
UCLA
UCLA Electronic Theses and Dissertations

Title
Targeted Genome Mining for the Discovery and Study of Sterol Pathway Fungal Natural
Product Drugs

Permalink
https://escholarship.org/uc/item/5f63171n

Author
Liu, Nicholas

Publication Date
2020

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5f63171n
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Targeted Genome Mining for the Discovery and Study of Sterol Pathway Fungal Natural

Product Drugs

A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of

Philosophy in Chemical and Biomolecular Engineering

by

Nicholas Liu

2020

© Copyright by

Nicholas Liu

2020

ii

ABSTRACT OF THE DISSERTATION

Targeted Genome Mining for the Discovery and Study of Sterol Pathway Fungal Natural

Product Drugs

by

Nicholas Liu

Doctor of Philosophy in Chemical Engineering

University of California, Los Angeles, 2020

Professor Yi Tang, Chair

For millennia, humans have been utilizing plants, fungi, and microbes for their medicinal

purposes or for commercial use as dietary supplements, cosmetics, etc that are derived from

natural products. Natural products can be broadly defined as any chemical compound that can be

found from living organisms in nature. Natural products have a wide variety of bioactivities and

uses that have spurred efforts to discover and characterize novel natural products. The genesis of

these efforts in the modern era began with the discovery of penicillin by Sir Alexander Fleming,

which helped realize the power of utilizing chemical compounds from nature. Natural products

are very much like superheroes; they all have a backstory and Nature draws the comic books

panels that depict their tales in the form of genetic information found in living organisms. The

study of natural product biosynthesis thus aims to decipher the narratives told through the ATCG

iii

nucleotides to explain the origins of these molecules through enzymatic pathways and their

superpowers (bioactivities).

The rise of next generation sequencing has opened a new world of genetic information

and facilitated a renaissance in drug discovery based on genomics. Analysis of microbial

genomes has revealed that we have only accessed <10% of the chemicals these organisms are

capable of producing. This dissertation describes efforts to access this genomic space in fungi

with targeted genome mining, which aims to search for natural products of desired bioactivity

through the presence of self-resistant enzymes. Fungi have evolved to contain these self-resistant

enzymes, which are copies of the target enzyme of a natural product that are resistant to the

inhibitory effects of the produced molecule.

We aimed to utilize targeted genome mining to discover natural product inhibitors of the

sterol pathway, which already contains drug targets that many commercial anticholesteremic and

antifungal drugs specifically inhibit. This search strategy allowed us to discover and elucidate the

biosynthesis of zaragozic acid A (a cholesterol lowering natural product) and restricticin (an

antifungal natural product). Discovery of the zaragozic acid A cluster in Curvularia lunata was

done through targeted genome mining of squalene synthase. The elucidation of the zaragozic

acid A biosynthetic pathway in the engineered Aspergillus nidulans heterologous host has

described the unique steps that lead to the production of the alkylcitrate benzylic polyketide

intermediate of the pathway. Restricticin is another example of successful targeted genome

mining using Cyp51 as a query. Cyp51 is an important sterol pathway target that is inhibited by

commercial azole drugs. Targeted searches for Cyp51 clusters led to the identification of the

restricitin biosynthetic gene cluster in Aspergillus nomius. Biosynthetic elucidation of restricticin

iv

reveals the critical steps that lead up to attachment of the glycyl ester group that serve as the

chemical warhead for its antifungal properties. Identification of the cluster allowed us to evaluate

the rstn2 self resistance gene which exhibits azole resistance. Targeted genome mining has also

helped to identify other possible novel Cyp51 inhibitors.

v

The dissertation of Nicholas Liu is approved.

Yvonne Y. Chen

Neil Kamal Garg

Junyoung O. Park

Yi Tang, Committee Chair

University of California, Los Angeles

2020

vi

Table of Contents

1. Introduction and History of Natural Products ... 1

1.1 Methods of Discovery for Natural Products ... 1

1.1.1 Phenotypic Screening .. 3

1.1.2 Target Activity Guided Screens .. 4

1.1.3 Bioinformatics Guided Discovery ... 6

1.2 Natural Product Biosynthesis ... 9

1.2.1 Polyketide Synthases ... 10

1.2.2 Non-Ribosomal Peptide Synthetases ... 12

1.2.3 Terpene Cyclases ... 16

1.2.4 Tailoring Enzymes .. 18

1.2.5 Natural Product Gene Clusters .. 18

1.2.6 Self-Resistant Enzymes ... 21

2. The Sterol Biosynthetic Pathway .. 23

2.1 Variations in the Sterol Pathway across Kingdoms .. 24

2.2 The Steps Involved in Sterol Metabolism ... 25

2.3 Inhibitors of the Sterol Pathway .. 28

2.3.1 Inhibitors of the Early Mevalonate Pathway ... 29

2.3.2 Inhibitors of the Late Mevalonate Pathway .. 31

2.3.3 Inhibitors of the Late Sterol Pathways .. 33

3. Targeted Genome Mining Method Development ... 34

3.1 Development of in silico Targeted Genome Mining ... 35

3.1.1 Bioinformatics tools for Gene Annotation .. 35

3.1.2 Development of Targeted Genome mining Information Finder (TGIF) 38

3.2 Development of Synthetic Biology Tools for Targeted Genome Mining 42

3.2.1 Heterologous Expression in Aspergillus nidulans ... 42

3.2.2 Engineering of the Aspergillus nidulans heterologous expression platform 44

4. Identification and Elucidation of the Zaragozic Acid A Biosynthetic Gene Cluster 46

4.1 Introduction to the Zaragozic Acids .. 47

4.2 Results and Discussion .. 48

vii

4.2.1 Identification of the clz Cluster .. 48

4.2.2 Elements of the clz Biosynthetic Gene Cluster ... 49

4.2.3 Heterologous expression of the clz cluster .. 51

4.2.4 Investigation of benzoic acid starter unit priming ... 53

4.2.5 Polyketide product release ... 55

4.3 Conclusions ... 56

4.4 Materials and Methods .. 57

5. Targeted Genome Mining for the Discovery of Natural Product Cyp51 Inhibitors 61

5.1 Introduction to Antifungal drugs and Lanosterol α-14 demethylase Cyp51 61

5.2 Results and Discussion .. 64

5.2.1 Targeted Genome Mining of Cyp51 with TGIF ... 64

5.2.2 Genetic analysis of the Aspergillus nomius Biosynthetic Gene Cluster 66

5.2.3 Heterologous expression of the entire rstn cluster .. 67

5.2.4 Identification of intermediates of the rstn cluster ... 72

5.2.5 In vitro verification of final steps of the pathway ... 75

5.2.6 Evaluation of the self-resistant Cyp51, rstn2 .. 77

5.2.7 A novel Cyp51 inhibiting gene cluster found in Apiospora montagnei 81

5.3 Conclusions ... 82

5.4 Materials and Methods .. 83

6. Final Conclusions.. 89

7. Appendices .. 91

8. References ... 235

viii

Table of figures

Figure 1. Chemical and Biological Diversity of Natural Products 2
Figure 2. Timeline of Natural Product Discovery .. 5

Figure 3. Sources of Natural Products from Primary Metabolism 8
Figure 4. Mechanisms of Type I Polyketides .. 11
Figure 5. Non-Ribosomal Peptide Synthetases ... 14
Figure 6. Mechanisms of Terpene Cyclases .. 17
Figure 7. Organization of a Biosynthetic Gene cluster in Fungi 20

Figure 8. Distribution of Sterols in Life .. 26
Figure 9. The Sterol Biosynthetic Pathway .. 27
Figure 10. Inhibitors of the Sterol Pathway ... 31
Figure 11. Natural Products Discovery Pipeline .. 36

Figure 12. TGIF algorith flow diagram .. 38
Figure 13. The A. nidulans heterologous platform .. 43

Figure 14. Engineering of A. nidulans strains. ... 45
Figure 15. Representative compounds from the zaragozic acids family of polyketides. 48
Figure 16. Zaragozic Acid A cluster .. 50

Figure 17. Zaragozic Acid A cluster and Metabolic Traces .. 51
Figure 18. Proposed biosynthesis of zaragozic acid A (1) ... 53

Figure 19. Generation of Chemical Analogs of 2 .. 55
Figure 20. Cy51 Inhibition by Azole drugs ... 63
Figure 21. TGIF results for CYP51 Targeted Mining ... 65

Figure 22. Heterologous expression of the entire rstn cluster in A. nidulans 68
Figure 23. Aspernidine related secondary metabolites isolated from A. nidulans 69

Figure 24. Isolated restricticin and related natural products ... 70
Figure 25. Heterologous expression of early steps of the restricticin pathway 73

Figure 26. Heterologous expression of early steps of the restricticin pathway 75
Figure 27. Proposed Biosynthetic Mechanism of restricticin ... 76

Figure 28. Phylogenetic tree of Cyp51 from different species .. 78
Figure 29. Sequence Alignment of various Cyp51 ... 79
Figure 30. Effects of antifungal compounds on yeast strains ... 80

Figure 31. The Apiospora montagnei Apm cluster .. 81

file:///C:/Users/Lab/OneDrive/Thesis%20Work/Dissertation%20Nicholas%20Liu%2003112020-Nick-PC.docx%23_Toc34850514
file:///C:/Users/Lab/OneDrive/Thesis%20Work/Dissertation%20Nicholas%20Liu%2003112020-Nick-PC.docx%23_Toc34850524
file:///C:/Users/Lab/OneDrive/Thesis%20Work/Dissertation%20Nicholas%20Liu%2003112020-Nick-PC.docx%23_Toc34850525

ix

Acknowledgements

Section 1.2.1 contains material written by Liu, N. from the following publication:

Hang, L.#, and Liu, N.#, Tang, Y.* "Coordinated and Iterative Enzyme Catalysis in Fungal

Polyketide Biosynthesis." ACS Catalysis 2016, 6, 5935–5945. PMCID: PMC5436725

Section 1.2.2 contains material written by Liu, N. from the following publication:

Zhang, J., Liu, N.#, Cacho, R. A.#, Gong, Z., Liu, Z., Qin, W., Tang, C., Tang, Y.*, Zhou, J.*,

“Structural Basis of Nonribosomal Peptide Macrocyclization in Fungi.” Nat. Chem. Biol. 2016,

12, 1001-1003. PMCID: PMC5110376

Sections 3.2.2 and Section 4 contains material written by Liu, N. from the following publication:

Liu, N., Hung, Y., Gao, S-S., Hang, L., Zou, Y., Chooi, Y-H.*, Tang, Y.*, "Identification and

Heterologous Production of a Benzoyl-Primed Tricarboxylic Acid Polyketide Intermediate from

the Zaragozic Acid A Biosynthetic Pathway." Org. Lett. 2017, 19, 3560–3563. PMCID:

PMC5673471

This work was supported by the by NIH 1R35GM118056 and 1DP1GM106413 as well

as supported by NIH Biotechnology Training in Biomedical Sciences and Engineering

(T32GM067555).

There are many people that I would like to thank for their help along this long and

arduous journey. First, I would like to thank Professor Yi Tang for his 6 years of guidance. When

x

I first came in, I was intimidated by the seemingly huge commitment. He told me that these 5

years would past extremely fast and I’ll be out before I knew it. Indeed, the last 5 years (+1) have

indeed passed by in a blink of an eye and I still find myself wondering how much still needs to

be done. PT has been extremely patient with me through the ups and downs throughout my

graduate school career and I really do appreciate the patience especially during the low times in

my studies. I came into this lab not knowing what cloning was and now I feel like I could build

any recombinant plasmid I wanted to. PT has always been a guiding light in my times of

darkness in this at times seemingly untraversable science landscape. I greatly value all the insight

that he provides during our meetings and it is with his mentorship that I feel I was able to grow

as a scientist. Go Lakers.

I would like to thank my committee members Professor Yvonne Chen, Professor Neil

Garg, Professor Junyoung Park, and Professor Tatianna Segura who have been nothing but

helpful during my prospectus in giving my valuable criticism and recommendations. I truly

appreciate the time that they have taken out of their days to listen to me talk about my research.

Next I would like to thank my cohorts and partners in crime, the members of the Fungal

Journal Club: John Billingsley, Leibniz Hang, and Yan Yan. These three individuals were my

life support during our PhD studies and are everything I could wish for in labmates. They made

me laugh and cry (mostly laugh) and taught me so much about life and science that I would not

be close to where I am today without them.

I would like to thank my mentors Ralph Cacho and Yi Zou who were the ones who took

me under their wing when I first started out in the lab. It was with their help that I was able to get

accustomed to the lab and get a jump start on what I needed to know to be successful in the lab. I

would like to thank all the members of the Tang lab who have helped me over the years:

xi

Mancheng Tang, Shushan Gao, Carly Bond, Anthony Denicola, Sunny Hung, Danielle Yee,

Undramaa Bat-Erdene, Eun Bin Go, Joshua Misa, Ike Okorafor, Wei Xu. These members formed

the community that gave me all I needed to learn and progress. I’ve learned many things from all

of them and it is because of this diverse group of members that I believe our lab have such

success. I’d also like to give a special shoutout to Masao Ohashi who was my late-night crew

buddy who was always available to help even with the massive responsibility he had on his

shoulders. He has always been a stabilizing force in the lab and willing to help any person who

needed it.

I would like to give a special thank you to the undergraduate who has worked with me for

the last two years, Elizabeth Abramyan. She has been nothing but dedicated in her assistance in

helping me work through the last couple of years. Without her hard work I would not have been

able to accomplish many of the things that I set out to accomplish. She has also been a great

friend during all the stressful times and a great person to talk to when things are rough.

I’d like to thank my friends outside of the lab including Ximin Chen, Freddy Chen, Duo

Xu, and Xianyang Lee. Those study sessions in Weyburn made the learning experience fun and

helped us get through the preliminary exams through communal suffering. I’d like to thank my

good hometown friends Anthony Nguyen, Elizabeth Ko, Lihan Woo, Eric Fan, Howard Chang

and Ekta Doshi who are always a great sight to see during the short breaks that we have. They

have always been a joy to be around and have been a great support network no matter where in

the world they are.

Finally, I’d like to thank my wonderful family who has supported me through these years.

Thanks to my dad who has always been there for me. Those trips to come visit me at UCLA and

bring me supplies and food have always been the highlight of any week. I’d like to thank my

xii

mom whose love shines through her constant nagging, but it is through the nagging that I

remember to do the right things to keep myself healthy. The consistency in which my parents

have cared for me over these years has truly been a blessing that I sometimes take for granted but

will always treasure. Thanks to my brother who is a bundle of joy to be around and I will always

love the witty banter and snarky remarks that we make to each other. All I wish is to make you

guys proud.

xiii

VITA

2014- present UCLA, Henry Samueli School of Engineering and Applied Science

Ph.D. Candidate, Chemical and Biomolecular Engineering

Los Angeles, CA

2010 – 2014 Johns Hopkins University, Whiting School of Engineering

 B.S. in Chemical and Biomolecular Engineering

 Minor in Entrepreneurship and Management

 Baltimore, MD

2016 – 2018 NIH Biotech Training in Biomedical Sciences and Engineering Fellowship

 University of California, Los Angeles

 Los Angeles, CA

Publications

Liu, N., Hung, Y., Gao, S-S., Hang, L., Zou, Y., Chooi, Y-H.*, Tang, Y.*, "Identification and

Heterologous Production of a Benzoyl-Primed Tricarboxylic Acid Polyketide Intermediate from

the Zaragozic Acid A Biosynthetic Pathway." Org. Lett. 2017, 19, 3560–3563. PMCID:

PMC5673471

Yan, Y., Liu, N., Tang, Y.* "Recent developments in self-resistance gene directed natural

product discovery." Nat. Prod. Rep, 2020.

Zhang, J., Liu, N.#, Cacho, R. A.#, Gong, Z., Liu, Z., Qin, W., Tang, C., Tang, Y.*, Zhou, J.*,

“Structural Basis of Nonribosomal Peptide Macrocyclization in Fungi.” Nat. Chem. Biol. 2016,

12, 1001-1003. PMCID: PMC5110376

Hang, L.#, and Liu, N.#, Tang, Y.* "Coordinated and Iterative Enzyme Catalysis in Fungal

Polyketide Biosynthesis." ACS Catalysis 2016, 6, 5935–5945. PMCID: PMC5436725

Yee, D. A.; Kakule, T.; Cheng, W.; Chen, M.; Chong, C.; Hai, Y.; Hang, L.; Hung, Y.; Liu, N.;

Ohashi, M.; Okorafor, I.; Song, Y.; Tang, M-C.; Zhang, Z.; Tang, Y.* "Genome Mining of

Alkaloidal Terpenoids from a Hybrid Terpene and Nonribosomal Peptide Biosynthetic

Pathway." J. Am. Chem. Soc. 2020, 142, 710-714. PMCID: PMC7000236

xiv

Presentations

2016 American Institute of Chemical Engineers (AIChE) Annual Meeting. November 14, 2016,

Hilton San Francisco Union Square. “Structural Basis of a Macrocyclization in a Fungal

Nonribosomal Peptide through a Condensation-like Termination Domain in Fungi.”

2013 MedImmune Summer Conference. August 15, 2013, Gaithersburg, Maryland. “High

Protein Concentration of Monoclonal Antibody Suspensions in Nonaqueous Solvents.”

1

1. Introduction and History of Natural Products

Since Sir Alexander Fleming first discovered penicillin in 1938, humans have realized

the potential of extracting compounds from nature as a source of biologically relevant drugs.

Since then, over 23,000 natural products have been characterized, with most of them being

derived from bacteria.1 Microorganisms in particular have proven to be prolific producers of

natural products of a wide spectrum of bioactivities, ranging from the anti-cholesterol drug,

Lovastatin, to the anti-bacterial, erythromycin, etc. (Figure 1).2 These natural products are also

known as secondary metabolites and are often not essential for life, but still serve as chemical

weapons, facilitators of symbiosis, sexual effectors, differentiation effectors, or metal-

transporting agents that are still important to the functions of the cell.3 The wide variety of

bioactivities can often translate to effective pharmacological drugs as approximately 50% of the

new chemical entities approved by the US Food and Drug administration in the last 30 years

have been either natural products or natural product derived.1, 4 In addition to the various

applications that natural products pose, the structural complexity and diversity of natural

products also have drawn the interests of synthetic chemists to develop total syntheses for

producing the molecules. Academic interest in studying the natural product biosynthesis

pathways of these complex molecules has also grown in order to understand the regulation,

enzymology, and chemical mechanisms that nature employs to synthesize these compounds.

Natural products research covers many different disciplines to explore the secrets behind the

chemical treasures that Nature offers.

1.1 Methods of Discovery for Natural Products

 Natural products discovery has spanned over many decades. With the rise of

technological advances over the years, the techniques used to discover and study Natural

2

products have also expanded. After the discovery of penicillin, efforts to begin identifying other

valuable compounds produced from microorganisms began. Early efforts involved the search for

microorganism strains that would be capable of killing fungi or bacteria through phenotypic

screens in the 1940s. Phenotypic screens, however, were limited in their ability to find

compounds of specific desired activities. Thus, around the 1970s, target activity guided screens

were also developed as ways to find molecules of interest with specific activity against enzyme

targets. In addition to screening methods for new natural products, genetics and enzymatic

studies on natural product biosynthesis pathways revealed many fundamental components behind

Figure 1. Chemical and Biological Diversity of Natural Products

Natural Products are diverse in both chemical structure and bioactivity. Many of them are

highly impactful pharmaceutical drugs and novel products are being discovered all the

time.

3

natural product biosynthesis. With the rise of genomics and next generation sequencing in the

early 2000s, genes responsible for the biosynthesis of natural products could be readily

identified. This has led to a renaissance in natural product discovery as it is now apparent many

of natural product genes are cryptic or silent under laboratory conditions, leaving much more to

be discovered from natural producers of secondary metabolite drugs.

1.1.1 Phenotypic Screening

The discovery of penicillin first introduced the idea behind fermenting microorganisms to

mass produce a chemical of interest. World War II had generated the need for mass production

of antibiotics, so efforts to improve scalability of natural product fermentation began then. This

started with identifying the best producing strains of penicillin as well as ways to ferment those

strains in 10,000-gallon tanks. The interdisciplinary collaboration of scientists began the advent

of natural product developement for not only clinical relevance, but also commercial success.5

The development of penicillin in the 1940s also indicated that bacterial strains were valuable

leads to natural products. It was soon found that Actinomyctes and Streptomycetes were fruitful

producers of many important compounds. Streptomyces in particular proved to be a rich source

of antibiotics including macrolides, tetracyclines, polyenes, and peptides.1 Thus began the era of

phenotypic screening of microbes for the discovery of relevant natural products. Scientists would

test different fermentation conditions of various strain isolates from soil. The crude extracts

could be tested directly or fractionated to test against bactericidal or fungicidal screens, often

simply performed by looking at visual growth inhibition.6 Identification of desired phenotypes

would be subsequently followed up with chemical structure elucidation and studies about the

mechanism of action. In addition to antibacterial screens, companies started as early as the 1950s

to look toward finding anti-cancer agents through phenotypic screens. These screens were

4

performed with induced tumors in whole animal tests to search for drugs capable of cytotoxic

effects.7

These types of studies led to the discovery of important molecules such as the antibiotic,

tetracycline, by Pfizer et al. in 19528 and the immunosuppressant, cyclosporine A, by Sandoz

(Novartis) in 1972.9 Tetracycline is a semi-synthetic drug that was developed through

modification of the natural product Aureomycin. Aureomycin was a promising natural product

compound found by Cyanamid during the boom of antibiotic discovery in the 1940s. Cynamid

was testing soil sample extracts against gram positive and gram negative bacteria and found one

sample in particular was able to cause large inhibition zones on the bacterial agar plates of

various different strains and had a distinct yellow color. Later, Pfizer had realized the C7

chlorine of Aureomycin was not necessary for the activity of the drug, and thus the descholor

version was developed as tetracycline. Tetracycline had higher potency, better solubility, and

better activity.8 Cyclosporine was first discovered when the Sandoz lab searched for anti-

inflammatory and immunosuppressant drugs by observing the effects of natural product libraries

for compounds on lymophocte mediated effector cell lysis. Cyclosporine was a promising

candidate that inhibited the in vitro cell lysis of the allogenic target cells.9

Phenotypic screens still remain an important forward pharmacology discovery technique,

though the types of strains screened through have expanded toward many different sources,

including marine based microbes rather than traditional soil derived samples.

1.1.2 Target Activity Guided Screens

Phenotypic screens have proven to be an efficient way to discover new natural product

compounds. However, with phenotypic screens the mode of action is often still unknown,

resulting in a surface understanding of the novel natural products discovered. With the

5

advancement of biochemical techniques, the understanding of natural biochemical pathways and

enzymes involved in these pathways has greatly improved. The specific modes of action

Figure 2. Timeline of Natural Product Discovery

This timeline displays the different natural product discovery techniques that were developed

over different time periods and significant natural product molecules found during these time

periods

between the molecule and the specific target enzymes could be tested with developed activity

assays using a specific custom readout. This allowed for the onset of target activity guided

screens, where scientists could use high throughput assays to test for natural products that would

specifically inhibit or interact with the target of interest.

 One example of an early natural product discovered through the use of target activity

guided screens was compactin. The early 1950’s came with many efforts to understand the

cholesterol pathway after it was found that heart disease was linked with the cholesterol levels of

6

the patient. The 30 enzymatic reactions involved to synthesize cholesterol were fully elucidated.

Akira Endo had first hypothesized that fungi and mold might be capable of producing inhibitors

of hydroxymethylglutaryl-CoA reductase (HMGR). He had developed a multi-step assay to

screen for compounds that had HMGR inhibitory activity. They screened through fermentation

broths to see which could inhibit the incorporation of radio labeled C14 acetate into lipid products

such as cholesterol. Successful broths were then checked for inhibitory activity of the conversion

of labeled H3 mevalonate to labeled lipid products. Broths that passed this step would be

subjected to inhibitory evaluation of C14-HMG-CoA to C14-mevalonate. This led to discovery of

compactin from Penicillium citrinum.10 These precursor directed studies also allowed for

scientists to identify the building blocks that are incorporated during natural products

biosynthesis.

1.1.3 Bioinformatics Guided Discovery

 The rise of genetic tools eventually came to fruition, providing researchers with an

alternative strategy to better study natural product biosynthesis. It was soon understood that

natural product genes are often colocalized as gene clusters in fungi and bacteria. The

organization of these gene clusters will be further explored in Section 1.2.6. Consequently, gene

clusters were being linked to the natural products that were identified through phenotypic and

activity-based screens. Notwithstanding the new knowledge about natural product biosynthesis

gained from genetic analysis, natural product discovery soon began to run into issues of

dereplication using phenotypic and targeted based screens. Simply going through different types

of new strains and fermentation broths combinations would lead to rediscovery of many already

known natural products. Thus efforts to find new natural products eventually began to slow

down.11 In the early 2000’s, however, the first two Streptomyces genome sequences were fully

7

assembled, launching the revelation that the number of gene clusters in these microbial genomes

were far greater in number than previously thought. It is estimated that only that less than 10% of

the secondary metabolite gene clusters are expressed during laboratory fermentation conditions,

indicating that many of these gene clusters are cryptic.1 With the sequencing of microbial

genomes also came the opportunity to tie together natural product compounds and the genes that

produce them, allowing us to readily identify new clusters or activate cryptic ones. The natural

product landscape entered into a new era of discovery that brought upon a natural products

renaissance that is still being explored today.

 Deeper understanding about natural product biosynthesis also gave insight into the

building blocks that go into making these secondary metabolites. Thus based on the type of

enzymes in a natural product biosynthetic gene cluster, chemical structure could be predicted

from the genes and what types of building blocks they would be using.12 One successful example

is the identification of the aspoquinolones A-D, which are prenylated alkaloids from the fungi

Aspergillus nidulans. Efforts to look at this gene cluster began with the interest in finding

alkaloid compounds in which anthranilate is a known precursor. Sequencing of the Aspergillus

nidulans genome showed that the strain contained at least three copies of anthranilate synthase,

indicating that numerous copies of the gene would allow A. nidulans to produce several alkaloid

secondary metabolites. Through utilizing many different fermentation conditions, the

aspoquinolones were identified as novel prenylated alkaloid natural products.13

 Comparative metabolic profiling is another technique that has arisen with the

development and availability of microbial genome sequences. By utilizing mutagenesis of target

genes and then comparing metabolic profiles, the natural product linked to the target gene can be

identified.12 These knockout studies remain an important technique for the identification of

8

Figure 3. Sources of Natural Products from Primary Metabolism

Natural Products derived their building blocks from various primary metabolic processes.

Polyketides and terpenes use intermediates from the mevalonate pathway while Non-ribosomal

peptides use both proteingenic amino acids and non-proteingenic amino acids.

9

natural product gene clusters. The emericellamides were a family of cyclic depsipeptide products

that were that were initially found in the marine fungi Emericella sp. Through the knockout of a

cryptic nonribosomal peptide synthetase (NRPS) gene, the biosynthetic pathway of the

emericellamides was realized.14 In another example, orfamide A was a novel peptide antibiotic

isolated by Müller et al. They later identified gene fragments of novel NRPS and polyketide

synthase (PKS) encoding gene fragments. Inactivation of these gene fragments in the wild type

producing strain Stigmatella aurantica and through comparative metabolic profiling saw the loss

of orfamide A production in the mutant strains, indicating the role of these gene fragments in the

biosynthesis of orfamide A.2

1.2 Natural Product Biosynthesis

The molecular scaffolds of most natural products are furnished by different classes of

natural product enzymes: 1) Polyketide Synthases (PKSs), 2) Non-ribosomal Peptide Synthetases

(NRPSs), and 3) Terpene Synthases (TSs). These “core enzymes” utilize building blocks from

central metabolic pathways and primary metabolism (Figure 3). PKSs are fatty acid like multi-

domain megasynthases that take acetyl-CoA from the mevalonate pathway to build long

polyketide chains with varying degrees of reduction at each polyketide chain segment. NRPSs

take both proteinogenic and non-proteinogenic amino acids to form peptide chains. Terpene

synthases take 5 carbon unit isoprene building blocks from the mevalonate pathway to undergo

cyclization reactions for the synthesis of terpenoid products. These natural product backbones

are often further modified by tailoring enzymes to introduce further chemical complexity.

Understanding how these specialized core and tailoring genes work together has given us clues

into how they are organized, allowing us to better find and study the biosynthetic gene clusters

that govern natural product biosynthesis.

10

1.2.1 Polyketide Synthases

 Polyketides are typically long carbon chains reminiscent of fatty acid chains, synthesized

by PKSs. These PKSs typically utilize acetyl-CoA and malonlyl-CoA units from the early

mevalonate pathway to build the carbon chain products. PKSs can be characterized into three

types: 1) Type 1 PKS: multifunctional enzymes with different domains that catalyze specialized

reactions in a modular fashion 2) Type II PKS: a set of polyketide domains that only consist of

the ketosynthase domain and acyl carrier protein that act iteratively to generate the polyketide

product. 3) Type III PKS: single domain ketosynthases domains that do not use acyl carrier

proteins.15 Most fungal polyketide natural products are made by Type I PKSs.

Type I PKSs are multi-domain megasynthases that possess the catalytic domains required

for polyketide biosynthesis.15 In most type I bacterial PKSs,16 multiple sets of domains are

typically compiled into modules and their biosynthesis proceeds in an assembly-line fashion.

Each module of the bacterial PKS is responsible for extending the polyketide chain by one ketide

unit. In addition to chain extension, each module of the PKS will reduce the extension unit by

varying degrees. In contrast to bacterial PKSs, type I fungal reducing PKSs use a single set of

domains in a highly programmed and permutative fashion.17, 18 The architecture of the fungal

reducing PKSs consist of the minimal fungal PKS components and the auxiliary tailoring

domains (Figure 4). The β-ketoacyl synthase (KS),19 malonyl-CoA: ACP transacylase (MAT)

and acyl carrier protein (ACP)20 form the minimal fungal PKS components—the basis for the

chain-extending iterations through decarboxylative Claisen condensations (Figure 4). During

each iteration, the minimal fungal PKS components catalyze the decarboxylative polymerization

of malonyl-CoA to elongate the polyketide chain by a ketide (two carbons). Following each

chain extension step, the ACP-bound, β-ketothioester intermediate may undergo a series of

11

Figure 4. Mechanisms of Type I Polyketides

Fungal Polyketides are typically made from type I iterative polyketide synthases. These iterative

PKS use a set of domains which include combinations of the flowing: Ketosynthase (KS),

AT(acyltransferase), Dehydratase (DH), Methyltransferase (MT), Enoylreductase (ER),

Ketoreductase (KR), and Acyl carrier protein (ACP) domains. These iterative PKSs utilize the

domains in a programmed fashion to generate polyketide chains of varying length and reduction

at each ketide unit.

modifications from the tailoring domains such as α-methylation by the methyltransferase (MT),

β-ketoreduction by the ketoreductase (KR),21 dehydration by the dehydratase (DH),22 and

enoylreduction by the enoylreductase (ER) domains (Figure 4).23 The MT domain utilizes S-

adenosylmethionine (SAM) as the methylating agent while the reductive domains use

nicotinamide adenine dinucleotide phosphate hydride (NADPH) as the reducing agent. The α and

β position of each ketide unit will differ depending on the extent of methylation and reduction

during each cycle.

Through different permutative tailoring modifications following each chain extension, the

same set of tailoring domains can install structural diversity into the α- and β- positions of

12

polyketide backbones.18 The elongation-tailoring events proceed iteratively until the polyketide

chain extension is terminated through product off-loading such as hydrolysis or reductive

release. Currently, underlying programming rules for the iterative catalysis of both bacterial and

fungal polyketide synthases remain an active area of research.

Phylogenetic analysis of polyketide synthases offers one method of exploring the

programming rules of the iterative fungal PKSs. The analysis of the full length and KS domain

sequences of PKSs from Aspergilli have shown that the different PKS enzymes found in fungal

genomes can be grouped into different clades. As the domain architecture for fungal iterative

PKSs can vary greatly, utilizing the consensus KS domain sequences rather than the full-length

protein sequences has been shown to be an effective method of “fingerprinting” the different

PKSs. Overall, these sequences clade the PKSs into nonreducing PKSs (NRPKS), partially

reducing PKSs (PRPKSs), highly reducing PKSs (HRPKS), and PKS-NRPS hybrids.24 Analysis

of the products produced by characterized PKSs has also shown that closely related PKSs based

on KS sequence also share similarities in chemical structure. As more PKS products become

elucidated, chemical structure prediction of the products from novel PKS genes becomes more

and more plausible.

1.2.2 Non-Ribosomal Peptide Synthetases

 NRPSs are multimodular enzymes that catalyze the biosynthesis of peptidyl natural

products in a ribosome-independent manner. Much like the PKS modules covered in the previous

section, each module of the NRPS typically act to extend the peptide chain by an amino acid

unit. An NRPS module minimally consists of a condensation (C) domain, an adenylation (A)

domain, and a Thiolation (T) domain that is post-translationally modified with a 4’-

phosphopantetheine (pPant) arm (Figure 5).25 The NRPS also often contains a termination

13

domain, such as a thioesterase (TE) or terminal cCondensation domain (CT) that will releases the

substrate.

The thiolation (T) domain, also known as the peptidyl carrier protein (PCP) domain is

used to shuttle substrates from one domain to another. It is a vital component for the NRPS

assembly line dynamics that allow for the different domains to act on the growing peptide

chain.26 The holo-PCP will be post-translationally modified with the pPant arm, which

covalently binds the amino acid or peptide chain substrates through a thioester linkage. This is

usually done using a pPant transferase, a highly conserved enzyme across all forms of life in

bacteria, archaea, and eukarya. The Sfp gene from Bacillus sp. and the NpgA gene from

Aspergillus nidulans have been identified to be responsible for expressing the pPant transferases

vital for secondary metabolism.27 These two enzymes have been thus critical for developing

heterologous platforms to successfully express these megasynthases such as NRPSs and PKSs

that utilize the pPant prosthetic.28 The PCP acts as a “swinging arm” in order to reach into the

active sites of the other NRPS domains. The structure of the PCP is highly conserved and quite

small (~10 kDA). It has been shown that the modification of the PCP by the pPant arm does not

cause any conformational changes in the PCP structure, indicating that the PCP protein acts as a

stable platform for the flexible pPant arm to interact with the other domains.29

The A domain serves as a gatekeeper to the different amino acid building blocks

available for the NRPS. These domains are often highly specific and will activate the appropriate

amino acid substrate through adenylation of the carboxyl group by activation with ATP.30 The

ATP-activated amino acid is readily loaded onto the PCP domain. Bacterial A domains are

highly conserved and the active site residues allow for prediction of the specific amino acid

substrate.31

14

Figure 5. Non-Ribosomal Peptide Synthetases

A. Example of a NRPS organization for the cyclic tripeptide, Fumiquiazoline F. Each module is

responsible for extending the peptidy chain by one amino acid. The NRPS will often have a

termination domain (CT or TE) to release the product. B. Dynamics of NRPSs. The PCP is

responsible for swinging the peptidyl substrate to different domains to perform the necessary

reaction. B1. The A domain activates an amino acid (AA) through addition of AMP to the

carboxylic acid. B2. The activated AA (AA-AMP) can be tethered to the ACP through a

thioester linkage. B3. The upstream PCP and the downstream PCP will enter their AA substrates

into the binding pockets of the Condensation domain to be conjugated. B4. After condensation of

two AA substrates, the downstream PCP will carry the peptide chain product to be processed in

other domains in the assembly line until the final product is matured.

The C domain catalyzes the condensation reaction between a growing peptide that is

tethered to the pPant of an upstream T domain and an aminoacyl thioester attached to the pPant

15

of a downstream T domain.32-34 The C domains usually contain two active site binding pockets,

one for each of the upstream and downstream aminoacyl substrates. The highly conserved

enzymes will usually contain the HHXXXDG motif, which sits at the junction between the two

binding pockets. After condensing the peptide bond between the upstream and downstream

amino acid substrates, the C domain will shuttle the peptide chain product to the downstream T

domain in order to be processed by the subsequent module.35

After the aminoacyl substrate has been processed by all modules of the NRPS, the

peptide chain usually will be released from the NRPS through a termination domain. In most

bacterial NRPSs, this is done with a TE domain. The TE domain will catalyze a two half-step

reaction to for product release.36 The first half-step involves the transfer of the peptidyl substrate

from the thioester linkage on the PCP to an O-acyl onto the active site serine of the TE domain.

After loading onto the TE domain, the product can either be released as a linear peptide through

water hydrolysis37, cyclization through the intramolecular nucleophilic attack of a free peptidyl

moiety of the chain38, or oligomerization39 through nucleophilic attack from another peptidyl

chain.

Whereas bacterial NRPSs use terminal thioesterase (TE) domains to perform cyclization

through a nucleophilic serine, many fungal NRPSs use a CT domain as the terminal domain to

produce macrocyclic peptidyl products, including cyclosporine and echinocandin, two of the

most clinically relevant fungal NRPS products.40, 41 Although the CT domains share the

conserved HXXXDXXS motif with canonical C domains in which the histidine serves as the

catalytic residue, phylogenetic analysis clearly places CT domains in a separate clade, indicating

functional divergence.42, 43

16

In addition to the minimal C, A, T, and TE or CT domains, NRPS can also have additional

tailoring domains for further functionalization of the peptidyl chain. These include

Methyltransferase (MT) domains, oxidase, reductase, halogenase, and epimerization domains.

These domains will be found on the module in which the specific modification of the peptidyl

unit takes place.35

The exploration of novel NRPS products is an ongoing effort to not only discover new

natural products of relevant pharmaceutical activity, but to also find new examples of NRPS

architecture that can shed more light into the mechanistic rules that govern these megasynthase

assembly lines.

1.2.3 Terpene Cyclases

 Terpenoid products encompass a group of the most structurally diverse natural products.

These terpene products can be made by terpene synthases (TS). TSs differ from PKSs and

NRPSs as they do not function as multimodular systems. Rather than build a growing

peptidyl/acyl chain, TSs utilize 5 carbon isoprenoid units to be modified through cyclization or

rearrangement. As shown in Figure 3, most TSs draw their building blocks from the last few

steps leading up to the synthesis of squalene. Different terpene products can be classified by the

different building blocks they use. Monoterpenes use geranyl pyrophosphate (2 isoprene units) as

building blocks to form C10 products. Sesquiterpenes utilize farnesyl pyrophosphate (3 isoprene

units) to build C15 products. Triterpenes take two farnesyl pyrophosphates (6 isoprene units) to

build C30 products. Diterpenes take geranylgeranyl pyrophosphate (4 isoprene units) to build C20

products. Tetraterpenes take two geranylgeranyl pyrophosphates (8 isoprene units) to build C40

products.44

17

 TSs perform their reactions through the use of carbocation chemistry. Among TSs,

prenyltransferases can catalyze the head-to-tail connections between isoprene units while terpene

Figure 6. Mechanisms of Terpene Cyclases

Terpene cyclases can be split into two groups: Class I and Class II. Class I terpene cyclases, such

as limonene synthase generate a terminal alkene carbocation. Class II terpene cyclases such as

the one used in taxol biosynthesis generates a tertiary carbocation on GPP that will be quenched

through cyclization of the isoprene unit.

cyclases afford more complicated cyclized terpene products. The positioning of the carbocation

ionization varies for individual terpene synthases and determines the cyclization/rearrangement

of the isoprene building block. Depending on the type of carbocation formation, terpene cyclases

can be grouped into two classes: 1) Class I terpene cyclases which use a trinuclear metal cluster

to ionize the isoprene unit by generating an allylic cation and a free pyrophosphate, and 2) Class

II terpene cyclases which use a general acid to protonate a terminal alkene to form a tertiary

carbocation.45 Figure 6 shows examples of mechanisms of Class I (limonene synthase)46 and

Class II (taxol synthase)47 terpene cyclases.

18

1.2.4 Tailoring Enzymes

 Tailoring enzymes are other enzymes that will modify the chemical backbone that is built

from the core enzymes (PKSs, NRPSs, and TSs). These include methyltransferases,48

oxygenases,49, 50 epimerases,34 glycosyltransferases,51 oxidoreductases,52 acyltransferases,53 etc.

These modifications are the keys that transform the secondary metabolite intermediate generated

from the core enzymes to the mature and often bioactive natural product.

Oxygenases are one of the most common tailoring enzymes found in secondary

metabolism and are responsible for much of the chemical diversity of natural products.54 These

enzymes often carry out a diverse range of redox reactions including hydroxylations,

epoxidations, dehydrogenations, cyclizations, and various rearrangements—often decreasing the

lipophilicity of secondary metabolites backbones.55 Recent discoveries have found several

multifunctional oxygenases that can act iteratively on multiple sites of their substrates.49, 56 Thus,

iterative oxygenases are enzymes that can introduce multiple oxygen atoms from molecular

oxygen at different sites on a single substrate.

There are several major classes of oxygenases including cytochrome P450

monooxygenases (P450s), flavin-containing monooxygenases (FMOs), and non-heme, iron- and

α-ketoglutarate-dependent dioxygenases. Examples of iterative catalysis are found in each of

these classes in fungal natural product biosynthesis. Monooxygenases incorporate one oxygen

atom from molecular oxygen (O2) while dioxygenases can incorporate both oxygen atoms.

1.2.5 Natural Product Gene Clusters

The 1965 Noble Prize was awarded for the discovery of the Lac operon, where it was

discovered that related bacterial genes are often grouped together. This allows for prokaryotes to

19

readily regulate the gene expression of these gene clusters under a single promoter. This gene

cluster organization was also was found to hold true for proteins that were found in a common

pathway.58 The organization is believed to allow for evolutionary advantages such as the

preservation of these gene clusters (and thus the important pathways) during horizontal gene

transfer as well as ease of regulation of the cluster when related genes are colocalized.59 It was

believed that the gene clusters were a feature of prokaryotic genomic organization until 1989,

with the study of the Aspergillus nidulans L-proline catabolic pathway,60 wherein it was also

realized that eukaryotic pathway genes can also be found to be clustered as well. Fungal gene

clusters can be defined as the close linkage of two or more genes that participate in a common

metabolic or development pathway. Thus biosynthetic gene clusters (BGCs) became attributed to

the common gene organization of many secondary metabolites. This started with the study of

aflatoxins and sterigmatocystins, mycotoxins derived from the Aspergillus genus in which over

25 genes over a 60 kb locus are responsible for generating these natural products.61

With the rise of next generation genomic sequencing, the wide range of genomics data

has revealed the presence of many natural products BGCs in bacteria, fungi, and some plant

pathways. The BGCs organize the genes required for the synthesis of a natural product in a

contiguous fashion. A canonical BGC can be expected to have various features including the

presence of core enzymes genes, tailoring genes, transport protein genes, transcriptional

regulator genes, and in rare cases a gene encoding a self-resistance enzyme. (Figure 7) Usually

there are 1 to 2 core enzymes (as described in sections 1.2.1-1.2.3) and a variable number of

20

Figure 7. Organization of a Biosynthetic Gene cluster in Fungi

Fungal secondary metabolite genes are usually clustered. These clusters will usually have a core

enzyme that makes up the backbone of the natural product along with tailoring enzymes that

finish the biosynthesis. In addition, there are regulatory enzymes and transport enzymes.

Occasionally there will also be a self-resistant enzyme.

tailoring enzymes (as described in section 1.2.4) that can be found in the gene clusters. These

genes are the part of the biosynthetic pathway and provide the essential chemical transformations

needed to form the mature natural product. In addition to the biosynthetic enzymes, there are

regulatory elements which include transcription factors, transport proteins, and the self-resistance

enzymes.

The example in Figure 7 represents the organization of the fungal natural product

blockbluster drug, Lovstatin (Mevacor), in Aspergillus terrerus. The Lovastatin BGC contains

two polyketides, LovB and LovF, which are the core enzymes that synthesize the carbon

backbone for the cholesterol lowering drug. In addition to the core enzymes are the other

biosynthetic tailoring enzymes such as LovA, LovG, LovC, LovD which correspond to a P450

monoxygenase, thioesterase, trans-acting enoyl reductase, and acyltransferase, respectively.

LovA, LovG, and LovC work together on the nonaketide product synthesized by LovB to

generate the Monacolin J intermediate of the pathway. Monacolin J is then linked by LovD with

21

the diketide product synthesized by LovF to furnish the final natural product, Lovastatin.62, 63 In

this gene cluster, LovE is a local transcription factor that upregulates the transcription of all the

genes in this cluster when overexpressed.64 LovI falls under the Major Facilitator Superfamily, a

protein family of efflux pumps designed to remove the Lovastatin product from the cell. LvrA

corresponds to the self-resistant enzyme, which will be described in the following section.

With more and more information about BGCs being understood from elucidating

additional examples of natural product biosyntheses, the ability to search for the BGCs of natural

products also has been an expanding field. Genome mining for BGCs of natural products has

thus also become a newer method of natural product discovery.

1.2.6 Self-Resistant Enzymes

 Natural products have a wide variety of bioactivities, including antibiotic, antifungal,

herbicidal, and mycotoxic. In the evolutionary landscape of these microbial producers, natural

products often serve as methods of chemical warfare to gain an advantage over competitor

organisms. The toxic nature of many of these natural products often stems from their ability to

inhibit key metabolic processes in competitor organisms. However, the production of these

natural product inhibitors is a double-edged sword in that these natural products can affect the

host organism as well. To deter these self-harming effects, organisms that produce toxic natural

product employ a myriad of techniques including efflux pumps, chemical modification, and the

use of self-resistant enzymes. Efflux pumps, such as LovI described in Figure 7 will shuttle the

toxic product outside of the cell. Chemical modifications use specialized enzymes that will

detoxify the natural product. In the case of the antibiotic chloramphenicol, the natural producer

Streptomyces venezuelae utilizes a hydrolase that will detoxify chloramphenicol through

22

acetylation of the C-3 hydroxyl group when the production of the compound reaches high

concentrations.65, 66

 The use of self-resistant enzymes is another technique that fungi and other microbes have

evolved to gain resistance toward the toxic natural product they produce. These organisms have

evolved targets (typically proteins) that are modified versions of the target the natural product

inhibits. Modified protein targets usually contain various mutated residues that impede the

natural product inhibitor from binding the enzymes, but still allow for the enzyme to have its

original function. These self-resistant enzymes thus serve as an elegant solution for the self-

resistance of toxic natural product producers. Furthermore, the studies of the genetic organization

of these self-resistant organisms have also shown that the self-resistant enzyme is usually an

extra copy of the target. The original housekeeping copy of the target, sensitive to the inhibitor

but usually retains higher catalytic efficiency, can be found separate from the self-resistant copy.

The resistant copy, on the other hand, can often be found colocalized with the BGC of the natural

product inhibitor. It is thus believed that the organism can utilize the optimized housekeeping

enzyme most of the time and switch over to the self-resistant copy when it is producing high

amounts of the toxic natural product compound.67-69

 In the case of the Lovastatin BGC shown in Figure 7, the self-resistant copy of the target

is encoded by LvrA. Lovastatin has been found to be an inhibitor of the mevalonate pathway

intermediate, HMG-CoA reductase. LvrA is mutated version of the HMG-CoA reductase that

does not bind the Lovastatin inhibitor but is still catalytically active. The producer strain

Aspergillus terreus also contains the housekeeping version of HMG-CoA reductase separate

from the Lovastatin BGC in its genome, giving it two copies of the HMG-CoA reductase while

most fungi only have one copy.70, 71

23

 The presence of these self-resistant enzymes in organisms that produce bioactive natural

products thus provide a powerful tool in terms of genome mining. By searching through

genomes for self-resistant enzymes, we can potentially find natural products of desired

bioactivity. Targeted genome mining thus utilizes the self-resistant enzyme phenomenon as a

method of discovering novel natural products with activity specific toward the queried self-

resistant enzyme.

2. The Sterol Biosynthetic Pathway

 There are many drug targets of interest that attract medicinal chemists and natural

products researchers to design/find compound inhibitors for these targets. One pathway that

contains many drug targets of interests is the cholesterol pathway. High cholesterol levels have

been linked with coronary heart disease, stroke, and diabetes. This is especially prevalent in the

United States as cardiovascular disease remains the leading cause of death in the United States.10,

72 The cholesterol pathway, in consequence, is a metabolic pathway of interest for the

development of drugs to treat hypercholesterolemia.

 The sterol pathway, in addition to having valuable targets for cholesterol lowering drugs,

also is an attractive area for antifungal agents. Antifungal drugs are in huge demand, with a

market totaling $11.3 billion in 2017.73 Fungal infections are mainly prevalent with

immunocompromised patients, often leading to high mortality rates despite the use of current

antifungal treatments.74 Especially with the rise of antibiotic and antifungal drug resistance

among fungi, the need for novel antifungal drugs with new modes of action is a growing

24

concern. Many antifungal drugs work through inhibition of the fungal sterol pathway that

synthesizes ergosterol, a metabolite vital for fungal cells.75 Thus, targeting sterol synthesis is a

potentially fruitful strategy for the search for both cholesterol lowering and antifungal drugs.

