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ABSTRACT

The warming of the Earth’s temperature due to human activities, known as anthropogenic climate
change, is a threat to the environment and human health. The transportation sector is a major
contributor to anthropogenic climate change, being responsible for 27 percent of all domestic
greenhouse gas (GHG) emissions in 2003. Within this sector, urban surface travel has been the major
focus of researchers and policymakers. To broaden this focus to include interregional travel, the
proposed research focuses on the aviation sector. Airport access modes are shown to be a large
proportion of aviation system GHG emissions; due to their share and political and engineering realities
they are targeted for aviation system GHG reduction. Discrete choice models are used to study the entry
of clean airport access modes into the market, and it is found that the entry of a subsidized electric
vehicle door-to-door van could reduce GHG emissions by 36 percent.

KEY WORDS: Aviation, Airport Access, Greenhouse Gas Emissions, Discrete Choice Model

INTRODUCTION

It is well known that the operation of transport vehicles is a major component of anthropogenic climate
change — the warming of the Earth’s temperature due to human activities. The use of transportation
fuels increases levels of greenhouse gases (GHG), the gases which cause climate change (EPA, 2007). In
the United States (US), the transportation sector is responsible for 27 percent of all GHG emissions,
making it the second largest end use sector after electric power generation. Furthermore, of human
produced GHG emissions in the US, Carbon Dioxide (CO,) accounts for 85 percent of the radiative
forcing, or perturbation to the earth-atmosphere energy system (EPA, 2006). The transportation sector
is the largest sector contributing to domestic CO, emissions, producing 30 percent. These figures are
similar worldwide (International Energy Agency, 2004).

Reducing GHG emissions, CO, in particular, has become an initiative for many transportation modes. For
surface transportation, new vehicle emission standards and the incorporation of GHG emissions into the
Clean Air Act are two major policy movements towards GHG reduction from vehicle movements (EPA,
2006; Supreme Court of the United States, 2006; Winston, et al., 1999). It is no surprise that the surface
sector is the focus of transport GHG reduction. Not only does the surface sector emit the largest share of
transportation GHG emissions, there is also abundant precedent and experience in regulating and
otherwise reducing road vehicle emissions in order to attain air quality standards mandated by the

Clean Air Act. Surface vehicle modes, including passenger cars, light trucks, and heavy-duty vehicles are
also the three modes with the largest share of Transportation GHG emissions, as can be seen in Figure 1.



FIGURE 1. GHG EMISSIONS BY END-USE SECTOR AND BY TRANSPORTATION MODE.
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Aircraft operations are nine percent of transportation GHG emissions (Figure 1). However, this is not
reflective of the distributional impacts of the aviation system. As trips do not begin or end at the airport,
a more complete picture of the aviation system would include vehicles that access the airport. The Port
of Seattle (2008) GHG inventory provides an interesting perspective on GHG emissions from airports. To
date, it is the state of the practice in the development of GHG emissions inventories at the airport level.
The Port of Seattle divides GHG emissions from the airport it operates, Seattle Tacoma International
Airport (SEA), into ownership categories. Emissions owned by the port include those produced from
hotel and parking lot shuttles (while on airport grounds) and facility power. Airline or tenant emissions
are those from aircraft. Emissions owned by the public include passenger vehicles and hotel and parking
lot shuttles (while not on airport grounds). The distribution of emissions found at the found in Figure 2.

FIGURE 2. PORT OF SEATTLE GHG EMISSIONS DISTRIBUTION BY OWNER.
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Source: Port of Seattle, 2008

Figure 2 shows that public emissions from ground access vehicles traveling to the airport are 11 percent
of the total, and therefore a substantial component of aviation system related CO, emissions. Because
there is more political experience for GHG reduction from surface vehicles, this could be a natural place
to start reducing emissions from the aviation system. This finding provides the motivation for the next



segment of this study, which will assess the potential of “green” airport access modes. The method that
will be employed is a discrete choice model, through which travel to the airport will be modeled and the
introduction of green access modes can be studied.

AIRPORT ACCESS MODE CHOICE MODEL

The following section will present different formulations of airport access mode discrete choice models.
Discrete choice modeling is a powerful method to model and forecast consumer behavior, and airport
choice in particular. Train (1978) used a standard logit model to model commute choice before a heavy
rail system is developed and to forecast heavy rail ridership post-development. Harvey (1986; 1987)
uses a discrete choice model to examine airport access choice in the Bay Area, and also airport choice
along with airport access choice. Pels et al. (2003) investigated the impact of airport access and other
airport attributes in the competition between airports in a multiple airport region using a discrete choice
model. Recently, a guideline for best practices in airport access choice modeling was released, where
Gosling (2008) presents the state of the practice in airport access mode choice modeling and
suggestions for model improvements.

