Lawrence Berkeley National Laboratory Recent Work

Title
PHASE SHIFTS IN pi+ -p SCATTERING AT 310 Mev

Permalink

https://escholarship.org/uc/item/5f6335ng

Journal

Physical Review, 122(3)

Author

Ypsilantis, Tom

Publication Date

1959-11-18

UNIVERSITY OF CALIFORNIA

Ernest O. Saurence

 Radiation SaboratoryTWO-WEEK LOAN COPY
This is a Library Círculating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

BERKELEY, CALIFORNIA

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

UAIVERSITY OF CALIFORNLA
Lawrence Radiation Laboratory Berkeley. California

Contract No. W-7405-eng-48

PHASE SHITTS IN $\operatorname{tr}^{+}-\mathrm{p}$ SCATTERING AT 310 Mev
James H. Foote, Owen Chamberlain, Erneat H. Rogers. Herbart M. Steiner, Clyde Wlegand, and Tom Ypiliantis

November 18, 1959

PHASE SHIFTS IN $\pi^{+}-p$ SCATTERINO AT $310 \mathrm{Me*}$ James H. Foote, Owen Chamberlain, Ernest H. Rogers. Herbert M. Steiner, Clyde Wiegand, and Tom Ypitlantis

Lawrence Radintion Laboratory
University of Callfornia Berkeloy. California

November 18. 1959

In an experimental program recently completed at the 184-inch eynchrocyclotron in Berkeley, data were obtained on elantic $\boldsymbol{\pi}^{+}+p$ scattering at a laboratory energy of 310 Mev. Quantitiee measured were the differential crose mection, the total cross section, and the polarization of the recoll protone ail a function of center-of-mace angie. We have analyzed the data in terme of S. $D_{\text {. }}$ and D waves and have obtained only one acceptable molution. The reaultant eet of phase thifte to of the Fermi type. The D-wave phace shifts are emall but definitely needed to obtain an adequate fit to the data. ${ }^{1}$ Owing to the relatively high accuracy of the crone-section data and the inclusion of the reoulte of the polarization experiment, the errors on the small phase ohift have beon reduced to lees than 1°. The differential-croes-aection and polarination data are given in Tables 1 and II.

We performed the phame ehif analyais with the aid of an IBM 704 clectronic computer, uaing a search program that obtained a leant-aquares fit to the data. ${ }^{2}$ The computer was able to accept and vary a set of phase shifte until it had located a relative minimum for the quantity M, where

$$
M=\Sigma_{i}\left(\frac{X_{i}^{(c)}-x_{i}^{(e)}}{\sigma_{i}(c)}\right)^{2}
$$

[^0]$X_{i}{ }^{(e)}=$ the quantity X_{i} as obtained from experiment. $\sigma_{i}^{(e)}=$ the experimental error (atandard deviation) on $X_{i}^{(e)}$. $X_{i}{ }^{(c)}$ w the quantity X_{i} as calculated by the computer from a given et of phemerinith.

The aum is taken over all the experimental quantities.
In order to obtain overy minimum that might lie in the neighborhood of the true colution, random sete of phase shifte were fed into the computer and
 eolutions were found. The solutiong in each cluster agreed to within a few in tenthe of a degree in every phase ahift, All the 27 minima were obtained at leaet five times fexcept for a few with very large M values). Asauming that the relative minima are randomly spaced and can be entered with equal ease, the probability of having miened an acceptable set is less than 1%.

Early in the analysis it became evident that a good fit to the data could not be obtained by using S and P waves only. Thus. D wavec were also allowed in the random search while the phase ahifs relating to higher-order orbital angular-momentum states were assumed negligible. Coulomb scattering was included in the analysis by assuming that the nuclear and Coulomb phese shifis could be added to give a total phase shift. ${ }^{3}$

Of the 27 solutions tound in the random search, all but five have negligible probabilities of lying in the vicinity of the true solution. Thin conciusion asames that the errors on the experimental pointe are independent and normally dis. tributed so that the M valuee of the solutions are atatiotically dignificant. The five possible solutions are presented in Table III. The corresponding curves of the differential crosa-section and polarimation are given in Fige. 1 and 2. Also shown is the inadequate fit with oniy S and P waves.