2.1 Variations in the Sterol Pathway across Kingdoms

Sterol compounds can be found in all eukaryotes and some prokaryotes. Within

eukaryotes, sterol compounds are used in a myriad of ways by different phyla. Fungi use

ergosterol as a vital structural component of their cell membrane and in cell cycle regulation,76, 77

while plants and animals use phytosterols and cholesterol, respectively, as not only structural

components but also mainly as precursors to developmental hormones and vitamins.78-81 Though

it is similar to the cholesterol and phytosterol pathways found in animals and plants, the

biosynthesis of ergosterol is unique for fungi and essential as it regulates membrane fluidity and

the regulation of many cell cycle processes. On the other hand, animals can uptake cholesterol

through their diet. Consequently targeting the ergosterol pathway can inhibit fungi growth with

minimal effect on plants and animals.82

 Sterols are cyclized triterpenoids products that all contain a tetracyclic frame. This frame

is generated through cyclization of the linear C30 squalene from the mevalonate pathway.83

Different sterol molecules vary primarily in the carbon side chain, usually with varying degrees

of unsaturation and substitution. There have been over 250 sterol molecules found through

chemical screens of prokaryotes and eukaryotes. The major types of sterols in different kingdoms

of life can be seen in Figure 8. Animals have cholesterol as the majority of their sterol content.

The C27 cholesterol structure contains a fully saturated side chain and an unsaturated ring system.

Fungi primarily have ergosterol, which is structurally very similar to cholesterol, with a degree

of unsaturation across the C22 and C23 carbons as well as an additional methyl group on the C24

25

position.77, 83 Phytosterols have many variants including sitosterol, stigmasterol, and campesterol,

which are the most copious in the plant kingdom.84 Plants sterols usually have highly branched

side chains compared to their zoosterol counterparts and are much more varied, tallying more

than 100 different discovered sterols.85 This variation can also be seen in the gene organization

of sterol pathway genes. While animals will have only one copy of cholesterol pathway genes,

plants and fungi have many more sterol genes, which result in the branching of the sterol

biosynthetic pathway in different plants and fungi.77, 84 More recently, studies on protozoa have

revealed that these organisms also contain sterol content that can be both biosynthesized or taken

from their environments. Trypanosomatid parasites contain ergostane and stigmastane as the

major components of protozoan sterol content.80, 86

2.2 The Steps Involved in Sterol Metabolism

 Sterol biosynthesis is a long pathway that takes many steps to reach ergosterol,

cholesterol, or phytosterols. The pathway can be divided roughly into several main sections: 1)

the initial mevalonate pathway that generates the isoprenoid precursor squalene, 2) the oxidation

and cyclization of the linear squalene to generate the sterol intermediate lanosterol, and 3) the

successive steps to process the lanosterol tetracylic core that finish the biosynthesis of various

sterol products, depending on the organism.83, 87

 The early steps of the sterol metabolism involve the conversion of acetyl-CoA to

isoprenoid products through the mevalonate pathway. Acetyl-CoA is first condensed with

another unit of acetyl-CoA to form acetoacetyl-CoA with the use of acetoacetyl-CoA thiolase.

Hydroxymethylglutaryl-CoA (HMG-CoA) synthase then condenses another unit of acetyl-CoA

to acetoacetyl-CoA to form HMG-CoA. HMG-CoA is then reduced by the highly regulated

HMG-CoA reductase to form mevalonate. Mevalonate is then used for constructing isoprenoid

26

Figure 8. Distribution of Sterols in Life

Sterol compounds are diverse and can be found in many different forms of life. The major sterol

compounds found in each kingdom are shown.

building blocks that can be either shuttled toward making terpenoid primary and secondary

metabolites or directed toward being synthesized for squalene. Mevalonate requires two kinases

and a decarboxylase to generate isopentyl-pyrophosphate, the minimum C5 isoprenoid unit. The

steps from isopentyl-pyrophosphate to squalene can be seen in Figure 3.88-90

 The next steps of the sterol pathway serve to cyclize the linear C30 squalene skeleton into

the tetracyclic lanosterol that serves as the branching point for the synthesis of different sterols in

organisms. Squalene is cyclized through a two-step process, starting with 2,3 epoxidation of the

linear chain through the first oxidase in the pathway, squalene monooxygenase. This step is often

considered to be one of the rate limiting steps of the pathway.83, 91 Next, lanosterol synthase takes

the 2,3 oxidosqualene product, generating carbocation intermediates to successfully perform a

cascade of cyclizations to form the tetracyclic ring system of sterol compounds. Lanosterol is

27

then

Figure 9. The Sterol Biosynthetic Pathway

The biosynthesis of sterols is a multi-step pathway that is highly regulated. The pathway can be

split into three major parts: 1) The early stage steps during the Mevalonate pathway. Here acetyl-

CoA is metabolized all the way to isoprenoid precursors and the C30 linear squalene. 2) The

formation of the sterol tetracylic backbone through the cyclization of squalene into lanosterol. 3)

The late stage pathway stpes that take lanosterol to the final sterol drugs. In mammals,

cholesterol is the final product while in fungi ergosterol is the final sterol product. The steps that

lead up to zymosterol are conserved between the cholesterol and ergosterol pathway.

28

converted to various sterols, usually starting with the demethylation of the C14 carbon with the

highly conserved Cyp51 lanosterol 14 α-demethylase enzyme.92

 These late steps of sterol synthesis are divergent in eukaryotic organisms. In mammals,

cholesterol in synthesized from lanosterol in a 19 step sequence, executed through 9 different

enzymes.93, 94 These steps work to saturate the side chain, remove the C14 methyl and C4 gem-

dimethyl groups, and desaturate the ring system. There is believed to be two major pathways to

get to cholesterol, with the timing of the modifications on the side chain dictating how the

pathway proceeds.93 These late step pathways have also been shown to be quite important in

regulation of sterol synthesis. Mutations in these enzymes cause genetic sterol disorders, such as

Smith-Lemli-Optiz syndrome.93, 95 In fungi, lanosterol proceeds to ergosterol in a multi-step

pathway that differs depending on the organism. The ergosterol pathways of Saccharomyces

cerevesiae77 is very well characterized and the sterol pathways of other fungi such as Aspergillus

fumigatus76 have also been elucidated. The ergosterol pathway and cholesterol pathways share

the steps leading up to the biosynthesis of zymosterol. From there, the pathways diverge to offer

different side chains functionality and degrees of saturation on the tetracyclic ring core (Figure

9). The exact mechanisms of these steps are still being studied and divergent pathways from

what is understood so far have also been found in different organisms, making the study of sterol

pathways an ongoing effort.

2.3 Inhibitors of the Sterol Pathway

 Inhibitors of the sterol pathway are valuable pharmaceutical drug leads as they can have

anti-cholesterol effects or anti-fungal effects. Some of the largest blockbluster drugs developed

with these bioactivities include the cholesterol lowering statin medication and the azole

antifungal drugs. Inhibitors of these sterol pathways have also additionally been found to have

29

anti-tumor activities as well. This is due to the correlation between tumor cells and high

cholesterol levels, as tumor progression is highly dependent on cell division which requires high

cholesterol uptake.96 Many sterol pathway inhibitors have been discovered and developed,

resulting in a myriad of synthetic, semi-synthetic, and natural product drugs with different modes

of action and biological activities for inhibition on various steps of the pathway. In general,

inhibitors of early steps in the pathway have better cholesterol lowering activity while later stage

inhibitors are more specific toward ergosterol biosynthesis and act as better antifungal agents

(Figure 10).

2.3.1 Inhibitors of the Early Mevalonate Pathway

 As described in section 2.2, the sterol pathway can be divided into several main parts,

with the mevalonate pathway being the initial steps of the pathway. In these early steps, one of

the most important conversions is the reduction of the C5 ketone of HMG-CoA to yield

mevalonate, done by HMG-CoA reductase. This key step is the rate limiting step of the entire

cholesterol biosynthesis pathway, regulated through a negative feedback loop.97, 98 High levels of

cholesterol and other sterol pathway intermediates will lead to a decrease in transcription of

HMG-CoA reductase.99

 The statins are cholesterol lowering drugs that were first discovered in the 1970’s as

natural products from filamentous fungi. Compactin was first discovered from Pencillium

citrinum and showed antimicrobial activity during the first screens.10, 100 The compound was

soon shown to also lower plasma cholesterol levels, offering potential as use for

hypercholesterolaemia. In 1987, lovastatin was first approved by the FDA for cholesterol

lowering medication and had very limited side effects, and was able to achieve a 40% reduction

30

in LDL levels with a daily dosage of 80 mg.101 These two natural products drove the

development of statin drugs.

 Simvastatin was the next approved statin, a semisynthetic version of lovastatin that

feature an additional methyl group on the side chain in 1988. Pravastatin was discovered in 1991

as another semisynthetic drug. In addition, purely synthetic statins were developed as well,

including fluvastatin in 1994, atorvastatin in 1997, cerivastatin in 1998, and rousvastatin in

2003.100 The natural products and semi-synthetic analogs contain decalin cores that anchor the

monacolin structure. The synthetic analogs on the other hand differ in the decalin core portion of

the molecule, containing additional chemical moieties such as the cyclopropyl group in

pitavastatin to better interact in the binding pocket of HMG-CoA reductase.96 The lactone group

is structurally unchanged in both the natural and synthetic statins. This lactone group when

opened through hydrolysis mimics the structure of the HMG-CoA substrate. This lactone thus

serves as the molecular warhead that allows for the inhibitory activity of the statins.102 As

cardiovascular heart disease remains one of the leading causes of death in western countries,

these drugs remain important pharmaceuticals.

 In addition to the HMG-CoA reductase inhibitors, there are also other compounds that

have been found to inhibit the first few steps of the mevalonate pathway. The butyrolactols are

butyryl lactones with a hydroxyalkyl side chain found to suppress the growth of various fungal

species.103 They are structurally similar to Antibitoic F-244 (hymeglusin) an antimicrobial that

inhibits both bacterial and fungal growth. The compounds showed activity toward lowering

mevalonate levels and thus the mode of action was explored. F-244 was shown to bind to HMG-

CoA synthase, offering an inhibitor of the step before HMG-CoA reductase.104

31

2.3.2 Inhibitors of the Late Mevalonate Pathway

 Early mevalonate pathway inhibitors have the disadvantage in that they greatly decrease

the production of the isoprenoid precursors (isopentyl-PP, geranyl-PP, farnesyl-PP) that are

Figure 10. Inhibitors of the Sterol Pathway

Many compounds have been discovered and developed for the purposes of inhibiting the sterol

pathway. Inhibitors of the early steps of the pathway are boxed in blue and have cholesterol

lowering activity. In the middle steps of the pathway, there have been many natural products

discovered that are used for a mix of cholesterol lowering agents and antifungal. Finally toward

the late stage steps of the sterol pathways are inhibitors that serve as very efficient antifungal

medications.

important toward many biological functions. Late stage cholesterol pathway inhibitors also have

the issue of accumulating toxic rigid sterol cyclic intermediates. Thus the steps in the late stages

32

of the mevalonate pathway leading up to the synthesis of the first sterol cyclic product lanosterol

hits a sweet spot for ideal inhibitors of sterol metabolism.

 Squalene synthase is the step that joins two units of farnseyl-PP to form the linear

precursor to lanosterol, squalene. The squalestatins, also known as zaragozic acids were

discovered in the early 1990’s in various different filamentous fungi. Over 20 different

squalestatins and zaragozic acids have been discovered, with variations mainly among the side

chains. The squalestatins all contain the same highly oxygenated 2,8-dioxabicyclo-[3.2.1]octane-

3,4,5-tricarboxylic acid core. The squalestatins are highly potent and selective inhibitors of

squalene synthase. This inhibitory activity gives them biological applications such as cholesterol

lowering, antifungal agents, and farnesyl transferase inhibitors.105 More about the squalestatins

will be discussed in section 4.

 Other than the squalestatins, the structurally similar Viridiofungins are also another group

of natural products discovered to have squalene synthase inhibitory effects. They displayed

strong antifungal activity, but no antibacterial activity. Structurally the viridofungins contain a

saturated lipid tail with a dicarboxylic acid head, which is also attached with an amino acid.

These amino alkyl citrate compounds show micromolar inhibitory activity against squalene

synthase though they are much less potent than the squalestatins.106, 107 Ascofuranone, an

antibiotic and anti-tumor drug, was first discovered through hypolipidemic screens and also has

squalene synthase inhibitory activity.108

 Squalene epoxidase is the step following squalene synthase and the first of two concerted

steps to synthesize the cyclized sterol intermediate lanosterol. The allylamines are squalene

epoxidase inhibitors that act as potent antifungal agents. Naftifine is an allylamine drug

serendipitiously discovered through an accidental synthesis reaction by Sandoz. It was found to

33

have both antibacterial and antifungal effects. Its antifungal effects are pronounced, effectively

having fungistatic effects on dermatrophytes by inhibiting ergosterol biosynthesis. Terbinafine is

the synthetic analog of naftifine, which is more potent and able to be administered orally as well

as topically in contrast to naftifine which can only be administered topically.109-112

2.3.3 Inhibitors of the Late Sterol Pathways

The late stages of the sterol pathways are divergent in different organisms. Therefore,

targeting late stages of the ergosterol pathway are a desirable way to develop antifungal agents.

One important step in the late stage pathway is catalyzed by Cyp51, the lanosterol 14-α

demethylase p450 enzyme. The Cyp51 family is conserved across all life and is believed to be

the ancestor of all p450s. The inhibition of this target has potential to have both cholesterol

lowering effects and antifungal activity, although the current major inhibitors of this target are

primarily used for their antifungal activities.113

Azole drugs are the most broadly used Cyp51 inhibitors currently on the market. They

are able to inhibit the p450 enzyme through binding to the coordinated heme iron competitively

to block out the natural substrate. The azole antifungals are all synthetic drugs that were

designed to specifically inhibit Cyp51. Azoles have two classes, the imidazoles and the triazoles.

The imidazoles contain two nitrogen ring systems while the triazoles have three nitrogen rings

systems. The nitrogens on these rings serve as the chemical warheads that bind to the heme iron

complex of Cyp51 to block its activity. The imidazoles include ketoconazole, clotrimazole,

econazole, and miconazole. The triazoles include fluconazole and voriconazole. The triazoles are

newer developed drugs that have a better pharmokinetic results and generally better efficacy.114

In addition to the synthetically developed azoles, there are also natural products derived

from filamentous fungi that have also been found to inhibit Cyp51. These include lanomycin and

34

restricticin, which contain a glycine ester moiety that is required for their inhibitory activity.96

These natural products will be discussed further in Section 5.

Finally, there are inhibitors that bind directly to the final product of the sterol pathway in

fungi, ergosterol. These are the polyene antifungals, amphotericin B and nystatin. Amphotericin

B directly binds to ergosterol, forming aqueous pores in the fungal cell membrane. Both drugs

were isolated from bacterial cultures through phenotypic screens during the early 1950’s when

natural product discovery was still in its nascent form. They are both large macrolide polyenes

that are usually glycosylated. These drugs contain both a polyol and polyene portion,

corresponding to having highly hydrophilic and hydrophobic portions.115 These antimycotic

drugs have high activity and are still widely used for antifungal treatments today.

3. Targeted Genome Mining Method Development

 Current technological advances have made it possible to develop a highly efficient

pipeline for natural product discovery. Our natural product discovery pipeline uses

bioinformatics, synthetic biology, and chemical characterization tools in concert to not only

discover new natural products, but also elucidate the biosynthetic pathways that manage their

production. Our natural product discovery pipeline consists of four major parts (Figure 11). This

pipeline begins with the genomic characterization of fungi usually done through next generation

sequencing techniques. Along with the publicly available genome databases from the National

Center for Biotechnology Information (NCBI)116 and Joint Genome Institute (JGI)117, we have

access to over 5000 characterized fungal genomes to search and study from. With this fungal

genomics information at our fingertips, there are also various bioinformatic tools available that

allow us to predict and find gene clusters of interest. After a gene cluster of interest is identified,

35

we can begin to study the gene cluster using synthetic biology tools. Specifically, we utilize our

robust heterologous expression systems in Escheria coli, Saccharomyces cerevisae, and

Aspergillus nidulans. Then through metabolic analysis using chromatographic instrumentation

such as LC-MS or HPLC, we can identify new chemical peaks that correspond to our gene

cluster of interest. Chemical characterization through nuclear magnetic resonance (NMR)

spectroscopy, X-ray crystallography, mass spectrometry, etc. allows us to determine the

chemical structure of the peaks of interest and identify key intermediates to help us build the

biosynthetic pathway leading up to the final natural product. This section will cover

technological developments in our natural product discovery pipeline aimed to specifically tailor

our efforts to find natural products through targeted genome mining.

3.1 Development of in silico Targeted Genome Mining

Some secondary metabolite gene clusters have been elucidated, but these BGCs still

remain an enigmatic space of genomics, especially in fungi and plants. In contrast to the well

conserved primary metabolite pathways that are very well understood, secondary metabolite

gene clusters can vary from organism to organism even within members of the same species.

Next generation sequencing has given us a wealth of genetic information on many of these

mycotic genomes, but there remains the need to properly annotate and assign function to the

DNA sequence. Proper identification of BGCs and their key components are the crucial steps to

discovering and studying natural product biosynthesis.

3.1.1 Bioinformatics tools for Gene Annotation

 There are many publicly available bioinformatics tools that have been developed toward

analyzing natural product gene clusters. To correctly identify genes in a newly sequenced

genome, comparative genomics with known gene sequences can help infer the boundaries and

36

functions of uncharacterized genes. One popular method is the use of Basic Local Alignment

Search Tool (BLAST). BLAST takes advantage of characterized genome databases from NCBI

to compare queried sequences. By looking at sequence similarity of the query to known

sequences, BLAST can draw conclusions on the closest homologs to the query and give function

and boundary. BLAST utilizes local alignments that check for functional domains in the protein

sequences that are often conserved through members of the same protein family. BLAST also

can compare protein and nucleotide sequences in different combinations using multiple

algorithms such as BLASTN (nucleotide vs nucleotide), BLASTP (protein vs protein), BLASTX

(nucleotide query vs protein database), and TBLASTN (protein sequence vs nucleotide database.

These results are outputted and calculated for an expect value that judges the confidence in an

alignment match.118

Figure 11. Natural Products Discovery Pipeline

Our natural products discovery pipeline utilizes a combination of genomics, bioinformatics, synthetic

biology, and analyticial chemistry techinques to identify new natural product compounds of interest

for study.

37

 In addition to BLAST, another gene annotation algorithm that can be used is

AUGUSTUS. AUGUSTUS uses a hidden Markov Model (HMM) that defines statistical

probabilities for different DNA types such as introns, exons, intergenic regions, etc. This puts

more stringent constraints on the search and prediction patterns the algorithm uses for more

accurate gene predictions. This allows the user to accurately predict gene boundaries and the

intron positions by comparing to a reference genome.119, 120

 There are a few algorithms developed that can predict entire secondary metabolite gene

clusters. Two of these are antibiotics and Secondary Metabolite Analysis Shell (antiSMASH)

and Secondary Metabolite Unknown Regions Finder (SMURF). antiSMASH can take genomic

FASTA (the most basic DNA/protein file format) files to be processed for gene cluster

identification. It is able to identify PKS and NRPS genes readily through a combination of

domain analysis, HMM prediction, and BLAST analysis. The outputs are in a user-friendly

interface where the gene cluster can be viewed and navigated through.121 SMURF is another

algorithm that evaluates gene clusters in a similar way, scoring the proximity of backbone core

genes with the tailoring genes found around them.122 To avoid dereplication of gene clusters, the

online database of characterized gene clusters, Minimum Information about a Biosynthetic Gene

Cluster (MIBiG) is available for comparison with these algorithms.123

 More specified genome mining algorithms have been also recently developed. The

Antibiotic Resistance Target Seeker (ARTS) is an engine that specifically searches in bacterial

genomes for antibiotic resistant enzymes to direct toward clusters with possible new drug

leads.124

38

3.1.2 Development of Targeted Genome mining Information Finder (TGIF)

 Currently, genome mining is mainly done through manual methods; identifying one or

two query genes of interest to use a search against publically available genomes using software

listed in the previous section to screen through possible gene clusters containing the queries of

interest. However, with the growing knowledge of gene cluster organization through elucidated

biosynthetic pathways and the identification of self-resistance enzymes present in these BGCs,

Figure 12. TGIF algorith flow diagram

The steps the TGIF algorithm takes to identify gene clusters of interest with self-resistance

enzymes.

39

there is the potential to search for BGCs with desired bioactivity. Targeted Genome mining

Information Finder (TGIF) aims to leverage the information currently known about self-resistant

enzymes to identify novel BGCs in an automated fashion.

 MATLAB® is a computing environment and programming language that is able to

execute algorithms and data presentation. One of the major advantages of MATLAB® is its

wealth of toolboxes that allow users to adapt their algorithms for specific fields of study. The

Bioinformatics Toolbox™ includes the ability to use BLAST to analyze FASTA format DNA

sequences, thus giving us a good foundation to develop our targeted genome mining engine.

The TGIF algorithm searches for gene clusters that contain possible self-resistance

enzymes that imply the biological activity of that particular cluster. A flow diagram outlining the

steps is shown in Figure 12. For all the searches done, the TBLASTN algorithm is used for

alignment searches. TBLASTN compares a translated protein sequence to a nucleotide database,

allowing for a broader search due to codon degeneracy. The TGIF algorithm utilizes various

scripts to run through the commands necessary to perform the targeted genome mining search.

All scripts can be found in the Appendix.

The first step is to build searchable databases for BLAST using the makeblastdb

command. This is iterated through for all genomes in the custom database and done using the

“mbmadedb.m” script.

The next step is to generate target hits in all the genomes using the “mbblast.m” script.

The protein sequences of these targets are inputted to the MATLAB algorithm. Self-resistant

enzymes that were described in Section 1.2.6 have been shown to be additional copies of the

housekeeping enzyme the natural product inhibits. Thus, when searching for these self-

40

resistant enzymes, we should be looking for genomes that contain an above average number of

the target enzyme. In addition, these self-resistant enzymes are usually mutated versions of the

housekeeping enzyme. Therefore, we want to find BLAST hits of the enzymes that can give us a

sufficiently high identity to qualify as a homolog, but also not too much homology to be

considered a typical housekeeping enzyme. To do this, we used MATLAB® to iteratively

BLAST through all the genomes in our customized database and count the number of hits in each

genome, where a hit is counted when the expect value is about 1E-50, the identity is at least

30%, the coverage is at least 20% of the query, and a BLAST score of at least 50. These

parameters are adjustable and can be customized for different targets. Storage of the results,

removal of duplicate hits, and parsing of the output data is done through “targethitchecks.m”.

The next step is to identify the core enzymes to determine secondary metabolite clusters.

This is done with the “colocalblast_mb.m”. As PKS and NRPS core enzymes are multi-domain

enzymes, they are identified by using BLAST with reference domain sequences of the PKS and

NRPS and searching for colocalization of these domains. As discussed in Section 1.2.3, there are

various forms of terpene cyclase enzymes including monoterpenes, sesquiterpenes, triterpenes

diterpenes, and tetraterpenes. Reference examples for these enzyme sequences are used to find

terpenoid gene clusters. Tailoring enzymes are also identified by BLAST using reference

sequences. Currently, TGIF searches for methyltransferases, transcription factors, p450

monoxygenases, and flavin dependent monoxygenases. These are performed with the

“auxgeneblast.m” script. Results for PKS, NRPS, Terpenes, and tailoring genes hits are stored,

duplicates are removed, and output results are parsed using the “secondmetcheck_PKS_test.m”,

“secondmetcheck_NRPS.m”, “secondmetcheck_terpene.m”, and “auxgenecheck.m” scripts,

respectively.

41

The final step is to use all the data generated through the BLAST function and organize it

to determine gene clusters of interest. The “targetclusterfindv3.m” script first uses the target lists

generated through “targethticheck.m” and compares these with the core enzymes hits to

determine colocalization of the target and core enzymes. This is done by checking the base pair

(bp) distance between the target and core enzymes. As the average fungal cluster size is around

~20k bp, this is the default distance allowed to be considered a cluster in the algorithm. This

value however can be adjusted for customization. If the target enzyme and core enzyme are

colocalized, the algorithm will then search for any tailoring enzymes around them. If there are

tailoring enzymes, this result is stored as a high-quality hit. In contrast, if there are no tailoring

enzymes, the result is stored as a low-quality hit. For all the positive cluster hits, an output is

generated that includes information about the statistical parameters, the genome the cluster is

found in, the specific location of the cluster, the type of core enzyme cluster, and the tailoring

genes found around the cluster. Another novel feature is the ability to search for specific residue

mutations of the target. If known site mutations of a specific target enzyme are known to confer

resistance, the residue position can be checked in the target cluster hits to have higher confidence

of a true positive if the point mutation exists in the results.

The results file allows for the quick screening of many genomes to identify gene clusters

that contain self-resistance enzymes. After identification of a gene cluster of interest, the gene

cluster is fully annotated and checked with literature and the MiBIG database to determine if the

cluster has been characterized. If not characterized, the cluster is then a strong candidate for

further analysis in the genome mining pipeline (Figure 11).

42

3.2 Development of Synthetic Biology Tools for Targeted Genome Mining

After identification of a target gene cluster of interest, the next step is to study the genes

in the cluster using synthetic biology techniques. There are two general methods to study gene

clusters and the molecules that are made from them. The first is using a top-down approach

which involves deconstructing the molecule from the final product. This is usually done through

the use of systematic genetic knockouts in the producing organism to identify intermediates of

the pathway by going backwards from the final molecule.125, 126 The second method is to use a

bottom-up approach to build up to the final molecule gene by gene. This is usually done through

heterologous expression of the cluster, starting by finding the combinations of genes to generate

early pathway intermediates.127

3.2.1 Heterologous Expression in Aspergillus nidulans

To elucidate the biosynthesis of target gene clusters of interest, we use a heterologous

platform in Aspergillus nidulans to express these genes in a foreign host. Heterologous

expression is often used in lower order organisms such as Escherichia coli128, 129 or

Saccharomyces cerevisiae130, 131 to express foreign genes due to the expansive literature

regarding their genetic and metabolic profiles. Working with a fungal host such as A. nidulans,

however, allows for more complex genes to be expressed more readily as the phylogeny of

fungal strains would be closer in relation. Using a fungal host also allows us to use express genes

that can be accurately spliced by the host. In lower organisms, RNA transcripts must be used to

accurately express the proteins, which would be an issue especially for silent gene clusters.

The Aspergillus nidulans A1145 strain is a genetically modified strain auxotrophic for

uracil, riboflavin, and pyridoxine. These auxotrophic markers can then be utilized to episomally

express foreign genes across three plasmids: pYTU, pYTR, and pYTP. With access to up to four

43

different types of constitutive fungal promoters to use, each plasmid can handle four genes,

giving access to heterologous expression of up to 12 genes from the cluster (Figure 13). The A.

nidulans platform also utilizes the AMA1 fungal plasmid replicator gene, which improves

extrachromosomal replication and transformation efficiency by up to 2000 fold132. In addition to

the AMA1 gene, the plasmids also contain the yeast 2µ origin of replication and the bacterial E.

coli ColE1 origin of replication, allowing these plasmids to serve as shuttle vectors between the

three species for assembly, amplification and expression. These properties make the A. nidulans

platform an effective means for heterologous expression of fungal gene clusters.

Figure 13. The A. nidulans heterologous platform

The episomally based heterologous expression platform in A. nidulans utilizes three shuttle

vectors that are capable of expressing multiple genes from BGCs for study.

44

3.2.2 Engineering of the Aspergillus nidulans heterologous expression platform

 One of the disadvantages of using a heterologous host in a higher organism such as A.

nidulans rather than E. coli or S. cerevesiae is that the metabolic profile of the filamentous fungi

strain is quite diverse, causing a high background for metabolite analysis. There are many

secondary metabolite gene clusters in filamentous fungi, with up to 71 clusters found in A.

nidulans. This issue was exemplified when performing heterologous expression of genes from

the zaragozic acid A cluster. The plasmid system induced significant production of both

sterigmatocystin (ST)133 and emericellamide (EM),14 which contributed to a high background

TIC (Figure S8). This amalgam of endogenous metabolites, compounded by the unknown

product mass made identification of any new product difficult. To expunge this issue, we

removed these metabolites through genetic knockouts of ST and EM, facilitated by CRISPR-

Cas9 to delete stcA and easA and yield the strain A. nidulans A1145∆ST∆EM.134, 135 Since ST

and EM are also polyketide products, removing these products would ideally not only clean the

metabolic profile, but also increase flux of acetate units to the production of polyketide products

rather than to the production of ST and EM.

To perform the gene knockouts of ST and EM, the CRISPR/Cas9 vector pFC330

(containing the pyrG auxotrophic marker) was used. Knockout procedures are similar to ones

described previously by Nodvig et al.134 Briefly, the protospacer within the sgRNA was

determined by CHOPCHOP135 to minimize the number of promiscuous targets. The sgRNA was

amplified from gBlocks (IDT, USA) and ligated to pFC330 upon double digestion with BglII and

PacI. The linear, marker-less knockout cassette was constructed via splicing by overlap

extension PCR (SOE-PCR), with 2 kb upstream and downstream of the knockout region

respectively. Primers used for the construction of the CRISPR plasmid and knockout cassette are

45

Figure 14. Engineering of A. nidulans strains.

[i] A. nidulans A1145 with empty vectors as a negative control. [ii-iv] Engineered A. nidulans

A1145 strains with the cassette to produce the intermediate with a mass of 420. A and B shows

location of metabolites signals removed upon deletion of ST and EM genes, respectively. TIC:

total ion chromatogram shown in dotted lines to show the overall metabolite profiles. EIC:

extracted ion chromatography m/z values filtered for the mass of 420.

listed in Table S5. Both the CRISPR/Cas9 plasmid and linear knockout cassette were co-

transformed to A. nidulans A1145 with the transformation procedures described below. For

negative selection to cure the CRISPR plasmid, solid plates of glucose minimal media (GMM)

containing uridine, uracil, pyridoxin, and riboflavin, with 5-fluoroorotic acid (5-FOA) to a final

concentration of 1 mg/mL. Colonies were screened for knockout by PCR from the genomic

46

DNA, and knockout efficiencies were 50% and 30% for sterigmatocystin (ST) and

emericellamide (EM), respectively to generate A. nidulans A1145∆ST and A. nidulans

A1145∆ST∆EM.

Removal of these excess secondary metabolites greatly purged the high background that

was viewed with the original A1145 strain, allowing for identification of new compounds

introduced through heterologous overexpression, especially of compounds which signals overlay

with EM and ST products (Figure 14). The new engineered platform greatly assisted in the

identification of key intermediate compounds discussed in the following sections.

4. Identification and Elucidation of the Zaragozic Acid A Biosynthetic Gene

Cluster

Zaragozic acid (ZA) A (1) (also known as squalestatin S1 is a heavily oxidized fungal

polyketide that offers potent cholesterol lowering activity.136 Though various total syntheses of 1

have been reported,137-148 a complete understanding of its biosynthesis remains elusive. To

further study ZA and its biosynthesis, we utilized targeted genome mining to first identify the

BGC that produces the molecule. As ZA is a known inhibitor of squalene synthase, we utilized

the TGIF algorithm to search through the genome of a known producer of ZA, Curvularia

lunata. The results showed the presence of two squalene synthases in the genome of the

filamentous fungi, one more than the average number of copies in fungi. One of the squalene

synthases showed the presence of many secondary metabolite genes in close proximity,

indicating a possible candidate cluster for ZA. Here, we utilized an engineered Aspergillus

nidulans heterologous host to reconstitute the biosynthesis of ZA.

47

4.1 Introduction to the Zaragozic Acids

Fungal polyketide natural products have been an important source of pharmaceutical

drugs due to their wide range of bioactivities.149 The diverse and complex structural features

have also attracted intense research efforts towards understanding the biosynthetic logic.150-152

The carbon scaffolds of many fungal polyketide natural products, including lovastatin131 and

cytochalasans,153 are built from the iterative functions of highly reducing polyketide synthases

(HRPKSs). These scaffolds are typically oxidatively modified by subsequent downstream

tailoring enzymes, such as oxidases and oxygenases, to furnish the mature product.49, 50, 63, 154 ZA

is one of such fungal polyketide natural products, first discovered in 1992, that showed potent

cholesterol lowering activity with its picomolar inhibition toward squalene synthase.136 This

molecule’s bioactivity was of particular interest due to its target (squalene synthase) being part of

the middle stage of the cholesterol pathway. Since there were already effective drug inhibitors of

the early stage of the sterol pathway (statins), a drug capable of impeding the cholesterol

pathway could have cholesterol lowering effects without obstructing the synthesis of important

isoprenoids products (IPP, GPP, FPP) that come after the early stages of the sterol pathway.155

Inhibitors of the middle cholesterol pathway also would ideally not cause the buildup of rigid

toxic cyclized sterol products that accumulate with the use of late stage sterol pathway

inhibitors.83

In addition to the noteworthy bioactivity, ZA’s have unique chemical features that drew

the attention of many synthetic chemists. Members of the ZA family of molecules share a 2,8-

dioxobicyclic[3.2.1]octane-3,4,5-tricarboxyclic acid core that is connected to two lipophilic

polyketide or fatty acid derived arms (Figure 1).156 The unique structural features of ZA mimic

48

presqualene diphosphate, the product of the head-head condensation of farnesyl-diphosphate, and

make ZA potent inhibitors of squalene synthase.157 Labeling studies have shown the

Figure 15. Representative compounds from the zaragozic acids family of polyketides.

tricarboxylic acid core is partially-derived from oxaloacetate, an intermediate found in the citric

acid cycle.155 Cox et al have shown the tetraketide arm (Figure 15) in 1 is synthesized by a

HRPKS and enzymatically esterified to the core in the last biosynthetic step.158 However,

formation of the other polyketide arm of 1 is unresolved.

4.2 Results and Discussion

4.2.1 Identification of the clz Cluster

We sequenced the genome of the fungal pathogen Curvularia lunata (also known as

Cochliobolus lunatus ATCC 74067), which was previously identified as a producer of 1.159 Since

49

1 is a known inhibitor of squalene synthase, we used the TGIF algorithm with squalene synthase

as a query to search for clusters candidates. Searching through the assembled genome showed

the presence of two copies of squalene synthase, more than the average number of copies in

fungi. This led to the identification of a gene cluster (clz) that is likely responsible for the

biosynthesis of 1 (Figure 16) that was next to the second non-housekeeping copy of squalene

synthase in the filamentous fungi. This cluster is similar to the recently reported squalestatin S1

cluster identified from Phoma sp. C2932 and unidentified fungus MF5453.158 Among the ~20

genes in the cluster (Figure S1), there is a gene that encodes the squalene synthase (Clz20) as a

potential resistance enzyme to 1 and two HRPKSs (Clz2) and (Clz14). Clz2 is highly

homologous to the previously identified squalestatin tetraketide synthase.160 Also present is the

acyltransferase Clz6 that catalyzes transferring of the tetraketide product from Clz2 to the

hydroxyl group in the tricarboxylic acid core.158 Therefore, we designated the clz cluster to be

responsible for 1 in C. lunata.

4.2.2 Elements of the clz Biosynthetic Gene Cluster

We focused on identifying the enzymes that assemble the benzyl containing polyketide

arm. We reason that the uncharacterized HRPKS, Clz14, should be involved, but the structure of

the potential polyketide product is unknown, especially with respect to the extent of reduction at

the different Cβ-carbons. One anticipated feature of the product is the presence of the benzyl

group, which is proposed to be a starter unit for the HRPKS.105 Although nonacetate starter

units, such as propionate, have been observed in priming of fungal HRPKSs,161 a benzoate unit

would represent the most significant departure from the canonical starter unit acetate. The N-

terminus of Clz14 contains a ~90 residue segment before the KS domain that bears no secondary

structure or signal peptide sequences, and is not found in many other fungal PKSs (Figure S2).

50

Two genes in the clz cluster, Clz10 and Clz12, encode phenylalanine ammonia lyase (PAL) and

4-courmarate-CoA ligase, respectively. These two enzymes may be involved in transforming

Figure 16. Zaragozic Acid A cluster

Organization of the zaragozic acid A (clz) gene cluster found in C. lunata. The magnified region

contains genes that were hypothesized to be responsible for the biosynthesis of the benzoyl-

primed, tricarboxylic acid intermediate.

phenylalanine into benzoyl-CoA, a strategy that is used in the biosynthesis of the enterocin

natural products in Streptomyces.162 Also present in the gene cluster is a homolog of citrate

synthase, Clz17, which may be involved in connecting the Cα carbons of the polyketide chain

and citrate to afford the tricarboxylic acid unit. Homologs of this enzyme are found in gene

clusters of nonadride-containing polyketides, and often function in tandem with an alkylcitrate

dehydratase to form maleic anhydride.163-165 No dehydratase homolog is found in the clz cluster,

consistent with the presence of the tricarboxylic acid moiety in 1. Instead two potential

hydrolytic enzymes, Clz11 and Clz13, which are α/β hydrolase and β-lactamase, respectively, are

in close proximity to Clz14, and may participate in product release.

51

4.2.3 Heterologous expression of the clz cluster

 To elucidate the function of Clz14, we used an episomally based heterologous system

in A. nidulans A1145 that is capable of expressing up to 12 genes using 3 plasmids.166 We first

introduced five genes (clz10, 11, 12, 14 and 17) and monitored total ion count (TIC) to detect

Figure 17. Zaragozic Acid A cluster and Metabolic Traces

Extracted ion chromatography of LC-MS traces from both C. lunata (13 days) and A. nidulans (3

days) showing production of metabolites of interest. All masses shown correspond to m/z [M-

H]-. i: Standard of 1; ii: production of 1 and 2 from C. lunata; iii-vi: production of 2 from

different combinations of genes from C. lunata reconstituted in the A. nidulans A1145∆ST∆EM.

iv: production of d5-labeled 2 upon feeding of d5-benzoic acid.

52

formation of new products. Introduction of the clz genes into the engineered A. nidulans

A1145∆ST∆EM strain led to the identification of a new mass peak (m/z [M-H]- 419) that was

previously buried under the signals of sterigmatocystin and emericellamide B (Figure 14 and

Figure S7). Exclusion of clz14 abolished the production of this compound 2, confirming it is

derived from the HRPKS.

 Large-scale fermentation was performed to isolate a sufficient amount of 2 (titer of ~

0.1 mg/L) for NMR characterization and structural elucidation. 2 was found to have the

molecular formula C23H32O7 based on positive HRESIMS data (Figure S5). A database search

for ZA related compounds revealed that a previous characterized compound, L-731.120, was

isolated from the ZAA producing strain MF5453 (ATCC 20986),167 which could potentially

match 2. Detailed analysis of the 1D and 2D NMR data of 2, particularly the COSY and HMBC

spectra, revealed the presence a monosubstituted phenyl ring and one trisubstituted double bond,

which led to the full assignment of C-8 to C-19 fragment (Table S4 and Figure S13-17). Further

analysis of the 1H NMR data of 2 revealed the methylene group C-2 is bonded to two quaternary

carbons, which is supported by the splitting pattern of H-2 (doublet) and its large coupling

constants resulting from self-correlation (J = 16 Hz). This evidence combined with HMBC

correlations from H-2 to C-20 and from H-4 to C-3, C-20 and C-21 established the tricarboxylic

acid substructure. This moiety was connected to the benzyl-containing fragment via three

methylene groups, which accounted for the rest of the unassigned atoms in the molecular

formula. Thus, the panel structure of 2 was assigned. EIC analysis of the metabolite extract from

C. lunata also revealed the presence of 2 (Figure 17 ii) along with 1, further corroborating the

relationship of 2 to the set of clz genes.

53

4.2.4 Investigation of benzoic acid starter unit priming

 To investigate the priming pathways and incorporation of the benzoate starter unit by

Clz14, we performed labeling studies using either d5-benzoic acid or d8-phenylalanine (Figure 17

KS AT DH MT ER KR ACP

KS

MT

KR

DH

ER

KS

MT

KR

DH
KS

KR

DH

ER

Figure 18. Proposed biosynthesis of zaragozic acid A (1)

Clz14 is the HRPKS involved in the first steps of the biosynthesis. The domains and steps of

Clz14 are shown as white arrows. HRPKS domain abbreviations: KS: ketosynthase; AT:

acyltransferase; DH: dehydratase; MT: methyltransferase; ER: enoylreductase; KR:

ketoreductase; ACP: acyl carrier protein;

iv and Figure S4). In both cases, we observed the increase in molecular weight of 2 by 5 mu. In

the case of d8-phenylalanine feeding, retention of five deuterium labels is consistent with the

proposed conversion to benzoic acid, during which PAL (Clz10) yields cinnamate, followed by

esterification to yield cinnamoyl-CoA, which can undergo β-oxidation to yield benzoyl-CoA.168

Incorporation of d5-benzoate into 2 suggests the presence of an endogenous aryl-CoA ligase that

54

can afford benzoyl-CoA (Figure 18). When d5-benzoic acid was fed at a high concentration (1

mg/mL), a significant amount (~30%) of 2 remained unlabeled, which represents the unlabeled

benzoyl-CoA pool derived from phenylalanine. This parallel pathway to benzoyl-CoA was also

observed in the priming steps of enterocin in Streptomyces,169 and suggests Clz10 or Clz12 may

not be absolutely required in A. nidulans. Indeed, removing either Clz10 or Clz12 from the A.

nidulans constructs retained production of 2, while removing both enzymes led to ~5 fold

decrease in the titer of 2 (Figure 17). To probe if 2 biosynthesized from the minimal construct

(Clz11, Clz14 and Clz17) is derived from benzoate in A. nidulans, we repeated the feeding of d5-

benzoate into this host. As shown in Figure S4, unlabeled 2 is nearly abolished, confirming that

in the absence of Clz10 and Clz12, the level of benzoyl-CoA derived from phenylalanine is very

low. These studies therefore indicate the importance of Clz10 and Clz12 in the priming pathways

in the biosynthesis of 2. These two enzymes are particularly essential if the level of benzoate in

the native host is low compared to that in A. nidulans.

 To also further explore the substrate scope of the unique priming mechanism of this

polyketide system, we decided to try feeding different isosteres of benzoate that might be able to

be incorporated into the polyketide arm. Feeding of furoic acid, thiophene carboxylic acid, and

fluorobenzoic acid into the strain containing Clz10, Clz11, Clz12, Clz14, and Clz17 led to the

formation of new products 7, 8, and 9 in addition to 2 (Figure 19). These masses detected

corresponded to the incorporation of these acid substrates respectively. The fluorobenzoic acid

and thiophene carboxylic acid were readily incorporated into the polyketide chain, while the

furoic acid integrated polyketide was produced at much lower yield. These products represent

novel chemical analogs of 2 and indicate a flexible substrate scope of the polyketide priming.

55

Figure 19. Generation of Chemical Analogs of 2

Precursor directed biosynthesis was introduced into the heterologous expression system of the

ZA intermediate 2.

4.2.5 Polyketide product release

 We also investigated the product releasing steps that lead to biosynthesis of 2. The

citrate synthase Clz17 is essential in the biosynthesis as removing the gene from A. nidulans

abolished production (Figure S3). We propose that following completion of the polyketide

synthesis, which yields 4, Clz17 catalyzes the addition to oxaloacetate to yield 5. This is

consistent with the role of homologous enzymes in the nonadride biosynthetic pathways,

including those of phomoidride,163 byssochlamic acid164 and rubratoxin.165 Whereas in these

pathways, formation of the anhydride catalyzed by alkylcitrate dehydratase is the release

mechanism, here 5 is directly hydrolyzed to yield 2. We propose that the hydrolase Clz11 is

responsible for this reaction and product turnover. Clz11 shares sequence homology to other

uncharacterized fungal hydrolase enzymes such as in Lepidopterella palustris (62% id) or

Glarea lozoyensis (48% id), but only very weak identity to LovG from the lovastatin pathway.170

56

Removal of Clz11 from the A. nidulans construct that produced 2 led to ~99% reduction of the

product level (Figure S3), indicating while spontaneous or nonspecific enzyme hydrolysis is

present, Clz11 significantly accelerates product turnover. Substituting Clz11 with the β-

lactamase homolog Clz13 also resulted in only background level of product formation (Figure

S3). The timing of Clz11 activity is precise and only acts to release 2 from 5. In the construct

without the citrate synthase Clz17, we could not detect any trace of the free polyketide 3. The

combination of citrate synthase and hydrolase therefore represents a unique mode of product

release from the HRPKS.

4.3 Conclusions

We had successfully used targeted genome mining to identify the clz cluster. Using

heterologous expression, we have shown that only three genes, Clz14, Clz17 and Clz11 are

required to synthesize 2, utilizing the benzoyl-CoA pool that is naturally present in A. nidulans.

This represents an exceptionally concise pathway to a structurally complex, amphiphilic

polyketide product. Benzoyl-priming of Clz14 is unprecedented among fungal PKS systems, and

further biochemical characterization of the KS domain and the unique N-terminal region may

reveal the molecular basis using the non-acetate starter unit. From 2, a series of hydroxylation

reactions must take place to furnish the other features of the proposed intermediate 6, including

the 2,8-dioxobicyclic[3.2.1]octane-3,4,5-tricarboxyclic acid core and the C-10/C-22 exo-

methylene. In particular, hydroxylations at five sp3 carbons C-2, C-4, C-5, C-6, C-7 are

proposed to take place, representing a remarkable cascade of C-H activation steps on vicinal

carbon atoms. These reactions may be iteratively catalyzed by two enzymes with homology to

non-heme iron and α-ketoglutarate dependent oxygenases Clz15 and Clz16, which are also found

in the homologous pathway from Phoma sp. C2932.158 The identification and reconstitution of

57

2 described here set the stage for delineating the order and enzymology of these enigmatic

reactions.

4.4 Materials and Methods

Strains and culture conditions

Curvularia lunata (Wakker) Boedijin var. lunata anamorph (MF5573) was purchased

from ATCC® (74067™). Curvularia lunata was grown on Difco™ PDA (Potato Dextrose Agar)

Plates from BD biosciences. To produce zaragozic acid A (1), C. lunata was inoculated into 20

mL of KF seed medium for 2 days before transferring 2 mL of the seed culture into LSF1 media.

Production of 1 was seen from days 11-15. Media and steps used in this procedure are outlined

by Bills et al.171 Aspergillus nidulans A1145 was purchased from the Fungal Genetics Stock

Center and used for heterologous expression of genes from C. lunata. Escherichia coli strain

XL1 Blue was used for cloning. Saccharomyces cerevisiae strain BJ5464 was used for

homologous recombination of DNA fragments to assemble the vectors used in heterologous

expression.

C. lunata and A. nidulans gDNA extraction, RNA extraction, and RTPCR

The Zymo ZR Fungal /Bacterial DNA Microprep™ kit was used to extract gDNA from

C. lunata. The Invitrogen Ribopure™ kit was used to extract RNA from A. nidulans.

Superscript® III Reverse Transcriptase Kit from Life Technologies was used to synthesize

cDNA from the RNA extracted from A. nidulans.

Genome sequencing, assembly and biosynthetic gene cluster prediction

The C. lunata genomic DNA was sequenced with three other fungal strains multiplexed

on a single lane of Illumina HiSeq 2000 with the standard 2 x 100 bp paired end run mode at the

Biomolecular Resource Facility (BRF) at The Australian National University. The resulting

58

FASTQ reads were first processed with Trimmomatic172 to trim off the adaptor sequences and

assembled using SPAdes.173 Scaffolds containing PKS genes were first retrieved by performing a

TBLASTN on the C. lunata genomic scaffolds with an arbitrary conserved fungal KS domain as

query sequence. Gene predictions were performed on these PKS gene-containing scaffolds using

AUGUSTUS174 using the Aspergillus nidulans species parameters. Simultaneously, the scaffolds

were submitted for secondary metabolite biosynthetic gene clusters prediction using

AntiSMASH 3.0.175 Among the predicted biosynthetic gene clusters, a gene cluster with two

HRPKS genes were identified, in which one of the HRPKS gene exhibits high homology to the

SQTKS from Phoma sp.160 The gene cluster also contains a citrate synthase, which corresponds

to presence of tricarboxylic acid unit in 1 and hence was assigned as the putative zaragozic acid

gene cluster (named clz cluster). The clz gene cluster was later shown to be similar to the

squalestatin S1 cluster identified from Phoma sp. C2932 and the unidentified fungus MF5453.158

Plasmid construction for heterologous expression

Plasmids pYTU, pYTP, pYTR were used as vectors to insert genes which contain

auxotrophic markers for uracil (pyrG), pyridoxine (pyroA), and riboflavin (riboB),

respectively.176 Genes to be expressed were amplified through Polymerase Chain Reaction

(PCR) using the gDNA of C. lunata as a template. The PCR products and the corresponding

backbone digested with PacI and SwaI were assembled with the Frozen-EZ Yeast

Transformation II Kit™ (Zymo Research) by using yeast homologous recombination with

BJ5464-NpgA, which contains a copy of A. nidulans phosphopantheteinyl transferase gene npgA

integrated in the chromosome.131

Genetic transformation and heterologous production in A. nidulans

59

Protoplasts were generated by scraping spores from a solid CD Medium (10 g/L glucose,

50 mL/L 20x Nitrate Salts, 1mL/L Trace elements, 20% agar) Plate. The spores were transferred

to 25 mL of liquid CD minimal medium and incubated for 12-13 hours at 37°C at 250 rpm. After

incubation, the germlings were collected and washed with 10 mL of Osmotic Medium (1.2M

MgSO4, 10 mM NaPO4) twice. The germlings were then transferred into 10 mL of Osmotic

Medium containing 30 mg of Lysing Enzyme from Trichoderma and 20 mg of Yatalase. The

culture was incubated for 12 hours at 28°C at 80 rpm. The cells were poured into a 30 mL Corex

tube and overlayed with 10 mL of Trapping Buffer (0.6 M Sorbitol, 0.1 M Tric-HCl). The tube

was centrifuged at 5000 RPM. The protoplasts were then removed from the interface of the two

buffers and transferred to sterile tubes. 2x volume of STC Buffer (1.2 M Sorbitol, 10 mM CaCl2,

10 mM Tric-HCl) was added to the protoplasts. DNA and 60% PEG4000 solution were added to

the protoplast solution and incubated at room temperature for 20 min. The cells were then plated

onto solid CD-Sorbitol Medium (10 g/L glucose, 50 mL/L 20x Nitrate Salts, 1mL/L Trace

elements, 20% agar, 1.2 M Sorbitol). After transformants appeared on the plates, the spores were

restreaked onto solid CD-ST production medium at 28°C for 4 days (20g/L Starch, 20g/L

Peptone, 50mL/L Nitrate Salts, 1mL/L Trace elements). For isotope feeding studies, 1 mg/mL of

deuterium labeled benzoic acid and phenylalanine were added to the solid CD-ST before

streaking cells. Deuterium labeled precursors used for feeding were purchased from Cambridge

Isotope Laboratories.

