
Lawrence Berkeley National Laboratory
LBL Publications

Title

Parallel Runtime Interface for Fortran (PRIF) Design Document, Revision 0.2

Permalink

https://escholarship.org/uc/item/5f7747b1

Authors

Rouson, Damian
Richardson, Brad
Bonachea, Dan
et al.

Publication Date

2023-12-20

DOI

10.25344/S4DG6S

Copyright Information

This work is made available under the terms of a Creative Commons Attribution-
NoDerivatives License, available at https://creativecommons.org/licenses/by-nd/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5f7747b1
https://escholarship.org/uc/item/5f7747b1#author
https://creativecommons.org/licenses/by-nd/4.0/
https://escholarship.org
http://www.cdlib.org/

Parallel Runtime Interface for Fortran (PRIF) Design Document
Revision 0.2

Damian Rouson, Brad Richardson, Dan Bonachea, Katherine Rasmussen
Lawrence Berkeley National Laboratory, USA

lbl-flang@lbl.gov

Lawrence Berkeley National Laboratory Technical Report (LBNL-2001563)
doi:10.25344/S4DG6S

December 20, 2023

Abstract
This design document proposes an interface to support the parallel features of Fortran, named the

Parallel Runtime Interface for Fortran (PRIF). PRIF is a proposed solution in which the runtime library
is responsible for coarray allocation, deallocation and accesses, image synchronization, atomic operations,
events, and teams. In this interface, the compiler is responsible for transforming the invocation of
Fortran-level parallel features into procedure calls to the necessary PRIF procedures. The interface is
designed for portability across shared- and distributed-memory machines, different operating systems,
and multiple architectures. Implementations of this interface are intended as an augmentation for the
compiler’s own runtime library. With an implementation-agnostic interface, alternative parallel runtime
libraries may be developed that support the same interface. One benefit of this approach is the ability to
vary the communication substrate. A central aim of this document is to define a parallel runtime interface
in standard Fortran syntax, which enables us to leverage Fortran to succinctly express various properties
of the procedure interfaces, including argument attributes.

WORK IN PROGRESS This is still a draft a may continue to evolve. Feedback and questions
should be directed to lbl-flang@lbl.gov.

Changelog
Revision 0.1

• Identify parallel features
• Sketch out high-level design
• Decide on compiler vs PRIF responsibilities

Revision 0.2 (Dec. 2023)
• Change name to PRIF
• Fill out interfaces to all PRIF provided procedures
• Write descriptions, discussions and overviews of various features, arguments, etc.

1

https://doi.org/10.25344/S4DG6S

Contents
1 Problem description 3

2 Proposed solution 3
2.1 Parallel Runtime Interface for Fortran (PRIF) . 3
2.2 Delegation of tasks between the Fortran compiler and the PRIF implementation 4

2.2.1 Caffeine - LBL’s Implementation of the Parallel Runtime Interface for Fortran 4
2.3 Types Descriptions . 5

2.3.1 Fortran Intrinsic Derived types . 5
2.3.2 Constants in ISO_FORTRAN_ENV . 5
2.3.3 PRIF specific types . 6

2.4 Procedure descriptions . 6
2.4.1 Common arguments . 6
2.4.2 Integer and Pointer Arguments . 7
2.4.3 Program startup and shutdown . 7
2.4.4 Image Queries . 8
2.4.5 Coarrays . 10
2.4.6 Synchronization . 19
2.4.7 Events and Notifications . 22
2.4.8 Teams . 23
2.4.9 Collectives . 24
2.4.10 Atomic Memory Operation . 26

3 Future Work 29

4 Acknowledgments 30

5 Copyright 30

6 Legal Disclaimer 30

2

1 Problem description
In order to be fully Fortran 2023 compliant, a Fortran compiler needs support for what is commonly referred
to as coarray fortran, which includes features related to parallelism. These features include the following
statements, subroutines, functions, types, and kind type parameters:

• Statements:
– Synchronization: sync all, sync images, sync memory, sync team
– Events: event post, event wait
– Notify: notify wait
– Error termination: error stop
– Locks: lock, unlock
– Failed images: fail image
– Teams: form team, change team
– Critical sections: critical, end critical

• Intrinsic functions: num_images, this_image, lcobound, ucobound, team_number, get_team,
failed_images, stopped_images, image_status, coshape, image_index

• Intrinsic subroutines:
– Collective subroutines: co_sum, co_max, co_min, co_reduce, co_broadcast
– Atomic subroutines: atomic_add, atomic_and, atomic_cas, atomic_define, atomic_fetch_add,

atomic_fetch_and, atomic_fetch_or, atomic_fetch_xor, atomic_or, atomic_ref, atomic_xor
– Other subroutines: event_query

• Types, kind type parameters, and values:
– Intrinsic derived types: event_type, team_type, lock_type, notify_type
– Atomic kind type parameters: atomic_int_kind and atomic_logical_kind
– Values: stat_failed_image, stat_locked, stat_locked_other_image, stat_stopped_image,

stat_unlocked, stat_unlocked_failed_image

In addition to being able to support syntax related to the above features, compilers will also need to be able
to handle new execution concepts such as image control. The image control concept affects the behaviors of
some statements that were introduced in Fortran expressly for supporting parallel programming, but image
control also affects the behavior of some statements that pre-existed parallelism in standard Fortran:

• Image control statements:
– Pre-existing statements: allocate, deallocate, stop, end, a call referencing move_alloc with

coarray arguments
– New statements: sync all, sync images, sync memory, sync team, change team, end team,

critical, end critical, event post, event wait, form team, lock, unlock, notify wait

One consequence of the statements being categorized as image control statements will be the need to restrict
code movement by optimizing compilers.