Study Corridor for Airport Access Mode Choice Study

The scope of this study will include passengers originating at three Northern California airports who are
destined for four Southern California airports. The Northern California airports are San Francisco
International Airport (SFO), Oakland International Airport (OAK), and Mineta San José International
Airport (SJC). The Southern California airports are Los Angeles International Airport (LAX), John Wayne
Airport, Orange County (SNA), Ontario Airport (ONT), and Bob Hope Airport, Burbank (BUR). This
network is shown below in Figure 3.



FIGURE 3. GEOGRAPHIC SCOPE OF VEHICLE MOVEMENTS FOR AVIATION STUDY.

California is chosen for case study because in 2005, California Governor Arnold Schwarzenegger signed
an executive order to establish statewide GHG emission reduction targets. The target is to reduce GHG
emissions enough so that in 2020, the total GHG emission levels are at or below those from 1990. This
requires of reduction of 145 million tons, and about 25 percent of those projected under the Business as
Usual scenario (Governor of the State of California, 2005). Furthermore, in 2007, the state of California
was successful in its law suit against San Bernardino County. In People of California v. San Bernardino
County, San Bernardino was found to be not in compliance with the Clean Air Act, as its local
government land use plan did not fully account for increased GHG emissions from new developments
(People of California v. San Bernardino Count, 2007). The state government can now use this ruling to
encourage and potentially compel local governments to incorporate GHG emissions forecasting into
their regional planning. These events make airport access behavior for passengers traveling on the
California corridor a particularly interesting case study.

Logit Model for Airport Access Mode Choice

A logit model allows for the calculation of the probability that a choice maker will choose alternative i
given a choice of all alternatives j. The logit model presents a probability model which calculates the
ratio of probabilities of choice maker utilities to capture the probability of a particular choice being
made in the face of a complete, exhaustive list of choices. A utility function measures the dimensionless
utility a choice maker derives from choosing a given alternative.

The utility function is formulated as a sum of observed utility V;,; and unobserved utility €,,;, as shown in
equation 0.2. The observed utility is a function of the attributes of a choice and the attributes of a
choice maker which a researcher can observe. The unobserved utility is a function the attributes of a
choice and of the choice maker that the researcher cannot observe. The probability that a choice maker
n chooses alternative i is based on the observed utility V;,; (equation 0.3). A complete description of the
logit model can be found in Train (2003).



Uni = Vni + €ni (0.1)

Vni = B’an' (02)
eﬁxni

In this study, many data sources were used to ultimately estimate the different logit model formulations
that will be presented. The main survey data which captures access mode choices is from the
2001/2002 Metropolitan Transportation Commission Airline Passenger Survey (MTC, 2003). The MTC
survey was conducted in August and September 2001 and 2002 at SFO, OAK, and SJC. The total number
of passengers surveyed was 14,851, of which 1197, or eight percent, were traveling on the study
corridor.

To construct a standard logit model of airport access mode choice, airport access mode choices and
attributes were defined as well as demographic attributes of the choice makers. An exhaustive
alternative list must be formulated for the choice model estimation. The alternatives for airport access
in the Bay Area were aggregated into five alternatives. These alternatives are: private auto, public rail
transit to an airport shuttle with walk access or drive access, a, a scheduled airport bus with walk access
or drive access, a private vehicle for hire (taxi/limo) or a shared ride door-to-door van. In this model
formulation, a choice maker has already chosen their origin and destination airports and it is assumed
that the access mode choices they face are based on their origin airport.

The airport access mode choices considered in this model include alternative cost (C) and alternative
time (T). The alternative descriptions are below, along with how their costs and time were collected
and/or calculated.

1. Private Auto includes rental car; drop off by private vehicle; and drive a private vehicle and park
short-term, long-term, or off-airport. The attributes of private vehicle and park long-term was
used to generalize the private auto mode. The time in auto was collected using GIS using Traffic
Analysis Zones. Auto trips were loaded on the shortest path driving configuration and the travel
time was calculated. Additional time was added based on the distance of the long-term lot to
the airport terminal, based on the airport chosen. The distance traveled was multiplied by the
AAA cost of driving. This was $0.51/mile in 2001 and $0.502/mile in 2002. The cost to park in
2001/2002 in a long term lot for one day for the three airports was added to the cost,
depending on which year the choice was made and which airport was chosen.