Sample analysis of A. nidulans transformants

A. nidulans transformants were grown on CD-ST for 2-4 days at 28̊C for small scale

analysis. Samples were extracted using 1 mL of acetone. After centrifugation, the supernatant

was then dried and resuspended into equal volume methanol before injection for LC-MS

60

analyses. LC–MS analyses were performed on a Shimadzu 2020 EV LC–MS (Kinetex 1.7 m

C18 100 Å, LC Column 100 × 2.1 mm) using positive-and negative-mode electrospray

ionization with a linear gradient of 5–95% acetonitrile MeCN/H2O with 0.5% formic acid in 15

min followed by 95% MeCN for 3 min with a flow rate of 0.3 mL/min. Standard of 1 purchased

from Cayman Chemicals was used for comparison.

Compound isolation and structure elucidation

16 L of CD-ST medium were poured on solid plates. Spores from solid CD media plates

were restreaked onto the production medium and grown in 28°C for 3 days. Samples were

extracted using acetone. The acetone was evaporated, leaving an aqueous solution of extracted

metabolites. The pH of the aqueous solution was adjusted to ~pH 10 then washed with ethyl

acetate. The aqueous solution was then adjusted to ~pH 3 and extracted with ethyl acetate. This

organic layer was dried in vacuo and resuspended in methanol, and fractionated using Sephadex

LH-20 size exclusion column, a CombiFlash® System, and semi-prep reverse phase HPLC

sequentially. The CombiFlash® System used a 100 g HP CL18 reverse phase column with a

linear gradient of 5–95% acetonitrile MeCN/H2O with 0.1% formic acid in 60 min at 60 min/mL.

HPLC fractionation used a semi-preparative C18 column of Kinetics New column, 5m, 10 × 250

mm with an isocratic method of 45%/55% acetonitrile/water with 0.1% formic acid for 45 min at

4 mL/min.The collected fractions were analyzed using LC-MS with a linear gradient of 5–95%

acetonitrile MeCN/H2O with 0.5% formic acid in 15 min and desired fractions were pooled. For

elucidation of chemical structures, 1D and 2D NMR spectra were obtained on Bruker AV500

spectrometer at the UCLA Molecular Instrumentation Center. High resolution mass spectra were

obtained from Thermo Fisher Scientific Exactive Plus with IonSense ID-CUBE DART source at

the UCLA Molecular Instrumentation Center.

61

5. Targeted Genome Mining for the Discovery of Natural Product Cyp51

Inhibitors

We had successfully identified and characterized the Zaragozic Acid A biosynthetic gene

cluster by using squalene synthase as our search through the genome of a known producer of the

cholesterol lowering natural product. However, we wished to find novel sterol pathway

inhibiting fungal natural products. Using the TGIF algorithm, we evaluated enzymes found in the

sterol biosynthetic pathway as targets to search for possible clusters making sterol pathway

drugs. One target that gave several cluster hits was lanosterol 14-α demethylase p450 (Cyp51).

Among these, we heterologously expressed a cluster from Scaffold15 of Aspergillus nomius,

leading to the production of analogs of restricticin, a natural product inhibitor of Cyp51. Here we

identified the BGC of an inhibitor of Cyp51 and showed several biosynthetic steps of the

molecule, evaluated the self-resistant copy of Cyp51 in the cluster, and found other clusters with

potentially novel Cyp51 inhibitors.

5.1 Introduction to Antifungal drugs and Lanosterol α-14 demethylase Cyp51

 Fungal infections are worldwide issue that plague over a billion people, leading to up to

1.5 million deaths annually.177 The diversity of fungal species is estimated to be around 1.5

million different types, many of which are opportunistic plant and human pathogens that cause

damage in agricultural and clinical settings. The most common fungal human pathogens include

Candida albicans, Aspergillus fumigatus, Aspergillus flavus, and Cryptococcus neoforms that

have exacerbated effects on immunocompromised patients.178 The clinical armamentarium

available to combat mycoses include a broad variety of pharmaceuticals with different modes of

action, including the common classes of antifungals: 1) Polyenes, 2) Azoles, 3) Allylamines, 4)

Echinocandins, 5) Griseofulvin, 6) Flucytosine, etc.74, 179 Despite these drugs, the rise of

62

antifungal resistance remains a challenge that requires the search for novel antifungals with new

modes of action.

Many of the classical antifungals (polyenes, azoles, and terbinafines) are specifically

aimed at disruption of the cell membrane integrity of the fungi through disuprtion of ergosterol

biosynthesis. Cyp51 (erg11) is a key enzyme in the sterol pathway, performing the C14

demethylation of important sterol intermediates through a multistep oxidative reaction. Cyp51

belongs to the cytochrome p450 superfamily, which is represented by heme-dependent,

membrane bound monooxygenses whose functions sweep through both primary and secondary

metabolism. Though there is significant variation in the p450s among different organisms,

Cyp51 is believed to be the ancestor to all p450s, as it is the only one found through all

biological kingdoms.180 The structural features of Cyp51 are highly conserved, which include six

regions that are used as substrate recognition sites (SRS). Among these regions is SRS1, which

forms the upper surface of the binding cavity; conservation of these residues contributes greatly

to the rigid substrate specificity of the p450 enzyme.92 The conservation of the structural features

of Cyp51 also allow for a narrow specificity of only four known substrates: lanosterol, 24,25-

dihydrolanosterol, 24-methylenedihydrolanosterol, and obtusifoliol throughout all biological

kingdoms.181 The ubiquity of this enzyme makes it an important checkpoint, since evolutionary

divergence of the sterol pathway occurs in the steps following 14-α demethylation.

Inhibitors of Cyp51 represent an ongoing effort to find cholesterol lowering, herbicidal,

and antifungal agents. Currently the development of Cyp51 inhibitors with antifungal activity

has been the most successful and prevalent, mostly represented by the azole drugs. As discussed

previously, these azole drugs consist of imidazole and triazole moiety containing molecules that

are potent inhibitors of Cyp51. These azoles have high efficacy against a broad range of fungal

63

Figure 20. Cy51 Inhibition by Azole drugs

Azole drugs work by inhibiting the heme-iron complex of Cyp51 through binding of the axial

substrate position through the nitrogen found in the B. triazole group or C. the imidazole group.

This position is usually binded by A. molecular oxygen which is incorporated into the substrate

through oxidation.

pathogens. The nitrogen of the azole groups on the drugs serve as the warhead of the molecules

for inhibiting the enzyme through coordination to the heme iron complex of the p450 enzyme at

axial ligand position where oxygen usually binds. (Figure 20) The anchor of the azole molecules

then interacts with the binding pocket of the enzyme through Van der Waals, hydrophobic, and

aromatic stacking.182

As with many antibiotics, fungal azole resistance has been an issue that has emerged with

many of the virulent fungi pathogens and is an active area of study. In eukaryotes, organisms

usually maintain one copy of Cyp51. In fungi, however the distribution of Cyp51 is varied

between phylogeny groups. This was first noticed in 2001 that Aspergillus fumigatus, an azole

resistant human pathogen strain, had two homologs of Cyp51, Cyp51A and Cyp51B, hinting at a

possible means of resistance through the duplicate copies.183 Further phylogenetic analysis of

these protein sequences showed the same dual copy Cyp51 in filamentous fungi such as

Aspergillus, Magnaporthe, Penicillium, Pyrenphora, Trichoderma, and Fusarium.184 Though

Cyp51A and Cyp51B claded differently, both were found to be replaceable, as only one copy of

64

either Cyp51A or Cyp51B was needed to maintain ergosterol biosynthesis activity. In some

strains, another homolog of Cyp51, Cyp51C, has been found in some fungi, such as in

Aspergillus flavus.185 Genetic analysis of azole resistance strains has been an ongoing effort to

elucidate the gain of function mutations that allow for resistance in Candida albicans,

Aspergillus fumigatus, Histoplasma capsulatum, etc. The mutations found usually affect the

azole efficacy through disruption of amino acids that interact with the docked azole ligand in the

binding pocket, structural rearrangement of the residues anchoring the heme binding, or

alterations in the substrate entrance cavity.185-188

5.2 Results and Discussion

5.2.1 Targeted Genome Mining of Cyp51 with TGIF

 We aimed to identify natural products that would have capabilities to inhibit the sterol

pathway in hopes of discovering novel anti-cholesterol or antifungal agents. To do this, we

decided to evaluate popular drug targets of the sterol pathway that have been used for the

development of small molecule pharmaceuticals. As introduced in the previous section, Cyp51 is

an important drug target that has been capitalized on to develop the azole drugs whose

fungistatic capabilities derive from their ability to inhibit the biosynthesis of ergosterol. We used

a database of 80 fungal genomes of strains from our laboratory that we would be able to quickly

evaluate and study once gene clusters of interest were identified. As mentioned previously, a

couple of Cyp51 homologs, Cyp51A and Cyp51B are commonly found among fungal species.

This was confirmed when running the TGIF analysis on our fungal database, which showed that

the average number of Cyp51 copies across our fungal database was 1.912 hits per genome,

while the median number of Cyp51 copies was 2. To find possible cluster candidates, we

65

identified genomes that contained >2 copies of Cyp51. In addition, the genomes must contain

Figure 21. TGIF results for CYP51 Targeted Mining

Clusters identified through using the TGIF algorithm for targeted genome mining of Cyp51. The

clusters in A. nomius, C. lunata, and A. montagnei are homologous. Core enzymes are

highlighted in red while the Cyp51 target is highlighted in turquoise.

Clusters that colocalize core secondary metabolite enzymes with a copy of Cyp51. The

colocalized distance was defined to be 20,000 nucleotide bp allowed between the target enzyme

and a core enzyme.

With these parameters we were able to identify five cluster candidates (Figure 21), two of

which were from Aspergillus nomius and Curvularia lunata that were homologous clusters. The

Cyp51 of A. nomius and C. lunata had an identity of 68% and 60%, respectively, to the Cyp51A

housekeeping gene of A. nidulans. This range of homology gave us confidence that the Cyp51

genes found in these clusters were close enough to housekeeping Cyp51 that they were not other

66

members of the P450 superfamily (members of the same p450 subfamily have >40% identity),

yet mutated enough that it could be a self-resistance enzyme. The conservation of the two

clusters among A. nomius and C. lunata also gave us confidence that these were secondary

metabolite gene clusters and we thus decided to pursue the study of these two as possible

biosynthetic gene clusters of a Cyp51 inhibitor natural product.

5.2.2 Genetic analysis of the Aspergillus nomius Biosynthetic Gene Cluster

 Bioinformatic analysis and a search through the public fungal genome databases revealed

other homologous gene clusters found in Epicoccum nigrum, Aspergillus bertholletius, and

Aspergillus pseudonomius. (Figure S8). By comparing the genes conserved through the three

genomes, we were able to draw the gene boundaries of the cluster based on the genes conserved

through all of the different species. There are 6-8 genes total in the cluster, including two core

enzymes, a HRPKS (rstn3) and a single modular NRPS (rstn8). In A. nomius and A.

pseudonomius, the NRPS follows a A-T-C domain organization sequence. Whereas in the other

strains the NRPS contains additional terminal domains; in A.bertholletius the NRPS follows a A-

T-C-TE organization and in E. nigrum and C. lunata the NRPS follows a A-T-C-R domain

organization. The changes in how these domains are constructed can lead to differences in the

biosynthetic mechanisms of these steps.

 In addition to the core enzymes, there are several other biosynthetic enzymes conserved

including a flavin dependent monooxygenase (rstn5), methyltransferase (rstn1), and reductase

enzymes that are not present in E. nigrum and C. lunata (rstn4 and rstn7). There is also a

hypothetical protein (rstn6) which has function that could not be predicted using primary or

secondary sequence alignment. Finally there is the proposed resistance enzyme, the Cyp51 p450

67

monoxygenase (rstn2). With the combination of an HRPKS and NRPS core enzymes both in the

cluster, we hypothesized that a lipopetide like product could be produced by this cluster.

5.2.3 Heterologous expression of the entire rstn cluster

 The genes from A. nomius and C. lunata discussed above were thus reconstituted in the

A. nidulans A1145∆EM heterologous expression host to determine the products of these clusters.

Efforts to produce the compound using the C. lunata cluster genes provided a new product upon

the expression of the HRPKS. However, when more genes were added, the formation of new

product intermediates was not observed. The polyketide product was isolated, but too unstable to

get structural data from.

 Heterologous expression of the cluster from A. nomius in A. nidulans A1145∆EM on the

other hand produced new hydrophobic compounds in CD minimal media. These two peaks

corresponded to molecules with molecular weights of 705 and 719 (Figure 21 iii). The detection

of these molecular weights was surprising at first, as the relatively small cluster in A. nomius did

not seem capable of producing such large molecules. Nevertheless, large scale isolation was

performed to accumulate the compounds and through NMR analysis the new peaks were solved

to be corresponding to 20, 21 (MW: 705) and 19 (MW: 719). These structures were novel

compounds that contained elements of the three major types of secondary metabolites:

polyketide, non-ribosomal peptide, and terpenes, an unprecedented combination of these core

enzymes. 19-21 all contained a tetrahydropyran ring extended by a methylated triene C9 tail on

the C5’ position, likely to be the polyketide product introduced by the A. nomius cluster. The

C3’, C4’ diol on the tetrahydropyran are modified through O-methylation and glycyl

esterification, respectively. The glycine bridges the polyketide product to a prenylated

isoindolinone product. Compounds 19-21 differ in methylation of the C3’ hydroxyl and C7

68

hydroxyl. A search of this molecule through the chemical database revealed that the structure

consisted of two known natural products: aspernidine and restricticin (Ro-1470). To verify that

Figure 22. Heterologous expression of the entire rstn cluster in A. nidulans

Heterologous expression of rstn1-rstn8 produced different compound depending on the

production media used. (i)(ii) Negative controls with empty vectors transformed into A. nidulans,

grown on CD and CDST production media (iii) In minimal media CD, the large hybrid

molecules 19, 20, and 21 were produced. (iv) In CDST, restricticin (15), and intermediates and

derivatives of restricticin were produced (14 and 16).

the bridge was indeed derived from glycine, we fed d2-glycine into the rstn1-8 producing strain

nd found an increase of the masses of 19-21 by 2 mu, indicating the incorporation of the labeled

glycine into the structure. This confirmed that glycine was indeed the amino acid connection

between the tetrahydropyran polyketide and the prenylated isoindolinone (Figure S10).

69

 Aspernidine is a secondary metabolite discovered from A. nidulans through generation of

an extract library through a variety of culture conditions. The compound is not found at normal

Figure 23. Aspernidine related secondary metabolites isolated from A. nidulans

culturing conditions and was screened for only when the media was supplemented with uridine

and aminobenzoate.189 The biosynthetic gene cluster was first elucidated through screening of a

genome-wide kinase knockout library that was generated in hopes of activating cryptic gene

clusters. A ΔmpkA strain was discovered to produce the aspernidine A and B (Figure 23), and

thus served as model strains for the study of the BGC that produced the molecule. The mpkA

gene encodes mitogen-activated protein kinase which is vital for cell wall integrity signaling and

germination. The isoindolinone core was proposed to start from an orsellinic acid aldehyde,

generated from a NRPKS. Nitrogen from ammonia could be then captured by the aldehyde and

closure of the ring through oxidoreduction and condensation. KO studies confirmed that pkfA, a

NRPKS, is responsible for the biosynthesis of aspernidine and pkfE from the same cluster, is a

prenyltransferase that connects a farnesyl group to the benzylic hydroxyl.190 Other isoindole

containing products have been isolated from other A. nidulans strains which contain different

70

amino acid substitutions at the nitrogen of the pyrroline ring.191, 192 These related compounds also

indicate the possibility of incorporating different amino acid into the isoindole ring.

 The second half of 19-21 corresponds to the natural product restricticin. Restricticin (Ro

09-1470) is a tetrahydropyran containing polyketide product that was first discovered in 1991 by

two separate research groups.193-195 Restricticin and its related compound,

Figure 24. Isolated restricticin and related natural products

lanomycin, are the only natural product inhibitors of Cyp51 that have been discovered so far

(Figure 24). As the aspernidine molecule is a natural metabolite from the A. nidulans

heterologous host, we concluded the restricticin portion of 19-21 should be derived from the

gene cluster from A. nomius that we introduced. Analysis of the same strain in rich CDST

production media resulted in the increased production of two new peaks with molecular weights

of 337 and 379, corresponding to possible structures of 15 and 18, respectively (Figure 22 iv).

We performed large scale isolation of these molecules and found 18 to be indeed corresponding

to the N-acetylated restricticin. However, the yield of 15 was low and subsequently was lost

throughout the purification process. This was corroborated by the literature in which the authors

indicated the instability of restricticin due to the labile ester bond and the tendency of the triene

71

to decompose.194 Compounds 18-21 can be found in both CD and CDST media, although the

yields of both changed depending on the media type. Confirmation of the production of these

compounds led us to designate the gene cluster as the rstn cluster that produces restricticin.

 Restricticin was isolated from Penicillium restrictum and other Penicillium spp193, 196 and

had potent antifungal activity against a broad range of fungi including Candida glabrata,

Cryptococcuse neoformans, Rhodotorula rubra, Trichosporon cutaneum, etc. The antifungal

spectrum of restricticin was found to be close to that of ketoconazole (KCZ), though the potency

of restricticin was about 2x less than KCZ based on the MIC tested for the fungal panel.

Evaluation of Candida albicans 652 treated with restricticin showed marked decreases in sterol

content from the metabolic profile, similar to the effects of KCZ.194, 197 These studies suggested

that restricticin could have a similar mode of action to KCZ in the inhibition of ergosterol

biosynthesis. Based on these studies, Aoki et al. investigated the specific mode of action studies

with restricticin, using purified microsome fractions containing Cyp51 from Saccharomyces

cerevisiae and from rat liver. Restricticin effectively bound to the heme of the S. cerevisiae

Cyp51 at a 1:1 ration based on the spectral change measurements, indicating specific inhibition

of lanosterol 14-α demethylase. However the IC50 values for inhibition of the rat liver p450 were

300X than the S. cerevisiae p450, implying a much better specificity for antifungal activity.198

Structure activity relationship studies also showed that restricinol had no antifungal or Cyp51

inhibitory activity while N-acetyl restricticin had much weaker inhibitory activity. This strongly

suggests the importance of the free glycyl ester of restricticin for bioactivity. The nitrogen of the

glycine likely coordinates to the heme of Cyp51 in similar fashion to the imidazole and triazole

groups of the azole drugs.

72

Due to its attractive bioactivity, various total syntheses studies were also performed to

restricticin,199-201 however the biosynthetic route to restricticin was never elucidated. Therefore,

the identification of 19-21 and 18 confirms that we have successfully utilized targeted genome

mining with TGIF to locate the BGC of a Cyp51 inhibitor fungal natural product. As A. nomius

is not a known producer of restricticin and growth of A. nomius under various conditions did not

yield production of restricticin, we have also successfully activated a silent gene cluster by

introducing it into our A. nidulans heterologous host.

5.2.4 Identification of intermediates of the rstn cluster

 After successfully identifying the rstn cluster, we wished to further elucidate the

biosynthetic steps that lead up to the formation of restricticin. Different combinations of genes

were tested to evaluate the steps leading up to the formation of 13. We hypothesized that the

pathway should start with the formation of the polyketide product using the HRPKS rstn3 and

may require the reductase enzymes rstn4 and rstn7 for release off the polyketide synthase. We

first tested combinations of these genes to see if any new metabolite could be formed. Even with

the introduction of rstn3 we begin to see the emergence of new peaks containing high UV signals

(over 300 λ). These peaks also contained characteristic UV profiles that were consistent with

conjugated polyene products that would indicate possible linear polyketide precursors for

restricticin (Figure 25), including 10 (MW: 246). Attempts to isolate 10, however, were

unsuccessful as the compound was unstable and degraded during the purification process.

Only with the addition of the FMO rstn5 and hypothetical protein rstn6, did we see the

production of a new set of peaks, corresponding to 13 and 16 (Figure 26 ii). Both rstn5 and rstn6

are both required for the formation of 13 and 16, as leaving either gene out did not produce these

peaks (Figure S9). Large scale fermentation was done to isolate sufficient amounts of these

73

compounds to verify the structures of these molecules using NMR. We found 13 (MW: 266) and

16 (MW: 282) to be corresponding to the diol contacting tetrahydropyran products that

Figure 25. Heterologous expression of early steps of the restricticin pathway

Early steps of the rstn pathway expressed in both A. nidulans and S. cerevisiae. 10 is proposed to

be the true intermediate of the pathway that is produced with the combination of rstn3 + rstn7

and has a MW of 246. The other peaks are believed to be shunt products of the pathway.

make up the core of restricticin. 16 is the terminal C14 hydroxylated product of 13, likely a result

of endogenous enzymes from A. nidulans, as versions of this molecule have never been isolated

from restricticin producing hosts. Addition of the methyltransferase rstn1 resulted in the

production of 14 (MW: 280) and 17 (MW: 296) (Figure 26 iii). The strains producing these

74

molecules were also fermented at large scale and isolated for NMR characterization, verifying

these products as restrictinol 14, and the terminal C14 hydroxylated restrictinol 17.

The isolations of these compounds allow us to propose a biosynthetic route that the rstn

gene cluster takes to synthesize restricticin and its derivatives found in the A. nidulans

heterologous host (Figure 27). We propose the biosynthesis begins with the HRPKS rstn3 which

works in tandem with rstn7 to form the heptaketide linear product 10. 10 can then be further

modified with rstn4 to get 11 by reducing the C3 ketone to a hydroxyl and the terminal C1

aldehyde to an alcohol. The FMO rstn5 and rstn6 work together to facilitate the epoxidation

across the C4, C5 double bond which sets up for the intramolecular cyclization through opening

of the epoxide ring with the terminal hydroxyl to generate the tetrahydropyran ring with a C3, C4

diol. The C3 hydroxyl is then further modified through O-methylation using rstn1. The C4

hydroxyl is functionalized using the NRPS rstn8 which attaches a glycine through esterification

of the amino acid to the hydroxyl group to finish restricticin. Restricticin is then further

metabolized by the heterologous host to be either acetylated on the free amine of the glycyl ester

to form 18 or combined with the aspernidine pathway to capture the amine of the glycyl ester in

the isoindolone ring to form 19-21. It is likely the restricticin derivatives are an effort by the A.

nidulans host to detoxify the antifungal agent through protecting the free amine that serves as the

warhead of restricticin in interacting with the heme group of the target enzyme Cy51.

75

Figure 26. Heterologous expression of early steps of the restricticin pathway

Late stages of the rstn biosynthetic pathway were done in A. nidulans. Only with the addition of

rstn5 and rstn6 were able to form a cyclized product, 13. 13 is then methylated at the C3

hydroxyl followed by esterification with glycine to 14. Metabolized products with a terminal

hydroxyl group were also identified in the culture medium from the heterologous expression.

5.2.5 In vitro verification of final steps of the pathway

 To confirm that the intermediates that we isolated, 13, 14, and 17 were true intermediates

of the pathway, we decided to study the enzymes, rstn1 and rstn8 further. To perform these in

vitro studies, we heterologously expressed the two genes in Escherichia coli, specifically a BL21

76

strain that contains the npgA gene from A. niger that allows for the 4'-Phosphopantetheine

prosthetic group to the T domain of the NRPS (rstn8). The proteins were then expressed at large

scale culture and purified for testing. We first evaluated the methyltransferase rstn1 by

performing the in vitro reaction with 13 and S-adenosylmethionine, the cofactor for methyl

transfer enzymatic reactions. Immediate conversion was seen of the substrate 13 to 14 (Figure 26

vi). Next, we tested the NRPS rstn8. By reacting rstn8 with 14 and glycine, we were able to

convert 14 to a product with the same retention time and mass as 15, restricticin (Figure 26 vii).

To further confirm that 15 was the product of the rstn8 reaction, we added acetic anhydride to

the reaction mixture to functionalize the amine group of 15 to yield 18. Indeed, the addition of

acetic anhydride was successful in acetylation of 15 to form 18 (Figure S12).

KS AT DH MT ER KR ACP

ER

Figure 27. Proposed Biosynthetic Mechanism of restricticin

Rstn3, rstn4, and rstn7 are believed to start the biosynthesis by synthesizing the linear polyketide

aldehyde product. The FMO, rstn5, can then generate the epoxide across the C4-C5 double bond.

This is led by the C1 hydroxyl attack to open the epoxide the to form the tetrahydropyran

cyclized product and the C3,C4 diol with opposite stereochemistry. The diol is then

77

functionalized by first methylation of the C3 hydroxyl with rstn1 followed by attachment of a

glycine through an ester bond with rstn8 to form restricticin. Restricticin is further metabolized

by the A. nidulans host to detoxify the compound through protection of the free amine in the

forms of 18 and 19-21.

The rstn8 reaction thus represents a rare case of esterification performed by a NRPS in contrast

to the more common amide bond condensation reactions done by canonical NRPS enzymes.

 We further decided to test the substrate scope of rstn8 by testing different amino acid

substrates as well as different polyketide substrates. For the amino acids, we tried glycine, beta-

amine alanine, aminovaleric acid, valine, leucine, lysine, alanine, and methylated versions of

glycine with the natural substrate 14. For the polyketide substrates we tried compounds 13, 14,

and 17 with the natural amino acid substrate glycine. The NRPS was not able to take any amino

acid substrate other than glycine, showing a very specific substrate preference (Figure S11). The

NRPS was able to take the terminal hydroxylated product 17 and convert it to 25. This shows

that the polyketide backbone substrate scope may be more flexible than that of the amino acids.

In contrast, rstn8 was not able to esterify glycine to 13, showing the rigid timing and requirement

of the C3 methyl before attachment of the glycyl ester.

5.2.6 Evaluation of the self-resistant Cyp51, rstn2

 We also wished to evaluate the proposed resistance Cyp51 gene, rstn2. In A. nomius,

there are an above average number of Cyp51 copies at three. Phylogenetic analysis of these

copies of Cyp51 shows that each copy from A. nomius clade into the different fungal Cyp51

variants (Figure 28. The scaffold292 copy of Cyp51 is closest to Cyp51A and the scaffold 229

copy of Cyp51A. The cluster copy of Cyp51, rstn2, on the other hand, is the more distant relative,

closest in homology to the rare Cyp51C copy found in some strains, such as A. flavus. A

sequence alignment shows that rstn2 contains a N360 residue that is usually the location of a

conserved histidine. The location of this residue is in the SRS5 section202, near one of the

78

substrate binding site in the catalytic pocket. The drastic change from the positively charged

histidine at this position to the polar asparagine residue may be clue to an ability of rstn2 to be

invulnerable to Cyp51 inhibitors. To investigate the antifungal resistance of rstn2, we built

plasmids that contained the rstn2 and the native housekeeping copy of Cyp51 from yeast into

pxp318, a low copy yeast vector (CEN/ARS), as overexpression of normal Cyp51 genes have

been shown to induce fungicidal resistance.203, 204 The genes were all under the expression of the

constitutive TEF1 promoter. We obtained a heterozygous knockout strain of Cyp51 of the yeast

Figure 28. Phylogenetic tree of Cyp51 from different species

Cyp51 of different organisms in different kingdoms is shown. In fungi, there are usually two

copies of Cyp51 in the forms of Cyp51A and Cyp51B. Some fungi contain a third Cyp51C copy,

such as A. nomius

strain BY4743∆YHR007C from the Stanford Genome Technology Center. These strains were

supplemented with the plasmids and the growth curves of these strains of yeast were tested with

different antifungal compounds, amphotericin B (amphB) and Fluconazole (FCZ) over 48 hours.

AmphB and FCZ are known antifungal drugs with different modes of action. AmphB

works by binding ergosterol while FCZ is a known inhibitor of Cyp51. The effects of both were

79

Figure 29. Sequence Alignment of various Cyp51

Cyp51 of different organisms in different kingdoms is shown. In A. nomius, the rstn2 copy

contains an Asparagine at N360 position, where this is usually a conserved histidine in other

species.

80

prevalent as growth inhibition was seen in the strains containing only the empty vector pxp318.

However, the treatment of FCZ had varying effects on the different strains of yeast. Yeast

harboring rstn2 showed recovery in growth around 20 hours while yeast harboring an additional

Figure 30. Effects of antifungal compounds on yeast strains

Yeast Cyp51 (yCyp51), rstn2, and pxp318 (empty vector) were transformed into yeast and tested

for growth inhibition under various compounds. Amphotericin B (A), Fluconazole (B), 18 (D),

and the negative control (no compound added) (C) were used to test growth inhibition.

copy of the native yCyp51 on the plasmid showed little signs of recovery past 35 hours of

growth. These results show the ability of rstn2 to have resistant properties against inhibitors of

Cyp51. On the other hand, AmphB as a positive control caused all the yeast strains to not grow.

Compound 18 was tested as well, but as was seen in previous studies, any antifungal effects are

81

very limited if any at all.197 This supports the hypothesis that 18 is a metabolized form of the

natural product as a way for the A. nidulans host to detoxify the antifungal restricticin.

5.2.7 A novel Cyp51 inhibiting gene cluster found in Apiospora montagnei

 The TGIF results for Cyp51 targeted cluster searches also revealed another cluster found

in Apiospora montagnei that was similar to the rstn cluster in A. nomius. We designated this new

cluster the Apm cluster (Figure 31A). This cluster has very similar features to the one in A.

nomius, including a single module NRPS, two reductive enzymes, an FMO, a Cyp51 gene, and

Figure 31. The Apiospora montagnei Apm cluster

TGIF showed the another similar cluster to the rstn cluster that contained a Cyp51 gene. A.

Comparison of the Apm17 and rstn clusters. Similar genes are coded in the same color. Unique

genes in Apm17 are coded in magenta. B. Introduction of all the proposed genes in the cluster

into A.nidulans shows an increase in many metabolites. C. Proposed compounds for some of the

compounds found based on the m/z values detected.

82

a HRPKS. However, this cluster is different in that it has multiple additional genes including a

second FMO, a second HRPKS, an acetyltransferase, and homocitrate synthase. The Apm cluster

also lacks the O-methyltransferase (rstn1) and the two HRPKS enzymes lack methyltransferase

domains. This implies that the polyketide product made by these enzymes may form a backbone

scaffold similar to that of chaunopyrone A (Figure 24) that has been isolated from fungal

cultures.

 Introduction of the proposed genes in this cluster into A. nidulans yielded a great deal of

new metabolites (Figure 31B). These metabolites show a UV profile with a λmax = 275, much like

the UV profiles of the restricticin related compounds. Based on the proposed genes in the cluster,

there were possible intermediates that we believed could be found. Some of these masses could

be identified by their m/z values in the metabolic profile: A1, A2, and B (Figure 31C). As there is

no O-methylation protection of the hydroxyl group, it is possible that the NRPS (Apm3) is

capable of forming the glycyl ester at both hydroxyl positions to form A1 and A2. B would be the

expected A. nidulans metabolized N-acetylated compounds found. Since the O-methyltransferase

does not protect the hydroxyl group in this cluster, the additional acetyltransferase Apm9 may

deliver a linear polyketide chain made by Apm1 to furnish a final product similar to what is

shown in Figure 31C. If the new metabolites are similar to the structure proposed, these would

represent novel Cyp51 inhibitor natural products. Further characterization of these new

metabolites need to be performed to confirm these results.

5.3 Conclusions

 We have identified and activated the BGC of restricticin from the fungi, A. nomius,

which is not a known producer of this Cyp51 inhibitor natural product using targeted genome

83

mining with the TGIF algorithm. Introduction of the genes in the pathway into our heterologous

host A. nidulans resulted in the unexpected production of compounds 18-21. Compound 18-21

are derivatives of 15, likely metabolized by the heterologous host to detoxify the antifungal

restricticin. All these compounds find a way to protect the free glycyl amine which is proposed

to be the molecular warhead that inhibits substrate binding of molecular oxygen to the heme

prosthetic group of the Cyp51. Compound 18 acetylates the free amine, while compounds 19-21

take a more creative approach to detoxify restricticin by capturing the amine group into the

isoindolinone core of apsernidine, an A. nidulans metabolite that is produced when the cell

membrane integrity of the fungi is compromised. We also evaluated the biosynthetic steps that

lead up to restricticin, including the functionalization of the diol on the tetrahydropyran ring

system. From in vitro assays, we see that the timing of the two functionalization steps are

important in the biosynthesis, with the O-methylation of the C3 hydroxyl being a essential step

before the glycyl ester can be formed by the NRPS on the C4 hydroxyl. The NRPS specifically

activates glycine and no other amino acid analogs, likely due to the importance of this chemical

group as the warhead of the molecules. Evaluation of the Cyp51 in the cluster, rstn2, also shows

that it has resistant capabilities against commercial Cyp51 inhibitors. Finally, through the TGIF

algorithm, we were also able to identify another similar cluster to that of restricticin, which is

likely to produce several novel natural product inhibitors of the Cyp51.

5.4 Materials and Methods

Strains and culture conditions

Curvularia lunata (Wakker) Boedijin var. lunata anamorph (MF5573) was purchased

from ATCC® (74067™). Curvularia lunata was grown on Difco™ PDA (Potato Dextrose Agar)

Plates from BD biosciences. Aspergillus nomius was obtained through the NRRL (13137) fungal

84

collection. Aspergillus nomius was grown on Difco™ PDA (Potato Dextrose Agar) Plates from

BD biosciences for activation. Apiospora montagnei was obtained through NRRL (25634) fungal

collection and activated using PDA Plates. Aspergillus nidulans A1145 was purchased from the

Fungal Genetics Stock Center and used for heterologous expression of genes from C. lunata.

Escherichia coli strain XL1 Blue was used for cloning. Saccharomyces cerevisiae strain BJ5464

was used for homologous recombination of DNA fragments to assemble the vectors used in

heterologous expression.

A. nomius and A. montagnei gDNA extraction, RNA extraction, and RTPCR

The Zymo ZR Fungal /Bacterial DNA Microprep™ kit was used to extract gDNA from

A. nomius and A. montagnei. The Invitrogen Ribopure™ kit was used to extract RNA from A.

nomius. Superscript® III Reverse Transcriptase Kit from Life Technologies was used to

synthesize cDNA from the RNA extracted from A. nomius and A. montagnei.

Genome sequencing, assembly and biosynthetic gene cluster prediction

The genome sequence for A. nomius was obtained through the NCBI database, genbank

accession code: GCA_001204775.2. The genome sequence for Apiospora montagnei was

obtained through the JGI portal database. Biosynthetic gene cluster prediction was done through

using online services from NCBI BLAST, NCBI conserved domain search, 2ndfind, and

Softberry (FGNESH) gene prediction.

Plasmid construction for heterologous expression

Plasmids pYTU, pYTP, pYTR were used as vectors to insert genes which contain

auxotrophic markers for uracil (pyrG), pyridoxine (pyroA), and riboflavin (riboB),

respectively.176 Genes to be expressed were amplified through Polymerase Chain Reaction

(PCR) using the gDNA of A.nomius and A. montagnei as a template. The PCR products and the

85

corresponding backbone digested with PacI and SwaI were assembled with the Frozen-EZ Yeast

Transformation II Kit™ (Zymo Research) by using yeast homologous recombination with

BJ5464-NpgA, which contains a copy of A. nidulans phosphopantheteinyl transferase gene npgA

integrated in the chromosome.131 E. coli vectors were assembled through digestion ligation of the

pet28A bector backbone. Genes to be expressed were amplified through PCR using A. nomius

and A. montagnei cDNA as template. Genes to be expressed in yeast were amplified through the

cDNA of A. nomius as template and gDNA from S. cerevesiae. Vectors were assembled using

pxp318 as backbone through yeast homologous recombination.

Genetic transformation and heterologous production in A. nidulans

Protoplasts were generated by scraping spores from a solid CD Medium (10 g/L glucose,

50 mL/L 20x Nitrate Salts, 1mL/L Trace elements, 20% agar) Plate. The spores were transferred

to 25 mL of liquid CD minimal medium and incubated for 12-13 hours at 37°C at 250 rpm. After

incubation, the germlings were collected and washed with 10 mL of Osmotic Medium (1.2M

MgSO4, 10 mM NaPO4) twice. The germlings were then transferred into 10 mL of Osmotic

Medium containing 30 mg of Lysing Enzyme from Trichoderma and 20 mg of Yatalase. The

culture was incubated for 12 hours at 28°C at 80 rpm. The cells were poured into a 30 mL Corex

tube and overlayed with 10 mL of Trapping Buffer (0.6 M Sorbitol, 0.1 M Tric-HCl). The tube

was centrifuged at 5000 RPM. The protoplasts were then removed from the interface of the two

buffers and transferred to sterile tubes. 2x volume of STC Buffer (1.2 M Sorbitol, 10 mM CaCl2,

10 mM Tric-HCl) was added to the protoplasts. DNA and 60% PEG4000 solution were added to

the protoplast solution and incubated at room temperature for 20 min. The cells were then plated

onto solid CD-Sorbitol Medium (10 g/L glucose, 50 mL/L 20x Nitrate Salts, 1mL/L Trace

elements, 20% agar, 1.2 M Sorbitol). After transformants appeared on the plates, the spores were

86

restreaked onto solid CD-ST production medium at 28°C for 4 days (20g/L Starch, 20g/L

Peptone, 50mL/L Nitrate Salts, 1mL/L Trace elements) and solid CD medium (20g/L Glucose,

50mL/L Nitrate Salts, 1 mL/L Trace elements). For isotope feeding studies, 1 mg/mL of

deuterium labeled glycine were added to the solid CD-ST before streaking cells. Deuterium

labeled precursors used for feeding were purchased from Cambridge Isotope Laboratories.

Sample analysis of A. nidulans transformants

A. nidulans transformants were grown on CD and CD-ST for 2-4 days at 28̊C for small

scale analysis. Samples were extracted using 1 mL of acetone. After centrifugation, the

supernatant was then dried and resuspended into equal volume methanol before injection for LC-

MS analyses. LC–MS analyses were performed on a Shimadzu 2020 EV LC–MS (Kinetex 1.7 m

C18 100 Å, LC Column 100 × 2.1 mm) using positive-and negative-mode electrospray

ionization with a linear gradient of 5–95% acetonitrile MeCN/H2O with 0.5% formic acid in 15

min followed by 95% MeCN for 3 min with a flow rate of 0.3 mL/min.

Compound isolation and structure elucidation

For isolation of 13, 14, and 17 8 L of PDB liquid medium was made in 2L flasks. For

isolation of 18, 19, 20, and 21, 4L of CD liquid medium was made in 2L flasks. Spores from

solid CD media plates were restreaked onto the production medium and grown in 28°C for 3

days. The fungal culture was filtered through cheesecloth to separate the cell mass from the

media. The media fraction was extracted with ethyl acetate while the pellet was exctracted with

acetone. The acetone fraction was evaporated, leaving an aqueous solution of extracted

metabolites. This aqueous fraction was then extracted with ethyl acetate. Both fractions were

then combined and dried in vacuo and resuspended in methanol, and fractionated using Sephadex

a CombiFlash® System, and semi-prep reverse phase HPLC sequentially. The CombiFlash

87

system (Teledyne) uses normal phase column chromatography with hexane and acetone as the

mobile phase with a gradient of 30-70% of acetone.

 HPLC fractionation used a semi-preparative C18 column of Kinetics New column, 5m,

10 × 250 mm with an isocratic method of 50%, 71%,and 38% acetonitrile/water with 0.1%

formic acid for 45 min at 4 mL/min for 13, 14, and 17, respectively. The collected fractions were

analyzed using LC-MS with a linear gradient of 5–95% acetonitrile MeCN/H2O with 0.5%

formic acid in 15 min and desired fractions were pooled. For elucidation of chemical structures,

1D and 2D NMR spectra were obtained on Bruker AV500 spectrometer at the UCLA Molecular

Instrumentation Center. High resolution mass spectra were obtained from Thermo Fisher

Scientific Exactive Plus with IonSense ID-CUBE DART source at the UCLA Molecular

Instrumentation Center.

Protein expression, purification, and enzymatic assays

To express and purify rstn1 and rstn8, primers were used to amplify the transcripts from

A. nomius cDNA. The inserts were digested and ligated into digested pet28A vector which

contained C-terminal His tag. The vectors were then transformed into E. coli BL21 and BAP1

for rstn1 and rstn8, respectively. 4L of LB medium with kanamycin antibioitic added were used

to grow the culture at 37°C to an OD of 0.6 before cooling and inducing with 0.1 mM isopropyl

thio-β-D-galactoside (IPTG) overnight at 16°C. The cell pellet was harvested by centrifugation

(3500 rpm, 10 mins), and it was then suspended in 100 mL of a buffer containing 50 mM

NaH2PO4, 150 mM NaCl, and 10 mM imidazole at pH 8.0. The suspended bacterial cells were

lysed using sonication and the cellular debri was removed using high-speed centrifugation

(17,000 rpm, 1 hr). The enzyme of interest was then purified from the supernatant using Ni-NTA

agarose affinity chromatography to near homogeneity. The purified protein was concentrated,

88

exchanged into a buffer container 50 mM NaH2PO4 and 50 mM NaCl at pH 8.0, aliquoted and

then flash frozen in liquid nitrogen. SI-8 For the protein expression and purification of the MatB

enzyme, the protocol detailed by Ma et al was followed.131 The purified protein was

concentrated, exchanged into a buffer container 50 mM NaH2PO4 and 50 mM NaCl at pH 8.0,

aliquoted and then flash frozen in liquid nitrogen.

 Assays were performed using 10 mM of NaH2PO4 buffer. For rstn1 reactions, 50 uM of

enzyme, 200 uM of 14, and 500 uM of SAM was added and incubated at room temperature for 1

hour, taking intermittent time points. For rstn8 reactions, 5 uM of rstn8 was incubated with 400

uM coenzyme A, 8 mM MgCl2, and 50 uM of purified npga for 1 hour. Then 4 mM glycine, 4

mM ATP, 8 mM MgCl2, and 20 uM of 15 was added to the reaction and incubated overnight.

Yeast Growth Curves

S. cerevisiae was transformed with the various plasmid harboring rstn2, yeast Cyp51, and

empty pxp318 backbone. The yeast was grown up in Uracil dropout media overnight. The

OD600 values were measured and diluted to a starting OD600 value of 0.005. Samples were

grown in 96 well plates. Compounds to be tested against (FCZ, AmphB, and 18) were dissolved

in 1 ul of DMSO and fed at final concentrations of 50 ug/ml, 2ug/ml, and 200 ug/ml respectively.

The negative control was performed with just adding 1 ul of DMSO into the drop out media.

FCZ was purchased from RPI and amphotericin B was purchased from Alfa Aesar. The total 96

well plate volume was added to 100 ul. The 96 well plates were put in the TECAN M200 plate

reader and grown at 28°C, with shaking. OD600 values were taken every 840 seconds. The 96

well plate was grown for 48 hours.

89

6. Final Conclusions

 With the improvement of genome sequencing, we now have access to the entire

repertoire of microbial compounds. Targeted genome mining is a recently developed method that

utilizes the new wealth of genome information to discover natural product desired bioactivity.

Here we demonstrated two examples of how targeted genome mining can be an effective strategy

in pinpointing a specific BGC of interest.

The first utilizes targeted genome mining to identify the biosynthesis of a molecule with

known activity. The squalene synthase inhibitor, zaragozic acid A, is of great interest due to its

complex chemical structure and potent bioactivity. To elucidate the biosynthesis of this molecule,

the targeted genome mining approach was utilized to search for squalene synthase containing

clusters in the natural producer, Curvularia lunata. This allowed for the identification and

verification of the zaragozic acid A biosynthetic gene cluster through heterologous expression of

a benzoyl alkylcitrate intermediate of the pathway.

The second example serves as a more general approach in trying to discover novel sterol

pathway inhibitors. Using the TGIF algorithm, we were able to identify Cyp51 containing fungal

gene clusters of interest. Cyp51 is an important drug target utilized by many commercial

antifungal azole drugs. This strategy identified the restricticin biosynthetic gene cluster in A.

nomius. Elucidation of the biosynthetic steps through in vivo and in vitro methods gave us insight

into how the restricticin is furnished. An analysis of the Cyp51 gene in the BGC also showed that

rstn2 has azole resistant properties. With the rest of the TGIF results, we were also able to

identify a Cyp51 containing biosynthetic gene cluster in Apiospora montagnei with the potential

to produce a novel Cyp51 inhibitor.

90

These results prove that the targeted genome mining methodology is an effective one at

searching for sterol pathway drugs. With further developments of search algorithms and the

growth of biosynthetic knowledge of secondary metabolism, we grow closer to drawing the

connections between natural compounds and genetic information. This offers a huge potential for

us to truly tap into the natural chemical resources from all of life. The implications of such

potential could be the solution to many therapeutic problems and hopefully the work done here

serves as a steppingstone for future developments in this new era of natural product discovery.

