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ABSTRACT OF THE DISSERTATION 

 

Targeted Genome Mining for the Discovery and Study of Sterol Pathway Fungal Natural 

Product Drugs 

 

by 

 

Nicholas Liu 

Doctor of Philosophy in Chemical Engineering 

University of California, Los Angeles, 2020 

Professor Yi Tang, Chair 

 

For millennia, humans have been utilizing plants, fungi, and microbes for their medicinal 

purposes or for commercial use as dietary supplements, cosmetics, etc that are derived from 

natural products. Natural products can be broadly defined as any chemical compound that can be 

found from living organisms in nature. Natural products have a wide variety of bioactivities and 

uses that have spurred efforts to discover and characterize novel natural products. The genesis of 

these efforts in the modern era began with the discovery of penicillin by Sir Alexander Fleming, 

which helped realize the power of utilizing chemical compounds from nature. Natural products 

are very much like superheroes; they all have a backstory and Nature draws the comic books 

panels that depict their tales in the form of genetic information found in living organisms. The 

study of natural product biosynthesis thus aims to decipher the narratives told through the ATCG 
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nucleotides to explain the origins of these molecules through enzymatic pathways and their 

superpowers (bioactivities).  

The rise of next generation sequencing has opened a new world of genetic information 

and facilitated a renaissance in drug discovery based on genomics. Analysis of microbial 

genomes has revealed that we have only accessed <10% of the chemicals these organisms are 

capable of producing. This dissertation describes efforts to access this genomic space in fungi 

with targeted genome mining, which aims to search for natural products of desired bioactivity 

through the presence of self-resistant enzymes. Fungi have evolved to contain these self-resistant 

enzymes, which are copies of the target enzyme of a natural product that are resistant to the 

inhibitory effects of the produced molecule.  

We aimed to utilize targeted genome mining to discover natural product inhibitors of the 

sterol pathway, which already contains drug targets that many commercial anticholesteremic and 

antifungal drugs specifically inhibit. This search strategy allowed us to discover and elucidate the 

biosynthesis of zaragozic acid A (a cholesterol lowering natural product) and restricticin (an 

antifungal natural product). Discovery of the zaragozic acid A cluster in Curvularia lunata was 

done through targeted genome mining of squalene synthase. The elucidation of the zaragozic 

acid A biosynthetic pathway in the engineered Aspergillus nidulans heterologous host has 

described the unique steps that lead to the production of the alkylcitrate benzylic polyketide 

intermediate of the pathway. Restricticin is another example of successful targeted genome 

mining using Cyp51 as a query. Cyp51 is an important sterol pathway target that is inhibited by 

commercial azole drugs. Targeted searches for Cyp51 clusters led to the identification of the 

restricitin biosynthetic gene cluster in Aspergillus nomius. Biosynthetic elucidation of restricticin 
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reveals the critical steps that lead up to attachment of the glycyl ester group that serve as the 

chemical warhead for its antifungal properties. Identification of the cluster allowed us to evaluate 

the rstn2 self resistance gene which exhibits azole resistance. Targeted genome mining has also 

helped to identify other possible novel Cyp51 inhibitors. 
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1. Introduction and History of Natural Products 

Since Sir Alexander Fleming first discovered penicillin in 1938, humans have realized 

the potential of extracting compounds from nature as a source of biologically relevant drugs. 

Since then, over 23,000 natural products have been characterized, with most of them being 

derived from bacteria.1 Microorganisms in particular have proven to be prolific producers of 

natural products of a wide spectrum of bioactivities, ranging from the anti-cholesterol drug, 

Lovastatin, to the anti-bacterial, erythromycin, etc. (Figure 1).2 These natural products are also 

known as secondary metabolites and are often not essential for life, but still serve as chemical 

weapons, facilitators of symbiosis, sexual effectors, differentiation effectors, or metal-

transporting agents that are still important to the functions of the cell.3 The wide variety of 

bioactivities can often translate to effective pharmacological drugs as approximately 50% of the 

new chemical entities approved by the US Food and Drug administration in the last 30 years 

have been either natural products or natural product derived.1, 4 In addition to the various 

applications that natural products pose, the structural complexity and diversity of natural 

products also have drawn the interests of synthetic chemists to develop total syntheses for 

producing the molecules. Academic interest in studying the natural product biosynthesis 

pathways of these complex molecules has also grown in order to understand the regulation, 

enzymology, and chemical mechanisms that nature employs to synthesize these compounds. 

Natural products research covers many different disciplines to explore the secrets behind the 

chemical treasures that Nature offers.  

1.1 Methods of Discovery for Natural Products 

 Natural products discovery has spanned over many decades. With the rise of 

technological advances over the years, the techniques used to discover and study Natural  
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products have also expanded. After the discovery of penicillin, efforts to begin identifying other 

valuable compounds produced from microorganisms began. Early efforts involved the search for 

microorganism strains that would be capable of killing fungi or bacteria through phenotypic 

screens in the 1940s. Phenotypic screens, however, were limited in their ability to find 

compounds of specific desired activities. Thus, around the 1970s, target activity guided screens 

were also developed as ways to find molecules of interest with specific activity against enzyme 

targets. In addition to screening methods for new natural products, genetics and enzymatic 

studies on natural product biosynthesis pathways revealed many fundamental components behind 

Figure 1. Chemical and Biological Diversity of Natural Products 

Natural Products are diverse in both chemical structure and bioactivity. Many of them are 

highly impactful pharmaceutical drugs and novel products are being discovered all the 

time.  
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natural product biosynthesis. With the rise of genomics and next generation sequencing in the 

early 2000s, genes responsible for the biosynthesis of natural products could be readily 

identified. This has led to a renaissance in natural product discovery as it is now apparent many 

of natural product genes are cryptic or silent under laboratory conditions, leaving much more to 

be discovered from natural producers of secondary metabolite drugs.  

1.1.1 Phenotypic Screening 

The discovery of penicillin first introduced the idea behind fermenting microorganisms to 

mass produce a chemical of interest. World War II had generated the need for mass production 

of antibiotics, so efforts to improve scalability of natural product fermentation began then. This 

started with identifying the best producing strains of penicillin as well as ways to ferment those 

strains in 10,000-gallon tanks. The interdisciplinary collaboration of scientists began the advent 

of natural product developement for not only clinical relevance, but also commercial success.5 

The development of penicillin in the 1940s also indicated that bacterial strains were valuable 

leads to natural products. It was soon found that Actinomyctes and Streptomycetes were fruitful 

producers of many important compounds. Streptomyces in particular proved to be a rich source 

of antibiotics including macrolides, tetracyclines, polyenes, and peptides.1 Thus began the era of 

phenotypic screening of microbes for the discovery of relevant natural products. Scientists would 

test different fermentation conditions of various strain isolates from soil. The crude extracts 

could be tested directly or fractionated to test against bactericidal or fungicidal screens, often 

simply performed by looking at visual growth inhibition.6 Identification of desired phenotypes 

would be subsequently followed up with chemical structure elucidation and studies about the 

mechanism of action. In addition to antibacterial screens, companies started as early as the 1950s 

to look toward finding anti-cancer agents through phenotypic screens. These screens were 
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performed with induced tumors in whole animal tests to search for drugs capable of cytotoxic 

effects.7  

These types of studies led to the discovery of important molecules such as the antibiotic, 

tetracycline, by Pfizer et al. in 19528 and the immunosuppressant, cyclosporine A, by Sandoz 

(Novartis) in 1972.9 Tetracycline is a semi-synthetic drug that was developed through 

modification of the natural product Aureomycin. Aureomycin was a promising natural product 

compound found by Cyanamid during the boom of antibiotic discovery in the 1940s. Cynamid 

was testing soil sample extracts against gram positive and gram negative bacteria and found one 

sample in particular was able to cause large inhibition zones on the bacterial agar plates of 

various different strains and had a distinct yellow color. Later, Pfizer had realized the C7 

chlorine of Aureomycin was not necessary for the activity of the drug, and thus the descholor 

version was developed as tetracycline. Tetracycline had higher potency, better solubility, and 

better activity.8  Cyclosporine was first discovered when the Sandoz lab searched for anti-

inflammatory and immunosuppressant drugs by observing the effects of natural product libraries 

for compounds on lymophocte mediated effector cell lysis. Cyclosporine was a promising 

candidate that inhibited the in vitro cell lysis of the allogenic target cells.9   

Phenotypic screens still remain an important forward pharmacology discovery technique, 

though the types of strains screened through have expanded toward many different sources, 

including marine based microbes rather than traditional soil derived samples.  

1.1.2 Target Activity Guided Screens 

Phenotypic screens have proven to be an efficient way to discover new natural product 

compounds. However, with phenotypic screens the mode of action is often still unknown, 

resulting in a surface understanding of the novel natural products discovered. With the 
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advancement of biochemical techniques, the understanding of natural biochemical pathways and 

enzymes involved in these pathways has greatly improved. The specific modes of action  

 

 
Figure 2. Timeline of Natural Product Discovery  

This timeline displays the different natural product discovery techniques that were developed 

over different time periods and significant natural product molecules found during these time 

periods 

 

between the molecule and the specific target enzymes could be tested with developed activity 

assays using a specific custom readout. This allowed for the onset of target activity guided 

screens, where scientists could use high throughput assays to test for natural products that would 

specifically inhibit or interact with the target of interest. 

 One example of an early natural product discovered through the use of target activity 

guided screens was compactin. The early 1950’s came with many efforts to understand the 

cholesterol pathway after it was found that heart disease was linked with the cholesterol levels of 
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the patient. The 30 enzymatic reactions involved to synthesize cholesterol were fully elucidated. 

Akira Endo had first hypothesized that fungi and mold might be capable of producing inhibitors 

of hydroxymethylglutaryl-CoA reductase (HMGR). He had developed a multi-step assay to 

screen for compounds that had HMGR inhibitory activity. They screened through fermentation 

broths to see which could inhibit the incorporation of radio labeled C14 acetate into lipid products 

such as cholesterol. Successful broths were then checked for inhibitory activity of the conversion 

of labeled H3 mevalonate to labeled lipid products. Broths that passed this step would be 

subjected to inhibitory evaluation of C14-HMG-CoA to C14-mevalonate. This led to discovery of 

compactin from Penicillium citrinum.10 These precursor directed studies also allowed for 

scientists to identify the building blocks that are incorporated during natural products 

biosynthesis.  

1.1.3 Bioinformatics Guided Discovery 

 The rise of genetic tools eventually came to fruition, providing researchers with an 

alternative strategy to better study natural product biosynthesis. It was soon understood that 

natural product genes are often colocalized as gene clusters in fungi and bacteria. The 

organization of these gene clusters will be further explored in Section 1.2.6. Consequently, gene 

clusters were being linked to the natural products that were identified through phenotypic and 

activity-based screens. Notwithstanding the new knowledge about natural product biosynthesis 

gained from genetic analysis, natural product discovery soon began to run into issues of 

dereplication using phenotypic and targeted based screens. Simply going through different types 

of new strains and fermentation broths combinations would lead to rediscovery of many already 

known natural products. Thus efforts to find new natural products eventually began to slow 

down.11 In the early 2000’s, however, the first two Streptomyces genome sequences were fully 
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assembled, launching the revelation that the number of gene clusters in these microbial genomes 

were far greater in number than previously thought. It is estimated that only that less than 10% of 

the secondary metabolite gene clusters are expressed during laboratory fermentation conditions, 

indicating that many of these gene clusters are cryptic.1 With the sequencing of microbial 

genomes also came the opportunity to tie together natural product compounds and the genes that 

produce them, allowing us to readily identify new clusters or activate cryptic ones. The natural 

product landscape entered into a new era of discovery that brought upon a natural products 

renaissance that is still being explored today. 

 Deeper understanding about natural product biosynthesis also gave insight into the 

building blocks that go into making these secondary metabolites. Thus based on the type of 

enzymes in a natural product biosynthetic gene cluster, chemical structure could be predicted 

from the genes and what types of building blocks they would be using.12 One successful example 

is the identification of the aspoquinolones A-D, which are prenylated alkaloids from the fungi 

Aspergillus nidulans. Efforts to look at this gene cluster began with the interest in finding 

alkaloid compounds in which anthranilate is a known precursor. Sequencing of the Aspergillus 

nidulans genome showed that the strain contained at least three copies of anthranilate synthase, 

indicating that numerous copies of the gene would allow A. nidulans to produce several alkaloid 

secondary metabolites. Through utilizing many different fermentation conditions, the 

aspoquinolones were identified as novel prenylated alkaloid natural products.13  

 Comparative metabolic profiling is another technique that has arisen with the 

development and availability of microbial genome sequences. By utilizing mutagenesis of target 

genes and then comparing metabolic profiles, the natural product linked to the target gene can be 

identified.12 These knockout studies remain an important technique for the identification of  
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Figure 3. Sources of Natural Products from Primary Metabolism  

Natural Products derived their building blocks from various primary metabolic processes. 

Polyketides and terpenes use intermediates from the mevalonate pathway while Non-ribosomal 

peptides use both proteingenic amino acids and non-proteingenic amino acids.  
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natural product gene clusters. The emericellamides were a family of cyclic depsipeptide products 

that were that were initially found in the marine fungi Emericella sp. Through the knockout of a 

cryptic nonribosomal peptide synthetase (NRPS) gene, the biosynthetic pathway of the 

emericellamides was realized.14 In another example, orfamide A was a novel peptide antibiotic 

isolated by Müller et al. They later identified gene fragments of novel NRPS and polyketide 

synthase (PKS) encoding gene fragments. Inactivation of these gene fragments in the wild type 

producing strain Stigmatella aurantica and through comparative metabolic profiling saw the loss 

of orfamide A production in the mutant strains, indicating the role of these gene fragments in the 

biosynthesis of orfamide A.2   

1.2 Natural Product Biosynthesis 

The molecular scaffolds of most natural products are furnished by different classes of 

natural product enzymes: 1) Polyketide Synthases (PKSs), 2) Non-ribosomal Peptide Synthetases 

(NRPSs), and 3) Terpene Synthases (TSs). These “core enzymes” utilize building blocks from 

central metabolic pathways and primary metabolism (Figure 3). PKSs are fatty acid like multi-

domain megasynthases that take acetyl-CoA from the mevalonate pathway to build long 

polyketide chains with varying degrees of reduction at each polyketide chain segment. NRPSs 

take both proteinogenic and non-proteinogenic amino acids to form peptide chains. Terpene 

synthases take 5 carbon unit isoprene building blocks from the mevalonate pathway to undergo 

cyclization reactions for the synthesis of terpenoid products. These natural product backbones 

are often further modified by tailoring enzymes to introduce further chemical complexity. 

Understanding how these specialized core and tailoring genes work together has given us clues 

into how they are organized, allowing us to better find and study the biosynthetic gene clusters 

that govern natural product biosynthesis.  
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1.2.1 Polyketide Synthases 

 Polyketides are typically long carbon chains reminiscent of fatty acid chains, synthesized 

by PKSs. These PKSs typically utilize acetyl-CoA and malonlyl-CoA units from the early 

mevalonate pathway to build the carbon chain products. PKSs can be characterized into three 

types: 1) Type 1 PKS: multifunctional enzymes with different domains that catalyze specialized 

reactions in a modular fashion 2) Type II PKS: a set of polyketide domains that only consist of 

the ketosynthase domain and acyl carrier protein that act iteratively to generate the polyketide 

product. 3) Type III PKS: single domain ketosynthases domains that do not use acyl carrier 

proteins.15 Most fungal polyketide natural products are made by Type I PKSs.  

Type I PKSs are multi-domain megasynthases that possess the catalytic domains required 

for polyketide biosynthesis.15 In most type I bacterial PKSs,16  multiple sets of domains are 

typically compiled into modules and their biosynthesis proceeds in an assembly-line fashion. 

Each module of the bacterial PKS is responsible for extending the polyketide chain by one ketide 

unit. In addition to chain extension, each module of the PKS will reduce the extension unit by 

varying degrees. In contrast to bacterial PKSs, type I fungal reducing PKSs use a single set of 

domains in a highly programmed and permutative fashion.17, 18 The architecture of the fungal 

reducing PKSs consist of the minimal fungal PKS components and the auxiliary tailoring 

domains (Figure 4). The β-ketoacyl synthase (KS),19 malonyl-CoA: ACP transacylase (MAT) 

and acyl carrier protein (ACP)20 form the minimal fungal PKS components—the basis for the  

chain-extending iterations through decarboxylative Claisen condensations (Figure 4). During 

each iteration, the minimal fungal PKS components catalyze the decarboxylative polymerization 

of malonyl-CoA to elongate the polyketide chain by a ketide (two carbons). Following each 

chain extension step, the ACP-bound, β-ketothioester intermediate may undergo a series of  
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Figure 4. Mechanisms of Type I Polyketides  

Fungal Polyketides are typically made from type I iterative polyketide synthases. These iterative 

PKS use a set of domains which include combinations of the flowing: Ketosynthase (KS), 

AT(acyltransferase), Dehydratase (DH), Methyltransferase (MT), Enoylreductase (ER), 

Ketoreductase (KR), and Acyl carrier protein (ACP) domains. These iterative PKSs utilize the 

domains in a programmed fashion to generate polyketide chains of varying length and reduction 

at each ketide unit.  

 

 

modifications from the tailoring domains such as α-methylation by the methyltransferase (MT), 

β-ketoreduction by the ketoreductase (KR),21 dehydration by the dehydratase (DH),22 and 

enoylreduction by the enoylreductase (ER) domains (Figure 4).23 The MT domain utilizes S-

adenosylmethionine (SAM) as the methylating agent while the reductive domains use 

nicotinamide adenine dinucleotide phosphate hydride (NADPH) as the reducing agent. The α and 

β position of each ketide unit will differ depending on the extent of methylation and reduction 

during each cycle.  

Through different permutative tailoring modifications following each chain extension, the 

same set of tailoring domains can install structural diversity into the α- and β- positions of 
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polyketide backbones.18 The elongation-tailoring events proceed iteratively until the polyketide 

chain extension is terminated through product off-loading such as hydrolysis or reductive 

release. Currently, underlying programming rules for the iterative catalysis of both bacterial and 

fungal polyketide synthases remain an active area of research. 

Phylogenetic analysis of polyketide synthases offers one method of exploring the 

programming rules of the iterative fungal PKSs. The analysis of the full length and KS domain 

sequences of PKSs from Aspergilli have shown that the different PKS enzymes found in fungal 

genomes can be grouped into different clades. As the domain architecture for fungal iterative 

PKSs can vary greatly, utilizing the consensus KS domain sequences rather than the full-length 

protein sequences has been shown to be an effective method of “fingerprinting” the different 

PKSs. Overall, these sequences clade the PKSs into nonreducing PKSs (NRPKS), partially 

reducing PKSs (PRPKSs), highly reducing PKSs (HRPKS), and PKS-NRPS hybrids.24 Analysis 

of the products produced by characterized PKSs has also shown that closely related PKSs based 

on KS sequence also share similarities in chemical structure. As more PKS products become 

elucidated, chemical structure prediction of the products from novel PKS genes becomes more 

and more plausible.    

1.2.2 Non-Ribosomal Peptide Synthetases 

 NRPSs are multimodular enzymes that catalyze the biosynthesis of peptidyl natural 

products in a ribosome-independent manner. Much like the PKS modules covered in the previous 

section, each module of the NRPS typically act to extend the peptide chain by an amino acid 

unit. An NRPS module minimally consists of a condensation (C) domain, an adenylation (A) 

domain, and a Thiolation (T) domain that is post-translationally modified with a 4’-

phosphopantetheine (pPant) arm (Figure 5).25 The NRPS also often contains a termination 
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domain, such as a thioesterase (TE) or terminal cCondensation domain (CT) that will releases the 

substrate.   

The thiolation (T) domain, also known as the peptidyl carrier protein (PCP) domain is 

used to shuttle substrates from one domain to another. It is a vital component for the NRPS 

assembly line dynamics that allow for the different domains to act on the growing peptide 

chain.26 The holo-PCP will be post-translationally modified with the pPant arm, which 

covalently binds the amino acid or peptide chain substrates through a thioester linkage. This is 

usually done using a pPant transferase, a highly conserved enzyme across all forms of life in 

bacteria, archaea, and eukarya. The Sfp gene from Bacillus sp. and the NpgA gene from 

Aspergillus nidulans have been identified to be responsible for expressing the pPant transferases 

vital for secondary metabolism.27 These two enzymes have been thus critical for developing 

heterologous platforms to successfully express these megasynthases such as NRPSs and PKSs 

that utilize the pPant prosthetic.28 The PCP acts as a “swinging arm” in order to reach into the 

active sites of the other NRPS domains. The structure of the PCP is highly conserved and quite 

small (~10 kDA). It has been shown that the modification of the PCP by the pPant arm does not 

cause any conformational changes in the PCP structure, indicating that the PCP protein acts as a 

stable platform for the flexible pPant arm to interact with the other domains.29 

The A domain serves as a gatekeeper to the different amino acid building blocks 

available for the NRPS. These domains are often highly specific and will activate the appropriate  

amino acid substrate through adenylation of the carboxyl group by activation with ATP.30 The 

ATP-activated amino acid is readily loaded onto the PCP domain. Bacterial A domains are 

highly conserved and the active site residues allow for prediction of the specific amino acid 

substrate.31 
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Figure 5. Non-Ribosomal Peptide Synthetases 

A. Example of a NRPS organization for the cyclic tripeptide, Fumiquiazoline F. Each module is 

responsible for extending the peptidy chain by one amino acid. The NRPS will often have a 

termination domain (CT or TE) to release the product. B. Dynamics of NRPSs. The PCP is 

responsible for swinging the peptidyl substrate to different domains to perform the necessary 

reaction. B1. The A domain activates an amino acid (AA) through addition of AMP to the 

carboxylic acid. B2. The activated AA (AA-AMP) can be tethered to the ACP through a 

thioester linkage. B3. The upstream PCP and the downstream PCP will enter their AA substrates 

into the binding pockets of the Condensation domain to be conjugated. B4. After condensation of 

two AA substrates, the downstream PCP will carry the peptide chain product to be processed in 

other domains in the assembly line until the final product is matured.  

 

The C domain catalyzes the condensation reaction between a growing peptide that is 

tethered to the pPant of an upstream T domain and an aminoacyl thioester attached to the pPant 
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of a downstream T domain.32-34 The C domains usually contain two active site binding pockets, 

one for each of the upstream and downstream aminoacyl substrates. The highly conserved 

enzymes will usually contain the HHXXXDG motif, which sits at the junction between the two 

binding pockets. After condensing the peptide bond between the upstream and downstream 

amino acid substrates, the C domain will shuttle the peptide chain product to the downstream T 

domain in order to be processed by the subsequent module.35 

After the aminoacyl substrate has been processed by all modules of the NRPS, the 

peptide chain usually will be released from the NRPS through a termination domain. In most 

bacterial NRPSs, this is done with a TE domain. The TE domain will catalyze a two half-step 

reaction to for product release.36 The first half-step involves the transfer of the peptidyl substrate 

from the thioester linkage on the PCP to an O-acyl onto the active site serine of the TE domain. 

After loading onto the TE domain, the product can either be released as a linear peptide through 

water hydrolysis37, cyclization through the intramolecular nucleophilic attack of a free peptidyl 

moiety of the chain38, or oligomerization39 through nucleophilic attack from another peptidyl 

chain.  

Whereas bacterial NRPSs use terminal thioesterase (TE) domains to perform cyclization 

through a nucleophilic serine, many fungal NRPSs use a CT domain as the terminal domain to 

produce macrocyclic peptidyl products, including cyclosporine and echinocandin, two of the 

most clinically relevant fungal NRPS products.40, 41 Although the CT domains share the 

conserved HXXXDXXS motif with canonical C domains in which the histidine serves as the 

catalytic residue, phylogenetic analysis clearly places CT domains in a separate clade, indicating 

functional divergence.42, 43  
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In addition to the minimal C, A, T, and TE or CT domains, NRPS can also have additional 

tailoring domains for further functionalization of the peptidyl chain. These include 

Methyltransferase (MT) domains, oxidase, reductase, halogenase, and epimerization domains. 

These domains will be found on the module in which the specific modification of the peptidyl 

unit takes place.35 

The exploration of novel NRPS products is an ongoing effort to not only discover new 

natural products of relevant pharmaceutical activity, but to also find new examples of NRPS 

architecture that can shed more light into the mechanistic rules that govern these megasynthase 

assembly lines.  

1.2.3 Terpene Cyclases  

 Terpenoid products encompass a group of the most structurally diverse natural products. 

These terpene products can be made by terpene synthases (TS). TSs differ from PKSs and 

NRPSs as they do not function as multimodular systems. Rather than build a growing 

peptidyl/acyl chain, TSs utilize 5 carbon isoprenoid units to be modified through cyclization or 

rearrangement. As shown in Figure 3, most TSs draw their building blocks from the last few 

steps leading up to the synthesis of squalene. Different terpene products can be classified by the 

different building blocks they use. Monoterpenes use geranyl pyrophosphate (2 isoprene units) as 

building blocks to form C10 products. Sesquiterpenes utilize farnesyl pyrophosphate (3 isoprene 

units) to build C15 products. Triterpenes take two farnesyl pyrophosphates (6 isoprene units) to 

build C30 products. Diterpenes take geranylgeranyl pyrophosphate (4 isoprene units) to build C20 

products. Tetraterpenes take two geranylgeranyl pyrophosphates (8 isoprene units) to build C40 

products.44   
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 TSs perform their reactions through the use of carbocation chemistry. Among TSs, 

prenyltransferases can catalyze the head-to-tail connections between isoprene units while terpene  

 

Figure 6. Mechanisms of Terpene Cyclases 

Terpene cyclases can be split into two groups: Class I and Class II. Class I terpene cyclases, such 

as limonene synthase generate a terminal alkene carbocation. Class II terpene cyclases such as 

the one used in taxol biosynthesis generates a tertiary carbocation on GPP that will be quenched 

through cyclization of the isoprene unit. 

 

cyclases afford more complicated cyclized terpene products.  The positioning of the carbocation 

ionization varies for individual terpene synthases and determines the cyclization/rearrangement 

of the isoprene building block. Depending on the type of carbocation formation, terpene cyclases 

can be grouped into two classes: 1) Class I terpene cyclases which use a trinuclear metal cluster 

to ionize the isoprene unit by generating an allylic cation and a free pyrophosphate, and 2) Class 

II terpene cyclases which use a general acid to protonate a terminal alkene to form a tertiary 

carbocation.45 Figure 6 shows examples of mechanisms of Class I (limonene synthase)46 and 

Class II (taxol synthase)47 terpene cyclases.  
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1.2.4 Tailoring Enzymes 

 Tailoring enzymes are other enzymes that will modify the chemical backbone that is built 

from the core enzymes (PKSs, NRPSs, and TSs). These include methyltransferases,48 

oxygenases,49, 50  epimerases,34 glycosyltransferases,51 oxidoreductases,52 acyltransferases,53 etc. 

These modifications are the keys that transform the secondary metabolite intermediate generated 

from the core enzymes to the mature and often bioactive natural product.  

Oxygenases are one of the most common tailoring enzymes found in secondary 

metabolism and are responsible for much of the chemical diversity of natural products.54 These 

enzymes often carry out a diverse range of redox reactions including hydroxylations, 

epoxidations, dehydrogenations, cyclizations, and various rearrangements—often decreasing the 

lipophilicity of secondary metabolites backbones.55 Recent discoveries have found several 

multifunctional oxygenases that can act iteratively on multiple sites of their substrates.49, 56 Thus, 

iterative oxygenases are enzymes that can introduce multiple oxygen atoms from molecular 

oxygen at different sites on a single substrate. 

There are several major classes of oxygenases including cytochrome P450 

monooxygenases (P450s), flavin-containing monooxygenases (FMOs), and non-heme, iron- and 

α-ketoglutarate-dependent dioxygenases. Examples of iterative catalysis are found in each of 

these classes in fungal natural product biosynthesis. Monooxygenases incorporate one oxygen 

atom from molecular oxygen (O2) while dioxygenases can incorporate both oxygen atoms.  

 

1.2.5 Natural Product Gene Clusters 

The 1965 Noble Prize was awarded for the discovery of the Lac operon, where it was 

discovered that related bacterial genes are often grouped together. This allows for prokaryotes to 
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readily regulate the gene expression of these gene clusters under a single promoter. This gene 

cluster organization was also was found to hold true for proteins that were found in a common 

pathway.58 The organization is believed to allow for evolutionary advantages such as the 

preservation of these gene clusters (and thus the important pathways) during horizontal gene 

transfer as well as ease of regulation of the cluster when related genes are colocalized.59 It was 

believed that the gene clusters were a feature of prokaryotic genomic organization until 1989, 

with the study of the Aspergillus nidulans L-proline catabolic pathway,60 wherein it was also 

realized that eukaryotic pathway genes can also be found to be clustered as well. Fungal gene 

clusters can be defined as the close linkage of two or more genes that participate in a common 

metabolic or development pathway. Thus biosynthetic gene clusters (BGCs) became attributed to 

the common gene organization of many secondary metabolites. This started with the study of 

aflatoxins and sterigmatocystins, mycotoxins derived from the Aspergillus genus in which over 

25 genes over a 60 kb locus are responsible for generating these natural products.61  

With the rise of next generation genomic sequencing, the wide range of genomics data 

has revealed the presence of many natural products BGCs in bacteria, fungi, and some plant 

pathways. The BGCs organize the genes required for the synthesis of a natural product in a 

contiguous fashion. A canonical BGC can be expected to have various features including the  

presence of core enzymes genes, tailoring genes, transport protein genes, transcriptional 

regulator genes, and in rare cases a gene encoding a self-resistance enzyme. (Figure 7) Usually 

there are 1 to 2 core enzymes (as described in sections 1.2.1-1.2.3) and a variable number of  
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Figure 7. Organization of a Biosynthetic Gene cluster in Fungi 

Fungal secondary metabolite genes are usually clustered. These clusters will usually have a core 

enzyme that makes up the backbone of the natural product along with tailoring enzymes that 

finish the biosynthesis. In addition, there are regulatory enzymes and transport enzymes. 

Occasionally there will also be a self-resistant enzyme. 

 

tailoring enzymes (as described in section 1.2.4) that can be found in the gene clusters. These 

genes are the part of the biosynthetic pathway and provide the essential chemical transformations 

needed to form the mature natural product. In addition to the biosynthetic enzymes, there are 

regulatory elements which include transcription factors, transport proteins, and the self-resistance 

enzymes.  

The example in Figure 7 represents the organization of the fungal natural product 

blockbluster drug, Lovstatin (Mevacor), in Aspergillus terrerus. The Lovastatin BGC contains 

two polyketides, LovB and LovF, which are the core enzymes that synthesize the carbon 

backbone for the cholesterol lowering drug. In addition to the core enzymes are the other 

biosynthetic tailoring enzymes such as LovA, LovG, LovC, LovD which correspond to a P450 

monoxygenase, thioesterase, trans-acting enoyl reductase, and acyltransferase, respectively. 

LovA, LovG, and LovC work together on the nonaketide product synthesized by LovB to 

generate the Monacolin J intermediate of the pathway. Monacolin J is then linked by LovD with 
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the diketide product synthesized by LovF to furnish the final natural product, Lovastatin.62, 63 In 

this gene cluster, LovE is a local transcription factor that upregulates the transcription of all the 

genes in this cluster when overexpressed.64 LovI falls under the Major Facilitator Superfamily, a 

protein family of efflux pumps designed to remove the Lovastatin product from the cell. LvrA 

corresponds to the self-resistant enzyme, which will be described in the following section. 

With more and more information about BGCs being understood from elucidating 

additional examples of natural product biosyntheses, the ability to search for the BGCs of natural 

products also has been an expanding field. Genome mining for BGCs of natural products has 

thus also become a newer method of natural product discovery.  

1.2.6 Self-Resistant Enzymes 

 Natural products have a wide variety of bioactivities, including antibiotic, antifungal, 

herbicidal, and mycotoxic. In the evolutionary landscape of these microbial producers, natural 

products often serve as methods of chemical warfare to gain an advantage over competitor 

organisms. The toxic nature of many of these natural products often stems from their ability to 

inhibit key metabolic processes in competitor organisms. However, the production of these 

natural product inhibitors is a double-edged sword in that these natural products can affect the 

host organism as well. To deter these self-harming effects, organisms that produce toxic natural 

product employ a myriad of techniques including efflux pumps, chemical modification, and the 

use of self-resistant enzymes. Efflux pumps, such as LovI described in Figure 7 will shuttle the 

toxic product outside of the cell. Chemical modifications use specialized enzymes that will 

detoxify the natural product. In the case of the antibiotic chloramphenicol, the natural producer 

Streptomyces venezuelae utilizes a hydrolase that will detoxify chloramphenicol through 
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acetylation of the C-3 hydroxyl group when the production of the compound reaches high 

concentrations.65, 66  

 The use of self-resistant enzymes is another technique that fungi and other microbes have 

evolved to gain resistance toward the toxic natural product they produce. These organisms have 

evolved targets (typically proteins) that are modified versions of the target the natural product 

inhibits. Modified protein targets usually contain various mutated residues that impede the 

natural product inhibitor from binding the enzymes, but still allow for the enzyme to have its 

original function. These self-resistant enzymes thus serve as an elegant solution for the self-

resistance of toxic natural product producers. Furthermore, the studies of the genetic organization 

of these self-resistant organisms have also shown that the self-resistant enzyme is usually an 

extra copy of the target. The original housekeeping copy of the target, sensitive to the inhibitor 

but usually retains higher catalytic efficiency, can be found separate from the self-resistant copy. 

The resistant copy, on the other hand, can often be found colocalized with the BGC of the natural 

product inhibitor. It is thus believed that the organism can utilize the optimized housekeeping 

enzyme most of the time and switch over to the self-resistant copy when it is producing high 

amounts of the toxic natural product compound.67-69 

 In the case of the Lovastatin BGC shown in Figure 7, the self-resistant copy of the target 

is encoded by LvrA. Lovastatin has been found to be an inhibitor of the mevalonate pathway 

intermediate, HMG-CoA reductase. LvrA is mutated version of the HMG-CoA reductase that 

does not bind the Lovastatin inhibitor but is still catalytically active. The producer strain 

Aspergillus terreus also contains the housekeeping version of HMG-CoA reductase separate 

from the Lovastatin BGC in its genome, giving it two copies of the HMG-CoA reductase while 

most fungi only have one copy.70, 71  
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 The presence of these self-resistant enzymes in organisms that produce bioactive natural 

products thus provide a powerful tool in terms of genome mining. By searching through 

genomes for self-resistant enzymes, we can potentially find natural products of desired 

bioactivity. Targeted genome mining thus utilizes the self-resistant enzyme phenomenon as a 

method of discovering novel natural products with activity specific toward the queried self-

resistant enzyme.  

2. The Sterol Biosynthetic Pathway 

 There are many drug targets of interest that attract medicinal chemists and natural 

products researchers to design/find compound inhibitors for these targets. One pathway that 

contains many drug targets of interests is the cholesterol pathway. High cholesterol levels have 

been linked with coronary heart disease, stroke, and diabetes. This is especially prevalent in the 

United States as cardiovascular disease remains the leading cause of death in the United States.10, 

72 The cholesterol pathway, in consequence, is a metabolic pathway of interest for the 

development of drugs to treat hypercholesterolemia.   

 The sterol pathway, in addition to having valuable targets for cholesterol lowering drugs, 

also is an attractive area for antifungal agents. Antifungal drugs are in huge demand, with a 

market totaling $11.3 billion in 2017.73 Fungal infections are mainly prevalent with 

immunocompromised patients, often leading to high mortality rates despite the use of current 

antifungal treatments.74 Especially with the rise of antibiotic and antifungal drug resistance 

among fungi, the need for novel antifungal drugs with new modes of action is a growing  
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concern. Many antifungal drugs work through inhibition of the fungal sterol pathway that 

synthesizes ergosterol, a metabolite vital for fungal cells.75 Thus, targeting sterol synthesis is a 

potentially fruitful strategy for the search for both cholesterol lowering and antifungal drugs.  

2.1 Variations in the Sterol Pathway across Kingdoms 

Sterol compounds can be found in all eukaryotes and some prokaryotes. Within 

eukaryotes, sterol compounds are used in a myriad of ways by different phyla. Fungi use 

ergosterol as a vital structural component of their cell membrane and in cell cycle regulation,76, 77 

while plants and animals use phytosterols and cholesterol, respectively, as not only structural 

components but also mainly as precursors to developmental hormones and vitamins.78-81 Though 

it is similar to the cholesterol and phytosterol pathways found in animals and plants, the 

biosynthesis of ergosterol is unique for fungi and essential as it regulates membrane fluidity and 

the regulation of many cell cycle processes. On the other hand, animals can uptake cholesterol 

through their diet. Consequently targeting the ergosterol pathway can inhibit fungi growth with 

minimal effect on plants and animals.82 

 Sterols are cyclized triterpenoids products that all contain a tetracyclic frame. This frame 

is generated through cyclization of the linear C30 squalene from the mevalonate pathway.83 

Different sterol molecules vary primarily in the carbon side chain, usually with varying degrees 

of unsaturation and substitution. There have been over 250 sterol molecules found through 

chemical screens of prokaryotes and eukaryotes. The major types of sterols in different kingdoms 

of life can be seen in Figure 8. Animals have cholesterol as the majority of their sterol content. 

The C27 cholesterol structure contains a fully saturated side chain and an unsaturated ring system. 

Fungi primarily have ergosterol, which is structurally very similar to cholesterol, with a degree 

of unsaturation across the C22 and C23 carbons as well as an additional methyl group on the C24 



25 

 

position.77, 83 Phytosterols have many variants including sitosterol, stigmasterol, and campesterol, 

which are the most copious in the plant kingdom.84 Plants sterols usually have highly branched 

side chains compared to their zoosterol counterparts and are much more varied, tallying more 

than 100 different discovered sterols.85 This variation can also be seen in the gene organization 

of sterol pathway genes. While animals will have only one copy of cholesterol pathway genes, 

plants and fungi have many more sterol genes, which result in the branching of the sterol 

biosynthetic pathway in different plants and fungi.77, 84 More recently, studies on protozoa have 

revealed that these organisms also contain sterol content that can be both biosynthesized or taken 

from their environments. Trypanosomatid parasites contain ergostane and stigmastane as the 

major components of protozoan sterol content.80, 86  

2.2 The Steps Involved in Sterol Metabolism 

 Sterol biosynthesis is a long pathway that takes many steps to reach ergosterol, 

cholesterol, or phytosterols. The pathway can be divided roughly into several main sections: 1) 

the initial mevalonate pathway that generates the isoprenoid precursor squalene, 2) the oxidation 

and cyclization of the linear squalene to generate the sterol intermediate lanosterol, and 3) the 

successive steps to process the lanosterol tetracylic core that finish the biosynthesis of various 

sterol products, depending on the organism.83, 87  

 The early steps of the sterol metabolism involve the conversion of acetyl-CoA to 

isoprenoid products through the mevalonate pathway. Acetyl-CoA is first condensed with 

another unit of acetyl-CoA to form acetoacetyl-CoA with the use of acetoacetyl-CoA thiolase. 

Hydroxymethylglutaryl-CoA (HMG-CoA) synthase then condenses another unit of acetyl-CoA 

to acetoacetyl-CoA to form HMG-CoA. HMG-CoA is then reduced by the highly regulated 

HMG-CoA reductase to form mevalonate. Mevalonate is then used for constructing isoprenoid  
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Figure 8. Distribution of Sterols in Life 

Sterol compounds are diverse and can be found in many different forms of life. The major sterol 

compounds found in each kingdom are shown.  

 

building blocks that can be either shuttled toward making terpenoid primary and secondary 

metabolites or directed toward being synthesized for squalene. Mevalonate requires two kinases 

and a decarboxylase to generate isopentyl-pyrophosphate, the minimum C5 isoprenoid unit. The 

steps from isopentyl-pyrophosphate to squalene can be seen in Figure 3.88-90  

 The next steps of the sterol pathway serve to cyclize the linear C30 squalene skeleton into 

the tetracyclic lanosterol that serves as the branching point for the synthesis of different sterols in 

organisms. Squalene is cyclized through a two-step process, starting with 2,3 epoxidation of the 

linear chain through the first oxidase in the pathway, squalene monooxygenase. This step is often 

considered to be one of the rate limiting steps of the pathway.83, 91 Next, lanosterol synthase takes 

the 2,3 oxidosqualene product, generating carbocation intermediates to successfully perform a 

cascade of cyclizations to form the tetracyclic ring system of sterol compounds. Lanosterol is 
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then  

 

 

Figure 9. The Sterol Biosynthetic Pathway 

The biosynthesis of sterols is a multi-step pathway that is highly regulated. The pathway can be 

split into three major parts: 1) The early stage steps during the Mevalonate pathway. Here acetyl-

CoA is metabolized all the way to isoprenoid precursors and the C30 linear squalene. 2) The 

formation of the sterol tetracylic backbone through the cyclization of squalene into lanosterol. 3) 

The late stage pathway stpes that take lanosterol to the final sterol drugs. In mammals, 

cholesterol is the final product while in fungi ergosterol is the final sterol product. The steps that 

lead up to zymosterol are conserved between the cholesterol and ergosterol pathway. 
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converted to various sterols, usually starting with the demethylation of the C14 carbon with the 

highly conserved Cyp51 lanosterol 14 α-demethylase enzyme.92  

 These late steps of sterol synthesis are divergent in eukaryotic organisms. In mammals, 

cholesterol in synthesized from lanosterol in a 19 step sequence, executed through 9 different 

enzymes.93, 94 These steps work to saturate the side chain, remove the C14 methyl and C4 gem-

dimethyl groups, and desaturate the ring system. There is believed to be two major pathways to 

get to cholesterol, with the timing of the modifications on the side chain dictating how the 

pathway proceeds.93 These late step pathways have also been shown to be quite important in 

regulation of sterol synthesis. Mutations in these enzymes cause genetic sterol disorders, such as 

Smith-Lemli-Optiz syndrome.93, 95  In fungi, lanosterol proceeds to ergosterol in a multi-step 

pathway that differs depending on the organism. The ergosterol pathways of Saccharomyces 

cerevesiae77 is very well characterized and the sterol pathways of other fungi such as Aspergillus 

fumigatus76 have also been elucidated. The ergosterol pathway and cholesterol pathways share 

the steps leading up to the biosynthesis of zymosterol. From there, the pathways diverge to offer 

different side chains functionality and degrees of saturation on the tetracyclic ring core (Figure 

9). The exact mechanisms of these steps are still being studied and divergent pathways from 

what is understood so far have also been found in different organisms, making the study of sterol 

pathways an ongoing effort.  

2.3 Inhibitors of the Sterol Pathway 

 Inhibitors of the sterol pathway are valuable pharmaceutical drug leads as they can have 

anti-cholesterol effects or anti-fungal effects. Some of the largest blockbluster drugs developed 

with these bioactivities include the cholesterol lowering statin medication and the azole 

antifungal drugs. Inhibitors of these sterol pathways have also additionally been found to have 
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anti-tumor activities as well. This is due to the correlation between tumor cells and high 

cholesterol levels, as tumor progression is highly dependent on cell division which requires high  

cholesterol uptake.96 Many sterol pathway inhibitors have been discovered and developed, 

resulting in a myriad of synthetic, semi-synthetic, and natural product drugs with different modes 

of action and biological activities for inhibition on various steps of the pathway. In general, 

inhibitors of early steps in the pathway have better cholesterol lowering activity while later stage 

inhibitors are more specific toward ergosterol biosynthesis and act as better antifungal agents 

(Figure 10).  

2.3.1 Inhibitors of the Early Mevalonate Pathway 

 As described in section 2.2, the sterol pathway can be divided into several main parts, 

with the mevalonate pathway being the initial steps of the pathway. In these early steps, one of 

the most important conversions is the reduction of the C5 ketone of HMG-CoA to yield 

mevalonate, done by HMG-CoA reductase. This key step is the rate limiting step of the entire 

cholesterol biosynthesis pathway, regulated through a negative feedback loop.97, 98 High levels of 

cholesterol and other sterol pathway intermediates will lead to a decrease in transcription of 

HMG-CoA reductase.99 

 The statins are cholesterol lowering drugs that were first discovered in the 1970’s as 

natural products from filamentous fungi. Compactin was first discovered from Pencillium 

citrinum and showed antimicrobial activity during the first screens.10, 100 The compound was 

soon shown to also lower plasma cholesterol levels, offering potential as use for 

hypercholesterolaemia. In 1987, lovastatin was first approved by the FDA for cholesterol 

lowering medication and had very limited side effects, and was able to achieve a 40% reduction 
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in LDL levels with a daily dosage of 80 mg.101 These two natural products drove the 

development of statin drugs.  