2. Walk to Public Transit incorporates walking to a public transit mode (excluding a scheduled
airport bus), and then connecting to a transit airport connector shuttle. Because this data is
from 2001 and 2002, the three airports did not have a direct transit connection to the regional
rail system, but rather required a rider to connect to an airport connection shuttle. To calculate
the cost and time of this alternative, each rider was assigned the most likely transit mode based
on their origin and destination. Passengers bound were assigned a transit mode based on
distance from trip origin. If the rider could either use the VTA light rail or the Caltrain for SIC



access, transit mode was assigned based on distance from trip origin. The cost of this alternative
was the sum of the fares of the public transportation system used. The time was calculated
using the following equation:

min

+.5%
airport connection shuttle headway + in vehicle shuttle time (0.4)

. . . . . 20
Taez = 2iL,(.5 x headway; + in vehicle time;) + transit mode distance *

Where “i” is the transit segment number in a transit trip “tr” is the number of transfers
necessary on the line-haul transit mode. Walk pace is assumed to be 20 minutes per mile.

3. Drive to Public Transit is similar to alternative 2 except the choice maker uses an auto mode to
access public transit. The fare is the same as alternative 2 except. The cost of driving was
calculated the same as alternative 1, between trip origin and public transit station.

4. Drive to scheduled bus includes auto access to a scheduled bus (a bus which travels directly
between the origin station and an airport). The cost and time for this mode were calculated as
alternative 3 was calculated. However, headways were multiplied by % instead of /. This is
because transit literature notes that if the headway is sufficiently long, riders view a schedule
and do not randomly show up at a station (Maguier and Ceder, 1984). Arrival times at the
station are therefore more clustered around the departure time.

5. Walk to scheduled bus includes walk access to a scheduled airport bus. Cost and time are
calculated in the same method as alternative 4, with walking time calculated using the same
method as alternative 2.

6. Taxi and limo modes include hiring a door-to-door taxi or limousine for airport access. The time
calculated this mode is the same as alternative 1, with parking time eliminated. The cost was
based on the taxi flat and per mile rates quoted from taxis which serve the three airports.

7. Door-to-door shared-ride van (Super Shuttle, for example) is a hired van which picks
independent passengers up at their origins in the same van. The time was calculated as the
qguoted circulation time of a van to pick up other passengers; half of the time window a rider is
guoted as wait time; and the driving time from alternative 1. There was no cost data available
for shuttle services in 2001 and 2002. To get the shared ride costs, an equation was estimated
with data mined for the SF Bay Area in 2008. This linear model was estimated with shared ride
costs as a function of time. The results of the equation estimation were the following equation:
Cair7 = 21.1579 + .2579 * shuttle time. The results were significant at the .01 level. This
equation was used to estimate shared ride costs based on 2001/2002 shared ride times.



The demographic variables entered into the utility function are as follows:
- Resident (R) (Binary, 1 if yes, 0 if no)
- Business traveler (B) (Binary, 1 if yes, 0 if no)
- Income (l) (average of range from 2001/2002 MTC Survey)
- Travel Party Size (Pt)
This information was collected directly from the 2001/2002 MTC survey.

The utility function estimated in this model includes choice specific coefficients for each of the seven
alternatives. The utility functions for all alternatives were estimated in the following form, where i is the
alternative number.

C Cx*B C*R
Ul-=ai+Bli*E+32i*(T*1)+/>’3i*T+ﬁ4i*T (0.5)

MATLAB was used to estimate this model, and the code used is an adaptation of Train (2008). The
estimated coefficients for the logit model are in Appendix A. The results in the left-hand section of the
table are with the full model (each alternative is estimated as in equation 0.6), the right-hand section is
when the model was re-run with insignificant coefficients of equation 0.6 eliminated. Note that time for
alternative 7 was also dropped, because it was insignificant after the first round of coefficient
elimination. Table 1 shows the actual mode shares from the data and the predicted mode shares from
the logit model.

The resulting utility functions from the logit model are as follows. Note that all coefficients have
negative values, representing that increased cost and time decrease utility.

Uy = —0.0165 (¢/py) —0.0126 (T 1)

U, = —1.7953 —0.0165 (*/p,) —0.0126 (T 1)

Us = —2.0591 —0.0165 (“/p,) —0.0192 (T D) — 0.4453(“ * B/p)

Uy = —0.2587 (¢/py) —0.0126 (T D) +0.157(C * R/p, )

Us = —0.0165 (C/p,) + —0.0642 (T * 1)

Ug = —2.1557 — 0.0165(%/p,) —0.0126 (T +I) + 0.0088 (C*B/p) —0.0167 (¢ *R/p
U; = —0.1203(C/p,) — 0.0126 (T 1)