2 Proposed solution
This design document proposes an interface to support the above features, named Parallel Runtime Interface
for Fortran (PRIF). By defining an implementation-agnostic interface, we envision facilitating the development
of alternative parallel runtime libraries that support the same interface. One benefit of this approach is the
ability to vary the communication substrate. A central aim of this document is to use a parallel runtime
interface in standard Fortran syntax, which enables us to leverage Fortran to succinctly express various
properties of the procedure interfaces, including argument attributes. See Rouson and Bonachea (2022) for
additional details.

2.1 Parallel Runtime Interface for Fortran (PRIF)
The Parallel Runtime Interface for Fortran is a proposed interface in which the PRIF implementation is
responsible for coarray allocation, deallocation and accesses, image synchronization, atomic operations, events,

3

https://doi.org/10.25344/S4459B

and teams. In this interface, the compiler is responsible for transforming the invocation of Fortran-level
parallel features to add procedure calls to the necessary PRIF procedures. Below you can find a table
showing the delegation of tasks between the compiler and the PRIF implementation. The interface is designed
for portability across shared and distributed memory machines, different operating systems, and multiple
architectures. The Caffeine implementation, see below, of the Parallel Runtime Interface for Fortran plans
to support the following architectures: x86_64, PowerPC64, AArch64, with the possibility of supporting
more as requested. Implementations of this interface are intended as an augmentation for the compiler’s own
runtime library. While the interface can support multiple implementations, we envision needing to build
the PRIF implementation as part of installing the compiler. The procedures and types provided for direct
invocation as part of the PRIF implementation shall be defined in a Fortran module with the name prif.

2.2 Delegation of tasks between the Fortran compiler and the PRIF implemen-
tation

The following table outlines which tasks will be the responsibility of the Fortran compiler and which tasks
will be the responsibility of the PRIF implementation. A ‘X’ in the “Fortran compiler” column indicates
that the compiler has the primary responsibility for that task, while a ‘X’ in the “PRIF implementation”
column indicates that the compiler will invoke the PRIF implementation to perform the task and the PRIF
implementation has primary responsibility for the task’s implementation. See the Procedure descriptions for
the list of PRIF implementation procedures that the compiler will invoke.

Tasks Fortran
compiler

Runtime
library

Establish and initialize static coarrays prior to main X
Track corank of coarrays X

Track local coarrays for implicit deallocation when exiting a scope X
Initialize a coarray with SOURCE= as part of allocate-stmt X
Provide lock_type coarrays for critical-constructs X

Provide final subroutine for all derived types that are finalizable or that have
allocatable components that appear in a coarray X

Track variable allocation status, including resulting from use of move_alloc X
Track coarrays for implicit deallocation at end-team-stmt X

Allocate and deallocate a coarray X
Reference a coindexed-object X

Team stack abstraction X
form-team-stmt, change-team-stmt, end-team-stmt X

Intrinsic functions related to Coarray Fortran, like num_images, etc X
Atomic subroutines X

Collective subroutines X
Synchronization statements X

Events X
Locks X

critical-construct X

2.2.1 Caffeine - LBL’s Implementation of the Parallel Runtime Interface for Fortran

Implementations of some parts of the Parallel Runtime Interface for Fortran exist in Caffeine, a parallel runtime
library targeting coarray Fortran compilers. Caffeine will continue to be developed in order to fully implement
the proposed Parallel Runtime Interface for Fortran. Caffeine uses the GASNet-EX exascale networking
middleware but with the implementation-agnostic interface and the ability to vary the communication
substrate, it might also be possible to develop wrappers that would support the proposed interface with
OpenCoarrays, which uses the Message Passing Interface (MPI).

4

https://go.lbl.gov/caffeine
https://go.lbl.gov/gasnet
https://github.com/sourceryinstitute/opencoarrays
https://www.mpi-forum.org

2.3 Types Descriptions
2.3.1 Fortran Intrinsic Derived types

These types will be defined in the PRIF implementation and it is proposed that the compiler will use a
rename to use the PRIF implementation definitions for these types in the compiler’s implementation of the
ISO_Fortran_Env module. This enables the internal structure of each given type to be tailored as needed for
a given implementation.

2.3.1.1 prif_team_type

• implementation for team_type from ISO_Fortran_Env

2.3.1.2 prif_event_type

• implementation for event_type from ISO_Fortran_Env

2.3.1.3 prif_lock_type

• implementation for lock_type from ISO_Fortran_Env

2.3.1.4 prif_notify_type

• implementation for notify_type from ISO_Fortran_Env

2.3.2 Constants in ISO_FORTRAN_ENV

These values will be defined in the PRIF implementation and it is proposed that the compiler will use a
rename to use the PRIF implementation definitions for these values in the compiler’s implementation of the
ISO_Fortran_Env module.

2.3.2.1 PRIF_ATOMIC_INT_KIND This shall be set to an implementation defined value from the
INTEGER_KINDS array.

2.3.2.2 PRIF_ATOMIC_LOGICAL_KIND This shall be set to an implementation defined value from the
LOGICAL_KINDS array.

2.3.2.3 PRIF_CURRENT_TEAM This shall be a value of type integer(c_int) that is defined by the imple-
mentation and shall be distinct from the values PRIF_INITIAL_TEAM and PRIF_PARENT_TEAM

2.3.2.4 PRIF_INITIAL_TEAM This shall be a value of type integer(c_int) that is defined by the imple-
mentation and shall be distinct from the values PRIF_CURRENT_TEAM and PRIF_PARENT_TEAM

2.3.2.5 PRIF_PARENT_TEAM This shall be a value of type integer(c_int) that is defined by the imple-
mentation and shall be distinct from the values PRIF_CURRENT_TEAM and PRIF_INITIAL_TEAM

2.3.2.6 PRIF_STAT_FAILED_IMAGE This shall be a value of type integer(c_int) that is defined by the
implementation to be negative if the implementation cannot detect failed images and positive otherwise and
shall be distinct from PRIF_STAT_LOCKED, PRIF_STAT_LOCKED_OTHER_IMAGE, PRIF_STAT_STOPPED_IMAGE,
PRIF_STAT_UNLOCKED and PRIF_STAT_UNLOCKED_FAILED_IMAGE.