 Simvastatin was the next approved statin, a semisynthetic version of lovastatin that 

feature an additional methyl group on the side chain in 1988. Pravastatin was discovered in 1991 

as another semisynthetic drug. In addition, purely synthetic statins were developed as well, 

including fluvastatin in 1994, atorvastatin in 1997, cerivastatin in 1998, and rousvastatin in 

2003.100 The natural products and semi-synthetic analogs contain decalin cores that anchor the 

monacolin structure. The synthetic analogs on the other hand differ in the decalin core portion of 

the molecule, containing additional chemical moieties such as the cyclopropyl group in 

pitavastatin to better interact in the binding pocket of HMG-CoA reductase.96 The lactone group 

is structurally unchanged in both the natural and synthetic statins. This lactone group when 

opened through hydrolysis mimics the structure of the HMG-CoA substrate. This lactone thus 

serves as the molecular warhead that allows for the inhibitory activity of the statins.102  As 

cardiovascular heart disease remains one of the leading causes of death in western countries, 

these drugs remain important pharmaceuticals. 

 In addition to the HMG-CoA reductase inhibitors, there are also other compounds that 

have been found to inhibit the first few steps of the mevalonate pathway. The butyrolactols are 

butyryl lactones with a hydroxyalkyl side chain found to suppress the growth of various fungal 

species.103 They are structurally similar to Antibitoic F-244 (hymeglusin) an antimicrobial that 

inhibits both bacterial and fungal growth. The compounds showed activity toward lowering 

mevalonate levels and thus the mode of action was explored. F-244 was shown to bind to HMG-

CoA synthase, offering an inhibitor of the step before HMG-CoA reductase.104 
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2.3.2 Inhibitors of the Late Mevalonate Pathway 

 Early mevalonate pathway inhibitors have the disadvantage in that they greatly decrease 

the production of the isoprenoid precursors (isopentyl-PP, geranyl-PP, farnesyl-PP) that are 

 

Figure 10. Inhibitors of the Sterol Pathway 

Many compounds have been discovered and developed for the purposes of inhibiting the sterol 

pathway. Inhibitors of the early steps of the pathway are boxed in blue and have cholesterol 

lowering activity. In the middle steps of the pathway, there have been many natural products 

discovered that are used for a mix of cholesterol lowering agents and antifungal. Finally toward 

the late stage steps of the sterol pathways are inhibitors that serve as very efficient antifungal 

medications.  

 

important toward many biological functions. Late stage cholesterol pathway inhibitors also have 

the issue of accumulating toxic rigid sterol cyclic intermediates. Thus the steps in the late stages 
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of the mevalonate pathway leading up to the synthesis of the first sterol cyclic product lanosterol 

hits a sweet spot for ideal inhibitors of sterol metabolism.  

 Squalene synthase is the step that joins two units of farnseyl-PP to form the linear 

precursor to lanosterol, squalene. The squalestatins, also known as zaragozic acids were 

discovered in the early 1990’s in various different filamentous fungi. Over 20 different 

squalestatins and zaragozic acids have been discovered, with variations mainly among the side 

chains. The squalestatins all contain the same highly oxygenated 2,8-dioxabicyclo-[3.2.1]octane-

3,4,5-tricarboxylic acid core. The squalestatins are highly potent and selective inhibitors of 

squalene synthase. This inhibitory activity gives them biological applications such as cholesterol 

lowering, antifungal agents, and farnesyl transferase inhibitors.105 More about the squalestatins 

will be discussed in section 4.  

 Other than the squalestatins, the structurally similar Viridiofungins are also another group 

of natural products discovered to have squalene synthase inhibitory effects. They displayed 

strong antifungal activity, but no antibacterial activity. Structurally the viridofungins contain a 

saturated lipid tail with a dicarboxylic acid head, which is also attached with an amino acid. 

These amino alkyl citrate compounds show micromolar inhibitory activity against squalene 

synthase though they are much less potent than the squalestatins.106, 107 Ascofuranone, an 

antibiotic and anti-tumor drug, was first discovered through hypolipidemic screens and also has 

squalene synthase inhibitory activity.108 

 Squalene epoxidase is the step following squalene synthase and the first of two concerted 

steps to synthesize the cyclized sterol intermediate lanosterol. The allylamines are squalene 

epoxidase inhibitors that act as potent antifungal agents. Naftifine is an allylamine drug 

serendipitiously discovered through an accidental synthesis reaction by Sandoz. It was found to 
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have both antibacterial and antifungal effects. Its antifungal effects are pronounced, effectively 

having fungistatic effects on dermatrophytes by inhibiting ergosterol biosynthesis. Terbinafine is 

the synthetic analog of naftifine, which is more potent and able to be administered orally as well 

as topically in contrast to naftifine which can only be administered topically.109-112 

2.3.3 Inhibitors of the Late Sterol Pathways  

The late stages of the sterol pathways are divergent in different organisms. Therefore, 

targeting late stages of the ergosterol pathway are a desirable way to develop antifungal agents. 

One important step in the late stage pathway is catalyzed by Cyp51, the lanosterol 14-α 

demethylase p450 enzyme. The Cyp51 family is conserved across all life and is believed to be 

the ancestor of all p450s. The inhibition of this target has potential to have both cholesterol 

lowering effects and antifungal activity, although the current major inhibitors of this target are 

primarily used for their antifungal activities.113  

Azole drugs are the most broadly used Cyp51 inhibitors currently on the market. They 

are able to inhibit the p450 enzyme through binding to the coordinated heme iron competitively 

to block out the natural substrate.  The azole antifungals are all synthetic drugs that were 

designed to specifically inhibit Cyp51. Azoles have two classes, the imidazoles and the triazoles. 

The imidazoles contain two nitrogen ring systems while the triazoles have three nitrogen rings 

systems. The nitrogens on these rings serve as the chemical warheads that bind to the heme iron 

complex of Cyp51 to block its activity. The imidazoles include ketoconazole, clotrimazole, 

econazole, and miconazole. The triazoles include fluconazole and voriconazole. The triazoles are 

newer developed drugs that have a better pharmokinetic results and generally better efficacy.114  

In addition to the synthetically developed azoles, there are also natural products derived 

from filamentous fungi that have also been found to inhibit Cyp51. These include lanomycin and 
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restricticin, which contain a glycine ester moiety that is required for their inhibitory activity.96 

These natural products will be discussed further in Section 5.  

Finally, there are inhibitors that bind directly to the final product of the sterol pathway in 

fungi, ergosterol. These are the polyene antifungals, amphotericin B and nystatin. Amphotericin 

B directly binds to ergosterol, forming aqueous pores in the fungal cell membrane. Both drugs 

were isolated from bacterial cultures through phenotypic screens during the early 1950’s when 

natural product discovery was still in its nascent form. They are both large macrolide polyenes 

that are usually glycosylated. These drugs contain both a polyol and polyene portion, 

corresponding to having highly hydrophilic and hydrophobic portions.115 These antimycotic 

drugs have high activity and are still widely used for antifungal treatments today.  

3. Targeted Genome Mining Method Development 

 Current technological advances have made it possible to develop a highly efficient 

pipeline for natural product discovery. Our natural product discovery pipeline uses 

bioinformatics, synthetic biology, and chemical characterization tools in concert to not only 

discover new natural products, but also elucidate the biosynthetic pathways that manage their 

production. Our natural product discovery pipeline consists of four major parts (Figure 11). This 

pipeline begins with the genomic characterization of fungi usually done through next generation 

sequencing techniques. Along with the publicly available genome databases from the National 

Center for Biotechnology Information (NCBI)116 and Joint Genome Institute (JGI)117, we have 

access to over 5000 characterized fungal genomes to search and study from. With this fungal 

genomics information at our fingertips, there are also various bioinformatic tools available that 

allow us to predict and find gene clusters of interest. After a gene cluster of interest is identified, 
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we can begin to study the gene cluster using synthetic biology tools. Specifically, we utilize our 

robust heterologous expression systems in Escheria coli, Saccharomyces cerevisae, and 

Aspergillus nidulans. Then through metabolic analysis using chromatographic instrumentation 

such as LC-MS or HPLC, we can identify new chemical peaks that correspond to our gene 

cluster of interest. Chemical characterization through nuclear magnetic resonance (NMR) 

spectroscopy, X-ray crystallography, mass spectrometry, etc. allows us to determine the 

chemical structure of the peaks of interest and identify key intermediates to help us build the 

biosynthetic pathway leading up to the final natural product. This section will cover 

technological developments in our natural product discovery pipeline aimed to specifically tailor 

our efforts to find natural products through targeted genome mining.  

3.1 Development of in silico Targeted Genome Mining  

Some secondary metabolite gene clusters have been elucidated, but these BGCs still 

remain an enigmatic space of genomics, especially in fungi and plants. In contrast to the well 

conserved primary metabolite pathways that are very well understood, secondary metabolite 

gene clusters can vary from organism to organism even within members of the same species. 

Next generation sequencing has given us a wealth of genetic information on many of these 

mycotic genomes, but there remains the need to properly annotate and assign function to the 

DNA sequence. Proper identification of BGCs and their key components are the crucial steps to 

discovering and studying natural product biosynthesis. 

3.1.1 Bioinformatics tools for Gene Annotation  

 There are many publicly available bioinformatics tools that have been developed toward 

analyzing natural product gene clusters. To correctly identify genes in a newly sequenced 

genome, comparative genomics with known gene sequences can help infer the boundaries and 
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functions of uncharacterized genes. One popular method is the use of Basic Local Alignment 

Search Tool (BLAST). BLAST takes advantage of characterized genome databases from NCBI 

to compare queried sequences. By looking at sequence similarity of the query to known  

 

sequences, BLAST can draw conclusions on the closest homologs to the query and give function 

and boundary. BLAST utilizes local alignments that check for functional domains in the protein 

sequences that are often conserved through members of the same protein family. BLAST also 

can compare protein and nucleotide sequences in different combinations using multiple 

algorithms such as BLASTN (nucleotide vs nucleotide), BLASTP (protein vs protein), BLASTX 

(nucleotide query vs protein database), and TBLASTN (protein sequence vs nucleotide database. 

These results are outputted and calculated for an expect value that judges the confidence in an 

alignment match.118   

Figure 11. Natural Products Discovery Pipeline 

Our natural products discovery pipeline utilizes a combination of genomics, bioinformatics, synthetic 

biology, and analyticial chemistry techinques to identify new natural product compounds of interest 

for study.   
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 In addition to BLAST, another gene annotation algorithm that can be used is 

AUGUSTUS. AUGUSTUS uses a hidden Markov Model (HMM) that defines statistical 

probabilities for different DNA types such as introns, exons, intergenic regions, etc. This puts 

more stringent constraints on the search and prediction patterns the algorithm uses for more 

accurate gene predictions. This allows the user to accurately predict gene boundaries and the 

intron positions by comparing to a reference genome.119, 120 

 There are a few algorithms developed that can predict entire secondary metabolite gene 

clusters. Two of these are antibiotics and Secondary Metabolite Analysis Shell (antiSMASH) 

and Secondary Metabolite Unknown Regions Finder (SMURF). antiSMASH can take genomic 

FASTA (the most basic DNA/protein file format) files to be processed for gene cluster 

identification. It is able to identify PKS and NRPS genes readily through a combination of 

domain analysis, HMM prediction, and BLAST analysis. The outputs are in a user-friendly 

interface where the gene cluster can be viewed and navigated through.121 SMURF is another 

algorithm that evaluates gene clusters in a similar way, scoring the proximity of backbone core 

genes with the tailoring genes found around them.122 To avoid dereplication of gene clusters, the 

online database of characterized gene clusters, Minimum Information about a Biosynthetic Gene 

Cluster (MIBiG) is available for comparison with these algorithms.123 

 More specified genome mining algorithms have been also recently developed. The 

Antibiotic Resistance Target Seeker (ARTS) is an engine that specifically searches in bacterial 

genomes for antibiotic resistant enzymes to direct toward clusters with possible new drug 

leads.124 
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3.1.2 Development of Targeted Genome mining Information Finder (TGIF) 

 Currently, genome mining is mainly done through manual methods; identifying one or 

two query genes of interest to use a search against publically available genomes using software 

listed in the previous section to screen through possible gene clusters containing the queries of 

interest. However, with the growing knowledge of gene cluster organization through elucidated 

biosynthetic pathways and the identification of self-resistance enzymes present in these BGCs,  

 

 

Figure 12. TGIF algorith flow diagram 

The steps the TGIF algorithm takes to identify gene clusters of interest with self-resistance 

enzymes.    
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there is the potential to search for BGCs with desired bioactivity. Targeted Genome mining 

Information Finder (TGIF) aims to leverage the information currently known about self-resistant 

enzymes to identify novel BGCs in an automated fashion. 

 MATLAB® is a computing environment and programming language that is able to 

execute algorithms and data presentation. One of the major advantages of MATLAB® is its 

wealth of toolboxes that allow users to adapt their algorithms for specific fields of study. The 

Bioinformatics Toolbox™ includes the ability to use BLAST to analyze FASTA format DNA 

sequences, thus giving us a good foundation to develop our targeted genome mining engine. 

The TGIF algorithm searches for gene clusters that contain possible self-resistance 

enzymes that imply the biological activity of that particular cluster. A flow diagram outlining the 

steps is shown in Figure 12. For all the searches done, the TBLASTN algorithm is used for 

alignment searches. TBLASTN compares a translated protein sequence to a nucleotide database, 

allowing for a broader search due to codon degeneracy. The TGIF algorithm utilizes various 

scripts to run through the commands necessary to perform the targeted genome mining search. 

All scripts can be found in the Appendix. 

The first step is to build searchable databases for BLAST using the makeblastdb 

command. This is iterated through for all genomes in the custom database and done using the 

“mbmadedb.m” script. 

The next step is to generate target hits in all the genomes using the “mbblast.m” script. 

The protein sequences of these targets are inputted to the MATLAB algorithm. Self-resistant 

enzymes that were described in Section 1.2.6 have been shown to be additional copies of the 

housekeeping enzyme the natural product inhibits. Thus, when searching for these self- 
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resistant enzymes, we should be looking for genomes that contain an above average number of 

the target enzyme. In addition, these self-resistant enzymes are usually mutated versions of the 

housekeeping enzyme. Therefore, we want to find BLAST hits of the enzymes that can give us a 

sufficiently high identity to qualify as a homolog, but also not too much homology to be 

considered a typical housekeeping enzyme. To do this, we used MATLAB® to iteratively 

BLAST through all the genomes in our customized database and count the number of hits in each 

genome, where a hit is counted when the expect value is about 1E-50, the identity is at least 

30%, the coverage is at least 20% of the query, and a BLAST score of at least 50. These 

parameters are adjustable and can be customized for different targets. Storage of the results, 

removal of duplicate hits, and parsing of the output data is done through “targethitchecks.m”.  

The next step is to identify the core enzymes to determine secondary metabolite clusters. 

This is done with the “colocalblast_mb.m”. As PKS and NRPS core enzymes are multi-domain 

enzymes, they are identified by using BLAST with reference domain sequences of the PKS and 

NRPS and searching for colocalization of these domains. As discussed in Section 1.2.3, there are 

various forms of terpene cyclase enzymes including monoterpenes, sesquiterpenes, triterpenes 

diterpenes, and tetraterpenes. Reference examples for these enzyme sequences are used to find 

terpenoid gene clusters. Tailoring enzymes are also identified by BLAST using reference 

sequences. Currently, TGIF searches for methyltransferases, transcription factors, p450 

monoxygenases, and flavin dependent monoxygenases. These are performed with the 

“auxgeneblast.m” script. Results for PKS, NRPS, Terpenes, and tailoring genes hits are stored, 

duplicates are removed, and output results are parsed using the “secondmetcheck_PKS_test.m”, 

“secondmetcheck_NRPS.m”, “secondmetcheck_terpene.m”, and “auxgenecheck.m” scripts, 

respectively.  
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The final step is to use all the data generated through the BLAST function and organize it 

to determine gene clusters of interest. The “targetclusterfindv3.m” script first uses the target lists 

generated through “targethticheck.m” and compares these with the core enzymes hits to 

determine colocalization of the target and core enzymes. This is done by checking the base pair 

(bp) distance between the target and core enzymes. As the average fungal cluster size is around 

~20k bp, this is the default distance allowed to be considered a cluster in the algorithm. This 

value however can be adjusted for customization. If the target enzyme and core enzyme are 

colocalized, the algorithm will then search for any tailoring enzymes around them. If there are 

tailoring enzymes, this result is stored as a high-quality hit. In contrast, if there are no tailoring 

enzymes, the result is stored as a low-quality hit. For all the positive cluster hits, an output is 

generated that includes information about the statistical parameters, the genome the cluster is 

found in, the specific location of the cluster, the type of core enzyme cluster, and the tailoring 

genes found around the cluster. Another novel feature is the ability to search for specific residue 

mutations of the target. If known site mutations of a specific target enzyme are known to confer 

resistance, the residue position can be checked in the target cluster hits to have higher confidence 

of a true positive if the point mutation exists in the results. 

The results file allows for the quick screening of many genomes to identify gene clusters 

that contain self-resistance enzymes. After identification of a gene cluster of interest, the gene 

cluster is fully annotated and checked with literature and the MiBIG database to determine if the 

cluster has been characterized. If not characterized, the cluster is then a strong candidate for 

further analysis in the genome mining pipeline (Figure 11). 
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3.2 Development of Synthetic Biology Tools for Targeted Genome Mining 

After identification of a target gene cluster of interest, the next step is to study the genes 

in the cluster using synthetic biology techniques. There are two general methods to study gene 

clusters and the molecules that are made from them. The first is using a top-down approach 

which involves deconstructing the molecule from the final product. This is usually done through 

the use of systematic genetic knockouts in the producing organism to identify intermediates of 

the pathway by going backwards from the final molecule.125, 126 The second method is to use a 

bottom-up approach to build up to the final molecule gene by gene. This is usually done through 

heterologous expression of the cluster, starting by finding the combinations of genes to generate 

early pathway intermediates.127  

3.2.1 Heterologous Expression in Aspergillus nidulans 

To elucidate the biosynthesis of target gene clusters of interest, we use a heterologous 

platform in Aspergillus nidulans to express these genes in a foreign host. Heterologous 

expression is often used in lower order organisms such as Escherichia coli128, 129 or 

Saccharomyces cerevisiae130, 131 to express foreign genes due to the expansive literature 

regarding their genetic and metabolic profiles. Working with a fungal host such as A. nidulans, 

however, allows for more complex genes to be expressed more readily as the phylogeny of 

fungal strains would be closer in relation. Using a fungal host also allows us to use express genes 

that can be accurately spliced by the host. In lower organisms, RNA transcripts must be used to 

accurately express the proteins, which would be an issue especially for silent gene clusters.  

The Aspergillus nidulans A1145 strain is a genetically modified strain auxotrophic for 

uracil, riboflavin, and pyridoxine. These auxotrophic markers can then be utilized to episomally 

express foreign genes across three plasmids: pYTU, pYTR, and pYTP. With access to up to four 
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different types of constitutive fungal promoters to use, each plasmid can handle four genes, 

giving access to heterologous expression of up to 12 genes from the cluster (Figure 13). The A. 

nidulans platform also utilizes the AMA1 fungal plasmid replicator gene, which improves 

extrachromosomal replication and transformation efficiency by up to 2000 fold132. In addition to 

the AMA1 gene, the plasmids also contain the yeast 2µ origin of replication and the bacterial E. 

coli ColE1 origin of replication, allowing these plasmids to serve as shuttle vectors between the 

three species for assembly, amplification and expression.  These properties make the A. nidulans 

platform an effective means for heterologous expression of fungal gene clusters.   

 

Figure 13. The A. nidulans heterologous platform 

The episomally based heterologous expression platform in A. nidulans utilizes three shuttle 

vectors that are capable of expressing multiple genes from BGCs for study. 
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3.2.2 Engineering of the Aspergillus nidulans heterologous expression platform 

 One of the disadvantages of using a heterologous host in a higher organism such as A. 

nidulans rather than E. coli or S. cerevesiae is that the metabolic profile of the filamentous fungi 

strain is quite diverse, causing a high background for metabolite analysis. There are many 

secondary metabolite gene clusters in filamentous fungi, with up to 71 clusters found in A. 

nidulans. This issue was exemplified when performing heterologous expression of genes from 

the zaragozic acid A cluster. The plasmid system induced significant production of both 

sterigmatocystin (ST)133 and emericellamide (EM),14 which contributed to a high background 

TIC (Figure S8).  This amalgam of endogenous metabolites, compounded by the unknown  

product mass made identification of any new product difficult. To expunge this issue, we 

removed these metabolites through genetic knockouts of ST and EM, facilitated by CRISPR-

Cas9 to delete stcA and easA and yield the strain A. nidulans A1145∆ST∆EM.134, 135 Since ST 

and EM are also polyketide products, removing these products would ideally not only clean the 

metabolic profile, but also increase flux of acetate units to the production of polyketide products 

rather than to the production of ST and EM.   

To perform the gene knockouts of ST and EM, the CRISPR/Cas9 vector pFC330 

(containing the pyrG auxotrophic marker) was used. Knockout procedures are similar to ones 

described previously by Nodvig et al.134 Briefly, the protospacer within the sgRNA was 

determined by CHOPCHOP135 to minimize the number of promiscuous targets. The sgRNA was 

amplified from gBlocks (IDT, USA) and ligated to pFC330 upon double digestion with BglII and 

PacI. The linear, marker-less knockout cassette was constructed via splicing by overlap 

extension PCR (SOE-PCR), with 2 kb upstream and downstream of the knockout region 

respectively. Primers used for the construction of the CRISPR plasmid and knockout cassette are  
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Figure 14. Engineering of A. nidulans strains.  

[i] A. nidulans A1145 with empty vectors as a negative control. [ii-iv] Engineered A. nidulans 

A1145 strains with the cassette to produce the intermediate with a mass of 420. A and B shows 

location of metabolites signals removed upon deletion of ST and EM genes, respectively. TIC: 

total ion chromatogram shown in dotted lines to show the overall metabolite profiles. EIC: 

extracted ion chromatography m/z values filtered for the mass of 420. 

 

listed in Table S5. Both the CRISPR/Cas9 plasmid and linear knockout cassette were co-

transformed to A. nidulans A1145 with the transformation procedures described below. For 

negative selection to cure the CRISPR plasmid, solid plates of glucose minimal media (GMM) 

containing uridine, uracil, pyridoxin, and riboflavin, with 5-fluoroorotic acid (5-FOA) to a final 

concentration of 1 mg/mL. Colonies were screened for knockout by PCR from the genomic 
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DNA, and knockout efficiencies were 50% and 30% for sterigmatocystin (ST) and 

emericellamide (EM), respectively to generate A. nidulans A1145∆ST and A. nidulans 

A1145∆ST∆EM.  

Removal of these excess secondary metabolites greatly purged the high background that 

was viewed with the original A1145 strain, allowing for identification of new compounds 

introduced through heterologous overexpression, especially of compounds which signals overlay 

with EM and ST products (Figure 14). The new engineered platform greatly assisted in the 

identification of key intermediate compounds discussed in the following sections. 

4. Identification and Elucidation of the Zaragozic Acid A Biosynthetic Gene 

Cluster 

Zaragozic acid (ZA) A (1) (also known as squalestatin S1 is a heavily oxidized fungal 

polyketide that offers potent cholesterol lowering activity.136  Though various total syntheses of 1 

have been reported,137-148  a complete understanding of its biosynthesis remains elusive. To 

further study ZA and its biosynthesis, we utilized targeted genome mining to first identify the 

BGC that produces the molecule. As ZA is a known inhibitor of squalene synthase, we utilized 

the TGIF algorithm to search through the genome of a known producer of ZA, Curvularia 

lunata. The results showed the presence of two squalene synthases in the genome of the 

filamentous fungi, one more than the average number of copies in fungi. One of the squalene 

synthases showed the presence of many secondary metabolite genes in close proximity, 

indicating a possible candidate cluster for ZA. Here, we utilized an engineered Aspergillus 

nidulans heterologous host to reconstitute the biosynthesis of ZA. 
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4.1 Introduction to the Zaragozic Acids 

Fungal polyketide natural products have been an important source of pharmaceutical 

drugs due to their wide range of bioactivities.149 The diverse and complex structural features 

have also attracted intense research efforts towards understanding the biosynthetic logic.150-152  

The carbon scaffolds of many fungal polyketide natural products, including lovastatin131 and 

cytochalasans,153 are built from the iterative functions of highly reducing polyketide synthases 

(HRPKSs). These scaffolds are typically oxidatively modified by subsequent downstream 

tailoring enzymes, such as oxidases and oxygenases, to furnish the mature product.49, 50, 63, 154 ZA 

is one of such fungal polyketide natural products, first discovered in 1992, that showed potent 

cholesterol lowering activity with its picomolar inhibition toward squalene synthase.136 This 

molecule’s bioactivity was of particular interest due to its target (squalene synthase) being part of 

the middle stage of the cholesterol pathway. Since there were already effective drug inhibitors of 

the early stage of the sterol pathway (statins), a drug capable of impeding the cholesterol 

pathway could have cholesterol lowering effects without obstructing the synthesis of important  

isoprenoids products (IPP, GPP, FPP) that come after the early stages of the sterol pathway.155 

Inhibitors of the middle cholesterol pathway also would ideally not cause the buildup of rigid 

toxic cyclized sterol products that accumulate with the use of late stage sterol pathway 

inhibitors.83 

In addition to the noteworthy bioactivity, ZA’s have unique chemical features that drew 

the attention of many synthetic chemists. Members of the ZA family of molecules share a 2,8-

dioxobicyclic[3.2.1]octane-3,4,5-tricarboxyclic acid core that is connected to two lipophilic 

polyketide or fatty acid derived arms (Figure 1).156 The unique structural features of ZA mimic 
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presqualene diphosphate, the product of the head-head condensation of farnesyl-diphosphate, and 

make ZA potent inhibitors of squalene synthase.157 Labeling studies have shown the  

 

Figure 15. Representative compounds from the zaragozic acids family of polyketides. 

 

tricarboxylic acid core is partially-derived from oxaloacetate, an intermediate found in the citric 

acid cycle.155  Cox et al have shown the tetraketide arm (Figure 15) in 1 is synthesized by a 

HRPKS and enzymatically esterified to the core in the last biosynthetic step.158  However, 

formation of the other polyketide arm of 1 is unresolved.  

4.2 Results and Discussion 

 

4.2.1 Identification of the clz Cluster 

We sequenced the genome of the fungal pathogen Curvularia lunata (also known as 

Cochliobolus lunatus ATCC 74067), which was previously identified as a producer of 1.159 Since 
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1 is a known inhibitor of squalene synthase, we used the TGIF algorithm with squalene synthase 

as a query to search for clusters candidates. Searching through the assembled genome showed 

the presence of two copies of squalene synthase, more than the average number of copies in 

fungi. This led to the identification of a gene cluster (clz) that is likely responsible for the 

biosynthesis of 1 (Figure 16) that was next to the second non-housekeeping copy of squalene 

synthase in the filamentous fungi.  This cluster is similar to the recently reported squalestatin S1 

cluster identified from Phoma sp. C2932 and unidentified fungus MF5453.158  Among the ~20 

genes in the cluster (Figure S1), there is a gene that encodes the squalene synthase (Clz20) as a 

potential resistance enzyme to 1 and two HRPKSs (Clz2) and (Clz14).  Clz2 is highly 

homologous to the previously identified squalestatin tetraketide synthase.160 Also present is the 

acyltransferase Clz6 that catalyzes transferring of the tetraketide product from Clz2 to the 

hydroxyl group in the tricarboxylic acid core.158  Therefore, we designated the clz cluster to be 

responsible for 1 in C. lunata. 

4.2.2 Elements of the clz Biosynthetic Gene Cluster 

We focused on identifying the enzymes that assemble the benzyl containing polyketide 

arm.  We reason that the uncharacterized HRPKS, Clz14, should be involved, but the structure of 

the potential polyketide product is unknown, especially with respect to the extent of reduction at  

the different Cβ-carbons. One anticipated feature of the product is the presence of the benzyl 

group, which is proposed to be a starter unit for the HRPKS.105  Although nonacetate starter 

units, such as propionate, have been observed in priming of fungal HRPKSs,161 a benzoate unit 

would represent the most significant departure from the canonical starter unit acetate.  The N-

terminus of Clz14 contains a ~90 residue segment before the KS domain that bears no secondary 

structure or signal peptide sequences, and is not found in many other fungal PKSs (Figure S2). 
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Two genes in the clz cluster, Clz10 and Clz12, encode phenylalanine ammonia lyase (PAL) and 

4-courmarate-CoA ligase, respectively.  These two enzymes may be involved in transforming  

 

Figure 16. Zaragozic Acid A cluster  

Organization of the zaragozic acid A (clz) gene cluster found in C. lunata. The magnified region 

contains genes that were hypothesized to be responsible for the biosynthesis of the benzoyl-

primed, tricarboxylic acid intermediate. 

 

phenylalanine into benzoyl-CoA, a strategy that is used in the biosynthesis of the enterocin 

natural products in Streptomyces.162 Also present in the gene cluster is a homolog of citrate 

synthase, Clz17, which may be involved in connecting the Cα carbons of the polyketide chain 

and citrate to afford the tricarboxylic acid unit. Homologs of this enzyme are found in gene 

clusters of nonadride-containing polyketides, and often function in tandem with an alkylcitrate 

dehydratase to form maleic anhydride.163-165  No dehydratase homolog is found in the clz cluster, 

consistent with the presence of the tricarboxylic acid moiety in 1.  Instead two potential 

hydrolytic enzymes, Clz11 and Clz13, which are α/β hydrolase and β-lactamase, respectively, are 

in close proximity to Clz14, and may participate in product release.   
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4.2.3 Heterologous expression of the clz cluster 

  To elucidate the function of Clz14, we used an episomally based heterologous system 

in A. nidulans A1145 that is capable of expressing up to 12 genes using 3 plasmids.166  We first 

introduced five genes (clz10, 11, 12, 14 and 17) and monitored total ion count (TIC) to detect  

 

Figure 17. Zaragozic Acid A cluster and Metabolic Traces 

Extracted ion chromatography of LC-MS traces from both C. lunata (13 days) and A. nidulans (3 

days) showing production of metabolites of interest.  All masses shown correspond to m/z [M-

H]-. i: Standard of 1; ii: production of 1 and 2 from C. lunata; iii-vi: production of 2 from 

different combinations of genes from C. lunata reconstituted in the A. nidulans A1145∆ST∆EM.  

iv: production of d5-labeled 2 upon feeding of d5-benzoic acid. 
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formation of new products.  Introduction of the clz genes into the engineered A. nidulans 

A1145∆ST∆EM strain led to the identification of a new mass peak (m/z [M-H]- 419) that was 

previously buried under the signals of sterigmatocystin and emericellamide B (Figure 14 and 

Figure S7).  Exclusion of clz14 abolished the production of this compound 2, confirming it is 

derived from the HRPKS.   

  Large-scale fermentation was performed to isolate a sufficient amount of 2 (titer of ~ 

0.1 mg/L) for NMR characterization and structural elucidation. 2 was found to have the 

molecular formula C23H32O7 based on positive HRESIMS data (Figure S5). A database search 

for ZA related compounds revealed that a previous characterized compound, L-731.120, was  

isolated from the ZAA producing strain MF5453 (ATCC 20986),167 which could potentially 

match 2. Detailed analysis of the 1D and 2D NMR data of 2, particularly the COSY and HMBC 

spectra, revealed the presence a monosubstituted phenyl ring and one trisubstituted double bond, 

which led to the full assignment of C-8 to C-19 fragment (Table S4 and Figure S13-17). Further 

analysis of the 1H NMR data of 2 revealed the methylene group C-2 is bonded to two quaternary 

carbons, which is supported by the splitting pattern of H-2 (doublet) and its large coupling 

constants resulting from self-correlation (J = 16 Hz). This evidence combined with HMBC  

correlations from H-2 to C-20 and from H-4 to C-3, C-20 and C-21 established the tricarboxylic 

acid substructure. This moiety was connected to the benzyl-containing fragment via three 

methylene groups, which accounted for the rest of the unassigned atoms in the molecular 

formula. Thus, the panel structure of 2 was assigned. EIC analysis of the metabolite extract from 

C. lunata also revealed the presence of 2 (Figure 17 ii) along with 1, further corroborating the 

relationship of 2 to the set of clz genes. 
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4.2.4 Investigation of benzoic acid starter unit priming 

  To investigate the priming pathways and incorporation of the benzoate starter unit by 

Clz14, we performed labeling studies using either d5-benzoic acid or d8-phenylalanine (Figure 17  
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Figure 18. Proposed biosynthesis of zaragozic acid A (1) 

Clz14 is the HRPKS involved in the first steps of the biosynthesis. The domains and steps of 

Clz14 are shown as white arrows. HRPKS domain abbreviations: KS: ketosynthase; AT: 

acyltransferase; DH: dehydratase; MT: methyltransferase; ER: enoylreductase; KR: 

ketoreductase; ACP: acyl carrier protein;  

 

iv and Figure S4).  In both cases, we observed the increase in molecular weight of 2 by 5 mu.  In 

the case of d8-phenylalanine feeding, retention of five deuterium labels is consistent with the 

proposed conversion to benzoic acid, during which PAL (Clz10) yields cinnamate, followed by 

esterification to yield cinnamoyl-CoA, which can undergo β-oxidation to yield benzoyl-CoA.168 

Incorporation of d5-benzoate into 2 suggests the presence of an endogenous aryl-CoA ligase that 
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can afford benzoyl-CoA (Figure 18).  When d5-benzoic acid was fed at a high concentration (1 

mg/mL), a significant amount (~30%) of 2 remained unlabeled, which represents the unlabeled 

benzoyl-CoA pool derived from phenylalanine.  This parallel pathway to benzoyl-CoA was also 

observed in the priming steps of enterocin in Streptomyces,169 and suggests Clz10 or Clz12 may 

not be absolutely required in A. nidulans.  Indeed, removing either Clz10 or Clz12 from the A. 

nidulans constructs retained production of 2, while removing both enzymes led to ~5 fold 

decrease in the titer of 2 (Figure 17).   To probe if 2 biosynthesized from the minimal construct 

(Clz11, Clz14 and Clz17) is derived from benzoate in A. nidulans, we repeated the feeding of d5-

benzoate into this host.   As shown in Figure S4, unlabeled 2 is nearly abolished, confirming that 

in the absence of Clz10 and Clz12, the level of benzoyl-CoA derived from phenylalanine is very 

low. These studies therefore indicate the importance of Clz10 and Clz12 in the priming pathways 

in the biosynthesis of 2. These two enzymes are particularly essential if the level of benzoate in 

the native host is low compared to that in A. nidulans.   

  To also further explore the substrate scope of the unique priming mechanism of this 

polyketide system, we decided to try feeding different isosteres of benzoate that might be able to  

be incorporated into the polyketide arm. Feeding of furoic acid, thiophene carboxylic acid, and 

fluorobenzoic acid into the strain containing Clz10, Clz11, Clz12, Clz14, and Clz17 led to the 

formation of new products 7, 8, and 9 in addition to 2 (Figure 19). These masses detected 

corresponded to the incorporation of these acid substrates respectively. The fluorobenzoic acid 

and thiophene carboxylic acid were readily incorporated into the polyketide chain, while the 

furoic acid integrated polyketide was produced at much lower yield. These products represent 

novel chemical analogs of 2 and indicate a flexible substrate scope of the polyketide priming. 
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Figure 19.  Generation of Chemical Analogs of 2 

Precursor directed biosynthesis was introduced into the heterologous expression system of the 

ZA intermediate 2.  

4.2.5 Polyketide product release   

  We also investigated the product releasing steps that lead to biosynthesis of 2.  The 

citrate synthase Clz17 is essential in the biosynthesis as removing the gene from A. nidulans 

abolished production (Figure S3).  We propose that following completion of the polyketide 

synthesis, which yields 4, Clz17 catalyzes the addition to oxaloacetate to yield 5.  This is 

consistent with the role of homologous enzymes in the nonadride biosynthetic pathways, 

including those of phomoidride,163 byssochlamic acid164 and rubratoxin.165  Whereas in these 

pathways, formation of the anhydride catalyzed by alkylcitrate dehydratase is the release 

mechanism, here 5 is directly hydrolyzed to yield 2.  We propose that the hydrolase Clz11 is 

responsible for this reaction and product turnover.  Clz11 shares sequence homology to other 

uncharacterized fungal hydrolase enzymes such as in Lepidopterella palustris (62% id) or 

Glarea lozoyensis (48% id), but only very weak identity to LovG from the lovastatin pathway.170  



56 

 

Removal of Clz11 from the A. nidulans construct that produced 2 led to ~99% reduction of the 

product level (Figure S3), indicating while spontaneous or nonspecific enzyme hydrolysis is 

present, Clz11 significantly accelerates product turnover.  Substituting Clz11 with the β-

lactamase homolog Clz13 also resulted in only background level of product formation (Figure 

S3). The timing of Clz11 activity is precise and only acts to release 2 from 5.  In the construct 

without the citrate synthase Clz17, we could not detect any trace of the free polyketide 3.   The 

combination of citrate synthase and hydrolase therefore represents a unique mode of product 

release from the HRPKS.   

4.3 Conclusions 

 

We had successfully used targeted genome mining to identify the clz cluster. Using 

heterologous expression, we have shown that only three genes, Clz14, Clz17 and Clz11 are 

required to synthesize 2, utilizing the benzoyl-CoA pool that is naturally present in A. nidulans. 

This represents an exceptionally concise pathway to a structurally complex, amphiphilic 

polyketide product. Benzoyl-priming of Clz14 is unprecedented among fungal PKS systems, and 

further biochemical characterization of the KS domain and the unique N-terminal region may 

reveal the molecular basis using the non-acetate starter unit. From 2, a series of hydroxylation 

reactions must take place to furnish the other features of the proposed intermediate 6, including 

the 2,8-dioxobicyclic[3.2.1]octane-3,4,5-tricarboxyclic acid core and the C-10/C-22 exo-

methylene.  In particular, hydroxylations at five sp3 carbons C-2, C-4, C-5, C-6, C-7 are 

proposed to take place, representing a remarkable cascade of C-H activation steps on vicinal 

carbon atoms.  These reactions may be iteratively catalyzed by two enzymes with homology to 

non-heme iron and α-ketoglutarate dependent oxygenases Clz15 and Clz16, which are also found 

in the homologous pathway from Phoma sp. C2932.158   The identification and reconstitution of 
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2 described here set the stage for delineating the order and enzymology of these enigmatic 

reactions.   

4.4 Materials and Methods 

Strains and culture conditions 

Curvularia lunata (Wakker) Boedijin var. lunata anamorph (MF5573) was purchased 

from ATCC® (74067™). Curvularia lunata was grown on Difco™ PDA (Potato Dextrose Agar) 

Plates from BD biosciences. To produce zaragozic acid A (1), C. lunata was inoculated into 20 

mL of KF seed medium for 2 days before transferring 2 mL of the seed culture into LSF1 media. 

Production of 1 was seen from days 11-15. Media and steps used in this procedure are outlined 

by Bills et al.171 Aspergillus nidulans A1145 was purchased from the Fungal Genetics Stock 

Center and used for heterologous expression of genes from C. lunata. Escherichia coli strain 

XL1 Blue was used for cloning. Saccharomyces cerevisiae strain BJ5464 was used for 

homologous recombination of DNA fragments to assemble the vectors used in heterologous 

expression.  

C. lunata and A. nidulans gDNA extraction, RNA extraction, and RTPCR  

The Zymo ZR Fungal /Bacterial DNA Microprep™ kit was used to extract gDNA from 

C. lunata. The Invitrogen Ribopure™ kit was used to extract RNA from A. nidulans. 

Superscript® III Reverse Transcriptase Kit from Life Technologies was used to synthesize 

cDNA from the RNA extracted from A. nidulans. 

Genome sequencing, assembly and biosynthetic gene cluster prediction 

The C. lunata genomic DNA was sequenced with three other fungal strains multiplexed 

on a single lane of Illumina HiSeq 2000 with the standard 2 x 100 bp paired end run mode at the 

Biomolecular Resource Facility (BRF) at The Australian National University. The resulting 
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FASTQ reads were first processed with Trimmomatic172 to trim off the adaptor sequences and 

assembled using SPAdes.173 Scaffolds containing PKS genes were first retrieved by performing a 

TBLASTN on the C. lunata genomic scaffolds with an arbitrary conserved fungal KS domain as 

query sequence. Gene predictions were performed on these PKS gene-containing scaffolds using 

AUGUSTUS174 using the Aspergillus nidulans species parameters. Simultaneously, the scaffolds 

were submitted for secondary metabolite biosynthetic gene clusters prediction using 

AntiSMASH 3.0.175 Among the predicted biosynthetic gene clusters, a gene cluster with two 

HRPKS genes were identified, in which one of the HRPKS gene exhibits high homology to the 

SQTKS from Phoma sp.160 The gene cluster also contains a citrate synthase, which corresponds 

to presence of tricarboxylic acid unit in 1 and hence was assigned as the putative zaragozic acid 

gene cluster (named clz cluster). The clz gene cluster was later shown to be similar to the 

squalestatin S1 cluster identified from Phoma sp. C2932 and the unidentified fungus MF5453.158    

Plasmid construction for heterologous expression 

Plasmids pYTU, pYTP, pYTR were used as vectors to insert genes which contain 

auxotrophic markers for uracil (pyrG), pyridoxine (pyroA), and riboflavin (riboB), 

respectively.176 Genes to be expressed were amplified through Polymerase Chain Reaction 

(PCR) using the gDNA of C. lunata as a template. The PCR products and the corresponding 

backbone digested with PacI and SwaI were assembled with the Frozen-EZ Yeast 

Transformation II Kit™ (Zymo Research) by using yeast homologous recombination with 

BJ5464-NpgA, which contains a copy of A. nidulans phosphopantheteinyl transferase gene npgA 

integrated in the chromosome.131 

Genetic transformation and heterologous production in A. nidulans 
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Protoplasts were generated by scraping spores from a solid CD Medium (10 g/L glucose, 

50 mL/L 20x Nitrate Salts, 1mL/L Trace elements, 20% agar) Plate. The spores were transferred 

to 25 mL of liquid CD minimal medium and incubated for 12-13 hours at 37°C at 250 rpm. After 

incubation, the germlings were collected and washed with 10 mL of Osmotic Medium (1.2M 

MgSO4, 10 mM NaPO4) twice. The germlings were then transferred into 10 mL of Osmotic 

Medium containing 30 mg of Lysing Enzyme from Trichoderma and 20 mg of Yatalase. The 

culture was incubated for 12 hours at 28°C at 80 rpm. The cells were poured into a 30 mL Corex 

tube and overlayed with 10 mL of Trapping Buffer (0.6 M Sorbitol, 0.1 M Tric-HCl). The tube 

was centrifuged at 5000 RPM. The protoplasts were then removed from the interface of the two 

buffers and transferred to sterile tubes. 2x volume of STC Buffer (1.2 M Sorbitol, 10 mM CaCl2, 

10 mM Tric-HCl) was added to the protoplasts. DNA and 60% PEG4000 solution were added to 

the protoplast solution and incubated at room temperature for 20 min. The cells were then plated 

onto solid CD-Sorbitol Medium (10 g/L glucose, 50 mL/L 20x Nitrate Salts, 1mL/L Trace 

elements, 20% agar, 1.2 M Sorbitol). After transformants appeared on the plates, the spores were 

restreaked onto solid CD-ST production medium at 28°C for 4 days (20g/L Starch, 20g/L 

Peptone, 50mL/L Nitrate Salts, 1mL/L Trace elements). For isotope feeding studies, 1 mg/mL of 

deuterium labeled benzoic acid and phenylalanine were added to the solid CD-ST before 

streaking cells. Deuterium labeled precursors used for feeding were purchased from Cambridge 

Isotope Laboratories.  

Sample analysis of A. nidulans transformants 

A. nidulans transformants were grown on CD-ST for 2-4 days at 28̊C for small scale 

analysis. Samples were extracted using 1 mL of acetone. After centrifugation, the supernatant 

was then dried and resuspended into equal volume methanol before injection for LC-MS 



60 

 

analyses. LC–MS analyses were performed on a Shimadzu 2020 EV LC–MS (Kinetex 1.7 m 

C18 100 Å, LC Column 100 × 2.1 mm) using positive-and negative-mode electrospray 

ionization with a linear gradient of 5–95% acetonitrile MeCN/H2O with 0.5% formic acid in 15 

min followed by 95% MeCN for 3 min with a flow rate of 0.3 mL/min. Standard of 1 purchased 

from Cayman Chemicals was used for comparison.  

Compound isolation and structure elucidation 

16 L of CD-ST medium were poured on solid plates. Spores from solid CD media plates 

were restreaked onto the production medium and grown in 28°C for 3 days. Samples were 

extracted using acetone. The acetone was evaporated, leaving an aqueous solution of extracted 

metabolites. The pH of the aqueous solution was adjusted to ~pH 10 then washed with ethyl 

acetate. The aqueous solution was then adjusted to ~pH 3 and extracted with ethyl acetate. This 

organic layer was dried in vacuo and resuspended in methanol, and fractionated using Sephadex 

LH-20 size exclusion column, a CombiFlash® System, and semi-prep reverse phase HPLC 

sequentially. The CombiFlash® System used a 100 g HP CL18 reverse phase column with a 

linear gradient of 5–95% acetonitrile MeCN/H2O with 0.1% formic acid in 60 min at 60 min/mL. 