TABLE 1. ACTUAL AND PREDICTED SHARES OF LOGIT MODEL.
Alt Actual Predicted
0.7912 0.7755
0.0577 0.0576
0.0204 0.0308
0.0161 0.0257
0.0068 0.0047
0.0874 0.079
0.0204 0.0266
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This logit model could be used to forecast the introduction of “green” or lower-CO, airport access
modes. However, drawbacks exist to using logit models for such purposes. While originally considered a
strength and condition for discrete choice modeling, the logit model makes it so that an improvement in
one alternative will draw customers proportionally from all other alternatives to the improved
alternative. The logit model presents what is called Independence from Irrelevant Alternatives (IIA)
(Train, 2003). This is because the ratio of two logit probabilities, in which the denominator of equation
0.4 is eliminated, becomes simply the ratio of the exponentiated observed utility of the two alternatives
in question. While proportional substitution was considered a condition for logit modeling, it presents
challenges for forecasting. For example, it is realistic to think that the transit alternative and the
scheduled bus alterative have correlation in their unobserved utilities. If an attribute of transit changed
to make it more desirable, it is reasonable to think scheduled bus users would switch to transit more
than taxi users. Because of this interpretation, the following section will explore the use of a nested logit
model.

Nested Logit Model for Airport Access Mode Choice

The nested logit model provides for a solution to the IIA problem. The utility functions of a subset of
alternatives may have correlated unobserved utilities, as described in the transit/scheduled bus and taxi
anecdote described above. Nested logit allows for those alternatives to be placed in the same nest; IIA
holds for alternatives which are in the same nest but does not hold across nests. Using notation
described in Train (2003), a nested logit model will have k nests, where B, denotes the nest.

In the nested model, the utility is decomposed into two functions of the independent variables. This is
noted in equation (0.6). The group of variables denoted W, are those that describe a certain nest k. The
other variables, those that are unique to an alternative, are denoted Y,;. The nested logit model captures
the probability of choice maker n choosing choice i, termed P,;; it is the product of two probabilities
(equation (0.7)). The probability Py, is the probability that choice maker n chooses nest By as can be

seen in equation (0.8). Equation (1.0) is referred to as the “upper model” because the choice of nest
precedes the choice of alternative. Equation (1.1) is called the “lower model”, which is Phi|p,- Here, a

choice maker chooses the alternative i conditional on the chosen nest B,.

Unj = Whk + Ynj + €nj (0.7)
Py = Pan (0.8)
eWnkt+Aklnk
Pp, =—=r——— (0.9)
nbg Zf:l eWnl+lllnl
eYni/k
(1.0)

Puio = e
|B ZjEBk eyn]//lk



Ynj
Iy = lnz e Tk (1.1)
JEBk

Important things to note about the sequence presented in equations 0.7 through 1.1 are the role of A,
and I,;. The parameter A is known as the nesting parameter. This parameter describes the degree of
correlation between the unobserved utility for alternatives within a nest. The parameter I, is termed
the inclusive utility of a given nest, and it multiplied by the nesting parameter is the expected utility that
a choice maker has for choosing a particular alternative in nest B,. The details of the nested logit model
are well described in Train (2003).

In an effort to develop a model which can more accurately forecast mode choice changes due to
incentives or changes, a nested logit model was estimated with the structure shown in Figure 4. The
nests are Private (prv), Door-to-Door For hire (ddh), and Public (pub). Each nest was estimated with its
own nesting parameter; in this instance K=3 and there are three unique values of A, Three unique
nesting parameters were estimated because it is believed that the unobserved utilities of a subset of
alternatives are correlated to a different degree than the unobserved utilities of a subset of alternatives
from a different nest. For example, it is believed that the transit alternatives will exhibit a higher
correlation in their unobserved utility than modes in another nest.

FIGURE 4. NESTING STRUCTURE FOR AIRPORT ACCESS MODEL.
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Auto For Hire -Transit] | - Transit

Taxi Shared Van

The model was estimated using MATLAB. The baseline code can be found in Train (2008). A table of
results is in Appendix B.
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The following are the utility functions which resulted from the estimation:
Uy = —0.0271 (¢/p,) —0.0091 (T 1)
U, = —2.0848 — 0.0271 (C/Pt) —0.0091 (T 1)

Us = —3.1915 — 0.0271(¢/p,) — 0.0091(T + 1) — 0.1828(¢ * B/,)

Uy = —2.0982 —0.1074( ¢/p, ) —0.0091 (T =) + 0.0786 (¢ *R/p)

—0.0146( C/p,) — 0.0551 (T * 1)

Us = —2.0409 — 0.0271(¢/p) —0.0091(T * I) +0.0137 (¢ * B/p.)— 0.0181 (¢ * R/},
=-0.1799 (¢/p,) —0.0091(T * 1)

<
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Estimated nesting parameters are also shown in Figure 4. Table 2 details the predicted shares for each
alternative from the model. As can be seen, the predicted shares are fairly close to the actual shares.