2.3.2.7 PRIF_STAT_LOCKED This shall be a value of type integer(c_int) that is defined by the
implementation and shall be distinct from PRIF_STAT_FAILED_IMAGE, PRIF_STAT_LOCKED_OTHER_IMAGE,
PRIF_STAT_STOPPED_IMAGE, PRIF_STAT_UNLOCKED and PRIF_STAT_UNLOCKED_FAILED_IMAGE.

5

2.3.2.8 PRIF_STAT_LOCKED_OTHER_IMAGE This shall be a value of type integer(c_int) that is de-
fined by the implementation and shall be distinct from PRIF_STAT_FAILED_IMAGE, PRIF_STAT_LOCKED,
PRIF_STAT_STOPPED_IMAGE, PRIF_STAT_UNLOCKED and PRIF_STAT_UNLOCKED_FAILED_IMAGE.

2.3.2.9 PRIF_STAT_STOPPED_IMAGE This shall be a positive value of type integer(c_int) that is de-
fined by the implementation and shall be distinct from PRIF_STAT_FAILED_IMAGE, PRIF_STAT_LOCKED,
PRIF_STAT_LOCKED_OTHER_IMAGE, PRIF_STAT_UNLOCKED and PRIF_STAT_UNLOCKED_FAILED_IMAGE.

2.3.2.10 PRIF_STAT_UNLOCKED This shall be a value of type integer(c_int) that is defined
by the implementation and shall be distinct from PRIF_STAT_FAILED_IMAGE, PRIF_STAT_LOCKED,
PRIF_STAT_LOCKED_OTHER_IMAGE, PRIF_STAT_STOPPED_IMAGE and PRIF_STAT_UNLOCKED_FAILED_IMAGE.

2.3.2.11 PRIF_STAT_UNLOCKED_FAILED_IMAGE This shall be a value of type integer(c_int) that is
defined by the implementation and shall be distinct from PRIF_STAT_FAILED_IMAGE, PRIF_STAT_LOCKED,
PRIF_STAT_LOCKED_OTHER_IMAGE, PRIF_STAT_STOPPED_IMAGE and PRIF_STAT_UNLOCKED.

2.3.3 PRIF specific types

These types are used to represent opaque “descriptors” that can be passed to and from the PRIF implemen-
tation between operations.

2.3.3.1 prif_coarray_handle

• a derived type provided by the PRIF implementation and that will be opaque to the compiler that
represents a reference to a coarray variable is used for coarray operations.

• It maintains some “context data” on a per-image basis, which the compiler may use to support proper
implementation of coarray arguments, especially with respect to automatic deallocation of coarrays at
an end team statement. This is accessed/set with the provided procedures prif_get_context_handle
and prif_set_context_handle. PRIF does not interpret the contents of this context data in any way,
and it is only accessible on the current image. The context data is a property of the allocated coarray
object, and is thus shared between all handles and aliases that refer to the same coarray allocation
(i.e. those created from a call to prif_alias_create).

2.3.3.2 prif_critical_type

• a derived type provided by the PRIF implementation that will be opaque to the compiler that will be
used for implementing critical blocks

2.4 Procedure descriptions
The PRIF API provides implementations of parallel Fortran features, as specified in Fortran 2023. For any
given prif_* procedure that corresponds to a Fortran procedure or statement of similar name, the constraints
and semantics associated with each argument to the prif_ procedure match those of the analogous argument
to the parallel Fortran feature, except where this document explicitly specifies otherwise. For any given
prif_* procedure that corresponds to a Fortran procedure or statement of similar name, the constraints and
semantics match those of the analogous parallel Fortran feature. Specifically, any required synchronization is
performed by the PRIF implementation unless otherwise specified.

Where possible, optional arguments are used for optional parts or different forms of statements or procedures.
In some cases the different forms or presence of certain options change the return type or rank, and in those
cases a generic interface with different specific procedures is used.

2.4.1 Common arguments

• team

6

– a value of type prif_team_type that identifies a team that the current image is a member of
– shall not be present with team_number except in a call to prif_form_team

• team_number
– a value of type integer(c_intmax_t) that identifies a sibling team or in a call to prif_form_team,

which team to become a member of
– shall not be present with team except in a call to prif_form_team

• image_num, any argument identifying an image
– May identify the current image

2.4.2 Integer and Pointer Arguments

There are several categories of arguments where the PRIF implementation will need pointers and/or integers.
These fall broadly into the following categories.

1. integer(c_intptr_t): Anything containing a pointer representation where the compiler might be
expected to perform pointer arithmetic

2. type(c_ptr) and type(c_funptr): Anything containing a pointer to an object/function where the
compiler is expected only to pass it (back) to the PRIF implementation

3. integer(c_size_t): Anything containing an object size, in units of bytes or elements, i.e. shape,
element_size, etc.

4. integer(c_ptrdiff_t): strides between elements for non-contiguous coarray accesses
5. integer(c_int): Integer arguments corresponding to image index and stat arguments. It is expected

that the most common arguments appearing in Fortran code will be of default integer, it is expected
that this will correspond with that kind, and there is no reason to expect these arguments to have
values that would not be representable in this kind.

6. integer(c_intmax_t): Bounds, cobounds, indices, coindices, and any other argument to an intrinsic
procedure that accepts or returns an arbitrary integer.

The compiler is responsible for generating values and temporary variables as necessary to pass arguments of
the correct type/size, and perform conversions when needed.