Of these five solutions, all but solution a can be eliminated. Our recent experimental differential-croas-section data at omall angles (not included in the random search or listed in Table I) definitely indicate that the interference between the Coulomb and nuclear scattering is contructive. This rules out solutions b and e. Set c is of the Minami type and is unreasonable because of ite large $\delta_{33^{\prime}}$ the low-energy behavior of ite phase shifte, and ite disagreement with the requiremente of the diaperion relations. ${ }^{4}$ This leavea only solutions a (Formi type) and dis (Yang type). When tentativo valued of the recently obtained crose-section data are included in the analyois, the Yang eet is found to be approximately $1 / 10$ a probable as the Fermi set. Furthermore, the Yang-type alution does not satiafy the disperion relations. 5 We therefore conclude that a ts the only allowed solution.

The errors (standard deviations) associated with thit solution were derived from the extor matrix and aro preanted in Table IV. The lack of lenowledge of the total inolantic croas ooction at this energy regulte in additional uncertainty in the phase shifte. Ueing recent theoretical ${ }^{6}$ and experimental ${ }^{7}$ resules concerning pion production by pions, weatimate that the total inelastic cross eection at 310 Mev is lese than 1 millibarn. Even this emall amount of inelantic scattering can ceuse variations in the phase shifte listed in Table III. However, our calculations indicate that these changee would probably be within the limits eet by the errort in Table IV.

We can compare our final set of phase hifte with the resulte of other experimente and with theory. The real part of the forward elàic ecattering amplitude, calculated by uning solution agrees with the reaulte of the dispercion relatione when the value of 0.08 to used for the renormalized, unationalized, pion-nucleon coupling constant. Our value of a_{3} is consistent with other experiments at energien above the resonance region in that it also
talle below the atraight line paseing through the low-energy points on a ChewLow plot. 9 The emall p-wave phase thift a_{31} is now known quite accurately at 310 Mev. Ite aign is negative, in agreement with the effective-range approach of Chew and Low ${ }^{9}$ and with other experimental sesults. ${ }^{10}$ The 5 -wave phate hifit a_{3} has more negative value than is indicated by a linear extrapolation of the low-energy data, bat the discropancy is not ao great as that found when oniy S and P waves are allowed.

Finally, wo compare our experimentally determined D-wave phase ohifta with the predictions of Chew, Coldberger. Low, and Nambu ll baeed on the diepersion relations. They predict $\sigma_{33}=0.3^{\circ}$ and $6_{35}=-2.5^{\circ}$ at our energy. How good are these predictions? Chew ${ }^{12}$ eatimates that the errors introduced In thoee theoretically calculated phase ahife should be less than $\mathbf{3 0 \%}$ ti one ancumes that the effects of the pion-pion interaction are negligible. Thus the differences between our D-wave phace shifts and those obtained from theory suggest that the pion-pion interaction may be uignificant in describing pionnucleon ocattering.

We would like to acknowledge the invaluable aisistance given us during the experimental work by Mr. James T. Vale and the rect of the 184-inch cyclotron persomel. We greatly appreciate ouggeatione concerning the phaceshift analysis by Mr. Kent K. Curtis and Mr. Edwin M. Towater of the Mathematical and Computing Section of the Theoretical Group.