TABLE 2. ACTUAL AND PREDICTED SHARES OF NESTED LOGIT MODEL.
Alt Actual Predicted
0.7912 | 0.7859
0.0577 | 0.0646
0.0204 | 0.0304
0.0161 | 0.0228
0.0068 | 0.0074
0.0874 | 0.0757
0.0204 | 0.0128

Nojunn|hIWIN |-

The nesting parameters, shown in Figure 4, must now be interpreted. According to Train (2003), a
nesting parameter equal to one represents a standard logit model, which is seen for auto, as there is
only once alternative nested as auto. The value of A,y is less than one, and by viewing the standard
error, we can see that the value is statistically different than one. The interpretation is that substitution
between the public modes is greater than it is from public modes to another nest. This is consistent with
utility maximization. However, Ayqh is greater than one and a hypothesis test shows that it is statistically
different than one at the 1% level. This indicates that these two alternatives have negatively correlated
unobserved utility, and that substitution across nests is greater than substitution within nests. Train, et
al (1987) note that such a situation is not always consistent with utility maximization and that testing
must be performed. Herriges and Kling (1996) note that there are certain ranges of data for which a
nesting parameter greater than one can be consistent with utility maximization.

A simple test can, at the minimum, confirm that utility maximization is occurring for a range of values of
interest. It is important to ensure that choice makers are not disproportionally switching from
alternative 7 (Shared Ride Van) to other modes outside the nest if the attractiveness of alternative 6
(Taxi) is increased or vice versa. A simple test was employed to determine if this was the case. The price
of alternative 6 was modified to see the effect on alternative 7. The shares of alternative 7 were
observed to see if they decreased. By modifying the MATLAB code, the price of taxi was decreased by 40
percent to see if those who chose shared ride van dropped significantly because they from switching to
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other modes outside the nest. By setting the model to only predict shares, the share of alternative 7 did
not decrease when the price of alternative 6 decreased, and therefore there is some confidence that the
value of Ayqh is consistent with utility maximization (Table 3).

TABLE 3. PREDICTED SHARES OF NESTED LOGIT MODEL: NESTING PARAMETER EXPLORATION.
Predicted
Alt Actual Before After
0.7912 | 0.7859 0.7609
0.0577 | 0.0646 0.0619
0.0204 | 0.0304 0.0291
0.0161 | 0.0228 0.0218
0.0068 | 0.0074 0.0069
0.0874 | 0.0757 0.1062
0.0204 | 0.0128 0.0133

NOOunnhlWIN|F

Using the nested logit model illustrated in this section, the introduction of strategies to decrease GHG
emissions from airport access is explored.

GREEN AIRPORT ACCESS STRATEGIES

The purpose of developing the models which have been the focus of this study is to forecast the impact
of future GHG reduction policies on airport access behavior. These models will now be used to forecast
GHG emission reduction in the study corridor due to the introduction of two strategies: subsidized
electric vehicle (EV) transit shuttles and subsidized door-to-door EV shared ride.

GHG emissions for each of the 1197 passengers traveling on the study corridor for the entire airport
access trip were calculated. Each respondents’ distance traveled was multiplied by the CO, emission
factors per Passenger Mile Traveled (PMT) (transit) or per Vehicle Mile Traveled (VMT) for auto (Chester
and Horvath, 2007). Passengers were separated by their mode choice, and a single average values for
CO, emissions per access mode were determined. These averages were then multiplied by the share of
passengers utilizing that mode. Baseline GHG emissions per alternative are presented in Table 4.
Baseline GHG emissions are calculated based on the actual mode shares of passengers as defined in the
data, and based on the estimated share of passengers estimated by the nested logit model. To
generalize these results to a day, the total number of passengers traveling on the California corridor was
estimated from BTS data based on a 379 flights per day, a 75 load factor, and an average of 115 seats
per aircraft.

12



TABLE 4. BASELINE GHG EMISSIONS FROM AIRPORT ACCESS MODES (PER DAY).

Average CO, Estimated
Emissions Actual Actual Actual CO, | Estimated | Estimated CO,
/Passenger Share of Number of | Emissions | Share of Number | Emissions
Alt. (Ibs) Passengers | Passengers (Ib) Pax of Pax (Ib)
1 17.25 0.7912 25788 444905 0.7859 25616 441924
2 5.12 0.0577 1881 9628 0.0646 2106 10780
3 9.82 0.0204 665 6529 0.0304 991 9730
4 27.97 0.0161 525 14678 0.0228 743 20787
5 12.03 0.0068 222 2667 0.0074 241 2903
6 13.58 0.0874 2849 38680 0.0757 2467 33502
7 13.35 0.0204 665 8876 0.0128 417 5569
SUM: 525963 SUM: 525194

The difference in GHG emissions from the actual shares to the estimated shares is 769 lbs, or a relative

error of 0.15 percent.