91

7. Appendices

Supplementary Tables
Table S1. Primers used in this study ... 93

Table S2. Plasmids used in the study .. 97

Table S3. Expression strains used in this study .. 98

Table S4. Comparison of genes between ZA clusters of C. lunata and MF5453 100

Table S5. Metabolites targeted for deletion in A. nidulans... 106

Table S6. 1H (500 Hz) and 13C (125 Hz) of 2 in CD3OD* ... 112

Table S7. 1H (500 Hz) and 13C (125 Hz) of 19-21 .. 118

Table S8. 1H (500 Hz) and 13C (125 Hz) of 14 and 18 ... 120

Table S9. 1H (500 Hz) and 13C (125 Hz) of 13 and 17 ... 121

Supplementary Figures
Figure S1. Comparison of the zaragozic acid A biosynthetic gene clusters 100

Figure S2. Alignment of N-terminal sequences of various polyketide synthases. 101

Figure S3. A. nidulans cassettes tested for production of 2. ... 102

Figure S4. Labeled precursor feeding studies. .. 103

Figure S5. Characterization of 2 ... 104

Figure S6. Characterization of 1 ... 105

Figure S7. Removal of undesired metabolites in A. nidulans. .. 106

Figure S8. Homologous clusters of rstn ... 107

Figure S9. Expression of late rstn pathway intermediates .. 108

Figure S10. Labeled glycine feeding .. 109

Figure S11. Substrate scope testing of rstn8 ... 110

Figure S12. Derivatization of restricticin to confirm structure ... 111

Figure S13. 1H NMR spectrum of 2 in CD3OD (500 MHz). .. 113

Figure S14. 13C NMR spectrum of 2 in CD3OD (125 MHz). ... 114

Figure S15. COSY NMR spectrum of 2 in CD3OD ... 115

Figure S16. HSQC NMR spectrum of 2 in CD3OD. .. 116

Figure S17. HMBC NMR spectrum of 2 in CD3OD. ... 117

Figure S18. 1H NMR spectrum of 17 in CDCl3 (500 MHz). .. 122

https://d.docs.live.net/d8245d4c55abf390/Thesis%20Work/Dissertation%20Nicholas%20Liu%2003112020-Nick-PC.docx#_Toc34798447
https://d.docs.live.net/d8245d4c55abf390/Thesis%20Work/Dissertation%20Nicholas%20Liu%2003112020-Nick-PC.docx#_Toc34798448
https://d.docs.live.net/d8245d4c55abf390/Thesis%20Work/Dissertation%20Nicholas%20Liu%2003112020-Nick-PC.docx#_Toc34798449
https://d.docs.live.net/d8245d4c55abf390/Thesis%20Work/Dissertation%20Nicholas%20Liu%2003112020-Nick-PC.docx#_Toc34798450
https://d.docs.live.net/d8245d4c55abf390/Thesis%20Work/Dissertation%20Nicholas%20Liu%2003112020-Nick-PC.docx#_Toc34798451

92

Figure S19. 13C NMR spectrum of 17 in CDCl3 (125 MHz). ... 123

Figure S20. COSY NMR spectrum of 17 in CDCl3 ... 124

Figure S21. HSQC NMR spectrum of 17 in CDCl3. .. 125

Figure S22. HMBC NMR spectrum of 17 in CDCl3 .. 126

Figure S23. 1H NMR spectrum of 14 in CDCl3 (500 MHz). .. 127

Figure S24. 13C NMR spectrum of 14 in CDCl3 (125 MHz). ... 128

Figure S25. COSY NMR spectrum of 14 in CDCl3 ... 129

Figure S26. HSQC NMR spectrum of 14 in CDCl3. .. 130

Figure S27. HMBC NMR spectrum of 14 in CDCl3 .. 131

Figure S28. 1H NMR spectrum of 15 in CDCl3 (500 MHz). .. 132

Figure S29. 13C NMR spectrum of 15 in CDCl3 (125 MHz). ... 133

Figure S30. COSY NMR spectrum of 15 in CDCl3 ... 134

Figure S31. HSQC NMR spectrum of 15 in CDCl3. .. 135

Figure S32. HMBC NMR spectrum of 15 in CDCl3 .. 136

Figure S33. 1H NMR spectrum of 18 in CDCl3 (500 MHz).. 137

Figure S34. 13C NMR spectrum of 18 in CDCl3 (125 MHz). ... 138

Figure S35. COSY NMR spectrum of 18 in CDCl3 ... 139

Figure S36. HSQC NMR spectrum of 18 in CDCl3. .. 140

Figure S37. HMBC NMR spectrum of 18 in CDCl3 .. 141

Figure S38. 1H NMR spectrum of 20 in CDCl3 (500 MHz).. 142

Figure S39. 13C NMR spectrum of 20 in CDCl3 (125 MHz). ... 143

Figure S40. COSY NMR spectrum of 20 in CDCl3 ... 144

Figure S41. HSQC NMR spectrum of 20 in CDCl3 ... 145

Figure S42. HMBC NMR spectrum of 20 in CDCl3 .. 146

Figure S43. 1H NMR spectrum of 21 in CDCl3 (500 MHz).. 147

Figure S44. 13C NMR spectrum of 21 in CDCl3 (125 MHz). ... 148

Figure S45. COSY NMR spectrum of 21 in CDCl3 ... 149

Figure S46. HSQC NMR spectrum of 21 in CDCl3 ... 150

Figure S47. HSQC NMR spectrum of 21 in CDCl3 ... 151

Figure S48. 1H NMR spectrum of 19 in CDCl3 (500 MHz).. 152

93

Figure S49. 13C NMR spectrum of 19 in CDCl3 (125 MHz). ... 153

Figure S50. COSY NMR spectrum of 19 in CDCl3 ... 154

Figure S51. HSQC NMR spectrum of 19 in CDCl3 ... 155

Figure S52. HMBC NMR spectrum of 19 in CDCl3 .. 156

Scripts
Script 1: mbdmadedb.m .. 158

Script 2: mbblast.m ... 161

Script 3: colocalblast_mb.m.. 161

Script 4: secondmetcheck_NRPS.m ... 169

Script 5: secondmetcheck_terpene.m.. 174

Script 6: secondmetcheck_PKS_test.m .. 177

Script 7: auxgeneblast.m ... 183

Script 8: auxgeneblast.m ... 187

Script 9: auxgenecheck.m ... 199

Script 10: targethithchecks.m.. 208

Script 11: targetclusterfindv3.m.. 215

Table S1. Primers used in this study

Primer Name Sequence (5’ to 3’)

Amyb-F-1-Orf11 CAATGGAGAATCTGCCATAAATGCCTTCTGTGGGGTTTATT

Amyb-F-1-Orf16 TGATCTTCACGACATGATAGATTAAAGGTGCCGAACGAGC

Orf12-F-1-AmyB AATAAACCCCACAGAAGGCATTTATGGCAGATTCTCCATTGG

Orf12-R-1-pytu GGACATACCCGTAATTTTCTGGGCATTTCAATGAACCGTG

Orf17-F-1-glaA GCATCATTACACCTCAGCATGGCTACCGTCAACGGCGCAG

Orf17-R-1-Amyb CGTTCGGCACCTTTAATCTATCATGTCGTGAAGATCATAG

gpdA-F_1 TCCCCTCCCAGCTCCTCCC

PYTR-4-R-14 TCCCAGGGATAGGTAGGTATGTCTGG

PYTR-5-F-14 GGGAGATGGGATCAAACACAGCAC

PYTR-5-R-14 GGTATCATCGAAAGGGAGTCATCCACTCATGGGTTAGTAAAAAAGTTCATGAATGGCTTC

Orf10-F-1-Trpc CTTACCTATTCTACCCAAGCATATGTCCTCGCGTCCGTTG

Orf10-R-1-pytr CATCGAAAGGGAGTCATCCAATTTCTCTTCTGCACCCAGAG

Trpc-F-1-Orf10 ACTTTTTTACTAACCCATGAGTCGACAGAAGATGATATTG

Trpc-R-1-Orf10 CAACGGACGCGAGGACATATGCTTGGGTAGAATAGGTAAG

NL-Amyb-F_Orf6 CAAGGACGGACTCGGCCCCATGATTAAAGGTGCCGAACGAGC

94

NL-Amyb-R_Orf17 TTGGTATCGGCTTGTGTATCATAAATGCCTTCTGTGGGG

Orf11-F-1-Amyb CTTCTCTGAACAATAAACCCCACAGAAGGCATTTATGGATTTTCCCGGGGACTC

Orf11-R-1-pytpa AGACCCAACAACCATGATACCAGGGGATTTAAATGCTGGTACCTTCGTCGCAG

NL-Amyb-F_Orf6 CAAGGACGGACTCGGCCCCATGATTAAAGGTGCCGAACGAGC

NL-Amyb-R_Orf17 TTGGTATCGGCTTGTGTATCATAAATGCCTTCTGTGGGG

Orf13-F-1-Amyb TTCTCTGAACAATAAACCCCACAGAAGGCATTTATGTGCTTGCTTAGTATGCGATTTACC

Orf13-R-1-pytp AGACCCAACAACCATGATACCAGGGGATTTAAATGACAGCAGAGCAGCAGCG

gBlocks_F ATAAGATCTGCGTAAGCTCCCTAATTGGCC

gBlocks_R ATATTAATTAAGAGCCAAGAGCGGATTCCTC

ST_SOE_HR1_F ATTCCCTGTGGCGTGGTGAC

ST_SOE_HR1_R CGTTAGGGCCATTATGACAGATGCCCTCTTGCTATAGCGC

ST_SOE_HR2_F CTGTCATAATGGCCCTAACG

ST_SOE_HR2_R CGACAACACCGTCCATGGCG

EM_SOE_HR1_F CATCTGGAGGAGTGGAATTT

EM_SOE_HR1_R CAACGTGTTGGTGTAGGAGGTCGGGCGGTGCACCAACGGC

EM_SOE_HR2_F CCTCCTACACCAACACGTTG

Anom15-Orf3-F-1-gpda ACCCCGCCACATAGACACATCTAAACAatgcagccccataatccctatg

Anom15-Orf3-F-2 gtttcccggaacagtcgtatg

Anom15-Orf3-R-1 gcgtcgcatggataacctatc

Anom15-Orf3-R-2 aagctcacatgtattcctggagcaaacggtatcaggggatggaagagac

Anom15-Orf4-F CATACAGAACACTTCAAACAATCGCAAAAatggattgcgatccataccagc

Anom15-Orf4-R-pytu CAGTGGAGGACATACCCGTAATTTTCTGcctggacccgccccatg

Anom15-Orf1-F-PE TGATCTAACAACTTCTAGTAAACCGCAATCatgtctcttcagccaacggc

Anom15-Orf1-F-PYTR cattaccccgccacatagacacatctaaacaatgtctcttcagccaacggc

Anom15-Orf1-R-pytr TAAAGGGTATCATCGAAAGGGAGTCATCCAgatcggcttgtggaagtcgc

Anom15-Orf7-F-PO tGCATACAGAACACTTCAAACAATCGCAAAAatgaaggccatcatcagcgtaag

Anom15-Orf7-F-PYTR cattaccccgccacatagacacatctaaacaatgaaggccatcatcagcgtaag

Anom15-Orf7-R-PE attccaaccttgggaagccctggacgaatccgacatgtatttagacggatgtcag

Anom15-Orf7-R-pYTR TAAAGGGTATCATCGAAAGGGAGTCATCCAcgacatgtatttagacggatgtcag

Anom15-Orf8-F-gpda cattaccccgccacatagacacatctaaacaatgtcacattccagccattattcc

Anom15-Orf8-R-PE attccaaccttgggaagccctggacgaatccgccatacatggctataaatttggc

Anom15-Orf8-R-PO cagtaagctcacatgtattcctggagcaaacgccatacatggctataaatttggc

Anom15-Orf2-F-gpda TACCCCGCCACATAGACACATCTAAACAatgtcctggcctttgattggg

Anom15-Orf2-R-PO agtaagctcacatgtattcctggagcaaactgtcgggccacggataaac

Anom15-Orf4-R-pytu CAGTGGAGGACATACCCGTAATTTTCTGcctggacccgccccatg

Anom15-Orf5-F-PO CATACAGAACACTTCAAACAATCGCAAAAatgcacccagaggcatgg

Anom15-Orf5-F-PYTR TACCCCGCCACATAGACACATCTAAACAatgcacccagaggcatgg

Anom15-Orf5-R-PE ttccaaccttgggaagccctggacgaatcctagcctttaccagggtgtataattcc

Anom15-Orf5-R-Pytr GATGAGACCCAACAACCATGATACCAGGGGctagcctttaccagggtgtataattcc

Anom15-Orf6-F-PE TCTAACAACTTCTAGTAAACCGCAATCatgtacgacgtgatagtcatcgg

Anom15-Orf6-F-PYTR TACCCCGCCACATAGACACATCTAAACAatgtacgacgtgatagtcatcgg

95

Anom15-Orf6-R-pytp TGATGAGACCCAACAACCATGATACCAGGGGgctcaggatgtggactactagac

Anom15-Orf7-R-PE attccaaccttgggaagccctggacgaatccgacatgtatttagacggatgtcag

Anom15-Orf1-F-LIC TACTTCCAATCCAATGCAatgtctcttcagccaacggc

Anom15-Orf1-R-LIC TTATCCACTTCCAATGTTATTActaaaaatttgcagacaggccg

Anom15-Orf8-F-XW55 ataaaagataatattctactttttgctcccatgtcacattccagccattattcccc

Anom15-Orf8-R-XW55CHis ttagtgatggtgatggtgatgcacgtgaaccatgtcttccgctccac

Anom15-Orf2-F-tef1p TCTAATCTAAGTTTTAATTACAAAACTAGTatgtcctggcctttgattggg

Anom15-Orf2-R-cyc1t AGCGTGACATAACTAATTACATGACTCGAGttatcccgattttgcagcccgac

cyp51-tef-R TGACATAACTAATTACATGACTCGAGTTAGATCTTTTGTTCTGGATTTCTCTTTTCCCAG

cyp51-tef1-F TCTAATCTAAGTTTTAATTACAAAACTAGTATGTCTGCTACCAAGTCAATCGTTG

ApM17-Orf1-F-1-mbfA GGAGCCAGGCACACTGGTGGCCCTGCCACCATGCAATCAACACGTCCAATTCC

ApM17-Orf1-F-1-PO caagtGCATACAGAACACTTCAAACAATCGCAAAAATGCAATCAACACGTCCAATTCC

ApM17-Orf1-F-2 CTTTTGCCTCAATAACCGACATCC

ApM17-Orf1-R-1 GAAACTCAACTGGTGGTGTCCG

ApM17-Orf1-R-2-PEgpda ggtccccaatattccaaccttgggaagccctggacgaatcCTTATGGAAAGAGCCCAGGTGC

ApM17-Orf1-R-2-PYTP GATGAGACCCAACAACCATGATACCAGGGGCTTATGGAAAGAGCCCAGGTGC

Apm17-Orf2-F-PEgdpa ctcttatacaTGATCTAACAACTTCTAGTAAACCGCAATCATGGCATCCAACATTCTGGG

Apm17-Orf2-R-PYTP TGAGTAGGAGTGATGAGACCCAACAACCATGATACCAGGGGGCTCCGTCCCAAAACAGTC

ApM17-Orf4-R-coxA CCTCGAGGCCTGGGGGCTGGATCAGGCATTCCCCCCTTTCCTTATAAATCCACTATC

ApM17-Orf4-R-PYTU CACAGTGGAGGACATACCCGTAATTTTCTGCCCCCCTTTCCTTATAAATCCACTATC

ApM17-Orf5-F-PYTP CCATTACCCCGCCACATAGACACATCTAAACAATGGACGTGTACAAAGTTATTATCGTGG

ApM17-Orf5-R-coxA CTCGAGGCCTGGGGGCTGGATCAGGCATTAGTATGTAGAGTCAAATCGAGTTTAGCTCAG

ApM17-Orf6-R-coxA TCCTCGAGGCCTGGGGGCTGGATCAGGCATTATCGGATTGTTATTGTATTCCTGTTCTTGGTG

ApM17-Orf6-R-PYTR TAAAGGGTATCATCGAAAGGGAGTCATCCATCGGATTGTTATTGTATTCCTGTTCTTGGTG

ApM17-Orf7-F-coxA TGCCGTCATTGCAACCCACCCACCAGGACAATGCCTTTTCTTTGGAGACTAGTTTTTCC

ApM17-Orf7-R-mbfA GGCTCCGGGTGATCAAAGACGAACGCTACAGCCAGCCACCATGGAACTTTTTC

ApM17-Orf7-R-PO agaatcagtaagctcacatgtattcctggagcaaaGCCAGCCACCATGGAACTTTTTC

ApM17-Orf7-R-PYTP GATGAGACCCAACAACCATGATACCAGGGGGCCAGCCACCATGGAACTTTTTC

ApM17-Orf3-F-PYTR accattaccccgccacatagacacatctaaacaATGACTCCCCTTATCGAGCCC

ApM17-Orf3-R-mbfA GGCTCCGGGTGATCAAAGACGAACGCTACATTTGAGCTTGTTTGGTCAAAGAAAACGG

ApM17-Orf3-R-PO atcagtaagctcacatgtattcctggagcaaaTTTGAGCTTGTTTGGTCAAAGAAAACGG

ApM17-Orf6-F-mbfA TGGAGCCAGGCACACTGGTGGCCCTGCCACCATGGCCTTCCTCCCCGAG

ApM17-Orf6-F-PO caagtGCATACAGAACACTTCAAACAATCGCAAAAATGGCCTTCCTCCCCGAG

ApM17-Orf6-R-coxA TCCTCGAGGCCTGGGGGCTGGATCAGGCATTATCGGATTGTTATTGTATTCCTGTTCTTGGTG

ApM17-Orf6-R-PE tccaaccttgggaagccctggacgaatcATCGGATTGTTATTGTATTCCTGTTCTTGGTG

ApM17-Orf6-R-PYTR TAAAGGGTATCATCGAAAGGGAGTCATCCATCGGATTGTTATTGTATTCCTGTTCTTGGTG

ApM17-Orf8-R-2-mbfA GGCTCCGGGTGATCAAAGACGAACGCTACAACGCCGCAGCACTCGTAG

ApM17-Orf9-F-coxA CTGCCGTCATTGCAACCCACCCACCAGGACAATGGAGGCACTGACAGCTTTC

ApM17-Orf9-F-PE tcttatacaTGATCTAACAACTTCTAGTAAACCGCAATCATGGAGGCACTGACAGCTTTC

ApM17-Orf9-R-cox TCCTCGAGGCCTGGGGGCTGGATCAGGCATTGTGGAGAAAGGGAAATTGAATAGGTATAG

ApM17-Orf9-R-mdhA CATCCTCGGATGTAGGACCCCCATACACGCGTGGAGAAAGGGAAATTGAATAGGTATAG

96

ApM17-Orf9-R-PE ccaatattccaaccttgggaagccctggacgaatcGTGGAGAAAGGGAAATTGAATAGGTATAG

ApM17-Orf9-R-pytr CTAAAGGGTATCATCGAAAGGGAGTCATCCAGTGGAGAAAGGGAAATTGAATAGGTATAG

ApM17-Orf12-F-cox TTGTCTGCCGTCATTGCAACCCACCCACCAGGACAATGAAAACACCTAACGGCATTGGAG

ApM17-Orf12-F-mdhA GTATAGATTTGTCACAATCCCAAATTTCACCATGAAAACACCTAACGGCATTGGAG

ApM17-Orf12-F-PE atacaTGATCTAACAACTTCTAGTAAACCGCAATCATGAAAACACCTAACGGCATTGGAG

ApM17-Orf12-R-PYTR CTAAAGGGTATCATCGAAAGGGAGTCATCCACAGGTCATGCATGCAACGATTG

ApM17-ORf4-F-mbfA GGAGCCAGGCACACTGGTGGCCCTGCCACCATGAAAGCCATTATCGTCACGGC

ApM17-ORf4-F-PO caagtGCATACAGAACACTTCAAACAATCGCAAAAATGAAAGCCATTATCGTCACGGC

ApM17-Orf4-R-coxA CCTCGAGGCCTGGGGGCTGGATCAGGCATTCCCCCCTTTCCTTATAAATCCACTATC

ApM17-Orf4-R-PYTU CACAGTGGAGGACATACCCGTAATTTTCTGCCCCCCTTTCCTTATAAATCCACTATC

ApM17-Orf8-F-1 ATTACCCCGCCACATAGACACATCTAAACAATGGGTTCCATGGGCACCGATG

ApM17-Orf8-F-2 TGTAGACACGCAGCTAGACGAATCC

Apm17-Orf8-F-glaA-long GAGAGCCTGAGCTTCATCCCCAGCATCATTACACCTCAGCAATGGGTTCCATGGGCACCG

Apm17-Orf8-F-gpda-long GACTAACCATTACCCCGCCACATAGACACATCTAAACAATGGGTTCCATGGGCACCG

ApM17-Orf8-R-1 GTTGATGCTGGGCTTCCAGACG

ApM17-Orf8-R-2-mbfA GGCTCCGGGTGATCAAAGACGAACGCTACAACGCCGCAGCACTCGTAG

ApM17-Orf8-R-2-PO agaatcagtaagctcacatgtattcctggagcaaaACGCCGCAGCACTCGTAG

ApM17-Orf9-R-mdhA CATCCTCGGATGTAGGACCCCCATACACGCGTGGAGAAAGGGAAATTGAATAGGTATAG

ApM17-Orf10-F-coxA TGCCGTCATTGCAACCCACCCACCAGGACAATGAGTATGTTTGATGGTCAGGCG

ApM17-Orf10-R-mdhA CATCCTCGGATGTAGGACCCCCATACACGCATCTAGATTGACATACAGAACCTCAAAGTG

ApM17-Orf10-R-PE ccaatattccaaccttgggaagccctggacgaatcATCTAGATTGACATACAGAACCTCAAAGTG

ApM17-Orf13-F-mdhA GTATAGATTTGTCACAATCCCAAATTTCACCATGGCGACTGATACCCCCC

ApM17-Orf13-F-PE atacaTGATCTAACAACTTCTAGTAAACCGCAATCATGGCGACTGATACCCCCC

ApM17-Orf13-R-PYTU CACAGTGGAGGACATACCCGTAATTTTCTGGGCTTTTTTTTTTTAGATAGGAAAGCGGC

Anom15-Orf3-F-1-gpda ACCCCGCCACATAGACACATCTAAACAatgcagccccataatccctatg

Anom15-Orf3-F-2 gtttcccggaacagtcgtatg

Anom15-Orf3-R-1 gcgtcgcatggataacctatc

Anom15-Orf3-R-2 aagctcacatgtattcctggagcaaacggtatcaggggatggaagagac

Anom15-Orf4-F CATACAGAACACTTCAAACAATCGCAAAAatggattgcgatccataccagc

Anom15-Orf4-R-pytu CAGTGGAGGACATACCCGTAATTTTCTGcctggacccgccccatg

Anom15-Orf1-F-PE TGATCTAACAACTTCTAGTAAACCGCAATCatgtctcttcagccaacggc

Anom15-Orf1-F-PYTR cattaccccgccacatagacacatctaaacaatgtctcttcagccaacggc

Anom15-Orf1-R-pytr TAAAGGGTATCATCGAAAGGGAGTCATCCAgatcggcttgtggaagtcgc

Anom15-Orf7-F-PO tGCATACAGAACACTTCAAACAATCGCAAAAatgaaggccatcatcagcgtaag

Anom15-Orf7-F-PYTR cattaccccgccacatagacacatctaaacaatgaaggccatcatcagcgtaag

Anom15-Orf7-R-PE attccaaccttgggaagccctggacgaatccgacatgtatttagacggatgtcag

Anom15-Orf7-R-pYTR TAAAGGGTATCATCGAAAGGGAGTCATCCAcgacatgtatttagacggatgtcag

Anom15-Orf8-F-gpda cattaccccgccacatagacacatctaaacaatgtcacattccagccattattcc

Anom15-Orf8-R-PE attccaaccttgggaagccctggacgaatccgccatacatggctataaatttggc

Anom15-Orf8-R-PO cagtaagctcacatgtattcctggagcaaacgccatacatggctataaatttggc

Anom15-Orf2-F-gpda TACCCCGCCACATAGACACATCTAAACAatgtcctggcctttgattggg

97

Anom15-Orf2-R-PO agtaagctcacatgtattcctggagcaaactgtcgggccacggataaac

Anom15-Orf4-R-pytu CAGTGGAGGACATACCCGTAATTTTCTGcctggacccgccccatg

Anom15-Orf5-F-PO CATACAGAACACTTCAAACAATCGCAAAAatgcacccagaggcatgg

Anom15-Orf5-F-PYTR TACCCCGCCACATAGACACATCTAAACAatgcacccagaggcatgg

Anom15-Orf5-R-PE ttccaaccttgggaagccctggacgaatcctagcctttaccagggtgtataattcc

Anom15-Orf5-R-Pytr GATGAGACCCAACAACCATGATACCAGGGGctagcctttaccagggtgtataattcc

Anom15-Orf6-F-PE TCTAACAACTTCTAGTAAACCGCAATCatgtacgacgtgatagtcatcgg

Anom15-Orf6-F-PYTR TACCCCGCCACATAGACACATCTAAACAatgtacgacgtgatagtcatcgg

Anom15-Orf6-R-pytp TGATGAGACCCAACAACCATGATACCAGGGGgctcaggatgtggactactagac

Anom15-Orf7-R-PE attccaaccttgggaagccctggacgaatccgacatgtatttagacggatgtcag

Anom15-Orf1-F-LIC TACTTCCAATCCAATGCAatgtctcttcagccaacggc

Anom15-Orf1-R-LIC TTATCCACTTCCAATGTTATTActaaaaatttgcagacaggccg

Anom15-Orf8-F-XW55 ataaaagataatattctactttttgctcccatgtcacattccagccattattcccc

Anom15-Orf8-R-XW55CHis ttagtgatggtgatggtgatgcacgtgaaccatgtcttccgctccac

Anom15-Orf2-F-tef1p TCTAATCTAAGTTTTAATTACAAAACTAGTatgtcctggcctttgattggg

Anom15-Orf2-R-cyc1t AGCGTGACATAACTAATTACATGACTCGAGttatcccgattttgcagcccgac

cyp51-tef-R TGACATAACTAATTACATGACTCGAGTTAGATCTTTTGTTCTGGATTTCTCTTTTCCCAG

cyp51-tef1-F TCTAATCTAAGTTTTAATTACAAAACTAGTATGTCTGCTACCAAGTCAATCGTTG

ApM17-Orf1-F-1-mbfA GGAGCCAGGCACACTGGTGGCCCTGCCACCATGCAATCAACACGTCCAATTCC

ApM17-Orf1-F-1-PO caagtGCATACAGAACACTTCAAACAATCGCAAAAATGCAATCAACACGTCCAATTCC

ApM17-Orf1-F-2 CTTTTGCCTCAATAACCGACATCC

ApM17-Orf1-R-1 GAAACTCAACTGGTGGTGTCCG

ApM17-Orf1-R-2-PEgpda ggtccccaatattccaaccttgggaagccctggacgaatcCTTATGGAAAGAGCCCAGGTGC

ApM17-Orf1-R-2-PYTP GATGAGACCCAACAACCATGATACCAGGGGCTTATGGAAAGAGCCCAGGTGC

Apm17-Orf2-F-PEgdpa ctcttatacaTGATCTAACAACTTCTAGTAAACCGCAATCATGGCATCCAACATTCTGGG

Apm17-Orf2-R-PYTP TGAGTAGGAGTGATGAGACCCAACAACCATGATACCAGGGGGCTCCGTCCCAAAACAGTC

ApM17-Orf4-R-coxA CCTCGAGGCCTGGGGGCTGGATCAGGCATTCCCCCCTTTCCTTATAAATCCACTATC

Table S2. Plasmids used in the study

Plasmid Name
Plasmid

Backbone
Description of Plasmid

pNLU01 pYTU

Aspergillus nidulans expression vector containing genes

Clz12 under the AmyB promoter and Clz7 under the glaA

promoter.

pNLU02 pYTU
Aspergillus nidulans expression vector containing gene

Clz12 under the glaA promoter

pNLU03 pYTU
Aspergillus nidulans expression vector containing gene

Clz17 under the glaA promoter

pNLR01 pYTR

Aspergillus nidulans expression vector containing genes

Clz10 under the pTrpC promoter and Clz14 under the gpdA

promoter

pNLR02 pYTR
Aspergillus nidulans expression vector containing genes

Clz14 under the gpdA promoter

pNLR03 pYTR
Aspergillus nidulans expression vector containing genes

Clz10 under the gpdA promoter

98

pNLP01 pYTP
Aspergillus nidulans expression vector containing genes

Clz11 under the amyB promoter

pNLP02 pYTP
Aspergillus nidulans expression vector containing genes

Clz13 under the amyB promoter glaA promoter.

pNLU04 pYTU

Aspergillus nidulans expression vector containing

rstn3+rstn4

pNLU05 pYTU Aspergillus nidulans expression vector containing rstn3

pNLU06 pYTU

Aspergillus nidulans expression vector containing

apm4+apm8+apm10+apm13

pNLR04 pYTR

Aspergillus nidulans expression vector containing

rstn1+rstn7+rstn8

pNLR05 pYTR

Aspergillus nidulans expression vector containing

rstn1+rstn7

pNLR06 pYTR Aspergillus nidulans expression vector containing rstn7

pNLR07 pYTR

Aspergillus nidulans expression vector containing

apm3+apm6+apm9+apm12

pNLP03 pYTP

Aspergillus nidulans expression vector containing

rstn2+rstn5+rstn6

pNLP04 pYTP

Aspergillus nidulans expression vector containing

rstn5+rstn6

pNLP05 pYTP Aspergillus nidulans expression vector containing rstn5

pNLP06 pYTP Aspergillus nidulans expression vector containing rstn6

pNLP07 pYTP

Aspergillus nidulans expression vector containing

apm1+apm5+apm7

pYNL051 pxp318 S. cerevisae expression vector with tefp

pYNL052 pxp318 S. cerevisae expression vector with rstn2 under tefp

pYNL053 pxp318 S. cerevisae expression vector with yeast cyp51 under tefp

pYNL054 xw55

S. cerevisae expression vector with rstn3 under the adh2

promoter

pYNL055 xw06

S. cerevisae expression vector with rstn7 under the adh2

promoter

pENL01 pet28a E. coli expression vector with rstn1 under T7 promoter

pENL02 pet28a E. coli expression vector with rstn8 under T7 promoter

pNLU04 pYTU

Aspergillus nidulans expression vector containing

rstn3+rstn4

pNLU05 pYTU Aspergillus nidulans expression vector containing rstn3

pNLU06 pYTU

Aspergillus nidulans expression vector containing

apm4+apm8+apm10+apm13

pNLR04 pYTR

Aspergillus nidulans expression vector containing

rstn1+rstn7+rstn8

pNLR05 pYTR

Aspergillus nidulans expression vector containing

rstn1+rstn7

pNLR06 pYTR Aspergillus nidulans expression vector containing rstn7

pNLR07 pYTR

Aspergillus nidulans expression vector containing

apm3+apm6+apm9+apm12

Table S3. Expression strains used in this study
Strain Name Organis

m

Description of Expression Strain

A. nidulans-ClzA A. nid. A. nid. A1145∆ST∆EM expressing pNLUA and pNLRA

A. nidulans-ClzB A. nid. A. nid. A1145∆ST∆EM expressing pNLU01, pNLR01, and pNLP01

99

A. nidulans-ClzC A. nid. A. nid. A1145∆ST∆EM expressing pNLU01, pNLR01, and pNLP02

A. nidulans-ClzD A. nid. A. nid. A1145∆ST∆EM expressing pNLU03, pNLR01, and pNLP01

A. nidulans-ClzE A. nid. A. nid. A1145∆ST∆EM expressing pNLU01, pNLR02, and pNLP01

A. nidulans-ClzF A. nid. A. nid. A1145∆ST∆EM expressing pNLU01, pNLR02, and pNLP01

A. nidulans-ClzG A. nid. A. nid. A1145∆ST∆EM expressing pNLU02, pNLR01, and pNLP01

AN2001 A. nid. A. nid. A1145∆ST∆EM expressing pNLU04, pNLR04, and pNLP03

AN2002 A. nid. A. nid. A1145∆ST∆EM expressing pNLU04, pNLR06, and pNLP03

AN2003 A. nid. A. nid. A1145∆ST∆EM expressing pNLU04, pNLR05, and pNLP03

AN2004 A. nid. A. nid. A1145∆ST∆EM expressing pNLU05

AN2005 A. nid. A. nid. A1145∆ST∆EM expressing pNLU04

AN2006 A. nid. A. nid. A1145∆ST∆EM expressing pNLU05+pNLR06

AN2007 A. nid. A. nid. A1145∆ST∆EM expressing pNLU04, pNLR06

AN2008 A. nid. A. nid. A1145∆ST∆EM expressing pNLU04, pNLR05, and pNLP05

AN2009 A. nid. A. nid. A1145∆ST∆EM expressing pNLU04, pNLR05, and pNLP06

AN2010 A. nid. A. nid. A1145∆ST∆EM expressing pNLU04, pNLR05, and pNLP04

AN2011 A. nid. A. nid. A1145∆ST∆EM expressing pNLU06, pNLR07, and pNLP07

SC001

S.

cerevisaie BY4743 expressing PYNL051

SC002

S.

cerevisaie BY4743 expressing PYNL052

SC003

S.

cerevisaie BY4743 expressing PYNL053

SC004

S.

cerevisaie BJ5464 expressing PYNL054

SC005

S.

cerevisaie BJ5464 expressing PYNL055

EC001 E. coli BL21 expressing pENL01

EC002 E. coli BL21 expressing pENL02

AN2001 A. nid. A. nid. A1145∆ST∆EM expressing pNLU04, pNLR04, and pNLP03

AN2002 A. nid. A. nid. A1145∆ST∆EM expressing pNLU04, pNLR06, and pNLP03

AN2003 A. nid. A. nid. A1145∆ST∆EM expressing pNLU04, pNLR05, and pNLP03

AN2004 A. nid. A. nid. A1145∆ST∆EM expressing pNLU05

AN2005 A. nid. A. nid. A1145∆ST∆EM expressing pNLU04

100

Figure S1. Comparison of the zaragozic acid A biosynthetic gene clusters

Table S4. Comparison of genes between ZA clusters of C. lunata and MF5453

C. lunata MF5453 Putative Function % Identity

Clz1 mfL1 Hypothetical Protein (HP)

Clz2 Mfpks1
Polyketide Synthase (Squalestatin

S1tetraketide synthase)
88

Clz3 mfM1 Hypothetical Protein (HP) 90

Clz4 mfM2 Transport Protein (MFS) 86

Clz5 mfM3 Short Chain Dehydrogenase (SDR) 86

Clz6 mfM4 Acyltransferase (AT) 88

Clz7 mfM5 Zinc Finger Transcription Factor (TF) 85

Clz8 Hypothetical Protein (HP)

Clz9 mfM6 Transport Protein (MFS) 94

Clz10 mfM7 Phenylalanine Ammonia Lyase (PAL) 90

Clz11 mfM8 Alpha beta hydrolase 93

Clz12 mfM9 4-coumarate-CoA ligase 92

Clz13 mfM10 Beta lactamase 84

Clz14 Mfpks2 Polyketide Synthase (HRPKS) 91

Clz15 mfR1
Hypothetical Protein (HP): αKG

dependent oxygenase (Phyre2)205
68

Clz16 mfR2
Hypothetical Protein (HP): αKG

dependent oxygenase (Phyre2)205
93

Clz17 mfR3 Citrate synthase (CS) 88

Clz18 mfR4 Acyltransferase (AT) 76

Clz19 mfR5 Transport Protein (MFS) 74

Clz20 mfM6 Squalene Synthase (SS) 87

*Highlighted genes studied in this paper

101

Figure S2. Alignment of N-terminal sequences of various polyketide synthases.

Clz14: benzoyl-priming hexaketide from C. lunata clz cluster. Mfpks2: putative benzoyl-

priming hexaketide from SQS1 gene cluster in the MF5453. EncA: PKS from enterocin

pathway. LovB: nonaketide synthase in lovastatin pathway. CcsA: PKS-NRPS from

cytochalasin biosynthesis. AurA: HRPKS in aurovertin E pathway that uses propionate

starter unit. The conserved catalytic cysteine in KS domains is highlighted in turquoise.

Clz14 and mfpks2 both have a unique ~90 residue N-terminal region upstream of where most

KS domains begin. Alignment performed by the Clustal Omega program from Uniprot

(online method).206

102

Figure S3. A. nidulans cassettes tested for production of 2.

[i] A. nidulans A1145 with empty vectors as a negative control. [ii-viii] Cassettes tested for

production of zaragozic acid A products. EIC: extracted ion chromatography m/z values

filtered for the masses of 1, 2, and 3

103

Figure S4. Labeled precursor feeding studies.

Deuterium labeled precursors were fed at 1 mg/mL to A. nidulans strains that produced 2. A)

2 producing strains fed with d5-benzoic acid. B) 2 producing strains fed with d8-

phenylalanine. The results show that the perdeuterated benzyl ring of both precursors is

incorporated into 2, increasing the mass of the product by 5.

104

’

 HR-MS for compound 2: [M-H]- = 420.21805 calculated for C23H32O7; found at 420.20743

 [α]27.8 D: -44 (c 0.3, CH3OH). Previously reported [α]20 D: -48 (c 0.55, CH3OH).167

Figure S5. Characterization of 2

MS spectra, UV spectra, HR-MS, and specific optical rotation.

105

Figure S6. Characterization of 1

MS and UV spectra

106

Table S5. Metabolites targeted for deletion in A. nidulans

*Mass and genes adapted from Yaegashi et al.207

Figure S7. Removal of undesired metabolites in A. nidulans.

The production of certain metabolites were targeted and knocked out using the CRISPR/Cas9

system outlined in the methods. Traces show the successful deletion of these products. (i) A.

nidulans A1145ΔST (ii) removal of sterigmatocystin (iii) removal of emericellamide

products.

Metabolite Mass Gene targeted

sterigmatocystin 324 stcA

emericellamide A 609 easA
emericellamide C 595 easA
emericellamide D 595 easA
emericellamide E 623 easA
emericellamide F 623 easA

107

Figure S8. Homologous clusters of rstn

Homologous gene clusters from different strains of fungi. Homologous

genes shown in same color

108

 Figure S9. Expression of late rstn pathway intermediates

Combinations of genes expressing late pathway intermediates

109

Figure S10. Labeled glycine feeding

Incorportaion of d2-glycine fed into constructs expressing the rstn cluster

110

Figure S11. Substrate scope testing of rstn8

Different amino acid substrates and polyketide substrates tested with rstn8

111

 Figure S12. Derivatization of restricticin to confirm structure

Restricticin produced from in vitro rstn8 reactions treated with acetic

anhydride to yield compound 18

112

Table S6. 1H (500 Hz) and 13C (125 Hz) of 2 in CD3OD*

Position δH (J in Hz) δC

1 - 181.61/181.45

2

2.66 (overlapped)/2.97 (1H, d,

16.0) 43.71/42.51

2.58 (overlapped)/2.88 (1H, d,

16.0)
3 - 77.04

4 2.66/2.58 (1H, overlapped) 54.50/54.36

5/6/7/8 1.05-1.45 (8H, overlapped) 28.67/28.83/29.65/29.97

9 1.87, 2H 40.59/40.41

10 - 135.18/135.15

11 4.91 (overlapped) 131.56/131.49

12 2.62 (overlapped) 35.91

13 2.45 (dd, 8.11 and 13.03) 45.13/ 45.11

 2.55 (dd, 2.61 and 6.14)
14 - 142.39

15 7.10 (t, 6.34) 130.31/130.28

16 7.21 (dd, 2.27 and 7.61) 129.01/128.98

17 7.10 (t, 6.34) 126.67/127.66

18 7.21 (dd, 2.27 and 7.61) 129.01/128.98

19 7.10 (t, 6.34) 130.31/130.28

20 - 178.19/177.57

21 - 174.89/174.79

22 1.34 (d, 4.38), 3H 16.11/16.00

23 0.93 (d, 6.42), 3H 21.48/21.44

* The presence of an additional set of closely matched signals in 13C-NMR spectrum is

attributed to the existence of a stereoisomer of 2.

113

Figure S13. 1H NMR spectrum of 2 in CD3OD (500 MHz).

114

Figure S14. 13C NMR spectrum of 2 in CD3OD (125 MHz).

115

Figure S15. COSY NMR spectrum of 2 in CD3OD

116

Figure S16. HSQC NMR spectrum of 2 in CD3OD.

117

Figure S17. HMBC NMR spectrum of 2 in CD3OD.

118

Table S7. 1H (500 Hz) and 13C (125 Hz) of 19-21

No.

19 20 21

δc δH (mult., JH-H in Hz) δc δH (mult., JH-H in Hz) δc δH (mult., JH-H in Hz)

1 168.0 168.2 168.0

2 44.2

4.48, d (17.4)

44.7

4.35, d (17.4)

44.1

4.52, d (17.4)

4.02, d (17.4) 4.11, d (17.4) 4.03, d (17.4)

4 169.4 169.6 168.7

5 127.4 127.2 127.5

6 102.8 6.93, s 98.8 6.96, s 98.8 6.97, s

7 150.7 153.5 153.3

8 136.9 137.4 137.1

9 144.7 144.7 144.7

10 119.5 120.5 120.4

11 47.9

4.31, d (16.5)

48.5

4.38, d (16.5)

47.6

4.34, d (16.5)

4.17, d (16.5) 4.22, d (16.5) 4.18, d (16.5)

1' 70.8

3.79, dd

(11.8,1.3)
71.3

3.76, d (11.5, 1.0)

70.8

3.79, dd

(11.8,1.3)

3.55, dd (11.8,

2.6)
3.58, dd (11.5, 2.0)

3.54, dd (11.8,

2.6)

2' 32.4 2.22, m 35.8 2.14, m 32.5 2.23, m

3' 81.4
3.33, dd (9.5,

5.2)
72.4 3.80, dd (9.5, 5.2) 81.4

3.33, dd (9.5,

5.2)

4' 70.0 5.00, t (9.5) 72.3 4.98, t (9.5) 70.0 5.01, t (9.5)

5' 85.2 3.51, d (9.5) 84.8 3.50, d (9.5) 85.2 3.51, d (9.5)

6' 132.7 133.0 132.7

119

7' 129.7 5.96 d (10.5) 129.5 5.93 d (10.5) 129.7 5.97 d (10.5)

8' 125.8
6.28, dd (14.7,

10.5)
125.8

6.30, dd (14.7,

10.5)
125.8

6.29, dd (14.7,

10.5)

9' 134.4
6.20, dd (14.7,

10.5)
134.2

6.20, dd (14.7,

10.5)
134.4

6.21, dd (14.7,

10.5)

10' 130.7
6.10, dd (14.7,

10.5)
130.6

6.12, dd (14.7,

10.5)
130.7

6.11, dd (14.7,

10.5)

11' 135.9
5.72, dt (14.7,

7.2)
135.9 5.73, dt (14.7, 7.2) 135.8

5.72, dt (14.7,

7.2)

12' 34.9 2.05, m 34.9 2.09, m 34.9 2.08, m

13' 22.4 1.40, m 22.4 1.42, m 22.4 1.41, m

14' 13.7 0.88, t (7.5) 13.7 0.90, t (7.5) 13.7 0.89, t (7.5)

15' 10.7 1.06, d (7.2) 10.8 1.15, d (7.2) 10.8 1.07, d (7.2)

16' 11.7 1.76, s 11.7 1.78, s 11.7 1.77, s

1'' 69.7 4.64, d (7.4) 69.7 4.66, d (7.4) 69.6 4.65, d (7.4)

2'' 119.1 5.51, t (7.4) 119.1 5.50, t (7.4) 119.1 5.49, t (7.4)

3'' 144.4 144.1 144.0

4'' 39.7

2.04, m

39.7

2.06, m

39.7

2.05, m

1.95, m 1.97, m 1.97, m

5'' 26.2 2.07, m 26.3 2.09, m 26.3 2.08, m

6'' 123.5 5.07, m 123.5 5.08, m 123.5 5.08, m

7'' 135.6 135.6 135.6

8'' 39.6

2.04, m

39.6

2.06, m

39.6

2.05, m

1.95, m 1.97, m 1.97, m

9'' 26.7 2.03, m 26.7 2.05, m 26.7 2.05, m

10'' 124.2 5.06, m 124.2 5.07, m 124.2 5.07, m

11'' 131.4 131.4 131.4

12'' 25.7 1.66, s 25.7 1.67, s 25.7 1.66, s

13'' 16.4 1.65, s 16.4 1.66, s 16.4 1.65, s

14'' 16.0 1.58, s 16.0 1.58, s 16.0 1.58, s

15'' 17.7 1.58, s 17.7 1.58, s 17.7 1.58, s

3'-

OMe
56.3 3.29, s 56.4 3.30, s

7-

OMe
 56.2 3.91, s 56.2 3.90, s

In CDCl3, 500 MHz for 1H and 125 MHz for 13C NMR; Chemical shifts are reported in ppm. All signals are determined by 1H-

1H COSY, HMBC and HSQC correlation.

120

Table S8. 1H (500 Hz) and 13C (125 Hz) of 14 and 18

No.

18 14

 δc δH (mult., JH-H in Hz) δc δH (mult., JH-H in Hz)

1 70.8

3.81, dd (11.8,1.3)

71.0

3.81, dd (11.8,1.3)

3.57, dd (11.8, 2.6) 3.60, dd (11.8, 2.6)

2 32.4 2.26, m 31.7 2.21, m

3 81.4 3.37, dd (9.5, 5.2) 84.1 3.26, dd (9.5, 5.2)

4 70.2 5.02, t (9.5) 67.7 3.62, t (9.5)

5 85.1 3.53, d (9.5) 86.8 3.48, d (9.5)

6 132.6 133.4

7 129.6 5.94 d (10.5) 129.8 6.14 d (10.5)

8 125.6 6.24, dd (14.7, 10.5) 125.8 6.34, dd (14.7, 10.5)

9 134.2 6.15, dd (14.7, 10.5) 134.3 6.21, dd (14.7, 10.5)

10 130.5 6.06, dd (14.7, 10.5) 130.7 6.10, dd (14.7, 10.5)

11 136.1 5.71, dt (14.7, 7.2) 135.7 5.71, dt (14.7, 7.2)

12 34.9 2.06, m 34.9 2.06, m

13 22.4 1.40, m 22.5 1.41, m

14 13.7 0.89, t (7.5) 13.8 0.89, t (7.5)

15 10.7 1.08, d (7.2) 10.8 1.05, d (7.2)

16 11.6 1.76, s 12.2 1.82, s

1' 169.4

2' 41.4

4.10, dd (18.5, 5.5)

3.77, dd (18.5, 4.2)

3' 170.0

4' 22.9 1.97, s

3-OMe 56.4 3.32, s 56.0 3.40, s

In CDCl3, 500 MHz for 1H and 125 MHz for 13C NMR; Chemical shifts are reported in ppm. All signals are

determined by 1H-1H COSY, HMBC and HSQC correlation.

121

Table S9. 1H (500 Hz) and 13C (125 Hz) of 13 and 17

No.

13 17

 δc δH (mult., JH-H in Hz) δc δH (mult., JH-H in Hz)

1 71.3

3.76, dd (11.8,1.3)

71.0

3.79, dd (11.8,1.3)

3.62, dd (11.8, 2.6) 3.58, dd (11.8, 2.6)

2 35.4 2.11, m 31.7 2.19, m

3 74.8 3.71, dd (9.5, 5.2) 84.1 3.24, dd (9.5, 5.2)

4 69.0 3.53, t (9.5) 67.6 3.60, t (9.5)

5 86.8 3.43, d (9.5) 86.7 3.46, d (9.5)

6 133.0 133.8

7 129.9 6.11 d (10.5) 129.7 6.11 d (10.5)

8 125.5 6.33, dd (14.7, 10.5) 126.3 6.33, dd (14.7, 10.5)

9 134.6 6.22, dd (14.7, 10.5) 133.9 6.18, dd (14.7, 10.5)

10 130.5 6.10, dd (14.7, 10.5) 131.1 6.11, dd (14.7, 10.5)

11 136.1 5.73, dt (14.7, 7.2) 134.5 5.69, dt (14.7, 7.2)

12 34.9 2.07, m 29.1 2.16, m

13 22.4 1.41, m 32.0 1.64, m

14 13.7 0.90, t (7.5) 62.2 3.62, t (6.5)

15 11.0 1.11, d (7.2) 10.8 1.02, d (7.2)

16 12.0 1.81, s 12.3 1.80, s

In CDCl3, 500 MHz for 1H and 125 MHz for 13C NMR; Chemical shifts are reported in ppm. All signals

are determined by 1H-1H COSY, HMBC and HSQC correlation.

122

Figure S18. 1H NMR spectrum of 17 in CDCl3 (500 MHz).

123

Figure S19. 13C NMR spectrum of 17 in CDCl3 (125 MHz).

124

Figure S20. COSY NMR spectrum of 17 in CDCl3

125

Figure S21. HSQC NMR spectrum of 17 in CDCl3.

126

Figure S22. HMBC NMR spectrum of 17 in CDCl3

127

Figure S23. 1H NMR spectrum of 14 in CDCl3 (500 MHz).

128

Figure S24. 13C NMR spectrum of 14 in CDCl3 (125 MHz).

129

Figure S25. COSY NMR spectrum of 14 in CDCl3

130

Figure S26. HSQC NMR spectrum of 14 in CDCl3.

131

Figure S27. HMBC NMR spectrum of 14 in CDCl3

132

Figure S28. 1H NMR spectrum of 15 in CDCl3 (500 MHz).

133

Figure S29. 13C NMR spectrum of 15 in CDCl3 (125 MHz).

134

Figure S30. COSY NMR spectrum of 15 in CDCl3

135

Figure S31. HSQC NMR spectrum of 15 in CDCl3.

136

Figure S32. HMBC NMR spectrum of 15 in CDCl3

137

Figure S33. 1H NMR spectrum of 18 in CDCl3 (500 MHz).

138

Figure S34. 13C NMR spectrum of 18 in CDCl3 (125 MHz).

139

Figure S35. COSY NMR spectrum of 18 in CDCl3

140

Figure S36. HSQC NMR spectrum of 18 in CDCl3.

141

Figure S37. HMBC NMR spectrum of 18 in CDCl3

142

Figure S38. 1H NMR spectrum of 20 in CDCl3 (500 MHz).

143

Figure S39. 13C NMR spectrum of 20 in CDCl3 (125 MHz).

144

Figure S40. COSY NMR spectrum of 20 in CDCl3

145

Figure S41. HSQC NMR spectrum of 20 in CDCl3

146

Figure S42. HMBC NMR spectrum of 20 in CDCl3

147

Figure S43. 1H NMR spectrum of 21 in CDCl3 (500 MHz).

148

Figure S44. 13C NMR spectrum of 21 in CDCl3 (125 MHz).

149

Figure S45. COSY NMR spectrum of 21 in CDCl3

150

Figure S46. HSQC NMR spectrum of 21 in CDCl3

151

Figure S47. HSQC NMR spectrum of 21 in CDCl3

152

Figure S48. 1H NMR spectrum of 19 in CDCl3 (500 MHz).

153

Figure S49. 13C NMR spectrum of 19 in CDCl3 (125 MHz).