HPLC fractionation used a semi-preparative C18 column of Kinetics New column, 5m, 10 × 250 

mm with an isocratic method of 45%/55% acetonitrile/water with 0.1% formic acid for 45 min at 

4 mL/min.The collected fractions were analyzed using LC-MS with a linear gradient of 5–95% 

acetonitrile MeCN/H2O with 0.5% formic acid in 15 min and desired fractions were pooled. For 

elucidation of chemical structures, 1D and 2D NMR spectra were obtained on Bruker AV500 

spectrometer at the UCLA Molecular Instrumentation Center. High resolution mass spectra were 

obtained from Thermo Fisher Scientific Exactive Plus with IonSense ID-CUBE DART source at 

the UCLA Molecular Instrumentation Center. 



61 

 

5. Targeted Genome Mining for the Discovery of Natural Product Cyp51 

Inhibitors 

We had successfully identified and characterized the Zaragozic Acid A biosynthetic gene 

cluster by using squalene synthase as our search through the genome of a known producer of the 

cholesterol lowering natural product. However, we wished to find novel sterol pathway 

inhibiting fungal natural products. Using the TGIF algorithm, we evaluated enzymes found in the 

sterol biosynthetic pathway as targets to search for possible clusters making sterol pathway 

drugs. One target that gave several cluster hits was lanosterol 14-α demethylase p450 (Cyp51). 

Among these, we heterologously expressed a cluster from Scaffold15 of Aspergillus nomius, 

leading to the production of analogs of restricticin, a natural product inhibitor of Cyp51. Here we 

identified the BGC of an inhibitor of Cyp51 and showed several biosynthetic steps of the 

molecule, evaluated the self-resistant copy of Cyp51 in the cluster, and found other clusters with 

potentially novel Cyp51 inhibitors.  

5.1 Introduction to Antifungal drugs and Lanosterol α-14 demethylase Cyp51  

 Fungal infections are worldwide issue that plague over a billion people, leading to up to 

1.5 million deaths annually.177 The diversity of fungal species is estimated to be around 1.5 

million different types, many of which are opportunistic plant and human pathogens that cause 

damage in agricultural and clinical settings. The most common fungal human pathogens include 

Candida albicans, Aspergillus fumigatus, Aspergillus flavus, and Cryptococcus neoforms that 

have exacerbated effects on immunocompromised patients.178 The clinical armamentarium 

available to combat mycoses include a broad variety of pharmaceuticals with different modes of 

action, including the common classes of antifungals: 1) Polyenes, 2) Azoles, 3) Allylamines, 4) 

Echinocandins, 5) Griseofulvin, 6) Flucytosine, etc.74, 179 Despite these drugs, the rise of 
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antifungal resistance remains a challenge that requires the search for novel antifungals with new 

modes of action. 

Many of the classical antifungals (polyenes, azoles, and terbinafines) are specifically 

aimed at disruption of the cell membrane integrity of the fungi through disuprtion of ergosterol 

biosynthesis. Cyp51 (erg11) is a key enzyme in the sterol pathway, performing the C14 

demethylation of important sterol intermediates through a multistep oxidative reaction. Cyp51 

belongs to the cytochrome p450 superfamily, which is represented by heme-dependent, 

membrane bound monooxygenses whose functions sweep through both primary and secondary 

metabolism. Though there is significant variation in the p450s among different organisms, 

Cyp51 is believed to be the ancestor to all p450s, as it is the only one found through all 

biological kingdoms.180 The structural features of Cyp51 are highly conserved, which include six 

regions that are used as substrate recognition sites (SRS). Among these regions is SRS1, which 

forms the upper surface of the binding cavity; conservation of these residues contributes greatly 

to the rigid substrate specificity of the p450 enzyme.92 The conservation of the structural features 

of Cyp51 also allow for a narrow specificity of only four known substrates: lanosterol, 24,25-

dihydrolanosterol, 24-methylenedihydrolanosterol, and obtusifoliol throughout all biological 

kingdoms.181 The ubiquity of this enzyme makes it an important checkpoint, since evolutionary 

divergence of the sterol pathway occurs in the steps following 14-α demethylation.  

Inhibitors of Cyp51 represent an ongoing effort to find cholesterol lowering, herbicidal, 

and antifungal agents. Currently the development of Cyp51 inhibitors with antifungal activity 

has been the most successful and prevalent, mostly represented by the azole drugs. As discussed 

previously, these azole drugs consist of imidazole and triazole moiety containing molecules that 

are potent inhibitors of Cyp51. These azoles have high efficacy against a broad range of fungal  
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Figure 20. Cy51 Inhibition by Azole drugs 

Azole drugs work by inhibiting the heme-iron complex of Cyp51 through binding of the axial 

substrate position through the nitrogen found in the B. triazole group or C. the imidazole group. 

This position is usually binded by A. molecular oxygen which is incorporated into the substrate 

through oxidation. 

 

pathogens. The nitrogen of the azole groups on the drugs serve as the warhead of the molecules 

for inhibiting the enzyme through coordination to the heme iron complex of the p450 enzyme at 

axial ligand position where oxygen usually binds. (Figure 20) The anchor of the azole molecules 

then interacts with the binding pocket of the enzyme through Van der Waals, hydrophobic, and 

aromatic stacking.182  

As with many antibiotics, fungal azole resistance has been an issue that has emerged with 

many of the virulent fungi pathogens and is an active area of study. In eukaryotes, organisms 

usually maintain one copy of Cyp51. In fungi, however the distribution of Cyp51 is varied 

between phylogeny groups. This was first noticed in 2001 that Aspergillus fumigatus, an azole 

resistant human pathogen strain, had two homologs of Cyp51, Cyp51A and Cyp51B, hinting at a 

possible means of resistance through the duplicate copies.183 Further phylogenetic analysis of 

these protein sequences showed the same dual copy Cyp51 in filamentous fungi such as 

Aspergillus, Magnaporthe, Penicillium, Pyrenphora, Trichoderma, and Fusarium.184 Though 

Cyp51A and Cyp51B claded differently, both were found to be replaceable, as only one copy of 
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either Cyp51A or Cyp51B was needed to maintain ergosterol biosynthesis activity. In some 

strains, another homolog of Cyp51, Cyp51C, has been found in some fungi, such as in 

Aspergillus flavus.185 Genetic analysis of azole resistance strains has been an ongoing effort to 

elucidate the gain of function mutations that allow for resistance in Candida albicans, 

Aspergillus fumigatus, Histoplasma capsulatum, etc. The mutations found usually affect the 

azole efficacy through disruption of amino acids that interact with the docked azole ligand in the 

binding pocket, structural rearrangement of the residues anchoring the heme binding, or 

alterations in the substrate entrance cavity.185-188 

5.2 Results and Discussion 

5.2.1 Targeted Genome Mining of Cyp51 with TGIF 

 We aimed to identify natural products that would have capabilities to inhibit the sterol 

pathway in hopes of discovering novel anti-cholesterol or antifungal agents. To do this, we 

decided to evaluate popular drug targets of the sterol pathway that have been used for the 

development of small molecule pharmaceuticals. As introduced in the previous section, Cyp51 is 

an important drug target that has been capitalized on to develop the azole drugs whose 

fungistatic capabilities derive from their ability to inhibit the biosynthesis of ergosterol. We used 

a database of 80 fungal genomes of strains from our laboratory that we would be able to quickly 

evaluate and study once gene clusters of interest were identified. As mentioned previously, a 

couple of Cyp51 homologs, Cyp51A and Cyp51B are commonly found among fungal species. 

This was confirmed when running the TGIF analysis on our fungal database, which showed that 

the average number of Cyp51 copies across our fungal database was 1.912 hits per genome, 

while the median number of Cyp51 copies was 2. To find possible cluster candidates, we 
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identified genomes that contained >2 copies of Cyp51. In addition, the genomes must contain 

 

Figure 21. TGIF results for CYP51 Targeted Mining 

Clusters identified through using the TGIF algorithm for targeted genome mining of Cyp51. The 

clusters in A. nomius, C. lunata, and A. montagnei are homologous. Core enzymes are 

highlighted in red while the Cyp51 target is highlighted in turquoise. 

 

Clusters that colocalize core secondary metabolite enzymes with a copy of Cyp51. The 

colocalized distance was defined to be 20,000 nucleotide bp allowed between the target enzyme 

and a core enzyme. 

With these parameters we were able to identify five cluster candidates (Figure 21), two of 

which were from Aspergillus nomius and Curvularia lunata that were homologous clusters. The 

Cyp51 of A. nomius and C. lunata had an identity of 68% and 60%, respectively, to the Cyp51A 

housekeeping gene of A. nidulans. This range of homology gave us confidence that the Cyp51 

genes found in these clusters were close enough to housekeeping Cyp51 that they were not other 
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members of the P450 superfamily (members of the same p450 subfamily have >40% identity), 

yet mutated enough that it could be a self-resistance enzyme. The conservation of the two 

clusters among A. nomius and C. lunata also gave us confidence that these were secondary 

metabolite gene clusters and we thus decided to pursue the study of these two as possible 

biosynthetic gene clusters of a Cyp51 inhibitor natural product.  

5.2.2 Genetic analysis of the Aspergillus nomius Biosynthetic Gene Cluster 

 Bioinformatic analysis and a search through the public fungal genome databases revealed 

other homologous gene clusters found in Epicoccum nigrum, Aspergillus bertholletius, and 

Aspergillus pseudonomius. (Figure S8). By comparing the genes conserved through the three 

genomes, we were able to draw the gene boundaries of the cluster based on the genes conserved 

through all of the different species. There are 6-8 genes total in the cluster, including two core 

enzymes, a HRPKS (rstn3) and a single modular NRPS (rstn8). In A. nomius and A. 

pseudonomius, the NRPS follows a A-T-C domain organization sequence. Whereas in the other  

strains the NRPS contains additional terminal domains; in A.bertholletius the NRPS follows a A-

T-C-TE organization and in E. nigrum and C. lunata the NRPS follows a A-T-C-R domain 

organization. The changes in how these domains are constructed can lead to differences in the 

biosynthetic mechanisms of these steps.  

 In addition to the core enzymes, there are several other biosynthetic enzymes conserved 

including a flavin dependent monooxygenase (rstn5), methyltransferase (rstn1), and reductase 

enzymes that are not present in E. nigrum and C. lunata (rstn4 and rstn7). There is also a 

hypothetical protein (rstn6) which has function that could not be predicted using primary or 

secondary sequence alignment. Finally there is the proposed resistance enzyme, the Cyp51 p450 
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monoxygenase (rstn2). With the combination of an HRPKS and NRPS core enzymes both in the 

cluster, we hypothesized that a lipopetide like product could be produced by this cluster.  

 

5.2.3 Heterologous expression of the entire rstn cluster 

 The genes from A. nomius and C. lunata discussed above were thus reconstituted in the 

A. nidulans A1145∆EM heterologous expression host to determine the products of these clusters. 

Efforts to produce the compound using the C. lunata cluster genes provided a new product upon 

the expression of the HRPKS. However, when more genes were added, the formation of new 

product intermediates was not observed. The polyketide product was isolated, but too unstable to 

get structural data from.  

 Heterologous expression of the cluster from A. nomius in A. nidulans A1145∆EM on the 

other hand produced new hydrophobic compounds in CD minimal media. These two peaks 

corresponded to molecules with molecular weights of 705 and 719 (Figure 21 iii). The detection 

of these molecular weights was surprising at first, as the relatively small cluster in A. nomius did 

not seem capable of producing such large molecules. Nevertheless, large scale isolation was 

performed to accumulate the compounds and through NMR analysis the new peaks were solved 

to be corresponding to 20, 21 (MW: 705) and 19 (MW: 719). These structures were novel 

compounds that contained elements of the three major types of secondary metabolites: 

polyketide, non-ribosomal peptide, and terpenes, an unprecedented combination of these core 

enzymes. 19-21 all contained a tetrahydropyran ring extended by a methylated triene C9 tail on 

the C5’ position, likely to be the polyketide product introduced by the A. nomius cluster. The 

C3’, C4’ diol on the tetrahydropyran are modified through O-methylation and glycyl 

esterification, respectively. The glycine bridges the polyketide product to a prenylated 

isoindolinone product. Compounds 19-21 differ in methylation of the C3’ hydroxyl and C7 
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hydroxyl. A search of this molecule through the chemical database revealed that the structure 

consisted of two known natural products: aspernidine and restricticin (Ro-1470). To verify that  

 

Figure 22. Heterologous expression of the entire rstn cluster in A. nidulans 

Heterologous expression of rstn1-rstn8 produced different compound depending on the 

production media used. (i)(ii) Negative controls with empty vectors transformed into A. nidulans, 

grown on CD and CDST production media (iii) In minimal media CD, the large hybrid 

molecules 19, 20, and 21 were produced. (iv) In CDST, restricticin (15), and intermediates and 

derivatives of restricticin were produced (14 and 16). 

 

the bridge was indeed derived from glycine, we fed d2-glycine into the rstn1-8 producing strain 

nd found an increase of the masses of 19-21 by 2 mu, indicating the incorporation of the labeled 

glycine into the structure. This confirmed that glycine was indeed the amino acid connection 

between the tetrahydropyran polyketide and the prenylated isoindolinone (Figure S10). 
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 Aspernidine is a secondary metabolite discovered from A. nidulans through generation of 

an extract library through a variety of culture conditions. The compound is not found at normal  

 

Figure 23. Aspernidine related secondary metabolites isolated from A. nidulans 

 

culturing conditions and was screened for only when the media was supplemented with uridine 

and aminobenzoate.189 The biosynthetic gene cluster was first elucidated through screening of a 

genome-wide kinase knockout library that was generated in hopes of activating cryptic gene 

clusters. A ΔmpkA strain was discovered to produce the aspernidine A and B (Figure 23), and 

thus served as model strains for the study of the BGC that produced the molecule. The mpkA 

gene encodes mitogen-activated protein kinase which is vital for cell wall integrity signaling and 

germination. The isoindolinone core was proposed to start from an orsellinic acid aldehyde, 

generated from a NRPKS. Nitrogen from ammonia could be then captured by the aldehyde and 

closure of the ring through oxidoreduction and condensation. KO studies confirmed that pkfA, a 

NRPKS, is responsible for the biosynthesis of aspernidine and pkfE from the same cluster, is a 

prenyltransferase that connects a farnesyl group to the benzylic hydroxyl.190 Other isoindole 

containing products have been isolated from other A. nidulans strains which contain different 
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amino acid substitutions at the nitrogen of the pyrroline ring.191, 192 These related compounds also 

indicate the possibility of incorporating different amino acid into the isoindole ring.  

 The second half of 19-21 corresponds to the natural product restricticin. Restricticin (Ro 

09-1470) is a tetrahydropyran containing polyketide product that was first discovered in 1991 by 

two separate research groups.193-195 Restricticin and its related compound,  

 

Figure 24. Isolated restricticin and related natural products 

 

lanomycin, are the only natural product inhibitors of Cyp51 that have been discovered so far 

(Figure 24). As the aspernidine molecule is a natural metabolite from the A. nidulans 

heterologous host, we concluded the restricticin portion of 19-21 should be derived from the 

gene cluster from A. nomius that we introduced. Analysis of the same strain in rich CDST 

production media resulted in the increased production of two new peaks with molecular weights 

of 337 and 379, corresponding to possible structures of 15 and 18, respectively (Figure 22 iv). 

We performed large scale isolation of these molecules and found 18 to be indeed corresponding 

to the N-acetylated restricticin. However, the yield of 15 was low and subsequently was lost 

throughout the purification process. This was corroborated by the literature in which the authors 

indicated the instability of restricticin due to the labile ester bond and the tendency of the triene 
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to decompose.194 Compounds 18-21 can be found in both CD and CDST media, although the 

yields of both changed depending on the media type. Confirmation of the production of these 

compounds led us to designate the gene cluster as the rstn cluster that produces restricticin. 

 Restricticin was isolated from Penicillium restrictum and other Penicillium spp193, 196 and 

had potent antifungal activity against a broad range of fungi including Candida glabrata, 

Cryptococcuse neoformans, Rhodotorula rubra, Trichosporon cutaneum, etc. The antifungal 

spectrum of restricticin was found to be close to that of ketoconazole (KCZ), though the potency 

of restricticin was about 2x less than KCZ based on the MIC tested for the fungal panel. 

Evaluation of Candida albicans 652 treated with restricticin showed marked decreases in sterol 

content from the metabolic profile, similar to the effects of KCZ.194, 197 These studies suggested 

that restricticin could have a similar mode of action to KCZ in the inhibition of ergosterol 

biosynthesis. Based on these studies, Aoki et al. investigated the specific mode of action studies 

with restricticin, using purified microsome fractions containing Cyp51 from Saccharomyces 

cerevisiae and from rat liver. Restricticin effectively bound to the heme of the S. cerevisiae 

Cyp51 at a 1:1 ration based on the spectral change measurements, indicating specific inhibition 

of lanosterol 14-α demethylase. However the IC50 values for inhibition of the rat liver p450 were 

300X than the S. cerevisiae p450, implying a much better specificity for antifungal activity.198 

Structure activity relationship studies also showed that restricinol had no antifungal or Cyp51 

inhibitory activity while N-acetyl restricticin had much weaker inhibitory activity. This strongly 

suggests the importance of the free glycyl ester of restricticin for bioactivity. The nitrogen of the 

glycine likely coordinates to the heme of Cyp51 in similar fashion to the imidazole and triazole 

groups of the azole drugs.  
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Due to its attractive bioactivity, various total syntheses studies were also performed to 

restricticin,199-201 however the biosynthetic route to restricticin was never elucidated. Therefore, 

the identification of 19-21 and 18 confirms that we have successfully utilized targeted genome 

mining with TGIF to locate the BGC of a Cyp51 inhibitor fungal natural product. As A. nomius 

is not a known producer of restricticin and growth of A. nomius under various conditions did not 

yield production of restricticin, we have also successfully activated a silent gene cluster by 

introducing it into our A. nidulans heterologous host. 

5.2.4 Identification of intermediates of the rstn cluster  

 After successfully identifying the rstn cluster, we wished to further elucidate the 

biosynthetic steps that lead up to the formation of restricticin. Different combinations of genes 

were tested to evaluate the steps leading up to the formation of 13. We hypothesized that the 

pathway should start with the formation of the polyketide product using the HRPKS rstn3 and 

may require the reductase enzymes rstn4 and rstn7 for release off the polyketide synthase. We 

first tested combinations of these genes to see if any new metabolite could be formed. Even with 

the introduction of rstn3 we begin to see the emergence of new peaks containing high UV signals 

(over 300 λ). These peaks also contained characteristic UV profiles that were consistent with 

conjugated polyene products that would indicate possible linear polyketide precursors for  

restricticin (Figure 25), including 10 (MW: 246). Attempts to isolate 10, however, were 

unsuccessful as the compound was unstable and degraded during the purification process.  

Only with the addition of the FMO rstn5 and hypothetical protein rstn6, did we see the 

production of a new set of peaks, corresponding to 13 and 16 (Figure 26 ii). Both rstn5 and rstn6 

are both required for the formation of 13 and 16, as leaving either gene out did not produce these 

peaks (Figure S9). Large scale fermentation was done to isolate sufficient amounts of these 
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compounds to verify the structures of these molecules using NMR. We found 13 (MW: 266) and 

16 (MW: 282) to be corresponding to the diol contacting tetrahydropyran products that  

 

Figure 25. Heterologous expression of early steps of the restricticin pathway 

Early steps of the rstn pathway expressed in both A. nidulans and S. cerevisiae. 10 is proposed to 

be the true intermediate of the pathway that is produced with the combination of rstn3 + rstn7 

and has a MW of 246. The other peaks are believed to be shunt products of the pathway.  

 

 

make up the core of restricticin. 16 is the terminal C14 hydroxylated product of 13, likely a result 

of endogenous enzymes from A. nidulans, as versions of this molecule have never been isolated 

from restricticin producing hosts. Addition of the methyltransferase rstn1 resulted in the 

production of 14 (MW: 280) and 17 (MW: 296) (Figure 26 iii). The strains producing these 
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molecules were also fermented at large scale and isolated for NMR characterization, verifying 

these products as restrictinol 14, and the terminal C14 hydroxylated restrictinol 17.  

The isolations of these compounds allow us to propose a biosynthetic route that the rstn 

gene cluster takes to synthesize restricticin and its derivatives found in the A. nidulans 

heterologous host (Figure 27). We propose the biosynthesis begins with the HRPKS rstn3 which 

works in tandem with rstn7 to form the heptaketide linear product 10. 10 can then be further 

modified with rstn4 to get 11 by reducing the C3 ketone to a hydroxyl and the terminal C1 

aldehyde to an alcohol. The FMO rstn5 and rstn6 work together to facilitate the epoxidation 

across the C4, C5 double bond which sets up for the intramolecular cyclization through opening  

of the epoxide ring with the terminal hydroxyl to generate the tetrahydropyran ring with a C3, C4 

diol. The C3 hydroxyl is then further modified through O-methylation using rstn1. The C4 

hydroxyl is functionalized using the NRPS rstn8 which attaches a glycine through esterification 

of the amino acid to the hydroxyl group to finish restricticin. Restricticin is then further 

metabolized by the heterologous host to be either acetylated on the free amine of the glycyl ester 

to form 18 or combined with the aspernidine pathway to capture the amine of the glycyl ester in 

the isoindolone ring to form 19-21. It is likely the restricticin derivatives are an effort by the A. 

nidulans host to detoxify the antifungal agent through protecting the free amine that serves as the 

warhead of restricticin in interacting with the heme group of the target enzyme Cy51.  
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Figure 26. Heterologous expression of early steps of the restricticin pathway 

Late stages of the rstn biosynthetic pathway were done in A. nidulans. Only with the addition of 

rstn5 and rstn6 were able to form a cyclized product, 13. 13 is then methylated at the C3 

hydroxyl followed by esterification with glycine to 14. Metabolized products with a terminal 

hydroxyl group were also identified in the culture medium from the heterologous expression. 

 

5.2.5 In vitro verification of final steps of the pathway 

 To confirm that the intermediates that we isolated, 13, 14, and 17 were true intermediates 

of the pathway, we decided to study the enzymes, rstn1 and rstn8 further. To perform these in 

vitro studies, we heterologously expressed the two genes in Escherichia coli, specifically a BL21 
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strain that contains the npgA gene from A. niger that allows for the 4'-Phosphopantetheine 

prosthetic group to the T domain of the NRPS (rstn8). The proteins were then expressed at large 

scale culture and purified for testing. We first evaluated the methyltransferase rstn1 by 

performing the in vitro reaction with 13 and S-adenosylmethionine, the cofactor for methyl 

transfer enzymatic reactions. Immediate conversion was seen of the substrate 13 to 14 (Figure 26 

vi).  Next, we tested the NRPS rstn8. By reacting rstn8 with 14 and glycine, we were able to 

convert 14 to a product with the same retention time and mass as 15, restricticin (Figure 26 vii). 

To further confirm that 15 was the product of the rstn8 reaction, we added acetic anhydride to 

the reaction mixture to functionalize the amine group of 15 to yield 18. Indeed, the addition of 

acetic anhydride was successful in acetylation of 15 to form 18 (Figure S12).  

KS AT DH MT ER KR ACP

ER

 

Figure 27. Proposed Biosynthetic Mechanism of restricticin 

Rstn3, rstn4, and rstn7 are believed to start the biosynthesis by synthesizing the linear polyketide 

aldehyde product. The FMO, rstn5, can then generate the epoxide across the C4-C5 double bond. 

This is led by the C1 hydroxyl attack to open the epoxide the to form the tetrahydropyran 

cyclized product and the C3,C4 diol with opposite stereochemistry. The diol is then 
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functionalized by first methylation of the C3 hydroxyl with rstn1 followed by attachment of a 

glycine through an ester bond with rstn8 to form restricticin. Restricticin is further metabolized 

by the A. nidulans host to detoxify the compound through protection of the free amine in the 

forms of 18 and 19-21. 

 

The rstn8 reaction thus represents a rare case of esterification performed by a NRPS in contrast 

to the more common amide bond condensation reactions done by canonical NRPS enzymes.  

 We further decided to test the substrate scope of rstn8 by testing different amino acid 

substrates as well as different polyketide substrates. For the amino acids, we tried glycine, beta-

amine alanine, aminovaleric acid, valine, leucine, lysine, alanine, and methylated versions of 

glycine with the natural substrate 14. For the polyketide substrates we tried compounds 13, 14, 

and 17 with the natural amino acid substrate glycine. The NRPS was not able to take any amino 

acid substrate other than glycine, showing a very specific substrate preference (Figure S11). The 

NRPS was able to take the terminal hydroxylated product 17 and convert it to 25. This shows 

that the polyketide backbone substrate scope may be more flexible than that of the amino acids. 

In contrast, rstn8 was not able to esterify glycine to 13, showing the rigid timing and requirement 

of the C3 methyl before attachment of the glycyl ester. 

5.2.6 Evaluation of the self-resistant Cyp51, rstn2 

 We also wished to evaluate the proposed resistance Cyp51 gene, rstn2. In A. nomius, 

there are an above average number of Cyp51 copies at three. Phylogenetic analysis of these 

copies of Cyp51 shows that each copy from A. nomius clade into the different fungal Cyp51 

variants (Figure 28.  The scaffold292 copy of Cyp51 is closest to Cyp51A and the scaffold 229 

copy of Cyp51A. The cluster copy of Cyp51, rstn2, on the other hand, is the more distant relative, 

closest in homology to the rare Cyp51C copy found in some strains, such as A. flavus. A 

sequence alignment shows that rstn2 contains a N360 residue that is usually the location of a 

conserved histidine. The location of this residue is in the SRS5 section202, near one of the 
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substrate binding site in the catalytic pocket. The drastic change from the positively charged 

histidine at this position to the polar asparagine residue may be clue to an ability of rstn2 to be 

invulnerable to Cyp51 inhibitors. To investigate the antifungal resistance of rstn2, we built 

plasmids that contained the rstn2 and the native housekeeping copy of Cyp51 from yeast into 

pxp318, a low copy yeast vector (CEN/ARS), as overexpression of normal Cyp51 genes have 

been shown to induce fungicidal resistance.203, 204 The genes were all under the expression of the 

constitutive TEF1 promoter. We obtained a heterozygous knockout strain of Cyp51 of the yeast 

 

Figure 28. Phylogenetic tree of Cyp51 from different species 

Cyp51 of different organisms in different kingdoms is shown. In fungi, there are usually two 

copies of Cyp51 in the forms of Cyp51A and Cyp51B. Some fungi contain a third Cyp51C copy, 

such as A. nomius 

 

strain BY4743∆YHR007C from the Stanford Genome Technology Center. These strains were 

supplemented with the plasmids and the growth curves of these strains of yeast were tested with 

different antifungal compounds, amphotericin B (amphB) and Fluconazole (FCZ) over 48 hours. 

AmphB and FCZ are known antifungal drugs with different modes of action. AmphB 

works by binding ergosterol while FCZ is a known inhibitor of Cyp51. The effects of both were  
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Figure 29. Sequence Alignment of various Cyp51 

Cyp51 of different organisms in different kingdoms is shown. In A. nomius, the rstn2 copy 

contains an Asparagine at N360 position, where this is usually a conserved histidine in other 

species. 
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prevalent as growth inhibition was seen in the strains containing only the empty vector pxp318. 

However, the treatment of FCZ had varying effects on the different strains of yeast. Yeast 

harboring rstn2 showed recovery in growth around 20 hours while yeast harboring an additional 

 

Figure 30. Effects of antifungal compounds on yeast strains 

Yeast Cyp51 (yCyp51), rstn2, and pxp318 (empty vector) were transformed into yeast and tested 

for growth inhibition under various compounds. Amphotericin B (A), Fluconazole (B), 18 (D), 

and the negative control (no compound added) (C) were used to test growth inhibition. 

copy of the native yCyp51 on the plasmid showed little signs of recovery past 35 hours of 

growth. These results show the ability of rstn2 to have resistant properties against inhibitors of 

Cyp51. On the other hand, AmphB as a positive control caused all the yeast strains to not grow. 

Compound 18 was tested as well, but as was seen in previous studies, any antifungal effects are 
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very limited if any at all.197 This supports the hypothesis that 18 is a metabolized form of the 

natural product as a way for the A. nidulans host to detoxify the antifungal restricticin. 

 

5.2.7 A novel Cyp51 inhibiting gene cluster found in Apiospora montagnei 

 The TGIF results for Cyp51 targeted cluster searches also revealed another cluster found 

in Apiospora montagnei that was similar to the rstn cluster in A. nomius. We designated this new 

cluster the Apm cluster (Figure 31A). This cluster has very similar features to the one in A. 

nomius, including a single module NRPS, two reductive enzymes, an FMO, a Cyp51 gene, and  

 

Figure 31. The Apiospora montagnei Apm cluster 

TGIF showed the another similar cluster to the rstn cluster that contained a Cyp51 gene. A. 

Comparison of the Apm17 and rstn clusters. Similar genes are coded in the same color. Unique 

genes in Apm17 are coded in magenta. B. Introduction of all the proposed genes in the cluster 

into A.nidulans shows an increase in many metabolites. C. Proposed compounds for some of the 

compounds found based on the m/z values detected.  
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a HRPKS. However, this cluster is different in that it has multiple additional genes including a 

second FMO, a second HRPKS, an acetyltransferase, and homocitrate synthase. The Apm cluster 

also lacks the O-methyltransferase (rstn1) and the two HRPKS enzymes lack methyltransferase 

domains. This implies that the polyketide product made by these enzymes may form a backbone 

scaffold similar to that of chaunopyrone A (Figure 24) that has been isolated from fungal 

cultures.  

 Introduction of the proposed genes in this cluster into A. nidulans yielded a great deal of 

new metabolites (Figure 31B). These metabolites show a UV profile with a λmax = 275, much like 

the UV profiles of the restricticin related compounds. Based on the proposed genes in the cluster, 

there were possible intermediates that we believed could be found. Some of these masses could 

be identified by their m/z values in the metabolic profile: A1, A2, and B (Figure 31C). As there is 

no O-methylation protection of the hydroxyl group, it is possible that the NRPS (Apm3) is 

capable of forming the glycyl ester at both hydroxyl positions to form A1 and A2. B would be the 

expected A. nidulans metabolized N-acetylated compounds found. Since the O-methyltransferase  

does not protect the hydroxyl group in this cluster, the additional acetyltransferase Apm9 may 

deliver a linear polyketide chain made by Apm1 to furnish a final product similar to what is 

shown in Figure 31C. If the new metabolites are similar to the structure proposed, these would 

represent novel Cyp51 inhibitor natural products. Further characterization of these new 

metabolites need to be performed to confirm these results. 

5.3 Conclusions 

 We have identified and activated the BGC of restricticin from the fungi, A. nomius, 

which is not a known producer of this Cyp51 inhibitor natural product using targeted genome 
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mining with the TGIF algorithm. Introduction of the genes in the pathway into our heterologous 

host A. nidulans resulted in the unexpected production of compounds 18-21. Compound 18-21 

are derivatives of 15, likely metabolized by the heterologous host to detoxify the antifungal 

restricticin. All these compounds find a way to protect the free glycyl amine which is proposed 

to be the molecular warhead that inhibits substrate binding of molecular oxygen to the heme 

prosthetic group of the Cyp51. Compound 18 acetylates the free amine, while compounds 19-21 

take a more creative approach to detoxify restricticin by capturing the amine group into the 

isoindolinone core of apsernidine, an A. nidulans metabolite that is produced when the cell 

membrane integrity of the fungi is compromised. We also evaluated the biosynthetic steps that 

lead up to restricticin, including the functionalization of the diol on the tetrahydropyran ring 

system. From in vitro assays, we see that the timing of the two functionalization steps are 

important in the biosynthesis, with the O-methylation of the C3 hydroxyl being a essential step 

before the glycyl ester can be formed by the NRPS on the C4 hydroxyl. The NRPS specifically 

activates glycine and no other amino acid analogs, likely due to the importance of this chemical 

group as the warhead of the molecules. Evaluation of the Cyp51 in the cluster, rstn2, also shows 

that it has resistant capabilities against commercial Cyp51 inhibitors. Finally, through the TGIF 

algorithm, we were also able to identify another similar cluster to that of restricticin, which is 

likely to produce several novel natural product inhibitors of the Cyp51.  

5.4 Materials and Methods 

Strains and culture conditions 

Curvularia lunata (Wakker) Boedijin var. lunata anamorph (MF5573) was purchased 

from ATCC® (74067™). Curvularia lunata was grown on Difco™ PDA (Potato Dextrose Agar) 

Plates from BD biosciences. Aspergillus nomius was obtained through the NRRL (13137) fungal 
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collection. Aspergillus nomius was grown on Difco™ PDA (Potato Dextrose Agar) Plates from 

BD biosciences for activation. Apiospora montagnei was obtained through NRRL (25634) fungal 

collection and activated using PDA Plates. Aspergillus nidulans A1145 was purchased from the 

Fungal Genetics Stock Center and used for heterologous expression of genes from C. lunata. 

Escherichia coli strain XL1 Blue was used for cloning. Saccharomyces cerevisiae strain BJ5464 

was used for homologous recombination of DNA fragments to assemble the vectors used in 

heterologous expression.  

A. nomius and A. montagnei gDNA extraction, RNA extraction, and RTPCR  

The Zymo ZR Fungal /Bacterial DNA Microprep™ kit was used to extract gDNA from 

A. nomius and A. montagnei. The Invitrogen Ribopure™ kit was used to extract RNA from A. 

nomius. Superscript® III Reverse Transcriptase Kit from Life Technologies was used to 

synthesize cDNA from the RNA extracted from A. nomius and A. montagnei. 

Genome sequencing, assembly and biosynthetic gene cluster prediction 

The genome sequence for A. nomius was obtained through the NCBI database, genbank 

accession code: GCA_001204775.2. The genome sequence for Apiospora montagnei was 

obtained through the JGI portal database. Biosynthetic gene cluster prediction was done through 

using online services from NCBI BLAST, NCBI conserved domain search, 2ndfind, and 

Softberry (FGNESH) gene prediction.   

Plasmid construction for heterologous expression 

Plasmids pYTU, pYTP, pYTR were used as vectors to insert genes which contain 

auxotrophic markers for uracil (pyrG), pyridoxine (pyroA), and riboflavin (riboB), 

respectively.176 Genes to be expressed were amplified through Polymerase Chain Reaction 

(PCR) using the gDNA of A.nomius and A. montagnei as a template. The PCR products and the 
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corresponding backbone digested with PacI and SwaI were assembled with the Frozen-EZ Yeast 

Transformation II Kit™ (Zymo Research) by using yeast homologous recombination with 

BJ5464-NpgA, which contains a copy of A. nidulans phosphopantheteinyl transferase gene npgA 

integrated in the chromosome.131 E. coli vectors were assembled through digestion ligation of the 

pet28A bector backbone. Genes to be expressed were amplified through PCR using A. nomius 

and A. montagnei cDNA as template. Genes to be expressed in yeast were amplified through the 

cDNA of A. nomius as template and gDNA from S. cerevesiae. Vectors were assembled using 

pxp318 as backbone through yeast homologous recombination. 

Genetic transformation and heterologous production in A. nidulans 

Protoplasts were generated by scraping spores from a solid CD Medium (10 g/L glucose, 

50 mL/L 20x Nitrate Salts, 1mL/L Trace elements, 20% agar) Plate. The spores were transferred 

to 25 mL of liquid CD minimal medium and incubated for 12-13 hours at 37°C at 250 rpm. After 

incubation, the germlings were collected and washed with 10 mL of Osmotic Medium (1.2M 

MgSO4, 10 mM NaPO4) twice. The germlings were then transferred into 10 mL of Osmotic 

Medium containing 30 mg of Lysing Enzyme from Trichoderma and 20 mg of Yatalase. The 

culture was incubated for 12 hours at 28°C at 80 rpm. The cells were poured into a 30 mL Corex 

tube and overlayed with 10 mL of Trapping Buffer (0.6 M Sorbitol, 0.1 M Tric-HCl). The tube 

was centrifuged at 5000 RPM. The protoplasts were then removed from the interface of the two 

buffers and transferred to sterile tubes. 2x volume of STC Buffer (1.2 M Sorbitol, 10 mM CaCl2, 

10 mM Tric-HCl) was added to the protoplasts. DNA and 60% PEG4000 solution were added to 

the protoplast solution and incubated at room temperature for 20 min. The cells were then plated 

onto solid CD-Sorbitol Medium (10 g/L glucose, 50 mL/L 20x Nitrate Salts, 1mL/L Trace 

elements, 20% agar, 1.2 M Sorbitol). After transformants appeared on the plates, the spores were 
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restreaked onto solid CD-ST production medium at 28°C for 4 days (20g/L Starch, 20g/L 

Peptone, 50mL/L Nitrate Salts, 1mL/L Trace elements) and solid CD medium (20g/L Glucose, 

50mL/L Nitrate Salts, 1 mL/L Trace elements). For isotope feeding studies, 1 mg/mL of 

deuterium labeled glycine were added to the solid CD-ST before streaking cells. Deuterium 

labeled precursors used for feeding were purchased from Cambridge Isotope Laboratories.  

Sample analysis of A. nidulans transformants 

A. nidulans transformants were grown on CD and CD-ST for 2-4 days at 28̊C for small 

scale analysis. Samples were extracted using 1 mL of acetone. After centrifugation, the 

supernatant was then dried and resuspended into equal volume methanol before injection for LC-

MS analyses. LC–MS analyses were performed on a Shimadzu 2020 EV LC–MS (Kinetex 1.7 m 

C18 100 Å, LC Column 100 × 2.1 mm) using positive-and negative-mode electrospray 

ionization with a linear gradient of 5–95% acetonitrile MeCN/H2O with 0.5% formic acid in 15 

min followed by 95% MeCN for 3 min with a flow rate of 0.3 mL/min.  

Compound isolation and structure elucidation 

For isolation of 13, 14, and 17 8 L of PDB liquid medium was made in 2L flasks. For 

isolation of 18, 19, 20, and 21, 4L of CD liquid medium was made in 2L flasks. Spores from 

solid CD media plates were restreaked onto the production medium and grown in 28°C for 3 

days. The fungal culture was filtered through cheesecloth to separate the cell mass from the 

media. The media fraction was extracted with ethyl acetate while the pellet was exctracted with 

acetone. The acetone fraction was evaporated, leaving an aqueous solution of extracted 

metabolites. This aqueous fraction was then extracted with ethyl acetate. Both fractions were 

then combined and dried in vacuo and resuspended in methanol, and fractionated using Sephadex 

a CombiFlash® System, and semi-prep reverse phase HPLC sequentially. The CombiFlash 
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system (Teledyne) uses normal phase column chromatography with hexane and acetone as the 

mobile phase with a gradient of 30-70% of acetone.  

 HPLC fractionation used a semi-preparative C18 column of Kinetics New column, 5m, 

10 × 250 mm with an isocratic method of 50%, 71%,and 38% acetonitrile/water with 0.1% 

formic acid for 45 min at 4 mL/min for 13, 14, and 17, respectively. The collected fractions were 

analyzed using LC-MS with a linear gradient of 5–95% acetonitrile MeCN/H2O with 0.5% 

formic acid in 15 min and desired fractions were pooled. For elucidation of chemical structures, 

1D and 2D NMR spectra were obtained on Bruker AV500 spectrometer at the UCLA Molecular 

Instrumentation Center. High resolution mass spectra were obtained from Thermo Fisher 

Scientific Exactive Plus with IonSense ID-CUBE DART source at the UCLA Molecular 

Instrumentation Center. 

Protein expression, purification, and enzymatic assays 

 

To express and purify rstn1 and rstn8, primers were used to amplify the transcripts from 

A. nomius cDNA. The inserts were digested and ligated into digested pet28A vector which 

contained C-terminal His tag. The vectors were then transformed into E. coli BL21 and BAP1 

for rstn1 and rstn8, respectively. 4L of LB medium with kanamycin antibioitic added were used 

to grow the culture at 37°C to an OD of 0.6 before cooling and inducing with 0.1 mM isopropyl 

thio-β-D-galactoside (IPTG) overnight at 16°C. The cell pellet was harvested by centrifugation 

(3500 rpm, 10 mins), and it was then suspended in 100 mL of a buffer containing 50 mM 

NaH2PO4, 150 mM NaCl, and 10 mM imidazole at pH 8.0. The suspended bacterial cells were 

lysed using sonication and the cellular debri was removed using high-speed centrifugation 

(17,000 rpm, 1 hr). The enzyme of interest was then purified from the supernatant using Ni-NTA 

agarose affinity chromatography to near homogeneity. The purified protein was concentrated, 
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exchanged into a buffer container 50 mM NaH2PO4 and 50 mM NaCl at pH 8.0, aliquoted and 

then flash frozen in liquid nitrogen. SI-8 For the protein expression and purification of the MatB 

enzyme, the protocol detailed by Ma et al was followed.131 The purified protein was 

concentrated, exchanged into a buffer container 50 mM NaH2PO4 and 50 mM NaCl at pH 8.0, 

aliquoted and then flash frozen in liquid nitrogen.   

 Assays were performed using 10 mM of NaH2PO4 buffer. For rstn1 reactions, 50 uM of 

enzyme, 200 uM of 14, and 500 uM of SAM was added and incubated at room temperature for 1 

hour, taking intermittent time points. For rstn8 reactions, 5 uM of rstn8 was incubated with 400 

uM coenzyme A, 8 mM MgCl2, and 50 uM of purified npga for 1 hour. Then 4 mM glycine, 4 

mM ATP, 8 mM MgCl2, and 20 uM of 15 was added to the reaction and incubated overnight. 

Yeast Growth Curves 

S. cerevisiae was transformed with the various plasmid harboring rstn2, yeast Cyp51, and 

empty pxp318 backbone. The yeast was grown up in Uracil dropout media overnight. The 

OD600 values were measured and diluted to a starting OD600 value of 0.005. Samples were 

grown in 96 well plates. Compounds to be tested against (FCZ, AmphB, and 18) were dissolved 

in 1 ul of DMSO and fed at final concentrations of 50 ug/ml, 2ug/ml, and 200 ug/ml respectively. 

The negative control was performed with just adding 1 ul of DMSO into the drop out media.  

FCZ was purchased from RPI and amphotericin B was purchased from Alfa Aesar. The total 96 

well plate volume was added to 100 ul. The 96 well plates were put in the TECAN M200 plate 

reader and grown at 28°C, with shaking. OD600 values were taken every 840 seconds. The 96 

well plate was grown for 48 hours.  
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6. Final Conclusions 

 With the improvement of genome sequencing, we now have access to the entire 

repertoire of microbial compounds. Targeted genome mining is a recently developed method that 

utilizes the new wealth of genome information to discover natural product desired bioactivity. 

Here we demonstrated two examples of how targeted genome mining can be an effective strategy 

in pinpointing a specific BGC of interest.  

The first utilizes targeted genome mining to identify the biosynthesis of a molecule with 

known activity. The squalene synthase inhibitor, zaragozic acid A, is of great interest due to its 

complex chemical structure and potent bioactivity. To elucidate the biosynthesis of this molecule, 

the targeted genome mining approach was utilized to search for squalene synthase containing 

clusters in the natural producer, Curvularia lunata. This allowed for the identification and 

verification of the zaragozic acid A biosynthetic gene cluster through heterologous expression of 

a benzoyl alkylcitrate intermediate of the pathway.  

