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Dedicated Breast Positron Emission Tomography Technology  

to Characterize Invasive Lobular Carcinoma 

Natalia Konovalova 

Abstract 

Invasive lobular carcinoma (ILC) of the breast is the second most common histologic 

subtype of breast cancer. A majority of ILCs are estrogen receptor-positive (ER+) with a diffuse 

growth pattern that is difficult to detect. Patients with ILC often present at a clinically advanced 

stage with a low recurrence risk score. The combination of “molecularly low risk” and 

“clinically high risk” attributed the unique diagnostic and treatment challenges of this type of 

breast cancer. Dedicated breast positron emission tomography with [18F]fluoroestradiol (FES-

dbPET) with high sensitivity and spatial-resolution is a new functional imaging approach to 

characterize  ER+ breast cancers. In this observational study, we hypothesized that FES-dbPET 

imaging followed by a radiomic-based analysis of the primary tumor might aid in-depth 

characterization of ILC. Methods: Patients with biopsy-confirmed locally advanced ILC were 

imaged with dbPET using 5 mCi of FES before treatment. The primary tumor 3D volume was 

segmented from the ipsilateral breast. The segmentation of the whole contralateral breast volume 

was also obtained. Standardized uptake values (SUVs), background uptake values (BPUs), and 

radiomic features were computed. The top 9 radiomic features were selected for further analysis 

using the “Maximum Relevance – Minimum Redundancy” (mRMR) machine learning 

algorithm. Spearman rank correlation and Wilcoxon rank-sum test were performed to assess the 

relationship between imaging measurements and tumor characteristics, such as size and growth. 

All statistical analysis was performed using Python v 3.9 with Pandas v. 0.23.0, Numpy v. 

1.21.0, Pingouin v. 0.4.0, Scipy v. 1.7.0, MatPlotLib v. 2.2.2, and Seaborn v. 0.11.1 packages to 
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execute calculations and construct figures. P-values with 𝛼= 0.05 were calculated and reported 

for all measurements to establish the level of statistical significance. Results: A cohort of 15 ILC 

patients was included in this analysis. A total of 107 radiomic features were analyzed. A total of 

12 radiomic features showed a statistically significant correlation with MRI tumor size, while 

only one radiomic feature correlated with Ki67 (p-value < 0.05). The tumor-background ratio 

(TBR) showed weak and insignificant correlation trends with tumor characteristics. No other 

significant correlations were found. Conclusion: This study demonstrated a whole-tumor 

methodology to characterize the early stage primary ILC, offering more in-depth information 

relating imaging features to tumor characteristics. Shape (4) and intensity (2) features, as well as 

non-uniformity (6) and gray-level zone emphasis (1) features from the textural analysis exhibited 

promising trends in characterizing ILC with respect to MRI tumor size and Ki67. Due sample 

size limitations, a larger cohort study is needed to verify the initial findings.  
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Introduction 

Invasive lobular carcinoma (ILC) of the breast is the second most common histologic 

subtype of breast carcinomas and constitutes up to 15% of all newly diagnosed cases, primarily 

affecting postmenopausal patients1–3. Patients with ILC are more likely to exhibit a distinct 

molecular signature such as low recurrence risk score (Oncotype and MammaPrint)4–6, low 

Ki677, and the overexpression of estrogen receptors (ER+)8,9. Due to the downregulation of 

intracellular adhesion, particularly the cell adhesion protein E-cadherin10,11, ILC lesions have 

diffuse, non-cohesive growth and ill-defined tumor margins, which remains difficult to detect by 

screening mammography12. As a result, clinical presentation of ILC lesions is often at advanced 

stages of the disease. The combination of molecular low-risk and clinically advanced disease 

presents unique treatment challenges in patients with ILC.  

 Clinical management of advanced ILC often incorporates neoadjuvant endocrine 

treatment (NET) and/or neoadjuvant chemotherapy (NAC) to downstage the lesion and make the 

surgical resection feasible13. While most ILC lesions exhibit a favorable response to NET, 

several studies have suggested NAC lacks similar benefit in ILC with increased toxicity14–16. On 

the other hand, some ER+ ILCs demonstrate high levels of intra-tumoral heterogeneity in the 

primary and secondary tumors and fail to respond to endocrine treatments17,18. These findings 

indicate a need for quantitative, whole-tumor characterization of total ER expression and intra-

tumoral heterogeneity to optimize treatment strategies for patients with ILC.  

An attractive non-invasive tracer for evaluating ER expression is the lipophilic estradiol 

analog [18F]fluoroestradiol (FES), which binds reversibly to intracellular estrogen receptor-α 

(ERα)19–21. Positron emission tomography (PET) with FES exhibits uptake in primary tumors 

and distant metastases, with several studies identifying the potential of FES-PET for evaluating 
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active ER expression in vivo22–24. Furthermore, quantification of FES uptake with standardized 

uptake values (SUVs) in ER+ breast cancers was found to be predictive of response to endocrine 

therapy25,26. 

In a pilot study of patients with ER+ breast carcinoma, Jones et al.27 have previously 

demonstrated that FES dedicated breast PET (dbPET) imaging has a potential in characterizing 

primary breast tumors and guiding treatment choices. The dbPET is a promising and cost-

effective technology for functional 3D breast imaging, showing increased spatial resolution and 

uptake sensitivity in the tumor compared to conventional whole-body PET (wbPET)28–30. In the 

wbPET scanner, patients are scanned in the supine position, often resulting in images with 

collapsed breast volume and respiratory motion artifacts. Whereas, during dbPET imaging 

patients are in the prone position with the breast hanging freely through the detector ring located 

under the scan bed. This arrangement prevents breast compression and allows for better tissue 

visualization and lesion differentiation. The improved spatial resolution of dbPET reduces the 

partial volume effect observed in wbPET images31 and may potentially aid in detecting smaller 

lesions. Additionally, the higher sensitivity of dbPET coupled with an absence of a CT scanner 

allows lower dose of radiotracers and reducing patient's radiation exposure. Limitations of the 

FES-dbPET method include variable uptake among ER+ cancers, inability to image metastases, 

and exclusion of axillary lymph nodes and breast tissue adjacent to the chest wall32. Despite 

these limitations, FES-dbPET is an exciting breast-specific imaging modality, and further 

validation is needed to establish its significance in ER+ breast cancer imaging. 