154

Figure S50. COSY NMR spectrum of 19 in CDCl3

155

Figure S51. HSQC NMR spectrum of 19 in CDCl3

156

Figure S52. HMBC NMR spectrum of 19 in CDCl3

157

Table S10: List of Genome Sequences Analyzed with TGIF

158

List of MATLAB® scripts for TGIF

Script 1: mbdmadedb.m
%%
%
% <<mbmadedb.m>>
%
clear all
%%%%%%% Be sure to specify directory of where genomes are located
% directory = 'C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_strains';
directory = 'C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_strains2';
% directory = 'cd C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_genomes'
% directory =

'C:\Users\Lab\Desktop\Genome_Mining_Matlab\antifungal_tests\mining';
cd(directory);
% cd C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_genomes
gbfiles = dir('*.fa');
%
% resultsfolder = 'newgenomes';
resultsfolder = 'Cyp51results';

for i=1:length(gbfiles)

 [~,c]= fileparts(gbfiles(i).name);
 newnamegb = strcat(c,'.fasta');
 gbname = struct2cell(gbfiles(i));
 namegb = gbname{1};

 copyfile(namegb,newnamegb);
end
fasfiles = dir('*.fas');
for i=1:length(fasfiles)

 [~,c]= fileparts(fasfiles(i).name);
 newnamefas = strcat(c,'.fasta');
 fasname = struct2cell(fasfiles(i));
 namefas = fasname{1};

 copyfile(namefas,newnamefas);
end
fasfiles = dir('*.aa');
for i=1:length(fasfiles)

 [~,c]= fileparts(fasfiles(i).name);
 newnamefas = strcat(c,'.fasta');
 fasname = struct2cell(fasfiles(i));
 namefas = fasname{1};

 copyfile(namefas,newnamefas);
end

fastafiles = dir('*.fasta');
key = strings(length(fastafiles),2);
for i=1:length(fastafiles)

159

 key(i,1) = i;
end

% mkdir resultsfolder;
mkdir(resultsfolder);
cd C:\Users\Lab\Desktop\Genome_Mining_Matlab
%

copyfile('blastall.exe','C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_g

enomes\resultsfolder');
%

copyfile('formatdb.exe','C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_g

enomes\resultsfolder');
copyfile('blastall.exe',directory);
copyfile('formatdb.exe',directory);
cd(directory);
copyfile('blastall.exe',resultsfolder);
copyfile('formatdb.exe',resultsfolder);

for i=1:length(fastafiles)
 [~,f]=fileparts(fastafiles(i).name);
 newnamefasta = sprintf('%d.fasta',i);
 fastaname = struct2cell(fastafiles(i));
 namefasta = fastaname{1};
 namefasta = convertCharsToStrings(namefasta);
 key(i,2) = namefasta;

 copyfile(namefasta,newnamefasta);
 movefile(newnamefasta,resultsfolder);

end

file1 = sprintf('genome_key');
xlswrite(file1, key);

cd(directory);
cd(resultsfolder)

fastafiles = dir('*.fasta');
n = length(fastafiles);

for i=1:n
 dbname = sprintf('%d.fasta', i);
 outname = num2str(i);
 blastformat('Inputdb', dbname,'protein','false');
% blastformat('-i dbname -t outname -p F');
end
% for i=1:n
% %dbname = sprintf('%d.fasta', i);
% dbname = sprintf('makeblastdb.exe -in %d.fasta -dbtype nucl -out

%d',i,i);
% system(dbname);
% end

%%%%%%%%%%%%%%organize targets%%%%%%%%%%%%%%%%%%%%%%%%%%%
cd C:\Users\Lab\Desktop\Genome_Mining_Matlab

160

% cd C:\Users\Lab\Desktop\Genome_Mining_Matlab\antifungal_tests
%cd TARGETS
% cd targets_custom
% cd targets_JB_DY
cd Cyp51

targetfiles = dir('*.fasta');
targetkey = strings(length(targetfiles),2);
for i=1:length(targetfiles)

 [~,c]= fileparts(targetfiles(i).name);
 newnametarget = sprintf('T%d.fa',i);
 targetname = struct2cell(targetfiles(i));
 nametarget = targetname{1};
 copyfile(nametarget,newnametarget);
 directory1 = strcat(directory,'/',resultsfolder);
 movefile(newnametarget,directory1);
 targetkey(i,2) = c;
 targetnum = sprintf('T%d',i);
 targetkey(i,1) = targetnum;
end

file2 = sprintf('target_key');
xlswrite(file2, targetkey);

% cd C:\Users\Lab\Desktop\Genome_Mining_Matlab
% cd TARGETS
% targetfiles = dir('*.fasta');
% for i=1:length(targetfiles)
% namefas = sprintf('T%d.fasta',i);
% targetname = sprintf('T%d.fa',i);
% copyfile(namefas,targetname);
%

%movefile(targetname,'C:\Users\Lab\Desktop\Genome_Mining_Matlab\test\resultsf

older');
%

%movefile(targetname,'C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_stra

ins\resultsfolder');
%

movefile(targetname,'C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_genom

es\resultsfolder');
% end

cd(directory);
cd(resultsfolder)
save('genomes.mat','key','targetkey');

161

Script 2: mbblast.m
%%%%%%%%%%%%%%blast targets%%%%%%%%%%%%%%%%%%%%%%%%%
% directory = 'C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_strains';
directory = 'C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_strains2';
% directory = 'cd C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_genomes'
% directory =

'C:\Users\Lab\Desktop\Genome_Mining_Matlab\antifungal_tests\mining';
cd(directory);

% resultsfolder = 'newgenomes';
resultsfolder = 'Cyp51results';
cd(resultsfolder)

targetfiles = dir('*.fa');
x = length(targetfiles);%% x = target number
gbfiles = dir('*.nhr');
n = length(gbfiles);

results = struct('gen_tar',cell(x,n));
%results = struct('gen_tar',[],'genome',[],'target',[],'output',[]);

idx = 0;
for a = 1:x
 for b =1:n
query = sprintf('T%d.fa',a);
outname = sprintf('T%dhits_in_%d.txt',a,b);
outname1 = sprintf('T%dhits_in_%d',a,b);
dbname = sprintf('%d.fasta',b);
idx = idx +1;
output = blastlocal('InputQuery', query ,'Database', dbname ,'Program',

'tblastn','ToFile',outname);
%output = blastlocal('InputQuery', query ,'Database', dbname ,'Program',

'tblastn');
results(a,b).gen_tar = outname1;
results(a,b).genome = b; %genome
results(a,b).target = a; %target
results(a,b).output = output;
 end
%results = blastlocal('-i T2.fasta -d 1 -p tblastn');
end
cd(directory);
cd(resultsfolder)
save('targetresults.mat','results','targetkey');

Script 3: colocalblast_mb.m
%%%%Colocalization of gene clusters
% directory = 'C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_strains';
directory = 'C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_strains2';
% directory = 'cd C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_genomes'
cd(directory);

% resultsfolder = 'newgenomes';
resultsfolder = 'Cyp51results';

162

cd(resultsfolder)
targetfiles = dir('*.fa');
numtargets = length(targetfiles);%% x = target number
gbfiles = dir('*.nhr');
numgenomes = length(gbfiles);

% blastfiles =

'C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_genomes\resultsfolder';

%specify here the location of blast files
blastfiles =

strcat('C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_strains2\',results

folder);
cd C:\Users\Lab\Desktop\Genome_Mining_Matlab
cd 2nd_met_genes_core

%%%%%%%%%%%%%%%%%%%copy and move files%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%copy secondmet domain files
for i = 1:5
 dom = sprintf('NRPS_A_%d.fasta',i);
 copyfile(dom,blastfiles);
end
for i = 1:5
 dom = sprintf('NRPS_C_%d.fasta',i);
 copyfile(dom,blastfiles);
end
for i = 1:5
 dom = sprintf('NRPS_T_%d.fasta',i);
 copyfile(dom,blastfiles);
end

%%%size of NRPS domain reference
NRPSdomnum1 = 3;
NRPSdomnum2 = 5;
NRPS = strings(NRPSdomnum1,NRPSdomnum2);

for i = 1:5
 dom = sprintf('NRPS_A_%d.fasta',i);
 NRPS(1,i) = dom;
end
for i = 1:5
 dom = sprintf('NRPS_C_%d.fasta',i);
 NRPS(2,i) = dom;
end
for i = 1:5
 dom = sprintf('NRPS_T_%d.fasta',i);
 NRPS(3,i) = dom;
end

%%copy secondmet PKS domain files
for i = 1:5
 dom = sprintf('PKS_KS_%d.fasta',i);
 copyfile(dom,blastfiles);
end
for i = 1:5
 dom = sprintf('PKS_AT_%d.fasta',i);
 copyfile(dom,blastfiles);

163

end
for i = 1:5
 dom = sprintf('PKS_ACP_%d.fasta',i);
 copyfile(dom,blastfiles);
end

%%%size of PKS domain reference
PKSdomnum1 = 3;
PKSdomnum2 = 5;
PKS = strings(PKSdomnum1,PKSdomnum2);

for i = 1:5
 dom = sprintf('PKS_KS_%d.fasta',i);
 PKS(1,i) = dom;
end
for i = 1:5
 dom = sprintf('PKS_AT_%d.fasta',i);
 PKS(2,i) = dom;
end
for i = 1:5
 dom = sprintf('PKS_ACP_%d.fasta',i);
 PKS(3,i) = dom;
end

%%%%%%%%%%copying terpene files
cd C:\Users\Lab\Desktop\Genome_Mining_Matlab\terpenes
fastafiles = 29;
key = strings(length(fastafiles),3);
terpenecount = 0;

cd diterpene_1
terpenefiles = dir('*.txt');
for i=1:length(terpenefiles)

 [~,z]= fileparts(terpenefiles(i).name);
 newnameterpene = strcat(z,'.fasta');
 terpenename = struct2cell(terpenefiles(i));
 nameterpene = terpenename{1};

 copyfile(nameterpene,newnameterpene);
end
fastafiles = dir('*.fasta');
for a=1:length(fastafiles)
 [~,fp]=fileparts(fastafiles(a).name);
 newnamefasta = sprintf('diterpene_%d.fasta',a);
 fastaname = struct2cell(fastafiles(a));
 namefasta = fastaname{1};
 namefasta = convertCharsToStrings(namefasta);
 key(a,2) = namefasta;
 key(a,3) = 'diterpene';
 terpenecount = terpenecount + 1;
 copyfile(namefasta,newnamefasta);
 movefile(newnamefasta,blastfiles);
end

164

cd C:\Users\Lab\Desktop\Genome_Mining_Matlab\terpenes
cd meroterpenoid_2
terpenefiles = dir('*.txt');
for i=1:length(terpenefiles)

 [~,z]= fileparts(terpenefiles(i).name);
 newnameterpene = strcat(z,'.fasta');
 terpenename = struct2cell(terpenefiles(i));
 nameterpene = terpenename{1};

 copyfile(nameterpene,newnameterpene);
end
fastafiles = dir('*.fasta');
for b=1:length(fastafiles)
 [~,fp]=fileparts(fastafiles(b).name);
 newnamefasta = sprintf('meroterpenoid_%d.fasta',b);
 fastaname = struct2cell(fastafiles(b));
 namefasta = fastaname{1};
 namefasta = convertCharsToStrings(namefasta);
 key(b+a,2) = namefasta;
 key(b+a,3) = 'meroterpenoid';
 terpenecount = terpenecount + 1;
 copyfile(namefasta,newnamefasta);
 movefile(newnamefasta,blastfiles);
end

cd C:\Users\Lab\Desktop\Genome_Mining_Matlab\terpenes
cd monoterpene_3
terpenefiles = dir('*.txt');
for i=1:length(terpenefiles)

 [~,z]= fileparts(terpenefiles(i).name);
 newnameterpene = strcat(z,'.fasta');
 terpenename = struct2cell(terpenefiles(i));
 nameterpene = terpenename{1};

 copyfile(nameterpene,newnameterpene);
end
fastafiles = dir('*.fasta');
for c=1:length(fastafiles)
 [~,fp]=fileparts(fastafiles(c).name);
 newnamefasta = sprintf('monoterpene_%d.fasta',c);
 fastaname = struct2cell(fastafiles(c));
 namefasta = fastaname{1};
 namefasta = convertCharsToStrings(namefasta);
 key(a+b+c,2) = namefasta;
 key(a+b+c,3) = 'monoterpene';
 terpenecount = terpenecount + 1;
 copyfile(namefasta,newnamefasta);
 movefile(newnamefasta,blastfiles);
end

cd C:\Users\Lab\Desktop\Genome_Mining_Matlab\terpenes
cd sesquiterpernoid_4
terpenefiles = dir('*.txt');
for i=1:length(terpenefiles)

165

 [~,z]= fileparts(terpenefiles(i).name);
 newnameterpene = strcat(z,'.fasta');
 terpenename = struct2cell(terpenefiles(i));
 nameterpene = terpenename{1};

 copyfile(nameterpene,newnameterpene);
end
fastafiles = dir('*.fasta');
for d=1:length(fastafiles)
 [~,fp]=fileparts(fastafiles(d).name);
 newnamefasta = sprintf('sesquiterpenoid_%d.fasta',d);
 fastaname = struct2cell(fastafiles(d));
 namefasta = fastaname{1};
 namefasta = convertCharsToStrings(namefasta);
 key(a+b+c+d,2) = namefasta;
 key(a+b+c+d,3) = 'sesquiterpenoid';
 terpenecount = terpenecount + 1;
 copyfile(namefasta,newnamefasta);
 movefile(newnamefasta,blastfiles);
end

cd C:\Users\Lab\Desktop\Genome_Mining_Matlab\terpenes
cd triterpenoid_5
terpenefiles = dir('*.txt');
for i=1:length(terpenefiles)

 [~,z]= fileparts(terpenefiles(i).name);
 newnameterpene = strcat(z,'.fasta');
 terpenename = struct2cell(terpenefiles(i));
 nameterpene = terpenename{1};

 copyfile(nameterpene,newnameterpene);
end
fastafiles = dir('*.fasta');
for e=1:length(fastafiles)
 [~,fp]=fileparts(fastafiles(e).name);
 newnamefasta = sprintf('triterpenoid_%d.fasta',e);
 fastaname = struct2cell(fastafiles(e));
 namefasta = fastaname{1};
 namefasta = convertCharsToStrings(namefasta);
 key(a+b+c+d+e,2) = namefasta;
 key(a+b+c+d+e,3) = 'triterpenoid';
 terpenecount = terpenecount + 1;
 copyfile(namefasta,newnamefasta);
 movefile(newnamefasta,blastfiles);
end

cd C:\Users\Lab\Desktop\Genome_Mining_Matlab\terpenes
cd other_6
terpenefiles = dir('*.txt');
for i=1:length(terpenefiles)

 [~,z]= fileparts(terpenefiles(i).name);
 newnameterpene = strcat(z,'.fasta');

166

 terpenename = struct2cell(terpenefiles(i));
 nameterpene = terpenename{1};

 copyfile(nameterpene,newnameterpene);
end
fastafiles = dir('*.fasta');
for f=1:length(fastafiles)
 [~,fp]=fileparts(fastafiles(f).name);
 newnamefasta = sprintf('terpene_%d.fasta',f);
 fastaname = struct2cell(fastafiles(f));
 namefasta = fastaname{1};
 namefasta = convertCharsToStrings(namefasta);
 key(a+b+c+d+e+f,2) = namefasta;
 key(a+b+c+d+e+f,3) = 'terpene';
 terpenecount = terpenecount + 1;
 copyfile(namefasta,newnamefasta);
 movefile(newnamefasta,blastfiles);
end

for i=1:terpenecount
 key(i,1) = i;
end
cd C:\Users\Lab\Desktop\Genome_Mining_Matlab\terpenes
file1 = sprintf('terpene_key');
xlswrite(file1, key);

%%%size of terpene types reference
terpene1 = 7;
terpene2 = 4;
terpene3 = 1;
terpene4 = 11;
terpene5 = 1;
terpene6 = 5;
terpene = struct('type',[]);
type = struct('value',[]);

for i = 1:terpene1
 dom = sprintf('diterpene_%d.fasta',i);
 terpene(1).type(i).value = dom;
 terpene(1).name = 'diterpene';
end
for i = 1:terpene2
 dom = sprintf('meroterpenoid_%d.fasta',i);
 terpene(2).type(i).value = dom;
 terpene(2).name = 'meroterpenoid';
end
for i = 1:terpene3
 dom = sprintf('monoterpene_%d.fasta',i);
 terpene(3).type(i).value = dom;
 terpene(3).name = 'monoterpened';
end
for i = 1:terpene4
 dom = sprintf('sesquiterpenoid_%d.fasta',i);
 terpene(4).type(i).value = dom;

167

 terpene(4).name = 'sesquiterpenoid';
end
for i = 1:terpene5
 dom = sprintf('triterpenoid_%d.fasta',i);
 terpene(5).type(i).value = dom;
 terpene(5).name = 'triterpenoid';
end
for i = 1:terpene6
 dom = sprintf('terpene_%d.fasta',i);
 terpene(6).type(i).value = dom;
 terpene(6).name = 'terpene';
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%BLASTING%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%[x,~]= size(targetidx);
x = numgenomes;

secondmet = struct('NRPS',[],'PKS',[],'terpene',[]); % 6 is number of second

metabolite genes tested

%%blasting NRPS domains
cd(directory);
cd(resultsfolder);
for a = 1:x
 z=1;
 for b =1:size(NRPS,1)
 for c = 1:size(NRPS,2)
% genomenum = targetidx(a,2);
genomenum = a;
query = NRPS(b,c);
query = convertStringsToChars(query);
outA = sprintf('_hitsin_%d',genomenum);
outname1 = strcat(strtok(NRPS(b,c),'.'),outA);
outname = strcat(strtok(NRPS(b,c),'.'),outA,'.txt');
outname = convertStringsToChars(outname);
dbname = sprintf('%d.fasta',genomenum);

%output = blastlocal('InputQuery', query ,'Database', dbname ,'Program',

'tblastn','ToFile',outname);
output = blastlocal('InputQuery', query ,'Database', dbname ,'Program',

'tblastn','ToFile',outname,'expect',50);
%output = blastlocal('InputQuery', query ,'Database', dbname

,'Program',%'tblastn'); %if text files is not wanted
secondmet.NRPS(a,z).gen_tar = outname1;
secondmet.NRPS(a,z).genome = genomenum; %genome
secondmet.NRPS(a,z).domain = NRPS(b,c); %target
secondmet.NRPS(a,z).output = output;
z=z+1;
 end
 end
end

%%%blasting PKS

168

cd(directory);
cd(resultsfolder);
for a = 1:x
 z=1;
 for b =1:size(PKS,1)
 for c = 1:size(PKS,2)
% genomenum = targetidx(a,2);
genomenum = a;
query = PKS(b,c);
query = convertStringsToChars(query);
outA = sprintf('_hitsin_%d',genomenum);
outname1 = strcat(strtok(PKS(b,c),'.'),outA);
outname = strcat(strtok(PKS(b,c),'.'),outA,'.txt');
outname = convertStringsToChars(outname);
dbname = sprintf('%d.fasta',genomenum);

%output = blastlocal('InputQuery', query ,'Database', dbname ,'Program',

'tblastn','ToFile',outname);
output = blastlocal('InputQuery', query ,'Database', dbname ,'Program',

'tblastn','ToFile',outname,'expect',50);
%output = blastlocal('InputQuery', query ,'Database', dbname

,'Program',%'tblastn'); %if text files is not wanted
secondmet.PKS(a,z).gen_tar = outname1;
secondmet.PKS(a,z).genome = genomenum; %genome
secondmet.PKS(a,z).domain = PKS(b,c); %target
secondmet.PKS(a,z).output = output;
z=z+1;
 end
 end
end
%%%blasting terpene
cd(directory);
cd(resultsfolder);
for a = 1:x
 z=1;
 for b =1:length(terpene)
 for c = 1:length(terpene(b).type)
% genomenum = targetidx(a,2);
genomenum = a;
query = terpene(b).type(c).value;
outA = sprintf('_hitsin_%d',genomenum);
outname1 = strcat(strtok(terpene(b).type(c).value,'.'),outA);
outname = strcat(strtok(terpene(b).type(c).value,'.'),outA,'.txt');
outname = convertStringsToChars(outname);
dbname = sprintf('%d.fasta',genomenum);

%output = blastlocal('InputQuery', query ,'Database', dbname ,'Program',

'tblastn','ToFile',outname);
output = blastlocal('InputQuery', query ,'Database', dbname ,'Program',

'tblastn','ToFile',outname,'expect',50);
%output = blastlocal('InputQuery', query ,'Database', dbname

,'Program',%'tblastn'); %if text files is not wanted
secondmet.terpene(a,z).gen_tar = outname1;
secondmet.terpene(a,z).genome = genomenum; %genome
secondmet.terpene(a,z).type = terpene(b).name; %target
secondmet.terpene(a,z).output = output;

169

z=z+1;
 end
 end
end
cd(directory);
cd(resultsfolder);

save('secondmet.mat','secondmet','PKS','NRPS','terpene');

Script 4: secondmetcheck_NRPS.m
%%%%%%%%%%check for NRPS clusters%%%%%%%%%%%%%%%%%%%%%%%%%%
clear;

% directory = 'C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_strains';
directory = 'C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_strains2';
% directory = 'cd C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_genomes'
cd(directory);
% resultsfolder = 'newgenomes';
resultsfolder = 'Cyp51results';
cd(resultsfolder)
load('secondmet.mat');
idenval = 10;

cd(directory);
cd(resultsfolder)

genomenum = size(secondmet.NRPS,1);
NRPShitsidx = struct('output',cell(genomenum,size(NRPS,1)));
output =

struct('scaffold',[],'genome',[],'domain',[],'indexright',[],'indexleft',[]);

%%%count number hits of NRPShits%%%%

%%reduce hits by identity%%
%count A domain and index
for a = 1:length(secondmet.NRPS(:,1))
 hitcount = 1;
 for b = 1:(length(secondmet.NRPS(1,:))/3)
 for c = 1:length(secondmet.NRPS(a,b).output.Hits)
 for d = 1:length(secondmet.NRPS(a,b).output.Hits(c).HSPs)
 if

secondmet.NRPS(a,b).output.Hits(c).HSPs(d).Identities.Percent >= idenval
 NRPShitsidx(a,1).output(hitcount).scaffold =

secondmet.NRPS(a,b).output.Hits(c).Name;
 NRPShitsidx(a,1).output(hitcount).genome =

secondmet.NRPS(a,b).genome;
 NRPShitsidx(a,1).output(hitcount).domain =

secondmet.NRPS(a,b).domain;
 NRPShitsidx(a,1).output(hitcount).indexleft =

secondmet.NRPS(a,b).output.Hits(c).HSPs(d).SubjectIndices(1);
 NRPShitsidx(a,1).output(hitcount).indexright =

secondmet.NRPS(a,b).output.Hits(c).HSPs(d).SubjectIndices(2);
 hitcount = hitcount + 1;
 end

170

 end
 end
 end
end
%count C domain and index
for a = 1:length(secondmet.NRPS(:,1))
 hitcount = 1;
 for b = 1+size(NRPS,2):size(NRPS,2)+(length(secondmet.NRPS(1,:))/3)
 for c = 1:length(secondmet.NRPS(a,b).output.Hits)
 for d = 1:length(secondmet.NRPS(a,b).output.Hits(c).HSPs)
 if

secondmet.NRPS(a,b).output.Hits(c).HSPs(d).Identities.Percent >= idenval
 NRPShitsidx(a,2).output(hitcount).scaffold =

secondmet.NRPS(a,b).output.Hits(c).Name;
 NRPShitsidx(a,2).output(hitcount).genome =

secondmet.NRPS(a,b).genome;
 NRPShitsidx(a,2).output(hitcount).domain =

secondmet.NRPS(a,b).domain;
 NRPShitsidx(a,2).output(hitcount).indexleft =

secondmet.NRPS(a,b).output.Hits(c).HSPs(d).SubjectIndices(1);
 NRPShitsidx(a,2).output(hitcount).indexright =

secondmet.NRPS(a,b).output.Hits(c).HSPs(d).SubjectIndices(2);
 hitcount = hitcount + 1;
 end
 end
 end
 end
end
%count T domain and index
hitcount = 1;
for a = 1:length(secondmet.NRPS(:,1)) %%iterate through genomes
 hitcount = 1;
 for b =

1+size(NRPS,2)+size(NRPS,2):size(NRPS,2)+size(NRPS,2)+(length(secondmet.NRPS(

1,:))/3) %%iterate through domains
 for c = 1:length(secondmet.NRPS(a,b).output.Hits) %%iterate through

genome hits
 for d = 1:length(secondmet.NRPS(a,b).output.Hits(c).HSPs)

%%iterate through scaffold hits
 if

secondmet.NRPS(a,b).output.Hits(c).HSPs(d).Identities.Percent >= idenval
 NRPShitsidx(a,3).output(hitcount).scaffold =

secondmet.NRPS(a,b).output.Hits(c).Name;
 NRPShitsidx(a,3).output(hitcount).genome =

secondmet.NRPS(a,b).genome;
 NRPShitsidx(a,3).output(hitcount).domain =

secondmet.NRPS(a,b).domain;
 NRPShitsidx(a,3).output(hitcount).indexleft =

secondmet.NRPS(a,b).output.Hits(c).HSPs(d).SubjectIndices(1);
 NRPShitsidx(a,3).output(hitcount).indexright =

secondmet.NRPS(a,b).output.Hits(c).HSPs(d).SubjectIndices(2);
 hitcount = hitcount + 1;
 end
 end
 end
 end
end

171

%%%%reduce hits by checking colocalization of domains%%
NRPScluster = struct('output',[]);
output = struct('scaffold',[],'genome',[],'indexright',[],'indexleft',[]);
check1 = length(NRPShitsidx);
clusterdist = 10000;

for a = 1:check1 %% iterate through num of genomes

 numhits1 = length(NRPShitsidx(a,1).output);
 numhits2 = length(NRPShitsidx(a,2).output);
 numhits3 = length(NRPShitsidx(a,3).output);

 clustercount = 1;

 for c = 1:numhits1 %%going through NRPS domain hits A domain

 for d = 1:numhits2 %checks against C domain
 distcheck1 = clusterdist + 100;
 distcheck2 = clusterdist + 100;
 distcheck3 = clusterdist + 100;
 distcheck4 = clusterdist + 100;
 tf1 =

strcmp(NRPShitsidx(a,1).output(c).scaffold,NRPShitsidx(a,2).output(d).scaffol

d);
 if tf1 ==1
 distcheck1 = abs(NRPShitsidx(a,1).output(c).indexright -

NRPShitsidx(a,2).output(d).indexright);
 distcheck2 = abs(NRPShitsidx(a,1).output(c).indexright -

NRPShitsidx(a,2).output(d).indexleft);
 distcheck3 = abs(NRPShitsidx(a,1).output(c).indexleft -

NRPShitsidx(a,2).output(d).indexright);
 distcheck4 = abs(NRPShitsidx(a,1).output(c).indexleft -

NRPShitsidx(a,2).output(d).indexleft);

 end

 boolean1 = [distcheck1,distcheck2,distcheck3,distcheck4];
 tfcheck1 = 0;
 tfcheck2 = 0;
 for i=1:length(boolean1)
 if boolean1(i) <= clusterdist
 tfcheck1 = 1;
 break
 end
 end
 if tfcheck1 == 1
 for e = 1:numhits3 %checks against T domain if C and A

are together
 distcheck5 = clusterdist + 100;
 distcheck6 = clusterdist + 100;
 distcheck7 = clusterdist + 100;
 distcheck8 = clusterdist + 100;

172

 tf2 =

strcmp(NRPShitsidx(a,1).output(c).scaffold,NRPShitsidx(a,3).output(e).scaffol

d);
 if tf2 == 1
 distcheck5 =

abs(NRPShitsidx(a,1).output(c).indexright -

NRPShitsidx(a,3).output(e).indexright);
 distcheck6 =

abs(NRPShitsidx(a,1).output(c).indexright -

NRPShitsidx(a,3).output(e).indexleft);
 distcheck7 = abs(NRPShitsidx(a,1).output(c).indexleft

- NRPShitsidx(a,3).output(e).indexright);
 distcheck8 = abs(NRPShitsidx(a,1).output(c).indexleft

- NRPShitsidx(a,3).output(e).indexleft);
 end

 tfcheck2 = 0;
 boolean2 = [distcheck5,distcheck6,distcheck7,distcheck8];
 for i=1:length(boolean2)
 if boolean2(i) <= clusterdist
 tfcheck2 = 1;
 break
 end
 end
 if tfcheck2 == 1
 arrayidx =

[NRPShitsidx(a,1).output(c).indexright,NRPShitsidx(a,1).output(c).indexleft,N

RPShitsidx(a,2).output(d).indexright,NRPShitsidx(a,2).output(d).indexleft,NRP

Shitsidx(a,3).output(e).indexleft,NRPShitsidx(a,3).output(e).indexright];
 arrayidx = sort(arrayidx);
 NRPScluster(a).output(clustercount).scaffold =

NRPShitsidx(a,1).output(c).scaffold;
 NRPScluster(a).output(clustercount).genome = a;
 NRPScluster(a).output(clustercount).indexright =

arrayidx(6);
 NRPScluster(a).output(clustercount).indexleft =

arrayidx(1);
 clustercount = clustercount + 1;
 break
 end
 end

 end
 if tfcheck2 ==1
 break;
 end

 end
 end
end

%%%%sort NRPScluster struct to eliminate duplicates

NRPSclustersort = struct('output',[]);
for i = 1:length(NRPScluster)
if isempty(NRPScluster(i).output)

173

 continue
end
NRPSfields = fieldnames(NRPScluster(i).output);
outputsort = struct2cell(NRPScluster(i).output);
sz = size(outputsort);
outputsort = reshape(outputsort, sz(1), []);
outputsort = outputsort';
NRPSfields = NRPSfields';
outputsort = sortrows(outputsort, [1 4 3]);
outputsort = cell2struct(outputsort, NRPSfields, 2);
NRPSclustersort(i).output = outputsort;

end

%%%%eliminate duplicates
NRPSclean = struct('output',[]);
distcheck = 10000;

for i = 1:length(NRPSclustersort)
 b = 1;
 hitslen = length(NRPSclustersort(i).output)-1;
 if length(NRPSclustersort(i).output) == 1
 hitslen = 1;
 end
 for a = 1:hitslen

 if a == 1
 NRPSclean(i).output(b).scaffold =

NRPSclustersort(i).output(a).scaffold;
 NRPSclean(i).output(b).genome = NRPSclustersort(i).output(a).genome;
 NRPSclean(i).output(b).indexright =

NRPSclustersort(i).output(a).indexright;
 NRPSclean(i).output(b).indexleft =

NRPSclustersort(i).output(a).indexleft;
 end
% NRPSclean(i).output(b).scaffold =

NRPSclustersort(i).output(a).scaffold;
% NRPSclean(i).output(b).genome = NRPSclustersort(i).output(a).genome;
 distcheck9 = clusterdist + 100;
 distcheck10 = clusterdist + 100;
 distcheck11 = clusterdist + 100;
 distcheck12 = clusterdist + 100;
 tf3 =

strcmp(NRPSclustersort(i).output(a).scaffold,NRPSclustersort(i).output(a+1).s

caffold);
 if tf3 == 1
 distcheck9 = abs(NRPSclustersort(i).output(a).indexright -

NRPSclustersort(i).output(a+1).indexright);
 distcheck10 = abs(NRPSclustersort(i).output(a).indexright -

NRPSclustersort(i).output(a+1).indexleft);
 distcheck11 = abs(NRPSclustersort(i).output(a).indexleft -

NRPSclustersort(i).output(a+1).indexright);
 distcheck12 = abs(NRPSclustersort(i).output(a).indexleft -

NRPSclustersort(i).output(a+1).indexleft);
 end

174

 tfcheck3 = 0;
 boolean3 =

[distcheck9,distcheck10,distcheck11,distcheck12];
 for x=1:length(boolean3)
 if boolean3(x) <= distcheck
 tfcheck3 = 1;
 break
 end
 end
% if tfcheck3 == 1
% arrayidx =

[NRPSclustersort(i).output(a).indexright,NRPSclustersort(i).output(a).indexle

ft,NRPSclustersort(i).output(a+1).indexright,NRPSclustersort(i).output(a+1).i

ndexleft];
% arrayidx = sort(arrayidx);
% NRPSclean(i).output(b).indexright = arrayidx(4);
% NRPSclean(i).output(b).indexleft = arrayidx(1);
% end

 if tf3 ~= 1 || tfcheck3 ~= 1
 b = b+1;
 NRPSclean(i).output(b).scaffold =

NRPSclustersort(i).output(a+1).scaffold;
 NRPSclean(i).output(b).genome =

NRPSclustersort(i).output(a+1).genome;
 NRPSclean(i).output(b).indexright =

NRPSclustersort(i).output(a+1).indexright;
 NRPSclean(i).output(b).indexleft =

NRPSclustersort(i).output(a+1).indexleft;
 end
 if tf3 ==1 && tfcheck3 ==1 && a~=1
 arrayidx =

[NRPSclustersort(i).output(a).indexright,NRPSclustersort(i).output(a).indexle

ft,NRPSclustersort(i).output(a+1).indexright,NRPSclustersort(i).output(a+1).i

ndexleft];
 arrayidx = sort(arrayidx);
 NRPSclean(i).output(b).indexright = arrayidx(4);
 NRPSclean(i).output(b).indexleft = arrayidx(1);
 end
 end

end

cd(directory);
cd(resultsfolder);
save('NRPSresults.mat','NRPSclean');

Script 5: secondmetcheck_terpene.m
%%%%%%%%%%check for terpene clusters%%%%%%%%%%%%%%%%%%%%%%%%%%
clear;
% directory = 'C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_strains';
directory = 'C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_strains2';
% directory = 'cd C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_genomes'
cd(directory);
% resultsfolder = 'newgenomes';
resultsfolder = 'Cyp51results';

175

cd(resultsfolder)

load('secondmet.mat');
idenval = 30;

cd(directory);
cd(resultsfolder)

genomenum = size(secondmet.terpene,1);
terpenecluster = struct('output',cell(genomenum,size(terpene,1)));
output =

struct('scaffold',[],'genome',[],'domain',[],'indexright',[],'indexleft',[],'

type',[]);

%%%count number hits of terpenehits%%%%

%%reduce hits by identity%%
%count terpene hits and index
for a = 1:length(secondmet.terpene(:,1))
 hitcount = 1;
 for b = 1:(length(secondmet.terpene(1,:)))
 for c = 1:length(secondmet.terpene(a,b).output.Hits)
 for d = 1:length(secondmet.terpene(a,b).output.Hits(c).HSPs)
 if

secondmet.terpene(a,b).output.Hits(c).HSPs(d).Identities.Percent >= idenval
 terpenecluster(a,1).output(hitcount).scaffold =

secondmet.terpene(a,b).output.Hits(c).Name;
 terpenecluster(a,1).output(hitcount).genome =

secondmet.terpene(a,b).genome;
 terpenecluster(a,1).output(hitcount).indexleft =

secondmet.terpene(a,b).output.Hits(c).HSPs(d).SubjectIndices(1);
 terpenecluster(a,1).output(hitcount).indexright =

secondmet.terpene(a,b).output.Hits(c).HSPs(d).SubjectIndices(2);
 terpenecluster(a,1).output(hitcount).type =

secondmet.terpene(a,b).type;
 hitcount = hitcount + 1;
 end
 end
 end
 end
end

%%%%sort terpenecluster struct to eliminate duplicates

terpeneclustersort = struct('output',[]);
for i = 1:length(terpenecluster)
if isempty(terpenecluster(i).output)
 continue
end
terpenefields = fieldnames(terpenecluster(i).output);
outputsort = struct2cell(terpenecluster(i).output);
sz = size(outputsort);
outputsort = reshape(outputsort, sz(1), []);

176

outputsort = outputsort';
terpenefields = terpenefields';
outputsort = sortrows(outputsort, [1 4 3]);
outputsort = cell2struct(outputsort, terpenefields, 2);
terpeneclustersort(i).output = outputsort;

end

%%%%eliminate duplicates
terpeneclean = struct('output',[]);
distcheck = 10000;
clusterdist = 10000;

for i = 1:length(terpeneclustersort)
 b = 1;
 hitslen = length(terpeneclustersort(i).output)-1;
 if length(terpeneclustersort(i).output) == 1
 hitslen = 1;
 end
 for a = 1:hitslen

 if a == 1
 terpeneclean(i).output(b).scaffold =

terpeneclustersort(i).output(a).scaffold;
 terpeneclean(i).output(b).genome =

terpeneclustersort(i).output(a).genome;
 terpeneclean(i).output(b).indexright =

terpeneclustersort(i).output(a).indexright;
 terpeneclean(i).output(b).indexleft =

terpeneclustersort(i).output(a).indexleft;
 terpeneclean(i).output(b).indexleft =

terpeneclustersort(i).output(a).indexleft;
 terpeneclean(i).output(b).type =

terpeneclustersort(i).output(a).type;
 end
% terpeneclean(i).output(b).scaffold =

terpeneclustersort(i).output(a).scaffold;
% terpeneclean(i).output(b).genome =

terpeneclustersort(i).output(a).genome;
 distcheck9 = clusterdist + 100;
 distcheck10 = clusterdist + 100;
 distcheck11 = clusterdist + 100;
 distcheck12 = clusterdist + 100;
 tf3 =

strcmp(terpeneclustersort(i).output(a).scaffold,terpeneclustersort(i).output(

a+1).scaffold);
 if tf3 == 1
 distcheck9 = abs(terpeneclustersort(i).output(a).indexright -

terpeneclustersort(i).output(a+1).indexright);
 distcheck10 = abs(terpeneclustersort(i).output(a).indexright -

terpeneclustersort(i).output(a+1).indexleft);
 distcheck11 = abs(terpeneclustersort(i).output(a).indexleft -

terpeneclustersort(i).output(a+1).indexright);
 distcheck12 = abs(terpeneclustersort(i).output(a).indexleft -

terpeneclustersort(i).output(a+1).indexleft);
 end

177

 tfcheck3 = 0;
 boolean3 =

[distcheck9,distcheck10,distcheck11,distcheck12];
 for x=1:length(boolean3)
 if boolean3(x) <= distcheck
 tfcheck3 = 1;
 break
 end
 end
% if tfcheck3 == 1
% arrayidx =

[terpeneclustersort(i).output(a).indexright,terpeneclustersort(i).output(a).i

ndexleft,terpeneclustersort(i).output(a+1).indexright,terpeneclustersort(i).o

utput(a+1).indexleft];
% arrayidx = sort(arrayidx);
% terpeneclean(i).output(b).indexright = arrayidx(4);
% terpeneclean(i).output(b).indexleft = arrayidx(1);
% end

 if tf3 ~= 1 || tfcheck3 ~= 1
 b = b+1;
 terpeneclean(i).output(b).scaffold =

terpeneclustersort(i).output(a+1).scaffold;
 terpeneclean(i).output(b).genome =

terpeneclustersort(i).output(a+1).genome;
 terpeneclean(i).output(b).indexright =

terpeneclustersort(i).output(a+1).indexright;
 terpeneclean(i).output(b).indexleft =

terpeneclustersort(i).output(a+1).indexleft;
 terpeneclean(i).output(b).indexleft =

terpeneclustersort(i).output(a+1).indexleft;
 terpeneclean(i).output(b).type =

terpeneclustersort(i).output(a).type;
 end
 if tf3 ==1 && tfcheck3 ==1 && a~=1
 arrayidx =

[terpeneclustersort(i).output(a).indexright,terpeneclustersort(i).output(a).i

ndexleft,terpeneclustersort(i).output(a+1).indexright,terpeneclustersort(i).o

utput(a+1).indexleft];
 arrayidx = sort(arrayidx);
 terpeneclean(i).output(b).indexright = arrayidx(4);
 terpeneclean(i).output(b).indexleft = arrayidx(1);
 end
 end

end

cd(directory);
cd(resultsfolder);
save('terpeneresults.mat','terpeneclean');

Script 6: secondmetcheck_PKS_test.m
%%%%%%%%%%%%%%%%%%%%%%%%check for PKS clusters%%%%%%%%%%%%%%%%%%%%%%%%%
clear;

178

% directory = 'C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_strains';
directory = 'C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_strains2';
% directory = 'cd C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_genomes'
cd(directory);
% resultsfolder = 'newgenomes';
resultsfolder = 'Cyp51results';
cd(resultsfolder)

load('secondmet.mat');

cd(directory);
cd(resultsfolder)

idenval = 5;
genomenum = size(secondmet.PKS,1);
PKShitsidx = struct('output',cell(genomenum,size(PKS,1)));
output =

struct('scaffold',[],'genome',[],'domain',[],'indexright',[],'indexleft',[]);

%%%count number hits of NRPShits%%%%

%%reduce hits by identity%%
%count KS domain and index
for a = 1:length(secondmet.PKS(:,1))
 hitcount = 1;
 for b = 1:(length(secondmet.PKS(1,:))/3)
 for c = 1:length(secondmet.PKS(a,b).output.Hits)
 for d = 1:length(secondmet.PKS(a,b).output.Hits(c).HSPs)
 if

secondmet.PKS(a,b).output.Hits(c).HSPs(d).Identities.Percent >= idenval
 PKShitsidx(a,1).output(hitcount).scaffold =

secondmet.PKS(a,b).output.Hits(c).Name;
 PKShitsidx(a,1).output(hitcount).genome =

secondmet.PKS(a,b).genome;
 PKShitsidx(a,1).output(hitcount).domain =

secondmet.PKS(a,b).domain;
 PKShitsidx(a,1).output(hitcount).indexleft =

secondmet.PKS(a,b).output.Hits(c).HSPs(d).SubjectIndices(1);
 PKShitsidx(a,1).output(hitcount).indexright =

secondmet.PKS(a,b).output.Hits(c).HSPs(d).SubjectIndices(2);
 hitcount = hitcount + 1;
 end
 end
 end
 end
end
%count AT domain and index
for a = 1:length(secondmet.PKS(:,1))
 hitcount = 1;
 for b = 1+size(PKS,2):size(PKS,2)+(length(secondmet.PKS(1,:))/3)
 for c = 1:length(secondmet.PKS(a,b).output.Hits)
 for d = 1:length(secondmet.PKS(a,b).output.Hits(c).HSPs)
 if

secondmet.PKS(a,b).output.Hits(c).HSPs(d).Identities.Percent >= idenval

179

 PKShitsidx(a,2).output(hitcount).scaffold =

secondmet.PKS(a,b).output.Hits(c).Name;
 PKShitsidx(a,2).output(hitcount).genome =

secondmet.PKS(a,b).genome;
 PKShitsidx(a,2).output(hitcount).domain =

secondmet.PKS(a,b).domain;
 PKShitsidx(a,2).output(hitcount).indexleft =

secondmet.PKS(a,b).output.Hits(c).HSPs(d).SubjectIndices(1);
 PKShitsidx(a,2).output(hitcount).indexright =

secondmet.PKS(a,b).output.Hits(c).HSPs(d).SubjectIndices(2);
 hitcount = hitcount + 1;
 end
 end
 end
 end
end
%count ACP domain and index
hitcount = 1;
for a = 1:length(secondmet.PKS(:,1)) %%iterate through genomes
 hitcount = 1;
 for b =

1+size(PKS,2)+size(PKS,2):size(PKS,2)+size(PKS,2)+(length(secondmet.PKS(1,:))

/3) %%iterate through domains
 for c = 1:length(secondmet.PKS(a,b).output.Hits) %%iterate through

genome hits
 for d = 1:length(secondmet.PKS(a,b).output.Hits(c).HSPs)

%%iterate through scaffold hits
 if

secondmet.PKS(a,b).output.Hits(c).HSPs(d).Identities.Percent >= idenval
 PKShitsidx(a,3).output(hitcount).scaffold =

secondmet.PKS(a,b).output.Hits(c).Name;
 PKShitsidx(a,3).output(hitcount).genome =

secondmet.PKS(a,b).genome;
 PKShitsidx(a,3).output(hitcount).domain =

secondmet.PKS(a,b).domain;
 PKShitsidx(a,3).output(hitcount).indexleft =

secondmet.PKS(a,b).output.Hits(c).HSPs(d).SubjectIndices(1);
 PKShitsidx(a,3).output(hitcount).indexright =

secondmet.PKS(a,b).output.Hits(c).HSPs(d).SubjectIndices(2);
 hitcount = hitcount + 1;
 end
 end
 end
 end
end

%%%%reduce hits by checking colocalization of domains%%
PKScluster = struct('output',[]);
output = struct('scaffold',[],'genome',[],'indexright',[],'indexleft',[]);
check1 = length(PKShitsidx);
clusterdist = 10000;

for a = 1:check1 %% iterate through num of genomes

 numhits1 = length(PKShitsidx(a,1).output);
 numhits2 = length(PKShitsidx(a,2).output);

180

 numhits3 = length(PKShitsidx(a,3).output);

 clustercount = 1;

 for c = 1:numhits1 %%going through PKS domains KS domain

 for d = 1:numhits2 %checks against AT domain
 distcheck1 = clusterdist + 100;
 distcheck2 = clusterdist + 100;
 distcheck3 = clusterdist + 100;
 distcheck4 = clusterdist + 100;
 tf1 =

strcmp(PKShitsidx(a,1).output(c).scaffold,PKShitsidx(a,2).output(d).scaffold)

;
 if tf1 ==1
 distcheck1 = abs(PKShitsidx(a,1).output(c).indexright -

PKShitsidx(a,2).output(d).indexright);
 distcheck2 = abs(PKShitsidx(a,1).output(c).indexright -

PKShitsidx(a,2).output(d).indexleft);
 distcheck3 = abs(PKShitsidx(a,1).output(c).indexleft -

PKShitsidx(a,2).output(d).indexright);
 distcheck4 = abs(PKShitsidx(a,1).output(c).indexleft -

PKShitsidx(a,2).output(d).indexleft);

 end

 boolean1 = [distcheck1,distcheck2,distcheck3,distcheck4];
 tfcheck1 = 0;
 tfcheck2 = 0;
 for i=1:length(boolean1)
 if boolean1(i) <= clusterdist
 tfcheck1 = 1;
 break
 end
 end
 if tfcheck1 == 1
 arrayidx =

[PKShitsidx(a,1).output(c).indexright,PKShitsidx(a,1).output(c).indexleft,PKS

hitsidx(a,2).output(d).indexright,PKShitsidx(a,2).output(d).indexleft];
 arrayidx = sort(arrayidx);
 PKScluster(a).output(clustercount).scaffold =

PKShitsidx(a,1).output(c).scaffold;
 PKScluster(a).output(clustercount).genome = a;
 PKScluster(a).output(clustercount).indexright =

arrayidx(4);
 PKScluster(a).output(clustercount).indexleft =

arrayidx(1);
 clustercount = clustercount + 1;
 end

 if tfcheck1 ==1
 break;
 end

181

 end
 end
end

%%%%sort PKScluster struct to eliminate duplicates

PKSclustersort = struct('output',[]);
for i = 1:length(PKScluster)
if isempty(PKScluster(i).output)
 continue
end
PKSfields = fieldnames(PKScluster(i).output);
outputsort = struct2cell(PKScluster(i).output);
sz = size(outputsort);
outputsort = reshape(outputsort, sz(1), []);
outputsort = outputsort';
PKSfields = PKSfields';
outputsort = sortrows(outputsort, [1 4 3]);
outputsort = cell2struct(outputsort, PKSfields, 2);
PKSclustersort(i).output = outputsort;

end

%%%%eliminate duplicates
PKSclean = struct('output',[]);
distcheck = 8000;

for i = 1:length(PKSclustersort)
 b = 1;
 hitslen = length(PKSclustersort(i).output)-1;
 if length(PKSclustersort(i).output) == 1
 hitslen = 1;
 end
 for a = 1:hitslen

 if a == 1
 PKSclean(i).output(b).scaffold =

PKSclustersort(i).output(a).scaffold;
 PKSclean(i).output(b).genome = PKSclustersort(i).output(a).genome;
 PKSclean(i).output(b).indexright =

PKSclustersort(i).output(a).indexright;
 PKSclean(i).output(b).indexleft =

PKSclustersort(i).output(a).indexleft;
 end
 if hitslen == 1
 continue
 end
 distcheck9 = distcheck + 100;
 distcheck10 = distcheck + 100;
 distcheck11 = distcheck + 100;
 distcheck12 = distcheck + 100;
 tf3 =

strcmp(PKSclustersort(i).output(a).scaffold,PKSclustersort(i).output(a+1).sca

ffold);
 if tf3 == 1

182

 distcheck9 = abs(PKSclustersort(i).output(a).indexright -

PKSclustersort(i).output(a+1).indexright);
 distcheck10 = abs(PKSclustersort(i).output(a).indexright -

PKSclustersort(i).output(a+1).indexleft);
 distcheck11 = abs(PKSclustersort(i).output(a).indexleft -

PKSclustersort(i).output(a+1).indexright);
 distcheck12 = abs(PKSclustersort(i).output(a).indexleft -

PKSclustersort(i).output(a+1).indexleft);
 end

 tfcheck3 = 0;
 boolean3 =

[distcheck9,distcheck10,distcheck11,distcheck12];
 for x=1:length(boolean3)
 if boolean3(x) <= distcheck
 tfcheck3 = 1;
 break
 end
 end
% if tfcheck3 == 1
% arrayidx =

[NRPSclustersort(i).output(a).indexright,NRPSclustersort(i).output(a).indexle

ft,NRPSclustersort(i).output(a+1).indexright,NRPSclustersort(i).output(a+1).i

ndexleft];
% arrayidx = sort(arrayidx);
% NRPSclean(i).output(b).indexright = arrayidx(4);
% NRPSclean(i).output(b).indexleft = arrayidx(1);
% end

 if tf3 ~=1 || tfcheck3 ~= 1
 b = b+1;
 PKSclean(i).output(b).scaffold =

PKSclustersort(i).output(a+1).scaffold;
 PKSclean(i).output(b).genome =

PKSclustersort(i).output(a+1).genome;
 PKSclean(i).output(b).indexright =

PKSclustersort(i).output(a+1).indexright;
 PKSclean(i).output(b).indexleft =

PKSclustersort(i).output(a+1).indexleft;
 end
 if tf3 ==1 && tfcheck3 ==1 && a~=1
 arrayidx =