The second example serves as a more general approach in trying to discover novel sterol 

pathway inhibitors. Using the TGIF algorithm, we were able to identify Cyp51 containing fungal 

gene clusters of interest. Cyp51 is an important drug target utilized by many commercial 

antifungal azole drugs. This strategy identified the restricticin biosynthetic gene cluster in A. 

nomius. Elucidation of the biosynthetic steps through in vivo and in vitro methods gave us insight 

into how the restricticin is furnished. An analysis of the Cyp51 gene in the BGC also showed that 

rstn2 has azole resistant properties. With the rest of the TGIF results, we were also able to 

identify a Cyp51 containing biosynthetic gene cluster in Apiospora montagnei with the potential 

to produce a novel Cyp51 inhibitor. 
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These results prove that the targeted genome mining methodology is an effective one at 

searching for sterol pathway drugs. With further developments of search algorithms and the 

growth of biosynthetic knowledge of secondary metabolism, we grow closer to drawing the 

connections between natural compounds and genetic information. This offers a huge potential for 

us to truly tap into the natural chemical resources from all of life. The implications of such 

potential could be the solution to many therapeutic problems and hopefully the work done here 

serves as a steppingstone for future developments in this new era of natural product discovery.  
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Table S1. Primers used in this study 

Primer Name Sequence (5’ to 3’) 

Amyb-F-1-Orf11 CAATGGAGAATCTGCCATAAATGCCTTCTGTGGGGTTTATT  

Amyb-F-1-Orf16 TGATCTTCACGACATGATAGATTAAAGGTGCCGAACGAGC   

Orf12-F-1-AmyB AATAAACCCCACAGAAGGCATTTATGGCAGATTCTCCATTGG 

Orf12-R-1-pytu GGACATACCCGTAATTTTCTGGGCATTTCAATGAACCGTG   

Orf17-F-1-glaA GCATCATTACACCTCAGCATGGCTACCGTCAACGGCGCAG   

Orf17-R-1-Amyb CGTTCGGCACCTTTAATCTATCATGTCGTGAAGATCATAG   

gpdA-F_1       TCCCCTCCCAGCTCCTCCC                       

PYTR-4-R-14 TCCCAGGGATAGGTAGGTATGTCTGG                                   

PYTR-5-F-14 GGGAGATGGGATCAAACACAGCAC                                     

PYTR-5-R-14 GGTATCATCGAAAGGGAGTCATCCACTCATGGGTTAGTAAAAAAGTTCATGAATGGCTTC 

Orf10-F-1-Trpc CTTACCTATTCTACCCAAGCATATGTCCTCGCGTCCGTTG  

Orf10-R-1-pytr CATCGAAAGGGAGTCATCCAATTTCTCTTCTGCACCCAGAG 

Trpc-F-1-Orf10 ACTTTTTTACTAACCCATGAGTCGACAGAAGATGATATTG  

Trpc-R-1-Orf10 CAACGGACGCGAGGACATATGCTTGGGTAGAATAGGTAAG  

NL-Amyb-F_Orf6  CAAGGACGGACTCGGCCCCATGATTAAAGGTGCCGAACGAGC             
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NL-Amyb-R_Orf17 TTGGTATCGGCTTGTGTATCATAAATGCCTTCTGTGGGG                

Orf11-F-1-Amyb  CTTCTCTGAACAATAAACCCCACAGAAGGCATTTATGGATTTTCCCGGGGACTC 

Orf11-R-1-pytpa AGACCCAACAACCATGATACCAGGGGATTTAAATGCTGGTACCTTCGTCGCAG  

NL-Amyb-F_Orf6  CAAGGACGGACTCGGCCCCATGATTAAAGGTGCCGAACGAGC                   

NL-Amyb-R_Orf17 TTGGTATCGGCTTGTGTATCATAAATGCCTTCTGTGGGG                      

Orf13-F-1-Amyb  TTCTCTGAACAATAAACCCCACAGAAGGCATTTATGTGCTTGCTTAGTATGCGATTTACC 

Orf13-R-1-pytp  AGACCCAACAACCATGATACCAGGGGATTTAAATGACAGCAGAGCAGCAGCG         

gBlocks_F ATAAGATCTGCGTAAGCTCCCTAATTGGCC 

gBlocks_R ATATTAATTAAGAGCCAAGAGCGGATTCCTC 

ST_SOE_HR1_F ATTCCCTGTGGCGTGGTGAC 

ST_SOE_HR1_R CGTTAGGGCCATTATGACAGATGCCCTCTTGCTATAGCGC 

ST_SOE_HR2_F CTGTCATAATGGCCCTAACG 

ST_SOE_HR2_R CGACAACACCGTCCATGGCG 

EM_SOE_HR1_F CATCTGGAGGAGTGGAATTT 

EM_SOE_HR1_R CAACGTGTTGGTGTAGGAGGTCGGGCGGTGCACCAACGGC 

EM_SOE_HR2_F CCTCCTACACCAACACGTTG 

Anom15-Orf3-F-1-gpda ACCCCGCCACATAGACACATCTAAACAatgcagccccataatccctatg   

Anom15-Orf3-F-2      gtttcccggaacagtcgtatg                               

Anom15-Orf3-R-1      gcgtcgcatggataacctatc                               

Anom15-Orf3-R-2      aagctcacatgtattcctggagcaaacggtatcaggggatggaagagac   

Anom15-Orf4-F        CATACAGAACACTTCAAACAATCGCAAAAatggattgcgatccataccagc 

Anom15-Orf4-R-pytu   CAGTGGAGGACATACCCGTAATTTTCTGcctggacccgccccatg       

Anom15-Orf1-F-PE   TGATCTAACAACTTCTAGTAAACCGCAATCatgtctcttcagccaacggc      

Anom15-Orf1-F-PYTR cattaccccgccacatagacacatctaaacaatgtctcttcagccaacggc     

Anom15-Orf1-R-pytr TAAAGGGTATCATCGAAAGGGAGTCATCCAgatcggcttgtggaagtcgc      

Anom15-Orf7-F-PO   tGCATACAGAACACTTCAAACAATCGCAAAAatgaaggccatcatcagcgtaag  

Anom15-Orf7-F-PYTR cattaccccgccacatagacacatctaaacaatgaaggccatcatcagcgtaag  

Anom15-Orf7-R-PE   attccaaccttgggaagccctggacgaatccgacatgtatttagacggatgtcag 

Anom15-Orf7-R-pYTR TAAAGGGTATCATCGAAAGGGAGTCATCCAcgacatgtatttagacggatgtcag 

Anom15-Orf8-F-gpda cattaccccgccacatagacacatctaaacaatgtcacattccagccattattcc 

Anom15-Orf8-R-PE   attccaaccttgggaagccctggacgaatccgccatacatggctataaatttggc 

Anom15-Orf8-R-PO   cagtaagctcacatgtattcctggagcaaacgccatacatggctataaatttggc 

Anom15-Orf2-F-gpda TACCCCGCCACATAGACACATCTAAACAatgtcctggcctttgattggg         

Anom15-Orf2-R-PO   agtaagctcacatgtattcctggagcaaactgtcgggccacggataaac         

Anom15-Orf4-R-pytu CAGTGGAGGACATACCCGTAATTTTCTGcctggacccgccccatg             

Anom15-Orf5-F-PO   CATACAGAACACTTCAAACAATCGCAAAAatgcacccagaggcatgg           

Anom15-Orf5-F-PYTR TACCCCGCCACATAGACACATCTAAACAatgcacccagaggcatgg            

Anom15-Orf5-R-PE   ttccaaccttgggaagccctggacgaatcctagcctttaccagggtgtataattcc  

Anom15-Orf5-R-Pytr GATGAGACCCAACAACCATGATACCAGGGGctagcctttaccagggtgtataattcc 

Anom15-Orf6-F-PE   TCTAACAACTTCTAGTAAACCGCAATCatgtacgacgtgatagtcatcgg        

Anom15-Orf6-F-PYTR TACCCCGCCACATAGACACATCTAAACAatgtacgacgtgatagtcatcgg       
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Anom15-Orf6-R-pytp TGATGAGACCCAACAACCATGATACCAGGGGgctcaggatgtggactactagac    

Anom15-Orf7-R-PE   attccaaccttgggaagccctggacgaatccgacatgtatttagacggatgtcag   

Anom15-Orf1-F-LIC TACTTCCAATCCAATGCAatgtctcttcagccaacggc       

Anom15-Orf1-R-LIC TTATCCACTTCCAATGTTATTActaaaaatttgcagacaggccg 

Anom15-Orf8-F-XW55     ataaaagataatattctactttttgctcccatgtcacattccagccattattcccc 

Anom15-Orf8-R-XW55CHis ttagtgatggtgatggtgatgcacgtgaaccatgtcttccgctccac          

Anom15-Orf2-F-tef1p TCTAATCTAAGTTTTAATTACAAAACTAGTatgtcctggcctttgattggg   

Anom15-Orf2-R-cyc1t AGCGTGACATAACTAATTACATGACTCGAGttatcccgattttgcagcccgac 

cyp51-tef-R  TGACATAACTAATTACATGACTCGAGTTAGATCTTTTGTTCTGGATTTCTCTTTTCCCAG 

cyp51-tef1-F TCTAATCTAAGTTTTAATTACAAAACTAGTATGTCTGCTACCAAGTCAATCGTTG      

ApM17-Orf1-F-1-mbfA   GGAGCCAGGCACACTGGTGGCCCTGCCACCATGCAATCAACACGTCCAATTCC           

ApM17-Orf1-F-1-PO     caagtGCATACAGAACACTTCAAACAATCGCAAAAATGCAATCAACACGTCCAATTCC      

ApM17-Orf1-F-2        CTTTTGCCTCAATAACCGACATCC                                        

ApM17-Orf1-R-1        GAAACTCAACTGGTGGTGTCCG                                          

ApM17-Orf1-R-2-PEgpda ggtccccaatattccaaccttgggaagccctggacgaatcCTTATGGAAAGAGCCCAGGTGC  

ApM17-Orf1-R-2-PYTP   GATGAGACCCAACAACCATGATACCAGGGGCTTATGGAAAGAGCCCAGGTGC            

Apm17-Orf2-F-PEgdpa   ctcttatacaTGATCTAACAACTTCTAGTAAACCGCAATCATGGCATCCAACATTCTGGG    

Apm17-Orf2-R-PYTP     TGAGTAGGAGTGATGAGACCCAACAACCATGATACCAGGGGGCTCCGTCCCAAAACAGTC    

ApM17-Orf4-R-coxA     CCTCGAGGCCTGGGGGCTGGATCAGGCATTCCCCCCTTTCCTTATAAATCCACTATC       

ApM17-Orf4-R-PYTU     CACAGTGGAGGACATACCCGTAATTTTCTGCCCCCCTTTCCTTATAAATCCACTATC       

ApM17-Orf5-F-PYTP     CCATTACCCCGCCACATAGACACATCTAAACAATGGACGTGTACAAAGTTATTATCGTGG    

ApM17-Orf5-R-coxA     CTCGAGGCCTGGGGGCTGGATCAGGCATTAGTATGTAGAGTCAAATCGAGTTTAGCTCAG    

ApM17-Orf6-R-coxA     TCCTCGAGGCCTGGGGGCTGGATCAGGCATTATCGGATTGTTATTGTATTCCTGTTCTTGGTG 

ApM17-Orf6-R-PYTR     TAAAGGGTATCATCGAAAGGGAGTCATCCATCGGATTGTTATTGTATTCCTGTTCTTGGTG   

ApM17-Orf7-F-coxA     TGCCGTCATTGCAACCCACCCACCAGGACAATGCCTTTTCTTTGGAGACTAGTTTTTCC     

ApM17-Orf7-R-mbfA     GGCTCCGGGTGATCAAAGACGAACGCTACAGCCAGCCACCATGGAACTTTTTC           

ApM17-Orf7-R-PO       agaatcagtaagctcacatgtattcctggagcaaaGCCAGCCACCATGGAACTTTTTC      

ApM17-Orf7-R-PYTP     GATGAGACCCAACAACCATGATACCAGGGGGCCAGCCACCATGGAACTTTTTC           

ApM17-Orf3-F-PYTR   accattaccccgccacatagacacatctaaacaATGACTCCCCTTATCGAGCCC           

ApM17-Orf3-R-mbfA   GGCTCCGGGTGATCAAAGACGAACGCTACATTTGAGCTTGTTTGGTCAAAGAAAACGG       

ApM17-Orf3-R-PO     atcagtaagctcacatgtattcctggagcaaaTTTGAGCTTGTTTGGTCAAAGAAAACGG     

ApM17-Orf6-F-mbfA   TGGAGCCAGGCACACTGGTGGCCCTGCCACCATGGCCTTCCTCCCCGAG                

ApM17-Orf6-F-PO     caagtGCATACAGAACACTTCAAACAATCGCAAAAATGGCCTTCCTCCCCGAG            

ApM17-Orf6-R-coxA   TCCTCGAGGCCTGGGGGCTGGATCAGGCATTATCGGATTGTTATTGTATTCCTGTTCTTGGTG  

ApM17-Orf6-R-PE     tccaaccttgggaagccctggacgaatcATCGGATTGTTATTGTATTCCTGTTCTTGGTG     

ApM17-Orf6-R-PYTR   TAAAGGGTATCATCGAAAGGGAGTCATCCATCGGATTGTTATTGTATTCCTGTTCTTGGTG    

ApM17-Orf8-R-2-mbfA GGCTCCGGGTGATCAAAGACGAACGCTACAACGCCGCAGCACTCGTAG                 

ApM17-Orf9-F-coxA   CTGCCGTCATTGCAACCCACCCACCAGGACAATGGAGGCACTGACAGCTTTC             

ApM17-Orf9-F-PE     tcttatacaTGATCTAACAACTTCTAGTAAACCGCAATCATGGAGGCACTGACAGCTTTC     

ApM17-Orf9-R-cox    TCCTCGAGGCCTGGGGGCTGGATCAGGCATTGTGGAGAAAGGGAAATTGAATAGGTATAG     

ApM17-Orf9-R-mdhA   CATCCTCGGATGTAGGACCCCCATACACGCGTGGAGAAAGGGAAATTGAATAGGTATAG      
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ApM17-Orf9-R-PE     ccaatattccaaccttgggaagccctggacgaatcGTGGAGAAAGGGAAATTGAATAGGTATAG 

ApM17-Orf9-R-pytr   CTAAAGGGTATCATCGAAAGGGAGTCATCCAGTGGAGAAAGGGAAATTGAATAGGTATAG     

ApM17-Orf12-F-cox   TTGTCTGCCGTCATTGCAACCCACCCACCAGGACAATGAAAACACCTAACGGCATTGGAG     

ApM17-Orf12-F-mdhA  GTATAGATTTGTCACAATCCCAAATTTCACCATGAAAACACCTAACGGCATTGGAG         

ApM17-Orf12-F-PE    atacaTGATCTAACAACTTCTAGTAAACCGCAATCATGAAAACACCTAACGGCATTGGAG     

ApM17-Orf12-R-PYTR  CTAAAGGGTATCATCGAAAGGGAGTCATCCACAGGTCATGCATGCAACGATTG            

ApM17-ORf4-F-mbfA       GGAGCCAGGCACACTGGTGGCCCTGCCACCATGAAAGCCATTATCGTCACGGC             

ApM17-ORf4-F-PO         caagtGCATACAGAACACTTCAAACAATCGCAAAAATGAAAGCCATTATCGTCACGGC        

ApM17-Orf4-R-coxA       CCTCGAGGCCTGGGGGCTGGATCAGGCATTCCCCCCTTTCCTTATAAATCCACTATC         

ApM17-Orf4-R-PYTU       CACAGTGGAGGACATACCCGTAATTTTCTGCCCCCCTTTCCTTATAAATCCACTATC         

ApM17-Orf8-F-1          ATTACCCCGCCACATAGACACATCTAAACAATGGGTTCCATGGGCACCGATG              

ApM17-Orf8-F-2          TGTAGACACGCAGCTAGACGAATCC                                         

Apm17-Orf8-F-glaA-long  GAGAGCCTGAGCTTCATCCCCAGCATCATTACACCTCAGCAATGGGTTCCATGGGCACCG      

Apm17-Orf8-F-gpda-long  GACTAACCATTACCCCGCCACATAGACACATCTAAACAATGGGTTCCATGGGCACCG         

ApM17-Orf8-R-1          GTTGATGCTGGGCTTCCAGACG                                            

ApM17-Orf8-R-2-mbfA     GGCTCCGGGTGATCAAAGACGAACGCTACAACGCCGCAGCACTCGTAG                  

ApM17-Orf8-R-2-PO       agaatcagtaagctcacatgtattcctggagcaaaACGCCGCAGCACTCGTAG             

ApM17-Orf9-R-mdhA       CATCCTCGGATGTAGGACCCCCATACACGCGTGGAGAAAGGGAAATTGAATAGGTATAG       

ApM17-Orf10-F-coxA      TGCCGTCATTGCAACCCACCCACCAGGACAATGAGTATGTTTGATGGTCAGGCG            

ApM17-Orf10-R-mdhA      CATCCTCGGATGTAGGACCCCCATACACGCATCTAGATTGACATACAGAACCTCAAAGTG      

ApM17-Orf10-R-PE        ccaatattccaaccttgggaagccctggacgaatcATCTAGATTGACATACAGAACCTCAAAGTG 

ApM17-Orf13-F-mdhA      GTATAGATTTGTCACAATCCCAAATTTCACCATGGCGACTGATACCCCCC                

ApM17-Orf13-F-PE        atacaTGATCTAACAACTTCTAGTAAACCGCAATCATGGCGACTGATACCCCCC            

ApM17-Orf13-R-PYTU      CACAGTGGAGGACATACCCGTAATTTTCTGGGCTTTTTTTTTTTAGATAGGAAAGCGGC       

Anom15-Orf3-F-1-gpda ACCCCGCCACATAGACACATCTAAACAatgcagccccataatccctatg   

Anom15-Orf3-F-2      gtttcccggaacagtcgtatg                               

Anom15-Orf3-R-1      gcgtcgcatggataacctatc                               

Anom15-Orf3-R-2      aagctcacatgtattcctggagcaaacggtatcaggggatggaagagac   

Anom15-Orf4-F        CATACAGAACACTTCAAACAATCGCAAAAatggattgcgatccataccagc 

Anom15-Orf4-R-pytu   CAGTGGAGGACATACCCGTAATTTTCTGcctggacccgccccatg       

Anom15-Orf1-F-PE   TGATCTAACAACTTCTAGTAAACCGCAATCatgtctcttcagccaacggc      

Anom15-Orf1-F-PYTR cattaccccgccacatagacacatctaaacaatgtctcttcagccaacggc     

Anom15-Orf1-R-pytr TAAAGGGTATCATCGAAAGGGAGTCATCCAgatcggcttgtggaagtcgc      

Anom15-Orf7-F-PO   tGCATACAGAACACTTCAAACAATCGCAAAAatgaaggccatcatcagcgtaag  

Anom15-Orf7-F-PYTR cattaccccgccacatagacacatctaaacaatgaaggccatcatcagcgtaag  

Anom15-Orf7-R-PE   attccaaccttgggaagccctggacgaatccgacatgtatttagacggatgtcag 

Anom15-Orf7-R-pYTR TAAAGGGTATCATCGAAAGGGAGTCATCCAcgacatgtatttagacggatgtcag 

Anom15-Orf8-F-gpda cattaccccgccacatagacacatctaaacaatgtcacattccagccattattcc 

Anom15-Orf8-R-PE   attccaaccttgggaagccctggacgaatccgccatacatggctataaatttggc 

Anom15-Orf8-R-PO   cagtaagctcacatgtattcctggagcaaacgccatacatggctataaatttggc 

Anom15-Orf2-F-gpda TACCCCGCCACATAGACACATCTAAACAatgtcctggcctttgattggg         
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Anom15-Orf2-R-PO   agtaagctcacatgtattcctggagcaaactgtcgggccacggataaac         

Anom15-Orf4-R-pytu CAGTGGAGGACATACCCGTAATTTTCTGcctggacccgccccatg             

Anom15-Orf5-F-PO   CATACAGAACACTTCAAACAATCGCAAAAatgcacccagaggcatgg           

Anom15-Orf5-F-PYTR TACCCCGCCACATAGACACATCTAAACAatgcacccagaggcatgg            

Anom15-Orf5-R-PE   ttccaaccttgggaagccctggacgaatcctagcctttaccagggtgtataattcc  

Anom15-Orf5-R-Pytr GATGAGACCCAACAACCATGATACCAGGGGctagcctttaccagggtgtataattcc 

Anom15-Orf6-F-PE   TCTAACAACTTCTAGTAAACCGCAATCatgtacgacgtgatagtcatcgg        

Anom15-Orf6-F-PYTR TACCCCGCCACATAGACACATCTAAACAatgtacgacgtgatagtcatcgg       

Anom15-Orf6-R-pytp TGATGAGACCCAACAACCATGATACCAGGGGgctcaggatgtggactactagac    

Anom15-Orf7-R-PE   attccaaccttgggaagccctggacgaatccgacatgtatttagacggatgtcag   

Anom15-Orf1-F-LIC TACTTCCAATCCAATGCAatgtctcttcagccaacggc       

Anom15-Orf1-R-LIC TTATCCACTTCCAATGTTATTActaaaaatttgcagacaggccg 

Anom15-Orf8-F-XW55     ataaaagataatattctactttttgctcccatgtcacattccagccattattcccc 

Anom15-Orf8-R-XW55CHis ttagtgatggtgatggtgatgcacgtgaaccatgtcttccgctccac          

Anom15-Orf2-F-tef1p TCTAATCTAAGTTTTAATTACAAAACTAGTatgtcctggcctttgattggg   

Anom15-Orf2-R-cyc1t AGCGTGACATAACTAATTACATGACTCGAGttatcccgattttgcagcccgac 

cyp51-tef-R  TGACATAACTAATTACATGACTCGAGTTAGATCTTTTGTTCTGGATTTCTCTTTTCCCAG 

cyp51-tef1-F TCTAATCTAAGTTTTAATTACAAAACTAGTATGTCTGCTACCAAGTCAATCGTTG      

ApM17-Orf1-F-1-mbfA   GGAGCCAGGCACACTGGTGGCCCTGCCACCATGCAATCAACACGTCCAATTCC           

ApM17-Orf1-F-1-PO     caagtGCATACAGAACACTTCAAACAATCGCAAAAATGCAATCAACACGTCCAATTCC      

ApM17-Orf1-F-2        CTTTTGCCTCAATAACCGACATCC                                        

ApM17-Orf1-R-1        GAAACTCAACTGGTGGTGTCCG                                          

ApM17-Orf1-R-2-PEgpda ggtccccaatattccaaccttgggaagccctggacgaatcCTTATGGAAAGAGCCCAGGTGC  

ApM17-Orf1-R-2-PYTP   GATGAGACCCAACAACCATGATACCAGGGGCTTATGGAAAGAGCCCAGGTGC            

Apm17-Orf2-F-PEgdpa   ctcttatacaTGATCTAACAACTTCTAGTAAACCGCAATCATGGCATCCAACATTCTGGG    

Apm17-Orf2-R-PYTP     TGAGTAGGAGTGATGAGACCCAACAACCATGATACCAGGGGGCTCCGTCCCAAAACAGTC    

ApM17-Orf4-R-coxA     CCTCGAGGCCTGGGGGCTGGATCAGGCATTCCCCCCTTTCCTTATAAATCCACTATC       

 

Table S2. Plasmids used in the study 

Plasmid Name 
Plasmid 

Backbone 
Description of Plasmid 

pNLU01 pYTU 

Aspergillus nidulans expression vector containing genes 

Clz12 under the AmyB promoter and Clz7 under the glaA 

promoter. 

pNLU02 pYTU 
Aspergillus nidulans expression vector containing gene 

Clz12 under the glaA promoter 

pNLU03 pYTU 
Aspergillus nidulans expression vector containing gene 

Clz17 under the glaA promoter 

pNLR01 pYTR 

Aspergillus nidulans expression vector containing genes 

Clz10 under the pTrpC promoter and Clz14 under the gpdA 

promoter 

pNLR02 pYTR 
Aspergillus nidulans expression vector containing genes 

Clz14 under the gpdA promoter 

pNLR03 pYTR 
Aspergillus nidulans expression vector containing genes 

Clz10 under the gpdA promoter 
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pNLP01 pYTP 
Aspergillus nidulans expression vector containing genes 

Clz11 under the amyB promoter 

pNLP02 pYTP 
Aspergillus nidulans expression vector containing genes 

Clz13 under the amyB promoter glaA promoter. 

pNLU04 pYTU 

Aspergillus nidulans expression vector containing 

rstn3+rstn4 

pNLU05 pYTU Aspergillus nidulans expression vector containing rstn3 

pNLU06 pYTU 

Aspergillus nidulans expression vector containing 

apm4+apm8+apm10+apm13 

pNLR04 pYTR 

Aspergillus nidulans expression vector containing 

rstn1+rstn7+rstn8 

pNLR05 pYTR 

Aspergillus nidulans expression vector containing 

rstn1+rstn7 

pNLR06 pYTR Aspergillus nidulans expression vector containing rstn7 

pNLR07 pYTR 

Aspergillus nidulans expression vector containing 

apm3+apm6+apm9+apm12 

pNLP03 pYTP 

Aspergillus nidulans expression vector containing 

rstn2+rstn5+rstn6 

pNLP04 pYTP 

Aspergillus nidulans expression vector containing 

rstn5+rstn6 

pNLP05 pYTP Aspergillus nidulans expression vector containing rstn5 

pNLP06 pYTP Aspergillus nidulans expression vector containing rstn6 

pNLP07 pYTP 

Aspergillus nidulans expression vector containing 

apm1+apm5+apm7 

pYNL051 pxp318 S. cerevisae expression vector with tefp 

pYNL052 pxp318 S. cerevisae expression vector with rstn2 under tefp 

pYNL053 pxp318 S. cerevisae expression vector with yeast cyp51 under tefp 

pYNL054 xw55 

S. cerevisae expression vector with rstn3 under the adh2 

promoter 

pYNL055 xw06 

S. cerevisae expression vector with rstn7 under the adh2 

promoter 

pENL01 pet28a E. coli expression vector with rstn1 under T7 promoter 

pENL02 pet28a E. coli expression vector with rstn8 under T7 promoter 

pNLU04 pYTU 

Aspergillus nidulans expression vector containing 

rstn3+rstn4 

pNLU05 pYTU Aspergillus nidulans expression vector containing rstn3 

pNLU06 pYTU 

Aspergillus nidulans expression vector containing 

apm4+apm8+apm10+apm13 

pNLR04 pYTR 

Aspergillus nidulans expression vector containing 

rstn1+rstn7+rstn8 

pNLR05 pYTR 

Aspergillus nidulans expression vector containing 

rstn1+rstn7 

pNLR06 pYTR Aspergillus nidulans expression vector containing rstn7 

pNLR07 pYTR 

Aspergillus nidulans expression vector containing 

apm3+apm6+apm9+apm12 

 

 

Table S3. Expression strains used in this study 
Strain Name Organis

m 

Description of Expression Strain 

A. nidulans-ClzA A. nid. A. nid. A1145∆ST∆EM expressing pNLUA and pNLRA 

A. nidulans-ClzB A. nid. A. nid. A1145∆ST∆EM expressing pNLU01, pNLR01, and pNLP01 
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A. nidulans-ClzC A. nid. A. nid. A1145∆ST∆EM expressing pNLU01, pNLR01, and pNLP02 

A. nidulans-ClzD A. nid. A. nid. A1145∆ST∆EM expressing pNLU03, pNLR01, and pNLP01 

A. nidulans-ClzE A. nid. A. nid. A1145∆ST∆EM expressing pNLU01, pNLR02, and pNLP01 

A. nidulans-ClzF A. nid. A. nid. A1145∆ST∆EM expressing pNLU01, pNLR02, and pNLP01 

A. nidulans-ClzG A. nid. A. nid. A1145∆ST∆EM expressing pNLU02, pNLR01, and pNLP01 

AN2001 A. nid. A. nid. A1145∆ST∆EM expressing pNLU04, pNLR04, and pNLP03 

AN2002 A. nid. A. nid. A1145∆ST∆EM expressing pNLU04, pNLR06, and pNLP03 

AN2003 A. nid. A. nid. A1145∆ST∆EM expressing pNLU04, pNLR05, and pNLP03 

AN2004 A. nid. A. nid. A1145∆ST∆EM expressing pNLU05 

AN2005 A. nid. A. nid. A1145∆ST∆EM expressing pNLU04 

AN2006 A. nid. A. nid. A1145∆ST∆EM expressing pNLU05+pNLR06 

AN2007 A. nid. A. nid. A1145∆ST∆EM expressing pNLU04, pNLR06 

AN2008 A. nid. A. nid. A1145∆ST∆EM expressing pNLU04, pNLR05, and pNLP05 

AN2009 A. nid. A. nid. A1145∆ST∆EM expressing pNLU04, pNLR05, and pNLP06 

AN2010 A. nid. A. nid. A1145∆ST∆EM expressing pNLU04, pNLR05, and pNLP04 

AN2011 A. nid. A. nid. A1145∆ST∆EM expressing pNLU06, pNLR07, and pNLP07 

SC001 

S. 

cerevisaie BY4743 expressing PYNL051 

SC002 

S. 

cerevisaie BY4743 expressing PYNL052 

SC003 

S. 

cerevisaie BY4743 expressing PYNL053 

SC004 

S. 

cerevisaie BJ5464 expressing PYNL054 

SC005 

S. 

cerevisaie BJ5464 expressing PYNL055 

EC001 E. coli BL21 expressing pENL01 

EC002 E. coli BL21 expressing pENL02 

AN2001 A. nid. A. nid. A1145∆ST∆EM expressing pNLU04, pNLR04, and pNLP03 

AN2002 A. nid. A. nid. A1145∆ST∆EM expressing pNLU04, pNLR06, and pNLP03 

AN2003 A. nid. A. nid. A1145∆ST∆EM expressing pNLU04, pNLR05, and pNLP03 

AN2004 A. nid. A. nid. A1145∆ST∆EM expressing pNLU05 

AN2005 A. nid. A. nid. A1145∆ST∆EM expressing pNLU04 
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Figure S1. Comparison of the zaragozic acid A biosynthetic gene clusters  

 

 

 

Table S4. Comparison of genes between ZA clusters of C. lunata and MF5453 

C. lunata  MF5453  Putative Function % Identity 

Clz1 mfL1 Hypothetical Protein (HP)  

Clz2 Mfpks1 
Polyketide Synthase (Squalestatin 

S1tetraketide synthase) 
88 

Clz3 mfM1 Hypothetical Protein (HP) 90 

Clz4 mfM2 Transport Protein (MFS) 86 

Clz5 mfM3 Short Chain Dehydrogenase (SDR) 86 

Clz6 mfM4 Acyltransferase (AT) 88 

Clz7 mfM5 Zinc Finger Transcription Factor (TF) 85 

Clz8  Hypothetical Protein (HP)  

Clz9 mfM6 Transport Protein (MFS) 94 

Clz10 mfM7 Phenylalanine Ammonia Lyase (PAL) 90 

Clz11 mfM8 Alpha beta hydrolase 93 

Clz12 mfM9 4-coumarate-CoA ligase 92 

Clz13 mfM10 Beta lactamase 84 

Clz14 Mfpks2 Polyketide Synthase (HRPKS) 91 

Clz15 mfR1 
Hypothetical Protein (HP): αKG 

dependent oxygenase (Phyre2)205 
68 

Clz16 mfR2 
Hypothetical Protein (HP): αKG 

dependent oxygenase (Phyre2)205 
93 

Clz17 mfR3 Citrate synthase (CS) 88 

Clz18 mfR4 Acyltransferase (AT) 76 

Clz19 mfR5 Transport Protein (MFS) 74 

Clz20 mfM6 Squalene Synthase (SS) 87 

*Highlighted genes studied in this paper 
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Figure S2. Alignment of N-terminal sequences of various polyketide synthases.  

Clz14: benzoyl-priming hexaketide from C. lunata clz cluster. Mfpks2: putative benzoyl-

priming hexaketide from SQS1 gene cluster in the MF5453. EncA: PKS from enterocin 

pathway. LovB: nonaketide synthase in lovastatin pathway. CcsA: PKS-NRPS from 

cytochalasin biosynthesis. AurA: HRPKS in aurovertin E pathway that uses propionate 

starter unit. The conserved catalytic cysteine in KS domains is highlighted in turquoise. 

Clz14 and mfpks2 both have a unique ~90 residue N-terminal region upstream of where most 

KS domains begin. Alignment performed by the Clustal Omega program from Uniprot 

(online method).206   
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Figure S3. A. nidulans cassettes tested for production of 2.  

[i] A. nidulans A1145 with empty vectors as a negative control. [ii-viii] Cassettes tested for 

production of zaragozic acid A products. EIC: extracted ion chromatography m/z values 

filtered for the masses of 1, 2, and 3 
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Figure S4. Labeled precursor feeding studies.  

Deuterium labeled precursors were fed at 1 mg/mL to A. nidulans strains that produced 2. A)  

2 producing strains fed with d5-benzoic acid. B) 2 producing strains fed with d8-

phenylalanine. The results show that the perdeuterated benzyl ring of both precursors is 

incorporated into 2, increasing the mass of the product by 5. 
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’ 

 
 HR-MS for compound 2: [M-H]- = 420.21805 calculated for C23H32O7; found at 420.20743 

 

 [α]27.8 D: -44 (c 0.3, CH3OH). Previously reported [α]20 D: -48 (c 0.55, CH3OH).167 

 

Figure S5. Characterization of 2 

MS spectra, UV spectra, HR-MS, and specific optical rotation. 
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Figure S6. Characterization of 1 

MS and UV spectra 
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Table S5. Metabolites targeted for deletion in A. nidulans 

 

 

 

 

 

 

 

 

 

*Mass and genes adapted from Yaegashi et al.207 

 
Figure S7. Removal of undesired metabolites in A. nidulans.  

The production of certain metabolites were targeted and knocked out using the CRISPR/Cas9 

system outlined in the methods. Traces show the successful deletion of these products. (i) A. 

nidulans A1145ΔST (ii) removal of sterigmatocystin (iii) removal of emericellamide 

products. 

  

Metabolite  Mass Gene targeted 

sterigmatocystin  324  stcA 

emericellamide A  609  easA 
emericellamide C 595  easA 
emericellamide D 595  easA 
emericellamide E 623  easA 
emericellamide F 623  easA 
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Figure S8. Homologous clusters of rstn 

Homologous gene clusters from different strains of fungi. Homologous 

genes shown in same color 
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  Figure S9. Expression of late rstn pathway intermediates 

Combinations of genes expressing late pathway intermediates 
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Figure S10. Labeled glycine feeding 

Incorportaion of d2-glycine fed into constructs expressing the rstn cluster 
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Figure S11. Substrate scope testing of rstn8 

Different amino acid substrates and polyketide substrates tested with rstn8 
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  Figure S12. Derivatization of restricticin to confirm structure 

Restricticin produced from in vitro rstn8 reactions treated with acetic 

anhydride to yield compound 18 
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Table S6. 1H (500 Hz) and 13C (125 Hz) of 2 in CD3OD* 

 

 

Position δH (J in Hz) δC 

1 - 181.61/181.45 

2 

2.66 (overlapped)/2.97 (1H, d, 

16.0) 43.71/42.51 

 

2.58 (overlapped)/2.88 (1H, d, 

16.0)  
3 - 77.04 

4 2.66/2.58 (1H, overlapped) 54.50/54.36 

5/6/7/8 1.05-1.45 (8H, overlapped) 28.67/28.83/29.65/29.97 

9 1.87, 2H 40.59/40.41 

10 - 135.18/135.15 

11 4.91 (overlapped) 131.56/131.49 

12 2.62 (overlapped) 35.91 

13 2.45 (dd, 8.11 and 13.03) 45.13/ 45.11 

 2.55 (dd, 2.61 and 6.14)  
14 - 142.39 

15 7.10 (t, 6.34) 130.31/130.28 

16 7.21 (dd, 2.27 and 7.61) 129.01/128.98 

17 7.10 (t, 6.34) 126.67/127.66 

18 7.21 (dd, 2.27 and 7.61) 129.01/128.98 

19 7.10 (t, 6.34) 130.31/130.28 

20 - 178.19/177.57 

21 - 174.89/174.79 

22 1.34 (d, 4.38), 3H 16.11/16.00 

23 0.93 (d, 6.42), 3H 21.48/21.44 

* The presence of an additional set of closely matched signals in 13C-NMR spectrum is 

attributed to the existence of a stereoisomer of 2. 
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Figure S13. 1H NMR spectrum of 2 in CD3OD (500 MHz). 
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Figure S14. 13C NMR spectrum of 2 in CD3OD (125 MHz). 
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Figure S15. COSY NMR spectrum of 2 in CD3OD 
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Figure S16. HSQC NMR spectrum of 2 in CD3OD. 
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Figure S17. HMBC NMR spectrum of 2 in CD3OD. 
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Table S7. 1H (500 Hz) and 13C (125 Hz) of 19-21 

No. 

19 20 21 

δc δH (mult., JH-H in Hz) δc δH (mult., JH-H in Hz) δc δH (mult., JH-H in Hz) 

1 168.0  168.2  168.0  

2 44.2 

4.48, d (17.4) 

44.7 

4.35, d (17.4) 

44.1 

4.52, d (17.4) 

4.02, d (17.4) 4.11, d (17.4) 4.03, d (17.4) 

4 169.4  169.6  168.7  

5 127.4  127.2  127.5  

6 102.8 6.93, s 98.8 6.96, s 98.8 6.97, s 

7 150.7  153.5  153.3  

8 136.9  137.4  137.1  

9 144.7  144.7  144.7  

10 119.5  120.5  120.4  

11 47.9 

4.31, d (16.5) 

48.5 

4.38, d (16.5) 

47.6 

4.34, d (16.5) 

4.17, d (16.5) 4.22, d (16.5) 4.18, d (16.5) 

1' 70.8 

3.79, dd 

(11.8,1.3) 
71.3 

3.76, d (11.5, 1.0) 

70.8 

3.79, dd 

(11.8,1.3) 

3.55, dd (11.8, 

2.6) 
3.58, dd (11.5, 2.0) 

3.54, dd (11.8, 

2.6) 

2' 32.4 2.22, m 35.8 2.14, m 32.5 2.23, m 

3' 81.4 
3.33, dd (9.5, 

5.2) 
72.4 3.80, dd (9.5, 5.2) 81.4 

3.33, dd (9.5, 

5.2) 

4' 70.0 5.00, t (9.5) 72.3 4.98, t (9.5) 70.0 5.01, t (9.5) 

5' 85.2 3.51, d (9.5) 84.8 3.50, d (9.5) 85.2 3.51, d (9.5) 

6' 132.7  133.0  132.7  
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7' 129.7 5.96 d (10.5) 129.5 5.93 d (10.5) 129.7 5.97 d (10.5) 

8' 125.8 
6.28, dd (14.7, 

10.5) 
125.8 

6.30, dd (14.7, 

10.5) 
125.8 

6.29, dd (14.7, 

10.5) 

9' 134.4 
6.20, dd (14.7, 

10.5) 
134.2 

6.20, dd (14.7, 

10.5) 
134.4 

6.21, dd (14.7, 

10.5) 

10' 130.7 
6.10, dd (14.7, 

10.5) 
130.6 

6.12, dd (14.7, 

10.5) 
130.7 

6.11, dd (14.7, 

10.5) 

11' 135.9 
5.72, dt (14.7, 

7.2) 
135.9 5.73, dt (14.7, 7.2) 135.8 

5.72, dt (14.7, 

7.2) 

12' 34.9 2.05, m 34.9 2.09, m 34.9 2.08, m 

13' 22.4 1.40, m 22.4 1.42, m 22.4 1.41, m 

14' 13.7 0.88, t (7.5) 13.7 0.90, t (7.5) 13.7 0.89, t (7.5) 

15' 10.7 1.06, d (7.2) 10.8 1.15, d (7.2) 10.8 1.07, d (7.2) 

16' 11.7 1.76, s 11.7 1.78, s 11.7 1.77, s 

1'' 69.7 4.64, d (7.4) 69.7 4.66, d (7.4) 69.6 4.65, d (7.4) 

2'' 119.1 5.51, t (7.4) 119.1 5.50, t (7.4) 119.1 5.49, t (7.4) 

3'' 144.4  144.1  144.0  

4'' 39.7 

2.04, m 

39.7 

2.06, m 

39.7 

2.05, m 

1.95, m 1.97, m 1.97, m 

5'' 26.2 2.07, m 26.3 2.09, m 26.3 2.08, m 

6'' 123.5 5.07, m 123.5 5.08, m 123.5 5.08, m 

7'' 135.6  135.6  135.6  

8'' 39.6 

2.04, m 

39.6 

2.06, m 

39.6 

2.05, m 

1.95, m 1.97, m 1.97, m 

9'' 26.7 2.03, m 26.7 2.05, m 26.7 2.05, m 

10'' 124.2 5.06, m 124.2 5.07, m 124.2 5.07, m 

11'' 131.4  131.4  131.4  

12'' 25.7 1.66, s 25.7 1.67, s 25.7 1.66, s 

13'' 16.4 1.65, s 16.4 1.66, s 16.4 1.65, s 

14'' 16.0 1.58, s 16.0 1.58, s 16.0 1.58, s 

15'' 17.7 1.58, s 17.7 1.58, s 17.7 1.58, s 

3'-

OMe 
56.3 3.29, s   56.4 3.30, s 

7-

OMe 
  56.2 3.91, s 56.2 3.90, s 

In CDCl3, 500 MHz for 1H and 125 MHz for 13C NMR; Chemical shifts are reported in ppm. All signals are determined by 1H-

1H COSY, HMBC and HSQC correlation. 
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Table S8. 1H (500 Hz) and 13C (125 Hz) of 14 and 18 

No. 

18 14 

          δc δH (mult., JH-H in Hz)         δc δH (mult., JH-H in Hz) 

1 70.8 

3.81, dd (11.8,1.3) 

71.0 

3.81, dd (11.8,1.3) 

3.57, dd (11.8, 2.6) 3.60, dd (11.8, 2.6) 

2 32.4 2.26, m 31.7 2.21, m 

3 81.4 3.37, dd (9.5, 5.2) 84.1 3.26, dd (9.5, 5.2) 

4 70.2 5.02, t (9.5) 67.7 3.62, t (9.5) 

5 85.1 3.53, d (9.5) 86.8 3.48, d (9.5) 

6 132.6  133.4  

7 129.6 5.94 d (10.5) 129.8 6.14 d (10.5) 

8 125.6 6.24, dd (14.7, 10.5) 125.8 6.34, dd (14.7, 10.5) 

9 134.2 6.15, dd (14.7, 10.5) 134.3 6.21, dd (14.7, 10.5) 

10 130.5 6.06, dd (14.7, 10.5) 130.7 6.10, dd (14.7, 10.5) 

11 136.1 5.71, dt (14.7, 7.2) 135.7 5.71, dt (14.7, 7.2) 

12 34.9 2.06, m 34.9 2.06, m 

13 22.4 1.40, m 22.5 1.41, m 

14 13.7 0.89, t (7.5) 13.8 0.89, t (7.5) 

15 10.7 1.08, d (7.2) 10.8 1.05, d (7.2) 

16 11.6 1.76, s 12.2 1.82, s 

1' 169.4    

2' 41.4 

4.10, dd (18.5, 5.5)   

3.77, dd (18.5, 4.2)   

3' 170.0    

4' 22.9 1.97, s   

3-OMe 56.4 3.32, s 56.0 3.40, s 

In CDCl3, 500 MHz for 1H and 125 MHz for 13C NMR; Chemical shifts are reported in ppm. All signals are 

determined by 1H-1H COSY, HMBC and HSQC correlation. 
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Table S9. 1H (500 Hz) and 13C (125 Hz) of 13 and 17 

No. 

13 17 

        δc δH (mult., JH-H in Hz)         δc δH (mult., JH-H in Hz) 

1 71.3 

3.76, dd (11.8,1.3) 

71.0 

3.79, dd (11.8,1.3) 

3.62, dd (11.8, 2.6) 3.58, dd (11.8, 2.6) 

2 35.4 2.11, m 31.7 2.19, m 

3 74.8 3.71, dd (9.5, 5.2) 84.1 3.24, dd (9.5, 5.2) 

4 69.0 3.53, t (9.5) 67.6 3.60, t (9.5) 

5 86.8 3.43, d (9.5) 86.7 3.46, d (9.5) 

6 133.0  133.8  

7 129.9 6.11 d (10.5) 129.7 6.11 d (10.5) 

8 125.5 6.33, dd (14.7, 10.5) 126.3 6.33, dd (14.7, 10.5) 

9 134.6 6.22, dd (14.7, 10.5) 133.9 6.18, dd (14.7, 10.5) 

10 130.5 6.10, dd (14.7, 10.5) 131.1 6.11, dd (14.7, 10.5) 

11 136.1 5.73, dt (14.7, 7.2) 134.5 5.69, dt (14.7, 7.2) 

12 34.9 2.07, m 29.1 2.16, m 

13 22.4 1.41, m 32.0 1.64, m 

14 13.7 0.90, t (7.5) 62.2 3.62, t (6.5) 

15 11.0 1.11, d (7.2) 10.8 1.02, d (7.2) 

16 12.0 1.81, s 12.3 1.80, s 

In CDCl3, 500 MHz for 1H and 125 MHz for 13C NMR; Chemical shifts are reported in ppm. All signals 

are determined by 1H-1H COSY, HMBC and HSQC correlation. 
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Figure S18. 1H NMR spectrum of 17 in CDCl3 (500 MHz). 
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Figure S19. 13C NMR spectrum of 17 in CDCl3 (125 MHz). 
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Figure S20. COSY NMR spectrum of 17 in CDCl3 
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Figure S21. HSQC NMR spectrum of 17 in CDCl3. 
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Figure S22. HMBC NMR spectrum of 17 in CDCl3 
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Figure S23. 1H NMR spectrum of 14 in CDCl3 (500 MHz). 
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Figure S24. 13C NMR spectrum of 14 in CDCl3 (125 MHz). 
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Figure S25. COSY NMR spectrum of 14 in CDCl3 
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Figure S26. HSQC NMR spectrum of 14 in CDCl3. 
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Figure S27. HMBC NMR spectrum of 14 in CDCl3 
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Figure S28. 1H NMR spectrum of 15 in CDCl3 (500 MHz). 
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Figure S29. 13C NMR spectrum of 15 in CDCl3 (125 MHz). 
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Figure S30. COSY NMR spectrum of 15 in CDCl3 
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Figure S31. HSQC NMR spectrum of 15 in CDCl3. 