This work is a part of an ongoing clinical study focused on using the dbPET technology 

to determine if the specific molecular signature in breast tumors can serve as a predictor of 

treatment outcome for patients diagnosed with ER+ breast cancer. For this project, we aim to 
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narrow the focus to the ILC cohort and look at the possible associations between ILC molecular 

signature and imaging features using FES-dbPET as an ER-specific imaging tool. 

The conventional approach to analyze PET imaging data includes calculation and 

interpretation of SUVs, tumor uptake volume (TUV), and, sometimes, other features specific to 

image intensity. In the preliminary study of 14 patients with biopsy-confirmed ER+/HER2- ILC, 

Hathi et al.33 analyzed SUVs, TUV, tumor-background ratio (TBR), and background 

parenchymal enhancement in relation to clinically derived ILC characteristics such as Ki67 and 

tumor size using the longest diameter by magnetic resonance imaging (MRI). They demonstrated 

that some of the imaging features correlate to molecular features in ILC patients with statistical 

significance. 

Radiomics, under the guidelines of the Image Biomarker Standardization Initiative 

(IBSI), is a comprehensive approach to analyze medical images34. Using radiomics-based 

analysis, 3D medical images can be transformed into quantitative information with the potential 

to explain many biological features and processes35. For example, it has been shown that 

radiomic features can be used to assess cancer malignancy36,37. Currently, there are about 167 

radiomic features suggested by IBSI that exhibited good to excellent reproducibility depending 

on the software package used for their implementation and calculation.  

Radiomic features can be categorized into clusters of features based on first-order 

statistics, shape/size, and texture34. First-order statistics are based on voxel intensity and 

incorporates standardized uptake values (SUV minimum, maximum, and mean) along with 

mathematically derived features that collectively describe image intensity distribution. Shape and 

size features are mostly self-descriptive and constitute a cluster of intensity-independent 

measurements of the volume of interest (VOI). Textural features make up the largest cluster of 
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features aimed to quantitatively describe shade, fineness, coarseness, etc. Extraction from FES-

dbPET images and further statistical analysis of these features may yield information beyond the 

standardized tracer uptake metric and reveal new covariates related to tumor molecular signature. 

Another feature of particular interest is MRI background parenchymal enhancement 

(BPE) in the contralateral breast. BPE was shown to be an independent predictor of breast cancer 

risk38. Van der Velden et al.39 analyzed BPE in dynamic contrast-enhanced (DCE) MRI of the 

contralateral breast and showed a significant association between BPE and long-term treatment 

outcomes, especially in patients with ER+/HER- breast cancers. Furthermore, several studies 

demonstrated the correlation between MRI-derived BPE and PET-derived background 

parenchymal uptake (BPU) in the contralateral breast with [18F]fluorodeoxyglucose (FDG) as a 

tracer40,41. These findings suggest that contralateral BPU may have potential as an imaging 

biomarker associated with breast cancer risk. 

In this study, we hypothesized that FES-dbPET might aid in characterizing ILCs and their 

response to treatment. We investigated whether radiomic features could help characterize 

ER+/HER2- ILC in relationship to cell proliferation and MRI tumor size. We also explored the 

contralateral BPU measured with FES-dbPET and its correlation with primary tumor 

characteristics. The rationale for this work was that the methodology developed for the analysis 

of radiomic features would positively contribute to the ongoing clinical study and serve as a 

foundation for the future research of imaging biomarkers as predictors of treatment response in 

breast cancer patients. 
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Methods 

Ethics statement     

This was a HIPAA-compliant study reviewed by the UCSF Institutional Review Board 

and approved by the Committee of Human Research under the institution Human Research 

Protection Program. The FES radiotracer was approved by the FDA for human PET imaging of 

breast cancer in metastatic settings. In this study, FES-dbPET was performed under an FDA-

approved Investigational New Drug Application (IND) 136929. All patients were required to 

provide written informed consent to participate in this study. All interventions were performed in 

compliance with corresponding guidelines and regulations. 

Study population     

Patients aged 18 years or older with biopsy-confirmed ER+/HER2- ILC were recruited to 

participate in this study. Pregnant patients and patients with any contradiction to the procedures 

listed in the study protocol were excluded. Tumor size expressed in the longest diameter was 

measured by MRI. The histologic subtype, ER expression, tumor grade, and Ki67 were obtained 

from core biopsies before treatment.  

FES-dbPET image acquisition    

Images were acquired at pre-treatment (baseline) using the dbPET scanner (MAMMI, 

General Equipment and Medical Imaging SA (OncoVision), Valencia, Spain). All patients were 

injected intravenously with 185.0 ± 18.5 MBq of FES. FES dose at the time of injection and time 

of imaging were recorded. Imaging was performed approximately 45 minutes post-injection. 

Patients were positioned prone with a single breast fit through the opening of the dbPET scanner 

and images were acquired axially from inferior to superior with approximately 15 minutes total 
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scan time per breast. All images were reconstructed with a standard 3D maximum likelihood 

expectation maximization (MLEM 3D) algorithm with 16 iterations and corrected for attenuation 

using vendor-supplied software42. 

Image processing and segmentation 

The reconstructed dbPET images were converted from DICOM to NRRD file format 

using the SimpleITK package v. 2.0.2 and Python v. 3.9 to obtain decay-corrected standardized 

uptake values normalized by body weight (SUV) and injected activity, as shown in Equation 1. 

The maximum intensity projection (MIP) images were created using Horos v. 4.0.0 RC5 for 

visualization purposes. 