[PKSclustersort(i).output(a).indexright,PKSclustersort(i).output(a).indexleft

,PKSclustersort(i).output(a+1).indexright,PKSclustersort(i).output(a+1).index

left];
 arrayidx = sort(arrayidx);
 PKSclean(i).output(b).indexright = arrayidx(4);
 PKSclean(i).output(b).indexleft = arrayidx(1);
 end
 end

end

cd(directory);
cd(resultsfolder);

183

save('PKSresults.mat','PKSclean');

Script 7: auxgeneblast.m
%%%%blast secondary metabolite canonical genes%%%%%%%%%%%%%%%%%%%%
%%%%Colocalization of gene clusters

% blastfiles =

'C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_genomes\resultsfolder';

%specify here the location of blast files
% directory = 'C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_strains';
directory = 'C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_strains2';
% directory = 'cd C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_genomes'
cd(directory);
% resultsfolder = 'newgenomes';
resultsfolder = 'Cyp51results';
cd(resultsfolder)
blastfiles =

strcat('C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_strains2\',results

folder); %specify here the location of blast files
gbfiles = dir('*.nhr');
numgenomes = length(gbfiles);

cd C:\Users\Lab\Desktop\Genome_Mining_Matlab
cd Auxgenes_2nd_Met

%%copy TF blast files
for i = 1:10
 dom = sprintf('TF_%d.fasta',i);
 copyfile(dom,blastfiles);
end
for i = 1:10
 dom = sprintf('ZNbind_%d.fasta',i);
 copyfile(dom,blastfiles);
end

%%%size of TF domain reference
TFnum1 = 2;
TFnum2 = 10;
TF = strings(TFnum1,TFnum2);

for i = 1:10
 dom = sprintf('TF_%d.fasta',i);
 TF(1,i) = dom;
end
for i = 1:10
 dom = sprintf('ZNbind_%d.fasta',i);
 TF(2,i) = dom;
end

auxgenes = struct('TF',[],'P450',[],'FMO',[],'MT',[],'TE',[]); % categories

of secondary met genes checked for

184

%%blasting secondmet genes
cd(directory);
cd(resultsfolder);
for a = 1:numgenomes
 z=1;
 for b =1:size(TF,1)
 for c = 1:size(TF,2)
% genomenum = targetidx(a,2);
genomenum = a;
query = TF(b,c);
query = convertStringsToChars(query);
outA = sprintf('_hitsin_%d',genomenum);
outnameTF = strcat(strtok(TF(b,c),'.'),outA);
outname = strcat(strtok(TF(b,c),'.'),outA,'.txt');
outname = convertStringsToChars(outname);
dbname = sprintf('%d.fasta',genomenum);

%output = blastlocal('InputQuery', query ,'Database', dbname ,'Program',

'tblastn','ToFile',outname);
outputTF = blastlocal('InputQuery', query ,'Database', dbname ,'Program',

'tblastn','ToFile',outname,'expect',50);
%output = blastlocal('InputQuery', query ,'Database', dbname

,'Program',%'tblastn'); %if text files is not wanted
auxgenes.TF(a,z).gen_tar = outnameTF;
auxgenes.TF(a,z).genome = genomenum; %genome
auxgenes.TF(a,z).domain = TF(b,c); %gene
auxgenes.TF(a,z).output = outputTF;
z=z+1;
 end
 end
end

%%%%%%%%%%%%%%%%%%%%%check for P450's%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
cd C:\Users\Lab\Desktop\Genome_Mining_Matlab
cd Auxgenes_2nd_Met

%%copy P450 blast files
for i = 1:10
 dom = sprintf('P450_%d.fasta',i);
 copyfile(dom,blastfiles);
end

%%%size of NRPS domain reference
P450num1 = 1;
P450num2 = 10;
P450 = strings(P450num1,P450num2);

for i = 1:10
 dom = sprintf('P450_%d.fasta',i);
 P450(1,i) = dom;
end

%%blasting secondmet genes
cd(directory);
cd(resultsfolder);
for a = 1:numgenomes

185

 z=1;
 for b =1:length(P450)

% genomenum = targetidx(a,2);
genomenum = a;
query = P450(b);
query = convertStringsToChars(query);
outA = sprintf('_hitsin_%d',genomenum);
outname1 = strcat(strtok(P450(b),'.'),outA);
outname = strcat(strtok(P450(b),'.'),outA,'.txt');
outname = convertStringsToChars(outname);
dbname = sprintf('%d.fasta',genomenum);

%output = blastlocal('InputQuery', query ,'Database', dbname ,'Program',

'tblastn','ToFile',outname);
output = blastlocal('InputQuery', query ,'Database', dbname ,'Program',

'tblastn','ToFile',outname,'expect',50);
%output = blastlocal('InputQuery', query ,'Database', dbname

,'Program',%'tblastn'); %if text files is not wanted
auxgenes.P450(a,z).gen_tar = outname1;
auxgenes.P450(a,z).genome = genomenum; %genome
auxgenes.P450(a,z).domain = P450(b); %gene
auxgenes.P450(a,z).output = output;
z=z+1;

 end
end
%%%%%%%%%%%%%%%%%%%%%check for FMO's%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
cd C:\Users\Lab\Desktop\Genome_Mining_Matlab
cd Auxgenes_2nd_Met

%%copy MT blast files
for i = 1:10
 dom = sprintf('FMO_%d.fasta',i);
 copyfile(dom,blastfiles);
end

%%%size of FMO domain reference
FMOnum1 = 1;
FMOnum2 = 10;
FMO = strings(FMOnum1,FMOnum2);

for i = 1:10
 dom = sprintf('FMO_%d.fasta',i);
 FMO(1,i) = dom;
end

%%blasting secondmet genes
cd(directory);
cd(resultsfolder);
for a = 1:numgenomes
 z=1;
 for b =1:length(FMO)

% genomenum = targetidx(a,2);

186

genomenum = a;
query = FMO(b);
query = convertStringsToChars(query);
outA = sprintf('_hitsin_%d',genomenum);
outname1 = strcat(strtok(FMO(b),'.'),outA);
outname = strcat(strtok(FMO(b),'.'),outA,'.txt');
outname = convertStringsToChars(outname);
dbname = sprintf('%d.fasta',genomenum);

%output = blastlocal('InputQuery', query ,'Database', dbname ,'Program',

'tblastn','ToFile',outname);
output = blastlocal('InputQuery', query ,'Database', dbname ,'Program',

'tblastn','ToFile',outname,'expect',50);
%output = blastlocal('InputQuery', query ,'Database', dbname

,'Program',%'tblastn'); %if text files is not wanted
auxgenes.FMO(a,z).gen_tar = outname1;
auxgenes.FMO(a,z).genome = genomenum; %genome
auxgenes.FMO(a,z).domain = FMO(b); %gene
auxgenes.FMO(a,z).output = output;
z=z+1;

 end
end

%%%%%%%%%%%%%%%%%%%%%check for FMO's%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
cd C:\Users\Lab\Desktop\Genome_Mining_Matlab
cd Auxgenes_2nd_Met

%%copy MT blast files
for i = 1:10
 dom = sprintf('MT_%d.fasta',i);
 copyfile(dom,blastfiles);
end

%%%size of MT domain reference
MTnum1 = 1;
MTnum2 = 10;
MT = strings(MTnum1,MTnum2);

for i = 1:10
 dom = sprintf('MT_%d.fasta',i);
 MT(1,i) = dom;
end

%%blasting secondmet genes
cd(directory);
cd(resultsfolder);
for a = 1:numgenomes
 z=1;
 for b =1:length(MT)

% genomenum = targetidx(a,2);
genomenum = a;
query = MT(b);
query = convertStringsToChars(query);

187

outA = sprintf('_hitsin_%d',genomenum);
outname1 = strcat(strtok(MT(b),'.'),outA);
outname = strcat(strtok(MT(b),'.'),outA,'.txt');
outname = convertStringsToChars(outname);
dbname = sprintf('%d.fasta',genomenum);

%output = blastlocal('InputQuery', query ,'Database', dbname ,'Program',

'tblastn','ToFile',outname);
output = blastlocal('InputQuery', query ,'Database', dbname ,'Program',

'tblastn','ToFile',outname,'expect',50);
%output = blastlocal('InputQuery', query ,'Database', dbname

,'Program',%'tblastn'); %if text files is not wanted
auxgenes.MT(a,z).gen_tar = outname1;
auxgenes.MT(a,z).genome = genomenum; %genome
auxgenes.MT(a,z).domain = MT(b); %gene
auxgenes.MT(a,z).output = output;
z=z+1;

 end
end

cd(directory);
cd(resultsfolder);
save('auxgenesblast.mat','auxgenes','TF','P450','FMO','MT');

Script 8: auxgeneblast.m
%%%%%store auxgeneblast data%%%%%%%%%%%
clear;
% directory = 'C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_strains';
directory = 'C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_strains2';

% directory = 'cd C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_genomes'
cd(directory);
% resultsfolder = 'newgenomes';
resultsfolder = 'Cyp51results';
cd(resultsfolder)

load('auxgenesblast.mat');

%%%%%%%%%%%%count number hits of TF hits%%%%%%%%%%%%%%%%%%%

genomenum = size(auxgenes.TF,1);
TFhitsidx = struct('output',cell(genomenum,size(TF,1)));
output =

struct('scaffold',[],'genome',[],'domain',[],'indexright',[],'indexleft',[]);

%%reduce hits by identity%%
%%%% scoring paramters for hits
Scoreval = 20;
Lengthval = 0.1;
Eval = 1E-20;

188

identval = 15;
%%%%%%%%%%%%%%%%%%%%

%count TF domain and index
for a = 1:length(auxgenes.TF(:,1))
 hitcount = 1;
 for b = 1:(length(auxgenes.TF(1,:))/2)
 for c = 1:length(auxgenes.TF(a,b).output.Hits)
 for d = 1:length(auxgenes.TF(a,b).output.Hits(c).HSPs)
 scorenum = 0;
 lengthnum = 0;
 evalnum = 0;
 ident = 0;
 if

auxgenes.TF(a,b).output.Hits(c).HSPs(d).Identities.Percent >= identval
 ident = 1;
 end
 cover =

auxgenes.TF(a,b).output.Hits(c).HSPs(d).QueryIndices;
 coverval = cover(2)-cover(1);
 if coverval >

Lengthval*auxgenes.TF(a,b).output.Hits(c).Length
 lengthnum = 1;
 end
 if auxgenes.TF(a,b).output.Hits(c).HSPs(d).Expect < Eval
 evalnum = 1;
 end
 if ident == 1
 TFhitsidx(a,1).output(hitcount).scaffold =

auxgenes.TF(a,b).output.Hits(c).Name;
 TFhitsidx(a,1).output(hitcount).genome =

auxgenes.TF(a,b).genome;
 TFhitsidx(a,1).output(hitcount).domain =

auxgenes.TF(a,b).domain;
 TFhitsidx(a,1).output(hitcount).indexleft =

auxgenes.TF(a,b).output.Hits(c).HSPs(d).SubjectIndices(1);
 TFhitsidx(a,1).output(hitcount).indexright =

auxgenes.TF(a,b).output.Hits(c).HSPs(d).SubjectIndices(2);
 hitcount = hitcount + 1;
 end
 end
 end
 end
end
%count ZNbind domain and index
for a = 1:length(auxgenes.TF(:,1))
 hitcount = 1;
 for b = 1+size(TF,2):size(TF,2)+(length(auxgenes.TF(1,:))/2)
 for c = 1:length(auxgenes.TF(a,b).output.Hits)
 for d = 1:length(auxgenes.TF(a,b).output.Hits(c).HSPs)
 scorenum = 0;
 lengthnum = 0;
 evalnum = 0;
 ident = 0;
 if

auxgenes.TF(a,b).output.Hits(c).HSPs(d).Identities.Percent >= identval
 ident = 1;

189

 end
 cover =

auxgenes.TF(a,b).output.Hits(c).HSPs(d).QueryIndices;
 coverval = cover(2)-cover(1);
 if coverval >

Lengthval*auxgenes.TF(a,b).output.Hits(c).Length
 lengthnum = 1;
 end
 if auxgenes.TF(a,b).output.Hits(c).HSPs(d).Expect < Eval
 evalnum = 1;
 end
 if ident == 1
 TFhitsidx(a,2).output(hitcount).scaffold =

auxgenes.TF(a,b).output.Hits(c).Name;
 TFhitsidx(a,2).output(hitcount).genome =

auxgenes.TF(a,b).genome;
 TFhitsidx(a,2).output(hitcount).domain =

auxgenes.TF(a,b).domain;
 TFhitsidx(a,2).output(hitcount).indexleft =

auxgenes.TF(a,b).output.Hits(c).HSPs(d).SubjectIndices(1);
 TFhitsidx(a,2).output(hitcount).indexright =

auxgenes.TF(a,b).output.Hits(c).HSPs(d).SubjectIndices(2);
 hitcount = hitcount + 1;
 end
 end
 end
 end
end

%%%%sort TF struct to eliminate duplicates

TFsort = struct('output',cell(genomenum,size(TF,1)));
for a = 1:size(TFhitsidx,1)
 for b = 1:size(TFhitsidx,2)
 TFfields = fieldnames(TFhitsidx(a,b).output);
 outputsort = struct2cell(TFhitsidx(a,b).output);
 sz = size(outputsort);
 outputsort = reshape(outputsort, sz(1), []);
 outputsort = outputsort';
 TFfields = TFfields';
 outputsort = sortrows(outputsort, [1 5 4]);
 outputsort = cell2struct(outputsort, TFfields, 2);
 TFsort(a,b).output = outputsort;
 end
end

%%%%eliminate duplicates
TFclean = struct('output',cell(genomenum,size(TF,1)));
clusterdist = 3000;

for a = 1:size(TFsort,1)
 for b = 1:size(TFsort,2)
 count = 1;
 hitslen = length(TFsort(a,b).output)-1;
 if length(TFsort(a,b).output) == 1
 hitslen = 1;

190

 end
 for c = 1:hitslen

 if c == 1
 TFclean(a,b).output(count).scaffold =

TFsort(a,b).output(c).scaffold;
 TFclean(a,b).output(count).genome =

TFsort(a,b).output(c).genome;
 TFclean(a,b).output(count).indexright =

TFsort(a,b).output(c).indexright;
 TFclean(a,b).output(count).indexleft =

TFsort(a,b).output(c).indexleft;
 end
 distcheck9 = clusterdist + 100;
 distcheck10 = clusterdist + 100;
 distcheck11 = clusterdist + 100;
 distcheck12 = clusterdist + 100;
 tf3 =

strcmp(TFsort(a,b).output(c).scaffold,TFsort(a,b).output(c+1).scaffold);
 if tf3 == 1
 distcheck9 = abs(TFsort(a,b).output(c).indexright -

TFsort(a,b).output(c+1).indexright);
 distcheck10 = abs(TFsort(a,b).output(c).indexright -

TFsort(a,b).output(c+1).indexleft);
 distcheck11 = abs(TFsort(a,b).output(c).indexleft -

TFsort(a,b).output(c+1).indexright);
 distcheck12 = abs(TFsort(a,b).output(c).indexleft -

TFsort(a,b).output(c+1).indexleft);
 end

 tfcheck3 = 0;
 boolean3 =

[distcheck9,distcheck10,distcheck11,distcheck12];
 for x=1:length(boolean3)
 if boolean3(x) <= clusterdist
 tfcheck3 = 1;
 break
 end
 end

 if tf3 ~= 1 || tfcheck3 ~= 1
 count = count+1;
 TFclean(a,b).output(count).scaffold =

TFsort(a,b).output(c+1).scaffold;
 TFclean(a,b).output(count).genome =

TFsort(a,b).output(c+1).genome;
 TFclean(a,b).output(count).indexright =

TFsort(a,b).output(c+1).indexright;
 TFclean(a,b).output(count).indexleft =

TFsort(a,b).output(c+1).indexleft;
 end
 if tf3 ==1 && tfcheck3 ==1 && c~=1
 arrayidx =

[TFsort(a,b).output(c).indexright,TFsort(a,b).output(c).indexleft,TFsort(a,b)

.output(c+1).indexright,TFsort(a,b).output(c+1).indexleft];
 arrayidx = sort(arrayidx);

191

 TFclean(a,b).output(count).indexright =

arrayidx(4);
 TFclean(a,b).output(count).indexleft =

arrayidx(1);
 end
 end
 end
end

%%%%%%%%%%%%count number hits of P450 hits%%%%%%%%%%%%%%%%%%%
genomenum = size(auxgenes.P450,1);
P450hitsidx = struct('output',cell(genomenum,size(P450,1)));
output =

struct('scaffold',[],'genome',[],'domain',[],'indexright',[],'indexleft',[]);

%%reduce hits by identity%%
%%%% scoring paramters for hits
Scoreval = 100;
Lengthval = 0.1;
Eval = 1E-20;
identval = 15;
%%%%%%%%%%%%%%%%%%%%
%count P450 domain and index
for a = 1:length(auxgenes.P450(:,1))
 hitcount = 1;
 for b = 1:(length(auxgenes.P450(1,:))/2)
 for c = 1:length(auxgenes.P450(a).output.Hits)
 for d = 1:length(auxgenes.P450(a).output.Hits(c).HSPs)
 scorenum = 0;
 lengthnum = 0;
 evalnum = 0;
 ident = 0;
 if

auxgenes.P450(a).output.Hits(c).HSPs(d).Identities.Percent >= identval
 ident = 1;
 end
 cover =

auxgenes.P450(a).output.Hits(c).HSPs(d).QueryIndices;
 coverval = cover(2)-cover(1);
 if coverval >

Lengthval*auxgenes.P450(a).output.Hits(c).Length
 lengthnum = 1;
 end
 if auxgenes.P450(a).output.Hits(c).HSPs(d).Expect < Eval
 evalnum = 1;
 end
 if ident == 1
 P450hitsidx(a).output(hitcount).scaffold =

auxgenes.P450(a).output.Hits(c).Name;
 P450hitsidx(a).output(hitcount).genome =

auxgenes.P450(a).genome;
 P450hitsidx(a).output(hitcount).domain =

auxgenes.P450(a).domain;
 P450hitsidx(a).output(hitcount).indexleft =

auxgenes.P450(a).output.Hits(c).HSPs(d).SubjectIndices(1);

192

 P450hitsidx(a).output(hitcount).indexright =

auxgenes.P450(a).output.Hits(c).HSPs(d).SubjectIndices(2);
 hitcount = hitcount + 1;
 end
 end
 end
 end
end

%%%%sort P450 struct to eliminate duplicates

P450sort = struct('output',cell(genomenum,size(P450,1)));
for a = 1:size(P450hitsidx,1)

 P450fields = fieldnames(P450hitsidx(a).output);
 outputsort = struct2cell(P450hitsidx(a).output);
 sz = size(outputsort);
 outputsort = reshape(outputsort, sz(1), []);
 outputsort = outputsort';
 P450fields = P450fields';
 outputsort = sortrows(outputsort, [1 5 4]);
 outputsort = cell2struct(outputsort, P450fields, 2);
 P450sort(a).output = outputsort;

end

%%%%eliminate duplicates
P450clean = struct('output',cell(genomenum,size(P450,1)));
clusterdist = 3000;

for a = 1:size(P450sort,1)

 count = 1;
 hitslen = length(P450sort(a).output)-1;
 if length(P450sort(a).output) == 1
 hitslen = 1;
 end
 for c = 1:hitslen

 if c == 1
 P450clean(a).output(count).scaffold =

P450sort(a).output(c).scaffold;
 P450clean(a).output(count).genome =

P450sort(a).output(c).genome;
 P450clean(a).output(count).indexright =

P450sort(a).output(c).indexright;
 P450clean(a).output(count).indexleft =

P450sort(a).output(c).indexleft;
 end
 distcheck9 = clusterdist + 100;
 distcheck10 = clusterdist + 100;
 distcheck11 = clusterdist + 100;
 distcheck12 = clusterdist + 100;

193

 P4503 =

strcmp(P450sort(a).output(c).scaffold,P450sort(a).output(c+1).scaffold);
 if P4503 == 1
 distcheck9 = abs(P450sort(a).output(c).indexright -

P450sort(a).output(c+1).indexright);
 distcheck10 = abs(P450sort(a).output(c).indexright -

P450sort(a).output(c+1).indexleft);
 distcheck11 = abs(P450sort(a).output(c).indexleft -

P450sort(a).output(c+1).indexright);
 distcheck12 = abs(P450sort(a).output(c).indexleft -

P450sort(a).output(c+1).indexleft);
 end

 P450check3 = 0;
 boolean3 =

[distcheck9,distcheck10,distcheck11,distcheck12];
 for x=1:length(boolean3)
 if boolean3(x) <= clusterdist
 P450check3 = 1;
 break
 end
 end

 if P4503 ~= 1 || P450check3 ~= 1
 count = count+1;
 P450clean(a).output(count).scaffold =

P450sort(a).output(c+1).scaffold;
 P450clean(a).output(count).genome =

P450sort(a).output(c+1).genome;
 P450clean(a).output(count).indexright =

P450sort(a).output(c+1).indexright;
 P450clean(a).output(count).indexleft =

P450sort(a).output(c+1).indexleft;
 end
 if P4503 ==1 && P450check3 ==1 && c~=1
 arrayidx =

[P450sort(a).output(c).indexright,P450sort(a).output(c).indexleft,P450sort(a)

.output(c+1).indexright,P450sort(a).output(c+1).indexleft];
 arrayidx = sort(arrayidx);
 P450clean(a).output(count).indexright =

arrayidx(4);
 P450clean(a).output(count).indexleft =

arrayidx(1);
 end
 end

end

%%%%%%%%%%%%count number hits of FMO hits%%%%%%%%%%%%%%%%%%%
genomenum = size(auxgenes.FMO,1);
FMOhitsidx = struct('output',cell(genomenum,size(FMO,1)));
output =

struct('scaffold',[],'genome',[],'domain',[],'indexright',[],'indexleft',[]);

%%reduce hits by identity%%

194

%%%% scoring paramters for hits
Scoreval = 100;
Lengthval = 0.1;
Eval = 1E-20;
identval = 15;
%%%%%%%%%%%%%%%%%%%%
%count FMO domain and index
for a = 1:length(auxgenes.FMO(:,1))
 hitcount = 1;
 for b = 1:(length(auxgenes.FMO(1,:))/2)
 for c = 1:length(auxgenes.FMO(a).output.Hits)
 for d = 1:length(auxgenes.FMO(a).output.Hits(c).HSPs)
 scorenum = 0;
 lengthnum = 0;
 evalnum = 0;
 ident = 0;
 if auxgenes.FMO(a).output.Hits(c).HSPs(d).Identities.Percent

>= identval
 ident = 1;
 end
 cover = auxgenes.FMO(a).output.Hits(c).HSPs(d).QueryIndices;
 coverval = cover(2)-cover(1);
 if coverval >

Lengthval*auxgenes.FMO(a).output.Hits(c).Length
 lengthnum = 1;
 end
 if auxgenes.FMO(a).output.Hits(c).HSPs(d).Expect < Eval
 evalnum = 1;
 end
 if ident == 1
 FMOhitsidx(a).output(hitcount).scaffold =

auxgenes.FMO(a).output.Hits(c).Name;
 FMOhitsidx(a).output(hitcount).genome =

auxgenes.FMO(a).genome;
 FMOhitsidx(a).output(hitcount).domain =

auxgenes.FMO(a).domain;
 FMOhitsidx(a).output(hitcount).indexleft =

auxgenes.FMO(a).output.Hits(c).HSPs(d).SubjectIndices(1);
 FMOhitsidx(a).output(hitcount).indexright =

auxgenes.FMO(a).output.Hits(c).HSPs(d).SubjectIndices(2);
 hitcount = hitcount + 1;
 end
 end
 end
 end
end

%%%%sort FMO struct to eliminate duplicates

FMOsort = struct('output',cell(genomenum,size(FMO,1)));
for a = 1:size(FMOhitsidx,1)

 FMOfields = fieldnames(FMOhitsidx(a).output);
 outputsort = struct2cell(FMOhitsidx(a).output);
 sz = size(outputsort);

195

 outputsort = reshape(outputsort, sz(1), []);
 outputsort = outputsort';
 FMOfields = FMOfields';
 outputsort = sortrows(outputsort, [1 5 4]);
 outputsort = cell2struct(outputsort, FMOfields, 2);
 FMOsort(a).output = outputsort;

end

%%%%eliminate duplicates
FMOclean = struct('output',cell(genomenum,size(FMO,1)));
clusterdist = 3000;

for a = 1:size(FMOsort,1)

 count = 1;
 hitslen = length(FMOsort(a).output)-1;
 if length(FMOsort(a).output) == 1
 hitslen = 1;
 end
 for c = 1:hitslen

 if c == 1
 FMOclean(a).output(count).scaffold =

FMOsort(a).output(c).scaffold;
 FMOclean(a).output(count).genome = FMOsort(a).output(c).genome;
 FMOclean(a).output(count).indexright =

FMOsort(a).output(c).indexright;
 FMOclean(a).output(count).indexleft =

FMOsort(a).output(c).indexleft;
 end
 distcheck9 = clusterdist + 100;
 distcheck10 = clusterdist + 100;
 distcheck11 = clusterdist + 100;
 distcheck12 = clusterdist + 100;
 FMO3 =

strcmp(FMOsort(a).output(c).scaffold,FMOsort(a).output(c+1).scaffold);
 if FMO3 == 1
 distcheck9 = abs(FMOsort(a).output(c).indexright -

FMOsort(a).output(c+1).indexright);
 distcheck10 = abs(FMOsort(a).output(c).indexright -

FMOsort(a).output(c+1).indexleft);
 distcheck11 = abs(FMOsort(a).output(c).indexleft -

FMOsort(a).output(c+1).indexright);
 distcheck12 = abs(FMOsort(a).output(c).indexleft -

FMOsort(a).output(c+1).indexleft);
 end

 FMOcheck3 = 0;
 boolean3 =

[distcheck9,distcheck10,distcheck11,distcheck12];
 for x=1:length(boolean3)
 if boolean3(x) <= clusterdist
 FMOcheck3 = 1;
 break
 end

196

 end

 if FMO3 ~= 1 || FMOcheck3 ~= 1
 count = count+1;
 FMOclean(a).output(count).scaffold =

FMOsort(a).output(c+1).scaffold;
 FMOclean(a).output(count).genome =

FMOsort(a).output(c+1).genome;
 FMOclean(a).output(count).indexright =

FMOsort(a).output(c+1).indexright;
 FMOclean(a).output(count).indexleft =

FMOsort(a).output(c+1).indexleft;
 end
 if FMO3 ==1 && FMOcheck3 ==1 && c~=1
 arrayidx =

[FMOsort(a).output(c).indexright,FMOsort(a).output(c).indexleft,FMOsort(a).ou

tput(c+1).indexright,FMOsort(a).output(c+1).indexleft];
 arrayidx = sort(arrayidx);
 FMOclean(a).output(count).indexright =

arrayidx(4);
 FMOclean(a).output(count).indexleft =

arrayidx(1);
 end
 end

end

%%%%%%%%%%%%count number hits of MT hits%%%%%%%%%%%%%%%%%%%
genomenum = size(auxgenes.MT,1);
MThitsidx = struct('output',cell(genomenum,size(MT,1)));
output =

struct('scaffold',[],'genome',[],'domain',[],'indexright',[],'indexleft',[]);

%%reduce hits by identity%%
%%%% scoring paramters for hits
Scoreval = 100;
Lengthval = 0.1;
Eval = 1E-20;
identval = 15;
%%%%%%%%%%%%%%%%%%%%
%count MT domain and index
for a = 1:length(auxgenes.MT(:,1))
 hitcount = 1;
 for b = 1:(length(auxgenes.MT(1,:))/2)
 for c = 1:length(auxgenes.MT(a).output.Hits)
 for d = 1:length(auxgenes.MT(a).output.Hits(c).HSPs)
 scorenum = 0;
 lengthnum = 0;
 evalnum = 0;
 ident = 0;
 if auxgenes.MT(a).output.Hits(c).HSPs(d).Identities.Percent

>= identval
 ident = 1;
 end
 cover = auxgenes.MT(a).output.Hits(c).HSPs(d).QueryIndices;

197

 coverval = cover(2)-cover(1);
 if coverval > Lengthval*auxgenes.MT(a).output.Hits(c).Length
 lengthnum = 1;
 end
 if auxgenes.MT(a).output.Hits(c).HSPs(d).Expect < Eval
 evalnum = 1;
 end
 if ident == 1
 MThitsidx(a).output(hitcount).scaffold =

auxgenes.MT(a).output.Hits(c).Name;
 MThitsidx(a).output(hitcount).genome =

auxgenes.MT(a).genome;
 MThitsidx(a).output(hitcount).domain =

auxgenes.MT(a).domain;
 MThitsidx(a).output(hitcount).indexleft =

auxgenes.MT(a).output.Hits(c).HSPs(d).SubjectIndices(1);
 MThitsidx(a).output(hitcount).indexright =

auxgenes.MT(a).output.Hits(c).HSPs(d).SubjectIndices(2);
 hitcount = hitcount + 1;
 end
 end
 end
 end
end

%%%%sort MT struct to eliminate duplicates

MTsort = struct('output',cell(genomenum,size(MT,1)));
for a = 1:size(MThitsidx,1)

 MTfields = fieldnames(MThitsidx(a).output);
 outputsort = struct2cell(MThitsidx(a).output);
 sz = size(outputsort);
 outputsort = reshape(outputsort, sz(1), []);
 outputsort = outputsort';
 MTfields = MTfields';
 outputsort = sortrows(outputsort, [1 5 4]);
 outputsort = cell2struct(outputsort, MTfields, 2);
 MTsort(a).output = outputsort;

end

%%%%eliminate duplicates
MTclean = struct('output',cell(genomenum,size(MT,1)));
clusterdist = 3000;

for a = 1:size(MTsort,1)

 count = 1;
 hitslen = length(MTsort(a).output)-1;
 if length(MTsort(a).output) == 1
 hitslen = 1;
 end
 for c = 1:hitslen

198

 if c == 1
 MTclean(a).output(count).scaffold =

MTsort(a).output(c).scaffold;
 MTclean(a).output(count).genome = MTsort(a).output(c).genome;
 MTclean(a).output(count).indexright =

MTsort(a).output(c).indexright;
 MTclean(a).output(count).indexleft =

MTsort(a).output(c).indexleft;
 end
 distcheck9 = clusterdist + 100;
 distcheck10 = clusterdist + 100;
 distcheck11 = clusterdist + 100;
 distcheck12 = clusterdist + 100;
 MT3 =

strcmp(MTsort(a).output(c).scaffold,MTsort(a).output(c+1).scaffold);
 if MT3 == 1
 distcheck9 = abs(MTsort(a).output(c).indexright -

MTsort(a).output(c+1).indexright);
 distcheck10 = abs(MTsort(a).output(c).indexright -

MTsort(a).output(c+1).indexleft);
 distcheck11 = abs(MTsort(a).output(c).indexleft -

MTsort(a).output(c+1).indexright);
 distcheck12 = abs(MTsort(a).output(c).indexleft -

MTsort(a).output(c+1).indexleft);
 end

 MTcheck3 = 0;
 boolean3 =

[distcheck9,distcheck10,distcheck11,distcheck12];
 for x=1:length(boolean3)
 if boolean3(x) <= clusterdist
 MTcheck3 = 1;
 break
 end
 end

 if MT3 ~= 1 || MTcheck3 ~= 1
 count = count+1;
 MTclean(a).output(count).scaffold =

MTsort(a).output(c+1).scaffold;
 MTclean(a).output(count).genome =

MTsort(a).output(c+1).genome;
 MTclean(a).output(count).indexright =

MTsort(a).output(c+1).indexright;
 MTclean(a).output(count).indexleft =

MTsort(a).output(c+1).indexleft;
 end
 if MT3 ==1 && MTcheck3 ==1 && c~=1
 arrayidx =

[MTsort(a).output(c).indexright,MTsort(a).output(c).indexleft,MTsort(a).outpu

t(c+1).indexright,MTsort(a).output(c+1).indexleft];
 arrayidx = sort(arrayidx);
 MTclean(a).output(count).indexright =

arrayidx(4);
 MTclean(a).output(count).indexleft = arrayidx(1);

199

 end
 end

end

cd(directory);
cd(resultsfolder);

save('auxgenesclean.mat','TFclean','P450clean','FMOclean','MTclean');

Script 9: auxgenecheck.m
%%%%%find secondary metabolite gene clusters next to target hits%%%%%%%%
clear;
% cd C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_genomes\resultsfolder
% directory = 'C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_strains';
directory = 'C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_strains2';
cd(directory);
% resultsfolder = 'newgenomes';
resultsfolder = 'Cyp51results';
cd(resultsfolder)

load('targethits.mat');
load('NRPSresults.mat');
load('PKSresults.mat');
load('auxgenesclean.mat');
load('genomes.mat');
% cd C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_genomes\resultsfolder

cd(directory);
cd(resultsfolder);

clustersinfo = struct('target',[],'genome',[],'auxgenes',[],'core',[]);
clustersinfo.target = struct('name',[]);
clustersinfo.genome = struct('name',[]);

clusterdist = 50000; %%%%colocalization of cluster leeway
clusterdist2 = 3000;
%%%%find NRPS clusters near targets%%%%%
clustertargethit = 0;
for a = 1:length(targetfinalhits) %% iterate through num of genomes
 count = 0;
 for b = 1:length(targetfinalhits(a).Hits) %%going through positive

target hits
 %%%%%%%%%%%%%%%%%%%%%check for NRPS

clusters%%%%%%%%%%%%%%%%%%%%%
 for c = 1: length(NRPSclean(a).output) %%%check through NRPS
 distcheck1 = clusterdist + 100;
 distcheck2 = clusterdist + 100;
 distcheck3 = clusterdist + 100;
 distcheck4 = clusterdist + 100;

200

 tf1 =

strcmp(targetfinalhits(a).Hits(b).scaffold,NRPSclean(a).output(c).scaffold);
 if tf1 ==1
 distcheck1 = abs(targetfinalhits(a).Hits(b).indexright -

NRPSclean(a).output(c).indexright);
 distcheck2 = abs(targetfinalhits(a).Hits(b).indexright -

NRPSclean(a).output(c).indexleft);
 distcheck3 = abs(targetfinalhits(a).Hits(b).indexleft -

NRPSclean(a).output(c).indexright);
 distcheck4 = abs(targetfinalhits(a).Hits(b).indexleft -

NRPSclean(a).output(c).indexleft);
 end
 boolean1 = [distcheck1,distcheck2,distcheck3,distcheck4];
 tfcheck1 = 0;
 for i=1:length(boolean1)
 if boolean1(i) <= clusterdist
 tfcheck1 = 1;
 break
 end
 end
 if tfcheck1 == 1
 clustertargethit = clustertargethit + 1;
 count = count + 1;
 %%%%store info in struc
 clustersinfo(clustertargethit).target.output =

targetfinalhits(a).Hits(b);
 clustersinfo(clustertargethit).target.name =

targetkey(targetfinalhits(a).Hits(b).target,2);
 clustersinfo(clustertargethit).target.output.output =

rmfield(clustersinfo(clustertargethit).target.output.output,'Hits');
 clustersinfo(clustertargethit).target.output.output =

rmfield(clustersinfo(clustertargethit).target.output.output,'Statistics');
 clustersinfo(clustertargethit).target.output.HSPs =

rmfield(clustersinfo(clustertargethit).target.output.HSPs,'Alignment');
 clustersinfo(clustertargethit).genome =

key(targetfinalhits(a).Hits(b).genome,2);
 clustersinfo(clustertargethit).core.output =

NRPSclean(a).output(c);
 clustersinfo(clustertargethit).core.name = 'NRPS';
 clustersinfo(clustertargethit).hitnumber =

clustertargethit;

 %%%%%%%%%%check for TF genes%%%%%%%%%%%%%%%%%%%
 znnum = 0;
 tfnum = 0;
 for aa = 1:length(TFclean(a,2).output) %%%check for

Znbinding domain
 distcheck1 = clusterdist + 100;
 distcheck2 = clusterdist + 100;
 distcheck3 = clusterdist + 100;
 distcheck4 = clusterdist + 100;
 tfaa =

strcmp(TFclean(a,2).output(aa).scaffold,NRPSclean(a).output(c).scaffold);
 if tfaa ==1
 distcheck1 =

abs(TFclean(a,2).output(aa).indexright - NRPSclean(a).output(c).indexright);

201

 distcheck2 =

abs(TFclean(a,2).output(aa).indexright - NRPSclean(a).output(c).indexleft);
 distcheck3 =

abs(TFclean(a,2).output(aa).indexleft - NRPSclean(a).output(c).indexright);
 distcheck4 =

abs(TFclean(a,2).output(aa).indexleft - NRPSclean(a).output(c).indexleft);
 end
 boolean1 =

[distcheck1,distcheck2,distcheck3,distcheck4];
 tfaacheck1 = 0;
 for i=1:length(boolean1)
 if boolean1(i) <= clusterdist
 tfaacheck1 = 1;
 break
 end
 end
 if tfaacheck1 == 1
 znnum = znnum + 1;

clustersinfo(clustertargethit).auxgenes.TF.Znbinddomain(znnum) =

TFclean(a,2).output(aa);
 end
 end
 for bb = 1:length(TFclean(a,1).output) %%%check

for TF domain
 distcheck1 = clusterdist + 100;
 distcheck2 = clusterdist + 100;
 distcheck3 = clusterdist + 100;
 distcheck4 = clusterdist + 100;
 tfbb =

strcmp(TFclean(a,1).output(bb).scaffold,NRPSclean(a).output(c).scaffold);
 if tfbb ==1
 distcheck1 =

abs(TFclean(a,1).output(bb).indexright - NRPSclean(a).output(c).indexright);
 distcheck2 =

abs(TFclean(a,1).output(bb).indexright - NRPSclean(a).output(c).indexleft);
 distcheck3 =

abs(TFclean(a,1).output(bb).indexleft - NRPSclean(a).output(c).indexright);
 distcheck4 =

abs(TFclean(a,1).output(bb).indexleft - NRPSclean(a).output(c).indexleft);
 end
 boolean1 =

[distcheck1,distcheck2,distcheck3,distcheck4];
 tfbbcheck1 = 0;
 for i=1:length(boolean1)
 if boolean1(i) <= clusterdist
 tfbbcheck1 = 1;
 break
 end
 end

 if tfbbcheck1 == 1
 tfnum = tfnum + 1;

clustersinfo(clustertargethit).auxgenes.TF.TF(tfnum) =

TFclean(a,1).output(bb);
 end

202

 end
 %%%%%%%%%%check for P450 genes%%%%%%%%%%%%%%%%%%%
 p450num = 0;
 for aa = 1:length(P450clean(a).output) %%%check for

Znbinding domain
 distcheck1 = clusterdist + 100;
 distcheck2 = clusterdist + 100;
 distcheck3 = clusterdist + 100;
 distcheck4 = clusterdist + 100;
 tfaa =

strcmp(P450clean(a).output(aa).scaffold,NRPSclean(a).output(c).scaffold);
 if tfaa ==1
 distcheck1 =

abs(P450clean(a).output(aa).indexright - NRPSclean(a).output(c).indexright);
 distcheck2 =

abs(P450clean(a).output(aa).indexright - NRPSclean(a).output(c).indexleft);
 distcheck3 =

abs(P450clean(a).output(aa).indexleft - NRPSclean(a).output(c).indexright);
 distcheck4 =

abs(P450clean(a).output(aa).indexleft - NRPSclean(a).output(c).indexleft);
 end
 boolean1 =

[distcheck1,distcheck2,distcheck3,distcheck4];
 tfaacheck1 = 0;
 for i=1:length(boolean1)
 if boolean1(i) <= clusterdist
 tfaacheck1 = 1;
 break
 end
 end
 if tfaacheck1 == 1
 p450num = p450num + 1;

clustersinfo(clustertargethit).auxgenes.P450(p450num) =

P450clean(a).output(aa);
 end
 end
 %%%%%%%%%%check for FMO genes%%%%%%%%%%%%%%%%%%%
 FMOnum = 0;
 for aa = 1:length(FMOclean(a).output) %%%check for

Znbinding domain
 distcheck1 = clusterdist + 100;
 distcheck2 = clusterdist + 100;
 distcheck3 = clusterdist + 100;
 distcheck4 = clusterdist + 100;
 tfaa =

strcmp(FMOclean(a).output(aa).scaffold,NRPSclean(a).output(c).scaffold);
 if tfaa ==1
 distcheck1 =

abs(FMOclean(a).output(aa).indexright - PKSclean(a).output(c).indexright);
 distcheck2 =

abs(FMOclean(a).output(aa).indexright - PKSclean(a).output(c).indexleft);
 distcheck3 = abs(FMOclean(a).output(aa).indexleft

- PKSclean(a).output(c).indexright);
 distcheck4 = abs(FMOclean(a).output(aa).indexleft

- PKSclean(a).output(c).indexleft);
 end

203

 boolean1 =

[distcheck1,distcheck2,distcheck3,distcheck4];
 tfaacheck1 = 0;
 for i=1:length(boolean1)
 if boolean1(i) <= clusterdist
 tfaacheck1 = 1;
 break
 end
 end
 if tfaacheck1 == 1
 FMOnum = FMOnum + 1;

clustersinfo(clustertargethit).auxgenes.FMO(FMOnum) = FMOclean(a).output(aa);
 end
 end
 %%%%%%%%%%check for MT genes%%%%%%%%%%%%%%%%%%%
 MTnum = 0;
 for aa = 1:length(MTclean(a).output) %%%check for

Znbinding domain
 distcheck1 = clusterdist + 100;
 distcheck2 = clusterdist + 100;
 distcheck3 = clusterdist + 100;
 distcheck4 = clusterdist + 100;
 tfaa =

strcmp(MTclean(a).output(aa).scaffold,NRPSclean(a).output(c).scaffold);
 if tfaa ==1
 distcheck1 = abs(MTclean(a).output(aa).indexright

- PKSclean(a).output(c).indexright);
 distcheck2 = abs(MTclean(a).output(aa).indexright

- PKSclean(a).output(c).indexleft);
 distcheck3 = abs(MTclean(a).output(aa).indexleft

- PKSclean(a).output(c).indexright);
 distcheck4 = abs(MTclean(a).output(aa).indexleft

- PKSclean(a).output(c).indexleft);
 end
 boolean1 =

[distcheck1,distcheck2,distcheck3,distcheck4];
 tfaacheck1 = 0;
 for i=1:length(boolean1)
 if boolean1(i) <= clusterdist
 tfaacheck1 = 1;
 break
 end
 end
 if tfaacheck1 == 1
 MTnum = MTnum + 1;
 clustersinfo(clustertargethit).auxgenes.MT(MTnum)

= MTclean(a).output(aa);
 end
 end
 end
 end
 %%%%%%%%%%%%%%%%%%%%%check for PKS clusters%%%%%%%%%%%%%%%%%%%%%
 for c = 1: length(PKSclean(a).output) %%%check through PKS
 distcheck1 = clusterdist + 100;
 distcheck2 = clusterdist + 100;
 distcheck3 = clusterdist + 100;

204

 distcheck4 = clusterdist + 100;
 tf1 =

strcmp(targetfinalhits(a).Hits(b).scaffold,PKSclean(a).output(c).scaffold);
 if tf1 ==1
 distcheck1 = abs(targetfinalhits(a).Hits(b).indexright -

PKSclean(a).output(c).indexright);
 distcheck2 = abs(targetfinalhits(a).Hits(b).indexright -

PKSclean(a).output(c).indexleft);
 distcheck3 = abs(targetfinalhits(a).Hits(b).indexleft -

PKSclean(a).output(c).indexright);
 distcheck4 = abs(targetfinalhits(a).Hits(b).indexleft -

PKSclean(a).output(c).indexleft);
 end
 boolean1 = [distcheck1,distcheck2,distcheck3,distcheck4];
 tfcheck1 = 0;
 for i=1:length(boolean1)
 if boolean1(i) <= clusterdist
 tfcheck1 = 1;
 break
 end
 end
 if tfcheck1 == 1
 clustertargethit = clustertargethit + 1;
 clustersinfo(clustertargethit).target.output =

targetfinalhits(a).Hits(b);
 clustersinfo(clustertargethit).target.name =

targetkey(targetfinalhits(a).Hits(b).target,2);
 clustersinfo(clustertargethit).target.output.output =

rmfield(clustersinfo(clustertargethit).target.output.output,'Hits');
 clustersinfo(clustertargethit).target.output.output =

rmfield(clustersinfo(clustertargethit).target.output.output,'Statistics');
 clustersinfo(clustertargethit).target.output.HSPs =

rmfield(clustersinfo(clustertargethit).target.output.HSPs,'Alignment');
 clustersinfo(clustertargethit).genome =

key(targetfinalhits(a).Hits(b).genome,2);
 clustersinfo(clustertargethit).core.output =

PKSclean(a).output(c);
 clustersinfo(clustertargethit).core.name = 'PKS';
 clustersinfo(clustertargethit).hitnumber =

clustertargethit;
 %%%%%%%%%%check for TF genes%%%%%%%%%%%%%%%%%%%
 znnum = 0;
 tfnum = 0;
 for aa = 1:length(TFclean(a,2).output) %%%check for

Znbinding domain
 distcheck1 = clusterdist + 100;
 distcheck2 = clusterdist + 100;
 distcheck3 = clusterdist + 100;
 distcheck4 = clusterdist + 100;
 tfaa =

strcmp(TFclean(a,2).output(aa).scaffold,PKSclean(a).output(c).scaffold);
 if tfaa ==1
 distcheck1 =

abs(TFclean(a,2).output(aa).indexright - PKSclean(a).output(c).indexright);
 distcheck2 =

abs(TFclean(a,2).output(aa).indexright - PKSclean(a).output(c).indexleft);

205

 distcheck3 =

abs(TFclean(a,2).output(aa).indexleft - PKSclean(a).output(c).indexright);
 distcheck4 =

abs(TFclean(a,2).output(aa).indexleft - PKSclean(a).output(c).indexleft);
 end
 boolean1 =

[distcheck1,distcheck2,distcheck3,distcheck4];
 tfaacheck1 = 0;
 for i=1:length(boolean1)
 if boolean1(i) <= clusterdist
 tfaacheck1 = 1;
 break
 end
 end
 if tfaacheck1 == 1
 znnum = znnum + 1;

clustersinfo(clustertargethit).auxgenes.TF.Znbinddomain(znnum) =

TFclean(a,2).output(aa);
 end
 end
 for bb = 1:length(TFclean(a,1).output) %%%check

for TF domain
 distcheck1 = clusterdist + 100;
 distcheck2 = clusterdist + 100;
 distcheck3 = clusterdist + 100;
 distcheck4 = clusterdist + 100;
 tfbb =

strcmp(TFclean(a,1).output(bb).scaffold,PKSclean(a).output(c).scaffold);
 if tfbb ==1
 distcheck1 =

abs(TFclean(a,1).output(bb).indexright - PKSclean(a).output(c).indexright);
 distcheck2 =

abs(TFclean(a,1).output(bb).indexright - PKSclean(a).output(c).indexleft);
 distcheck3 =

abs(TFclean(a,1).output(bb).indexleft - PKSclean(a).output(c).indexright);
 distcheck4 =

abs(TFclean(a,1).output(bb).indexleft - PKSclean(a).output(c).indexleft);
 end
 boolean1 =

[distcheck1,distcheck2,distcheck3,distcheck4];
 tfbbcheck1 = 0;
 for i=1:length(boolean1)
 if boolean1(i) <= clusterdist
 tfbbcheck1 = 1;
 break
 end
 end

 if tfbbcheck1 == 1
 tfnum = tfnum + 1;

clustersinfo(clustertargethit).auxgenes.TF.TF(tfnum) =

TFclean(a,1).output(bb);
 end
 end

206

 %%%%%%%%%%check for P450 genes%%%%%%%%%%%%%%%%%%%
 p450num = 0;
 for aa = 1:length(P450clean(a).output) %%%check for

Znbinding domain
 distcheck1 = clusterdist + 100;
 distcheck2 = clusterdist + 100;
 distcheck3 = clusterdist + 100;
 distcheck4 = clusterdist + 100;
 tfaa =

strcmp(P450clean(a).output(aa).scaffold,PKSclean(a).output(c).scaffold);
 if tfaa ==1
 distcheck1 =

abs(P450clean(a).output(aa).indexright - PKSclean(a).output(c).indexright);
 distcheck2 =

abs(P450clean(a).output(aa).indexright - PKSclean(a).output(c).indexleft);
 distcheck3 =

abs(P450clean(a).output(aa).indexleft - PKSclean(a).output(c).indexright);
 distcheck4 =

abs(P450clean(a).output(aa).indexleft - PKSclean(a).output(c).indexleft);
 end
 boolean1 =