2.4.2.1 sync-stat-list

• stat : This argument is intent(out) representing the presence and type of any error that occurs. A
value of zero, indicates no error occurred. It is of type integer(c_int), to minimize the frequency
that integer conversions will be needed. If a different kind of integer is used as the argument, it is the
compiler’s responsibility to use an intermediate variable as the argument to the PRIF implementation
procedure and provide conversion to the actual argument.

• errmsg or errmsg_alloc : There are two optional arguments for this, one which is allocatable and one
which is not. It is the compiler’s responsibility to ensure the appropriate optional argument is passed.
If no error occurs, the definition status of the actual argument is unchanged.

2.4.3 Program startup and shutdown

For a program that uses parallel Fortran features, the compiler shall insert calls to prif_init and prif_stop.
These procedures will initialize and terminate the parallel runtime. prif_init shall be called prior to any
other calls to the PRIF implementation.

2.4.3.1 prif_init

• Description: This procedure will initialize the parallel environment.
• Procedure Interface:

subroutine prif_init(exit_code)
integer(c_int), intent(out) :: exit_code

end subroutine

7

• Further argument descriptions:
– exit_code: a non-zero value indicates an error occurred during initialization.

2.4.3.2 prif_stop

• Description: This procedure synchronizes all executing images, cleans up the parallel runtime
environment, and terminates the program. Calls to this procedure do not return.

• Procedure Interface:

subroutine prif_stop(quiet, stop_code_int, stop_code_char)
logical(c_bool), intent(in) :: quiet
integer(c_int), intent(in), optional :: stop_code_int
character(len=*), intent(in), optional :: stop_code_char

end subroutine

• Further argument descriptions: At most one of the arguments stop_code_int or stop_code_char
shall be supplied.

– quiet: if this argument has the value .true., no output of signaling exceptions or stop code will
be produced. Note that in the case the statement does not contain this optional part, the compiler
should provide the value .false..

– stop_code_int: is used as the process exit code if it is provided. Otherwise, the process exit code
is 0.

– stop_code_char: is written to the unit identified by the named constant OUTPUT_UNIT from the
intrinsic module ISO_FORTRAN_ENV if provided.

2.4.3.3 prif_error_stop

• Description: This procedure terminates all executing images Calls to this procedure do not return.
• Procedure Interface:

subroutine prif_error_stop(quiet, stop_code_int, stop_code_char)
logical(c_bool), intent(in) :: quiet
integer(c_int), intent(in), optional :: stop_code_int
character(len=*), intent(in), optional :: stop_code_char

end subroutine

• Further argument descriptions: At most one of the arguments stop_code_int or stop_code_char
shall be supplied.

– quiet: if this argument has the value .true., no output of signaling exceptions or stop code will
be produced. Note that in the case the statement does not contain this optional part, the compiler
should provide the value .false..

– stop_code_int: is used as the process exit code if it is provided. Otherwise, the process exit code
is a non-zero value.

– stop_code_char: is written to the unit identified by the named constant ERROR_UNIT from the
intrinsic module ISO_FORTRAN_ENV if provided.

2.4.3.4 prif_fail_image

• Description: causes the executing image to cease participating in program execution without initiating
termination. Calls to this procedure do not return.

• Procedure Interface:

subroutine prif_fail_image()
end subroutine

2.4.4 Image Queries

2.4.4.1 prif_num_images

8

• Description: Query the number of images in the specified or current team.
• Procedure Interface:

subroutine prif_num_images(team, team_number, image_count)
type(prif_team_type), intent(in), optional :: team
integer(c_intmax_t), intent(in), optional :: team_number
integer(c_int), intent(out) :: image_count

end subroutine

• Further argument descriptions:
– team and team_number: optional arguments that specify a team. They shall not both be present

in the same call.

2.4.4.2 prif_this_image

• Description: Determine the image index or cosubscripts with respect to a given coarray of the current
image in a given team or the current team. team, or the cosubscripts

• Procedure Interface:

interface prif_this_image
subroutine prif_this_image_no_coarray(team, image_index)

type(prif_team_type), intent(in), optional :: team
integer(c_int), intent(out) :: image_index

end subroutine

subroutine prif_this_image_with_coarray(&
coarray_handle, team, cosubscripts)

type(prif_coarray_handle), intent(in) :: coarray_handle
type(prif_team_type), intent(in), optional :: team
integer(c_intmax_t), intent(out) :: cosubscripts(:)

end subroutine

subroutine prif_this_image_with_dim(&
coarray_handle, dim, team, cosubscript)

type(prif_coarray_handle), intent(in) :: coarray_handle
integer(c_int), intent(in) :: dim
type(prif_team_type), intent(in), optional :: team
integer(c_intmax_t), intent(out) :: cosubscript

end subroutine
end interface

• Further argument descriptions:
– cosubscripts: the cosubcripts that would identify the current image in the specified team when

used as coindices for the specified coarray
– dim: identify which of the elements from cosubscripts should be returned as the cosubscript

value
– cosubscript: the element identified by dim or the array cosubscripts that would have been

returned without the dim argument present

2.4.4.3 prif_failed_images

• Description: Determine the image indices of known failed images, if any.
• Procedure Interface:

subroutine prif_failed_images(team, failed_images)
type(prif_team_type), intent(in), optional :: team
integer(c_int), allocatable, intent(out) :: failed_images(:)

9

end subroutine

2.4.4.4 prif_stopped_images

• Description: Determine the image indices of images known to have initiated normal termination, if
any.