𝑆𝑈𝑉 & !
"#
' =

$%&'('&)	+,-%.-&/0&',-	1!"#$2'-	345

5-6.%&.7	$%&'('&)	[9:]
× 𝐵𝑜𝑑𝑦	𝑊𝑒𝑖𝑔ℎ𝑡	[𝑔]          (Equation 1) 

Semi-automated segmentation of the tumor was performed on dbPET images of the 

ipsilateral breast in 3D Slicer v. 4.1143. The following steps were performed to create a label of 

the tumor VOI: (a) The Maximum Entropy threshold was applied to the whole image to select 

the areas of highest uptake. (b) Small VOIs (less than ten voxels) were excluded by setting the 

cut-off in the Islands tool in 3D Slicer. (c) Chest wall uptake artifacts were excluded by keeping 

the largest segments and/or by cutting off with the Scissors tool when appropriate.  

The parenchyma of the contralateral breast was segmented from background using a 

similar semi-automated approach in 3D Slicer. First, the Huang threshold segmentation tool was 

applied to separate the breast parenchyma from background. Then, the largest connected 

component corresponding to the breast volume was kept, and Gaussian smoothing with a 3 mm 

structuring element was applied to it. Finally, the area adjacent to the chest wall was cut off by 

the Scissors tool with a rectangular setting.  
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The labels of the tumor and contralateral breast volumes were saved in NRRD format for 

all patients. Very diffuse lesions with irregular tumor margins were segmented with the 

assistance of a radiologist with six years of experience in breast PET imaging. 

Feature extraction 

All images were resampled with linear interpolation to isotropic 1.5 mm voxel before 

radiomic feature computation to ensure the correct calculation of textural features44. In 

accordance with the IBSI34, radiomic features from intensity, shape, and texture (Gray Level Co-

occurrence Matrix (GLCM)45, Gray Level Run Length Matrix (GLRLM)46, Gray Level Size 

Zone Matrix (GLSZM)47, Gray Level Dependence Matrix (GLDM)48, and Neighboring Gray 

Tone Difference Matrix (NGTDM)49) feature clusters were computed using the PyRadiomics50 

package v. 3.0.1 and Python. The mean, maximum, and peak SUVs (SUVmean, SUVmax, SUVpeak) 

were computed from tumor labels, where SUVmean was the averaged uptake value for all voxels 

in the VOI, SUVmax was the value of the voxel with the highest uptake within the VOI, and 

SUVpeak was a value of spherical 1 cm3 VOI often centered on the voxel with the highest SUV51. 

The tumor uptake volume (TUV) was calculated by summing all the voxels of the VOI. Tumor-

to-background ratio (TBR) was computed as a ratio of tumor’s SUVmax in the ipsilateral breast to 

the SUVmean obtained from the contralateral breast52. Contralateral background parenchymal 

uptake (BPU) value was calculated by extracting the uptake values of all voxels within the VOI 

in the whole breast and sorting it in descending order. Then, the mean of the top 10% of these 

uptake values was calculated39. 

Data analysis 

All statistical analysis was performed using Python with SimpleITK, Scikit-Learn v. 

0.23.2, Pandas v. 0.23.0, Numpy v. 1.21.0, Pingouin v. 0.4.0, Scipy v. 1.7.0, MatPlotLib v. 2.2.2, 
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and Seaborn v. 0.11.1 packages to execute calculations and construct figures. P-values with 𝛼= 

0.05 were calculated and reported for all measurements to establish the level of statistical 

significance. 

To determine the relationship of the radiomic features with each other, Spearman’s 

correlation matrix was calculated and represented as a heatmap plot. Spearman’s rank correlation 

is a non-parametric algorithm that compares either ordinal, interval, or ratio types of variables 

and describes the relationship, either linear or not, with a monotonic function. Features with a 

correlation coefficient above zero were considered positively correlated, and features with a 

correlation coefficient below zero were considered negatively correlated (orthogonal). 

To assess the relationship of each extracted radiomic feature with clinical biomarkers 

such as MRI tumor size and Ki67, Spearman’s correlation coefficients were calculated. Since 

Ki67 biomarkers obtained from the patients’ medical records were reported as percent range, 

maximum Ki67 values were used for calculations. Additionally, features with moderate and 

strong correlation, defined as having the coefficients ranging between 0.40 and 0.59 for moderate 

correlation and between 0.60 and 1 for strong correlation53, were assessed separately to observe 

their potential associations with primary biomarkers of the tumor. Correlations among features 

with a p-value < 0.05 were considered statistically significant. Waterfall plots were created for 

visualization purposes. 

Radiomic features reduction, selection, and analysis  

To narrow the dimensionality for further analysis, radiomic features were selected from 

the dataset using the “Maximum Relevance – Minimum Redundancy” (mRMR) algorithm54, 

which selects the minimum number of redundant and complementary features that best represent 

the diversity of the data. For model training purposes, Ki67 was chosen as a target. The values of 
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Ki67 were dichotomized to “High” and “Low” based on 20% cut-off prior to the training55. The 

PymRMRe package v. 1.0.7, a free implementation of the mRMR Ensemble Feature Selection 

algorithm in Python, was used for this analysis. To determine the relationship of the selected 

radiomic features with each other, Spearman’s correlation matrix was calculated and represented 

as a heatmap plot. Diagonal values were hidden because they represented Spearman’s correlation 

coefficients of each feature with itself and were essentially equal to 1. 

Box-and-whisker plots were created to demonstrate the relationship of each selected 

radiomic feature with dichotomized Ki67 values, with the goal to visualize the data distribution 

and determine if any statistically significant differences within each extracted imaging marker 

can help distinguish between high and low corresponding biomarker values. Wilcoxon rank-sum 

test was used to compare the values of selected features for high and low Ki67. Spearman’s 

correlation coefficients were calculated for each selected feature to assess its relationship with 

MRI tumor size and Ki67 and represented as scatter plots for visualization. The goal was to 

determine the subset of radiomic features highly associated with tumor characteristics. 

BPU and TBR analysis 

To assess the relationship of BPU and TBR imaging markers with tumor characteristics, 

Spearman’s correlation coefficients were computed, and data points corresponding to each 

patient were represented as scatter plots with linear fitting at a 95% confidence interval (CI). 