[distcheck1,distcheck2,distcheck3,distcheck4];
 tfaacheck1 = 0;
 for i=1:length(boolean1)
 if boolean1(i) <= clusterdist
 tfaacheck1 = 1;
 break
 end
 end
 if tfaacheck1 == 1
 p450num = p450num + 1;

clustersinfo(clustertargethit).auxgenes.P450(p450num) =

P450clean(a).output(aa);
 end
 end
 %%%%%%%%%%check for FMO genes%%%%%%%%%%%%%%%%%%%
 FMOnum = 0;
 for aa = 1:length(FMOclean(a).output) %%%check for

Znbinding domain
 distcheck1 = clusterdist + 100;
 distcheck2 = clusterdist + 100;
 distcheck3 = clusterdist + 100;
 distcheck4 = clusterdist + 100;
 tfaa =

strcmp(FMOclean(a).output(aa).scaffold,PKSclean(a).output(c).scaffold);
 if tfaa ==1
 distcheck1 =

abs(FMOclean(a).output(aa).indexright - PKSclean(a).output(c).indexright);
 distcheck2 =

abs(FMOclean(a).output(aa).indexright - PKSclean(a).output(c).indexleft);
 distcheck3 = abs(FMOclean(a).output(aa).indexleft

- PKSclean(a).output(c).indexright);

207

 distcheck4 = abs(FMOclean(a).output(aa).indexleft

- PKSclean(a).output(c).indexleft);
 end
 boolean1 =

[distcheck1,distcheck2,distcheck3,distcheck4];
 tfaacheck1 = 0;
 for i=1:length(boolean1)
 if boolean1(i) <= clusterdist
 tfaacheck1 = 1;
 break
 end
 end
 if tfaacheck1 == 1
 FMOnum = FMOnum + 1;

clustersinfo(clustertargethit).auxgenes.FMO(FMOnum) = FMOclean(a).output(aa);
 end
 end
 %%%%%%%%%%check for MT genes%%%%%%%%%%%%%%%%%%%
 MTnum = 0;
 for aa = 1:length(MTclean(a).output) %%%check for

Znbinding domain
 distcheck1 = clusterdist + 100;
 distcheck2 = clusterdist + 100;
 distcheck3 = clusterdist + 100;
 distcheck4 = clusterdist + 100;
 tfaa =

strcmp(MTclean(a).output(aa).scaffold,PKSclean(a).output(c).scaffold);
 if tfaa ==1
 distcheck1 = abs(MTclean(a).output(aa).indexright

- PKSclean(a).output(c).indexright);
 distcheck2 = abs(MTclean(a).output(aa).indexright

- PKSclean(a).output(c).indexleft);
 distcheck3 = abs(MTclean(a).output(aa).indexleft

- PKSclean(a).output(c).indexright);
 distcheck4 = abs(MTclean(a).output(aa).indexleft

- PKSclean(a).output(c).indexleft);
 end
 boolean1 =

[distcheck1,distcheck2,distcheck3,distcheck4];
 tfaacheck1 = 0;
 for i=1:length(boolean1)
 if boolean1(i) <= clusterdist
 tfaacheck1 = 1;
 break
 end
 end
 if tfaacheck1 == 1
 MTnum = MTnum + 1;
 clustersinfo(clustertargethit).auxgenes.MT(MTnum)

= MTclean(a).output(aa);
 end
 end
 end
 end
 end
end

208

cd C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_strains2
cd(resultsfolder)

save('clusterfinalhits.mat','clustersinfo');

Script 10: targethithchecks.m
%%%comparison of target hits and cluster hits

%%
%%%Read and store target hit data
%Readblast looks at blast output struct for info
clear;
% directory = 'C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_strains';
directory = 'C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_strains2';
% directory = 'C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_genomes'
% directory =

'C:\Users\Lab\Desktop\Genome_Mining_Matlab\antifungal_tests\mining';
cd(directory);
% resultsfolder = 'newgenomes';
resultsfolder = 'Cyp51results';
cd(resultsfolder)
load('targetresults.mat');
xsize = size(results);
numtargets = xsize(1);
numgenomes = xsize(2);

%%%%make database of hits
targethits = struct('Hits',cell(size(results,2),size(results,1)));
for a =1:numgenomes
 for b =1:numtargets
 count = 0;
 for c = 1:length(results(b,a).output.Hits)
 for d = 1:length(results(b,a).output.Hits(c).HSPs) %
 count = count+1;
 targethits(a,b).Hits(count).output =

results(b,a).output;
 targethits(a,b).Hits(count).HSPs =

results(b,a).output.Hits(c).HSPs(d);
 targethits(a,b).Hits(count).genome = a;
 gentar = sprintf('target%d_hit_genome%d \n',b,a);
 targethits(a,b).Hits(count).gen_tar = gentar;
 targethits(a,b).Hits(count).target = b;
 targethits(a,b).Hits(count).scaffold =

results(b,a).output.Hits(c).Name;
 targethits(a,b).Hits(count).indexleft =

results(b,a).output.Hits(c).HSPs(d).SubjectIndices(1);
 targethits(a,b).Hits(count).indexright =

results(b,a).output.Hits(c).HSPs(d).SubjectIndices(2);
 end
 end

 end
end

209

test2 = zeros(size(targethits,1),size(targethits,2));
for a = 1:size(targethits,1)
 for b = 1:size(targethits,2)
 test2(a,b) = length(targethits(a,b).Hits);
 end
end

%%%%sort targethit struct to eliminate duplicates

targetsort = struct('Hits',cell(size(targethits,1),size(targethits,2)));
for a = 1:size(targethits,1)
 for b = 1:size(targethits,2)
 if isempty(targethits(a,b).Hits) == 1
 continue
 end
 targetfields = fieldnames(targethits(a,b).Hits);
 outputsort = struct2cell(targethits(a,b).Hits);
 sz = size(outputsort);
 outputsort = reshape(outputsort, sz(1), []);
 outputsort = outputsort';
 targetfields = targetfields';
 outputsort = sortrows(outputsort, [5 6 7]);
 outputsort = cell2struct(outputsort, targetfields, 2);
 targetsort(a,b).Hits = outputsort;
 end
end
%%%%%make database of target hits

targetidx = struct('Hits',cell(numgenomes,numtargets)); %%%%target hit struct

for data
% targetidx.Hits =

struct('output',[],'genome',[],'target',[],'gen_tar',[],'scaffold',[],'indexr

ight',[],'indexleft',[]);
targethitsx = zeros(numgenomes,numtargets); %%%hit array for reference

%%%% scoring paramaters for hits%%
Scoreval = 20;
Lengthval = 0.1;
Eval = 1E-100;
identval = 20;
%%%

%%%clean up hits based on scoring values
for a =1:numgenomes
 for b =1:numtargets
 count = 0;
 for c = 1:length(targetsort(a,b).Hits)
 scorenum = 0;
 lengthnum = 0;
 evalnum = 0;
 ident = 0;

 % if results(a,b).output.Hits(c).HSPs(1).Score >= Scoreval
 % scorenum = 1;
 % end

210

 if targetsort(a,b).Hits(c).HSPs.Identities.Percent >=

identval
 ident = 1;
 end
 cover = targetsort(a,b).Hits(c).HSPs.QueryIndices;
 coverval = cover(2)-cover(1);
 if coverval >

Lengthval*targetsort(a,b).Hits(c).output.Length
 lengthnum = 1;
 end
 if targetsort(a,b).Hits(c).HSPs.Expect < Eval
 evalnum = 1;
 end

% if ident + lengthnum + evalnum == 3
 if ident == 1 && evalnum ==1
 count = count+1;
 targetidx(a,b).Hits(count).output =

targetsort(a,b).Hits(c).output;
 targetidx(a,b).Hits(count).HSPs =

targetsort(a,b).Hits(c).HSPs;
 targetidx(a,b).Hits(count).genome = a;
 gentar = sprintf('target%d_hit_genome%d \n',b,a);
 targetidx(a,b).Hits(count).gen_tar = gentar;
 targetidx(a,b).Hits(count).target = b;
 targetidx(a,b).Hits(count).scaffold =

targetsort(a,b).Hits(c).scaffold;
 targetidx(a,b).Hits(count).indexleft =

targetsort(a,b).Hits(c).indexleft;
 targetidx(a,b).Hits(count).indexright =

targetsort(a,b).Hits(c).indexright;
 end

 end
 end
end

testx = zeros(size(targetidx,1),size(targetidx,2));
for a = 1:size(targetidx,1)
 for b = 1:size(targetidx,2)
 testx(a,b) = length(targetidx(a,b).Hits);
 end
end

%%%%eliminate duplicates
targetidxclean = struct('Hits',cell(size(targetidx,1),size(targetidx,2)));
clusterdist = 1000;

for a = 1:size(targetidx,1) %genomes
 for b = 1:size(targetidx,2) %targets
 countclean = 1;
 hitslen = length(targetidx(a,b).Hits);
 if length(targetidx(a,b).Hits) == 1
 hitslen = 1;
 else
 hitslen = length(targetidx(a,b).Hits)-1;

211

 end
 for c = 1:hitslen %hits

 if c == 1
 targetidxclean(a,b).Hits(c).scaffold =

targetidx(a,b).Hits(c).scaffold;
 targetidxclean(a,b).Hits(c).genome =

targetidx(a,b).Hits(c).genome;
 targetidxclean(a,b).Hits(c).indexright =

targetidx(a,b).Hits(c).indexright;
 targetidxclean(a,b).Hits(c).indexleft =

targetidx(a,b).Hits(c).indexleft;
 targetidxclean(a,b).Hits(c).gen_tar =

targetidx(a,b).Hits(c).gen_tar;
 targetidxclean(a,b).Hits(c).target =

targetidx(a,b).Hits(c).target;
 targetidxclean(a,b).Hits(c).output =

targetidx(a,b).Hits(c).output;
 targetidxclean(a,b).Hits(c).HSPs =

targetidx(a,b).Hits(c).HSPs;
 end
 if hitslen == 1
 continue
 end
 distcheck9 = clusterdist + 100;
 distcheck10 = clusterdist + 100;
 distcheck11 = clusterdist + 100;
 distcheck12 = clusterdist + 100;
 tf3 =

strcmp(targetidx(a,b).Hits(c).scaffold,targetidx(a,b).Hits(c+1).scaffold);
 if tf3 == 1
 distcheck9 = abs(targetidx(a,b).Hits(c).indexright -

targetidx(a,b).Hits(c+1).indexright);
 distcheck10 = abs(targetidx(a,b).Hits(c).indexright -

targetidx(a,b).Hits(c+1).indexleft);
 distcheck11 = abs(targetidx(a,b).Hits(c).indexleft -

targetidx(a,b).Hits(c+1).indexright);
 distcheck12 = abs(targetidx(a,b).Hits(c).indexleft -

targetidx(a,b).Hits(c+1).indexleft);
 end

 tfcheck3 = 0;
 boolean3 =

[distcheck9,distcheck10,distcheck11,distcheck12];
 for x=1:length(boolean3)
 if boolean3(x) <= clusterdist
 tfcheck3 = 1;
 break
 end
 end

 if tf3 ~= 1 || tfcheck3 ~= 1
 countclean = countclean+1;

targetidxclean(a,b).Hits(countclean).scaffold =

targetidx(a,b).Hits(c+1).scaffold;

212

targetidxclean(a,b).Hits(countclean).genome =

targetidx(a,b).Hits(c+1).genome;

targetidxclean(a,b).Hits(countclean).indexright =

targetidx(a,b).Hits(c+1).indexright;

targetidxclean(a,b).Hits(countclean).indexleft =

targetidx(a,b).Hits(c+1).indexleft;

targetidxclean(a,b).Hits(countclean).gen_tar =

targetidx(a,b).Hits(c+1).gen_tar;

targetidxclean(a,b).Hits(countclean).target =

targetidx(a,b).Hits(c+1).target;

targetidxclean(a,b).Hits(countclean).output =

targetidx(a,b).Hits(c+1).output;
 targetidxclean(a,b).Hits(countclean).HSPs

= targetidx(a,b).Hits(c+1).HSPs;
 end
 if tf3 ==1 && tfcheck3 ==1 && a~=1
 arrayidx =

[targetidx(a,b).Hits(c).indexright,targetidx(a,b).Hits(c).indexleft,targetidx

(a,b).Hits(c+1).indexright,targetidx(a,b).Hits(c+1).indexleft];
 arrayidx = sort(arrayidx);

targetidxclean(a,b).Hits(countclean).indexright = arrayidx(4);

targetidxclean(a,b).Hits(countclean).indexleft = arrayidx(1);
 end
 end
 end
end

for a = 1:size(targetidxclean,1)
 for b = 1:size(targetidxclean,2)
 targethitsx(a,b) = length(targetidxclean(a,b).Hits);
 end
end

for a = 1:size(targetidxclean,1)
 for b = 1:size(targetidxclean,2)
 for c = 1:length(targetidxclean(a,b).Hits)
 targetidxclean(a,b).Hits(c).Hitnum =

length(targetidxclean(a,b).Hits);
 end
 end
end

cd(directory);
cd(resultsfolder);
file2 = fopen('targethits_2nd.txt','w+');
for a=1:numtargets
 average = mean(targethitsx(:,a));

213

 medval = median(targethitsx(:,a));

 statstxt1 = sprintf('average hits of target%d is %d \n',a,average);
 statstxt2 = sprintf('median of target%d hits is %d \n', a, medval);

 fprintf(file2, statstxt1);
 fprintf(file2, statstxt2);
 fprintf(file2, '\n \n');
end

cd(directory);

file1 = sprintf('%dTargets_%dgenomes_2nd.xlsx',numtargets,numgenomes);
xlswrite(file1, targethitsx);
xlswrite('testx',testx);
xlswrite('test2',test2);

%%%%reduce hits index by checking for targets greater than average
targetfinalhits = struct('Hits',[]);
Hits =

struct('output',[],'genome',[],'target',[],'gen_tar',[],'scaffold',[],'indexr

ight',[],'indexleft',[]);
t = 1; %%%%1 if we want to check targets greater than average, 0 if we don't

want to check

if t == 1
for a = 1:numgenomes
 countfinal = 0;
 for b = 1:numtargets
 average = mean(targethitsx(:,b));
 medval = median(targethitsx(:,b));

 if length(targetidxclean(a,b).Hits) > average ||

length(targetidxclean(a,b).Hits) > medval
 positivehit = sprintf('\n target%d_hit_genome%d :%d hits

\n',b,a,length(targetidxclean(a,b).Hits));
 fprintf(file2, positivehit);

 for c = 1:length(targetidxclean(a,b).Hits)
 countfinal = countfinal + 1;
 targetfinalhits(a).Hits(countfinal).output =

targetidxclean(a,b).Hits(c).output;
 targetfinalhits(a).Hits(countfinal).genome =

targetidxclean(a,b).Hits(c).genome;
 targetfinalhits(a).Hits(countfinal).target =

targetidxclean(a,b).Hits(c).target;
 targetfinalhits(a).Hits(countfinal).gen_tar =

targetidxclean(a,b).Hits(c).gen_tar;
 targetfinalhits(a).Hits(countfinal).scaffold =

targetidxclean(a,b).Hits(c).scaffold;
 targetfinalhits(a).Hits(countfinal).indexleft =

targetidxclean(a,b).Hits(c).indexleft;
 targetfinalhits(a).Hits(countfinal).indexright =

targetidxclean(a,b).Hits(c).indexright;
 targetfinalhits(a).Hits(countfinal).averagetarget = average;

214

 targetfinalhits(a).Hits(countfinal).mediantarget = medval;
 targetfinalhits(a).Hits(countfinal).targethits =

length(targetidxclean(a,b).Hits);
 targetfinalhits(a).Hits(countfinal).HSPs =

targetidxclean(a,b).Hits(c).HSPs;
 targetfinalhits(a).Hits(countfinal).Hitnum =

targetidxclean(a,b).Hits(c).Hitnum;

 %%%print location of hits%%%%%5
 print0 = sprintf('hit #%d',c);
 fprintf(file2, print0);
 print1 = strcat('\n

scaffold:',targetfinalhits(a).Hits(countfinal).scaffold,'\n');
 fprintf(file2, print1);
 numleft =

num2str(targetfinalhits(a).Hits(countfinal).indexleft);
 print2 = strcat('indexleft:',numleft,'\n');
 fprintf(file2, print2);
 numright =

num2str(targetfinalhits(a).Hits(countfinal).indexright);
 print3 = strcat('indexright:',numright,'\n');
 fprintf(file2, print3);
 end
 end
 end
end
elseif t == 0
 for a = 1:numgenomes
 countfinal = 0;
 for b = 1:numtargets

 for c = 1:length(targetidxclean(a,b).Hits)
 countfinal = countfinal + 1;
 targetfinalhits(a).Hits(countfinal).output =

targetidxclean(a,b).Hits(c).output;
 targetfinalhits(a).Hits(countfinal).genome =

targetidxclean(a,b).Hits(c).genome;
 targetfinalhits(a).Hits(countfinal).target =

targetidxclean(a,b).Hits(c).target;
 targetfinalhits(a).Hits(countfinal).gen_tar =

targetidxclean(a,b).Hits(c).gen_tar;
 targetfinalhits(a).Hits(countfinal).scaffold =

targetidxclean(a,b).Hits(c).scaffold;
 targetfinalhits(a).Hits(countfinal).indexleft =

targetidxclean(a,b).Hits(c).indexleft;
 targetfinalhits(a).Hits(countfinal).indexright =

targetidxclean(a,b).Hits(c).indexright;
 targetfinalhits(a).Hits(countfinal).averagetarget = average;
 targetfinalhits(a).Hits(countfinal).mediantarget = medval;
 targetfinalhits(a).Hits(countfinal).targethits =

length(targetidxclean(a,b).Hits);
 targetfinalhits(a).Hits(countfinal).HSPs =

targetidxclean(a,b).Hits(c).HSPs;
 targetfinalhits(a).Hits(countfinal).Hitnum =

targetidxclean(a,b).Hits(c).Hitnum;
 %%%print location of hits%%%%%5

215

 print0 = sprintf('hit #%d',c);
 fprintf(file2, print0);
 print1 = strcat('\n

scaffold:',targetfinalhits(a).Hits(countfinal).scaffold,'\n');
 fprintf(file2, print1);
 numleft =

num2str(targetfinalhits(a).Hits(countfinal).indexleft);
 print2 = strcat('indexleft:',numleft,'\n');
 fprintf(file2, print2);
 numright =

num2str(targetfinalhits(a).Hits(countfinal).indexright);
 print3 = strcat('indexright:',numright,'\n');
 fprintf(file2, print3);
 end
 end
 end
end

cd(directory);
cd(resultsfolder);

save('targethits.mat','targetfinalhits','-v7.3');

Script 11: targetclusterfindv3.m
%%%%%find secondary metabolite gene clusters next to target hits%%%%%%%%
clear;
% directory = 'C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_strains';
directory = 'C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_strains2';
% directory = 'cd C:\Users\Lab\Desktop\Genome_Mining_Matlab\In_house_genomes'
cd(directory);
% resultsfolder = 'newgenomes';
resultsfolder = 'Cyp51results';
cd(resultsfolder)
load('targethits.mat');
load('NRPSresults.mat');
load('PKSresults.mat');
load('terpeneresults.mat');
load('auxgenesclean.mat');
load('genomes.mat');

mkdir results
cd results
filecluster = fopen('results_02282020_Cyp51_PKS_NRPS.txt','w+');

residuepos = 10; %%%position of residue to be checked for

clusterdist = 20000; %%%%colocalization of secondary metabolite genes
clusterdist2 = 20000; %%%%colocalization of target and core gene

216

printini1 = sprintf('\nthreshold distance between target and core enzyme is

%d bp',clusterdist2);
printini2 = sprintf('\nthreshold distance between secondary metabolite genes

and enzyme and target is %d bp',clusterdist);

fprintf(filecluster,printini1);
fprintf(filecluster,printini2);

terpenecheck = 0; %set to 1 if you want to check terpene clusters
NRPS_PKScheck = 1; %set to 1 if you want to check NRPS and PKS clusers

%%%%find clusters near targets%%%%%

clustertargethit = 0;
for a = 1:length(targetfinalhits) %% iterate through num of genomes
 for b = 1:length(targetfinalhits(a).Hits) %%going through positive

target hits
 if NRPS_PKScheck == 1
 %%%%%%%%%%%%%%%%%%%%%check for NRPS

clusters%%%%%%%%%%%%%%%%%%%%%
 for c = 1: length(NRPSclean(a).output) %%%check through NRPS
 distcheck1 = clusterdist2 + 100;
 distcheck2 = clusterdist2 + 100;
 distcheck3 = clusterdist2 + 100;
 distcheck4 = clusterdist2 + 100;
 tf1 =

strcmp(targetfinalhits(a).Hits(b).scaffold,NRPSclean(a).output(c).scaffold);
 if tf1 ==1
 distcheck1 = abs(targetfinalhits(a).Hits(b).indexright -

NRPSclean(a).output(c).indexright);
 distcheck2 = abs(targetfinalhits(a).Hits(b).indexright -

NRPSclean(a).output(c).indexleft);
 distcheck3 = abs(targetfinalhits(a).Hits(b).indexleft -

NRPSclean(a).output(c).indexright);
 distcheck4 = abs(targetfinalhits(a).Hits(b).indexleft -

NRPSclean(a).output(c).indexleft);
 end
 boolean1 = [distcheck1,distcheck2,distcheck3,distcheck4];
 tfcheck1 = 0;
 for i=1:length(boolean1)
 if boolean1(i) <= clusterdist2
 tfcheck1 = 1;
 break
 end
 end
 if tfcheck1 == 1
 clustertargethit = clustertargethit + 1;
 print0 = sprintf('\nhit#%d',clustertargethit);
 fprintf(filecluster,print0);
 print1 = sprintf('\ntarget T%d hit in genome %d near NRPS

cluster\n',targetfinalhits(a).Hits(b).target,targetfinalhits(a).Hits(b).genom

e);
 fprintf(filecluster, print1);

217

% %%%%%%
 targetname1 = sprintf('target T%d is

',targetfinalhits(a).Hits(b).target);
 targetname2 =

targetkey(targetfinalhits(a).Hits(b).target,2);
 printtarget = strcat(targetname1,{' '},targetname2);
 fprintf(filecluster,printtarget);
 targid = sprintf('\ntarget id is

%d',targetfinalhits(a).Hits(b).HSPs.Identities.Percent); %%%%%%%Print ID%
 fprintf(filecluster, targid);
 targe = sprintf('\ntarget evalue is %d',

targetfinalhits(a).Hits(b).HSPs.Expect); %%%%%%%%%%%%%%%Print Evalue
 fprintf(filecluster, targe);
 genomename1 = sprintf('\ngenome %d is

',targetfinalhits(a).Hits(b).genome);
 genomename2 = key(targetfinalhits(a).Hits(b).genome,2);
 printgenome = strcat(genomename1,{' '},genomename2);
 fprintf(filecluster,printgenome);

 hitnum1 = num2str(targetfinalhits(a).Hits(b).Hitnum);
 targethitprint = strcat('\nnumber of target hits in

',genomename2,' is ',hitnum1);
 fprintf(filecluster,targethitprint);
 avgnum1 =

num2str(targetfinalhits(a).Hits(b).averagetarget);
 targetavgprint = strcat('\naverage target hits in all

genomes is ',avgnum1);
 mednum1 =

num2str(targetfinalhits(a).Hits(b).mediantarget);
 targetmedprint = strcat('\nmedian target hits in all

genomes is ',mednum1);
 fprintf(filecluster,targetavgprint);
 fprintf(filecluster,targetmedprint);
% %%%%%%
 print2 = strcat('\ntarget scaffold:

',targetfinalhits(a).Hits(b).scaffold,'\n');
 fprintf(filecluster, print2);
 numleft = num2str(targetfinalhits(a).Hits(b).indexleft);
 print3 = strcat('target indexleft: ',numleft,'\n');
 fprintf(filecluster, print3);
 numright = num2str(targetfinalhits(a).Hits(b).indexright);
 print4 = strcat('target indexright: ',numright,'\n');
 fprintf(filecluster,print4);
 numleft = num2str(NRPSclean(a).output(c).indexleft);
 print6 = strcat('NRPS indexleft: ',numleft,'\n');
 fprintf(filecluster, print6);
 numright = num2str(NRPSclean(a).output(c).indexright);
 print7 = strcat('NRPS indexright: ',numright,'\n');
 fprintf(filecluster, print7);
 %%%%%output residue checks for target%%%%%%%%

 if targetfinalhits(a).Hits(b).HSPs.QueryIndices(1) <=

residuepos && targetfinalhits(a).Hits(b).HSPs.QueryIndices(2) >= residuepos
 count =

targetfinalhits(a).Hits(b).HSPs.QueryIndices(1);

218

 for i =

targetfinalhits(a).Hits(b).HSPs.QueryIndices(1):targetfinalhits(a).Hits(b).HS

Ps.QueryIndices(2)
 if count == residuepos
 resstr = num2str(residuepos);
 print8 = strcat('\nresidue #',resstr,' is_ ',

targetfinalhits(a).Hits(b).HSPs.Alignment(3,i-

targetfinalhits(a).Hits(b).HSPs.QueryIndices(1)+1),'\n');
 fprintf(filecluster, print8);
 break;
 elseif

targetfinalhits(a).Hits(b).HSPs.Alignment(1,i) == '-'
 count = count;
 else
 count = count+1;
 end
 end
 end
 %%%%%%%%%%check for TF genes%%%%%%%%%%%%%%%%%%%
 znnum = 0;
 tfnum = 0;
 for aa = 1:length(TFclean(a,2).output) %%%check for

Znbinding domain
 distcheck1 = clusterdist + 100;
 distcheck2 = clusterdist + 100;
 distcheck3 = clusterdist + 100;
 distcheck4 = clusterdist + 100;
 tfaa =

strcmp(TFclean(a,2).output(aa).scaffold,NRPSclean(a).output(c).scaffold);
 if tfaa ==1
 distcheck1 =

abs(TFclean(a,2).output(aa).indexright - NRPSclean(a).output(c).indexright);
 distcheck2 =

abs(TFclean(a,2).output(aa).indexright - NRPSclean(a).output(c).indexleft);
 distcheck3 =

abs(TFclean(a,2).output(aa).indexleft - NRPSclean(a).output(c).indexright);
 distcheck4 =

abs(TFclean(a,2).output(aa).indexleft - NRPSclean(a).output(c).indexleft);
 end
 boolean1 =

[distcheck1,distcheck2,distcheck3,distcheck4];
 tfaacheck1 = 0;
 for i=1:length(boolean1)
 if boolean1(i) <= clusterdist
 tfaacheck1 = 1;
 break
 end
 end
 if tfaacheck1 == 1
 znnum = znnum + 1;
 print1 = sprintf('ZN binding domain gene #%d in

cluster\n',znnum);
 fprintf(filecluster, print1);
 numleft =

num2str(TFclean(a,2).output(aa).indexleft);
 print3 = strcat('ZNbind indexleft:

',numleft,'\n');

219

 fprintf(filecluster, print3);
 numright =

num2str(TFclean(a,2).output(aa).indexright);
 print4 = strcat('ZNbind indexright:

',numright,'\n');
 fprintf(filecluster, print4);
 end
 end
 for bb = 1:length(TFclean(a,1).output) %%%check

for TF domain
 distcheck1 = clusterdist + 100;
 distcheck2 = clusterdist + 100;
 distcheck3 = clusterdist + 100;
 distcheck4 = clusterdist + 100;
 tfbb =

strcmp(TFclean(a,1).output(bb).scaffold,NRPSclean(a).output(c).scaffold);
 if tfbb ==1
 distcheck1 =

abs(TFclean(a,1).output(bb).indexright - NRPSclean(a).output(c).indexright);
 distcheck2 =

abs(TFclean(a,1).output(bb).indexright - NRPSclean(a).output(c).indexleft);
 distcheck3 =

abs(TFclean(a,1).output(bb).indexleft - NRPSclean(a).output(c).indexright);
 distcheck4 =

abs(TFclean(a,1).output(bb).indexleft - NRPSclean(a).output(c).indexleft);
 end
 boolean1 =

[distcheck1,distcheck2,distcheck3,distcheck4];
 tfbbcheck1 = 0;
 for i=1:length(boolean1)
 if boolean1(i) <= clusterdist
 tfbbcheck1 = 1;
 break
 end
 end

 if tfbbcheck1 == 1
 tfnum = tfnum + 1;
 print1 = sprintf('TF gene #%d in

cluster\n',tfnum);
 fprintf(filecluster, print1);
 numleft =

num2str(TFclean(a,1).output(bb).indexleft);
 print3 = strcat('TF indexleft: ',numleft,'\n');
 fprintf(filecluster, print3);
 numright =

num2str(TFclean(a,1).output(bb).indexright);
 print4 = strcat('TF indexright: ',numleft,'\n');
 fprintf(filecluster, print4);
 end
 end
 %%%%%%%%%%check for P450 genes%%%%%%%%%%%%%%%%%%%
 p450num = 0;
 for aa = 1:length(P450clean(a).output) %%%check for

Znbinding domain
 distcheck1 = clusterdist + 100;
 distcheck2 = clusterdist + 100;

220

 distcheck3 = clusterdist + 100;
 distcheck4 = clusterdist + 100;
 tfaa =

strcmp(P450clean(a).output(aa).scaffold,NRPSclean(a).output(c).scaffold);
 if tfaa ==1
 distcheck1 =

abs(P450clean(a).output(aa).indexright - NRPSclean(a).output(c).indexright);
 distcheck2 =

abs(P450clean(a).output(aa).indexright - NRPSclean(a).output(c).indexleft);
 distcheck3 =

abs(P450clean(a).output(aa).indexleft - NRPSclean(a).output(c).indexright);
 distcheck4 =

abs(P450clean(a).output(aa).indexleft - NRPSclean(a).output(c).indexleft);
 end
 boolean1 =

[distcheck1,distcheck2,distcheck3,distcheck4];
 tfaacheck1 = 0;
 for i=1:length(boolean1)
 if boolean1(i) <= clusterdist
 tfaacheck1 = 1;
 break
 end
 end
 if tfaacheck1 == 1
 p450num = p450num + 1;
 print1 = sprintf('P450 #%d in cluster\n',p450num);
 fprintf(filecluster, print1);
 numleft =

num2str(P450clean(a).output(aa).indexleft);
 print3 = strcat('P450 indexleft: ',numleft,'\n');
 fprintf(filecluster, print3);
 numright =

num2str(P450clean(a).output(aa).indexright);
 print4 = strcat('P450 indexright:

',numright,'\n');
 fprintf(filecluster, print4);
 end
 end
 %%%%%%%%%%check for FMO genes%%%%%%%%%%%%%%%%%%%
 FMOnum = 0;
 for aa = 1:length(FMOclean(a).output) %%%check for

Znbinding domain
 distcheck1 = clusterdist + 100;
 distcheck2 = clusterdist + 100;
 distcheck3 = clusterdist + 100;
 distcheck4 = clusterdist + 100;
 tfaa =

strcmp(FMOclean(a).output(aa).scaffold,NRPSclean(a).output(c).scaffold);
 if tfaa ==1
 distcheck1 =

abs(FMOclean(a).output(aa).indexright - NRPSclean(a).output(c).indexright);
 distcheck2 =

abs(FMOclean(a).output(aa).indexright - NRPSclean(a).output(c).indexleft);
 distcheck3 = abs(FMOclean(a).output(aa).indexleft

- NRPSclean(a).output(c).indexright);
 distcheck4 = abs(FMOclean(a).output(aa).indexleft

- NRPSclean(a).output(c).indexleft);

221

 end
 boolean1 =

[distcheck1,distcheck2,distcheck3,distcheck4];
 tfaacheck1 = 0;
 for i=1:length(boolean1)
 if boolean1(i) <= clusterdist
 tfaacheck1 = 1;
 break
 end
 end
 if tfaacheck1 == 1
 FMOnum = FMOnum + 1;
 print1 = sprintf('FMO #%d in cluster\n',FMOnum);
 fprintf(filecluster, print1);
 numleft =

num2str(FMOclean(a).output(aa).indexleft);
 print3 = strcat('FMO indexleft: ',numleft,'\n');
 fprintf(filecluster, print3);
 numright =

num2str(FMOclean(a).output(aa).indexright);
 print4 = strcat('FMO indexright: ',numright,'\n');
 fprintf(filecluster, print4);
 end
 end
 %%%%%%%%%%check for MT genes%%%%%%%%%%%%%%%%%%%
 MTnum = 0;
 for aa = 1:length(MTclean(a).output) %%%check for

Znbinding domain
 distcheck1 = clusterdist + 100;
 distcheck2 = clusterdist + 100;
 distcheck3 = clusterdist + 100;
 distcheck4 = clusterdist + 100;
 tfaa =

strcmp(MTclean(a).output(aa).scaffold,NRPSclean(a).output(c).scaffold);
 if tfaa ==1
 distcheck1 = abs(MTclean(a).output(aa).indexright

- NRPSclean(a).output(c).indexright);
 distcheck2 = abs(MTclean(a).output(aa).indexright

- NRPSclean(a).output(c).indexleft);
 distcheck3 = abs(MTclean(a).output(aa).indexleft

- NRPSclean(a).output(c).indexright);
 distcheck4 = abs(MTclean(a).output(aa).indexleft

- NRPSclean(a).output(c).indexleft);
 end
 boolean1 =

[distcheck1,distcheck2,distcheck3,distcheck4];
 tfaacheck1 = 0;
 for i=1:length(boolean1)
 if boolean1(i) <= clusterdist
 tfaacheck1 = 1;
 break
 end
 end
 if tfaacheck1 == 1
 MTnum = MTnum + 1;
 print1 = sprintf('MT #%d in cluster\n',MTnum);
 fprintf(filecluster, print1);

222

 numleft =

num2str(MTclean(a).output(aa).indexleft);
 print3 = strcat('MT indexleft: ',numleft,'\n');
 fprintf(filecluster, print3);
 numright =

num2str(MTclean(a).output(aa).indexright);
 print4 = strcat('MT indexright: ',numright,'\n');
 fprintf(filecluster, print4);
 end
 end
 end
 end
 %%%%%%%%%%%%%%%%%%%%%check for PKS clusters%%%%%%%%%%%%%%%%%%%%%
 for c = 1: length(PKSclean(a).output) %%%check through PKS
 distcheck1 = clusterdist2 + 100;
 distcheck2 = clusterdist2 + 100;
 distcheck3 = clusterdist2 + 100;
 distcheck4 = clusterdist2 + 100;
 tf1 =

strcmp(targetfinalhits(a).Hits(b).scaffold,PKSclean(a).output(c).scaffold);
 if tf1 ==1
 distcheck1 = abs(targetfinalhits(a).Hits(b).indexright -

PKSclean(a).output(c).indexright);
 distcheck2 = abs(targetfinalhits(a).Hits(b).indexright -

PKSclean(a).output(c).indexleft);
 distcheck3 = abs(targetfinalhits(a).Hits(b).indexleft -

PKSclean(a).output(c).indexright);
 distcheck4 = abs(targetfinalhits(a).Hits(b).indexleft -

PKSclean(a).output(c).indexleft);
 end
 boolean1 = [distcheck1,distcheck2,distcheck3,distcheck4];
 tfcheck1 = 0;
 for i=1:length(boolean1)
 if boolean1(i) <= clusterdist2
 tfcheck1 = 1;
 break
 end
 end
 if tfcheck1 == 1
 clustertargethit = clustertargethit + 1;
 print0 = sprintf('\nhit#%d',clustertargethit);
 fprintf(filecluster,print0);
 print1 = sprintf('\ntarget T%d hit in genome %d near PKS

cluster\n',targetfinalhits(a).Hits(b).target,targetfinalhits(a).Hits(b).genom

e);
 fprintf(filecluster, print1);
 % %%%%%%
 targetname1 = sprintf('target T%d is

',targetfinalhits(a).Hits(b).target);
 targetname2 =

targetkey(targetfinalhits(a).Hits(b).target,2);
 printtarget = strcat(targetname1,{' '},targetname2);
 fprintf(filecluster,printtarget);
 targid = sprintf('\ntarget id is

%d',targetfinalhits(a).Hits(b).HSPs.Identities.Percent); %%%%%%%Print ID%
 fprintf(filecluster, targid);

223

 targe = sprintf('\ntarget evalue is %d',

targetfinalhits(a).Hits(b).HSPs.Expect); %%%%%%%%%%%%%%%Print Evalue
 fprintf(filecluster, targe);
 genomename1 = sprintf('\ngenome %d is

',targetfinalhits(a).Hits(b).genome);
 genomename2 = key(targetfinalhits(a).Hits(b).genome,2);
 printgenome = strcat(genomename1,{' '},genomename2);
 fprintf(filecluster,printgenome);

 hitnum1 = num2str(targetfinalhits(a).Hits(b).Hitnum);
 targethitprint = strcat('\nnumber of target hits in

',genomename2,' is ',hitnum1);
 fprintf(filecluster,targethitprint);
 avgnum1 =

num2str(targetfinalhits(a).Hits(b).averagetarget);
 targetavgprint = strcat('\naverage target hits in all

genomes is ',avgnum1);
 mednum1 =

num2str(targetfinalhits(a).Hits(b).mediantarget);
 targetmedprint = strcat('\nmedian target hits in all

genomes is ',mednum1);
 fprintf(filecluster,targetavgprint);
 fprintf(filecluster,targetmedprint);
% %%%%%%

 print2 = strcat('\ntarget scaffold:

',targetfinalhits(a).Hits(b).scaffold,'\n');
 fprintf(filecluster, print2);
 numleft = num2str(targetfinalhits(a).Hits(b).indexleft);
 print3 = strcat('target indexleft: ',numleft,'\n');
 fprintf(filecluster, print3);
 numright = num2str(targetfinalhits(a).Hits(b).indexright);
 print4 = strcat('target indexright: ',numright,'\n');
 fprintf(filecluster,print4);
 numleft = num2str(PKSclean(a).output(c).indexleft);
 print6 = strcat('PKS indexleft: ',numleft,'\n');
 fprintf(filecluster, print6);
 numright = num2str(PKSclean(a).output(c).indexright);
 print7 = strcat('PKS indexright: ',numright,'\n');
 fprintf(filecluster, print7);
 %%%%%output residue checks for target%%%%%%%%

 if targetfinalhits(a).Hits(b).HSPs.QueryIndices(1) <=

residuepos && targetfinalhits(a).Hits(b).HSPs.QueryIndices(2) >= residuepos
 count =

targetfinalhits(a).Hits(b).HSPs.QueryIndices(1);
 for i =

targetfinalhits(a).Hits(b).HSPs.QueryIndices(1):targetfinalhits(a).Hits(b).HS

Ps.QueryIndices(2)
 if count == residuepos
 resstr = num2str(residuepos);
 print8 = strcat('\nresidue #',resstr,' is_ ',

targetfinalhits(a).Hits(b).HSPs.Alignment(3,i-

targetfinalhits(a).Hits(b).HSPs.QueryIndices(1)+1),'\n');
 fprintf(filecluster, print8);
 break;

224

 elseif

targetfinalhits(a).Hits(b).HSPs.Alignment(1,i) == '-'
 count = count;
 else
 count = count+1;
 end
 end
 end
 %%%%%%%%%%check for TF genes%%%%%%%%%%%%%%%%%%%
 znnum = 0;
 tfnum = 0;
 for aa = 1:length(TFclean(a,2).output) %%%check for

Znbinding domain
 distcheck1 = clusterdist + 100;
 distcheck2 = clusterdist + 100;
 distcheck3 = clusterdist + 100;
 distcheck4 = clusterdist + 100;
 tfaa =

strcmp(TFclean(a,2).output(aa).scaffold,PKSclean(a).output(c).scaffold);
 if tfaa ==1
 distcheck1 =

abs(TFclean(a,2).output(aa).indexright - PKSclean(a).output(c).indexright);
 distcheck2 =

abs(TFclean(a,2).output(aa).indexright - PKSclean(a).output(c).indexleft);
 distcheck3 =

abs(TFclean(a,2).output(aa).indexleft - PKSclean(a).output(c).indexright);
 distcheck4 =

abs(TFclean(a,2).output(aa).indexleft - PKSclean(a).output(c).indexleft);
 end
 boolean1 =

[distcheck1,distcheck2,distcheck3,distcheck4];
 tfaacheck1 = 0;
 for i=1:length(boolean1)
 if boolean1(i) <= clusterdist
 tfaacheck1 = 1;
 break
 end
 end
 if tfaacheck1 == 1
 znnum = znnum + 1;
 print1 = sprintf('ZN binding domain #%d gene in

cluster\n',znnum);
 fprintf(filecluster, print1);
 numleft =

num2str(TFclean(a,2).output(aa).indexleft);
 print3 = strcat('ZNbind indexleft:

',numleft,'\n');
 fprintf(filecluster, print3);
 numright =

num2str(TFclean(a,2).output(aa).indexright);
 print4 = strcat('ZNbind indexright:

',numright,'\n');
 fprintf(filecluster, print4);
 end
 end
 for bb = 1:length(TFclean(a,1).output) %%%check

for TF domain

225

 distcheck1 = clusterdist + 100;
 distcheck2 = clusterdist + 100;
 distcheck3 = clusterdist + 100;
 distcheck4 = clusterdist + 100;
 tfbb =

strcmp(TFclean(a,1).output(bb).scaffold,PKSclean(a).output(c).scaffold);
 if tfbb ==1
 distcheck1 =

abs(TFclean(a,1).output(bb).indexright - PKSclean(a).output(c).indexright);
 distcheck2 =

abs(TFclean(a,1).output(bb).indexright - PKSclean(a).output(c).indexleft);
 distcheck3 =

abs(TFclean(a,1).output(bb).indexleft - PKSclean(a).output(c).indexright);
 distcheck4 =

abs(TFclean(a,1).output(bb).indexleft - PKSclean(a).output(c).indexleft);
 end
 boolean1 =

[distcheck1,distcheck2,distcheck3,distcheck4];
 tfbbcheck1 = 0;
 for i=1:length(boolean1)
 if boolean1(i) <= clusterdist
 tfbbcheck1 = 1;
 break
 end
 end

 if tfbbcheck1 == 1
 tfnum = tfnum + 1;
 print1 = sprintf('TF gene #%d in

cluster\n',tfnum);
 fprintf(filecluster, print1);
 numleft =

num2str(TFclean(a,1).output(bb).indexleft);
 print3 = strcat('TF indexleft: ',numleft,'\n');
 fprintf(filecluster, print3);
 numright =

num2str(TFclean(a,1).output(bb).indexright);
 print4 = strcat('TF indexright: ',numleft,'\n');
 fprintf(filecluster, print4);
 end
 end

 %%%%%%%%%%check for P450 genes%%%%%%%%%%%%%%%%%%%
 p450num = 0;
 for aa = 1:length(P450clean(a).output) %%%check for

Znbinding domain
 distcheck1 = clusterdist + 100;
 distcheck2 = clusterdist + 100;
 distcheck3 = clusterdist + 100;
 distcheck4 = clusterdist + 100;
 tfaa =

strcmp(P450clean(a).output(aa).scaffold,PKSclean(a).output(c).scaffold);
 if tfaa ==1
 distcheck1 =

abs(P450clean(a).output(aa).indexright - PKSclean(a).output(c).indexright);

226

 distcheck2 =

abs(P450clean(a).output(aa).indexright - PKSclean(a).output(c).indexleft);
 distcheck3 =

abs(P450clean(a).output(aa).indexleft - PKSclean(a).output(c).indexright);
 distcheck4 =

abs(P450clean(a).output(aa).indexleft - PKSclean(a).output(c).indexleft);
 end
 boolean1 =

[distcheck1,distcheck2,distcheck3,distcheck4];
 tfaacheck1 = 0;
 for i=1:length(boolean1)
 if boolean1(i) <= clusterdist
 tfaacheck1 = 1;
 break
 end
 end
 if tfaacheck1 == 1
 p450num = p450num + 1;
 print1 = sprintf('P450 #%d in cluster\n',p450num);
 fprintf(filecluster, print1);
 numleft =

num2str(P450clean(a).output(aa).indexleft);
 print3 = strcat('P450 indexleft: ',numleft,'\n');
 fprintf(filecluster, print3);
 numright =

num2str(P450clean(a).output(aa).indexright);
 print4 = strcat('P450 indexright:

',numright,'\n');
 fprintf(filecluster, print4);
 end
 end
 %%%%%%%%%%check for FMO genes%%%%%%%%%%%%%%%%%%%
 FMOnum = 0;
 for aa = 1:length(FMOclean(a).output) %%%check for

Znbinding domain
 distcheck1 = clusterdist + 100;
 distcheck2 = clusterdist + 100;
 distcheck3 = clusterdist + 100;
 distcheck4 = clusterdist + 100;
 tfaa =

strcmp(FMOclean(a).output(aa).scaffold,PKSclean(a).output(c).scaffold);
 if tfaa ==1
 distcheck1 =

abs(FMOclean(a).output(aa).indexright - PKSclean(a).output(c).indexright);
 distcheck2 =

abs(FMOclean(a).output(aa).indexright - PKSclean(a).output(c).indexleft);
 distcheck3 = abs(FMOclean(a).output(aa).indexleft

- PKSclean(a).output(c).indexright);
 distcheck4 = abs(FMOclean(a).output(aa).indexleft

- PKSclean(a).output(c).indexleft);
 end
 boolean1 =

[distcheck1,distcheck2,distcheck3,distcheck4];
 tfaacheck1 = 0;
 for i=1:length(boolean1)
 if boolean1(i) <= clusterdist
 tfaacheck1 = 1;

227

 break
 end
 end
 if tfaacheck1 == 1
 FMOnum = FMOnum + 1;
 print1 = sprintf('FMO #%d in cluster\n',FMOnum);
 fprintf(filecluster, print1);
 numleft =

num2str(FMOclean(a).output(aa).indexleft);
 print3 = strcat('FMO indexleft: ',numleft,'\n');
 fprintf(filecluster, print3);
 numright =

num2str(FMOclean(a).output(aa).indexright);
 print4 = strcat('FMO indexright: ',numright,'\n');
 fprintf(filecluster, print4);
 end
 end
 %%%%%%%%%%check for MT genes%%%%%%%%%%%%%%%%%%%
 MTnum = 0;
 for aa = 1:length(MTclean(a).output) %%%check for

Znbinding domain
 distcheck1 = clusterdist + 100;
 distcheck2 = clusterdist + 100;
 distcheck3 = clusterdist + 100;
 distcheck4 = clusterdist + 100;
 tfaa =

strcmp(MTclean(a).output(aa).scaffold,PKSclean(a).output(c).scaffold);
 if tfaa ==1
 distcheck1 = abs(MTclean(a).output(aa).indexright

- PKSclean(a).output(c).indexright);
 distcheck2 = abs(MTclean(a).output(aa).indexright

- PKSclean(a).output(c).indexleft);
 distcheck3 = abs(MTclean(a).output(aa).indexleft

- PKSclean(a).output(c).indexright);
 distcheck4 = abs(MTclean(a).output(aa).indexleft

- PKSclean(a).output(c).indexleft);
 end
 boolean1 =

[distcheck1,distcheck2,distcheck3,distcheck4];
 tfaacheck1 = 0;
 for i=1:length(boolean1)
 if boolean1(i) <= clusterdist
 tfaacheck1 = 1;
 break
 end
 end
 if tfaacheck1 == 1
 MTnum = MTnum + 1;
 print1 = sprintf('MT #%d in cluster\n',MTnum);
 fprintf(filecluster, print1);
 numleft =

num2str(MTclean(a).output(aa).indexleft);
 print3 = strcat('MT indexleft: ',numleft,'\n');
 fprintf(filecluster, print3);
 numright =

num2str(MTclean(a).output(aa).indexright);
 print4 = strcat('MT indexright: ',numright,'\n');

228

 fprintf(filecluster, print4);
 end
 end
 end
 end
 end
 if terpenecheck == 1
 %%%%%%%%%%%%%%%%%%%%%check for terpene

clusters%%%%%%%%%%%%%%%%%%%%%
 for c = 1: length(terpeneclean(a).output) %%%check through

terpene
 distcheck1 = clusterdist2 + 100;
 distcheck2 = clusterdist2 + 100;
 distcheck3 = clusterdist2 + 100;
 distcheck4 = clusterdist2 + 100;
 tf1 =

strcmp(targetfinalhits(a).Hits(b).scaffold,terpeneclean(a).output(c).scaffold

);
 if tf1 ==1
 distcheck1 = abs(targetfinalhits(a).Hits(b).indexright -

terpeneclean(a).output(c).indexright);
 distcheck2 = abs(targetfinalhits(a).Hits(b).indexright -

terpeneclean(a).output(c).indexleft);
 distcheck3 = abs(targetfinalhits(a).Hits(b).indexleft -

terpeneclean(a).output(c).indexright);
 distcheck4 = abs(targetfinalhits(a).Hits(b).indexleft -

terpeneclean(a).output(c).indexleft);
 end
 boolean1 = [distcheck1,distcheck2,distcheck3,distcheck4];
 tfcheck1 = 0;
 for i=1:length(boolean1)
 if boolean1(i) <= clusterdist2
 tfcheck1 = 1;
 break
 end
 end
 if tfcheck1 == 1
 clustertargethit = clustertargethit + 1;
 print0 = sprintf('\nhit#%d',clustertargethit);
 fprintf(filecluster,print0);
 print1 = sprintf('\ntarget T%d hit in genome %d near

terpene

cluster\n',targetfinalhits(a).Hits(b).target,targetfinalhits(a).Hits(b).genom

e);
 fprintf(filecluster, print1);
 print11 = strcat('this

is_',terpeneclean(a).output(c).type,'_cluster\n');
 fprintf(filecluster, print11);