 

 

136 

 

 
 

Figure S32. HMBC NMR spectrum of 15 in CDCl3 
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Figure S33. 1H NMR spectrum of 18 in CDCl3 (500 MHz). 



 

 

138 

 

  

Figure S34. 13C NMR spectrum of 18 in CDCl3 (125 MHz). 
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Figure S35. COSY NMR spectrum of 18 in CDCl3 
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Figure S36. HSQC NMR spectrum of 18 in CDCl3. 
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Figure S37. HMBC NMR spectrum of 18 in CDCl3 
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Figure S38. 1H NMR spectrum of 20 in CDCl3 (500 MHz). 
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Figure S39. 13C NMR spectrum of 20 in CDCl3 (125 MHz).
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Figure S40. COSY NMR spectrum of 20 in CDCl3
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Figure S41. HSQC NMR spectrum of 20 in CDCl3
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Figure S42. HMBC NMR spectrum of 20 in CDCl3
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Figure S43. 1H NMR spectrum of 21 in CDCl3 (500 MHz). 
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Figure S44. 13C NMR spectrum of 21 in CDCl3 (125 MHz).
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Figure S45. COSY NMR spectrum of 21 in CDCl3
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Figure S46. HSQC NMR spectrum of 21 in CDCl3
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Figure S47. HSQC NMR spectrum of 21 in CDCl3
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Figure S48. 1H NMR spectrum of 19 in CDCl3 (500 MHz).
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Figure S49. 13C NMR spectrum of 19 in CDCl3 (125 MHz).
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Figure S50. COSY NMR spectrum of 19 in CDCl3



 

 

155 

 

  
 

Figure S51. HSQC NMR spectrum of 19 in CDCl3
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Figure S52. HMBC NMR spectrum of 19 in CDCl3
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Table S10: List of Genome Sequences Analyzed with TGIF 
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List of MATLAB® scripts for TGIF 
 

Script 1: mbdmadedb.m 
%% 
%  
% <<mbmadedb.m>> 
%  
clear all 
%%%%%%% Be sure to specify directory of where genomes are located 
% directory = 'C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_strains'; 
directory = 'C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_strains2'; 
% directory = 'cd C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_genomes' 
% directory = 

'C:\Users\Lab\Desktop\Genome_Mining_Matlab\antifungal_tests\mining'; 
cd(directory); 
% cd C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_genomes 
gbfiles = dir('*.fa'); 
%  
% resultsfolder = 'newgenomes'; 
resultsfolder = 'Cyp51results'; 

  
for i=1:length(gbfiles) 

  
   [~,c]= fileparts(gbfiles(i).name); 
   newnamegb = strcat(c,'.fasta'); 
   gbname = struct2cell(gbfiles(i)); 
   namegb = gbname{1}; 

      
   copyfile(namegb,newnamegb);   
end 
fasfiles = dir('*.fas'); 
for i=1:length(fasfiles) 

  
   [~,c]= fileparts(fasfiles(i).name); 
   newnamefas = strcat(c,'.fasta'); 
   fasname = struct2cell(fasfiles(i)); 
   namefas = fasname{1}; 

      
   copyfile(namefas,newnamefas);   
end 
fasfiles = dir('*.aa'); 
for i=1:length(fasfiles) 

  
   [~,c]= fileparts(fasfiles(i).name); 
   newnamefas = strcat(c,'.fasta'); 
   fasname = struct2cell(fasfiles(i)); 
   namefas = fasname{1}; 

      
   copyfile(namefas,newnamefas);   
end 

  
fastafiles = dir('*.fasta'); 
key = strings(length(fastafiles),2); 
for i=1:length(fastafiles) 
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    key(i,1) = i; 
end 

  
% mkdir resultsfolder; 
mkdir(resultsfolder); 
cd C:\Users\Lab\Desktop\Genome_Mining_Matlab 
% 

copyfile('blastall.exe','C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_g

enomes\resultsfolder'); 
% 

copyfile('formatdb.exe','C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_g

enomes\resultsfolder'); 
copyfile('blastall.exe',directory); 
copyfile('formatdb.exe',directory); 
cd(directory); 
copyfile('blastall.exe',resultsfolder); 
copyfile('formatdb.exe',resultsfolder); 

  
for i=1:length(fastafiles)   
    [~,f]=fileparts(fastafiles(i).name); 
    newnamefasta = sprintf('%d.fasta',i); 
    fastaname = struct2cell(fastafiles(i)); 
    namefasta = fastaname{1}; 
    namefasta = convertCharsToStrings(namefasta); 
    key(i,2) = namefasta; 

     
    copyfile(namefasta,newnamefasta); 
    movefile(newnamefasta,resultsfolder); 

     
end 

  
file1 = sprintf('genome_key'); 
xlswrite(file1, key); 

  
cd(directory); 
cd(resultsfolder) 

  
fastafiles = dir('*.fasta'); 
n = length(fastafiles); 

  
for i=1:n  
    dbname = sprintf('%d.fasta', i); 
    outname = num2str(i); 
    blastformat('Inputdb', dbname,'protein','false'); 
%     blastformat('-i dbname -t outname -p F'); 
end 
% for i=1:n  
%     %dbname = sprintf('%d.fasta', i); 
%     dbname = sprintf('makeblastdb.exe -in %d.fasta -dbtype nucl -out 

%d',i,i); 
%     system(dbname); 
% end 

  
%%%%%%%%%%%%%%organize targets%%%%%%%%%%%%%%%%%%%%%%%%%%% 
cd C:\Users\Lab\Desktop\Genome_Mining_Matlab 
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% cd C:\Users\Lab\Desktop\Genome_Mining_Matlab\antifungal_tests 
%cd TARGETS 
% cd targets_custom 
% cd targets_JB_DY 
cd Cyp51 

  
targetfiles = dir('*.fasta'); 
targetkey = strings(length(targetfiles),2); 
for i=1:length(targetfiles) 

  
   [~,c]= fileparts(targetfiles(i).name); 
   newnametarget = sprintf('T%d.fa',i); 
   targetname = struct2cell(targetfiles(i)); 
   nametarget = targetname{1}; 
   copyfile(nametarget,newnametarget); 
   directory1 = strcat(directory,'/',resultsfolder); 
   movefile(newnametarget,directory1); 
   targetkey(i,2) = c; 
   targetnum = sprintf('T%d',i); 
   targetkey(i,1) = targetnum; 
end 

  

  
file2 = sprintf('target_key'); 
xlswrite(file2, targetkey); 

  

  
% cd C:\Users\Lab\Desktop\Genome_Mining_Matlab 
% cd TARGETS 
% targetfiles = dir('*.fasta'); 
% for i=1:length(targetfiles) 
%        namefas = sprintf('T%d.fasta',i); 
%    targetname = sprintf('T%d.fa',i); 
%    copyfile(namefas,targetname);   
%    

%movefile(targetname,'C:\Users\Lab\Desktop\Genome_Mining_Matlab\test\resultsf

older'); 
%    

%movefile(targetname,'C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_stra

ins\resultsfolder'); 
%    

movefile(targetname,'C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_genom

es\resultsfolder'); 
% end 

  
cd(directory); 
cd(resultsfolder) 
save('genomes.mat','key','targetkey'); 
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Script 2: mbblast.m 
%%%%%%%%%%%%%%blast targets%%%%%%%%%%%%%%%%%%%%%%%%% 
% directory = 'C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_strains'; 
directory = 'C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_strains2'; 
% directory = 'cd C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_genomes' 
% directory = 

'C:\Users\Lab\Desktop\Genome_Mining_Matlab\antifungal_tests\mining'; 
cd(directory); 

  
% resultsfolder = 'newgenomes'; 
resultsfolder = 'Cyp51results'; 
cd(resultsfolder) 

  
targetfiles = dir('*.fa'); 
x = length(targetfiles);%% x = target number 
gbfiles = dir('*.nhr'); 
n = length(gbfiles); 

  

  
results = struct('gen_tar',cell(x,n)); 
%results = struct('gen_tar',[],'genome',[],'target',[],'output',[]); 

  
idx = 0; 
for a = 1:x 
    for b =1:n 
query = sprintf('T%d.fa',a); 
outname = sprintf('T%dhits_in_%d.txt',a,b); 
outname1 = sprintf('T%dhits_in_%d',a,b); 
dbname = sprintf('%d.fasta',b); 
idx = idx +1; 
output = blastlocal('InputQuery', query ,'Database', dbname ,'Program', 

'tblastn','ToFile',outname); 
%output = blastlocal('InputQuery', query ,'Database', dbname ,'Program', 

'tblastn'); 
results(a,b).gen_tar = outname1; 
results(a,b).genome = b; %genome 
results(a,b).target = a; %target 
results(a,b).output = output; 
    end 
%results = blastlocal('-i T2.fasta -d 1 -p tblastn'); 
end 
cd(directory); 
cd(resultsfolder) 
save('targetresults.mat','results','targetkey'); 

 

Script 3: colocalblast_mb.m 
%%%%Colocalization of gene clusters 
% directory = 'C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_strains'; 
directory = 'C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_strains2'; 
% directory = 'cd C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_genomes' 
cd(directory); 

  

  
% resultsfolder = 'newgenomes'; 
resultsfolder = 'Cyp51results'; 
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cd(resultsfolder) 
targetfiles = dir('*.fa'); 
numtargets = length(targetfiles);%% x = target number 
gbfiles = dir('*.nhr'); 
numgenomes = length(gbfiles); 

  
% blastfiles = 

'C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_genomes\resultsfolder'; 

%specify here the location of blast files 
blastfiles = 

strcat('C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_strains2\',results

folder); 
cd C:\Users\Lab\Desktop\Genome_Mining_Matlab 
cd 2nd_met_genes_core 

  

%%%%%%%%%%%%%%%%%%%copy and move files%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%copy secondmet domain files 
for i = 1:5 
    dom = sprintf('NRPS_A_%d.fasta',i); 
    copyfile(dom,blastfiles); 
end 
for i = 1:5 
    dom = sprintf('NRPS_C_%d.fasta',i); 
    copyfile(dom,blastfiles); 
end 
for i = 1:5 
    dom = sprintf('NRPS_T_%d.fasta',i); 
    copyfile(dom,blastfiles); 
end 

  
%%%size of NRPS domain reference 
NRPSdomnum1 = 3; 
NRPSdomnum2 = 5; 
NRPS = strings(NRPSdomnum1,NRPSdomnum2);   

  
for i = 1:5 
    dom = sprintf('NRPS_A_%d.fasta',i); 
    NRPS(1,i) = dom; 
end 
for i = 1:5 
    dom = sprintf('NRPS_C_%d.fasta',i); 
    NRPS(2,i) = dom; 
end 
for i = 1:5 
    dom = sprintf('NRPS_T_%d.fasta',i); 
    NRPS(3,i) = dom; 
end 

  
%%copy secondmet PKS domain files 
for i = 1:5 
    dom = sprintf('PKS_KS_%d.fasta',i); 
    copyfile(dom,blastfiles); 
end 
for i = 1:5 
    dom = sprintf('PKS_AT_%d.fasta',i); 
    copyfile(dom,blastfiles); 
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end 
for i = 1:5 
    dom = sprintf('PKS_ACP_%d.fasta',i); 
    copyfile(dom,blastfiles); 
end 

  
%%%size of PKS domain reference 
PKSdomnum1 = 3; 
PKSdomnum2 = 5; 
PKS = strings(PKSdomnum1,PKSdomnum2);   

  
for i = 1:5 
    dom = sprintf('PKS_KS_%d.fasta',i); 
    PKS(1,i) = dom; 
end 
for i = 1:5 
    dom = sprintf('PKS_AT_%d.fasta',i); 
    PKS(2,i) = dom; 
end 
for i = 1:5 
    dom = sprintf('PKS_ACP_%d.fasta',i); 
    PKS(3,i) = dom; 
end 

  
%%%%%%%%%%copying terpene files 
cd C:\Users\Lab\Desktop\Genome_Mining_Matlab\terpenes 
fastafiles = 29; 
key = strings(length(fastafiles),3); 
terpenecount = 0; 

  
cd diterpene_1 
terpenefiles = dir('*.txt'); 
for i=1:length(terpenefiles) 

  
   [~,z]= fileparts(terpenefiles(i).name); 
   newnameterpene = strcat(z,'.fasta'); 
   terpenename = struct2cell(terpenefiles(i)); 
   nameterpene = terpenename{1}; 

      
   copyfile(nameterpene,newnameterpene);   
end 
fastafiles = dir('*.fasta'); 
for a=1:length(fastafiles)   
    [~,fp]=fileparts(fastafiles(a).name); 
    newnamefasta = sprintf('diterpene_%d.fasta',a); 
    fastaname = struct2cell(fastafiles(a)); 
    namefasta = fastaname{1}; 
    namefasta = convertCharsToStrings(namefasta); 
    key(a,2) = namefasta; 
    key(a,3) = 'diterpene'; 
    terpenecount = terpenecount + 1; 
    copyfile(namefasta,newnamefasta); 
    movefile(newnamefasta,blastfiles);     
end 
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cd C:\Users\Lab\Desktop\Genome_Mining_Matlab\terpenes 
cd meroterpenoid_2 
terpenefiles = dir('*.txt'); 
for i=1:length(terpenefiles) 

  
   [~,z]= fileparts(terpenefiles(i).name); 
   newnameterpene = strcat(z,'.fasta'); 
   terpenename = struct2cell(terpenefiles(i)); 
   nameterpene = terpenename{1}; 

      
   copyfile(nameterpene,newnameterpene);   
end 
fastafiles = dir('*.fasta'); 
for b=1:length(fastafiles)   
    [~,fp]=fileparts(fastafiles(b).name); 
    newnamefasta = sprintf('meroterpenoid_%d.fasta',b); 
    fastaname = struct2cell(fastafiles(b)); 
    namefasta = fastaname{1}; 
    namefasta = convertCharsToStrings(namefasta); 
    key(b+a,2) = namefasta; 
    key(b+a,3) = 'meroterpenoid'; 
    terpenecount = terpenecount + 1; 
    copyfile(namefasta,newnamefasta); 
    movefile(newnamefasta,blastfiles);     
end 

  
cd C:\Users\Lab\Desktop\Genome_Mining_Matlab\terpenes 
cd monoterpene_3 
terpenefiles = dir('*.txt'); 
for i=1:length(terpenefiles) 

  
   [~,z]= fileparts(terpenefiles(i).name); 
   newnameterpene = strcat(z,'.fasta'); 
   terpenename = struct2cell(terpenefiles(i)); 
   nameterpene = terpenename{1}; 

      
   copyfile(nameterpene,newnameterpene);   
end 
fastafiles = dir('*.fasta'); 
for c=1:length(fastafiles)   
    [~,fp]=fileparts(fastafiles(c).name); 
    newnamefasta = sprintf('monoterpene_%d.fasta',c); 
    fastaname = struct2cell(fastafiles(c)); 
    namefasta = fastaname{1}; 
    namefasta = convertCharsToStrings(namefasta); 
    key(a+b+c,2) = namefasta; 
    key(a+b+c,3) = 'monoterpene'; 
    terpenecount = terpenecount + 1; 
    copyfile(namefasta,newnamefasta); 
    movefile(newnamefasta,blastfiles);     
end 

  
cd C:\Users\Lab\Desktop\Genome_Mining_Matlab\terpenes 
cd sesquiterpernoid_4 
terpenefiles = dir('*.txt'); 
for i=1:length(terpenefiles) 
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   [~,z]= fileparts(terpenefiles(i).name); 
   newnameterpene = strcat(z,'.fasta'); 
   terpenename = struct2cell(terpenefiles(i)); 
   nameterpene = terpenename{1}; 

      
   copyfile(nameterpene,newnameterpene);   
end 
fastafiles = dir('*.fasta'); 
for d=1:length(fastafiles)   
    [~,fp]=fileparts(fastafiles(d).name); 
    newnamefasta = sprintf('sesquiterpenoid_%d.fasta',d); 
    fastaname = struct2cell(fastafiles(d)); 
    namefasta = fastaname{1}; 
    namefasta = convertCharsToStrings(namefasta); 
    key(a+b+c+d,2) = namefasta; 
    key(a+b+c+d,3) = 'sesquiterpenoid'; 
    terpenecount = terpenecount + 1; 
    copyfile(namefasta,newnamefasta); 
    movefile(newnamefasta,blastfiles);     
end 

  
cd C:\Users\Lab\Desktop\Genome_Mining_Matlab\terpenes 
cd triterpenoid_5 
terpenefiles = dir('*.txt'); 
for i=1:length(terpenefiles) 

  
   [~,z]= fileparts(terpenefiles(i).name); 
   newnameterpene = strcat(z,'.fasta'); 
   terpenename = struct2cell(terpenefiles(i)); 
   nameterpene = terpenename{1}; 

      
   copyfile(nameterpene,newnameterpene);   
end 
fastafiles = dir('*.fasta'); 
for e=1:length(fastafiles)   
    [~,fp]=fileparts(fastafiles(e).name); 
    newnamefasta = sprintf('triterpenoid_%d.fasta',e); 
    fastaname = struct2cell(fastafiles(e)); 
    namefasta = fastaname{1}; 
    namefasta = convertCharsToStrings(namefasta); 
    key(a+b+c+d+e,2) = namefasta; 
    key(a+b+c+d+e,3) = 'triterpenoid'; 
    terpenecount = terpenecount + 1; 
    copyfile(namefasta,newnamefasta); 
    movefile(newnamefasta,blastfiles);     
end 

  
cd C:\Users\Lab\Desktop\Genome_Mining_Matlab\terpenes 
cd other_6 
terpenefiles = dir('*.txt'); 
for i=1:length(terpenefiles) 

  
   [~,z]= fileparts(terpenefiles(i).name); 
   newnameterpene = strcat(z,'.fasta'); 
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   terpenename = struct2cell(terpenefiles(i)); 
   nameterpene = terpenename{1}; 

      
   copyfile(nameterpene,newnameterpene);   
end 
fastafiles = dir('*.fasta'); 
for f=1:length(fastafiles)   
    [~,fp]=fileparts(fastafiles(f).name); 
    newnamefasta = sprintf('terpene_%d.fasta',f); 
    fastaname = struct2cell(fastafiles(f)); 
    namefasta = fastaname{1}; 
    namefasta = convertCharsToStrings(namefasta); 
    key(a+b+c+d+e+f,2) = namefasta; 
    key(a+b+c+d+e+f,3) = 'terpene'; 
    terpenecount = terpenecount + 1; 
    copyfile(namefasta,newnamefasta); 
    movefile(newnamefasta,blastfiles);     
end 

  

  

  
for i=1:terpenecount 
    key(i,1) = i; 
end 
cd C:\Users\Lab\Desktop\Genome_Mining_Matlab\terpenes 
file1 = sprintf('terpene_key'); 
xlswrite(file1, key); 

  
%%%size of terpene types reference 
terpene1 = 7; 
terpene2 = 4; 
terpene3 = 1; 
terpene4 = 11; 
terpene5 = 1; 
terpene6 = 5; 
terpene = struct('type',[]); 
type = struct('value',[]); 

  
for i = 1:terpene1 
    dom = sprintf('diterpene_%d.fasta',i); 
    terpene(1).type(i).value = dom; 
    terpene(1).name = 'diterpene'; 
end 
for i = 1:terpene2 
    dom = sprintf('meroterpenoid_%d.fasta',i); 
    terpene(2).type(i).value = dom; 
    terpene(2).name = 'meroterpenoid'; 
end 
for i = 1:terpene3 
    dom = sprintf('monoterpene_%d.fasta',i); 
    terpene(3).type(i).value = dom; 
    terpene(3).name = 'monoterpened'; 
end 
for i = 1:terpene4 
    dom = sprintf('sesquiterpenoid_%d.fasta',i); 
    terpene(4).type(i).value = dom; 
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    terpene(4).name = 'sesquiterpenoid'; 
end 
for i = 1:terpene5 
    dom = sprintf('triterpenoid_%d.fasta',i); 
    terpene(5).type(i).value = dom; 
    terpene(5).name = 'triterpenoid'; 
end 
for i = 1:terpene6 
    dom = sprintf('terpene_%d.fasta',i); 
    terpene(6).type(i).value = dom; 
    terpene(6).name = 'terpene'; 
end 

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%BLASTING%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%[x,~]= size(targetidx); 
x = numgenomes; 

  
secondmet = struct('NRPS',[],'PKS',[],'terpene',[]); % 6 is number of second 

metabolite genes tested 

  
%%blasting NRPS domains 
cd(directory); 
cd(resultsfolder); 
for a = 1:x 
    z=1; 
    for b =1:size(NRPS,1) 
        for c = 1:size(NRPS,2)  
% genomenum = targetidx(a,2); 
genomenum = a; 
query = NRPS(b,c); 
query = convertStringsToChars(query); 
outA = sprintf('_hitsin_%d',genomenum); 
outname1 = strcat(strtok(NRPS(b,c),'.'),outA); 
outname = strcat(strtok(NRPS(b,c),'.'),outA,'.txt'); 
outname = convertStringsToChars(outname); 
dbname = sprintf('%d.fasta',genomenum); 

  
%output = blastlocal('InputQuery', query ,'Database', dbname ,'Program', 

'tblastn','ToFile',outname); 
output = blastlocal('InputQuery', query ,'Database', dbname ,'Program', 

'tblastn','ToFile',outname,'expect',50); 
%output = blastlocal('InputQuery', query ,'Database', dbname 

,'Program',%'tblastn'); %if text files is not wanted  
secondmet.NRPS(a,z).gen_tar = outname1; 
secondmet.NRPS(a,z).genome = genomenum; %genome 
secondmet.NRPS(a,z).domain = NRPS(b,c); %target 
secondmet.NRPS(a,z).output = output; 
z=z+1; 
       end 
   end 
end 

  
%%%blasting PKS 
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cd(directory); 
cd(resultsfolder); 
for a = 1:x 
    z=1; 
    for b =1:size(PKS,1) 
        for c = 1:size(PKS,2)  
% genomenum = targetidx(a,2); 
genomenum = a; 
query = PKS(b,c); 
query = convertStringsToChars(query); 
outA = sprintf('_hitsin_%d',genomenum); 
outname1 = strcat(strtok(PKS(b,c),'.'),outA); 
outname = strcat(strtok(PKS(b,c),'.'),outA,'.txt'); 
outname = convertStringsToChars(outname); 
dbname = sprintf('%d.fasta',genomenum); 

  
%output = blastlocal('InputQuery', query ,'Database', dbname ,'Program', 

'tblastn','ToFile',outname); 
output = blastlocal('InputQuery', query ,'Database', dbname ,'Program', 

'tblastn','ToFile',outname,'expect',50); 
%output = blastlocal('InputQuery', query ,'Database', dbname 

,'Program',%'tblastn'); %if text files is not wanted  
secondmet.PKS(a,z).gen_tar = outname1; 
secondmet.PKS(a,z).genome = genomenum; %genome 
secondmet.PKS(a,z).domain = PKS(b,c); %target 
secondmet.PKS(a,z).output = output; 
z=z+1; 
       end 
   end 
end 
%%%blasting terpene 
cd(directory); 
cd(resultsfolder); 
for a = 1:x 
    z=1; 
    for b =1:length(terpene) 
        for c = 1:length(terpene(b).type)  
% genomenum = targetidx(a,2); 
genomenum = a; 
query = terpene(b).type(c).value; 
outA = sprintf('_hitsin_%d',genomenum); 
outname1 = strcat(strtok(terpene(b).type(c).value,'.'),outA); 
outname = strcat(strtok(terpene(b).type(c).value,'.'),outA,'.txt'); 
outname = convertStringsToChars(outname); 
dbname = sprintf('%d.fasta',genomenum); 

  
%output = blastlocal('InputQuery', query ,'Database', dbname ,'Program', 

'tblastn','ToFile',outname); 
output = blastlocal('InputQuery', query ,'Database', dbname ,'Program', 

'tblastn','ToFile',outname,'expect',50); 
%output = blastlocal('InputQuery', query ,'Database', dbname 

,'Program',%'tblastn'); %if text files is not wanted  
secondmet.terpene(a,z).gen_tar = outname1; 
secondmet.terpene(a,z).genome = genomenum; %genome 
secondmet.terpene(a,z).type = terpene(b).name; %target 
secondmet.terpene(a,z).output = output; 
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z=z+1; 
       end 
   end 
end 
cd(directory); 
cd(resultsfolder); 

  
save('secondmet.mat','secondmet','PKS','NRPS','terpene'); 

 

Script 4: secondmetcheck_NRPS.m 
%%%%%%%%%%check for NRPS clusters%%%%%%%%%%%%%%%%%%%%%%%%%% 
clear; 

  
% directory = 'C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_strains'; 
directory = 'C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_strains2'; 
% directory = 'cd C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_genomes' 
cd(directory); 
% resultsfolder = 'newgenomes'; 
resultsfolder = 'Cyp51results'; 
cd(resultsfolder) 
load('secondmet.mat'); 
idenval = 10; 

  
cd(directory); 
cd(resultsfolder) 

  

  
genomenum = size(secondmet.NRPS,1); 
NRPShitsidx = struct('output',cell(genomenum,size(NRPS,1))); 
output = 

struct('scaffold',[],'genome',[],'domain',[],'indexright',[],'indexleft',[]); 

  
%%%count number hits of NRPShits%%%% 

  
%%reduce hits by identity%% 
%count A domain and index 
for a = 1:length(secondmet.NRPS(:,1)) 
    hitcount = 1; 
    for b = 1:(length(secondmet.NRPS(1,:))/3) 
        for c = 1:length(secondmet.NRPS(a,b).output.Hits) 
            for d = 1:length(secondmet.NRPS(a,b).output.Hits(c).HSPs) 
                if 

secondmet.NRPS(a,b).output.Hits(c).HSPs(d).Identities.Percent >= idenval 
                    NRPShitsidx(a,1).output(hitcount).scaffold = 

secondmet.NRPS(a,b).output.Hits(c).Name; 
                    NRPShitsidx(a,1).output(hitcount).genome = 

secondmet.NRPS(a,b).genome; 
                    NRPShitsidx(a,1).output(hitcount).domain = 

secondmet.NRPS(a,b).domain; 
                    NRPShitsidx(a,1).output(hitcount).indexleft = 

secondmet.NRPS(a,b).output.Hits(c).HSPs(d).SubjectIndices(1); 
                    NRPShitsidx(a,1).output(hitcount).indexright = 

secondmet.NRPS(a,b).output.Hits(c).HSPs(d).SubjectIndices(2); 
                    hitcount = hitcount + 1; 
                end 
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            end 
        end 
    end 
end 
%count C domain and index 
for a = 1:length(secondmet.NRPS(:,1)) 
    hitcount = 1; 
    for b = 1+size(NRPS,2):size(NRPS,2)+(length(secondmet.NRPS(1,:))/3) 
        for c = 1:length(secondmet.NRPS(a,b).output.Hits) 
            for d = 1:length(secondmet.NRPS(a,b).output.Hits(c).HSPs) 
                if 

secondmet.NRPS(a,b).output.Hits(c).HSPs(d).Identities.Percent >= idenval 
                    NRPShitsidx(a,2).output(hitcount).scaffold = 

secondmet.NRPS(a,b).output.Hits(c).Name; 
                    NRPShitsidx(a,2).output(hitcount).genome = 

secondmet.NRPS(a,b).genome; 
                    NRPShitsidx(a,2).output(hitcount).domain = 

secondmet.NRPS(a,b).domain; 
                    NRPShitsidx(a,2).output(hitcount).indexleft = 

secondmet.NRPS(a,b).output.Hits(c).HSPs(d).SubjectIndices(1); 
                    NRPShitsidx(a,2).output(hitcount).indexright = 

secondmet.NRPS(a,b).output.Hits(c).HSPs(d).SubjectIndices(2); 
                    hitcount = hitcount + 1; 
                end 
            end 
        end 
    end 
end 
%count T domain and index 
hitcount = 1; 
for a = 1:length(secondmet.NRPS(:,1)) %%iterate through genomes 
    hitcount = 1; 
    for b = 

1+size(NRPS,2)+size(NRPS,2):size(NRPS,2)+size(NRPS,2)+(length(secondmet.NRPS(

1,:))/3) %%iterate through domains 
        for c = 1:length(secondmet.NRPS(a,b).output.Hits) %%iterate through 

genome hits 
            for d = 1:length(secondmet.NRPS(a,b).output.Hits(c).HSPs) 

%%iterate through scaffold hits 
                if 

secondmet.NRPS(a,b).output.Hits(c).HSPs(d).Identities.Percent >= idenval 
                    NRPShitsidx(a,3).output(hitcount).scaffold = 

secondmet.NRPS(a,b).output.Hits(c).Name; 
                    NRPShitsidx(a,3).output(hitcount).genome = 

secondmet.NRPS(a,b).genome; 
                    NRPShitsidx(a,3).output(hitcount).domain = 

secondmet.NRPS(a,b).domain; 
                    NRPShitsidx(a,3).output(hitcount).indexleft = 

secondmet.NRPS(a,b).output.Hits(c).HSPs(d).SubjectIndices(1); 
                    NRPShitsidx(a,3).output(hitcount).indexright = 

secondmet.NRPS(a,b).output.Hits(c).HSPs(d).SubjectIndices(2); 
                    hitcount = hitcount + 1; 
                end 
            end 
        end 
    end 
end 
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%%%%reduce hits by checking colocalization of domains%% 
NRPScluster = struct('output',[]); 
output = struct('scaffold',[],'genome',[],'indexright',[],'indexleft',[]); 
check1 = length(NRPShitsidx); 
clusterdist = 10000; 

  
for a = 1:check1 %% iterate through num of genomes 

    
            numhits1 = length(NRPShitsidx(a,1).output); 
            numhits2 = length(NRPShitsidx(a,2).output); 
            numhits3 = length(NRPShitsidx(a,3).output); 

  
            clustercount = 1; 

   
        for c = 1:numhits1 %%going through NRPS domain hits A domain 

  
            for d = 1:numhits2 %checks against C domain 
                    distcheck1 = clusterdist + 100; 
                    distcheck2 = clusterdist + 100; 
                    distcheck3 = clusterdist + 100; 
                    distcheck4 = clusterdist + 100; 
                tf1 = 

strcmp(NRPShitsidx(a,1).output(c).scaffold,NRPShitsidx(a,2).output(d).scaffol

d); 
                if tf1 ==1                  
                    distcheck1 = abs(NRPShitsidx(a,1).output(c).indexright - 

NRPShitsidx(a,2).output(d).indexright); 
                    distcheck2 = abs(NRPShitsidx(a,1).output(c).indexright - 

NRPShitsidx(a,2).output(d).indexleft); 
                    distcheck3 = abs(NRPShitsidx(a,1).output(c).indexleft - 

NRPShitsidx(a,2).output(d).indexright); 
                    distcheck4 = abs(NRPShitsidx(a,1).output(c).indexleft - 

NRPShitsidx(a,2).output(d).indexleft);    

                     
                end                           

                     

                     
                    boolean1 = [distcheck1,distcheck2,distcheck3,distcheck4];                     
                    tfcheck1 = 0; 
                    tfcheck2 = 0; 
                    for i=1:length(boolean1) 
                        if boolean1(i) <= clusterdist 
                            tfcheck1 = 1; 
                            break 
                        end 
                    end 
                if tfcheck1 == 1 
                    for e = 1:numhits3 %checks against T domain if C and A 

are together 
                        distcheck5 = clusterdist + 100; 
                        distcheck6 = clusterdist + 100; 
                        distcheck7 = clusterdist + 100; 
                        distcheck8 = clusterdist + 100; 
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                    tf2 = 

strcmp(NRPShitsidx(a,1).output(c).scaffold,NRPShitsidx(a,3).output(e).scaffol

d); 
                        if tf2 == 1                         
                        distcheck5 = 

abs(NRPShitsidx(a,1).output(c).indexright - 

NRPShitsidx(a,3).output(e).indexright); 
                        distcheck6 = 

abs(NRPShitsidx(a,1).output(c).indexright - 

NRPShitsidx(a,3).output(e).indexleft); 
                        distcheck7 = abs(NRPShitsidx(a,1).output(c).indexleft 

- NRPShitsidx(a,3).output(e).indexright); 
                        distcheck8 = abs(NRPShitsidx(a,1).output(c).indexleft 

- NRPShitsidx(a,3).output(e).indexleft);                           
                        end                  

                     
                    tfcheck2 = 0; 
                    boolean2 = [distcheck5,distcheck6,distcheck7,distcheck8];                     
                    for i=1:length(boolean2) 
                        if boolean2(i) <= clusterdist 
                            tfcheck2 = 1; 
                            break 
                        end 
                    end 
                    if tfcheck2 == 1 
                        arrayidx = 

[NRPShitsidx(a,1).output(c).indexright,NRPShitsidx(a,1).output(c).indexleft,N

RPShitsidx(a,2).output(d).indexright,NRPShitsidx(a,2).output(d).indexleft,NRP

Shitsidx(a,3).output(e).indexleft,NRPShitsidx(a,3).output(e).indexright]; 
                        arrayidx = sort(arrayidx); 
                        NRPScluster(a).output(clustercount).scaffold = 

NRPShitsidx(a,1).output(c).scaffold; 
                        NRPScluster(a).output(clustercount).genome = a; 
                        NRPScluster(a).output(clustercount).indexright = 

arrayidx(6); 
                        NRPScluster(a).output(clustercount).indexleft = 

arrayidx(1);  
                        clustercount = clustercount + 1; 
                        break 
                    end 
                    end                                   

                     
                end 
                if tfcheck2 ==1 
                    break; 
                end 

                  
            end 
        end 
end 

  
%%%%sort NRPScluster struct to eliminate duplicates 

  
NRPSclustersort = struct('output',[]); 
for i = 1:length(NRPScluster) 
if isempty(NRPScluster(i).output) 
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    continue 
end 
NRPSfields = fieldnames(NRPScluster(i).output); 
outputsort = struct2cell(NRPScluster(i).output); 
sz = size(outputsort); 
outputsort = reshape(outputsort, sz(1), []); 
outputsort = outputsort'; 
NRPSfields = NRPSfields'; 
outputsort = sortrows(outputsort, [1 4 3]); 
outputsort = cell2struct(outputsort, NRPSfields, 2); 
NRPSclustersort(i).output = outputsort; 

  
end 

  
%%%%eliminate duplicates 
NRPSclean = struct('output',[]); 
distcheck = 10000; 

  
for i = 1:length(NRPSclustersort) 
    b = 1; 
    hitslen = length(NRPSclustersort(i).output)-1; 
         if length(NRPSclustersort(i).output) == 1 
             hitslen = 1; 
         end 
  for a = 1:hitslen 

          
     if a == 1 
         NRPSclean(i).output(b).scaffold = 

NRPSclustersort(i).output(a).scaffold; 
         NRPSclean(i).output(b).genome = NRPSclustersort(i).output(a).genome; 
         NRPSclean(i).output(b).indexright = 

NRPSclustersort(i).output(a).indexright; 
         NRPSclean(i).output(b).indexleft = 

NRPSclustersort(i).output(a).indexleft; 
     end 
%      NRPSclean(i).output(b).scaffold = 

NRPSclustersort(i).output(a).scaffold; 
%      NRPSclean(i).output(b).genome = NRPSclustersort(i).output(a).genome; 
     distcheck9 = clusterdist + 100; 
     distcheck10 = clusterdist + 100; 
     distcheck11 = clusterdist + 100; 
     distcheck12 = clusterdist + 100; 
     tf3 = 

strcmp(NRPSclustersort(i).output(a).scaffold,NRPSclustersort(i).output(a+1).s

caffold); 
           if tf3 == 1                         
           distcheck9 = abs(NRPSclustersort(i).output(a).indexright - 

NRPSclustersort(i).output(a+1).indexright); 
           distcheck10 = abs(NRPSclustersort(i).output(a).indexright - 

NRPSclustersort(i).output(a+1).indexleft); 
           distcheck11 = abs(NRPSclustersort(i).output(a).indexleft - 

NRPSclustersort(i).output(a+1).indexright); 
           distcheck12 = abs(NRPSclustersort(i).output(a).indexleft - 

NRPSclustersort(i).output(a+1).indexleft);                           
           end                  
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                    tfcheck3 = 0; 
                    boolean3 = 

[distcheck9,distcheck10,distcheck11,distcheck12];                     
                    for x=1:length(boolean3) 
                        if boolean3(x) <= distcheck 
                            tfcheck3 = 1; 
                            break 
                        end 
                    end 
%                     if tfcheck3 == 1 
%                         arrayidx = 

[NRPSclustersort(i).output(a).indexright,NRPSclustersort(i).output(a).indexle

ft,NRPSclustersort(i).output(a+1).indexright,NRPSclustersort(i).output(a+1).i

ndexleft]; 
%                         arrayidx = sort(arrayidx); 
%                         NRPSclean(i).output(b).indexright = arrayidx(4); 
%                         NRPSclean(i).output(b).indexleft = arrayidx(1);  
%                     end 

                     
                    if tf3 ~= 1 || tfcheck3 ~= 1 
                        b = b+1; 
                        NRPSclean(i).output(b).scaffold = 

NRPSclustersort(i).output(a+1).scaffold; 
                        NRPSclean(i).output(b).genome = 

NRPSclustersort(i).output(a+1).genome; 
                        NRPSclean(i).output(b).indexright = 

NRPSclustersort(i).output(a+1).indexright; 
                        NRPSclean(i).output(b).indexleft = 

NRPSclustersort(i).output(a+1).indexleft;                                                                    
                    end 
                    if tf3 ==1 && tfcheck3 ==1 && a~=1 
                        arrayidx = 

[NRPSclustersort(i).output(a).indexright,NRPSclustersort(i).output(a).indexle

ft,NRPSclustersort(i).output(a+1).indexright,NRPSclustersort(i).output(a+1).i

ndexleft]; 
                        arrayidx = sort(arrayidx); 
                        NRPSclean(i).output(b).indexright = arrayidx(4); 
                        NRPSclean(i).output(b).indexleft = arrayidx(1);  
                    end 
    end 

   
end 

  
cd(directory); 
cd(resultsfolder); 
save('NRPSresults.mat','NRPSclean'); 

 

Script 5: secondmetcheck_terpene.m 
%%%%%%%%%%check for terpene clusters%%%%%%%%%%%%%%%%%%%%%%%%%% 
clear; 
% directory = 'C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_strains'; 
directory = 'C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_strains2'; 
% directory = 'cd C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_genomes' 
cd(directory); 
% resultsfolder = 'newgenomes'; 
resultsfolder = 'Cyp51results'; 
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cd(resultsfolder) 

  
load('secondmet.mat'); 
idenval = 30; 

  
cd(directory); 
cd(resultsfolder) 

  

  
genomenum = size(secondmet.terpene,1); 
terpenecluster = struct('output',cell(genomenum,size(terpene,1))); 
output = 

struct('scaffold',[],'genome',[],'domain',[],'indexright',[],'indexleft',[],'

type',[]); 

  
%%%count number hits of terpenehits%%%% 

  
%%reduce hits by identity%% 
%count terpene hits and index 
for a = 1:length(secondmet.terpene(:,1)) 
    hitcount = 1; 
    for b = 1:(length(secondmet.terpene(1,:))) 
        for c = 1:length(secondmet.terpene(a,b).output.Hits) 
            for d = 1:length(secondmet.terpene(a,b).output.Hits(c).HSPs) 
                    if 

secondmet.terpene(a,b).output.Hits(c).HSPs(d).Identities.Percent >= idenval 
                    terpenecluster(a,1).output(hitcount).scaffold = 

secondmet.terpene(a,b).output.Hits(c).Name; 
                    terpenecluster(a,1).output(hitcount).genome = 

secondmet.terpene(a,b).genome; 
                    terpenecluster(a,1).output(hitcount).indexleft = 

secondmet.terpene(a,b).output.Hits(c).HSPs(d).SubjectIndices(1); 
                    terpenecluster(a,1).output(hitcount).indexright = 

secondmet.terpene(a,b).output.Hits(c).HSPs(d).SubjectIndices(2); 
                    terpenecluster(a,1).output(hitcount).type = 

secondmet.terpene(a,b).type; 
                    hitcount = hitcount + 1; 
                    end 
            end 
        end 
    end 
end 

         

  
%%%%sort terpenecluster struct to eliminate duplicates 

  
terpeneclustersort = struct('output',[]); 
for i = 1:length(terpenecluster) 
if isempty(terpenecluster(i).output) 
    continue 
end 
terpenefields = fieldnames(terpenecluster(i).output); 
outputsort = struct2cell(terpenecluster(i).output); 
sz = size(outputsort); 
outputsort = reshape(outputsort, sz(1), []); 
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outputsort = outputsort'; 
terpenefields = terpenefields'; 
outputsort = sortrows(outputsort, [1 4 3]); 
outputsort = cell2struct(outputsort, terpenefields, 2); 
terpeneclustersort(i).output = outputsort; 

  
end 

  
%%%%eliminate duplicates 
terpeneclean = struct('output',[]); 
distcheck = 10000; 
clusterdist = 10000; 

  
for i = 1:length(terpeneclustersort) 
    b = 1; 
    hitslen = length(terpeneclustersort(i).output)-1; 
         if length(terpeneclustersort(i).output) == 1 
             hitslen = 1; 
         end 
  for a = 1:hitslen 

          
     if a == 1 
         terpeneclean(i).output(b).scaffold = 

terpeneclustersort(i).output(a).scaffold; 
         terpeneclean(i).output(b).genome = 

terpeneclustersort(i).output(a).genome; 
         terpeneclean(i).output(b).indexright = 

terpeneclustersort(i).output(a).indexright; 
         terpeneclean(i).output(b).indexleft = 

terpeneclustersort(i).output(a).indexleft; 
         terpeneclean(i).output(b).indexleft = 

terpeneclustersort(i).output(a).indexleft; 
         terpeneclean(i).output(b).type = 

terpeneclustersort(i).output(a).type; 
     end 
%      terpeneclean(i).output(b).scaffold = 

terpeneclustersort(i).output(a).scaffold; 
%      terpeneclean(i).output(b).genome = 

terpeneclustersort(i).output(a).genome; 
     distcheck9 = clusterdist + 100; 
     distcheck10 = clusterdist + 100; 
     distcheck11 = clusterdist + 100; 
     distcheck12 = clusterdist + 100; 
     tf3 = 

strcmp(terpeneclustersort(i).output(a).scaffold,terpeneclustersort(i).output(

a+1).scaffold); 
           if tf3 == 1                         
           distcheck9 = abs(terpeneclustersort(i).output(a).indexright - 

terpeneclustersort(i).output(a+1).indexright); 
           distcheck10 = abs(terpeneclustersort(i).output(a).indexright - 

terpeneclustersort(i).output(a+1).indexleft); 
           distcheck11 = abs(terpeneclustersort(i).output(a).indexleft - 

terpeneclustersort(i).output(a+1).indexright); 
           distcheck12 = abs(terpeneclustersort(i).output(a).indexleft - 

terpeneclustersort(i).output(a+1).indexleft);                           
           end                  
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                    tfcheck3 = 0; 
                    boolean3 = 

[distcheck9,distcheck10,distcheck11,distcheck12];                     
                    for x=1:length(boolean3) 
                        if boolean3(x) <= distcheck 
                            tfcheck3 = 1; 
                            break 
                        end 
                    end 
%                     if tfcheck3 == 1 
%                         arrayidx = 

[terpeneclustersort(i).output(a).indexright,terpeneclustersort(i).output(a).i

ndexleft,terpeneclustersort(i).output(a+1).indexright,terpeneclustersort(i).o

utput(a+1).indexleft]; 
%                         arrayidx = sort(arrayidx); 
%                         terpeneclean(i).output(b).indexright = arrayidx(4); 
%                         terpeneclean(i).output(b).indexleft = arrayidx(1);  
%                     end 

                     
                    if tf3 ~= 1 || tfcheck3 ~= 1 
                        b = b+1; 
                        terpeneclean(i).output(b).scaffold = 

terpeneclustersort(i).output(a+1).scaffold; 
                        terpeneclean(i).output(b).genome = 

terpeneclustersort(i).output(a+1).genome; 
                        terpeneclean(i).output(b).indexright = 

terpeneclustersort(i).output(a+1).indexright; 
                        terpeneclean(i).output(b).indexleft = 

terpeneclustersort(i).output(a+1).indexleft;     
                        terpeneclean(i).output(b).indexleft = 

terpeneclustersort(i).output(a+1).indexleft; 
                        terpeneclean(i).output(b).type = 

terpeneclustersort(i).output(a).type; 
                    end 
                    if tf3 ==1 && tfcheck3 ==1 && a~=1 
                        arrayidx = 