Wilcoxon rank-sum test was used to compare the distribution of background uptake values based 

on dichotomized Ki67.   
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Results 

Patient characteristics 

Fifteen patients with ILC underwent pre-treatment FES-dbPET imaging with 

characteristics summarized in Table 1. The most common histologic tumor subtype was 

ER+/PR+/HER2- (N=14), followed by ER+/PR-/HER2- (N=1). Most of the patients presented 

with grade 2 tumors (N=12), followed by grade 1 (N=2) and grade 3 (N=3) lesions. There was no 

documentation of Ki67 and tumor size in the medical record for patients 9 and 12, respectively. 

These cases were treated as missing data in our analysis. 

FES-dbPET imaging results    

Images were acquired at the pre-treatment baseline using the dbPET technology, and 

representative images are shown in Figure 1. On these images, the inter-patient variation of 

tumor FES uptake patterns and non-specific scattering of FES from the myocardium in regions 

adjacent to the chest wall were visually observed. The resulting DICOM images of 15 patients 

were converted to the NRRD format. Due to the diffuse nature of ILC, some tumor 

segmentations were represented by the largest connected component, while others consisted of 

multiple VOI with the tracer uptake values above the established threshold. 

FES-dbPET feature distribution 

A total of 107 radiomic features from intensity (18), shape (14), and texture (24 GLCM, 

16 GLSZM, 16 GLRLM, 5 NGTDM, and 10 GLDM) were calculated for all patients in the 

feature extraction process. SUVmean, SUVmax, SUVpeak, TUV, TBR, and BPU values were 

calculated for all patients (Table 2), and median uptake values with interquartile range (IRQ) are 

reported in Table 3.  
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Table 1: Summary of patient and tumor characteristics. 

Characteristics Value 
Number of patients (N) 15 
Tumor characteristics  
 MRI tumor size (cm) (median (IRQ))  4.5 (1.9 - 7.0) 
 Grade 1 (N) 2 
 Grade 2 (N) 12 
 Grade 3 (N) 1 
Age (years) (median (IRQ))  62.0 (50.2 - 72.8) 
Body weight (kg) (median (IRQ)) 67.0 (59.8 - 75.4) 
Menopause status (N)  
 Pre-menopause (<50 years) 5 
 Post-menopause (>50 years) 10 
Subtypes (N)  
 ER+/PR+/HER2- 14 
 ER+/PR-/HER2- 1 
Ki67 (%; median (IRQ)) 10.0 (5.0 - 20.0) 

 

 
Table 2: Summary of FES-dbPET imaging results. 

Patient Laterality Ki67 
(%) 

MRI tumor 
size (cm) SUVmax SUVmean SUVpeak TUV 

(cm3) TBR BPU 

1 Right 20.0 5.3 9.46 3.78 4.05 8.22 11.28 2.04 
2 Right 30.0 6.7 15.83 4.35 5.66 10.90 24.00 1.63 
3 Right 15.0 1.3 5.10 3.04 2.24 0.29 4.60 2.07 
4 Left 10.0 12.6 34.07 13.97 21.48 48.36 40.32 1.94 
5 Right 5.0 2.6 5.29 2.73 1.95 4.08 7.35 1.72 
6 Left 10.0 0.5 3.30 1.07 0.99 3.08 3.94 1.99 
7 Right 15.0 8.0 9.17 4.61 4.55 10.40 6.23 2.91 
8 Left 25.0 7.1 13.45 4.11 4.99 9.91 18.23 1.61 
9 Right - 3.2 17.70 6.81 8.31 7.96 16.00 2.36 
10 Right 5.0 5.0 10.03 5.18 3.48 0.58 8.60 2.35 
11 Right 10.0 - 15.08 7.80 8.51 3.40 13.40 2.92 
12 Left 10.0 1.7 10.60 4.22 5.07 2.72 7.43 2.80 
13 Left 5.0 1.3 6.10 3.36 2.87 1.02 9.55 1.23 
14 Left 20.0 4.0 8.29 4.30 4.09 3.03 6.23 2.87 
15 Left 5.0 7.3 9.08 4.79 5.00 3.68 5.97 3.19 
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Table 3: Standardized uptake values distribution. 

Name Value (median (IRQ)) 
SUVmax 9.46 (7.19 - 14.27) 
SUVmean 4.30 (3.57 - 4.98) 
SUVpeak 4.55 (3.17 - 5.36) 
TUV (cm3) 3.68 (2.88 - 9.07) 
TBR 8.60 (6.23 - 14.70) 
BPU 2.07 (1.83 - 2.83) 

 
 
 
 
 
 
Correlation among radiomic features 

The heatmap representing the relationship of all extracted radiomic features with each 

other is shown in Figure 2. Each cell of the heatmap is colored according to Spearman’s 

correlation coefficient, with the value ranging from -1.00 to 1.00. Based on the visual assessment 

of the heatmap, shape features such as the least axis length, major and minor axis lengths, 

maximum 2D diameters (column, row, and slice), maximum 3D diameter, mesh and voxel 

volumes, and surface area showed highly positive correlation trends among themselves, and with 

energy (intensity), inverse difference (GLCM), and gray-level, run-length, size-zone, and 

dependence non-uniformity features from the textural analysis. These shape features were 

orthogonal to the following textural features: (1) sphericity and surface-volume ratio (shape), (2) 

uniformity (intensity), (3) long- and short-run low gray-level emphasis and low gray-level run 

emphasis from GLRLM, (4) large- and small-zone low gray-level emphasis and low gray-level 

zone emphasis from GLSZM, (5) large- and small-dependence low gray-level emphasis and low 

gray-level dependence emphasis from GLDM, and (6) coarseness from NGTDM. 
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Intensity features including energy, entropy, maximum, minimum, mean, range, and 

variance displayed highly positive correlation trends among each other, and with the textural 

features such as autocorrelation, cluster prominence, shade, tendency, contrast, entropy, energy, 

variance, and average features from GLCM cluster. These intensity features also showed high 

positive correlation patterns with long-/short-run (large/small-zone, large-/small-dependence) 

high gray-level emphasis, high gray-level run (zone, dependence) emphasis, entropy, and gray-

level variance features from GLRLM, GLSZM, and GLDM, as well as with complexity, 

contrast, and strength features from NGTDM. The former intensity features were orthogonal to 

sphericity and surface-volume ratio (shape), uniformity (intensity), and to several features from 

textural analysis, including gray-level inverse difference, inverse variance, normalized non-

uniformity, energy, maximum probability from GLCM, and low gray-level emphasis and non-

uniformity features from all textural clusters. Uniformity (intensity) was orthogonal to other 

intensity, shape, and textural features. 