Eootnotes

1. The D-wave phase shifte agree with those found by E. L. Grigoriev and N. A. Mitin at 307 Mev. See Proceedinge of 1959 International Conference on Phyoica of Gligh-Energy Particles (at Kiev), summary by B. Pontecorvo on Pion-Nucleon Scattering and Single Pion Production in Pion-Nucleon and Nucleon-Nucloon Interactions (p. 35 of the unpublished report).
2. The experimental methode used to obtain the data given here and the detaile of the analysis will be deacribed fully in the Physical Review at a later date. Data recently obtained on the amall-angle differential crose section and the total crose section will also be presented then along with the completed analysia. When thece recently obtained data are included, the errors on all the phase shifte are expected to be less than 1°.
3. This method of including Coulemb scattering is eqsentially that used by Stapp. Ypailantie, and Metropolis, Fhys. Rev. 105, 302 (1957). Firat order relativistic corrections to the Coulomb ahifts were obtained uting formulae (3) of E. T. Solmitz, Phys. Rev. 94, 1799 (1954). Discusaions with Dr. Stapp clarifying the Coulomb ocateriag problem are gratefully acknowledged.
4. S. J. Lindenbaum and R. M. Sternheimer. Phyo. Rev. 110, 1174 (1958).
5. W. C. Davidon and M. L. Goldberger. Phya. Rev. 104. 1119 (1956); W. Gilbert and G. R. Screaton Phyb. Rev. 104, 1758 (1956).
6. L. S. Rodberg. Fhyt. Rev. Lettere 3, 58 (1959).
7. W. J. Willis, ${ }^{+}-\mathrm{p}$ Interactione at 500 Mev. Phys. Rev. (to be publiahed).
8. T. D. Spearman, Dispergion Relation Predictions for to p Scattering (to be publiahed).
9. C. F. Ghew and E. F. Low, Phys. Rev. 101. 1570 (1956).
10. For example, Mukhin, Ozerov, Pontekorvo, Grigoriev, and Mitin, Proceedings of the CERN Sympolium on High-Einergy Accelerators and
Pion Physice, Geneva, 1956 (Buropean Organieation of Nuclear Research, Geneva, 1956). Vol. IL p. 221.
11. Chew, Coldbetger, Low, and Nambu, Phyo. Rav. 106, 1337 (1957).
12. We wish to thank Profescor Chew for several enlightening Alscuabions.

Table 1. Experimental diffarential-crom-gection meaburements. Statiatical and independent bygtematic errors are included. Not shown is an error of $+7 \%$ and -5% in the absolute differential-cross-section acale.

Table III. The atatiotically probable alution found in the random search. They were obtained by using the data in Tables I and II. The orbital and total anguiar momentum atates repreaented by each thit are aloo given. The last column refers to the type of solutions that can arise in this king of analysis.

Solution		Nuclear phase thifte (deg)				M	Type of Solution
	a_{3}	0_{31}	${ }^{a_{33}}$	8_{33}	${ }^{6} 35$		
	($2=0$	1	1	2	21		
	15¢	1/2	$3 / 2$	$3 / 2$	5/2)		
a	-17.7	-3.5	133.2	2.4	-5.0	7.1	Ferma
b	23.2	-11988	-158.2	-2.2	3.0	11.9	Similar to a except all signs reversed.
c	-6.4	-22.6	-2.1	134.1	0.9	20.2	Minami
d	-23.2	121.9	158.3	8.0	-5.0	25.0	Yang
e	24.0	8.0	-134.6	3.1	-0.4	25.2	Similar to a except that aigno of S- and P-wave ohitte are reversed.

Table IV. The errors (atandard deviations) in the phase shifte of solution a. The data in Tables I and II were used to obtain these errors.

Phace Shift	Error (deg)
a_{3}	1.2
a_{31}	0.8
a_{33}	1.7
6_{33}	0.5
6_{35}	0.6

Ftgure Legends

Fig. 1. Experimental aiferential-crone-ection measurement given in Table I. Solid curves represent the g-P-D phase-shift fita to the data as determined by the molutions in Table Inh. Shown in the figure are the entire curve for oolution a and the small-angle behavior of oolution a. Letters in parentheses indicate polution that give curve very bimilar to the ones plotted. The Minami (c) and Yang (d) solutions are olightly poorer fits to the data than is the Fermi (a). The S-P fit is thown only in the region where it noticeably deviaten from the data.

Fig. 2. Iixperimental recoil-proton polarization measurementa given in Table H. Solid curves represent the S-P-D phase-shift fits to the data as determined by the colutions in Table III. To avoid confusion, eote band e nre not shown; they give resulte dimilar to curves a and \mathbf{c} respectively. The bent S-P fit is indicated by the dashed curve.

[^0]: This work was performed under the aunpices of the U. S. Atomic Energy Commiasion.