[terpeneclustersort(i).output(a).indexright,terpeneclustersort(i).output(a).i

ndexleft,terpeneclustersort(i).output(a+1).indexright,terpeneclustersort(i).o

utput(a+1).indexleft]; 
                        arrayidx = sort(arrayidx); 
                        terpeneclean(i).output(b).indexright = arrayidx(4); 
                        terpeneclean(i).output(b).indexleft = arrayidx(1);  
                    end 
    end 

   
end 

  
cd(directory); 
cd(resultsfolder); 
save('terpeneresults.mat','terpeneclean'); 

 

Script 6: secondmetcheck_PKS_test.m 
%%%%%%%%%%%%%%%%%%%%%%%%check for PKS clusters%%%%%%%%%%%%%%%%%%%%%%%%% 
clear; 
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% directory = 'C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_strains'; 
directory = 'C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_strains2'; 
% directory = 'cd C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_genomes' 
cd(directory); 
% resultsfolder = 'newgenomes'; 
resultsfolder = 'Cyp51results'; 
cd(resultsfolder) 

  

  
load('secondmet.mat'); 

  
cd(directory); 
cd(resultsfolder) 

  
idenval = 5; 
genomenum = size(secondmet.PKS,1); 
PKShitsidx = struct('output',cell(genomenum,size(PKS,1))); 
output = 

struct('scaffold',[],'genome',[],'domain',[],'indexright',[],'indexleft',[]); 

  
%%%count number hits of NRPShits%%%% 

  
%%reduce hits by identity%% 
%count KS domain and index 
for a = 1:length(secondmet.PKS(:,1)) 
    hitcount = 1; 
    for b = 1:(length(secondmet.PKS(1,:))/3) 
        for c = 1:length(secondmet.PKS(a,b).output.Hits) 
            for d = 1:length(secondmet.PKS(a,b).output.Hits(c).HSPs) 
                if 

secondmet.PKS(a,b).output.Hits(c).HSPs(d).Identities.Percent >= idenval 
                    PKShitsidx(a,1).output(hitcount).scaffold = 

secondmet.PKS(a,b).output.Hits(c).Name; 
                    PKShitsidx(a,1).output(hitcount).genome = 

secondmet.PKS(a,b).genome; 
                    PKShitsidx(a,1).output(hitcount).domain = 

secondmet.PKS(a,b).domain; 
                    PKShitsidx(a,1).output(hitcount).indexleft = 

secondmet.PKS(a,b).output.Hits(c).HSPs(d).SubjectIndices(1); 
                    PKShitsidx(a,1).output(hitcount).indexright = 

secondmet.PKS(a,b).output.Hits(c).HSPs(d).SubjectIndices(2); 
                    hitcount = hitcount + 1; 
                end 
            end 
        end 
    end 
end 
%count  AT domain and index 
for a = 1:length(secondmet.PKS(:,1)) 
    hitcount = 1; 
    for b = 1+size(PKS,2):size(PKS,2)+(length(secondmet.PKS(1,:))/3) 
        for c = 1:length(secondmet.PKS(a,b).output.Hits) 
            for d = 1:length(secondmet.PKS(a,b).output.Hits(c).HSPs) 
                if 

secondmet.PKS(a,b).output.Hits(c).HSPs(d).Identities.Percent >= idenval 
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                    PKShitsidx(a,2).output(hitcount).scaffold = 

secondmet.PKS(a,b).output.Hits(c).Name; 
                    PKShitsidx(a,2).output(hitcount).genome = 

secondmet.PKS(a,b).genome; 
                    PKShitsidx(a,2).output(hitcount).domain = 

secondmet.PKS(a,b).domain; 
                    PKShitsidx(a,2).output(hitcount).indexleft = 

secondmet.PKS(a,b).output.Hits(c).HSPs(d).SubjectIndices(1); 
                    PKShitsidx(a,2).output(hitcount).indexright = 

secondmet.PKS(a,b).output.Hits(c).HSPs(d).SubjectIndices(2); 
                    hitcount = hitcount + 1; 
                end 
            end 
        end 
    end 
end 
%count ACP domain and index 
hitcount = 1; 
for a = 1:length(secondmet.PKS(:,1)) %%iterate through genomes 
    hitcount = 1; 
    for b = 

1+size(PKS,2)+size(PKS,2):size(PKS,2)+size(PKS,2)+(length(secondmet.PKS(1,:))

/3) %%iterate through domains 
        for c = 1:length(secondmet.PKS(a,b).output.Hits) %%iterate through 

genome hits 
            for d = 1:length(secondmet.PKS(a,b).output.Hits(c).HSPs) 

%%iterate through scaffold hits 
                if 

secondmet.PKS(a,b).output.Hits(c).HSPs(d).Identities.Percent >= idenval 
                    PKShitsidx(a,3).output(hitcount).scaffold = 

secondmet.PKS(a,b).output.Hits(c).Name; 
                    PKShitsidx(a,3).output(hitcount).genome = 

secondmet.PKS(a,b).genome; 
                    PKShitsidx(a,3).output(hitcount).domain = 

secondmet.PKS(a,b).domain; 
                    PKShitsidx(a,3).output(hitcount).indexleft = 

secondmet.PKS(a,b).output.Hits(c).HSPs(d).SubjectIndices(1); 
                    PKShitsidx(a,3).output(hitcount).indexright = 

secondmet.PKS(a,b).output.Hits(c).HSPs(d).SubjectIndices(2); 
                    hitcount = hitcount + 1; 
                end 
            end 
        end 
    end 
end 

         
%%%%reduce hits by checking colocalization of domains%% 
PKScluster = struct('output',[]); 
output = struct('scaffold',[],'genome',[],'indexright',[],'indexleft',[]); 
check1 = length(PKShitsidx); 
clusterdist = 10000; 

  
for a = 1:check1 %% iterate through num of genomes 

    
            numhits1 = length(PKShitsidx(a,1).output); 
            numhits2 = length(PKShitsidx(a,2).output); 
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            numhits3 = length(PKShitsidx(a,3).output); 

  
            clustercount = 1; 

   
        for c = 1:numhits1 %%going through PKS domains KS domain 

  
            for d = 1:numhits2 %checks against AT domain 
                    distcheck1 = clusterdist + 100; 
                    distcheck2 = clusterdist + 100; 
                    distcheck3 = clusterdist + 100; 
                    distcheck4 = clusterdist + 100; 
                tf1 = 

strcmp(PKShitsidx(a,1).output(c).scaffold,PKShitsidx(a,2).output(d).scaffold)

; 
                if tf1 ==1                  
                    distcheck1 = abs(PKShitsidx(a,1).output(c).indexright - 

PKShitsidx(a,2).output(d).indexright); 
                    distcheck2 = abs(PKShitsidx(a,1).output(c).indexright - 

PKShitsidx(a,2).output(d).indexleft); 
                    distcheck3 = abs(PKShitsidx(a,1).output(c).indexleft - 

PKShitsidx(a,2).output(d).indexright); 
                    distcheck4 = abs(PKShitsidx(a,1).output(c).indexleft - 

PKShitsidx(a,2).output(d).indexleft);    

                     
                end                           

                     

                     
                    boolean1 = [distcheck1,distcheck2,distcheck3,distcheck4];                     
                    tfcheck1 = 0;       
                    tfcheck2 = 0; 
                    for i=1:length(boolean1) 
                        if boolean1(i) <= clusterdist 
                            tfcheck1 = 1; 
                            break 
                        end 
                    end 
                if tfcheck1 == 1 
                        arrayidx = 

[PKShitsidx(a,1).output(c).indexright,PKShitsidx(a,1).output(c).indexleft,PKS

hitsidx(a,2).output(d).indexright,PKShitsidx(a,2).output(d).indexleft]; 
                        arrayidx = sort(arrayidx); 
                        PKScluster(a).output(clustercount).scaffold = 

PKShitsidx(a,1).output(c).scaffold; 
                        PKScluster(a).output(clustercount).genome = a; 
                        PKScluster(a).output(clustercount).indexright = 

arrayidx(4); 
                        PKScluster(a).output(clustercount).indexleft = 

arrayidx(1);  
                        clustercount = clustercount + 1; 
                end                                                          

                                     
                if tfcheck1 ==1 
                    break; 
                end 
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            end 
        end 
end 

  
%%%%sort PKScluster struct to eliminate duplicates 

  
PKSclustersort = struct('output',[]); 
for i = 1:length(PKScluster) 
if isempty(PKScluster(i).output) 
    continue 
end 
PKSfields = fieldnames(PKScluster(i).output); 
outputsort = struct2cell(PKScluster(i).output); 
sz = size(outputsort); 
outputsort = reshape(outputsort, sz(1), []); 
outputsort = outputsort'; 
PKSfields = PKSfields'; 
outputsort = sortrows(outputsort, [1 4 3]); 
outputsort = cell2struct(outputsort, PKSfields, 2); 
PKSclustersort(i).output = outputsort; 

  
end 

  
%%%%eliminate duplicates 
PKSclean = struct('output',[]); 
distcheck = 8000; 

  
for i = 1:length(PKSclustersort) 
    b = 1; 
    hitslen = length(PKSclustersort(i).output)-1; 
         if length(PKSclustersort(i).output) == 1 
             hitslen = 1; 
         end 
  for a = 1:hitslen 

          
     if a == 1 
         PKSclean(i).output(b).scaffold = 

PKSclustersort(i).output(a).scaffold; 
         PKSclean(i).output(b).genome = PKSclustersort(i).output(a).genome; 
         PKSclean(i).output(b).indexright = 

PKSclustersort(i).output(a).indexright; 
         PKSclean(i).output(b).indexleft = 

PKSclustersort(i).output(a).indexleft; 
     end 
     if hitslen == 1 
         continue 
     end 
     distcheck9 = distcheck + 100; 
     distcheck10 = distcheck + 100; 
     distcheck11 = distcheck + 100; 
     distcheck12 = distcheck + 100; 
     tf3 = 

strcmp(PKSclustersort(i).output(a).scaffold,PKSclustersort(i).output(a+1).sca

ffold); 
           if tf3 == 1                         
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           distcheck9 = abs(PKSclustersort(i).output(a).indexright - 

PKSclustersort(i).output(a+1).indexright); 
           distcheck10 = abs(PKSclustersort(i).output(a).indexright - 

PKSclustersort(i).output(a+1).indexleft); 
           distcheck11 = abs(PKSclustersort(i).output(a).indexleft - 

PKSclustersort(i).output(a+1).indexright); 
           distcheck12 = abs(PKSclustersort(i).output(a).indexleft - 

PKSclustersort(i).output(a+1).indexleft);                           
           end                  

                     
                    tfcheck3 = 0; 
                    boolean3 = 

[distcheck9,distcheck10,distcheck11,distcheck12];                     
                    for x=1:length(boolean3) 
                        if boolean3(x) <= distcheck 
                            tfcheck3 = 1; 
                            break 
                        end 
                    end 
%                     if tfcheck3 == 1 
%                         arrayidx = 

[NRPSclustersort(i).output(a).indexright,NRPSclustersort(i).output(a).indexle

ft,NRPSclustersort(i).output(a+1).indexright,NRPSclustersort(i).output(a+1).i

ndexleft]; 
%                         arrayidx = sort(arrayidx); 
%                         NRPSclean(i).output(b).indexright = arrayidx(4); 
%                         NRPSclean(i).output(b).indexleft = arrayidx(1);  
%                     end 

                     
                    if tf3 ~=1 || tfcheck3 ~= 1 
                        b = b+1; 
                        PKSclean(i).output(b).scaffold = 

PKSclustersort(i).output(a+1).scaffold; 
                        PKSclean(i).output(b).genome = 

PKSclustersort(i).output(a+1).genome; 
                        PKSclean(i).output(b).indexright = 

PKSclustersort(i).output(a+1).indexright; 
                        PKSclean(i).output(b).indexleft = 

PKSclustersort(i).output(a+1).indexleft;                                                                    
                    end 
                    if tf3 ==1 && tfcheck3 ==1 && a~=1 
                        arrayidx = 

[PKSclustersort(i).output(a).indexright,PKSclustersort(i).output(a).indexleft

,PKSclustersort(i).output(a+1).indexright,PKSclustersort(i).output(a+1).index

left]; 
                        arrayidx = sort(arrayidx); 
                        PKSclean(i).output(b).indexright = arrayidx(4); 
                        PKSclean(i).output(b).indexleft = arrayidx(1);  
                    end 
    end 

   
end 

  

  
cd(directory); 
cd(resultsfolder); 
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save('PKSresults.mat','PKSclean'); 

 

Script 7: auxgeneblast.m 
%%%%blast secondary metabolite canonical genes%%%%%%%%%%%%%%%%%%%% 
%%%%Colocalization of gene clusters 

  
% blastfiles = 

'C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_genomes\resultsfolder'; 

%specify here the location of blast files 
% directory = 'C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_strains'; 
directory = 'C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_strains2'; 
% directory = 'cd C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_genomes' 
cd(directory); 
% resultsfolder = 'newgenomes'; 
resultsfolder = 'Cyp51results'; 
cd(resultsfolder) 
blastfiles = 

strcat('C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_strains2\',results

folder); %specify here the location of blast files 
gbfiles = dir('*.nhr'); 
numgenomes = length(gbfiles); 

  
cd C:\Users\Lab\Desktop\Genome_Mining_Matlab 
cd Auxgenes_2nd_Met 

  
%%copy TF blast files  
for i = 1:10 
    dom = sprintf('TF_%d.fasta',i); 
    copyfile(dom,blastfiles); 
end 
for i = 1:10 
    dom = sprintf('ZNbind_%d.fasta',i); 
    copyfile(dom,blastfiles); 
end 

  

  
%%%size of TF domain reference 
TFnum1 = 2; 
TFnum2 = 10; 
TF = strings(TFnum1,TFnum2);   

  
for i = 1:10 
    dom = sprintf('TF_%d.fasta',i); 
    TF(1,i) = dom; 
end 
for i = 1:10 
    dom = sprintf('ZNbind_%d.fasta',i); 
    TF(2,i) = dom; 
end 

  
auxgenes = struct('TF',[],'P450',[],'FMO',[],'MT',[],'TE',[]); % categories 

of secondary met genes checked for 
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%%blasting secondmet genes 
cd(directory); 
cd(resultsfolder); 
for a = 1:numgenomes 
    z=1; 
    for b =1:size(TF,1) 
        for c = 1:size(TF,2)  
% genomenum = targetidx(a,2); 
genomenum = a; 
query = TF(b,c); 
query = convertStringsToChars(query); 
outA = sprintf('_hitsin_%d',genomenum); 
outnameTF = strcat(strtok(TF(b,c),'.'),outA); 
outname = strcat(strtok(TF(b,c),'.'),outA,'.txt'); 
outname = convertStringsToChars(outname); 
dbname = sprintf('%d.fasta',genomenum); 

  
%output = blastlocal('InputQuery', query ,'Database', dbname ,'Program', 

'tblastn','ToFile',outname); 
outputTF = blastlocal('InputQuery', query ,'Database', dbname ,'Program', 

'tblastn','ToFile',outname,'expect',50); 
%output = blastlocal('InputQuery', query ,'Database', dbname 

,'Program',%'tblastn'); %if text files is not wanted  
auxgenes.TF(a,z).gen_tar = outnameTF; 
auxgenes.TF(a,z).genome = genomenum; %genome 
auxgenes.TF(a,z).domain = TF(b,c); %gene 
auxgenes.TF(a,z).output = outputTF; 
z=z+1; 
       end 
   end 
end 

  
%%%%%%%%%%%%%%%%%%%%%check for P450's%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
cd C:\Users\Lab\Desktop\Genome_Mining_Matlab 
cd Auxgenes_2nd_Met 

  
%%copy P450 blast files  
for i = 1:10 
    dom = sprintf('P450_%d.fasta',i); 
    copyfile(dom,blastfiles); 
end 

  
%%%size of NRPS domain reference 
P450num1 = 1; 
P450num2 = 10; 
P450 = strings(P450num1,P450num2);   

  
for i = 1:10 
    dom = sprintf('P450_%d.fasta',i); 
    P450(1,i) = dom; 
end 

  
%%blasting secondmet genes 
cd(directory); 
cd(resultsfolder); 
for a = 1:numgenomes 
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    z=1; 
    for b =1:length(P450) 

         
% genomenum = targetidx(a,2); 
genomenum = a; 
query = P450(b); 
query = convertStringsToChars(query); 
outA = sprintf('_hitsin_%d',genomenum); 
outname1 = strcat(strtok(P450(b),'.'),outA); 
outname = strcat(strtok(P450(b),'.'),outA,'.txt'); 
outname = convertStringsToChars(outname); 
dbname = sprintf('%d.fasta',genomenum); 

  
%output = blastlocal('InputQuery', query ,'Database', dbname ,'Program', 

'tblastn','ToFile',outname); 
output = blastlocal('InputQuery', query ,'Database', dbname ,'Program', 

'tblastn','ToFile',outname,'expect',50); 
%output = blastlocal('InputQuery', query ,'Database', dbname 

,'Program',%'tblastn'); %if text files is not wanted  
auxgenes.P450(a,z).gen_tar = outname1; 
auxgenes.P450(a,z).genome = genomenum; %genome 
auxgenes.P450(a,z).domain = P450(b); %gene 
auxgenes.P450(a,z).output = output; 
z=z+1; 

       
   end 
end 
%%%%%%%%%%%%%%%%%%%%%check for FMO's%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
cd C:\Users\Lab\Desktop\Genome_Mining_Matlab 
cd Auxgenes_2nd_Met 

  
%%copy MT blast files  
for i = 1:10 
    dom = sprintf('FMO_%d.fasta',i); 
    copyfile(dom,blastfiles); 
end 

  
%%%size of FMO domain reference 
FMOnum1 = 1; 
FMOnum2 = 10; 
FMO = strings(FMOnum1,FMOnum2);   

  
for i = 1:10 
    dom = sprintf('FMO_%d.fasta',i); 
    FMO(1,i) = dom; 
end 

  
%%blasting secondmet genes 
cd(directory); 
cd(resultsfolder); 
for a = 1:numgenomes 
    z=1; 
    for b =1:length(FMO) 

         
% genomenum = targetidx(a,2); 
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genomenum = a; 
query = FMO(b); 
query = convertStringsToChars(query); 
outA = sprintf('_hitsin_%d',genomenum); 
outname1 = strcat(strtok(FMO(b),'.'),outA); 
outname = strcat(strtok(FMO(b),'.'),outA,'.txt'); 
outname = convertStringsToChars(outname); 
dbname = sprintf('%d.fasta',genomenum); 

  
%output = blastlocal('InputQuery', query ,'Database', dbname ,'Program', 

'tblastn','ToFile',outname); 
output = blastlocal('InputQuery', query ,'Database', dbname ,'Program', 

'tblastn','ToFile',outname,'expect',50); 
%output = blastlocal('InputQuery', query ,'Database', dbname 

,'Program',%'tblastn'); %if text files is not wanted  
auxgenes.FMO(a,z).gen_tar = outname1; 
auxgenes.FMO(a,z).genome = genomenum; %genome 
auxgenes.FMO(a,z).domain = FMO(b); %gene 
auxgenes.FMO(a,z).output = output; 
z=z+1; 

       
   end 
end 

  
%%%%%%%%%%%%%%%%%%%%%check for FMO's%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
cd C:\Users\Lab\Desktop\Genome_Mining_Matlab 
cd Auxgenes_2nd_Met 

  
%%copy MT blast files  
for i = 1:10 
    dom = sprintf('MT_%d.fasta',i); 
    copyfile(dom,blastfiles); 
end 

  
%%%size of MT domain reference 
MTnum1 = 1; 
MTnum2 = 10; 
MT = strings(MTnum1,MTnum2);   

  
for i = 1:10 
    dom = sprintf('MT_%d.fasta',i); 
    MT(1,i) = dom; 
end 

  
%%blasting secondmet genes 
cd(directory); 
cd(resultsfolder); 
for a = 1:numgenomes 
    z=1; 
    for b =1:length(MT) 

         
% genomenum = targetidx(a,2); 
genomenum = a; 
query = MT(b); 
query = convertStringsToChars(query); 
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outA = sprintf('_hitsin_%d',genomenum); 
outname1 = strcat(strtok(MT(b),'.'),outA); 
outname = strcat(strtok(MT(b),'.'),outA,'.txt'); 
outname = convertStringsToChars(outname); 
dbname = sprintf('%d.fasta',genomenum); 

  
%output = blastlocal('InputQuery', query ,'Database', dbname ,'Program', 

'tblastn','ToFile',outname); 
output = blastlocal('InputQuery', query ,'Database', dbname ,'Program', 

'tblastn','ToFile',outname,'expect',50); 
%output = blastlocal('InputQuery', query ,'Database', dbname 

,'Program',%'tblastn'); %if text files is not wanted  
auxgenes.MT(a,z).gen_tar = outname1; 
auxgenes.MT(a,z).genome = genomenum; %genome 
auxgenes.MT(a,z).domain = MT(b); %gene 
auxgenes.MT(a,z).output = output; 
z=z+1; 

       
   end 
end 

  

  
cd(directory); 
cd(resultsfolder); 
save('auxgenesblast.mat','auxgenes','TF','P450','FMO','MT'); 

 

Script 8: auxgeneblast.m 
%%%%%store auxgeneblast data%%%%%%%%%%% 
clear; 
% directory = 'C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_strains'; 
directory = 'C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_strains2'; 

  
% directory = 'cd C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_genomes' 
cd(directory); 
% resultsfolder = 'newgenomes'; 
resultsfolder = 'Cyp51results'; 
cd(resultsfolder) 

  
load('auxgenesblast.mat'); 

  

  
%%%%%%%%%%%%count number hits of TF hits%%%%%%%%%%%%%%%%%%% 

  
genomenum = size(auxgenes.TF,1); 
TFhitsidx = struct('output',cell(genomenum,size(TF,1))); 
output = 

struct('scaffold',[],'genome',[],'domain',[],'indexright',[],'indexleft',[]); 

  

  
%%reduce hits by identity%% 
%%%% scoring paramters for hits 
Scoreval = 20; 
Lengthval = 0.1; 
Eval = 1E-20; 
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identval = 15; 
%%%%%%%%%%%%%%%%%%%% 

  
%count TF domain and index 
for a = 1:length(auxgenes.TF(:,1)) 
    hitcount = 1; 
    for b = 1:(length(auxgenes.TF(1,:))/2) 
        for c = 1:length(auxgenes.TF(a,b).output.Hits) 
            for d = 1:length(auxgenes.TF(a,b).output.Hits(c).HSPs) 
                scorenum = 0; 
                lengthnum = 0; 
                evalnum = 0; 
                ident = 0;    
                 if 

auxgenes.TF(a,b).output.Hits(c).HSPs(d).Identities.Percent >= identval 
                     ident = 1; 
                 end 
                 cover = 

auxgenes.TF(a,b).output.Hits(c).HSPs(d).QueryIndices; 
                 coverval = cover(2)-cover(1); 
                 if coverval > 

Lengthval*auxgenes.TF(a,b).output.Hits(c).Length 
                     lengthnum = 1; 
                 end 
                 if auxgenes.TF(a,b).output.Hits(c).HSPs(d).Expect < Eval 
                     evalnum = 1; 
                 end 
                 if ident == 1  
                    TFhitsidx(a,1).output(hitcount).scaffold = 

auxgenes.TF(a,b).output.Hits(c).Name; 
                    TFhitsidx(a,1).output(hitcount).genome = 

auxgenes.TF(a,b).genome; 
                    TFhitsidx(a,1).output(hitcount).domain = 

auxgenes.TF(a,b).domain; 
                    TFhitsidx(a,1).output(hitcount).indexleft = 

auxgenes.TF(a,b).output.Hits(c).HSPs(d).SubjectIndices(1); 
                    TFhitsidx(a,1).output(hitcount).indexright = 

auxgenes.TF(a,b).output.Hits(c).HSPs(d).SubjectIndices(2); 
                    hitcount = hitcount + 1; 
                end 
            end 
        end 
    end 
end 
%count ZNbind domain and index 
for a = 1:length(auxgenes.TF(:,1)) 
    hitcount = 1; 
    for b = 1+size(TF,2):size(TF,2)+(length(auxgenes.TF(1,:))/2) 
        for c = 1:length(auxgenes.TF(a,b).output.Hits) 
            for d = 1:length(auxgenes.TF(a,b).output.Hits(c).HSPs) 
                scorenum = 0; 
                lengthnum = 0; 
                evalnum = 0; 
                ident = 0;    
                 if 

auxgenes.TF(a,b).output.Hits(c).HSPs(d).Identities.Percent >= identval 
                     ident = 1; 
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                 end 
                 cover = 

auxgenes.TF(a,b).output.Hits(c).HSPs(d).QueryIndices; 
                 coverval = cover(2)-cover(1); 
                 if coverval > 

Lengthval*auxgenes.TF(a,b).output.Hits(c).Length 
                     lengthnum = 1; 
                 end 
                 if auxgenes.TF(a,b).output.Hits(c).HSPs(d).Expect < Eval 
                     evalnum = 1; 
                 end 
                 if ident == 1  
                    TFhitsidx(a,2).output(hitcount).scaffold = 

auxgenes.TF(a,b).output.Hits(c).Name; 
                    TFhitsidx(a,2).output(hitcount).genome = 

auxgenes.TF(a,b).genome; 
                    TFhitsidx(a,2).output(hitcount).domain = 

auxgenes.TF(a,b).domain; 
                    TFhitsidx(a,2).output(hitcount).indexleft = 

auxgenes.TF(a,b).output.Hits(c).HSPs(d).SubjectIndices(1); 
                    TFhitsidx(a,2).output(hitcount).indexright = 

auxgenes.TF(a,b).output.Hits(c).HSPs(d).SubjectIndices(2); 
                    hitcount = hitcount + 1; 
                end 
            end 
        end 
    end 
end 

  
%%%%sort TF struct to eliminate duplicates 

  
TFsort = struct('output',cell(genomenum,size(TF,1))); 
for a = 1:size(TFhitsidx,1) 
    for b = 1:size(TFhitsidx,2)     
        TFfields = fieldnames(TFhitsidx(a,b).output); 
        outputsort = struct2cell(TFhitsidx(a,b).output); 
        sz = size(outputsort); 
        outputsort = reshape(outputsort, sz(1), []); 
        outputsort = outputsort'; 
        TFfields = TFfields'; 
        outputsort = sortrows(outputsort, [1 5 4]); 
        outputsort = cell2struct(outputsort, TFfields, 2); 
        TFsort(a,b).output = outputsort; 
    end 
end 

  
%%%%eliminate duplicates 
TFclean = struct('output',cell(genomenum,size(TF,1))); 
clusterdist = 3000; 

  
for a = 1:size(TFsort,1) 
  for b = 1:size(TFsort,2) 
    count = 1; 
    hitslen = length(TFsort(a,b).output)-1; 
         if length(TFsort(a,b).output) == 1 
             hitslen = 1; 



 

 

190 

 

         end 
     for c = 1:hitslen 

          
         if c == 1 
             TFclean(a,b).output(count).scaffold = 

TFsort(a,b).output(c).scaffold; 
             TFclean(a,b).output(count).genome = 

TFsort(a,b).output(c).genome; 
             TFclean(a,b).output(count).indexright = 

TFsort(a,b).output(c).indexright; 
             TFclean(a,b).output(count).indexleft = 

TFsort(a,b).output(c).indexleft; 
         end 
         distcheck9 = clusterdist + 100; 
         distcheck10 = clusterdist + 100; 
         distcheck11 = clusterdist + 100; 
         distcheck12 = clusterdist + 100; 
         tf3 = 

strcmp(TFsort(a,b).output(c).scaffold,TFsort(a,b).output(c+1).scaffold); 
               if tf3 == 1                         
               distcheck9 = abs(TFsort(a,b).output(c).indexright - 

TFsort(a,b).output(c+1).indexright); 
               distcheck10 = abs(TFsort(a,b).output(c).indexright - 

TFsort(a,b).output(c+1).indexleft); 
               distcheck11 = abs(TFsort(a,b).output(c).indexleft - 

TFsort(a,b).output(c+1).indexright); 
               distcheck12 = abs(TFsort(a,b).output(c).indexleft - 

TFsort(a,b).output(c+1).indexleft);                           
               end                  

  
                        tfcheck3 = 0; 
                        boolean3 = 

[distcheck9,distcheck10,distcheck11,distcheck12];                     
                        for x=1:length(boolean3) 
                            if boolean3(x) <= clusterdist 
                                tfcheck3 = 1; 
                                break 
                            end 
                        end 

     
                        if tf3 ~= 1 || tfcheck3 ~= 1 
                            count = count+1; 
                            TFclean(a,b).output(count).scaffold = 

TFsort(a,b).output(c+1).scaffold; 
                            TFclean(a,b).output(count).genome = 

TFsort(a,b).output(c+1).genome; 
                            TFclean(a,b).output(count).indexright = 

TFsort(a,b).output(c+1).indexright; 
                            TFclean(a,b).output(count).indexleft = 

TFsort(a,b).output(c+1).indexleft;                                                                    
                        end 
                        if tf3 ==1 && tfcheck3 ==1 && c~=1 
                            arrayidx = 

[TFsort(a,b).output(c).indexright,TFsort(a,b).output(c).indexleft,TFsort(a,b)

.output(c+1).indexright,TFsort(a,b).output(c+1).indexleft]; 
                            arrayidx = sort(arrayidx); 
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                            TFclean(a,b).output(count).indexright = 

arrayidx(4); 
                            TFclean(a,b).output(count).indexleft = 

arrayidx(1);  
                        end 
    end 
  end 
end 

  
%%%%%%%%%%%%count number hits of P450 hits%%%%%%%%%%%%%%%%%%% 
genomenum = size(auxgenes.P450,1); 
P450hitsidx = struct('output',cell(genomenum,size(P450,1))); 
output = 

struct('scaffold',[],'genome',[],'domain',[],'indexright',[],'indexleft',[]); 

  

  
%%reduce hits by identity%% 
%%%% scoring paramters for hits 
Scoreval = 100; 
Lengthval = 0.1; 
Eval = 1E-20; 
identval = 15; 
%%%%%%%%%%%%%%%%%%%% 
%count P450 domain and index 
for a = 1:length(auxgenes.P450(:,1)) 
    hitcount = 1; 
    for b = 1:(length(auxgenes.P450(1,:))/2) 
        for c = 1:length(auxgenes.P450(a).output.Hits) 
            for d = 1:length(auxgenes.P450(a).output.Hits(c).HSPs) 
                scorenum = 0; 
                lengthnum = 0; 
                evalnum = 0; 
                ident = 0;    
                 if 

auxgenes.P450(a).output.Hits(c).HSPs(d).Identities.Percent >= identval 
                     ident = 1; 
                 end 
                 cover = 

auxgenes.P450(a).output.Hits(c).HSPs(d).QueryIndices; 
                 coverval = cover(2)-cover(1); 
                 if coverval > 

Lengthval*auxgenes.P450(a).output.Hits(c).Length 
                     lengthnum = 1; 
                 end 
                 if auxgenes.P450(a).output.Hits(c).HSPs(d).Expect < Eval 
                     evalnum = 1; 
                 end 
                 if ident == 1  
                    P450hitsidx(a).output(hitcount).scaffold = 

auxgenes.P450(a).output.Hits(c).Name; 
                    P450hitsidx(a).output(hitcount).genome = 

auxgenes.P450(a).genome; 
                    P450hitsidx(a).output(hitcount).domain = 

auxgenes.P450(a).domain; 
                    P450hitsidx(a).output(hitcount).indexleft = 

auxgenes.P450(a).output.Hits(c).HSPs(d).SubjectIndices(1); 
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                    P450hitsidx(a).output(hitcount).indexright = 

auxgenes.P450(a).output.Hits(c).HSPs(d).SubjectIndices(2); 
                    hitcount = hitcount + 1; 
                end 
            end 
        end 
    end 
end 

  

  
%%%%sort P450 struct to eliminate duplicates 

  
P450sort = struct('output',cell(genomenum,size(P450,1))); 
for a = 1:size(P450hitsidx,1) 

         
        P450fields = fieldnames(P450hitsidx(a).output); 
        outputsort = struct2cell(P450hitsidx(a).output); 
        sz = size(outputsort); 
        outputsort = reshape(outputsort, sz(1), []); 
        outputsort = outputsort'; 
        P450fields = P450fields'; 
        outputsort = sortrows(outputsort, [1 5 4]); 
        outputsort = cell2struct(outputsort, P450fields, 2); 
        P450sort(a).output = outputsort; 

     
end 

  
%%%%eliminate duplicates 
P450clean = struct('output',cell(genomenum,size(P450,1))); 
clusterdist = 3000; 

  
for a = 1:size(P450sort,1) 

   
    count = 1; 
    hitslen = length(P450sort(a).output)-1; 
         if length(P450sort(a).output) == 1 
             hitslen = 1; 
         end 
     for c = 1:hitslen 

          
         if c == 1 
             P450clean(a).output(count).scaffold = 

P450sort(a).output(c).scaffold; 
             P450clean(a).output(count).genome = 

P450sort(a).output(c).genome; 
             P450clean(a).output(count).indexright = 

P450sort(a).output(c).indexright; 
             P450clean(a).output(count).indexleft = 

P450sort(a).output(c).indexleft; 
         end 
         distcheck9 = clusterdist + 100; 
         distcheck10 = clusterdist + 100; 
         distcheck11 = clusterdist + 100; 
         distcheck12 = clusterdist + 100; 
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         P4503 = 

strcmp(P450sort(a).output(c).scaffold,P450sort(a).output(c+1).scaffold); 
               if P4503 == 1                         
               distcheck9 = abs(P450sort(a).output(c).indexright - 

P450sort(a).output(c+1).indexright); 
               distcheck10 = abs(P450sort(a).output(c).indexright - 

P450sort(a).output(c+1).indexleft); 
               distcheck11 = abs(P450sort(a).output(c).indexleft - 

P450sort(a).output(c+1).indexright); 
               distcheck12 = abs(P450sort(a).output(c).indexleft - 

P450sort(a).output(c+1).indexleft);                           
               end                  

  
                        P450check3 = 0; 
                        boolean3 = 

[distcheck9,distcheck10,distcheck11,distcheck12];                     
                        for x=1:length(boolean3) 
                            if boolean3(x) <= clusterdist 
                                P450check3 = 1; 
                                break 
                            end 
                        end 

     
                        if P4503 ~= 1 || P450check3 ~= 1 
                            count = count+1; 
                            P450clean(a).output(count).scaffold = 

P450sort(a).output(c+1).scaffold; 
                            P450clean(a).output(count).genome = 

P450sort(a).output(c+1).genome; 
                            P450clean(a).output(count).indexright = 

P450sort(a).output(c+1).indexright; 
                            P450clean(a).output(count).indexleft = 

P450sort(a).output(c+1).indexleft;                                                                    
                        end 
                        if P4503 ==1 && P450check3 ==1 && c~=1 
                            arrayidx = 

[P450sort(a).output(c).indexright,P450sort(a).output(c).indexleft,P450sort(a)

.output(c+1).indexright,P450sort(a).output(c+1).indexleft]; 
                            arrayidx = sort(arrayidx); 
                            P450clean(a).output(count).indexright = 

arrayidx(4); 
                            P450clean(a).output(count).indexleft = 

arrayidx(1);  
                        end 
    end 

   
end 

  
%%%%%%%%%%%%count number hits of FMO hits%%%%%%%%%%%%%%%%%%% 
genomenum = size(auxgenes.FMO,1); 
FMOhitsidx = struct('output',cell(genomenum,size(FMO,1))); 
output = 

struct('scaffold',[],'genome',[],'domain',[],'indexright',[],'indexleft',[]); 

  

  
%%reduce hits by identity%% 
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%%%% scoring paramters for hits 
Scoreval = 100; 
Lengthval = 0.1; 
Eval = 1E-20; 
identval = 15; 
%%%%%%%%%%%%%%%%%%%% 
%count FMO domain and index 
for a = 1:length(auxgenes.FMO(:,1)) 
    hitcount = 1; 
    for b = 1:(length(auxgenes.FMO(1,:))/2) 
        for c = 1:length(auxgenes.FMO(a).output.Hits) 
            for d = 1:length(auxgenes.FMO(a).output.Hits(c).HSPs) 
                scorenum = 0; 
                lengthnum = 0; 
                evalnum = 0; 
                ident = 0;    
                 if auxgenes.FMO(a).output.Hits(c).HSPs(d).Identities.Percent 

>= identval 
                     ident = 1; 
                 end 
                 cover = auxgenes.FMO(a).output.Hits(c).HSPs(d).QueryIndices; 
                 coverval = cover(2)-cover(1); 
                 if coverval > 

Lengthval*auxgenes.FMO(a).output.Hits(c).Length 
                     lengthnum = 1; 
                 end 
                 if auxgenes.FMO(a).output.Hits(c).HSPs(d).Expect < Eval 
                     evalnum = 1; 
                 end 
                 if ident == 1  
                    FMOhitsidx(a).output(hitcount).scaffold = 

auxgenes.FMO(a).output.Hits(c).Name; 
                    FMOhitsidx(a).output(hitcount).genome = 

auxgenes.FMO(a).genome; 
                    FMOhitsidx(a).output(hitcount).domain = 

auxgenes.FMO(a).domain; 
                    FMOhitsidx(a).output(hitcount).indexleft = 

auxgenes.FMO(a).output.Hits(c).HSPs(d).SubjectIndices(1); 
                    FMOhitsidx(a).output(hitcount).indexright = 

auxgenes.FMO(a).output.Hits(c).HSPs(d).SubjectIndices(2); 
                    hitcount = hitcount + 1; 
                end 
            end 
        end 
    end 
end 

  

  
%%%%sort FMO struct to eliminate duplicates 

  
FMOsort = struct('output',cell(genomenum,size(FMO,1))); 
for a = 1:size(FMOhitsidx,1) 

         
        FMOfields = fieldnames(FMOhitsidx(a).output); 
        outputsort = struct2cell(FMOhitsidx(a).output); 
        sz = size(outputsort); 
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        outputsort = reshape(outputsort, sz(1), []); 
        outputsort = outputsort'; 
        FMOfields = FMOfields'; 
        outputsort = sortrows(outputsort, [1 5 4]); 
        outputsort = cell2struct(outputsort, FMOfields, 2); 
        FMOsort(a).output = outputsort; 

     
end 

  
%%%%eliminate duplicates 
FMOclean = struct('output',cell(genomenum,size(FMO,1))); 
clusterdist = 3000; 

  
for a = 1:size(FMOsort,1) 

   
    count = 1; 
    hitslen = length(FMOsort(a).output)-1; 
         if length(FMOsort(a).output) == 1 
             hitslen = 1; 
         end 
     for c = 1:hitslen 

          
         if c == 1 
             FMOclean(a).output(count).scaffold = 

FMOsort(a).output(c).scaffold; 
             FMOclean(a).output(count).genome = FMOsort(a).output(c).genome; 
             FMOclean(a).output(count).indexright = 

FMOsort(a).output(c).indexright; 
             FMOclean(a).output(count).indexleft = 

FMOsort(a).output(c).indexleft; 
         end 
         distcheck9 = clusterdist + 100; 
         distcheck10 = clusterdist + 100; 
         distcheck11 = clusterdist + 100; 
         distcheck12 = clusterdist + 100; 
         FMO3 = 

strcmp(FMOsort(a).output(c).scaffold,FMOsort(a).output(c+1).scaffold); 
               if FMO3 == 1                         
               distcheck9 = abs(FMOsort(a).output(c).indexright - 

FMOsort(a).output(c+1).indexright); 
               distcheck10 = abs(FMOsort(a).output(c).indexright - 

FMOsort(a).output(c+1).indexleft); 
               distcheck11 = abs(FMOsort(a).output(c).indexleft - 

FMOsort(a).output(c+1).indexright); 
               distcheck12 = abs(FMOsort(a).output(c).indexleft - 

FMOsort(a).output(c+1).indexleft);                           
               end                  

  
                        FMOcheck3 = 0; 
                        boolean3 = 

[distcheck9,distcheck10,distcheck11,distcheck12];                     
                        for x=1:length(boolean3) 
                            if boolean3(x) <= clusterdist 
                                FMOcheck3 = 1; 
                                break 
                            end 
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                        end 

     
                        if FMO3 ~= 1 || FMOcheck3 ~= 1 
                            count = count+1; 
                            FMOclean(a).output(count).scaffold = 

FMOsort(a).output(c+1).scaffold; 
                            FMOclean(a).output(count).genome = 

FMOsort(a).output(c+1).genome; 
                            FMOclean(a).output(count).indexright = 

FMOsort(a).output(c+1).indexright; 
                            FMOclean(a).output(count).indexleft = 

FMOsort(a).output(c+1).indexleft;                                                                    
                        end 
                        if FMO3 ==1 && FMOcheck3 ==1 && c~=1 
                            arrayidx = 

[FMOsort(a).output(c).indexright,FMOsort(a).output(c).indexleft,FMOsort(a).ou

tput(c+1).indexright,FMOsort(a).output(c+1).indexleft]; 
                            arrayidx = sort(arrayidx); 
                            FMOclean(a).output(count).indexright = 

arrayidx(4); 
                            FMOclean(a).output(count).indexleft = 

arrayidx(1);  
                        end 
    end 

   
end 

  
%%%%%%%%%%%%count number hits of MT hits%%%%%%%%%%%%%%%%%%% 
genomenum = size(auxgenes.MT,1); 
MThitsidx = struct('output',cell(genomenum,size(MT,1))); 
output = 

struct('scaffold',[],'genome',[],'domain',[],'indexright',[],'indexleft',[]); 

  

  
%%reduce hits by identity%% 
%%%% scoring paramters for hits 
Scoreval = 100; 
Lengthval = 0.1; 
Eval = 1E-20; 
identval = 15; 
%%%%%%%%%%%%%%%%%%%% 
%count MT domain and index 
for a = 1:length(auxgenes.MT(:,1)) 
    hitcount = 1; 
    for b = 1:(length(auxgenes.MT(1,:))/2) 
        for c = 1:length(auxgenes.MT(a).output.Hits) 
            for d = 1:length(auxgenes.MT(a).output.Hits(c).HSPs) 
                scorenum = 0; 
                lengthnum = 0; 
                evalnum = 0; 
                ident = 0;    
                 if auxgenes.MT(a).output.Hits(c).HSPs(d).Identities.Percent 

>= identval 
                     ident = 1; 
                 end 
                 cover = auxgenes.MT(a).output.Hits(c).HSPs(d).QueryIndices; 
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                 coverval = cover(2)-cover(1); 
                 if coverval > Lengthval*auxgenes.MT(a).output.Hits(c).Length 
                     lengthnum = 1; 
                 end 
                 if auxgenes.MT(a).output.Hits(c).HSPs(d).Expect < Eval 
                     evalnum = 1; 
                 end 
                 if ident == 1  
                    MThitsidx(a).output(hitcount).scaffold = 

auxgenes.MT(a).output.Hits(c).Name; 
                    MThitsidx(a).output(hitcount).genome = 

auxgenes.MT(a).genome; 
                    MThitsidx(a).output(hitcount).domain = 

auxgenes.MT(a).domain; 
                    MThitsidx(a).output(hitcount).indexleft = 

auxgenes.MT(a).output.Hits(c).HSPs(d).SubjectIndices(1); 
                    MThitsidx(a).output(hitcount).indexright = 

auxgenes.MT(a).output.Hits(c).HSPs(d).SubjectIndices(2); 
                    hitcount = hitcount + 1; 
                end 
            end 
        end 
    end 
end 

  

  
%%%%sort MT struct to eliminate duplicates 

  
MTsort = struct('output',cell(genomenum,size(MT,1))); 
for a = 1:size(MThitsidx,1) 

         
        MTfields = fieldnames(MThitsidx(a).output); 
        outputsort = struct2cell(MThitsidx(a).output); 
        sz = size(outputsort); 
        outputsort = reshape(outputsort, sz(1), []); 
        outputsort = outputsort'; 
        MTfields = MTfields'; 
        outputsort = sortrows(outputsort, [1 5 4]); 
        outputsort = cell2struct(outputsort, MTfields, 2); 
        MTsort(a).output = outputsort; 

     
end 

  

%%%%eliminate duplicates 
MTclean = struct('output',cell(genomenum,size(MT,1))); 
clusterdist = 3000; 

  
for a = 1:size(MTsort,1) 

   
    count = 1; 
    hitslen = length(MTsort(a).output)-1; 
         if length(MTsort(a).output) == 1 
             hitslen = 1; 
         end 
     for c = 1:hitslen 
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         if c == 1 
             MTclean(a).output(count).scaffold = 