Additionally, textural features that exhibited positive correlation trends with intensity 

features described above were also highly positively correlated among each other. For example, 

these features were autocorrelation, cluster prominence, shade, tendency, contrast, entropy, 

energy, variance, and average (GLCM), long-/short-run (large/small-zone, large-/small-

dependence) high gray-level emphasis, high gray-level run (zone, dependence) emphasis, 

entropy, and gray-level variance features from GLRLM, GLSZM, and GLDM, and complexity, 

contrast, and strength from NGTDM. Likewise, textural features that showed negative 

correlation trends with intensity features mentioned in the previous paragraph were orthogonal to 

each other. 
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The waterfall plots representing the relationships of all radiomic features with MRI tumor 

size and Ki67 are shown in Figures 3 and 4. A total of 36 radiomic features showed a strong and 

moderate correlation with MRI tumor size, while only 11 radiomic features exhibited moderate 

correlation with Ki67. Spearman’s correlation coefficients with corresponding p-values are 

represented in Tables 4 and 5, respectively. Twelve features, including shape (4), intensity (2), 

and non-uniformity features from textural analysis (6), showed a significant positive correlation 

with MRI tumor size (Table 4). Coarseness from NGTDM showed a significant negative 

correlation with MRI tumor size (⍴ = -0.77, p-value = 0.001). Large-area high gray-level 

emphasis from GLSZM showed a significant positive correlation with Ki67 (⍴ = 0.57, p-value = 

0.04). 

Correlation of selected features with MRI tumor size and Ki67 

The top 9 features were selected using the mRMR algorithm for further analysis and are 

briefly described in Table 6. Based on the heatmap (Figure 5), large-area high gray-level 

emphasis (GLSZM) was significantly orthogonal to zone percentage from the same cluster (⍴ = -

0.60, p-value = 0.02). Additionally, joint energy (GLCM) was significantly orthogonal to inverse 

difference moment normalized from the same cluster (⍴ = -0.60, p-value = 0.02) and to the 

energy (intensity) feature (⍴ = -0.80, p-value = 0.001). Conversely, energy (intensity) showed a 

significant positive correlation trend with inverse difference moment normalized from GLCM (⍴ 

= 0.82, p-value = 0.001). Other selected features exhibited weak to moderate positive and 

negative correlation among each other that was statistically insignificant (p-value >= 0.05). 

Wilcoxon rank-sum test was performed on selected features (Table 7). The relationship 

of radiomic features with dichotomized Ki67 is shown in Figure 6. Only one of the top 9 

features, large-area high gray-level emphasis (GLSZM), exhibited sensitivity in differentiating 
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against dichotomized Ki67 (p-value < 0.05). Spearman’s correlation coefficients of top 9 

radiomic features with MRI tumor size and Ki67 were calculated (Tables 8 and 9), with the 

corresponding scatter plots representing correlation trends shown in Figures 7 and 8. Energy 

(intensity) feature exhibited a strong statistically significant correlation with MRI tumor size (⍴ = 

0.64, p-value = 0.01). Large-area high gray-level emphasis (GLSZM) feature showed a moderate 

correlation with Ki67 (⍴ = 0.57, p-value = 0.04). 

Correlation of BPU and TBR with MRI tumor size and Ki67 

Spearman’s correlation coefficients for BPU and TBR with respect to MRI tumor size 

and Ki67 were calculated (Table 10). The correlation trends can be observed in Figure 9. No 

significant association was observed. The Wilcoxon rank-sum test showed results that did not 

achieve statistical significance when comparing BPU or TBR against Ki67 high and low values 

(Table 10). These results are illustrated using a box-and-whisker plot in Figure 9. 

 

 

                 

Figure 1: FES-dbPET images of two patients with ILC (W/L: 4/2). 
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Figure 2: Spearman correlation trends of all radiomic features among each other. 
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Figure 3: Spearman correlation trends of all radiomic features with MRI tumor size. 
 

 

 

Figure 4: Spearman correlation trends of all radiomic features with Ki67. 
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Table 4: Radiomic features with strong and moderate correlation with MRI tumor size. 

Feature Cluster ⍴ (95% CI) P-value 
Mesh Volume Shape 0.81 (0.48, 0.94) 0.001 
Voxel Volume Shape 0.76 (0.38, 0.92) 0.002 
Surface Area Shape 0.73 (0.33, 0.91) 0.003 
Gray Level Non-Uniformity GLRLM 0.72 (0.31, 0.91) 0.003 
Gray Level Non-Uniformity GLDM 0.72 (0.31, 0.91) 0.003 
Run Length Non-Uniformity GLRLM 0.72 (0.31, 0.9) 0.004 
Dependence Non-Uniformity GLDM 0.72 (0.3, 0.9) 0.004 
Size Zone Non-Uniformity GLSZM 0.66 (0.2, 0.88) 0.01 
Energy Intensity 0.64 (0.17, 0.88) 0.01 
Total Energy Intensity 0.64 (0.17, 0.88) 0.01 
Gray Level Non-Uniformity GLSZM 0.63 (0.15, 0.87) 0.02 
Least Axis Length Shape 0.56 (0.043, 0.84) 0.04 
Maximum 2D Diameter Slice Shape 0.53 (-0.0035, 0.83) 0.05 
10 Percentile Intensity 0.51 (-0.028, 0.82) 0.06 
Correlation GLCM 0.5 (-0.036, 0.82) 0.07 
Mean Intensity 0.49 (-0.051, 0.81) 0.07 
Major Axis Length Shape 0.49 (-0.051, 0.81) 0.07 
Zone Entropy GLSZM 0.48 (-0.063, 0.81) 0.08 
Root Mean Squared Intensity 0.48 (-0.068, 0.81) 0.08 
Median Intensity 0.48 (-0.074, 0.8) 0.09 
Maximum Intensity 0.47 (-0.077, 0.8) 0.09 
Inverse Difference Normalized GLCM 0.47 (-0.082, 0.8) 0.09 
Busyness NGTDM 0.46 (-0.099, 0.79) 0.10 
Cluster Shade GLCM 0.43 (-0.13, 0.78) 0.12 
Complexity NGTDM 0.42 (-0.14, 0.78) 0.13 
Range Intensity 0.42 (-0.15, 0.78) 0.14 
Dependence Entropy GLDM 0.41 (-0.15, 0.77) 0.14 
Joint Average GLCM 0.41 (-0.15, 0.77) 0.15 
Autocorrelation GLCM 0.41 (-0.15, 0.77) 0.15 
Sum Average GLCM 0.41 (-0.15, 0.77) 0.15 
Small Dependence High Gray Level Emphasis GLDM 0.4 (-0.16, 0.77) 0.15 
Low Gray Level Zone Emphasis GLSZM -0.41 (-0.77, 0.16) 0.15 
Small Area Low Gray Level Emphasis GLSZM -0.41 (-0.77, 0.15) 0.14 
Large Dependence Low Gray Level Emphasis GLDM -0.54 (-0.83, -0.015) 0.05 
Sphericity Shape -0.54 (-0.83, -0.015) 0.05 
Coarseness NGTDM -0.77 (-0.92, -0.41) 0.001 
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Table 5: Radiomic features with moderate correlation with Ki67. 