• Procedure Interface:

subroutine prif_stopped_images(team, stopped_images)
type(prif_team_type), intent(in), optional :: team
integer(c_int), allocatable, intent(out) :: stopped_images(:)

end subroutine

2.4.4.5 prif_image_status

• Description: Determine the image execution state of an image
• Procedure Interface:

impure elemental subroutine prif_image_status(image, team, image_status)
integer(c_int), intent(in) :: image
type(prif_team_type), intent(in), optional :: team
integer(c_int), intent(out) :: image_status

end subroutine

• Further argument descriptions:
– image: the image index of the image in the given or current team for which to return the execution

status
– team: if provided, the team from which to identify the image
– image_status: has the value PRIF_STAT_FAILED_IMAGE if the identified image has failed,

PRIF_STAT_STOPPED_IMAGE if the identified image has initiated normal termination, or zero.

2.4.5 Coarrays

2.4.5.1 Common arguments

• coarray_handle
– Argument for many of the coarray access procedures
– scalar of type prif_coarray_handle
– is a handle for the established coarray
– represents the distributed object of the coarray in the team in which it was established

• coindices
– Argument for many of the coarray access procedures
– 1d assumed-shape array of type integer
– correspond to the coindices appearing in a coindexed object

• value or local_buffer
– Argument for put and get operations
– assumed-rank array of type(*) or type(c_ptr)
– It is the value to be sent in a put operation, and is assigned the value retrieved in the case of a

get operation
• image_num

– identifies the image to be communicated with
– is the image index in the initial team
– may be the current image

2.4.5.2 Allocation and deallocation Calls to prif_allocate and prif_deallocate are collective
operations, while other allocation/deallocation operations are not. Note that a call to move_alloc with
coarray arguments is also a collective operation, as described in the section below.

10

2.4.5.2.1 Static coarray allocation The compiler is responsible to generate code that collectively runs
prif_allocate once for each static coarray and initializes them where applicable.

2.4.5.2.2 prif_allocate

• Description: This procedure allocates memory for a coarray. This call is collective over the current
team. Calls to prif_allocate will be inserted by the compiler when there is an explicit coarray
allocation or at the beginning of a program to allocate space for statically declared coarrays in the
source code. The PRIF implementation will store the coshape information in order to internally track
it during the lifetime of the coarray.

• Procedure Interface:

subroutine prif_allocate(&
lcobounds, ucobounds, lbounds, ubounds, element_length, &
final_func, coarray_handle, allocated_memory, &
stat, errmsg, errmsg_alloc)

integer(kind=c_intmax_t), intent(in) :: lcobounds(:), ucobounds(:)
integer(kind=c_intmax_t), intent(in) :: lbounds(:), ubounds(:)
integer(kind=c_size_t), intent(in) :: element_length
type(c_funptr), intent(in) :: final_func
type(prif_coarray_handle), intent(out) :: coarray_handle
type(c_ptr), intent(out) :: allocated_memory
integer(c_int), intent(out), optional :: stat
character(len=*), intent(inout), optional :: errmsg
character(len=:), intent(inout), allocatable, optional :: errmsg_alloc

end subroutine

• Further argument descriptions:
– lcobounds and ucobounds: Shall be the lower and upper bounds of the codimensions of the

coarray being allocated. Shall be 1d arrays with the same dimensions as each other. The
cobounds shall be sufficient to have a unique index for every image in the current team. I.e.
product(coshape(coarray)) >= num_images.

– lbounds and ubounds: Shall be the the lower and upper bounds of the local portion of the array.
Shall be 1d arrays with the same dimensions as each other.

– element_length: size of a single element of the array in bytes
– final_func: Shall be a function pointer to the final subroutine, if any, for derived types. It is the

responsibility of the compiler to generate such a subroutine if necessary to clean up allocatable
components, typically with calls to prif_deallocate_non_symmetric. It may also be necessary
to modify the allocation status of the coarray variable, especially in the case that it was allocated
through a dummy argument. Its interface should be equivalent to the following Fortran interface
subroutine coarray_cleanup(handle, stat, errmsg) bind(C)

type(prif_coarray_handle), intent(in) :: handle
integer(c_int), intent(out) :: stat
character(len=:), intent(out), allocatable :: errmsg

end subroutine
or to the following equivalent C prototype
void coarray_cleanup(

prif_handle_t* handle, int* stat, CFI_cdesc_t* errmsg)
The coarray handle can then be interrogated to determine the memory address and size of the data
in order to orchestrate calling any necessary final subroutines or deallocation of any allocatable
components, or the context data to orchestrate modifying the allocation status of a local variable
portion of the coarray. It will be invoked once on each image, upon deallocation of the coarray.

– coarray_handle: Represents the distributed object of the coarray on the corresponding team.
The handle is created by the PRIF implementation and the compiler uses it for subsequent
coindexed-object references of the associated coarray and for deallocation of the associated coarray.

11

– allocated_memory: A pointer to the local block of allocated memory for the Fortran object. The
compiler is responsible for associating the local Fortran object with this memory, and initializing
it if necessary.

2.4.5.2.3 prif_allocate_non_symmetric

• Description: This procedure is used to allocate components of coarray objects.
• Procedure Interface:

subroutine prif_allocate_non_symmetric(&
size_in_bytes, allocated_memory, stat, errmsg, errmsg_alloc)

integer(kind=c_size_t) :: size_in_bytes
type(c_ptr), intent(out) :: allocated_memory
integer(c_int), intent(out), optional :: stat
character(len=*), intent(inout), optional :: errmsg
character(len=:), intent(inout), allocatable, optional :: errmsg_alloc

end subroutine

• Further argument descriptions:
– size_in_bytes: The size, in bytes, of the object to be allocated.
– allocated_memory: A pointer to the block of allocated memory for the Fortran object. The

compiler is responsible for associating the Fortran object with this memory, and initializing it if
necessary.