MTsort(a).output(c).scaffold; 
             MTclean(a).output(count).genome = MTsort(a).output(c).genome; 
             MTclean(a).output(count).indexright = 

MTsort(a).output(c).indexright; 
             MTclean(a).output(count).indexleft = 

MTsort(a).output(c).indexleft; 
         end 
         distcheck9 = clusterdist + 100; 
         distcheck10 = clusterdist + 100; 
         distcheck11 = clusterdist + 100; 
         distcheck12 = clusterdist + 100; 
         MT3 = 

strcmp(MTsort(a).output(c).scaffold,MTsort(a).output(c+1).scaffold); 
               if MT3 == 1                         
               distcheck9 = abs(MTsort(a).output(c).indexright - 

MTsort(a).output(c+1).indexright); 
               distcheck10 = abs(MTsort(a).output(c).indexright - 

MTsort(a).output(c+1).indexleft); 
               distcheck11 = abs(MTsort(a).output(c).indexleft - 

MTsort(a).output(c+1).indexright); 
               distcheck12 = abs(MTsort(a).output(c).indexleft - 

MTsort(a).output(c+1).indexleft);                           
               end                  

  
                        MTcheck3 = 0; 
                        boolean3 = 

[distcheck9,distcheck10,distcheck11,distcheck12];                     
                        for x=1:length(boolean3) 
                            if boolean3(x) <= clusterdist 
                                MTcheck3 = 1; 
                                break 
                            end 
                        end 

     
                        if MT3 ~= 1 || MTcheck3 ~= 1 
                            count = count+1; 
                            MTclean(a).output(count).scaffold = 

MTsort(a).output(c+1).scaffold; 
                            MTclean(a).output(count).genome = 

MTsort(a).output(c+1).genome; 
                            MTclean(a).output(count).indexright = 

MTsort(a).output(c+1).indexright; 
                            MTclean(a).output(count).indexleft = 

MTsort(a).output(c+1).indexleft;                                                                    
                        end 
                        if MT3 ==1 && MTcheck3 ==1 && c~=1 
                            arrayidx = 

[MTsort(a).output(c).indexright,MTsort(a).output(c).indexleft,MTsort(a).outpu

t(c+1).indexright,MTsort(a).output(c+1).indexleft]; 
                            arrayidx = sort(arrayidx); 
                            MTclean(a).output(count).indexright = 

arrayidx(4); 
                            MTclean(a).output(count).indexleft = arrayidx(1);  
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                        end 
    end 

   
end 

  

  
cd(directory); 
cd(resultsfolder); 

  
save('auxgenesclean.mat','TFclean','P450clean','FMOclean','MTclean'); 

 

Script 9: auxgenecheck.m 
%%%%%find secondary metabolite gene clusters next to target hits%%%%%%%% 
clear; 
% cd C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_genomes\resultsfolder 
% directory = 'C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_strains'; 
directory = 'C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_strains2'; 
cd(directory); 
% resultsfolder = 'newgenomes'; 
resultsfolder = 'Cyp51results'; 
cd(resultsfolder) 

  

  
load('targethits.mat'); 
load('NRPSresults.mat'); 
load('PKSresults.mat'); 
load('auxgenesclean.mat'); 
load('genomes.mat'); 
% cd C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_genomes\resultsfolder 

  
cd(directory); 
cd(resultsfolder); 

  

  
clustersinfo = struct('target',[],'genome',[],'auxgenes',[],'core',[]); 
clustersinfo.target = struct('name',[]); 
clustersinfo.genome = struct('name',[]); 

  
clusterdist = 50000; %%%%colocalization of cluster leeway 
clusterdist2 = 3000; 
%%%%find NRPS clusters near targets%%%%% 
clustertargethit = 0; 
for a = 1:length(targetfinalhits) %% iterate through num of genomes 
        count = 0; 
        for b = 1:length(targetfinalhits(a).Hits) %%going through positive 

target hits 
             %%%%%%%%%%%%%%%%%%%%%check for NRPS 

clusters%%%%%%%%%%%%%%%%%%%%% 
            for c = 1: length(NRPSclean(a).output) %%%check through NRPS 
                    distcheck1 = clusterdist + 100; 
                    distcheck2 = clusterdist + 100; 
                    distcheck3 = clusterdist + 100; 
                    distcheck4 = clusterdist + 100; 
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                tf1 = 

strcmp(targetfinalhits(a).Hits(b).scaffold,NRPSclean(a).output(c).scaffold); 
                if tf1 ==1                  
                    distcheck1 = abs(targetfinalhits(a).Hits(b).indexright - 

NRPSclean(a).output(c).indexright); 
                    distcheck2 = abs(targetfinalhits(a).Hits(b).indexright - 

NRPSclean(a).output(c).indexleft); 
                    distcheck3 = abs(targetfinalhits(a).Hits(b).indexleft - 

NRPSclean(a).output(c).indexright); 
                    distcheck4 = abs(targetfinalhits(a).Hits(b).indexleft - 

NRPSclean(a).output(c).indexleft);    
                end                                             
                    boolean1 = [distcheck1,distcheck2,distcheck3,distcheck4];                     
                    tfcheck1 = 0;                     
                    for i=1:length(boolean1) 
                        if boolean1(i) <= clusterdist 
                            tfcheck1 = 1; 
                            break 
                        end 
                    end 
                if tfcheck1 == 1 
                   clustertargethit = clustertargethit + 1; 
                   count = count + 1; 
                   %%%%store info in struc 
                   clustersinfo(clustertargethit).target.output = 

targetfinalhits(a).Hits(b); 
                   clustersinfo(clustertargethit).target.name = 

targetkey(targetfinalhits(a).Hits(b).target,2); 
                   clustersinfo(clustertargethit).target.output.output = 

rmfield(clustersinfo(clustertargethit).target.output.output,'Hits'); 
                   clustersinfo(clustertargethit).target.output.output = 

rmfield(clustersinfo(clustertargethit).target.output.output,'Statistics'); 
                   clustersinfo(clustertargethit).target.output.HSPs = 

rmfield(clustersinfo(clustertargethit).target.output.HSPs,'Alignment'); 
                   clustersinfo(clustertargethit).genome = 

key(targetfinalhits(a).Hits(b).genome,2); 
                   clustersinfo(clustertargethit).core.output = 

NRPSclean(a).output(c); 
                   clustersinfo(clustertargethit).core.name = 'NRPS'; 
                   clustersinfo(clustertargethit).hitnumber = 

clustertargethit; 

                    
                   %%%%%%%%%%check for TF genes%%%%%%%%%%%%%%%%%%% 
                   znnum = 0; 
                   tfnum = 0; 
                   for aa = 1:length(TFclean(a,2).output) %%%check for 

Znbinding domain 
                            distcheck1 = clusterdist + 100; 
                            distcheck2 = clusterdist + 100; 
                            distcheck3 = clusterdist + 100; 
                            distcheck4 = clusterdist + 100; 
                        tfaa = 

strcmp(TFclean(a,2).output(aa).scaffold,NRPSclean(a).output(c).scaffold); 
                            if tfaa ==1                  
                            distcheck1 = 

abs(TFclean(a,2).output(aa).indexright - NRPSclean(a).output(c).indexright); 
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                            distcheck2 = 

abs(TFclean(a,2).output(aa).indexright - NRPSclean(a).output(c).indexleft); 
                            distcheck3 = 

abs(TFclean(a,2).output(aa).indexleft - NRPSclean(a).output(c).indexright); 
                            distcheck4 = 

abs(TFclean(a,2).output(aa).indexleft - NRPSclean(a).output(c).indexleft);    
                            end                                             
                        boolean1 = 

[distcheck1,distcheck2,distcheck3,distcheck4];                     
                        tfaacheck1 = 0;                     
                            for i=1:length(boolean1) 
                                if boolean1(i) <= clusterdist 
                                    tfaacheck1 = 1; 
                                    break 
                                end 
                            end 
                        if tfaacheck1 == 1 
                            znnum = znnum + 1; 
                            

clustersinfo(clustertargethit).auxgenes.TF.Znbinddomain(znnum) = 

TFclean(a,2).output(aa);                             
                        end 
                   end 
                           for bb = 1:length(TFclean(a,1).output) %%%check 

for TF domain 
                                    distcheck1 = clusterdist + 100; 
                                    distcheck2 = clusterdist + 100; 
                                    distcheck3 = clusterdist + 100; 
                                    distcheck4 = clusterdist + 100; 
                                tfbb = 

strcmp(TFclean(a,1).output(bb).scaffold,NRPSclean(a).output(c).scaffold); 
                                    if tfbb ==1                  
                                    distcheck1 = 

abs(TFclean(a,1).output(bb).indexright - NRPSclean(a).output(c).indexright); 
                                    distcheck2 = 

abs(TFclean(a,1).output(bb).indexright - NRPSclean(a).output(c).indexleft); 
                                    distcheck3 = 

abs(TFclean(a,1).output(bb).indexleft - NRPSclean(a).output(c).indexright); 
                                    distcheck4 = 

abs(TFclean(a,1).output(bb).indexleft - NRPSclean(a).output(c).indexleft);    
                                    end                                             
                                boolean1 = 

[distcheck1,distcheck2,distcheck3,distcheck4];                     
                                tfbbcheck1 = 0;                     
                                    for i=1:length(boolean1) 
                                        if boolean1(i) <= clusterdist 
                                            tfbbcheck1 = 1; 
                                            break 
                                        end 
                                    end 

                                   
                           if tfbbcheck1 == 1 
                               tfnum = tfnum + 1; 
                           

clustersinfo(clustertargethit).auxgenes.TF.TF(tfnum) = 

TFclean(a,1).output(bb); 
                           end                                                      
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                           end 
                   %%%%%%%%%%check for P450 genes%%%%%%%%%%%%%%%%%%% 
                   p450num = 0; 
                   for aa = 1:length(P450clean(a).output) %%%check for 

Znbinding domain 
                            distcheck1 = clusterdist + 100; 
                            distcheck2 = clusterdist + 100; 
                            distcheck3 = clusterdist + 100; 
                            distcheck4 = clusterdist + 100; 
                        tfaa = 

strcmp(P450clean(a).output(aa).scaffold,NRPSclean(a).output(c).scaffold); 
                            if tfaa ==1                  
                            distcheck1 = 

abs(P450clean(a).output(aa).indexright - NRPSclean(a).output(c).indexright); 
                            distcheck2 = 

abs(P450clean(a).output(aa).indexright - NRPSclean(a).output(c).indexleft); 
                            distcheck3 = 

abs(P450clean(a).output(aa).indexleft - NRPSclean(a).output(c).indexright); 
                            distcheck4 = 

abs(P450clean(a).output(aa).indexleft - NRPSclean(a).output(c).indexleft);    
                            end                                             
                        boolean1 = 

[distcheck1,distcheck2,distcheck3,distcheck4];                     
                        tfaacheck1 = 0;                     
                            for i=1:length(boolean1) 
                                if boolean1(i) <= clusterdist 
                                    tfaacheck1 = 1; 
                                    break 
                                end 
                            end 
                        if tfaacheck1 == 1 
                            p450num = p450num + 1; 
                           

clustersinfo(clustertargethit).auxgenes.P450(p450num) = 

P450clean(a).output(aa);                    
                        end 
                   end 
                    %%%%%%%%%%check for FMO genes%%%%%%%%%%%%%%%%%%% 
                  FMOnum = 0; 
                   for aa = 1:length(FMOclean(a).output) %%%check for 

Znbinding domain 
                            distcheck1 = clusterdist + 100; 
                            distcheck2 = clusterdist + 100; 
                            distcheck3 = clusterdist + 100; 
                            distcheck4 = clusterdist + 100; 
                        tfaa = 

strcmp(FMOclean(a).output(aa).scaffold,NRPSclean(a).output(c).scaffold); 
                            if tfaa ==1                  
                            distcheck1 = 

abs(FMOclean(a).output(aa).indexright - PKSclean(a).output(c).indexright); 
                            distcheck2 = 

abs(FMOclean(a).output(aa).indexright - PKSclean(a).output(c).indexleft); 
                            distcheck3 = abs(FMOclean(a).output(aa).indexleft 

- PKSclean(a).output(c).indexright); 
                            distcheck4 = abs(FMOclean(a).output(aa).indexleft 

- PKSclean(a).output(c).indexleft);    
                            end                                             
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                        boolean1 = 

[distcheck1,distcheck2,distcheck3,distcheck4];                     
                        tfaacheck1 = 0;                     
                            for i=1:length(boolean1) 
                                if boolean1(i) <= clusterdist 
                                    tfaacheck1 = 1; 
                                    break 
                                end 
                            end 
                        if tfaacheck1 == 1 
                            FMOnum = FMOnum + 1; 
                           

clustersinfo(clustertargethit).auxgenes.FMO(FMOnum) = FMOclean(a).output(aa);                    
                        end 
                   end 
                    %%%%%%%%%%check for MT genes%%%%%%%%%%%%%%%%%%% 
                  MTnum = 0; 
                   for aa = 1:length(MTclean(a).output) %%%check for 

Znbinding domain 
                            distcheck1 = clusterdist + 100; 
                            distcheck2 = clusterdist + 100; 
                            distcheck3 = clusterdist + 100; 
                            distcheck4 = clusterdist + 100; 
                        tfaa = 

strcmp(MTclean(a).output(aa).scaffold,NRPSclean(a).output(c).scaffold); 
                            if tfaa ==1                  
                            distcheck1 = abs(MTclean(a).output(aa).indexright 

- PKSclean(a).output(c).indexright); 
                            distcheck2 = abs(MTclean(a).output(aa).indexright 

- PKSclean(a).output(c).indexleft); 
                            distcheck3 = abs(MTclean(a).output(aa).indexleft 

- PKSclean(a).output(c).indexright); 
                            distcheck4 = abs(MTclean(a).output(aa).indexleft 

- PKSclean(a).output(c).indexleft);    
                            end                                             
                        boolean1 = 

[distcheck1,distcheck2,distcheck3,distcheck4];                     
                        tfaacheck1 = 0;                     
                            for i=1:length(boolean1) 
                                if boolean1(i) <= clusterdist 
                                    tfaacheck1 = 1; 
                                    break 
                                end 
                            end 
                        if tfaacheck1 == 1 
                           MTnum = MTnum + 1; 
                           clustersinfo(clustertargethit).auxgenes.MT(MTnum) 

= MTclean(a).output(aa);                       
                        end 
                   end 
                end 
            end 
           %%%%%%%%%%%%%%%%%%%%%check for PKS clusters%%%%%%%%%%%%%%%%%%%%%      
           for c = 1: length(PKSclean(a).output) %%%check through PKS 
                    distcheck1 = clusterdist + 100; 
                    distcheck2 = clusterdist + 100; 
                    distcheck3 = clusterdist + 100; 
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                    distcheck4 = clusterdist + 100; 
                tf1 = 

strcmp(targetfinalhits(a).Hits(b).scaffold,PKSclean(a).output(c).scaffold); 
                if tf1 ==1                  
                    distcheck1 = abs(targetfinalhits(a).Hits(b).indexright - 

PKSclean(a).output(c).indexright); 
                    distcheck2 = abs(targetfinalhits(a).Hits(b).indexright - 

PKSclean(a).output(c).indexleft); 
                    distcheck3 = abs(targetfinalhits(a).Hits(b).indexleft - 

PKSclean(a).output(c).indexright); 
                    distcheck4 = abs(targetfinalhits(a).Hits(b).indexleft - 

PKSclean(a).output(c).indexleft);    
                end                                             
                    boolean1 = [distcheck1,distcheck2,distcheck3,distcheck4];                     
                    tfcheck1 = 0;                     
                    for i=1:length(boolean1) 
                        if boolean1(i) <= clusterdist 
                            tfcheck1 = 1; 
                            break 
                        end 
                    end 
                if tfcheck1 == 1 
                   clustertargethit = clustertargethit + 1; 
                   clustersinfo(clustertargethit).target.output = 

targetfinalhits(a).Hits(b); 
                   clustersinfo(clustertargethit).target.name = 

targetkey(targetfinalhits(a).Hits(b).target,2); 
                   clustersinfo(clustertargethit).target.output.output = 

rmfield(clustersinfo(clustertargethit).target.output.output,'Hits'); 
                   clustersinfo(clustertargethit).target.output.output = 

rmfield(clustersinfo(clustertargethit).target.output.output,'Statistics'); 
                   clustersinfo(clustertargethit).target.output.HSPs = 

rmfield(clustersinfo(clustertargethit).target.output.HSPs,'Alignment'); 
                   clustersinfo(clustertargethit).genome = 

key(targetfinalhits(a).Hits(b).genome,2); 
                   clustersinfo(clustertargethit).core.output = 

PKSclean(a).output(c); 
                   clustersinfo(clustertargethit).core.name = 'PKS'; 
                   clustersinfo(clustertargethit).hitnumber = 

clustertargethit;  
                   %%%%%%%%%%check for TF genes%%%%%%%%%%%%%%%%%%% 
                   znnum = 0; 
                   tfnum = 0; 
                   for aa = 1:length(TFclean(a,2).output) %%%check for 

Znbinding domain 
                            distcheck1 = clusterdist + 100; 
                            distcheck2 = clusterdist + 100; 
                            distcheck3 = clusterdist + 100; 
                            distcheck4 = clusterdist + 100; 
                        tfaa = 

strcmp(TFclean(a,2).output(aa).scaffold,PKSclean(a).output(c).scaffold); 
                            if tfaa ==1                  
                            distcheck1 = 

abs(TFclean(a,2).output(aa).indexright - PKSclean(a).output(c).indexright); 
                            distcheck2 = 

abs(TFclean(a,2).output(aa).indexright - PKSclean(a).output(c).indexleft); 
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                            distcheck3 = 

abs(TFclean(a,2).output(aa).indexleft - PKSclean(a).output(c).indexright); 
                            distcheck4 = 

abs(TFclean(a,2).output(aa).indexleft - PKSclean(a).output(c).indexleft);    
                            end                                             
                        boolean1 = 

[distcheck1,distcheck2,distcheck3,distcheck4];                     
                        tfaacheck1 = 0;                     
                            for i=1:length(boolean1) 
                                if boolean1(i) <= clusterdist 
                                    tfaacheck1 = 1; 
                                    break 
                                end 
                            end 
                        if tfaacheck1 == 1 
                           znnum = znnum + 1; 
                           

clustersinfo(clustertargethit).auxgenes.TF.Znbinddomain(znnum) = 

TFclean(a,2).output(aa); 
                        end 
                   end 
                           for bb = 1:length(TFclean(a,1).output) %%%check 

for TF domain 
                                    distcheck1 = clusterdist + 100; 
                                    distcheck2 = clusterdist + 100; 
                                    distcheck3 = clusterdist + 100; 
                                    distcheck4 = clusterdist + 100; 
                                tfbb = 

strcmp(TFclean(a,1).output(bb).scaffold,PKSclean(a).output(c).scaffold); 
                                    if tfbb ==1                  
                                    distcheck1 = 

abs(TFclean(a,1).output(bb).indexright - PKSclean(a).output(c).indexright); 
                                    distcheck2 = 

abs(TFclean(a,1).output(bb).indexright - PKSclean(a).output(c).indexleft); 
                                    distcheck3 = 

abs(TFclean(a,1).output(bb).indexleft - PKSclean(a).output(c).indexright); 
                                    distcheck4 = 

abs(TFclean(a,1).output(bb).indexleft - PKSclean(a).output(c).indexleft);    
                                    end                                             
                                boolean1 = 

[distcheck1,distcheck2,distcheck3,distcheck4];                     
                                tfbbcheck1 = 0;                     
                                    for i=1:length(boolean1) 
                                        if boolean1(i) <= clusterdist 
                                            tfbbcheck1 = 1; 
                                            break 
                                        end 
                                    end 

                                     
                           if tfbbcheck1 == 1 
                           tfnum = tfnum + 1; 
                           

clustersinfo(clustertargethit).auxgenes.TF.TF(tfnum) = 

TFclean(a,1).output(bb); 
                           end                                                      
                           end 
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                    %%%%%%%%%%check for P450 genes%%%%%%%%%%%%%%%%%%% 
                   p450num = 0; 
                   for aa = 1:length(P450clean(a).output) %%%check for 

Znbinding domain 
                            distcheck1 = clusterdist + 100; 
                            distcheck2 = clusterdist + 100; 
                            distcheck3 = clusterdist + 100; 
                            distcheck4 = clusterdist + 100; 
                        tfaa = 

strcmp(P450clean(a).output(aa).scaffold,PKSclean(a).output(c).scaffold); 
                            if tfaa ==1                  
                            distcheck1 = 

abs(P450clean(a).output(aa).indexright - PKSclean(a).output(c).indexright); 
                            distcheck2 = 

abs(P450clean(a).output(aa).indexright - PKSclean(a).output(c).indexleft); 
                            distcheck3 = 

abs(P450clean(a).output(aa).indexleft - PKSclean(a).output(c).indexright); 
                            distcheck4 = 

abs(P450clean(a).output(aa).indexleft - PKSclean(a).output(c).indexleft);    
                            end                                             
                        boolean1 = 

[distcheck1,distcheck2,distcheck3,distcheck4];                     
                        tfaacheck1 = 0;                     
                            for i=1:length(boolean1) 
                                if boolean1(i) <= clusterdist 
                                    tfaacheck1 = 1; 
                                    break 
                                end 
                            end 
                        if tfaacheck1 == 1 
                           p450num = p450num + 1; 
                           

clustersinfo(clustertargethit).auxgenes.P450(p450num) = 

P450clean(a).output(aa);                 
                        end 
                   end 
                     %%%%%%%%%%check for FMO genes%%%%%%%%%%%%%%%%%%% 
                  FMOnum = 0; 
                   for aa = 1:length(FMOclean(a).output) %%%check for 

Znbinding domain 
                            distcheck1 = clusterdist + 100; 
                            distcheck2 = clusterdist + 100; 
                            distcheck3 = clusterdist + 100; 
                            distcheck4 = clusterdist + 100; 
                        tfaa = 

strcmp(FMOclean(a).output(aa).scaffold,PKSclean(a).output(c).scaffold); 
                            if tfaa ==1                  
                            distcheck1 = 

abs(FMOclean(a).output(aa).indexright - PKSclean(a).output(c).indexright); 
                            distcheck2 = 

abs(FMOclean(a).output(aa).indexright - PKSclean(a).output(c).indexleft); 
                            distcheck3 = abs(FMOclean(a).output(aa).indexleft 

- PKSclean(a).output(c).indexright); 
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                            distcheck4 = abs(FMOclean(a).output(aa).indexleft 

- PKSclean(a).output(c).indexleft);    
                            end                                             
                        boolean1 = 

[distcheck1,distcheck2,distcheck3,distcheck4];                     
                        tfaacheck1 = 0;                     
                            for i=1:length(boolean1) 
                                if boolean1(i) <= clusterdist 
                                    tfaacheck1 = 1; 
                                    break 
                                end 
                            end 
                        if tfaacheck1 == 1 
                           FMOnum = FMOnum + 1; 
                           

clustersinfo(clustertargethit).auxgenes.FMO(FMOnum) = FMOclean(a).output(aa);                    
                        end 
                   end 
                    %%%%%%%%%%check for MT genes%%%%%%%%%%%%%%%%%%% 
                  MTnum = 0; 
                   for aa = 1:length(MTclean(a).output) %%%check for 

Znbinding domain 
                            distcheck1 = clusterdist + 100; 
                            distcheck2 = clusterdist + 100; 
                            distcheck3 = clusterdist + 100; 
                            distcheck4 = clusterdist + 100; 
                        tfaa = 

strcmp(MTclean(a).output(aa).scaffold,PKSclean(a).output(c).scaffold); 
                            if tfaa ==1                  
                            distcheck1 = abs(MTclean(a).output(aa).indexright 

- PKSclean(a).output(c).indexright); 
                            distcheck2 = abs(MTclean(a).output(aa).indexright 

- PKSclean(a).output(c).indexleft); 
                            distcheck3 = abs(MTclean(a).output(aa).indexleft 

- PKSclean(a).output(c).indexright); 
                            distcheck4 = abs(MTclean(a).output(aa).indexleft 

- PKSclean(a).output(c).indexleft);    
                            end                                             
                        boolean1 = 

[distcheck1,distcheck2,distcheck3,distcheck4];                     
                        tfaacheck1 = 0;                     
                            for i=1:length(boolean1) 
                                if boolean1(i) <= clusterdist 
                                    tfaacheck1 = 1; 
                                    break 
                                end 
                            end 
                        if tfaacheck1 == 1 
                           MTnum = MTnum + 1; 
                           clustersinfo(clustertargethit).auxgenes.MT(MTnum) 

= MTclean(a).output(aa);                      
                        end 
                   end 
                end                                
           end 
        end 
end 
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cd C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_strains2 
cd(resultsfolder) 

  
save('clusterfinalhits.mat','clustersinfo'); 

 

 

Script 10: targethithchecks.m 
%%%comparison of target hits and cluster hits 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%              
%%%Read and store target hit data 
%Readblast looks at blast output struct for info 
clear; 
% directory = 'C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_strains'; 
directory = 'C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_strains2'; 
% directory = 'C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_genomes' 
% directory = 

'C:\Users\Lab\Desktop\Genome_Mining_Matlab\antifungal_tests\mining'; 
cd(directory); 
% resultsfolder = 'newgenomes'; 
resultsfolder = 'Cyp51results'; 
cd(resultsfolder) 
load('targetresults.mat'); 
xsize = size(results); 
numtargets = xsize(1); 
numgenomes = xsize(2); 

  
%%%%make database of hits 
targethits = struct('Hits',cell(size(results,2),size(results,1))); 
for a =1:numgenomes        
    for b =1:numtargets       
        count = 0; 
        for c = 1:length(results(b,a).output.Hits) 
           for d = 1:length(results(b,a).output.Hits(c).HSPs)    %         
                     count = count+1; 
                     targethits(a,b).Hits(count).output = 

results(b,a).output; 
                     targethits(a,b).Hits(count).HSPs = 

results(b,a).output.Hits(c).HSPs(d); 
                     targethits(a,b).Hits(count).genome = a; 
                     gentar = sprintf('target%d_hit_genome%d \n',b,a); 
                     targethits(a,b).Hits(count).gen_tar = gentar; 
                     targethits(a,b).Hits(count).target = b; 
                     targethits(a,b).Hits(count).scaffold = 

results(b,a).output.Hits(c).Name; 
                     targethits(a,b).Hits(count).indexleft = 

results(b,a).output.Hits(c).HSPs(d).SubjectIndices(1); 
                     targethits(a,b).Hits(count).indexright = 

results(b,a).output.Hits(c).HSPs(d).SubjectIndices(2);                     
           end 
        end         

            
    end 
end 
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test2 = zeros(size(targethits,1),size(targethits,2)); 
for a = 1:size(targethits,1) 
    for b = 1:size(targethits,2) 
        test2(a,b) = length(targethits(a,b).Hits); 
    end 
end 

  
%%%%sort targethit struct to eliminate duplicates 

  
targetsort = struct('Hits',cell(size(targethits,1),size(targethits,2))); 
for a = 1:size(targethits,1) 
    for b = 1:size(targethits,2)       
        if isempty(targethits(a,b).Hits) == 1 
            continue 
        end 
        targetfields = fieldnames(targethits(a,b).Hits); 
        outputsort = struct2cell(targethits(a,b).Hits); 
        sz = size(outputsort); 
        outputsort = reshape(outputsort, sz(1), []); 
        outputsort = outputsort'; 
        targetfields = targetfields'; 
        outputsort = sortrows(outputsort, [5 6 7]); 
        outputsort = cell2struct(outputsort, targetfields, 2); 
        targetsort(a,b).Hits = outputsort; 
    end 
end 
%%%%%make database of target hits 

  
targetidx = struct('Hits',cell(numgenomes,numtargets)); %%%%target hit struct 

for data  
% targetidx.Hits = 

struct('output',[],'genome',[],'target',[],'gen_tar',[],'scaffold',[],'indexr

ight',[],'indexleft',[]); 
targethitsx = zeros(numgenomes,numtargets); %%%hit array for reference 

  
%%%% scoring paramaters for hits%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Scoreval = 20; 
Lengthval = 0.1; 
Eval = 1E-100; 
identval = 20; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%%%clean up hits based on scoring values 
for a =1:numgenomes        
    for b =1:numtargets       
        count = 0; 
        for c = 1:length(targetsort(a,b).Hits) 
        scorenum = 0; 
        lengthnum = 0; 
        evalnum = 0; 
        ident = 0;        

            
    %          if results(a,b).output.Hits(c).HSPs(1).Score >= Scoreval 
    %              scorenum = 1; 
    %          end 
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                 if targetsort(a,b).Hits(c).HSPs.Identities.Percent >= 

identval 
                     ident = 1; 
                 end 
                 cover = targetsort(a,b).Hits(c).HSPs.QueryIndices; 
                 coverval = cover(2)-cover(1); 
                 if coverval > 

Lengthval*targetsort(a,b).Hits(c).output.Length 
                     lengthnum = 1; 
                 end 
                 if targetsort(a,b).Hits(c).HSPs.Expect < Eval 
                     evalnum = 1; 
                 end  

                  
%                  if ident + lengthnum + evalnum == 3 
                   if ident == 1 &&  evalnum ==1  
                     count = count+1; 
                     targetidx(a,b).Hits(count).output = 

targetsort(a,b).Hits(c).output; 
                     targetidx(a,b).Hits(count).HSPs = 

targetsort(a,b).Hits(c).HSPs; 
                     targetidx(a,b).Hits(count).genome = a; 
                     gentar = sprintf('target%d_hit_genome%d \n',b,a); 
                     targetidx(a,b).Hits(count).gen_tar = gentar; 
                     targetidx(a,b).Hits(count).target = b; 
                     targetidx(a,b).Hits(count).scaffold = 

targetsort(a,b).Hits(c).scaffold; 
                     targetidx(a,b).Hits(count).indexleft = 

targetsort(a,b).Hits(c).indexleft; 
                     targetidx(a,b).Hits(count).indexright = 

targetsort(a,b).Hits(c).indexright;                     
                   end 

            
        end         
    end     
end 

  
testx = zeros(size(targetidx,1),size(targetidx,2)); 
for a = 1:size(targetidx,1) 
    for b = 1:size(targetidx,2) 
        testx(a,b) = length(targetidx(a,b).Hits); 
    end 
end 

  
%%%%eliminate duplicates 
targetidxclean = struct('Hits',cell(size(targetidx,1),size(targetidx,2))); 
clusterdist = 1000; 

  
for a = 1:size(targetidx,1) %genomes 
       for b = 1:size(targetidx,2) %targets 
         countclean = 1; 
         hitslen = length(targetidx(a,b).Hits); 
         if length(targetidx(a,b).Hits) == 1 
             hitslen = 1; 
         else  
             hitslen = length(targetidx(a,b).Hits)-1; 
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         end              
            for c = 1:hitslen %hits 

          
                 if c == 1 
                     targetidxclean(a,b).Hits(c).scaffold = 

targetidx(a,b).Hits(c).scaffold; 
                     targetidxclean(a,b).Hits(c).genome = 

targetidx(a,b).Hits(c).genome; 
                     targetidxclean(a,b).Hits(c).indexright = 

targetidx(a,b).Hits(c).indexright; 
                     targetidxclean(a,b).Hits(c).indexleft = 

targetidx(a,b).Hits(c).indexleft; 
                     targetidxclean(a,b).Hits(c).gen_tar = 

targetidx(a,b).Hits(c).gen_tar; 
                     targetidxclean(a,b).Hits(c).target = 

targetidx(a,b).Hits(c).target; 
                     targetidxclean(a,b).Hits(c).output = 

targetidx(a,b).Hits(c).output; 
                     targetidxclean(a,b).Hits(c).HSPs = 

targetidx(a,b).Hits(c).HSPs; 
                 end 
                 if hitslen == 1 
                    continue 
                 end 
                 distcheck9 = clusterdist + 100; 
                 distcheck10 = clusterdist + 100; 
                 distcheck11 = clusterdist + 100; 
                 distcheck12 = clusterdist + 100; 
                 tf3 = 

strcmp(targetidx(a,b).Hits(c).scaffold,targetidx(a,b).Hits(c+1).scaffold); 
                       if tf3 == 1                         
                       distcheck9 = abs(targetidx(a,b).Hits(c).indexright - 

targetidx(a,b).Hits(c+1).indexright); 
                       distcheck10 = abs(targetidx(a,b).Hits(c).indexright - 

targetidx(a,b).Hits(c+1).indexleft); 
                       distcheck11 = abs(targetidx(a,b).Hits(c).indexleft - 

targetidx(a,b).Hits(c+1).indexright); 
                       distcheck12 = abs(targetidx(a,b).Hits(c).indexleft - 

targetidx(a,b).Hits(c+1).indexleft);                           
                       end                  

  
                                tfcheck3 = 0; 
                                boolean3 = 

[distcheck9,distcheck10,distcheck11,distcheck12];                     
                                for x=1:length(boolean3) 
                                    if boolean3(x) <= clusterdist 
                                        tfcheck3 = 1; 
                                        break 
                                    end 
                                end 

  
                                if tf3 ~= 1 || tfcheck3 ~= 1 
                                    countclean = countclean+1; 
                                    

targetidxclean(a,b).Hits(countclean).scaffold = 

targetidx(a,b).Hits(c+1).scaffold; 
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targetidxclean(a,b).Hits(countclean).genome = 

targetidx(a,b).Hits(c+1).genome; 
                                    

targetidxclean(a,b).Hits(countclean).indexright = 

targetidx(a,b).Hits(c+1).indexright; 
                                    

targetidxclean(a,b).Hits(countclean).indexleft = 

targetidx(a,b).Hits(c+1).indexleft; 
                                    

targetidxclean(a,b).Hits(countclean).gen_tar = 

targetidx(a,b).Hits(c+1).gen_tar; 
                                    

targetidxclean(a,b).Hits(countclean).target = 

targetidx(a,b).Hits(c+1).target; 
                                    

targetidxclean(a,b).Hits(countclean).output = 

targetidx(a,b).Hits(c+1).output;         
                                    targetidxclean(a,b).Hits(countclean).HSPs 

= targetidx(a,b).Hits(c+1).HSPs; 
                                end 
                                if tf3 ==1 && tfcheck3 ==1 && a~=1 
                                    arrayidx = 

[targetidx(a,b).Hits(c).indexright,targetidx(a,b).Hits(c).indexleft,targetidx

(a,b).Hits(c+1).indexright,targetidx(a,b).Hits(c+1).indexleft]; 
                                    arrayidx = sort(arrayidx); 
                                    

targetidxclean(a,b).Hits(countclean).indexright = arrayidx(4); 
                                    

targetidxclean(a,b).Hits(countclean).indexleft = arrayidx(1);  
                                end 
            end 
        end 
end 

  
for a = 1:size(targetidxclean,1) 
    for b = 1:size(targetidxclean,2) 
        targethitsx(a,b) = length(targetidxclean(a,b).Hits); 
    end 
end 

  
for a = 1:size(targetidxclean,1) 
    for b = 1:size(targetidxclean,2) 
        for c = 1:length(targetidxclean(a,b).Hits) 
        targetidxclean(a,b).Hits(c).Hitnum = 

length(targetidxclean(a,b).Hits); 
        end 
    end 
end 

  

  
cd(directory); 
cd(resultsfolder); 
file2 = fopen('targethits_2nd.txt','w+'); 
for a=1:numtargets 
   average = mean(targethitsx(:,a)); 
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   medval = median(targethitsx(:,a)); 

    
   statstxt1 = sprintf('average hits of target%d is %d \n',a,average); 
   statstxt2 = sprintf('median of target%d hits is %d \n', a, medval); 

    
   fprintf(file2, statstxt1); 
   fprintf(file2, statstxt2); 
   fprintf(file2, '\n \n'); 
end 

  
cd(directory); 

  
file1 = sprintf('%dTargets_%dgenomes_2nd.xlsx',numtargets,numgenomes); 
xlswrite(file1, targethitsx); 
xlswrite('testx',testx); 
xlswrite('test2',test2); 

  
%%%%reduce hits index by checking for targets greater than average 
targetfinalhits = struct('Hits',[]); 
Hits = 

struct('output',[],'genome',[],'target',[],'gen_tar',[],'scaffold',[],'indexr

ight',[],'indexleft',[]); 
t = 1; %%%%1 if we want to check targets greater than average, 0 if we don't 

want to check  

  
if t == 1 
for a = 1:numgenomes    
    countfinal = 0; 
    for b = 1:numtargets                    
       average = mean(targethitsx(:,b)); 
       medval = median(targethitsx(:,b)); 

        
       if length(targetidxclean(a,b).Hits) > average || 

length(targetidxclean(a,b).Hits) > medval  
           positivehit = sprintf('\n target%d_hit_genome%d :%d hits 

\n',b,a,length(targetidxclean(a,b).Hits)); 
           fprintf(file2, positivehit); 

            
           for c = 1:length(targetidxclean(a,b).Hits) 
               countfinal = countfinal + 1; 
               targetfinalhits(a).Hits(countfinal).output = 

targetidxclean(a,b).Hits(c).output; 
               targetfinalhits(a).Hits(countfinal).genome = 

targetidxclean(a,b).Hits(c).genome; 
               targetfinalhits(a).Hits(countfinal).target = 

targetidxclean(a,b).Hits(c).target; 
               targetfinalhits(a).Hits(countfinal).gen_tar = 

targetidxclean(a,b).Hits(c).gen_tar; 
               targetfinalhits(a).Hits(countfinal).scaffold = 

targetidxclean(a,b).Hits(c).scaffold; 
               targetfinalhits(a).Hits(countfinal).indexleft = 

targetidxclean(a,b).Hits(c).indexleft; 
               targetfinalhits(a).Hits(countfinal).indexright = 

targetidxclean(a,b).Hits(c).indexright; 
               targetfinalhits(a).Hits(countfinal).averagetarget = average; 



 

 

214 

 

               targetfinalhits(a).Hits(countfinal).mediantarget = medval; 
               targetfinalhits(a).Hits(countfinal).targethits = 

length(targetidxclean(a,b).Hits); 
               targetfinalhits(a).Hits(countfinal).HSPs = 

targetidxclean(a,b).Hits(c).HSPs; 
               targetfinalhits(a).Hits(countfinal).Hitnum = 

targetidxclean(a,b).Hits(c).Hitnum; 

                
               %%%print location of hits%%%%%5 
               print0 = sprintf('hit #%d',c); 
               fprintf(file2, print0);          
               print1 = strcat('\n 

scaffold:',targetfinalhits(a).Hits(countfinal).scaffold,'\n'); 
               fprintf(file2, print1); 
               numleft = 

num2str(targetfinalhits(a).Hits(countfinal).indexleft); 
               print2 = strcat('indexleft:',numleft,'\n'); 
               fprintf(file2, print2); 
               numright = 

num2str(targetfinalhits(a).Hits(countfinal).indexright); 
               print3 = strcat('indexright:',numright,'\n'); 
               fprintf(file2, print3);             
           end 
       end 
    end 
end 
elseif t == 0 
    for a = 1:numgenomes    
    countfinal = 0; 
    for b = 1:numtargets                   

                            
           for c = 1:length(targetidxclean(a,b).Hits) 
               countfinal = countfinal + 1; 
               targetfinalhits(a).Hits(countfinal).output = 

targetidxclean(a,b).Hits(c).output; 
               targetfinalhits(a).Hits(countfinal).genome = 

targetidxclean(a,b).Hits(c).genome; 
               targetfinalhits(a).Hits(countfinal).target = 

targetidxclean(a,b).Hits(c).target; 
               targetfinalhits(a).Hits(countfinal).gen_tar = 

targetidxclean(a,b).Hits(c).gen_tar; 
               targetfinalhits(a).Hits(countfinal).scaffold = 

targetidxclean(a,b).Hits(c).scaffold; 
               targetfinalhits(a).Hits(countfinal).indexleft = 

targetidxclean(a,b).Hits(c).indexleft; 
               targetfinalhits(a).Hits(countfinal).indexright = 

targetidxclean(a,b).Hits(c).indexright; 
               targetfinalhits(a).Hits(countfinal).averagetarget = average; 
               targetfinalhits(a).Hits(countfinal).mediantarget = medval; 
               targetfinalhits(a).Hits(countfinal).targethits = 

length(targetidxclean(a,b).Hits); 
               targetfinalhits(a).Hits(countfinal).HSPs = 

targetidxclean(a,b).Hits(c).HSPs; 
               targetfinalhits(a).Hits(countfinal).Hitnum = 

targetidxclean(a,b).Hits(c).Hitnum; 
               %%%print location of hits%%%%%5 
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               print0 = sprintf('hit #%d',c); 
               fprintf(file2, print0);          
               print1 = strcat('\n 

scaffold:',targetfinalhits(a).Hits(countfinal).scaffold,'\n'); 
               fprintf(file2, print1); 
               numleft = 

num2str(targetfinalhits(a).Hits(countfinal).indexleft); 
               print2 = strcat('indexleft:',numleft,'\n'); 
               fprintf(file2, print2); 
               numright = 

num2str(targetfinalhits(a).Hits(countfinal).indexright); 
               print3 = strcat('indexright:',numright,'\n'); 
               fprintf(file2, print3);             
           end 
       end 
    end 
end 

  
cd(directory); 
cd(resultsfolder); 

  

                
save('targethits.mat','targetfinalhits','-v7.3');         

  

         

         

 

Script 11: targetclusterfindv3.m 
%%%%%find secondary metabolite gene clusters next to target hits%%%%%%%% 
clear; 
% directory = 'C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_strains'; 
directory = 'C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_strains2'; 
% directory = 'cd C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_genomes' 
cd(directory); 
% resultsfolder = 'newgenomes'; 
resultsfolder = 'Cyp51results'; 
cd(resultsfolder) 
load('targethits.mat'); 
load('NRPSresults.mat'); 
load('PKSresults.mat'); 
load('terpeneresults.mat'); 
load('auxgenesclean.mat'); 
load('genomes.mat'); 

  
mkdir results 
cd results 
filecluster = fopen('results_02282020_Cyp51_PKS_NRPS.txt','w+'); 

  
residuepos = 10; %%%position of residue to be checked for 

  
clusterdist = 20000; %%%%colocalization of secondary metabolite genes 
clusterdist2 = 20000; %%%%colocalization of target and core gene 
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printini1 = sprintf('\nthreshold distance between target and core enzyme is 

%d bp',clusterdist2); 
printini2 = sprintf('\nthreshold distance between secondary metabolite genes 

and enzyme and target is %d bp',clusterdist); 

  
fprintf(filecluster,printini1); 
fprintf(filecluster,printini2); 

  

  
terpenecheck = 0; %set to 1 if you want to check terpene clusters 
NRPS_PKScheck = 1; %set to 1 if you want to check NRPS and PKS clusers 

  
%%%%find clusters near targets%%%%% 

  

  
clustertargethit = 0; 
for a = 1:length(targetfinalhits) %% iterate through num of genomes 
        for b = 1:length(targetfinalhits(a).Hits) %%going through positive 

target hits 
            if NRPS_PKScheck == 1 
             %%%%%%%%%%%%%%%%%%%%%check for NRPS 

clusters%%%%%%%%%%%%%%%%%%%%% 
            for c = 1: length(NRPSclean(a).output) %%%check through NRPS 
                    distcheck1 = clusterdist2 + 100; 
                    distcheck2 = clusterdist2 + 100; 
                    distcheck3 = clusterdist2 + 100; 
                    distcheck4 = clusterdist2 + 100; 
                tf1 = 

strcmp(targetfinalhits(a).Hits(b).scaffold,NRPSclean(a).output(c).scaffold); 
                if tf1 ==1                  
                    distcheck1 = abs(targetfinalhits(a).Hits(b).indexright - 

NRPSclean(a).output(c).indexright); 
                    distcheck2 = abs(targetfinalhits(a).Hits(b).indexright - 

NRPSclean(a).output(c).indexleft); 
                    distcheck3 = abs(targetfinalhits(a).Hits(b).indexleft - 

NRPSclean(a).output(c).indexright); 
                    distcheck4 = abs(targetfinalhits(a).Hits(b).indexleft - 

NRPSclean(a).output(c).indexleft);    
                end                                             
                    boolean1 = [distcheck1,distcheck2,distcheck3,distcheck4];                     
                    tfcheck1 = 0;                     
                    for i=1:length(boolean1) 
                        if boolean1(i) <= clusterdist2 
                            tfcheck1 = 1; 
                            break 
                        end 
                    end 
                if tfcheck1 == 1 
                   clustertargethit = clustertargethit + 1; 
                   print0 = sprintf('\nhit#%d',clustertargethit); 
                   fprintf(filecluster,print0); 
                   print1 = sprintf('\ntarget T%d hit in genome %d near NRPS 

cluster\n',targetfinalhits(a).Hits(b).target,targetfinalhits(a).Hits(b).genom

e); 
                   fprintf(filecluster, print1); 
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%                    %%%%%% 
                   targetname1 = sprintf('target T%d is  