Feature Cluster ⍴ (95% CI) P-value 
Large Area High Gray Level Emphasis GLSZM 0.57 (0.05, 0.84) 0.04 
Large Area Emphasis GLSZM 0.51 (-0.029, 0.82) 0.06 
Zone Variance GLSZM 0.51 (-0.029, 0.82) 0.06 
Mesh Volume Shape 0.48 (-0.074, 0.8) 0.09 
Run Length Non-Uniformity GLRLM 0.43 (-0.14, 0.78) 0.13 
Voxel Volume Shape 0.42 (-0.14, 0.78) 0.13 
Large Area Low Gray Level Emphasis GLSZM 0.42 (-0.14, 0.78) 0.13 
Kurtosis Intensity 0.42 (-0.14, 0.78) 0.13 
Correlation GLCM 0.42 (-0.14, 0.78) 0.14 
Surface Area Shape 0.41 (-0.15, 0.77) 0.14 
Dependence Non-Uniformity GLDM 0.41 (-0.16, 0.77) 0.15 

 

 

Table 6: Summary of top 9 selected features. 

Feature Cluster Description 

Large Area High Gray Level Emphasis GLSZM Measures the relative distribution 
of grey-level zones in the VOI. 

Joint Energy GLCM Measures the homogenous 
patterns in the VOI. 

Sphericity Shape Measures the sphericity of the 
VOI (intensity-independent). 

Energy Intensity Measures the magnitude of 
intensity of voxels within the VOI. 

Skewness Intensity Measures the asymmetry of the 
intensity around the mean value. 

Elongation Shape Measures the elongation of the 
VOI (from circular to linear). 

Zone Percentage GLSZM Measures the textural coarseness 
(fine vs. coarse). 

Inverse Difference Moment Normalized GLCM Measures the local textural 
homogeneity of the VOI. 

Flatness Shape  Measures the flatness of the VOI 
(from spherical to flat). 
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Figure 5: Spearman correlation trends of top 9 radiomic features among each other. 
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Table 7: Results of Wilcoxon rank-sum test for top 9 selected features against Ki67. 

Feature Cluster MD (95% CI) P-value 
Large Area High Gray Level Emphasis GLSZM 5900 (8.94, 27800) 0.04 
Joint Energy GLCM -0.0149 (-0.0933, 0.0205) 0.44 
Sphericity Shape -0.0853 (-0.186, 0.138) 0.36 
Energy Intensity 17100 (-47600, 51300) 0.29 
Skewness Intensity 0.2 (-0.184, 0.614) 0.23 
Elongation Shape -0.0535 (-0.249, 0.113) 0.52 
Zone Percentage GLSZM -0.0465 (-0.242, 0.0794) 0.23 
Inverse Difference Moment Normalized GLCM 0.00878 (-0.00709, 0.0293) 0.44 
Flatness Shape 0.0281 (-0.123, 0.197) 0.72 

 
 
 

 

Figure 6: Distribution of top 9 selected features in relation with Ki67.  
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Table 8: Spearman’s correlation coefficients of top 9 selected features  
with MRI tumor size. 

Feature Cluster ⍴ (95% CI) P-value 
Large Area High Gray Level Emphasis GLSZM 0.15 (-0.42, 0.63) 0.62 
Joint Energy GLCM -0.34 (-0.74, 0.23) 0.23 
Sphericity Shape -0.54 (-0.83, -0.015) 0.05 
Energy Intensity 0.64 (0.17, 0.88) 0.01 
Skewness Intensity 0.28 (-0.3, 0.7) 0.34 
Elongation Shape -0.33 (-0.73, 0.24) 0.25 
Zone Percentage GLSZM 0.21 (-0.36, 0.67) 0.46 
Inverse Difference Moment Normalized GLCM 0.38 (-0.19, 0.76) 0.18 
Flatness Shape -0.081 (-0.59, 0.47) 0.78 

 
 
 

 

Figure 7: Spearman correlation trends of top 9 selected features with MRI tumor size.  
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Table 9: Spearman’s Correlation coefficients of top 9 selected features with Ki67. 

Feature Cluster ⍴ (95% CI) P-value 
Large Area High Gray Level Emphasis GLSZM 0.57 (0.05, 0.84) 0.04 
Joint Energy GLCM -0.25 (-0.69, 0.33) 0.40 
Sphericity Shape -0.18 (-0.65, 0.39) 0.53 
Energy Intensity 0.39 (-0.18, 0.76) 0.17 
Skewness Intensity 0.39 (-0.18, 0.76) 0.17 
Elongation Shape -0.07 (-0.58, 0.48) 0.81 
Zone Percentage GLSZM -0.32 (-0.72, 0.26) 0.27 
Inverse Difference Moment Normalized GLCM 0.34 (-0.24, 0.74) 0.24 
Flatness Shape 0.32 (-0.26, 0.72) 0.27 

 
 
 

 

Figure 8: Spearman correlation trends of top 9 selected features with Ki67 tumor size. 
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Table 10: Summary of BPU and TBR statistical analysis. 