2.4.5.2.4 prif_deallocate

• Description: This procedure releases memory previously allocated for all of the coarrays associated
with the handles in coarray_handles. This means that any local objects associated with this memory
become invalid. The compiler will insert calls to this procedure when exiting a local scope where implicit
deallocation of a coarray is mandated by the standard and when a coarray is explicitly deallocated
through a deallocate-stmt in the source code. This call is collective over the current team, and the
provided list of handles must denote corresponding coarrays (in the same order on every image) that
were allocated by the current team using prif_allocate and not yet deallocated. It will start with
a synchronization over the current team, and then the final subroutine for each coarray (if any) will
be called. A synchronization will also occur before control is returned from this procedure, after all
deallocation has been completed.

• Procedure Interface:

subroutine prif_deallocate(&
coarray_handles, stat, errmsg, errmsg_alloc)

type(prif_coarray_handle), intent(in) :: coarray_handles(:)
integer(c_int), intent(out), optional :: stat
character(len=*), intent(inout), optional :: errmsg
character(len=:), intent(inout), allocatable, optional :: errmsg_alloc

end subroutine

• Argument descriptions:
– coarray_handles: Is an array of all of the handles for the coarrays that shall be deallocated.

2.4.5.2.5 prif_deallocate_non_symmetric

• Description: This procedure releases memory previously allocated by a call to prif_allocate_non_symmetric.
• Procedure Interface:

subroutine prif_deallocate_non_symmetric(&
mem, stat, errmsg, errmsg_alloc)

type(c_ptr), intent(in) :: mem

12

integer(c_int), intent(out), optional :: stat
character(len=*), intent(inout), optional :: errmsg
character(len=:), intent(inout), allocatable, optional :: errmsg_alloc

end subroutine

• Further argument descriptions:
– mem: Pointer to the block of memory to be released.

2.4.5.2.6 prif_alias_create

• Description: Create a new coarray handle for an existing coarray, such as in a prif_change_team or
to pass to a coarray dummy argument (especially in the case that the cobounds are different)

• Procedure Interface:

subroutine prif_alias_create(&
source_handle, alias_co_lbounds, alias_co_ubounds, alias_handle)

type(prif_coarray_handle), intent(in) :: source_handle
integer(c_intmax_t), intent(in) :: alias_co_lbounds(:)
integer(c_intmax_t), intent(in) :: alias_co_ubounds(:)
type(prif_coarray_handle), intent(out) :: alias_handle

end subroutine

• Further argument descriptions:
– source_handle: a handle (which may itself be an alias) to the existing coarray for which an alias

is to be created
– alias_co_lbounds and alias_co_ubounds: the cobounds to be used for the new alias
– alias_handle: a new alias to the existing coarray

2.4.5.2.7 prif_alias_destroy

• Description: Delete an alias to a coarray
• Procedure Interface:

subroutine prif_alias_destroy(alias_handle)
type(prif_coarray_handle), intent(in) :: alias_handle

end subroutine

• Further argument descriptions:
– alias_handle: the alias to be destroyed

2.4.5.2.8 move_alloc This is not provided by PRIF, but should be easily implemented through manipu-
lation of prif_coarray_handles. Note that calls to prif_set_context_data will likely be required as part
of the operation. Note that move_alloc with coarray arguments is an image control statement that requires
synchronization, so the compiler should likely insert call(s) to prif_sync_all as part of the implementation.

2.4.5.3 Queries

2.4.5.3.1 prif_set_context_data

• Description: This procedure stores a c_ptr associated with a coarray handle for future retrieval.
A typical usage would be to store a reference to the actual variable whose allocation status must be
changed in the case that the coarray is deallocated.

• Procedure Interface:

subroutine prif_set_context_data(coarray_handle, context_data)
type(prif_coarray_handle), intent(in) :: coarray_handle
type(c_ptr), intent(in) :: context_data

end subroutine

13

2.4.5.3.2 prif_get_context_data

• Description: This procedure returns the c_ptr provided in the most recent call to prif_set_context_data
with the same coarray handle

• Procedure Interface:

subroutine prif_get_context_data(coarray_handle, context_data)
type(prif_coarray_handle), intent(in) :: coarray_handle
type(c_ptr), intent(out) :: context_data

end subroutine

2.4.5.3.3 prif_base_pointer

• Description: This procedure returns a C pointer value referencing the base of the coarray elements
on a given image and may be used in conjunction with various communication operations. Pointer
arithmetic operations may be performed with the value and the results provided as input to the
get/put_*raw or atomic procedures (none of which are guaranteed to perform validity checks, e.g., to
detect out-of-bounds access violations). It is not valid to dereference the produced pointer value or the
result of any operations performed with it on any image except for the identified image.

• Procedure Interface:

subroutine prif_base_pointer(&
coarray_handle, coindices, team, team_number, ptr)

type(prif_coarray_handle), intent(in) :: coarray_handle
integer(c_intmax_t), intent(in) :: coindices(:)
type(prif_team_type), optional, intent(in) :: team
integer(c_intmax_t), optional, intent(in) :: team_number
integer(c_intptr_t), intent(out) :: ptr

end subroutine

2.4.5.3.4 prif_local_data_size

• Description: This procedure returns the size of the coarray data associated with the current image.
This will be equal to the following expression of the arguments provided to prif_allocate at the time
that the coarray was allocated; element_length * product(ubounds-lbounds+1)

• Procedure Interface:

subroutine prif_local_data_size(coarray_handle, data_size)
type(prif_coarray_handle), intent(in) :: coarray_handle
integer(c_size_t), intent(out) :: data_size

end subroutine

2.4.5.3.5 prif_lcobound

• Description: returns the lower cobound(s) of the coarray referred to by the coarray_handle. It is the
compiler’s responsibility to convert to a different kind if the kind argument appears.