Electric vehicles have a large potential to reduce GHG emissions from surface transportation in

California. California has comparatively clean electricity, which can be seen from the low Greenhouse

Gas emission coefficients for electricity generation in California compared to other states (EIA, 2002).

However, it is important to note that a reduction in CO, emissions from mode shift to an electric vehicle

will involve both a loss of CO, emissions (from the mode shift to electric vehicle) and an increase in CO,

emissions because electric power generation creates CO,. To calculate the emissions generated from

EVs, California has an electricity generation CO, emission factor of 289 grams per kilowatt hour (kWh)
which translates to 3.3 Ibs of CO, per VMT and 0.21 lbs of CO, per PMT traveled in an electric vehicle
(Deru and Torcellini, 2007).

Electric Vehicle Transit Connection

The introduction of a fully subsidized transit airport connection shuttle is introduced in this section. Such

a service would replace the vehicles that transport passengers between the regional rail systems and the

airport. It is reasonable to assume that despite any personal strong environmental considerations

among travelers, price and travel time are the main drivers of choice, as shown in the strong fit of the

nested logit model. Therefore, it is reasonable to assume that an electric vehicle transit connection

shuttle on its own will not shift passengers to transit, but rather a decrease in price in the transit mode

as a whole will entice travelers to switch their travel modes. Therefore, to investigate the impact of an

EV transit connection bus, the assumption will be that such a bus would be completely subsidized.

To investigate the impact of such a service, the price for the walk to transit (2) and drive to transit (3)

alternatives were altered. In the data gathering section, it was noted that the costs for these

alternatives were calculated by adding any additional shuttle costs. These costs in 2001/2002 were

13



$1.10/trip for a shuttle from transit to SFO and $2.00/trip for the AirBART shuttle from BART to OAK.!
The average miles a choice maker would travel on a transit shuttle is calculated to be 3.26 miles. These
prices were eliminated from the price of transit. Then, the nested logit model was set to “predict only,”
which predicts shares using the utility functions outlined in the nested logit model section. The resulting
shares can be seen below in Table 5.

TABLE 5. ACTUAL AND PREDICTED SHARES FOR ALL MODES UNDER SUBSIDIZED TRANSIT CONNECTION
STRATEGY.

Predicted

Alt Actual Before After
0.7912 | 0.7859 0.7827
0.0577 | 0.0646 0.0657
0.0204 | 0.0304 0.0328
0.0161 | 0.0228 0.0224
0.0068 | 0.0074 0.007
0.0874 | 0.0757 0.0759
0.0204 | 0.0128 0.0135

N wWIN |-

TABLE 6. CHANGE IN GHG EMISSION FROM SUBSIDIZED TRANSIT CONNECTION STRATEGY.

Before Transit Cost Reduction After Transit Cost Reduction
CO, Co,
Share of | Number of | Emissions | Share of | Number of | Emissions
Alt. | Passengers | Passengers (Ib) Passengers | Passengers (Ib)
1 0.7859 25616 441924 0.7827 25511 440125
2 0.0646 2106 10780 0.0657 2141 8740
3 0.0304 991 9730 0.0328 1069 8770
4 0.0228 743 20787 0.0224 730 20422
5 0.0074 241 2903 0.007 228 2746
6 0.0757 2467 33502 0.0759 2474 33590
7 0.0128 417 5569 0.0135 440 5873
SUM: 525194 SUM: 524218

The CO, emissions savings from the transit cost reduction is 3,768 lbs, a savings of 0.19 percent of the
total daily CO, emissions. Depending on the cost of this strategy, it may not be a worthwhile investment
for a small reduction.

Electric Vehicle Door-to-Door Shuttle

This strategy involves the deployment of airport-based EV vans for door-to-door passenger airport
transportation. One could envision that a passenger reserves a ride on such a van similar to current
door-to-door van service (for example, Super Shuttle, where one calls or uses the internet to reserve a

! The shuttle to SIC was already free of charge. Also, as of 2008 there direct rail service to SFO; however, this
example includes the SFO shuttle which was operational in 2001 and 2002 for illustrative purposes.
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pick-up time for a specific airport). The adoption of such a service by the individual airports could be
motivated by many sources: the airports could collude to reduce GHG emissions; they could be
compelled by a Metropolitan Planning Origination (MPO) such as the MTC to offer such a service; or the
state government could step in and encourage such a service for GHG reduction. Future study could
involve airport and access mode choice in the face of such a strategy; this is introduced in the following
section. To investigate the impact of such a service, the price for the DDV option was set to zero and the
“predict only” function was employed in the nested logit model. The new shares can be seen below in
Table 7.