 MRI tumor size (N=14) Ki67 (N=14) Ki67 (N=14) 
 Spearman correlation Spearman correlation High vs. Low 
 ⍴ (95% CI) P-value ⍴ (95% CI) P-value MD (95% CI) P-value 

BPU 0.13 (-0.43, 0.62) 0.66 -0.14 (-0.63, 0.42) 0.63 -0.319 (-1.28, 0.795) 0.36 
TBR 0.22 (-0.35, 0.67) 0.45 0.27 (-0.31, 0.7) 0.35 5.3 (-3.32, 16.6) 0.18 

 

 

 

 

Figure 9: Correlation of BPU and TBR with MRI tumor size and Ki67. Comparison of 
BPU and TBR against Ki67.  
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Discussion 

The ultimate challenge of ILC is inaccurate staging due to the paradoxical clinical and 

molecular presentation. Slow cell proliferation rate7, non-coherent growth pattern10,11, and ill-

defined tumor margins12 present physicians with many issues when imaging and delineating 

these tumors for surgical resection. Since ILC are mostly ER+8,9, functional imaging can be used 

to interrogate the primary tumor-relating imaging features to ILC ER biology. PET is a powerful 

functional imaging tool in the detection and staging of breast cancers. Several studies have 

previously shown the high potential of using FES-PET to characterize and predict treatment 

response in ER+ breast cancer22,26,27. Ulaner et al.56 have recently compared FDG and FES 

PET/CT capabilities and demonstrated superior FES performance in detecting metastatic ILC 

lesions. Additionally, more recent studies exploring dbPET imaging technology described its 

specific advantages over wbPET for imaging primary breast cancers, such as improved spatial 

resolution and reduced partial volume effect28,30. Thus, high spatial resolution images acquired 

using dbPET technology can be transformed into high-dimensional information-rich quantitative 

measures to explain the underlying molecular function of the primary tumor. Radiomics has been 

rapidly gaining popularity over the last few decades as a valuable tool for quantitative imaging 

analysis57. In PET imaging, multiple studies of lung, cervical, and esophageal cancers have 

shown the high correlation of radiomic features with patient treatment outcome, survival, and 

metastatic spread58–62. Moreover, Papp et al.63 have shown that increased spatial resolution 

(small voxel size) contributed to minimizing radiomic feature variations. The partial volume 

effect was also found to increase small lesions heterogeneity, influencing the stability of 

radiomic features64. These findings suggest that radiomic approach combined with dbPET 

imaging may favorably aid in characterizing ILC. This thesis work further investigated the 
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radiomic analysis of early-stage primary ILC using FES-dbPET imaging and looked for potential 

associations between imaging and tumor characteristics. 

All patients (N=15) in this study presented with biopsy-confirmed ER+/HER2- tumors 

and mostly low Ki67, which was consistent with the histologic portrait of ILC. Although the ER-

specificity of FES was not directly assessed in this study, we found that all tumors exhibited 

higher FES uptake (measured in SUVmax and SUVpeak) compared to the contralateral BPU (Table 

2), suggesting the usefulness of this radiotracer in FES-dbPET imaging of ER+ ILC. However, 

further investigation is required to address the FES-avidity of ILC in images acquired using 

dbPET. 

Spearman correlation was used as a measure of relative association within imaging 

biomarkers. In the correlation matrix (Figure 2), interesting trends were noted. For example, 

shape features were highly correlated with each other, which could be considered an expected 

result since the voxel-based and mesh-based 3D morphology should be consistent to some extent 

within one measurement. Non-uniformity features from textural analysis exhibited high 

correlation trends with shape features. Since the larger non-uniformity value was defined as 

corresponding to the more unequal and dissimilar run, zone, and dependency distributions along 

grey-level intensities in the VOI47, it could potentially indicate the diffuse nature of ILC lesions, 

with larger tumors showing more inhomogeneous gray-level intensity distribution in dbPET 

images. These findings were also consistent with the visual observation of many ILCs during the 

segmentation process. Intensity features, including FES uptake-related features (maximum, 

mean, etc.), were found to be positively correlated with high gray-level emphasis features such 

as large/small-zone high gray-level emphasis, high gray-level zone emphasis (GLSZM), and 

mirroring features from GLRLM and GLDM. Since these features, in general, were defined as 
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measuring the proportion of high gray-level intensity areas within the VOI47, and since tumor 

VOIs were expected to show high FES uptake values, these findings were considered as 

inherently expected. Overall, the correlation trends among radiomic features exhibited an 

inhomogeneous pattern, which could describe many of them as independent measurements of 

image properties. However, many features from shape, intensity, and textural analysis showed 

high positive correlation trends among each other, demonstrating their redundancy in describing 

tumor VOIs. 

Although it was extremely early to draw any significant conclusions due to the limited 

dataset, a few interesting trends were observed in correlation analysis of imaging biomarkers 

with tumor characteristics such as MRI tumor size and Ki67. For example, shape features, such 

as mesh and voxel volume, surface area, and least axis length exhibited a high positive 

correlation with MRI tumor size, which was another expected outcome. Energy (intensity) and 

non-uniformity (texture) features showed a positive correlation with MRI tumor size and among 

each other, as discussed above. Notably, these findings further demonstrated that some radiomic 

features were redundant in describing ILC tumor characteristics and could potentially be used 

interchangeably. On the other hand, not many features exhibited strong tendencies toward the 

association with cell proliferation index (Ki67). While it was tempting to consider the positive 

correlation of large-area high gray-level emphasis feature (GLSZM) with Ki67 as indicative of 

more aggressive ILC exhibiting larger gray-level zones in dbPET images, only a small fraction 