',targetfinalhits(a).Hits(b).target); 
                   targetname2 = 

targetkey(targetfinalhits(a).Hits(b).target,2); 
                   printtarget = strcat(targetname1,{' '},targetname2); 
                   fprintf(filecluster,printtarget); 
                   targid = sprintf('\ntarget id is 

%d',targetfinalhits(a).Hits(b).HSPs.Identities.Percent); %%%%%%%Print ID% 
                   fprintf(filecluster, targid); 
                   targe = sprintf('\ntarget evalue is %d', 

targetfinalhits(a).Hits(b).HSPs.Expect); %%%%%%%%%%%%%%%Print Evalue 
                   fprintf(filecluster, targe); 
                   genomename1 = sprintf('\ngenome %d is  

',targetfinalhits(a).Hits(b).genome); 
                   genomename2 = key(targetfinalhits(a).Hits(b).genome,2); 
                   printgenome = strcat(genomename1,{' '},genomename2); 
                   fprintf(filecluster,printgenome); 

                    
                   hitnum1 = num2str(targetfinalhits(a).Hits(b).Hitnum); 
                   targethitprint = strcat('\nnumber of target hits in 

',genomename2,' is ',hitnum1); 
                   fprintf(filecluster,targethitprint); 
                   avgnum1 = 

num2str(targetfinalhits(a).Hits(b).averagetarget); 
                   targetavgprint = strcat('\naverage target hits in all 

genomes is ',avgnum1); 
                   mednum1 = 

num2str(targetfinalhits(a).Hits(b).mediantarget); 
                   targetmedprint = strcat('\nmedian target hits in all 

genomes is ',mednum1); 
                   fprintf(filecluster,targetavgprint); 
                   fprintf(filecluster,targetmedprint); 
%                    %%%%%% 
                   print2 = strcat('\ntarget scaffold: 

',targetfinalhits(a).Hits(b).scaffold,'\n'); 
                   fprintf(filecluster, print2); 
                   numleft = num2str(targetfinalhits(a).Hits(b).indexleft); 
                   print3 = strcat('target indexleft: ',numleft,'\n'); 
                   fprintf(filecluster, print3); 
                   numright = num2str(targetfinalhits(a).Hits(b).indexright); 
                   print4 = strcat('target indexright: ',numright,'\n'); 
                   fprintf(filecluster,print4);                   
                   numleft = num2str(NRPSclean(a).output(c).indexleft); 
                   print6 = strcat('NRPS indexleft: ',numleft,'\n'); 
                   fprintf(filecluster, print6); 
                   numright = num2str(NRPSclean(a).output(c).indexright); 
                   print7 = strcat('NRPS indexright: ',numright,'\n'); 
                   fprintf(filecluster, print7);    
                   %%%%%output residue checks for target%%%%%%%% 

                    
                   if targetfinalhits(a).Hits(b).HSPs.QueryIndices(1) <= 

residuepos && targetfinalhits(a).Hits(b).HSPs.QueryIndices(2) >= residuepos 
                       count = 

targetfinalhits(a).Hits(b).HSPs.QueryIndices(1); 
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                       for i = 

targetfinalhits(a).Hits(b).HSPs.QueryIndices(1):targetfinalhits(a).Hits(b).HS

Ps.QueryIndices(2) 
                           if count == residuepos 
                               resstr = num2str(residuepos); 
                               print8 = strcat('\nresidue #',resstr,' is_  ', 

targetfinalhits(a).Hits(b).HSPs.Alignment(3,i-

targetfinalhits(a).Hits(b).HSPs.QueryIndices(1)+1),'\n'); 
                               fprintf(filecluster, print8); 
                               break; 
                           elseif 

targetfinalhits(a).Hits(b).HSPs.Alignment(1,i) == '-' 
                               count = count;                              
                           else  
                               count = count+1;  
                           end 
                       end 
                   end 
                   %%%%%%%%%%check for TF genes%%%%%%%%%%%%%%%%%%% 
                   znnum = 0; 
                   tfnum = 0; 
                   for aa = 1:length(TFclean(a,2).output) %%%check for 

Znbinding domain 
                            distcheck1 = clusterdist + 100; 
                            distcheck2 = clusterdist + 100; 
                            distcheck3 = clusterdist + 100; 
                            distcheck4 = clusterdist + 100; 
                        tfaa = 

strcmp(TFclean(a,2).output(aa).scaffold,NRPSclean(a).output(c).scaffold); 
                            if tfaa ==1                  
                            distcheck1 = 

abs(TFclean(a,2).output(aa).indexright - NRPSclean(a).output(c).indexright); 
                            distcheck2 = 

abs(TFclean(a,2).output(aa).indexright - NRPSclean(a).output(c).indexleft); 
                            distcheck3 = 

abs(TFclean(a,2).output(aa).indexleft - NRPSclean(a).output(c).indexright); 
                            distcheck4 = 

abs(TFclean(a,2).output(aa).indexleft - NRPSclean(a).output(c).indexleft);    
                            end                                             
                        boolean1 = 

[distcheck1,distcheck2,distcheck3,distcheck4];                     
                        tfaacheck1 = 0;                     
                            for i=1:length(boolean1) 
                                if boolean1(i) <= clusterdist 
                                    tfaacheck1 = 1; 
                                    break 
                                end 
                            end 
                        if tfaacheck1 == 1 
                           znnum = znnum + 1; 
                           print1 = sprintf('ZN binding domain gene #%d in 

cluster\n',znnum); 
                           fprintf(filecluster, print1);                            
                           numleft = 

num2str(TFclean(a,2).output(aa).indexleft); 
                           print3 = strcat('ZNbind indexleft: 

',numleft,'\n'); 



 

 

219 

 

                           fprintf(filecluster, print3); 
                           numright = 

num2str(TFclean(a,2).output(aa).indexright);  
                           print4 = strcat('ZNbind indexright: 

',numright,'\n'); 
                           fprintf(filecluster, print4);    
                        end 
                   end 
                           for bb = 1:length(TFclean(a,1).output) %%%check 

for TF domain 
                                    distcheck1 = clusterdist + 100; 
                                    distcheck2 = clusterdist + 100; 
                                    distcheck3 = clusterdist + 100; 
                                    distcheck4 = clusterdist + 100; 
                                tfbb = 

strcmp(TFclean(a,1).output(bb).scaffold,NRPSclean(a).output(c).scaffold); 
                                    if tfbb ==1                  
                                    distcheck1 = 

abs(TFclean(a,1).output(bb).indexright - NRPSclean(a).output(c).indexright); 
                                    distcheck2 = 

abs(TFclean(a,1).output(bb).indexright - NRPSclean(a).output(c).indexleft); 
                                    distcheck3 = 

abs(TFclean(a,1).output(bb).indexleft - NRPSclean(a).output(c).indexright); 
                                    distcheck4 = 

abs(TFclean(a,1).output(bb).indexleft - NRPSclean(a).output(c).indexleft);    
                                    end                                             
                                boolean1 = 

[distcheck1,distcheck2,distcheck3,distcheck4];                     
                                tfbbcheck1 = 0;                     
                                    for i=1:length(boolean1) 
                                        if boolean1(i) <= clusterdist 
                                            tfbbcheck1 = 1; 
                                            break 
                                        end 
                                    end 

                                   
                           if tfbbcheck1 == 1 
                           tfnum = tfnum + 1; 
                           print1 = sprintf('TF gene #%d in 

cluster\n',tfnum); 
                           fprintf(filecluster, print1);                            
                           numleft = 

num2str(TFclean(a,1).output(bb).indexleft); 
                           print3 = strcat('TF indexleft: ',numleft,'\n'); 
                           fprintf(filecluster, print3); 
                           numright = 

num2str(TFclean(a,1).output(bb).indexright); 
                           print4 = strcat('TF indexright: ',numleft,'\n'); 
                           fprintf(filecluster, print4); 
                           end                                                      
                           end 
                   %%%%%%%%%%check for P450 genes%%%%%%%%%%%%%%%%%%% 
                   p450num = 0; 
                   for aa = 1:length(P450clean(a).output) %%%check for 

Znbinding domain 
                            distcheck1 = clusterdist + 100; 
                            distcheck2 = clusterdist + 100; 
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                            distcheck3 = clusterdist + 100; 
                            distcheck4 = clusterdist + 100; 
                        tfaa = 

strcmp(P450clean(a).output(aa).scaffold,NRPSclean(a).output(c).scaffold); 
                            if tfaa ==1                  
                            distcheck1 = 

abs(P450clean(a).output(aa).indexright - NRPSclean(a).output(c).indexright); 
                            distcheck2 = 

abs(P450clean(a).output(aa).indexright - NRPSclean(a).output(c).indexleft); 
                            distcheck3 = 

abs(P450clean(a).output(aa).indexleft - NRPSclean(a).output(c).indexright); 
                            distcheck4 = 

abs(P450clean(a).output(aa).indexleft - NRPSclean(a).output(c).indexleft);    
                            end                                             
                        boolean1 = 

[distcheck1,distcheck2,distcheck3,distcheck4];                     
                        tfaacheck1 = 0;                     
                            for i=1:length(boolean1) 
                                if boolean1(i) <= clusterdist 
                                    tfaacheck1 = 1; 
                                    break 
                                end 
                            end 
                        if tfaacheck1 == 1 
                           p450num = p450num + 1; 
                           print1 = sprintf('P450 #%d in cluster\n',p450num); 
                           fprintf(filecluster, print1);                            
                           numleft = 

num2str(P450clean(a).output(aa).indexleft); 
                           print3 = strcat('P450 indexleft: ',numleft,'\n'); 
                           fprintf(filecluster, print3); 
                           numright = 

num2str(P450clean(a).output(aa).indexright); 
                           print4 = strcat('P450 indexright: 

',numright,'\n'); 
                           fprintf(filecluster, print4);                          
                        end 
                   end 
                    %%%%%%%%%%check for FMO genes%%%%%%%%%%%%%%%%%%% 
                  FMOnum = 0; 
                   for aa = 1:length(FMOclean(a).output) %%%check for 

Znbinding domain 
                            distcheck1 = clusterdist + 100; 
                            distcheck2 = clusterdist + 100; 
                            distcheck3 = clusterdist + 100; 
                            distcheck4 = clusterdist + 100; 
                        tfaa = 

strcmp(FMOclean(a).output(aa).scaffold,NRPSclean(a).output(c).scaffold); 
                            if tfaa ==1                  
                            distcheck1 = 

abs(FMOclean(a).output(aa).indexright - NRPSclean(a).output(c).indexright); 
                            distcheck2 = 

abs(FMOclean(a).output(aa).indexright - NRPSclean(a).output(c).indexleft); 
                            distcheck3 = abs(FMOclean(a).output(aa).indexleft 

- NRPSclean(a).output(c).indexright); 
                            distcheck4 = abs(FMOclean(a).output(aa).indexleft 

- NRPSclean(a).output(c).indexleft);    
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                            end                                             
                        boolean1 = 

[distcheck1,distcheck2,distcheck3,distcheck4];                     
                        tfaacheck1 = 0;                     
                            for i=1:length(boolean1) 
                                if boolean1(i) <= clusterdist 
                                    tfaacheck1 = 1; 
                                    break 
                                end 
                            end 
                        if tfaacheck1 == 1 
                           FMOnum = FMOnum + 1; 
                           print1 = sprintf('FMO #%d in cluster\n',FMOnum); 
                           fprintf(filecluster, print1);                            
                           numleft = 

num2str(FMOclean(a).output(aa).indexleft); 
                           print3 = strcat('FMO indexleft: ',numleft,'\n'); 
                           fprintf(filecluster, print3); 
                           numright = 

num2str(FMOclean(a).output(aa).indexright); 
                           print4 = strcat('FMO indexright: ',numright,'\n'); 
                           fprintf(filecluster, print4);                          
                        end 
                   end 
                    %%%%%%%%%%check for MT genes%%%%%%%%%%%%%%%%%%% 
                  MTnum = 0; 
                   for aa = 1:length(MTclean(a).output) %%%check for 

Znbinding domain 
                            distcheck1 = clusterdist + 100; 
                            distcheck2 = clusterdist + 100; 
                            distcheck3 = clusterdist + 100; 
                            distcheck4 = clusterdist + 100; 
                        tfaa = 

strcmp(MTclean(a).output(aa).scaffold,NRPSclean(a).output(c).scaffold); 
                            if tfaa ==1                  
                            distcheck1 = abs(MTclean(a).output(aa).indexright 

- NRPSclean(a).output(c).indexright); 
                            distcheck2 = abs(MTclean(a).output(aa).indexright 

- NRPSclean(a).output(c).indexleft); 
                            distcheck3 = abs(MTclean(a).output(aa).indexleft 

- NRPSclean(a).output(c).indexright); 
                            distcheck4 = abs(MTclean(a).output(aa).indexleft 

- NRPSclean(a).output(c).indexleft);    
                            end                                             
                        boolean1 = 

[distcheck1,distcheck2,distcheck3,distcheck4];                     
                        tfaacheck1 = 0;                     
                            for i=1:length(boolean1) 
                                if boolean1(i) <= clusterdist 
                                    tfaacheck1 = 1; 
                                    break 
                                end 
                            end 
                        if tfaacheck1 == 1 
                           MTnum = MTnum + 1; 
                           print1 = sprintf('MT #%d in cluster\n',MTnum); 
                           fprintf(filecluster, print1);                            
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                           numleft = 

num2str(MTclean(a).output(aa).indexleft); 
                           print3 = strcat('MT indexleft: ',numleft,'\n'); 
                           fprintf(filecluster, print3); 
                           numright = 

num2str(MTclean(a).output(aa).indexright); 
                           print4 = strcat('MT indexright: ',numright,'\n'); 
                           fprintf(filecluster, print4);                          
                        end 
                   end 
                end 
            end 
           %%%%%%%%%%%%%%%%%%%%%check for PKS clusters%%%%%%%%%%%%%%%%%%%%%      
           for c = 1: length(PKSclean(a).output) %%%check through PKS 
                    distcheck1 = clusterdist2 + 100; 
                    distcheck2 = clusterdist2 + 100; 
                    distcheck3 = clusterdist2 + 100; 
                    distcheck4 = clusterdist2 + 100; 
                tf1 = 

strcmp(targetfinalhits(a).Hits(b).scaffold,PKSclean(a).output(c).scaffold); 
                if tf1 ==1                  
                    distcheck1 = abs(targetfinalhits(a).Hits(b).indexright - 

PKSclean(a).output(c).indexright); 
                    distcheck2 = abs(targetfinalhits(a).Hits(b).indexright - 

PKSclean(a).output(c).indexleft); 
                    distcheck3 = abs(targetfinalhits(a).Hits(b).indexleft - 

PKSclean(a).output(c).indexright); 
                    distcheck4 = abs(targetfinalhits(a).Hits(b).indexleft - 

PKSclean(a).output(c).indexleft);    
                end                                             
                    boolean1 = [distcheck1,distcheck2,distcheck3,distcheck4];                     
                    tfcheck1 = 0;                     
                    for i=1:length(boolean1) 
                        if boolean1(i) <= clusterdist2 
                            tfcheck1 = 1; 
                            break 
                        end 
                    end 
                if tfcheck1 == 1 
                   clustertargethit = clustertargethit + 1; 
                   print0 = sprintf('\nhit#%d',clustertargethit);                    
                   fprintf(filecluster,print0); 
                   print1 = sprintf('\ntarget T%d hit in genome %d near PKS 

cluster\n',targetfinalhits(a).Hits(b).target,targetfinalhits(a).Hits(b).genom

e); 
                   fprintf(filecluster, print1); 
                   %                    %%%%%% 
                   targetname1 = sprintf('target T%d is  

',targetfinalhits(a).Hits(b).target); 
                   targetname2 = 

targetkey(targetfinalhits(a).Hits(b).target,2); 
                   printtarget = strcat(targetname1,{' '},targetname2); 
                   fprintf(filecluster,printtarget); 
                   targid = sprintf('\ntarget id is 

%d',targetfinalhits(a).Hits(b).HSPs.Identities.Percent); %%%%%%%Print ID% 
                   fprintf(filecluster, targid); 
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                   targe = sprintf('\ntarget evalue is %d', 

targetfinalhits(a).Hits(b).HSPs.Expect); %%%%%%%%%%%%%%%Print Evalue 
                   fprintf(filecluster, targe); 
                   genomename1 = sprintf('\ngenome %d is  

',targetfinalhits(a).Hits(b).genome); 
                   genomename2 = key(targetfinalhits(a).Hits(b).genome,2); 
                   printgenome = strcat(genomename1,{' '},genomename2); 
                   fprintf(filecluster,printgenome); 

                    
                   hitnum1 = num2str(targetfinalhits(a).Hits(b).Hitnum); 
                   targethitprint = strcat('\nnumber of target hits in 

',genomename2,' is ',hitnum1); 
                   fprintf(filecluster,targethitprint); 
                   avgnum1 = 

num2str(targetfinalhits(a).Hits(b).averagetarget); 
                   targetavgprint = strcat('\naverage target hits in all 

genomes is ',avgnum1); 
                   mednum1 = 

num2str(targetfinalhits(a).Hits(b).mediantarget); 
                   targetmedprint = strcat('\nmedian target hits in all 

genomes is ',mednum1); 
                   fprintf(filecluster,targetavgprint); 
                   fprintf(filecluster,targetmedprint); 
%                    %%%%%% 

  
                   print2 = strcat('\ntarget scaffold: 

',targetfinalhits(a).Hits(b).scaffold,'\n'); 
                   fprintf(filecluster, print2); 
                   numleft = num2str(targetfinalhits(a).Hits(b).indexleft); 
                   print3 = strcat('target indexleft: ',numleft,'\n'); 
                   fprintf(filecluster, print3); 
                   numright = num2str(targetfinalhits(a).Hits(b).indexright); 
                   print4 = strcat('target indexright: ',numright,'\n'); 
                   fprintf(filecluster,print4);                    
                   numleft = num2str(PKSclean(a).output(c).indexleft); 
                   print6 = strcat('PKS indexleft: ',numleft,'\n'); 
                   fprintf(filecluster, print6); 
                   numright = num2str(PKSclean(a).output(c).indexright); 
                   print7 = strcat('PKS indexright: ',numright,'\n'); 
                   fprintf(filecluster, print7);     
                   %%%%%output residue checks for target%%%%%%%% 

                    
                   if targetfinalhits(a).Hits(b).HSPs.QueryIndices(1) <= 

residuepos && targetfinalhits(a).Hits(b).HSPs.QueryIndices(2) >= residuepos 
                       count = 

targetfinalhits(a).Hits(b).HSPs.QueryIndices(1); 
                       for i = 

targetfinalhits(a).Hits(b).HSPs.QueryIndices(1):targetfinalhits(a).Hits(b).HS

Ps.QueryIndices(2) 
                           if count == residuepos 
                               resstr = num2str(residuepos); 
                               print8 = strcat('\nresidue #',resstr,' is_  ', 

targetfinalhits(a).Hits(b).HSPs.Alignment(3,i-

targetfinalhits(a).Hits(b).HSPs.QueryIndices(1)+1),'\n'); 
                               fprintf(filecluster, print8); 
                               break; 
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                           elseif 

targetfinalhits(a).Hits(b).HSPs.Alignment(1,i) == '-' 
                               count = count;                              
                           else  
                               count = count+1;  
                           end 
                       end 
                   end 
                   %%%%%%%%%%check for TF genes%%%%%%%%%%%%%%%%%%% 
                   znnum = 0; 
                   tfnum = 0; 
                   for aa = 1:length(TFclean(a,2).output) %%%check for 

Znbinding domain 
                            distcheck1 = clusterdist + 100; 
                            distcheck2 = clusterdist + 100; 
                            distcheck3 = clusterdist + 100; 
                            distcheck4 = clusterdist + 100; 
                        tfaa = 

strcmp(TFclean(a,2).output(aa).scaffold,PKSclean(a).output(c).scaffold); 
                            if tfaa ==1                  
                            distcheck1 = 

abs(TFclean(a,2).output(aa).indexright - PKSclean(a).output(c).indexright); 
                            distcheck2 = 

abs(TFclean(a,2).output(aa).indexright - PKSclean(a).output(c).indexleft); 
                            distcheck3 = 

abs(TFclean(a,2).output(aa).indexleft - PKSclean(a).output(c).indexright); 
                            distcheck4 = 

abs(TFclean(a,2).output(aa).indexleft - PKSclean(a).output(c).indexleft);    
                            end                                             
                        boolean1 = 

[distcheck1,distcheck2,distcheck3,distcheck4];                     
                        tfaacheck1 = 0;                     
                            for i=1:length(boolean1) 
                                if boolean1(i) <= clusterdist 
                                    tfaacheck1 = 1; 
                                    break 
                                end 
                            end 
                        if tfaacheck1 == 1 
                           znnum = znnum + 1; 
                           print1 = sprintf('ZN binding domain #%d gene in 

cluster\n',znnum); 
                           fprintf(filecluster, print1);                            
                           numleft = 

num2str(TFclean(a,2).output(aa).indexleft); 
                           print3 = strcat('ZNbind indexleft: 

',numleft,'\n'); 
                           fprintf(filecluster, print3); 
                           numright = 

num2str(TFclean(a,2).output(aa).indexright);  
                           print4 = strcat('ZNbind indexright: 

',numright,'\n'); 
                           fprintf(filecluster, print4);    
                        end 
                   end 
                           for bb = 1:length(TFclean(a,1).output) %%%check 

for TF domain 
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                                    distcheck1 = clusterdist + 100; 
                                    distcheck2 = clusterdist + 100; 
                                    distcheck3 = clusterdist + 100; 
                                    distcheck4 = clusterdist + 100; 
                                tfbb = 

strcmp(TFclean(a,1).output(bb).scaffold,PKSclean(a).output(c).scaffold); 
                                    if tfbb ==1                  
                                    distcheck1 = 

abs(TFclean(a,1).output(bb).indexright - PKSclean(a).output(c).indexright); 
                                    distcheck2 = 

abs(TFclean(a,1).output(bb).indexright - PKSclean(a).output(c).indexleft); 
                                    distcheck3 = 

abs(TFclean(a,1).output(bb).indexleft - PKSclean(a).output(c).indexright); 
                                    distcheck4 = 

abs(TFclean(a,1).output(bb).indexleft - PKSclean(a).output(c).indexleft);    
                                    end                                             
                                boolean1 = 

[distcheck1,distcheck2,distcheck3,distcheck4];                     
                                tfbbcheck1 = 0;                     
                                    for i=1:length(boolean1) 
                                        if boolean1(i) <= clusterdist 
                                            tfbbcheck1 = 1; 
                                            break 
                                        end 
                                    end 

                                     
                           if tfbbcheck1 == 1 
                           tfnum = tfnum + 1; 
                           print1 = sprintf('TF gene #%d in 

cluster\n',tfnum); 
                           fprintf(filecluster, print1);                            
                           numleft = 

num2str(TFclean(a,1).output(bb).indexleft); 
                           print3 = strcat('TF indexleft: ',numleft,'\n'); 
                           fprintf(filecluster, print3); 
                           numright = 

num2str(TFclean(a,1).output(bb).indexright); 
                           print4 = strcat('TF indexright: ',numleft,'\n'); 
                           fprintf(filecluster, print4); 
                           end                                                      
                           end 

                             

                    
                    %%%%%%%%%%check for P450 genes%%%%%%%%%%%%%%%%%%% 
                   p450num = 0; 
                   for aa = 1:length(P450clean(a).output) %%%check for 

Znbinding domain 
                            distcheck1 = clusterdist + 100; 
                            distcheck2 = clusterdist + 100; 
                            distcheck3 = clusterdist + 100; 
                            distcheck4 = clusterdist + 100; 
                        tfaa = 

strcmp(P450clean(a).output(aa).scaffold,PKSclean(a).output(c).scaffold); 
                            if tfaa ==1                  
                            distcheck1 = 

abs(P450clean(a).output(aa).indexright - PKSclean(a).output(c).indexright); 
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                            distcheck2 = 

abs(P450clean(a).output(aa).indexright - PKSclean(a).output(c).indexleft); 
                            distcheck3 = 

abs(P450clean(a).output(aa).indexleft - PKSclean(a).output(c).indexright); 
                            distcheck4 = 

abs(P450clean(a).output(aa).indexleft - PKSclean(a).output(c).indexleft);    
                            end                                             
                        boolean1 = 

[distcheck1,distcheck2,distcheck3,distcheck4];                     
                        tfaacheck1 = 0;                     
                            for i=1:length(boolean1) 
                                if boolean1(i) <= clusterdist 
                                    tfaacheck1 = 1; 
                                    break 
                                end 
                            end 
                        if tfaacheck1 == 1 
                           p450num = p450num + 1; 
                           print1 = sprintf('P450 #%d in cluster\n',p450num); 
                           fprintf(filecluster, print1);                            
                           numleft = 

num2str(P450clean(a).output(aa).indexleft); 
                           print3 = strcat('P450 indexleft: ',numleft,'\n'); 
                           fprintf(filecluster, print3); 
                           numright = 

num2str(P450clean(a).output(aa).indexright); 
                           print4 = strcat('P450 indexright: 

',numright,'\n'); 
                           fprintf(filecluster, print4);                          
                        end 
                   end 
                     %%%%%%%%%%check for FMO genes%%%%%%%%%%%%%%%%%%% 
                  FMOnum = 0; 
                   for aa = 1:length(FMOclean(a).output) %%%check for 

Znbinding domain 
                            distcheck1 = clusterdist + 100; 
                            distcheck2 = clusterdist + 100; 
                            distcheck3 = clusterdist + 100; 
                            distcheck4 = clusterdist + 100; 
                        tfaa = 

strcmp(FMOclean(a).output(aa).scaffold,PKSclean(a).output(c).scaffold); 
                            if tfaa ==1                  
                            distcheck1 = 

abs(FMOclean(a).output(aa).indexright - PKSclean(a).output(c).indexright); 
                            distcheck2 = 

abs(FMOclean(a).output(aa).indexright - PKSclean(a).output(c).indexleft); 
                            distcheck3 = abs(FMOclean(a).output(aa).indexleft 

- PKSclean(a).output(c).indexright); 
                            distcheck4 = abs(FMOclean(a).output(aa).indexleft 

- PKSclean(a).output(c).indexleft);    
                            end                                             
                        boolean1 = 

[distcheck1,distcheck2,distcheck3,distcheck4];                     
                        tfaacheck1 = 0;                     
                            for i=1:length(boolean1) 
                                if boolean1(i) <= clusterdist 
                                    tfaacheck1 = 1; 



 

 

227 

 

                                    break 
                                end 
                            end 
                        if tfaacheck1 == 1 
                           FMOnum = FMOnum + 1; 
                           print1 = sprintf('FMO #%d in cluster\n',FMOnum); 
                           fprintf(filecluster, print1);                            
                           numleft = 

num2str(FMOclean(a).output(aa).indexleft); 
                           print3 = strcat('FMO indexleft: ',numleft,'\n'); 
                           fprintf(filecluster, print3); 
                           numright = 

num2str(FMOclean(a).output(aa).indexright); 
                           print4 = strcat('FMO indexright: ',numright,'\n'); 
                           fprintf(filecluster, print4);                          
                        end 
                   end 
                    %%%%%%%%%%check for MT genes%%%%%%%%%%%%%%%%%%% 
                  MTnum = 0; 
                   for aa = 1:length(MTclean(a).output) %%%check for 

Znbinding domain 
                            distcheck1 = clusterdist + 100; 
                            distcheck2 = clusterdist + 100; 
                            distcheck3 = clusterdist + 100; 
                            distcheck4 = clusterdist + 100; 
                        tfaa = 

strcmp(MTclean(a).output(aa).scaffold,PKSclean(a).output(c).scaffold); 
                            if tfaa ==1                  
                            distcheck1 = abs(MTclean(a).output(aa).indexright 

- PKSclean(a).output(c).indexright); 
                            distcheck2 = abs(MTclean(a).output(aa).indexright 

- PKSclean(a).output(c).indexleft); 
                            distcheck3 = abs(MTclean(a).output(aa).indexleft 

- PKSclean(a).output(c).indexright); 
                            distcheck4 = abs(MTclean(a).output(aa).indexleft 

- PKSclean(a).output(c).indexleft);    
                            end                                             
                        boolean1 = 

[distcheck1,distcheck2,distcheck3,distcheck4];                     
                        tfaacheck1 = 0;                     
                            for i=1:length(boolean1) 
                                if boolean1(i) <= clusterdist 
                                    tfaacheck1 = 1; 
                                    break 
                                end 
                            end 
                        if tfaacheck1 == 1 
                           MTnum = MTnum + 1; 
                           print1 = sprintf('MT #%d in cluster\n',MTnum); 
                           fprintf(filecluster, print1);                            
                           numleft = 

num2str(MTclean(a).output(aa).indexleft); 
                           print3 = strcat('MT indexleft: ',numleft,'\n'); 
                           fprintf(filecluster, print3); 
                           numright = 

num2str(MTclean(a).output(aa).indexright); 
                           print4 = strcat('MT indexright: ',numright,'\n'); 
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                           fprintf(filecluster, print4);                          
                        end 
                   end 
                end                                
           end 
            end 
           if terpenecheck == 1 
            %%%%%%%%%%%%%%%%%%%%%check for terpene 

clusters%%%%%%%%%%%%%%%%%%%%% 
            for c = 1: length(terpeneclean(a).output) %%%check through 

terpene 
                    distcheck1 = clusterdist2 + 100; 
                    distcheck2 = clusterdist2 + 100; 
                    distcheck3 = clusterdist2 + 100; 
                    distcheck4 = clusterdist2 + 100; 
                tf1 = 

strcmp(targetfinalhits(a).Hits(b).scaffold,terpeneclean(a).output(c).scaffold

); 
                if tf1 ==1                  
                    distcheck1 = abs(targetfinalhits(a).Hits(b).indexright - 

terpeneclean(a).output(c).indexright); 
                    distcheck2 = abs(targetfinalhits(a).Hits(b).indexright - 

terpeneclean(a).output(c).indexleft); 
                    distcheck3 = abs(targetfinalhits(a).Hits(b).indexleft - 

terpeneclean(a).output(c).indexright); 
                    distcheck4 = abs(targetfinalhits(a).Hits(b).indexleft - 

terpeneclean(a).output(c).indexleft);    
                end                                             
                    boolean1 = [distcheck1,distcheck2,distcheck3,distcheck4];                     
                    tfcheck1 = 0;                     
                    for i=1:length(boolean1) 
                        if boolean1(i) <= clusterdist2 
                            tfcheck1 = 1; 
                            break 
                        end 
                    end 
                if tfcheck1 == 1 
                   clustertargethit = clustertargethit + 1; 
                   print0 = sprintf('\nhit#%d',clustertargethit); 
                   fprintf(filecluster,print0); 
                   print1 = sprintf('\ntarget T%d hit in genome %d near 

terpene 

cluster\n',targetfinalhits(a).Hits(b).target,targetfinalhits(a).Hits(b).genom

e); 
                   fprintf(filecluster, print1); 
                   print11 = strcat('this 

is_',terpeneclean(a).output(c).type,'_cluster\n'); 
                   fprintf(filecluster, print11);             

                    
%                    %%%%%% 
                   targetname1 = sprintf('target T%d is  

',targetfinalhits(a).Hits(b).target); 
                   targetname2 = 

targetkey(targetfinalhits(a).Hits(b).target,2); 
                   printtarget = strcat(targetname1,{' '},targetname2); 
                   fprintf(filecluster,printtarget); 
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                   targid = sprintf('\ntarget id is 

%d',targetfinalhits(a).Hits(b).HSPs.Identities.Percent); %%%%%%%Print ID% 
                   fprintf(filecluster, targid); 
                   targe = sprintf('\ntarget evalue is %d', 

targetfinalhits(a).Hits(b).HSPs.Expect); %%%%%%%%%%%%%%%Print Evalue 
                   fprintf(filecluster, targe); 
                   genomename1 = sprintf('\ngenome %d is  

',targetfinalhits(a).Hits(b).genome); 
                   genomename2 = key(targetfinalhits(a).Hits(b).genome,2); 
                   printgenome = strcat(genomename1,{' '},genomename2); 
                   fprintf(filecluster,printgenome); 

                    
                   hitnum1 = num2str(targetfinalhits(a).Hits(b).Hitnum); 
                   targethitprint = strcat('\nnumber of target hits in 

',genomename2,' is ',hitnum1); 
                   fprintf(filecluster,targethitprint); 
                   avgnum1 = 

num2str(targetfinalhits(a).Hits(b).averagetarget); 
                   targetavgprint = strcat('\naverage target hits in all 

genomes is ',avgnum1); 
                   mednum1 = 

num2str(targetfinalhits(a).Hits(b).mediantarget); 
                   targetmedprint = strcat('\nmedian target hits in all 

genomes is ',mednum1); 
                   fprintf(filecluster,targetavgprint); 
                   fprintf(filecluster,targetmedprint); 
%                    %%%%%% 
                   print2 = strcat('\ntarget scaffold: 

',targetfinalhits(a).Hits(b).scaffold,'\n'); 
                   fprintf(filecluster, print2); 
                   numleft = num2str(targetfinalhits(a).Hits(b).indexleft); 
                   print3 = strcat('target indexleft: ',numleft,'\n'); 
                   fprintf(filecluster, print3); 
                   numright = num2str(targetfinalhits(a).Hits(b).indexright); 
                   print4 = strcat('target indexright: ',numright,'\n'); 
                   fprintf(filecluster,print4);                   
                   numleft = num2str(terpeneclean(a).output(c).indexleft); 
                   print6 = strcat('terpene indexleft: ',numleft,'\n'); 
                   fprintf(filecluster, print6); 
                   numright = num2str(terpeneclean(a).output(c).indexright); 
                   print7 = strcat('terpene indexright: ',numright,'\n'); 
                   fprintf(filecluster, print7);    
                   %%%%%output residue checks for target%%%%%%%% 

                   
                   if targetfinalhits(a).Hits(b).HSPs.QueryIndices(1) <= 

residuepos && targetfinalhits(a).Hits(b).HSPs.QueryIndices(2) >= residuepos 
                       count = 

targetfinalhits(a).Hits(b).HSPs.QueryIndices(1); 
                       for i = 

targetfinalhits(a).Hits(b).HSPs.QueryIndices(1):targetfinalhits(a).Hits(b).HS

Ps.QueryIndices(2) 
                           if count == residuepos 
                               resstr = num2str(residuepos); 
                               print8 = strcat('\nresidue #',resstr,' is_  ', 

targetfinalhits(a).Hits(b).HSPs.Alignment(3,i-

targetfinalhits(a).Hits(b).HSPs.QueryIndices(1)+1),'\n'); 
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                               fprintf(filecluster, print8); 
                               break; 
                           elseif 

targetfinalhits(a).Hits(b).HSPs.Alignment(1,i) == '-' 
                               count = count;                              
                           else  
                               count = count+1;  
                           end 
                       end 
                   end 
                   %%%%%%%%%%check for TF genes%%%%%%%%%%%%%%%%%%% 
                   znnum = 0; 
                   tfnum = 0; 
                   for aa = 1:length(TFclean(a,2).output) %%%check for 

Znbinding domain 
                            distcheck1 = clusterdist + 100; 
                            distcheck2 = clusterdist + 100; 
                            distcheck3 = clusterdist + 100; 
                            distcheck4 = clusterdist + 100; 
                        tfaa = 

strcmp(TFclean(a,2).output(aa).scaffold,terpeneclean(a).output(c).scaffold); 
                            if tfaa ==1                  
                            distcheck1 = 

abs(TFclean(a,2).output(aa).indexright - 

terpeneclean(a).output(c).indexright); 
                            distcheck2 = 

abs(TFclean(a,2).output(aa).indexright - 

terpeneclean(a).output(c).indexleft); 
                            distcheck3 = 

abs(TFclean(a,2).output(aa).indexleft - 

terpeneclean(a).output(c).indexright); 
                            distcheck4 = 

abs(TFclean(a,2).output(aa).indexleft - terpeneclean(a).output(c).indexleft);    
                            end                                             
                        boolean1 = 

[distcheck1,distcheck2,distcheck3,distcheck4];                     
                        tfaacheck1 = 0;                     
                            for i=1:length(boolean1) 
                                if boolean1(i) <= clusterdist 
                                    tfaacheck1 = 1; 
                                    break 
                                end 
                            end 
                        if tfaacheck1 == 1 
                           znnum = znnum + 1; 
                           print1 = sprintf('ZN binding domain gene #%d in 

cluster\n',znnum); 
                           fprintf(filecluster, print1);                            
                           numleft = 

num2str(TFclean(a,2).output(aa).indexleft); 
                           print3 = strcat('ZNbind indexleft: 

',numleft,'\n'); 
                           fprintf(filecluster, print3); 
                           numright = 

num2str(TFclean(a,2).output(aa).indexright);  
                           print4 = strcat('ZNbind indexright: 

',numright,'\n'); 
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                           fprintf(filecluster, print4);    
                        end 
                   end 
                           for bb = 1:length(TFclean(a,1).output) %%%check 

for TF domain 
                                    distcheck1 = clusterdist + 100; 
                                    distcheck2 = clusterdist + 100; 
                                    distcheck3 = clusterdist + 100; 
                                    distcheck4 = clusterdist + 100; 
                                tfbb = 

strcmp(TFclean(a,1).output(bb).scaffold,terpeneclean(a).output(c).scaffold); 
                                    if tfbb ==1                  
                                    distcheck1 = 

abs(TFclean(a,1).output(bb).indexright - 

terpeneclean(a).output(c).indexright); 
                                    distcheck2 = 

abs(TFclean(a,1).output(bb).indexright - 

terpeneclean(a).output(c).indexleft); 
                                    distcheck3 = 

abs(TFclean(a,1).output(bb).indexleft - 

terpeneclean(a).output(c).indexright); 
                                    distcheck4 = 

abs(TFclean(a,1).output(bb).indexleft - terpeneclean(a).output(c).indexleft);    
                                    end                                             
                                boolean1 = 

[distcheck1,distcheck2,distcheck3,distcheck4];                     
                                tfbbcheck1 = 0;                     
                                    for i=1:length(boolean1) 
                                        if boolean1(i) <= clusterdist 
                                            tfbbcheck1 = 1; 
                                            break 
                                        end 
                                    end 

                                   
                           if tfbbcheck1 == 1 
                           tfnum = tfnum + 1; 
                           print1 = sprintf('TF gene #%d in 

cluster\n',tfnum); 
                           fprintf(filecluster, print1);                            
                           numleft = 

num2str(TFclean(a,1).output(bb).indexleft); 
                           print3 = strcat('TF indexleft: ',numleft,'\n'); 
                           fprintf(filecluster, print3); 
                           numright = 

num2str(TFclean(a,1).output(bb).indexright); 
                           print4 = strcat('TF indexright: ',numleft,'\n'); 
                           fprintf(filecluster, print4); 
                           end                                                      
                           end 
                   %%%%%%%%%%check for P450 genes%%%%%%%%%%%%%%%%%%% 
                   p450num = 0; 
                   for aa = 1:length(P450clean(a).output) %%%check for 

Znbinding domain 
                            distcheck1 = clusterdist + 100; 
                            distcheck2 = clusterdist + 100; 
                            distcheck3 = clusterdist + 100; 
                            distcheck4 = clusterdist + 100; 
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                        tfaa = 

strcmp(P450clean(a).output(aa).scaffold,terpeneclean(a).output(c).scaffold); 
                            if tfaa ==1                  
                            distcheck1 = 

abs(P450clean(a).output(aa).indexright - 

terpeneclean(a).output(c).indexright); 
                            distcheck2 = 

abs(P450clean(a).output(aa).indexright - 

terpeneclean(a).output(c).indexleft); 
                            distcheck3 = 

abs(P450clean(a).output(aa).indexleft - 

terpeneclean(a).output(c).indexright); 
                            distcheck4 = 

abs(P450clean(a).output(aa).indexleft - terpeneclean(a).output(c).indexleft);    
                            end                                             
                        boolean1 = 

[distcheck1,distcheck2,distcheck3,distcheck4];                     
                        tfaacheck1 = 0;                     
                            for i=1:length(boolean1) 
                                if boolean1(i) <= clusterdist 
                                    tfaacheck1 = 1; 
                                    break 
                                end 
                            end 
                        if tfaacheck1 == 1 
                           p450num = p450num + 1; 
                           print1 = sprintf('P450 #%d in cluster\n',p450num); 
                           fprintf(filecluster, print1);                            
                           numleft = 

num2str(P450clean(a).output(aa).indexleft); 
                           print3 = strcat('P450 indexleft: ',numleft,'\n'); 
                           fprintf(filecluster, print3); 
                           numright = 

num2str(P450clean(a).output(aa).indexright); 
                           print4 = strcat('P450 indexright: 

',numright,'\n'); 
                           fprintf(filecluster, print4);                          
                        end 
                   end 
                    %%%%%%%%%%check for FMO genes%%%%%%%%%%%%%%%%%%% 
                  FMOnum = 0; 
                   for aa = 1:length(FMOclean(a).output) %%%check for 

Znbinding domain 
                            distcheck1 = clusterdist + 100; 
                            distcheck2 = clusterdist + 100; 
                            distcheck3 = clusterdist + 100; 
                            distcheck4 = clusterdist + 100; 
                        tfaa = 

strcmp(FMOclean(a).output(aa).scaffold,terpeneclean(a).output(c).scaffold); 
                            if tfaa ==1                  
                            distcheck1 = 

abs(FMOclean(a).output(aa).indexright - 

terpeneclean(a).output(c).indexright); 
                            distcheck2 = 

abs(FMOclean(a).output(aa).indexright - terpeneclean(a).output(c).indexleft); 
                            distcheck3 = abs(FMOclean(a).output(aa).indexleft 

- terpeneclean(a).output(c).indexright); 
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                            distcheck4 = abs(FMOclean(a).output(aa).indexleft 

- terpeneclean(a).output(c).indexleft);    
                            end                                             
                        boolean1 = 

[distcheck1,distcheck2,distcheck3,distcheck4];                     
                        tfaacheck1 = 0;                     
                            for i=1:length(boolean1) 
                                if boolean1(i) <= clusterdist 
                                    tfaacheck1 = 1; 
                                    break 
                                end 
                            end 
                        if tfaacheck1 == 1 
                           FMOnum = FMOnum + 1; 
                           print1 = sprintf('FMO #%d in cluster\n',FMOnum); 
                           fprintf(filecluster, print1);                            
                           numleft = 

num2str(FMOclean(a).output(aa).indexleft); 
                           print3 = strcat('FMO indexleft: ',numleft,'\n'); 
                           fprintf(filecluster, print3); 
                           numright = 

num2str(FMOclean(a).output(aa).indexright); 
                           print4 = strcat('FMO indexright: ',numright,'\n'); 
                           fprintf(filecluster, print4);                          
                        end 
                   end 
                    %%%%%%%%%%check for MT genes%%%%%%%%%%%%%%%%%%% 
                  MTnum = 0; 
                   for aa = 1:length(MTclean(a).output) %%%check for 

Znbinding domain 
                            distcheck1 = clusterdist + 100; 
                            distcheck2 = clusterdist + 100; 
                            distcheck3 = clusterdist + 100; 
                            distcheck4 = clusterdist + 100; 
                        tfaa = 

strcmp(MTclean(a).output(aa).scaffold,terpeneclean(a).output(c).scaffold); 
                            if tfaa ==1                  
                            distcheck1 = abs(MTclean(a).output(aa).indexright 

- terpeneclean(a).output(c).indexright); 
                            distcheck2 = abs(MTclean(a).output(aa).indexright 

- terpeneclean(a).output(c).indexleft); 
                            distcheck3 = abs(MTclean(a).output(aa).indexleft 

- terpeneclean(a).output(c).indexright); 
                            distcheck4 = abs(MTclean(a).output(aa).indexleft 

- terpeneclean(a).output(c).indexleft);    
                            end                                             
                        boolean1 = 

[distcheck1,distcheck2,distcheck3,distcheck4];                     
                        tfaacheck1 = 0;                     
                            for i=1:length(boolean1) 
                                if boolean1(i) <= clusterdist 
                                    tfaacheck1 = 1; 
                                    break 
                                end 
                            end 
                        if tfaacheck1 == 1 
                           MTnum = MTnum + 1; 
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                           print1 = sprintf('MT #%d in cluster\n',MTnum); 
                           fprintf(filecluster, print1);                            
                           numleft = 

num2str(MTclean(a).output(aa).indexleft); 
                           print3 = strcat('MT indexleft: ',numleft,'\n'); 
                           fprintf(filecluster, print3); 
                           numright = 

num2str(MTclean(a).output(aa).indexright); 
                           print4 = strcat('MT indexright: ',numright,'\n'); 
                           fprintf(filecluster, print4);                          
                        end 
                   end 
                end 
            end 
           end%%%%%%end of terpene loop 
        end  
end 

  
totalhits = sprintf('\nTotal of %d Hits!',clustertargethit); 
fprintf(filecluster, totalhits); 
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