% %%%%%%
 targetname1 = sprintf('target T%d is

',targetfinalhits(a).Hits(b).target);
 targetname2 =

targetkey(targetfinalhits(a).Hits(b).target,2);
 printtarget = strcat(targetname1,{' '},targetname2);
 fprintf(filecluster,printtarget);

229

 targid = sprintf('\ntarget id is

%d',targetfinalhits(a).Hits(b).HSPs.Identities.Percent); %%%%%%%Print ID%
 fprintf(filecluster, targid);
 targe = sprintf('\ntarget evalue is %d',

targetfinalhits(a).Hits(b).HSPs.Expect); %%%%%%%%%%%%%%%Print Evalue
 fprintf(filecluster, targe);
 genomename1 = sprintf('\ngenome %d is

',targetfinalhits(a).Hits(b).genome);
 genomename2 = key(targetfinalhits(a).Hits(b).genome,2);
 printgenome = strcat(genomename1,{' '},genomename2);
 fprintf(filecluster,printgenome);

 hitnum1 = num2str(targetfinalhits(a).Hits(b).Hitnum);
 targethitprint = strcat('\nnumber of target hits in

',genomename2,' is ',hitnum1);
 fprintf(filecluster,targethitprint);
 avgnum1 =

num2str(targetfinalhits(a).Hits(b).averagetarget);
 targetavgprint = strcat('\naverage target hits in all

genomes is ',avgnum1);
 mednum1 =

num2str(targetfinalhits(a).Hits(b).mediantarget);
 targetmedprint = strcat('\nmedian target hits in all

genomes is ',mednum1);
 fprintf(filecluster,targetavgprint);
 fprintf(filecluster,targetmedprint);
% %%%%%%
 print2 = strcat('\ntarget scaffold:

',targetfinalhits(a).Hits(b).scaffold,'\n');
 fprintf(filecluster, print2);
 numleft = num2str(targetfinalhits(a).Hits(b).indexleft);
 print3 = strcat('target indexleft: ',numleft,'\n');
 fprintf(filecluster, print3);
 numright = num2str(targetfinalhits(a).Hits(b).indexright);
 print4 = strcat('target indexright: ',numright,'\n');
 fprintf(filecluster,print4);
 numleft = num2str(terpeneclean(a).output(c).indexleft);
 print6 = strcat('terpene indexleft: ',numleft,'\n');
 fprintf(filecluster, print6);
 numright = num2str(terpeneclean(a).output(c).indexright);
 print7 = strcat('terpene indexright: ',numright,'\n');
 fprintf(filecluster, print7);
 %%%%%output residue checks for target%%%%%%%%

 if targetfinalhits(a).Hits(b).HSPs.QueryIndices(1) <=

residuepos && targetfinalhits(a).Hits(b).HSPs.QueryIndices(2) >= residuepos
 count =

targetfinalhits(a).Hits(b).HSPs.QueryIndices(1);
 for i =

targetfinalhits(a).Hits(b).HSPs.QueryIndices(1):targetfinalhits(a).Hits(b).HS

Ps.QueryIndices(2)
 if count == residuepos
 resstr = num2str(residuepos);
 print8 = strcat('\nresidue #',resstr,' is_ ',

targetfinalhits(a).Hits(b).HSPs.Alignment(3,i-

targetfinalhits(a).Hits(b).HSPs.QueryIndices(1)+1),'\n');

230

 fprintf(filecluster, print8);
 break;
 elseif

targetfinalhits(a).Hits(b).HSPs.Alignment(1,i) == '-'
 count = count;
 else
 count = count+1;
 end
 end
 end
 %%%%%%%%%%check for TF genes%%%%%%%%%%%%%%%%%%%
 znnum = 0;
 tfnum = 0;
 for aa = 1:length(TFclean(a,2).output) %%%check for

Znbinding domain
 distcheck1 = clusterdist + 100;
 distcheck2 = clusterdist + 100;
 distcheck3 = clusterdist + 100;
 distcheck4 = clusterdist + 100;
 tfaa =

strcmp(TFclean(a,2).output(aa).scaffold,terpeneclean(a).output(c).scaffold);
 if tfaa ==1
 distcheck1 =

abs(TFclean(a,2).output(aa).indexright -

terpeneclean(a).output(c).indexright);
 distcheck2 =

abs(TFclean(a,2).output(aa).indexright -

terpeneclean(a).output(c).indexleft);
 distcheck3 =

abs(TFclean(a,2).output(aa).indexleft -

terpeneclean(a).output(c).indexright);
 distcheck4 =

abs(TFclean(a,2).output(aa).indexleft - terpeneclean(a).output(c).indexleft);
 end
 boolean1 =

[distcheck1,distcheck2,distcheck3,distcheck4];
 tfaacheck1 = 0;
 for i=1:length(boolean1)
 if boolean1(i) <= clusterdist
 tfaacheck1 = 1;
 break
 end
 end
 if tfaacheck1 == 1
 znnum = znnum + 1;
 print1 = sprintf('ZN binding domain gene #%d in

cluster\n',znnum);
 fprintf(filecluster, print1);
 numleft =

num2str(TFclean(a,2).output(aa).indexleft);
 print3 = strcat('ZNbind indexleft:

',numleft,'\n');
 fprintf(filecluster, print3);
 numright =

num2str(TFclean(a,2).output(aa).indexright);
 print4 = strcat('ZNbind indexright:

',numright,'\n');

231

 fprintf(filecluster, print4);
 end
 end
 for bb = 1:length(TFclean(a,1).output) %%%check

for TF domain
 distcheck1 = clusterdist + 100;
 distcheck2 = clusterdist + 100;
 distcheck3 = clusterdist + 100;
 distcheck4 = clusterdist + 100;
 tfbb =

strcmp(TFclean(a,1).output(bb).scaffold,terpeneclean(a).output(c).scaffold);
 if tfbb ==1
 distcheck1 =

abs(TFclean(a,1).output(bb).indexright -

terpeneclean(a).output(c).indexright);
 distcheck2 =

abs(TFclean(a,1).output(bb).indexright -

terpeneclean(a).output(c).indexleft);
 distcheck3 =

abs(TFclean(a,1).output(bb).indexleft -

terpeneclean(a).output(c).indexright);
 distcheck4 =

abs(TFclean(a,1).output(bb).indexleft - terpeneclean(a).output(c).indexleft);
 end
 boolean1 =

[distcheck1,distcheck2,distcheck3,distcheck4];
 tfbbcheck1 = 0;
 for i=1:length(boolean1)
 if boolean1(i) <= clusterdist
 tfbbcheck1 = 1;
 break
 end
 end

 if tfbbcheck1 == 1
 tfnum = tfnum + 1;
 print1 = sprintf('TF gene #%d in

cluster\n',tfnum);
 fprintf(filecluster, print1);
 numleft =

num2str(TFclean(a,1).output(bb).indexleft);
 print3 = strcat('TF indexleft: ',numleft,'\n');
 fprintf(filecluster, print3);
 numright =

num2str(TFclean(a,1).output(bb).indexright);
 print4 = strcat('TF indexright: ',numleft,'\n');
 fprintf(filecluster, print4);
 end
 end
 %%%%%%%%%%check for P450 genes%%%%%%%%%%%%%%%%%%%
 p450num = 0;
 for aa = 1:length(P450clean(a).output) %%%check for

Znbinding domain
 distcheck1 = clusterdist + 100;
 distcheck2 = clusterdist + 100;
 distcheck3 = clusterdist + 100;
 distcheck4 = clusterdist + 100;

232

 tfaa =

strcmp(P450clean(a).output(aa).scaffold,terpeneclean(a).output(c).scaffold);
 if tfaa ==1
 distcheck1 =

abs(P450clean(a).output(aa).indexright -

terpeneclean(a).output(c).indexright);
 distcheck2 =

abs(P450clean(a).output(aa).indexright -

terpeneclean(a).output(c).indexleft);
 distcheck3 =

abs(P450clean(a).output(aa).indexleft -

terpeneclean(a).output(c).indexright);
 distcheck4 =

abs(P450clean(a).output(aa).indexleft - terpeneclean(a).output(c).indexleft);
 end
 boolean1 =

[distcheck1,distcheck2,distcheck3,distcheck4];
 tfaacheck1 = 0;
 for i=1:length(boolean1)
 if boolean1(i) <= clusterdist
 tfaacheck1 = 1;
 break
 end
 end
 if tfaacheck1 == 1
 p450num = p450num + 1;
 print1 = sprintf('P450 #%d in cluster\n',p450num);
 fprintf(filecluster, print1);
 numleft =

num2str(P450clean(a).output(aa).indexleft);
 print3 = strcat('P450 indexleft: ',numleft,'\n');
 fprintf(filecluster, print3);
 numright =

num2str(P450clean(a).output(aa).indexright);
 print4 = strcat('P450 indexright:

',numright,'\n');
 fprintf(filecluster, print4);
 end
 end
 %%%%%%%%%%check for FMO genes%%%%%%%%%%%%%%%%%%%
 FMOnum = 0;
 for aa = 1:length(FMOclean(a).output) %%%check for

Znbinding domain
 distcheck1 = clusterdist + 100;
 distcheck2 = clusterdist + 100;
 distcheck3 = clusterdist + 100;
 distcheck4 = clusterdist + 100;
 tfaa =

strcmp(FMOclean(a).output(aa).scaffold,terpeneclean(a).output(c).scaffold);
 if tfaa ==1
 distcheck1 =

abs(FMOclean(a).output(aa).indexright -

terpeneclean(a).output(c).indexright);
 distcheck2 =

abs(FMOclean(a).output(aa).indexright - terpeneclean(a).output(c).indexleft);
 distcheck3 = abs(FMOclean(a).output(aa).indexleft

- terpeneclean(a).output(c).indexright);

233

 distcheck4 = abs(FMOclean(a).output(aa).indexleft

- terpeneclean(a).output(c).indexleft);
 end
 boolean1 =

[distcheck1,distcheck2,distcheck3,distcheck4];
 tfaacheck1 = 0;
 for i=1:length(boolean1)
 if boolean1(i) <= clusterdist
 tfaacheck1 = 1;
 break
 end
 end
 if tfaacheck1 == 1
 FMOnum = FMOnum + 1;
 print1 = sprintf('FMO #%d in cluster\n',FMOnum);
 fprintf(filecluster, print1);
 numleft =

num2str(FMOclean(a).output(aa).indexleft);
 print3 = strcat('FMO indexleft: ',numleft,'\n');
 fprintf(filecluster, print3);
 numright =

num2str(FMOclean(a).output(aa).indexright);
 print4 = strcat('FMO indexright: ',numright,'\n');
 fprintf(filecluster, print4);
 end
 end
 %%%%%%%%%%check for MT genes%%%%%%%%%%%%%%%%%%%
 MTnum = 0;
 for aa = 1:length(MTclean(a).output) %%%check for

Znbinding domain
 distcheck1 = clusterdist + 100;
 distcheck2 = clusterdist + 100;
 distcheck3 = clusterdist + 100;
 distcheck4 = clusterdist + 100;
 tfaa =

strcmp(MTclean(a).output(aa).scaffold,terpeneclean(a).output(c).scaffold);
 if tfaa ==1
 distcheck1 = abs(MTclean(a).output(aa).indexright

- terpeneclean(a).output(c).indexright);
 distcheck2 = abs(MTclean(a).output(aa).indexright

- terpeneclean(a).output(c).indexleft);
 distcheck3 = abs(MTclean(a).output(aa).indexleft

- terpeneclean(a).output(c).indexright);
 distcheck4 = abs(MTclean(a).output(aa).indexleft

- terpeneclean(a).output(c).indexleft);
 end
 boolean1 =

[distcheck1,distcheck2,distcheck3,distcheck4];
 tfaacheck1 = 0;
 for i=1:length(boolean1)
 if boolean1(i) <= clusterdist
 tfaacheck1 = 1;
 break
 end
 end
 if tfaacheck1 == 1
 MTnum = MTnum + 1;

234

 print1 = sprintf('MT #%d in cluster\n',MTnum);
 fprintf(filecluster, print1);
 numleft =

num2str(MTclean(a).output(aa).indexleft);
 print3 = strcat('MT indexleft: ',numleft,'\n');
 fprintf(filecluster, print3);
 numright =

num2str(MTclean(a).output(aa).indexright);
 print4 = strcat('MT indexright: ',numright,'\n');
 fprintf(filecluster, print4);
 end
 end
 end
 end
 end%%%%%%end of terpene loop
 end
end

totalhits = sprintf('\nTotal of %d Hits!',clustertargethit);
fprintf(filecluster, totalhits);

235

8. References

1. L. Katz and R. H. Baltz, J Ind Microbiol Biotechnol, 2016, 43, 155-176.
2. G. L. Challis, J Med Chem, 2008, 51, 2618-2628.
3. A. L. Demain and A. Fang, Adv Biochem Eng Biotechnol, 2000, 69, 1-39.
4. D. J. Newman, G. M. Cragg and D. G. I. Kingston, Practice of Medicinal

Chemistry, 3rd Edition, 2008, DOI: Doi 10.1016/B978-0-12-374194-3.00008-1,
159-186.

5. R. Quinn, Am J Public Health, 2013, 103, 426-434.
6. W. Zheng, N. Thorne and J. C. McKew, Drug Discov Today, 2013, 18, 1067-

1073.
7. J. G. Moffat, J. Rudolph and D. Bailey, Nat Rev Drug Discov, 2014, 13, 588-602.
8. M. L. Nelson and S. B. Levy, Ann N Y Acad Sci, 2011, 1241, 17-32.
9. D. Tedesco and L. Haragsim, J Transplant, 2012, 2012, 230386.
10. A. Endo, Proc Jpn Acad Ser B Phys Biol Sci, 2010, 86, 484-493.
11. B. O. Bachmann, S. G. Van Lanen and R. H. Baltz, J Ind Microbiol Biot, 2014,

41, 175-184.
12. J. M. Winter, S. Behnken and C. Hertweck, Current opinion in chemical biology,

2011, 15, 22-31.
13. K. Scherlach and C. Hertweck, Org Biomol Chem, 2006, 4, 3517-3520.
14. Y. M. Chiang, E. Szewczyk, T. Nayak, A. D. Davidson, J. F. Sanchez, H. C. Lo,

W. Y. Ho, H. Simityan, E. Kuo, A. Praseuth, K. Watanabe, B. R. Oakley and C.
C. C. Wang, Chem Biol, 2008, 15, 527-532.

15. J. Staunton and K. J. Weissman, Nat Prod Rep, 2001, 18, 380-416.
16. S. Dutta, J. R. Whicher, D. A. Hansen, W. A. Hale, J. A. Chemler, G. R.

Congdon, A. R. Narayan, K. Hakansson, D. H. Sherman, J. L. Smith and G.
Skiniotis, Nature, 2014, 510, 512-517.

17. R. J. Cox and T. J. Simpson, Methods Enzymol, 2009, 459, 49-78.
18. Y. H. Chooi and Y. Tang, J Org Chem, 2012, 77, 9933-9953.
19. Y. Tang, C. Y. Kim, Mathews, II, D. E. Cane and C. Khosla, Proc Natl Acad Sci U

S A, 2006, 103, 11124-11129.
20. J. Lim, R. Kong, E. Murugan, C. L. Ho, Z. X. Liang and D. Yang, Plos One, 2011,

6.
21. J. T. Zheng and A. T. Keatinge-Clay, Medchemcomm, 2013, 4, 34-40.
22. D. L. Akey, J. R. Razelun, J. Tehranisa, D. H. Sherman, W. H. Gerwick and J. L.

Smith, Structure, 2010, 18, 94-105.
23. B. D. Ames, C. Nguyen, J. Bruegger, P. Smith, W. Xu, S. Ma, E. Wong, S. Wong,

X. K. Xie, J. W. H. Li, J. C. Vederas, Y. Tang and S. C. Tsai, P Natl Acad Sci
USA, 2012, 109, 11144-11149.

24. P. J. Bhetariya, M. Prajapati, A. Bhaduri, R. S. Mandal, A. Varma, T. Madan, Y.
Singh and P. U. Sarma, Evolutionary bioinformatics online, 2016, 12, 109-119.

25. B. R. Miller and A. M. Gulick, Methods Mol Biol, 2016, 1401, 3-29.
26. E. J. Drake, B. R. Miller, C. Shi, J. T. Tarrasch, J. A. Sundlov, C. L. Allen, G.

Skiniotis, C. C. Aldrich and A. M. Gulick, Nature, 2016, 529, 235-238.
27. J. Beld, E. C. Sonnenschein, C. R. Vickery, J. P. Noel and M. D. Burkart, Nat

Prod Rep, 2014, 31, 61-108.

236

28. D. Keszenman-Pereyra, S. Lawrence, M. E. Twfieg, J. Price and G. Turner, Curr
Genet, 2003, 43, 186-190.

29. T. Kittila, A. Mollo, L. K. Charkoudian and M. J. Cryle, Angewandte Chemie,
2016, 55, 9834-9840.

30. M. Strieker, A. Tanovic and M. A. Marahiel, Current opinion in structural biology,
2010, 20, 234-240.

31. C. Rausch, T. Weber, O. Kohlbacher, W. Wohlleben and D. H. Huson, Nucleic
Acids Res, 2005, 33, 5799-5808.

32. M. A. Fischbach and C. T. Walsh, Chem Rev, 2006, 106, 3468-3496.
33. S. A. Sieber and M. A. Marahiel, Chem Rev, 2005, 105, 715-738.
34. C. T. Walsh, H. W. Chen, T. A. Keating, B. K. Hubbard, H. C. Losey, L. S. Luo,

C. G. Marshall, D. A. Miller and H. M. Patel, Current opinion in chemical biology,
2001, 5, 525-534.

35. K. Bloudoff and T. M. Schmeing, Bba-Proteins Proteom, 2017, 1865, 1587-1604.
36. E. A. Felnagle, E. E. Jackson, Y. A. Chan, A. M. Podevels, A. D. Berti, M. D.

McMahon and M. G. Thomas, Mol Pharmaceut, 2008, 5, 191-211.
37. P. A. Fawcett, J. J. Usher, J. A. Huddleston, R. C. Bleaney, J. J. Nisbet and E. P.

Abraham, Biochem J, 1976, 157, 651-660.
38. H. D. Mootz and M. A. Marahiel, J Bacteriol, 1997, 179, 6843-6850.
39. K. M. Hoyer, C. Mahlert and M. A. Marahiel, Chem Biol, 2007, 14, 13-22.
40. A. Lawen and R. Zocher, The Journal of biological chemistry, 1990, 265, 11355-

11360.
41. R. A. Cacho, W. Jiang, Y. H. Chooi, C. T. Walsh and Y. Tang, Journal of the

American Chemical Society, 2012, 134, 16781-16790.
42. X. Gao, S. W. Haynes, B. D. Ames, P. Wang, L. P. Vien, C. T. Walsh and Y.

Tang, Nature chemical biology, 2012, 8, 823-830.
43. J. Zhang, N. Liu, R. A. Cacho, Z. Gong, Z. Liu, W. Qin, C. Tang, Y. Tang and J.

Zhou, Nature chemical biology, 2016, 12, 1001-1003.
44. Y. Gao, R. B. Honzatko and R. J. Peters, Natural Product Reports, 2012, 29,

1153-1175.
45. D. W. Christianson, Chemical Reviews, 2017, 117, 11570-11648.
46. J. I. M. Rajaonarivony, J. Gershenzon and R. Croteau, Arch Biochem Biophys,

1992, 296, 49-57.
47. R. Croteau, R. E. Ketchum, R. M. Long, R. Kaspera and M. R. Wildung,

Phytochem Rev, 2006, 5, 75-97.
48. D. K. Liscombe, G. V. Louie and J. P. Noel, Nat Prod Rep, 2012, 29, 1238-1250.
49. R. V. K. Cochrane and J. C. Vederas, Accounts Chem Res, 2014, 47, 3148-

3161.
50. M. C. Tang, Y. Zou, K. Watanabe, C. T. Walsh and Y. Tang, Chem Rev, 2017,

117, 5226-5333.
51. T. Vogt and P. Jones, Trends Plant Sci, 2000, 5, 380-386.
52. P. Wang, X. Gao and Y. Tang, Current opinion in chemical biology, 2012, 16,

362-369.
53. Y. Q. Cheng, J. M. Coughlin, S. K. Lim and B. Shen, Method Enzymol, 2009,

459, 165-186.
54. C. T. Walsh, Nature chemical biology, 2015, 11, 620-624.

237

55. J. R. Cashman, Biochem Bioph Res Co, 2005, 338, 599-604.
56. L. F. Wu, S. Meng and G. L. Tang, Bba-Proteins Proteom, 2016, 1864, 453-470.
57. Y. Matsuda, T. Awakawa, T. Wakimoto and I. Abe, Journal of the American

Chemical Society, 2013, 135, 10962-10965.
58. Q. W. Yang and S. H. Sze, Genome Res, 2008, 18, 949-956.
59. S. Ballouz, A. R. Francis, R. T. Lan and M. M. Tanaka, Plos Comput Biol, 2010,

6.
60. K. K. Sharma and H. N. Arst, Curr Genet, 1985, 9, 299-304.
61. N. P. Keller and T. M. Hohn, Fungal Genet Biol, 1997, 21, 17-29.
62. Y. Yin, M. H. Cai, X. S. Zhou, Z. Y. Li and Y. X. Zhang, Appl Microbiol Biot, 2016,

100, 7787-7798.
63. L. Hang, N. Liu and Y. Tang, Acs Catal, 2016, 6, 5935-5945.
64. A. A. Zhgun, M. V. Dumina, T. M. Voinova, V. V. Dzhavakhiya and M. A. Eldarov,

Appl Biochem Micro+, 2018, 54, 188-197.
65. W. Tao, M. H. Lee, J. Wu, N. H. Kim, J. C. Kim, E. Chung, E. C. Hwang and S.

W. Lee, Appl Environ Microbiol, 2012, 78, 6295-6301.
66. W. V. Shaw, Crc Cr Rev Bioch Mol, 1983, 14, 1-46.
67. Y. Yan, N. Liu and Y. Tang, Nat Prod Rep, 2020, DOI: 10.1039/c9np00050j.
68. K. H. Almabruk, L. K. Dinh and B. Philmus, ACS Chem Biol, 2018, 13, 1426-

1437.
69. E. C. O'Neill, M. Schorn, C. B. Larson and N. Millan-Aguinaga, Crit Rev

Microbiol, 2019, 45, 255-277.
70. C. R. Hutchinson, J. Kennedy, C. Park, S. Kendrew, K. Auclair and J. Vederas,

Anton Leeuw Int J G, 2000, 78, 287-295.
71. C. D. Campbell and J. C. Vederas, Biopolymers, 2010, 93, 755-763.
72. C. f. D. C. a. Prevention, 2019.
73. G. V. Research, 2018.
74. A. Butts and D. J. Krysan, Plos Pathog, 2012, 8.
75. B. DiDomenico, Curr Opin Microbiol, 1999, 2, 509-515.
76. L. Alcazar-Fuoli, E. Mellado, G. Garcia-Effron, J. R. Lopez, J. O. Grimalt, J. M.

Cuenca-Estrella and J. L. Rodriguez-Tudela, Steroids, 2008, 73, 339-347.
77. F. Karst and F. Lacroute, Mol Gen Genet, 1977, 154, 269-277.
78. S. T. Behmer, N. Olszewski, J. Sebastiani, S. Palka, G. Sparacino, E. Sciarrno

and R. J. Grebenok, Front Plant Sci, 2013, 4.
79. H. Schaller, Prog Lipid Res, 2003, 42, 163-175.
80. W. de Souza and J. C. Rodrigues, Interdiscip Perspect Infect Dis, 2009, 2009,

642502.
81. H. K. Saini, A. S. Arneja and N. S. Dhalla, Can J Cardiol, 2004, 20, 333-346.
82. M. Zavrel, B. D. Esquivel and T. C. White, in Handbook of Antimicrobial

Resistance, eds. A. Berghuis, G. Matlashewski, M. A. Wainberg and D.
Sheppard, Springer New York, New York, NY, 2017, DOI: 10.1007/978-1-4939-
0694-9_29, pp. 423-452.

83. W. D. Nes, Chemical Reviews, 2011, 111, 6423-6451.
84. P. D. Sonawane, J. Pollier, S. Panda, J. Szymanski, H. Massalha, M. Yona, T.

Unger, S. Malitsky, P. Arendt, L. Pauwels, E. Almekias-Siegl, I. Rogachev, S.

238

Meir, P. D. Cardenas, A. Masri, M. Petrikov, H. Schaller, A. A. Schaffer, A.
Kamble, A. P. Giri, A. Goossens and A. Aharoni, Nat Plants, 2016, 3, 16205.

85. R. A. Moreau, B. D. Whitaker and K. B. Hicks, Prog Lipid Res, 2002, 41, 457-
500.

86. C. W. Roberts, R. McLeod, D. W. Rice, M. Ginger, M. L. Chance and L. J. Goad,
Mol Biochem Parasitol, 2003, 126, 129-142.

87. P. Benveniste, Annu Rev Plant Phys, 1986, 37, 275-308.
88. I. Buhaescu and H. Izzedine, Clin Biochem, 2007, 40, 575-584.
89. W. Eisenreich, A. Bacher, D. Arigoni and F. Rohdich, Cell Mol Life Sci, 2004, 61,

1401-1426.
90. G. Popjak and J. W. Cornforth, Adv Enzymol Rel S Bi, 1960, 22, 281-335.
91. E. J. Corey, S. P. T. Matsuda and B. Bartel, P Natl Acad Sci USA, 1994, 91,

2211-2215.
92. J. X. Zhang, L. P. Li, Q. Z. Lv, L. Yan, Y. Wang and Y. Y. Jiang, Front Microbiol,

2019, 10.
93. H. R. Waterham, Febs Lett, 2006, 580, 5442-5449.
94. J. L. Gaylor, Biochem Biophys Res Commun, 2002, 292, 1139-1146.
95. C. Fernandez, M. Martin, D. Gomez-Coronado and M. A. Lasuncion, J Lipid Res,

2005, 46, 920-929.
96. A. Trenin, Russ J Bioorg Chem+, 2013, 39, 565-587.
97. J. S. Burg and P. J. Espenshade, Prog Lipid Res, 2011, 50, 403-410.
98. B. A. Stermer, G. M. Bianchini and K. L. Korth, J Lipid Res, 1994, 35, 1133-1140.
99. G. A. Reynolds, S. K. Basu, T. F. Osborne, D. J. Chin, G. Gil, M. S. Brown, J. L.

Goldstein and K. L. Luskey, Cell, 1984, 38, 275-285.
100. J. A. Tobert, Nature Reviews Drug Discovery, 2003, 2, 517-526.
101. S. M. Grundy, New Engl J Med, 1988, 319, 24-33.
102. D. Dietrich and J. C. Vederas, Fung Biol-Us, 2014, DOI: 10.1007/978-1-4939-

1191-2_12, 263-287.
103. E. Harunari, H. Komaki and Y. Igarashi, Beilstein J Org Chem, 2017, 13, 441-

450.
104. H. Tomoda, I. Namatame and S. Omura, P Jpn Acad B-Phys, 2002, 78, 217-240.
105. A. Nadin and K. C. Nicolaou, Angew Chem Int Edit, 1996, 35, 1623-1656.
106. J. C. Onishi, J. A. Milligan, A. Basilio, J. Bergstrom, J. Curotto, L. Huang, M.

Meinz, M. NallinOmstead, F. Pelaez, D. Rew, M. Salvatore, J. Thompson, F.
Vicente and M. B. Kurtz, J Antibiot, 1997, 50, 334-338.

107. S. M. Mandala, R. A. Thornton, B. R. Frommer, S. Dreikorn and M. B. Kurtz, J
Antibiot, 1997, 50, 339-343.

108. H. Sasaki, T. Hosokawa, M. Sawada and K. Ando, J Antibiot, 1973, 26, 676-680.
109. N. S. Ryder and H. Mieth, Curr Top Med Mycol, 1992, 4, 158-188.
110. J. M. Muhlbacher, Clin Dermatol, 1991, 9, 479-485.
111. J. E. Birnbaum, J Am Acad Dermatol, 1990, 23, 782-785.
112. S. Krishnan-Natesan, Expert Opin Pharmaco, 2009, 10, 2723-2733.
113. G. Lepesheva, T. Hargrove, Y. Kleshchenko, W. Nes, F. Villalta and M.

Waterman, Lipids, 2008, 43, 1117-1125.
114. D. I. Zonios and J. E. Bennett, Semin Resp Crit Care, 2008, 29, 198-210.
115. J. M. Hamilton-Miller, Bacteriol Rev, 1973, 37, 166-196.

239

116. N. A. O'Leary, M. W. Wright, J. R. Brister, S. Ciufo, D. H. R. McVeigh, B. Rajput,
B. Robbertse, B. Smith-White, D. Ako-Adjei, A. Astashyn, A. Badretdin, Y. M.
Bao, O. Blinkova, V. Brover, V. Chetvernin, J. Choi, E. Cox, O. Ermolaeva, C. M.
Farrell, T. Goldfarb, T. Gupta, D. Haft, E. Hatcher, W. Hlavina, V. S. Joardar, V.
K. Kodali, W. J. Li, D. Maglott, P. Masterson, K. M. McGarvey, M. R. Murphy, K.
O'Neill, S. Pujar, S. H. Rangwala, D. Rausch, L. D. Riddick, C. Schoch, A.
Shkeda, S. S. Storz, H. Z. Sun, F. Thibaud-Nissen, I. Tolstoy, R. E. Tully, A. R.
Vatsan, C. Wallin, D. Webb, W. Wu, M. J. Landrum, A. Kimchi, T. Tatusova, M.
DiCuccio, P. Kitts, T. D. Murphy and K. D. Pruitt, Nucleic Acids Res, 2016, 44,
D733-D745.

117. H. Nordberg, M. Cantor, S. Dusheyko, S. Hua, A. Poliakov, I. Shabalov, T.
Smirnova, I. V. Grigoriev and I. Dubchak, Nucleic Acids Res, 2014, 42, D26-D31.

118. S. McGinnis and T. L. Madden, Nucleic Acids Res, 2004, 32, W20-W25.
119. M. Stanke and B. Morgenstern, Nucleic Acids Res, 2005, 33, W465-W467.
120. M. Stanke and S. Waack, Bioinformatics, 2003, 19 Suppl 2, ii215-225.
121. M. H. Medema, K. Blin, P. Cimermancic, V. de Jager, P. Zakrzewski, M. A.

Fischbach, T. Weber, E. Takano and R. Breitling, Nucleic Acids Res, 2011, 39,
W339-W346.

122. N. Khaldi, F. T. Seifuddin, G. Turner, D. Haft, W. C. Nierman, K. H. Wolfe and N.
D. Fedorova, Fungal Genet Biol, 2010, 47, 736-741.

123. M. H. Medema, R. Kottmann, P. Yilmaz, M. Cummings, J. B. Biggins, K. Blin, I.
de Bruijn, Y. H. Chooi, J. Claesen, R. C. Coates, P. Cruz-Morales, S. Duddela, S.
Dusterhus, D. J. Edwards, D. P. Fewer, N. Garg, C. Geiger, J. P. Gomez-
Escribano, A. Greule, M. Hadjithomas, A. S. Haines, E. J. N. Helfrich, M. L.
Hillwig, K. Ishida, A. C. Jones, C. S. Jones, K. Jungmann, C. Kegler, H. U. Kim,
P. Kotter, D. Krug, J. Masschelein, A. V. Melnik, S. M. Mantovani, E. A. Monroe,
M. Moore, N. Moss, H. W. Nutzmann, G. H. Pan, A. Pati, D. Petras, F. J. Reen,
F. Rosconi, Z. Rui, Z. H. Tian, N. J. Tobias, Y. Tsunematsu, P. Wiemann, E.
Wyckoff, X. H. Yan, G. Yim, F. G. Yu, Y. C. Xie, B. Aigle, A. K. Apel, C. J.
Balibar, E. P. Balskus, F. Barona-Gomez, A. Bechthold, H. B. Bode, R. Borriss,
S. F. Brady, A. A. Brakhage, P. Caffrey, Y. Q. Cheng, J. Clardy, R. J. Cox, R. De
Mot, S. Donadio, M. S. Donia, W. A. van der Donk, P. C. Dorrestein, S. Doyle, A.
J. M. Driessen, M. Ehling-Schulz, K. D. Entian, M. A. Fischbach, L. Gerwick, W.
H. Gerwick, H. Gross, B. Gust, C. Hertweck, M. Hofte, S. E. Jensen, J. H. Ju, L.
Katz, L. Kaysser, J. L. Klassen, N. P. Keller, J. Kormanec, O. P. Kuipers, T.
Kuzuyama, N. C. Kyrpides, H. J. Kwon, S. Lautru, R. Lavigne, C. Y. Lee, B.
Linquan, X. Y. Liu, W. Liu, A. Luzhetskyy, T. Mahmud, Y. Mast, C. Mendez, M.
Metsa-Ketela, J. Micklefield, D. A. Mitchell, B. S. Moore, L. M. Moreira, R. Muller,
B. A. Neilan, M. Nett, J. Nielsen, F. O'Gara, H. Oikawa, A. Osbourn, M. S.
Osburne, B. Ostash, S. M. Payne, J. L. Pernodet, M. Petricek, J. Piel, O. Ploux,
J. M. Raaijmakers, J. A. Salas, E. K. Schmitt, B. Scott, R. F. Seipke, B. Shen, D.
H. Sherman, K. Sivonen, M. J. Smanski, M. Sosio, E. Stegmann, R. D.
Sussmuth, K. Tahlan, C. M. Thomas, Y. Tang, A. W. Truman, M. Viaud, J. D.
Walton, C. T. Walsh, T. Weber, G. P. van Wezel, B. Wilkinson, J. M. Willey, W.
Wohlleben, G. D. Wright, N. Ziemert, C. S. Zhang, S. B. Zotchev, R. Breitling, E.
Takano and F. O. Glockner, Nature chemical biology, 2015, 11, 625-631.

240

124. M. Alanjary, B. Kronmiller, M. Adamek, K. Blin, T. Weber, D. Huson, B. Philmus
and N. Ziemert, Nucleic Acids Res, 2017, 45, W42-W48.

125. J. Yaegashi, M. B. Praseuth, S. W. Tyan, J. F. Sanchez, R. Entwistle, Y. M.
Chiang, B. R. Oakley and C. C. C. Wang, Org Lett, 2013, 15, 2862-2865.

126. K. Ishiuchi, T. Nakazawa, F. Yagishita, T. Mino, H. Noguchi, K. Hotta and K.
Watanabe, Journal of the American Chemical Society, 2013, 135, 7371-7377.

127. Y. M. Chiang, C. E. Oakley, M. Ahuja, R. Entwistle, A. Schultz, S. L. Chang, C. T.
Sung, C. C. C. Wang and B. R. Oakley, Journal of the American Chemical
Society, 2013, 135, 7720-7731.

128. H. S. Huang, N. T. Hu, Y. E. Yao, C. Y. Wu, S. W. Chiang and C. N. Sun, Insect
Biochem Mol Biol, 1998, 28, 651-658.

129. M. R. Farkhutdinov, F. G. Galiullin, E. G. Davletov, F. Gabbasov Sh and B. N.
Safin, Vopr Med Khim, 1993, 39, 60-62.

130. L. J. Trueman, Methods Mol Biol, 1995, 49, 341-354.
131. S. M. Ma, J. W. Li, J. W. Choi, H. Zhou, K. K. Lee, V. A. Moorthie, X. Xie, J. T.

Kealey, N. A. Da Silva, J. C. Vederas and Y. Tang, Science, 2009, 326, 589-592.
132. A. Aleksenko and A. J. Clutterbuck, Mol Microbiol, 1996, 19, 565-574.
133. J. H. Yu and T. J. Leonard, J Bacteriol, 1995, 177, 4792-4800.
134. C. S. Nodvig, J. B. Nielsen, M. E. Kogle and U. H. Mortensen, Plos One, 2015,

10, e0133085.
135. T. G. Montague, J. M. Cruz, J. A. Gagnon, G. M. Church and E. Valen, Nucleic

Acids Res, 2014, 42, W401-407.
136. J. D. Bergstrom, M. M. Kurtz, D. J. Rew, A. M. Amend, J. D. Karkas, R. G.

Bostedor, V. S. Bansal, C. Dufresne, F. L. VanMiddlesworth, O. D. Hensens and
et al., Proc Natl Acad Sci U S A, 1993, 90, 80-84.

137. A. Armstrong, P. A. Barsanti, L. H. Jones and G. Ahmed, J Org Chem, 2000, 65,
7020-7032.

138. J. O. Bunte, A. N. Cuzzupe, A. M. Daly and M. A. Rizzacasa, Angewandte
Chemie-International Edition, 2006, 45, 6376-6380.

139. S. Caron, D. Stoermer, A. K. Mapp and C. H. Heathcock, Journal of Organic
Chemistry, 1996, 61, 9126-9134.

140. E. M. Carreira and J. Dubois, Journal of the American Chemical Society, 1994,
116, 10825-10826.

141. D. A. Evans, J. C. Barrow, J. L. Leighton, A. J. Robichaud and M. J. Sefkow,
Abstr Pap Am Chem S, 1995, 209, 49-Orgn.

142. K. D. Freeman-Cook and R. L. Halcomb, Journal of Organic Chemistry, 2000, 65,
6153-6159.

143. T. Kawamata, M. Nagatomo and M. Inoue, Journal of the American Chemical
Society, 2017, 139, 1814-1817.

144. S. Nakamura, H. Sato, Y. Hirata, N. Watanabe and S. Hashimoto, Tetrahedron,
2005, 61, 11078-11106.

145. D. A. Nicewicz, A. D. Satterfield, D. C. Schmitt and J. S. Johnson, Journal of the
American Chemical Society, 2008, 130, 17281-+.

146. K. C. Nicolaou, E. W. Yue, S. Lagreca, A. Nadin, Z. Yang, J. E. Leresche, T.
Tsuri, Y. Naniwa and F. Dericcardis, Chem-Eur J, 1995, 1, 467-494.

241

147. D. Stoermer, S. Caron and C. H. Heathcock, Journal of Organic Chemistry, 1996,
61, 9115-9125.

148. K. Tomooka, M. Kikuchi, K. Igawa, M. Suzuki, P. H. Keong and T. Nakai,
Angewandte Chemie-International Edition, 2000, 39, 4502-+.

149. F. Y. Lim and N. P. Keller, Nat Prod Rep, 2014, 31, 1277-1286.
150. Y. H. Chooi and Y. Tang, J Org Chem, 2012, 77, 9933-9953.
151. R. J. Cox and T. J. Simpson, Method Enzymol, 2009, 459, 49-78.
152. R. J. Cox, Organic & Biomolecular Chemistry, 2007, 5, 2010-2026.
153. K. Scherlach, D. Boettger, N. Remme and C. Hertweck, Natural Product Reports,

2010, 27, 869-886.
154. R. Cox, Nat Prod Rep, 2014, 31, 1405-1424.
155. J. D. Bergstrom, C. Dufresne, G. F. Bills, M. Nallinomstead and K. Byrne, Annu

Rev Microbiol, 1995, 49, 607-639.
156. K. M. Byrne, B. H. Arison, M. Nallinomstead and L. Kaplan, Journal of Organic

Chemistry, 1993, 58, 1019-1024.
157. C. I. Liu, W. Y. Jeng, W. J. Chang, T. P. Ko and A. H. Wang, The Journal of

biological chemistry, 2012, 287, 18750-18757.
158. B. Bonsch, V. Belt, C. Bartel, N. Duensing, M. Koziol, C. M. Lazarus, A. M.

Bailey, T. J. Simpson and R. J. Cox, Chem Commun, 2016, 52, 6777-6780.
159. G. F. Bills, F. Pelaez, J. D. Polishook, M. T. Diezmatas, G. H. Harris, W. H.

Clapp, C. Dufresne, K. M. Byrne, M. Nallinomstead, R. G. Jenkins, M. Mojena, L.
Y. Huang and J. D. Bergstrom, Mycol Res, 1994, 98, 733-739.

160. R. J. Cox, F. Glod, D. Hurley, C. M. Lazarus, T. P. Nicholson, B. A. M. Rudd, T.
J. Simpson, B. Wilkinson and Y. Zhang, Chem Commun, 2004, DOI:
10.1039/b411973h, 2260-2261.

161. B. S. Moore and C. Hertweck, Natural Product Reports, 2002, 19, 70-99.
162. L. K. Xiang and B. S. Moore, J Bacteriol, 2003, 185, 399-404.
163. R. Fujii, Y. Matsu, A. Minami, S. Nagamine, I. Takeuchi, K. Gomi and H. Oikawa,

Org Lett, 2015, 17, 5658-5661.
164. K. Williams, A. J. Szwalbe, N. P. Mulholland, J. L. Vincent, A. M. Bailey, C. L.

Willis, T. J. Simpson and R. J. Cox, Angewandte Chemie-International Edition,
2016, 55, 6783-6787.

165. J. Bai, D. Yan, T. Zhang, Y. Guo, Y. Liu, Y. Zou, M. Tang, B. Liu, Q. Wu, S. Yu,
Y. Tang and Y. Hu, Angewandte Chemie, 2017, 56, 4782-4786.

166. M. Sato, F. Yagishita, T. Mino, N. Uchiyama, A. Patel, Y. H. Chooi, Y. Goda, W.
Xu, H. Noguchi, T. Yamamoto, K. Hotta, K. N. Houk, Y. Tang and K. Watanabe,
Chembiochem, 2015, 16, 2294-2298.

167. G. H. Harris, C. Dufresne, H. Joshua, L. A. Koch, D. L. Zink, P. M. Salmon, K. E.
Goklen, M. M. Kurtz, D. J. Rew, J. D. Bergstrom and K. E. Wilson, Bioorg Med
Chem Lett, 1995, 5, 2403-2408.

168. A. V. Qualley, J. R. Widhalm, F. Adebesin, C. M. Kish and N. Dudareva, P Natl
Acad Sci USA, 2012, 109, 16383-16388.

169. J. Piel, C. Hertweck, P. R. Shipley, D. M. Hunt, M. S. Newman and B. S. Moore,
Chem Biol, 2000, 7, 943-955.

170. W. Xu, Y. H. Chooi, J. W. Choi, S. Li, J. C. Vederas, N. A. Da Silva and Y. Tang,
Angewandte Chemie, 2013, 52, 6472-6475.

242

171. 1993.
172. A. M. Bolger, M. Lohse and B. Usadel, Bioinformatics, 2014, 30, 2114-2120.
173. A. Bankevich, S. Nurk, D. Antipov, A. A. Gurevich, M. Dvorkin, A. S. Kulikov, V.

M. Lesin, S. I. Nikolenko, S. Pham, A. D. Prjibelski, A. V. Pyshkin, A. V. Sirotkin,
N. Vyahhi, G. Tesler, M. A. Alekseyev and P. A. Pevzner, J Comput Biol, 2012,
19, 455-477.

174. M. Stanke, R. Steinkamp, S. Waack and B. Morgenstern, Nucleic Acids Res,
2004, 32, W309-312.

175. T. Weber, K. Blin, S. Duddela, D. Krug, H. U. Kim, R. Bruccoleri, S. Y. Lee, M. A.
Fischbach, R. Muller, W. Wohlleben, R. Breitling, E. Takano and M. H. Medema,
Nucleic Acids Res, 2015, 43, W237-W243.

176. X. Yu, F. Liu, Y. Zou, M. C. Tang, L. Hang, K. N. Houk and Y. Tang, Journal of
the American Chemical Society, 2016, DOI: 10.1021/jacs.6b09464.

177. J. L. R. Tudela and D. W. Denning, Lancet Infect Dis, 2017, 17, 1111-1113.
178. Nat Microbiol, 2017, 2.
179. P. T. McKeny and P. M. Zito, in StatPearls, Treasure Island (FL), 2020.
180. G. I. Lepesheva and M. R. Waterman, Bba-Gen Subjects, 2007, 1770, 467-477.
181. G. I. Lepesheva and M. R. Waterman, Mol Cell Endocrinol, 2004, 215, 165-170.
182. S. Emami, P. Tavangar and M. Keighobadi, Eur J Med Chem, 2017, 135, 241-

259.
183. E. Mellado, T. M. Diaz-Guerra, M. Cuenca-Estrella and J. L. Rodriguez-Tudela, J

Clin Microbiol, 2001, 39, 2431-2438.
184. R. Becher and S. G. Wirsel, Appl Microbiol Biotechnol, 2012, 95, 825-840.
185. R. A. Paul, S. M. Rudramurthy, J. F. Meis, J. W. Mouton and A. Chakrabarti,

Antimicrob Agents Ch, 2015, 59, 6615-6619.
186. T. D. Edlind, K. W. Henry, K. A. Metera and S. K. Katiyar, Med Mycol, 2001, 39,

299-302.
187. L. Rodero, E. Mellado, A. C. Rodriguez, A. Salve, L. Guelfand, P. Cahn, M.

Cuenca-Estrella, G. Davel and J. L. Rodriguez-Tudela, Antimicrob Agents Ch,
2003, 47, 3653-3656.

188. J. Loffler, S. L. Kelly, H. Hebart, U. Schumacher, C. LassFlorl and H. Einsele,
Fems Microbiol Lett, 1997, 151, 263-268.

189. K. Scherlach, J. Schuemann, H. M. Dahse and C. Hertweck, J Antibiot (Tokyo),
2010, 63, 375-377.

190. J. Yaegashi, M. B. Praseuth, S. W. Tyan, J. F. Sanchez, R. Entwistle, Y. M.
Chiang, B. R. Oakley and C. C. Wang, Org Lett, 2013, 15, 2862-2865.

191. S. Chen, Z. Liu, Y. Liu, Y. Lu, L. He and Z. She, Beilstein J Org Chem, 2015, 11,
1187-1193.

192. H. Zhou, X. Sun, N. Li, Q. Che, T. Zhu, Q. Gu and D. Li, Org Lett, 2016, 18,
4670-4673.

193. O. D. Hensens, C. F. Wichmann, J. M. Liesch, F. L. Vanmiddlesworth, K. E.
Wilson and R. E. Schwartz, Tetrahedron, 1991, 47, 3915-3924.

194. R. E. Schwartz, C. Dufresne, J. E. Flor, A. J. Kempf, K. E. Wilson, T. Lam, J.
Onishi, J. Milligan, R. A. Fromtling, G. K. Abruzzo, R. Jenkins, K. Glazomitsky, G.
Bills, L. Zitano, S. M. Delval and M. N. Omstead, J Antibiot, 1991, 44, 463-471.

243

195. S. Matsukuma, T. Ohtsuka, H. Kotaki, H. Shirai, T. Sano, K. Watanabe, N.
Nakayama, Y. Itezono, M. Fujiu, N. Shimma, K. Yokose and T. Okuda, J Antibiot,
1992, 45, 151-159.

196. S. Matsukuma, T. Ohtsuka, H. Kotaki, H. Shirai, T. Sano, K. Watanabe, N.
Nakayama, Y. Itezono, M. Fujiu, N. Shimma and et al., J Antibiot (Tokyo), 1992,
45, 151-159.

197. Y. Aoki, T. Yamazaki, M. Kondoh, Y. Sudoh, N. Nakayama, Y. Sekine, H.
Shimada and M. Arisawa, J Antibiot, 1992, 45, 160-170.

198. Y. Aoki, F. Yoshihara, M. Kondoh, Y. Nakamura, N. Nakayama and M. Arisawa,
Antimicrob Agents Ch, 1993, 37, 2662-2667.

199. S. Jendrzejewski and P. Ermann, Tetrahedron Lett, 1993, 34, 615-618.
200. T. Honda, A. Satoh, T. Yamada, T. Hayakawa and K. Kanai, J Chem Soc Perk T

1, 1998, DOI: DOI 10.1039/a707534k, 397-405.
201. I. Paterson and T. Nowak, Tetrahedron Lett, 1996, 37, 8243-8246.
202. X. F. Yu, V. Cojocaru, G. Mustafa, O. M. H. Salo-Ahen, G. I. Lepesheva and R.

C. Wade, J Mol Recognit, 2015, 28, 59-73.
203. H. J. Cools, C. Bayon, S. Atkins, J. A. Lucas and B. A. Fraaije, Pest Manag Sci,

2012, 68, 1034-1040.
204. Z. Ma, T. J. Proffer, J. L. Jacobs and G. W. Sundin, Appl Environ Microbiol, 2006,

72, 2581-2585.
205. L. A. Kelley, S. Mezulis, C. M. Yates, M. N. Wass and M. J. E. Sternberg, Nat

Protoc, 2015, 10, 845-858.
206. F. Sievers, A. Wilm, D. Dineen, T. J. Gibson, K. Karplus, W. Z. Li, R. Lopez, H.

McWilliam, M. Remmert, J. Soding, J. D. Thompson and D. G. Higgins, Mol Syst
Biol, 2011, 7.

207. J. Yaegashi, B. R. Oakley and C. C. C. Wang, J Ind Microbiol Biot, 2014, 41,
433-442.