• Procedure Interface:

interface prif_lcobound
subroutine prif_lcobound_with_dim(coarray_handle, dim, lcobound)

type(prif_coarray_handle), intent(in) :: coarray_handle
integer(c_int), intent(in) :: dim
integer(c_intmax_t), intent(out):: lcobound

end subroutine
subroutine prif_lcobound_no_dim(coarray_handle, lcobounds)

type(prif_coarray_handle), intent(in) :: coarray_handle
integer(c_intmax_t), intent(out) :: lcobounds(:)

14

end subroutine
end interface

• Further argument descriptions:
– dim: which codimension of the coarray to report the lower cobound of
– lcobound: the lower cobound of the given dimension
– lcobounds: an array of the size of the corank of the coarray, returns the lower cobounds of the

given coarray

2.4.5.3.6 prif_ucobound

• Description: returns the upper cobound(s) of the coarray referred to by the coarray_handle. It is the
compiler’s responsibility to convert to a different kind if the kind argument appears.

• Procedure Interface:

interface prif_ucobound
subroutine prif_ucobound_with_dim(coarray_handle, dim, ucobound)

type(prif_coarray_handle), intent(in) :: coarray_handle
integer(c_int), intent(in) :: dim
integer(c_intmax_t), intent(out):: ucobound

end subroutine
subroutine prif_ucobound_no_dim(coarray_handle, ucobounds)

type(prif_coarray_handle), intent(in) :: coarray_handle
integer(c_intmax_t), intent(out) :: ucobounds(:)

end subroutine
end interface

• Further argument descriptions:
– dim: which codimension of the coarray to report the upper cobound of
– ucobound: the upper cobound of the given dimension
– ucobounds: an array of the size of the corank of the coarray, returns the upper cobounds of the

given coarray

2.4.5.3.7 prif_coshape

• Description:
• Procedure Interface:

subroutine prif_coshape(coarray_handle, sizes)
type(prif_coarray_handle), intent(in) :: coarray_handle
integer(c_size_t), intent(out) :: sizes(:)

end subroutine

• Further argument descriptions:
– sizes: an array of the size of the corank of the coarray, returns the difference between the upper

and lower cobounds + 1

2.4.5.3.8 prif_image_index

• Description: returns the index of the image identified by the coindices provided in the sub argument
with the given coarray on the identified team or the current team if no team is identified

• Procedure Interface:

subroutine prif_image_index(&
coarray_handle, sub, team, team_number, image_index)

type(prif_coarray_handle), intent(in) :: coarray_handle
integer(c_intmax_t), intent(in) :: sub(:)
type(prif_team_type), intent(in), optional :: team

15

integer(c_int), intent(in), optional :: team_number
integer(c_int), intent(out) :: image_index

end subroutine

• Further argument descriptions:
– team and team_number: optional arguments that specify a team. They shall not both be present

in the same call.
– sub: A list of integers that identify a specific image in the identified or current team when

interpreted as coindices for the provided coarray.

2.4.5.4 Access Coarray accesses will maintain serial dependencies for the issuing image. Any data access
ordering between images is defined only with respect to ordered segments. Note that for put operations,
“local completion” means that the provided arguments are no longer needed (e.g. their memory can be freed
once the procedure has returned).

2.4.5.4.1 Common Arguments

• notify_ptr: optional pointer on the identified image to the notify variable that should be updated on
completion of the put operation. The referenced variable shall be of type prif_notify_type. If this
argument is not present, no notification is performed.

2.4.5.4.2 prif_put

• Description: This procedure assigns to the elements of a coarray, when the elements to be assigned
to are contiguous in linear memory on both sides. The compiler can use this to implement assign-
ment to a coindexed-object. It need not call this procedure when the coarray reference is not a
coindexed-object. This procedure blocks on local completion.

• Procedure Interface:

subroutine prif_put(&
coarray_handle, coindices, value, first_element_addr, &
team, team_number, notify_ptr, stat, errmsg, errmsg_alloc)

type(prif_coarray_handle), intent(in) :: coarray_handle
integer(c_intmax_t), intent(in) :: coindices(:)
type(*), dimension(..), intent(in), contiguous :: value
type(c_ptr), intent(in) :: first_element_addr
type(prif_team_type), optional, intent(in) :: team
integer(c_intmax_t), optional, intent(in) :: team_number
integer(c_intptr_t), optional, intent(in) :: notify_ptr
integer(c_int), intent(out), optional :: stat
character(len=*), intent(inout), optional :: errmsg
character(len=:), intent(inout), allocatable, optional :: errmsg_alloc

end subroutine

• Further argument descriptions:
– first_element_addr: The address of the local data in the coarray corresponding to the first

element to be assigned to on the identified image

2.4.5.4.3 prif_put_raw

• Description: Assign to size number of bytes on given image, starting at remote pointer, copying
from local_buffer.

• Procedure Interface:

subroutine prif_put_raw(&
image_num, local_buffer, remote_ptr, notify_ptr, size, &
stat, errmsg, errmsg_alloc)

16

integer(c_int), intent(in) :: image_num
type(c_ptr), intent(in) :: local_buffer
integer(c_intptr_t), intent(in) :: remote_ptr
integer(c_intptr_t), optional, intent(in) :: notify_ptr
integer(c_size_t), intent(in) :: size
integer(c_int), intent(out), optional :: stat
character(len=*), intent(inout), optional :: errmsg
character(len=:), intent(inout), allocatable, optional :: errmsg_alloc

end subroutine

• Further argument descriptions:
– image_num: identifies the image to be written to in the initial team
– local_buffer: pointer to the contiguous local data which should be copied to the identified image.
– remote_ptr: pointer to where on the identified image the data should be written
– size: how much data is to be transferred in bytes

2.4.5.4.4 prif_put_raw_strided

• Description: Assign to memory on given image, starting at remote pointer, copying from local_buffer,
progressing through local_buffer in local_buffer_stride increments and through remote memory in
remote_ptr_stride increments, transferring extent number of elements in each dimension.