TABLE 7. ACTUAL AND PREDICTED SHARES FOR ALL MODES UNDER FULLY SUBSIDIZED DOOR-TO-

DOOR VAN STRATEGY.

Predicted
Alt Actual Before After
1 0.7912 | 0.7859 0.3923
2 0.0577 | 0.0646 0.031
3 0.0204 | 0.0304 0.0136
4 0.0161 | 0.0228 0.0103
5 0.0068 | 0.0074 0.0028
6 0.0874 | 0.0757 0.0413
7 0.0204 | 0.0128 0.5087

The CO, emissions from powering such electric vehicle were added to the emission total of the DDV

mode. This is done using the 0.21 Ibs of CO,/PMT multiplied by the number of passengers choosing this

mode and the calculation that the average user travels 21.6 miles in a DDV currently. The calculation of

GHG emissions before and after this mode is introduced are in Table 8.

TABLE 8. CHANGE IN GHG EMISSION FROM FULLY SUBSIDIZED DOOR-TO-DOOR VAN STRATEGY.

Before Shared Ride Van Cost Reduction After Shared Ride Van Cost Reduction
Share of Number of Actual GHG Number of Actual
Alt. | Passengers | Passengers Emissions After Passengers Emissions
1 0.7859 25616 441924 0.3923 12787 220597
2 0.0646 2106 10780 0.031 1010 5173
3 0.0304 991 9730 0.0136 443 4353
4 0.0228 743 20787 0.0103 336 9391
5 0.0074 241 2903 0.0028 91 1098
6 0.0757 2467 33502 0.0413 1346 18278
7 0.0128 417 5569 0.5087 16581 75211
SUM: 525194 334100

The change in GHG emissions from this strategy is 191,094 |bs, a 36.4 percent reduction. This is a

substantial reduction in CO, emissions. While such a strategy would be very costly, the payoff as far as

CO, emission reduction is large. An interesting continuation of this study would be to determine the
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cost of such a strategy and the service attributes needed to reduce CO, emissions by a targeted amount
employing this strategy.

ROUTE CHOICE MODEL

A strong addition to the model will be to include a third nesting structure. Such a structure would
include an upper model in which a choice maker chooses a route (origin-destination pair), termed
nesting level B,,. The choice maker would then choose an airport access modal group (B), and then
choose an access mode. The upper model would include 12 combinations of airport route choices,
shown in Table 9.

TABLE 9. ORIGIN AND DESTINATION CHOICES.

Origin Destination
SFO LAX
SFO ONT
SFO BUR
SFO SNA
OAK LAX
OAK ONT
OAK BUR
OAK SNA

SIC LAX
SIC ONT
SIC BUR
SIC SNA

The following formulation for such a model is an adaptation of that described in Gil-Molté and Hole
(2003).

Pni = PniiB,(By) PBi|By PrBom, (1.2)

Similar to the formulation described in equations 0.7 through 1.1, choice maker n is choosing alternative
i. Here, there are two upper models. The first is Py; g, (s,,)Which is the conditional probability that
alternative i is chosen by choice maker n, given that route choice nest B, and access mode choice nest
By is chosen.

While the three-level nested logit model is not estimated in this study, and instead reserved for future
research, a standalone logit model for route choice was estimated to begin such a process. The utility
function included three explanatory variables described below.

1. Flight frequencies on the dates that 2001/2002 MTC surveys were taken at each airport were
collected. These were collected from the FAA ASPM Database. Frequency was divided by 100
for scaling purposes.

2. Average fare of flights in the third quarters of 2001/2002 was gathered from the Bureau of
Transportation Statistics DB1B database, which records origin, destination, and fare information
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for every 10" ticket booked domestically. For each of the 12 airport pairs the average fare was
calculated using this data. Average fare was divided by income (in thousands).
3. Shortest path distance from origin airport (in miles)

The estimation of the model resulted in the following utility function:

Uroute = —0.093 * Dististance + 0.785 * (%) ~0.0315 ( fare ) (1.3)

Income

All coefficients are significant at the .05 level. The log-likelihood of the model is -2310.0101.

Future research will involve the development of a three level nested logit model with the route choice
model as the upper model.

CONCLUSIONS

As GHG emission reduction becomes a focus of local, state, and federal policy, all forms of
transportation emissions will share the task of reducing GHG emissions. This study investigated GHG
emissions from the aviation system and pinpointed airport access modes as an area of both political and
engineering realities for reduction. Additionally, this study furthered the use of nested logit models
applied to environmental transportation issues. In particular, this study has shown how this method can
be used to investigate the adoption of “green” airport access modes. In this particular case, it is found
that green airport access modes are possible and could influence GHG reduction. Challenges to such
reduction, such as the cost of reduction initiatives, were briefly explored.