of patients (N=4) had high Ki67 (>= 20%), and the Spearman’s correlation coefficient was 

moderate ((⍴ = 0.57, p-value = 0.04) Therefore, more research is needed to signify this 

relationship. 
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Previous studies also showed that many radiomic features exhibited a strong correlation 

among each other and, therefore, could introduce redundant information, especially when 

analyzing small cohorts65,66. Parmar et al.67 investigated several feature selection and 

classification algorithms to avoid this problem. They demonstrated that, among other machine 

learning approaches, mRMR had a good performance in reducing the dimensionality of radiomic 

features and could be a preferred selection method for feature analysis67. In this thesis work, the 

top 9 radiomic features selected using mRMR (Table 6) showed either weak or strong negative 

correlation among each other, suggesting their relative independence. Since mRMR iteratively 

selected features with the highest correlation to the target variable (Ki67) and orthogonal to the 

features selected at the previous steps54, the resulting top 9 features were also ranked by mRMR 

with respect to their strength in discriminating against Ki67 and their mutual independence. A 

few interesting trends were observed among these top 9 features. First, large-area high gray-level 

emphasis, which has already demonstrated the highest and significant correlation with Ki67, was 

selected as the strongest (first) feature by mRMR. Although the robustness of mRMR for 

radiomic feature analysis was not directly evaluated in this study, these findings suggested its 

favorable performance in selecting the most relevant features with respect to Ki67. The top 3 

features (large-area high gray-level emphasis from GLSZM, joint energy from GLCM, and 

sphericity from shape clusters) showed a primarily negative and weak positive correlation with 

other selected features and each other. In comparison, the next six features from the list 

demonstrated mixed correlation patterns. These outcomes could be attributed to the insufficient 

sample size for machine learning applications in this study. Similar conclusions were drawn by 

Chalkidou et al.68, who suggested using at least 10-15 patients for each radiomic feature 
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examined in order to achieve the appropriate reproducibility and statistical significance in 

radiomic analysis. 

Spearman correlation of the top 9 features with MRI tumor size showed mostly 

insignificant results, probably caused by choice of Ki67 as a training target for the mRMR 

model. Energy (intensity) feature, defined as the measure of the magnitude of voxel intensity 

values, showed a significant positive correlation with MRI tumor size (⍴ = 0.64, p-value = 0.01). 

This outcome could indicate the association between the ILC tumor size and FES uptake, with 

larger tumors being more FES-avid. Another interesting relationship of sphericity (shape) with 

MRI tumor size (⍴ = -0.54, p-value = 0.05) was observed. It could be interpreted as the potential 

sign of the diffuse ILC growth pattern with spiculated margins. Still, it was yet to achieve 

statistical significance. Spearman correlation and Wilcoxon rank-sum test’s results of the top 9 

features and Ki67 were also primarily insignificant. As previously discussed, large-area high 

gray-level emphasis (GLSZM) demonstrated significance in discriminating against Ki67 and, 

thus, could be used as a potential imaging biomarker associated with ILC aggressiveness (cell 

proliferation rate). However, these aggregated findings suggest that more analysis is necessary to 

determine the usefulness of radiomic features as potential predictors of tumor growth based on 

FES-dbPET imaging results. 

BPU and TBR analysis was performed in addition to the radiomic analysis, and no 

significant association was observed in relation to tumor characteristics. Correlation trends of 

TBR with MRI tumor size and Ki67 were weakly positive (Figure 9) and could potentially be 

associated with larger and more proliferative tumors exhibiting higher FES uptake and being 

more FES-avid. On the other hand, no correlation trends of contralateral BPU value with tumor 

characteristics were noted. However, since some MRI studies have already shown the predictive 
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value of BPE in the assessment of treatment outcomes and its correlation to PET-derived 

BPU40,41, we are encouraged to utilize the methodology employed in our study for future 

research to determine the relationship of dbPET-derived background values with MRI-derived 

values and with the clinical prognostic indexes of breast cancer. 

Our study had several limitations, including the small sample size, FES uptake artifacts, 

partially manual segmentation, and FES non-avid patients. Limited sample size prohibited the 

evaluation of mRMR performance and the application of any further clustering analysis. 

Radiotracer uptake artifacts near the chest wall exacerbated the segmentation process, especially 

in tumors adjacent to the chest wall potentially introducing unwanted outliers to SUV results. 

Semi-automated segmentation involved significant human input and was not easy to reproduce. 

Additionally, while most of our patients exhibited more than 90% ER-expression according to 

the pretreatment core biopsies, some tumors were impossible to identify even with the input from 

the radiology expert. These patients were completely excluded from the study. Further studies 

will evaluate the relationship between differential FES uptake and ILC inhomogeneity. 

Although this thesis work is descriptive, it may serve as a methodological foundation for 

the use of FES-dbPET in the care of patients with ILC. Some of the trends observed in this study, 

such as a strong correlation of several imaging biomarkers with tumor characteristics, 

demonstrate the potential for dbPET radiomic features to characterize ILC. Future goals include 

establishing a more robust segmentation protocol, including the development of dbPET to MRI 

image registration methods to improve tumor localization on dbPET images, and imaging more 

patients to refine the performance of radiomic feature analysis and reproducibility and 

repeatability of the results. 
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Conclusion 

In this observational study, we evaluated radiomic features derived from FES-dbPET 

images of patients with ILC. Shape (4) and intensity (2) features, as well as non-uniformity (6) 

and gray-level zone emphasis (1) features from the textural analysis exhibited high correlation 

trends with MRI tumor size and cell proliferation index, suggesting that they can be further 

explored to assess their relationship with clinically derived biomarkers to characterize ILC and 

their response to treatment. The analysis of features selected with mRMR showed variable and 

mostly insignificant results in terms of their association with tumor characteristics, although a 

few strong correlations were observed. 

While this study was limited in sample size, interesting trends were observed in 

relationships between radiomic features and ILC tumor characteristics. Continued studies with 

larger patient cohorts will focus on improving the methodology for analysis of dbPET-derived 

imaging biomarkers and determining their usefulness for ILC characterization and prediction of 

treatment response.  
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