niesen and W. M. Wright, A Krylov subspace method for option pricing, (2011).
[36] , Algorithm 919: A Krylov subspace algorithm for evaluating the ϕ-functions appearing in exponential integrators,

ACM Trans. Math. Softw., 38 (2012), pp. 22:1–22:19.
[37] A. Ostermann, M. Thalhammer, and W. M. Wright, A class of explicit exponential general linear methods, BIT

Numerical Mathematics, 46 (2006), pp. 409–431.
[38] G. Rainwater and M. Tokman, A new class of split exponential propagation iterative methods of Runge–Kutta type

(sEPIRK) for semilinear systems of ODEs, Journal of Computational Physics, 269 (2014), pp. 40–60.
[39] A. Sandu and M. Günther, A generalized-structure approach to additive Runge–Kutta methods, SIAM Journal on

Numerical Analysis, 53 (2015), pp. 17–42.
[40] M. Tokman, Efficient integration of large stiff systems of ODEs with exponential propagation iterative (EPI) methods,

Journal of Computational Physics, 213 (2006), pp. 748–776.

T Buvoli et al.: Preprint submitted to Elsevier Page 19 of 23



On the Stability of Exponential Integrators for Non-Diffusive Equations

[41] , A new class of exponential propagation iterative methods of Runge–Kutta type (EPIRK), Journal of Computational
Physics, 230 (2011), pp. 8762–8778.

[42] P. A. Ullrich, D. R. Reynolds, J. E. Guerra, and M. A. Taylor, Impact and importance of hyperdiffusion on the
spectral element method: A linear dispersion analysis, J. Comput. Phys., 375 (2018), pp. 427–446.

[43] G. Wanner and E. Hairer, Solving ordinary differential equations II, Springer Berlin Heidelberg, 1996.
[44] N. J. Zabusky and M. D. Kruskal, Interaction of solitons in a collisionless plasma and the recurrence of initial states,

Phys. Rev. Lett, 15 (1965), pp. 240–243.

T Buvoli et al.: Preprint submitted to Elsevier Page 20 of 23



On the Stability of Exponential Integrators for Non-Diffusive Equations

A. Method coefficients
• ERK4 is a fourth-order exponential Runge-Kutta method given by

K0 = N(tn, yn)

K1 = N(tn + h/2, ϕ0(hL/2)yn + 1
2ϕ1(h/2L)K0)

K2 = N(tn + h/2, ϕ0(hL/2)yn +
(

1
2ϕ1(h/2L)− ϕ2(h/2L)

)
K0 + ϕ2(h/2L)K1)

K3 = N(tn + h, ϕ0(hL)yn + (ϕ1(hL)− 2ϕ2(hL))K0 + 2ϕ2(hL)K2)

yn+1 = ϕ0(hL)yn + (ϕ1(hL)− 3ϕ2(hL) + 4ϕ3(hL))K1

+ (2ϕ2(hL)− 4ϕ3(hL))(K2 +K2) + (−ϕ2(hL)− 4ϕ3(hL))K3

• ESDC6 is a sixth-order exponential spectral deferred correction method. To write down the formula for
ESDC6, we first define the quadrature nodes

tn,j = tn + hηj , j = 1, . . . , 4

for ηj = {0, 1
2 −

√
5

10 ,
1
2 +

√
5

10 , 1} and let hn,j = tn,j+1 − tn,j . The pseudocode for ESDC6 is:

Y
[k]
n,1 = yn, N

[k]
n,j = N(tn,j , Y

[k]
n,j)

for j = 1 to 3

Y
[1]
n,j+1 = ϕ0(hn,jL)Y

[1]
n,j + hn,jϕ1(hn,jL)N

[1]
n,j+γ

for k = 1 to 6

for j = 1 to 3

Y
[k+1]
n,j+1 = ϕ0(hn,jL)Y

[k+1]
n,j + hn,jϕ1(hn,jL)

[
N

[k+1]
n,j+γ −N

[k]
n,j+γ

]
+ I

[k]
n,j

yn+1 = Y
[m+1]
n,p

To write the exponen-

tial integral terms Ij,k we first define

τj,i =
tn,i − tn,j
hn,j

, i, j = 1, . . . , 4,

V(j)c,d = (τj,c)
d−1, V(j) ∈ R4×4,

then,

I
[k]
n,j = hn,j

p∑
ν=1

ϕν(hn,jL)b[k]
ν where b[k]

ν =

p∑
l=1

a
(ν)
j,l N

[k]
n,l. (28)

where the weights a(ν)
j,l = ν!V(j)−1

ν+1,l.

• EPBM5 is composite method based on an exponential polynomial block method that accepts five
inputs y[n]

j ≈ y(tn + rzj) and produces five outputs y[n+1]
j ≈ y(tn + rzj + rα) where the nodes {zj}5j=1

are {−1,−η+,−η−, η−, η+} for η± =

√
3
7 ±

2
7

√
6
5 . The output computation is

y
[n+1]
j = ϕ0(rηj(α)L)y

[n]
1 + r

4∑
k=1

ηkj ϕk(rηj(α)L)vk, j = 1, . . . 5, (29)

where ηj(α) = zj + α+ 1 and the vectors vj are given by
v1

v2

v3

v4

 =


(w+

1 + u+
1 ) (−w−1 + u−1 ) (w−1 + u−1 ) (−w+

1 + u+
1 )

(−w−2 − u2) (w+
2 + u2) (−w+

2 + u2) (w−2 − u2)

(w−3 + u2) (−w+
3 − u2) (w+

3 − u2) (−w+
3 − u2)

−w+
4 w+

4 w+
4 w−4




N2

N3

N4

N5
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where Nj = N(tn + rzj , y
[n]
j ) and the constants w±j and u±j are:

w±1 =

√
75±4

√
30

12 w±2 =

√
10170±1104

√
30

24

w±3 = 7
√

1350±180
√

30
24 w±4 = 7

√
150±20

√
30

8

u±1 = 3±
√

30
12 u2 = 7

√
30

24

EPBM5 first advances the solution using α = 1, and then corrects the new solution using α = 0. If we
denote the right-hand-side of (29) as Mj(α, tn, y

[n]), then the composite method EPBM5 can be written
as

ỹ
[n+1]
j = Mj(1, tn, y

[n])

y
[n+1]
j = Mj(0, tn + r, ỹ[n+1])

j = 1, . . . , 5.

The required nonlinear function evaluations Nj = N(tn + rzj , y
[n]
j ) and Nj = N(tn + rzj + r, ỹ

[n]
j ) can

each be evaluated in parallel.
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