There are many directions for future study with such a model. First, performing a similar estimation in
Southern California, so the entire corridor could be viewed as a system, would be a strong step.
Incorporating access mode choices from the Southern California Region could assist in gaining a bigger
picture of airport access modes. It would also further the investigation of regional issues. This model
could also be used to investigate changes at the flight level. If not all 12 airport pairs were available, and
instead flights from, for example, SFO, were limited to just LAX and ONT, the three-level nested model
could be used to determine how passengers would change their route choice and their related access
mode. This would allow for an investigation of changes in CO, emissions from flights and from access
modes.
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Appendix A: Standard Logit Model Output

Full model Reduced Model
Coefficient Coefficient
Estimate | Std Err t-stat Estimate | Std Err t-stat
c/ptALL -0.0003 0.0143 -0.0221 -0.0165 0.0039 -4.2227
c/pt2 0.2027 0.1350 1.5020
c/pt3 0.0554 | 0.0705 0.7854
c/ptd -0.1736 0.0587 -2.9571 -0.2422 0.0441 -5.4880
c/pt5 -0.0146 0.0156 -0.9314
c/pt6 -0.0037 0.0105 -0.3528
c/pt7 -0.1116 0.0258 -4.3252 -0.1038 0.0086 | -12.0934
t*inALL -0.0128 0.0024 -5.4276 -0.0126 0.0016 -7.8801
t*in2 -0.0019 0.0019 -0.9968
t*in3 -0.0048 0.0026 -1.8440 -0.0066 0.0028 -2.3637
t*ind -0.0017 0.0024 -0.7022
t*in5 -0.0443 0.0173 -2.5620 -0.0516 0.0106 -4.8559
t*in6 -0.0007 0.0017 -0.4128
t*in7 0.0033 0.0016 2.0820
cost*bus/ptALL -0.0150 0.0155 -0.9688
cost*bus/pt2 0.0304 0.1081 0.2816
cost*bus/pt3 -0.4572 | 0.1681 | -2.7191 -0.4453 | 0.1500 | -2.9690
cost*bus/pt4 0.0033 0.0228 0.1465
cost*bus/pt5 -0.3327 | 0.8189 | -0.4063
cost*bus/pt6 0.0163 0.0098 1.6733 0.0088 0.0041 2.1637
cost*bus/pt7 0.0234 | 0.0174 1.3439
cost*res/ptALL 0.0010 0.0146 0.0674
cost*res/pt2 0.0547 0.1054 0.5187
cost*res/pt3 0.0154 | 0.0688 0.2238
cost*res/pt4 0.1256 0.0484 2.5935 0.1570 0.0453 3.4650
cost*res/pt5 -0.0007 0.0149 -0.0456
cost*res/pt6 -0.0157 0.0094 -1.6652 -0.0167 0.0054 -3.1231
cost*res/pt7 0.0031 0.0169 0.1808
Alternative
specific constant
(a) 2 -2.1123 0.3754 -5.6260 -1.7953 0.1631 | -11.0068
a3 -2.4257 0.3577 -6.7815 -2.0591 0.2796 -7.3640
a4 -0.5680 0.5747 -0.9883
a5 0.0468 0.9936 0.0471
a6 -2.3524 0.2099 | -11.2086 -2.1557 0.1563 | -13.7899
a7’ -0.7122 0.4797 -1.4845
log-likelihood -919.965 -945.7083




Appendix B. Nested Logit Model Estimation Results.

Coefficient

Estimate Std Error | t-stat
c/ptALL -0.0271 0.0055 -4.9527
c/pta -0.0803 0.042 -1.9095
c/pt5 0.0125 0.006 2.0756
c/pt7 -0.1528 0.0272 -5.6202
t*inALL -0.0091 0.0014 -6.3297
t*in5 -0.046 0.0089 -5.1752
cost*bus/pt3 | -0.1828 0.0811 -2.2541
cost*bus/pt6 | 0.0137 0.0046 2.9954
cost*res/pt4 | 0.0786 0.0364 2.1577
cost*res/pt6 | -0.0181 0.0054 -3.3816
a2 -2.0848 0.1622 -12.8559
a3 -3.1915 0.2476 -12.8877
ad -2.0982 0.4632 -4.5299
ab -2.0409 0.181 -11.2784
nestparamO | 1.0024 1 1.0024
nestparaml | 1.7161 0.3353 5.1181
nestparam2 | 0.7068 0.1285 5.5022
log-
likelihood -918.6491
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