• Procedure Interface:

subroutine prif_put_raw_strided(&
image_num, local_buffer, remote_ptr, element_size, extent, &
remote_ptr_stride, local_buffer_stride, notify_ptr, &
stat, errmsg, errmsg_alloc)

integer(c_int), intent(in) :: image_num
type(c_ptr), intent(in) :: local_buffer
integer(c_intptr_t), intent(in) :: remote_ptr
integer(c_size_t), intent(in) :: element_size
integer(c_size_t), intent(in) :: extent(:)
integer(c_ptrdiff_t), intent(in) :: remote_ptr_stride(:)
integer(c_ptrdiff_t), intent(in) :: local_buffer_stride(:)
integer(c_intptr_t), optional, intent(in) :: notify_ptr
integer(c_int), intent(out), optional :: stat
character(len=*), intent(inout), optional :: errmsg
character(len=:), intent(inout), allocatable, optional :: errmsg_alloc

end subroutine

• Further argument descriptions:
– remote_ptr_stride, local_buffer_stride and extent must each have size equal to the rank

of the referenced coarray.
– image_num: identifies the image to be written to in the initial team
– local_buffer: pointer to the local data which should be copied to the identified image.
– remote_ptr: pointer to where on the identified image the data should be written
– element_size: The size of each element in bytes
– extent: How many elements in each dimension should be transferred
– remote_ptr_stride: The stride (in units of bytes) between elements in each dimension on the

specified image. Each component of stride may independently be positive or negative, but (together
with extent) must specify a region of distinct (non-overlapping) elements. The striding starts at
the remote_ptr.

– local_buffer_stride: The stride between elements in each dimension in the local buffer. Each
component of stride may independently be positive or negative, but (together with extent) must
specify a region of distinct (non-overlapping) elements. The striding starts at the local_buffer.

17

2.4.5.4.5 prif_get

• Description: This procedure fetches data in a coarray from a specified image, when the elements
are contiguous in linear memory on both sides. The compiler can use this to implement reads
from a coindexed-object. It need not call this procedure when the coarray reference is not a
coindexed-object. This procedure blocks until the requested data has been successfully assigned to
the value argument.

• Procedure Interface:

subroutine prif_get(&
coarray_handle, coindices, first_element_addr, value, team, team_number, &
stat, errmsg, errmsg_alloc)

type(prif_coarray_handle), intent(in) :: coarray_handle
integer(c_intmax_t), intent(in) :: coindices(:)
type(c_ptr), intent(in) :: first_element_addr
type(*), dimension(..), intent(out), contiguous :: value
type(prif_team_type), optional, intent(in) :: team
integer(c_intmax_t), optional, intent(in) :: team_number
integer(c_int), intent(out), optional :: stat
character(len=*), intent(inout), optional :: errmsg
character(len=:), intent(inout), allocatable, optional :: errmsg_alloc

end subroutine

• Further argument descriptions:
– first_element_addr: The address of the local data in the coarray corresponding to the first

element to be fetched from the identified image

2.4.5.4.6 prif_get_raw

• Description: Fetch size number of contiguous bytes from given image, starting at remote pointer,
copying into local_buffer.

• Procedure Interface:

subroutine prif_get_raw(&
image_num, local_buffer, remote_ptr, size, &
stat, errmsg, errmsg_alloc)

integer(c_int), intent(in) :: image_num
type(c_ptr), intent(in) :: local_buffer
integer(c_intptr_t), intent(in) :: remote_ptr
integer(c_size_t), intent(in) :: size
integer(c_int), intent(out), optional :: stat
character(len=*), intent(inout), optional :: errmsg
character(len=:), intent(inout), allocatable, optional :: errmsg_alloc

end subroutine

• Further argument descriptions:
– image_num: identifies the image from which the data should be fetched in the initial team
– local_buffer: pointer to the contiguous local memory into which the retrieved data should be

written
– remote_ptr: pointer to where on the identified image the data begins
– size: how much data is to be transferred in bytes

2.4.5.4.7 prif_get_raw_strided

• Description: Copy from given image, starting at remote pointer, writing into local_buffer, pro-
gressing through local_buffer in local_buffer_stride increments and through remote memory in re-
mote_ptr_stride increments, transferring extent number of elements in each dimension.

18

• Procedure Interface:

subroutine prif_get_raw_strided(&
image_num, local_buffer, remote_ptr, element_size, extent, &
remote_ptr_stride, local_buffer_stride, &
stat, errmsg, errmsg_alloc)

integer(c_int), intent(in) :: image_num
type(c_ptr), intent(in) :: local_buffer
integer(c_intptr_t), intent(in) :: remote_ptr
integer(c_size_t), intent(in) :: element_size
integer(c_size_t), intent(in) :: extent(:)
integer(c_ptrdiff_t), intent(in) :: remote_ptr_stride(:)
integer(c_ptrdiff_t), intent(in) :: local_buffer_stride(:)
integer(c_int), intent(out), optional :: stat
character(len=*), intent(inout), optional :: errmsg
character(len=:), intent(inout), allocatable, optional :: errmsg_alloc

end subroutine

• Further argument descriptions:
– remote_ptr_stride, local_buffer_stride and extent must each have size equal to the rank

of the referenced coarray.
– image_num: identifies the image from which the data should be fetched in the initial team
– local_buffer: pointer to the local memory into which the retrieved data should be written
– remote_ptr: pointer to where on the identified image the data begins
– element_size: The size of each element in bytes
– extent: How many elements in each dimension should be transferred
– remote_ptr_stride: The stride (in units of bytes) between elements in each dimension on the

specified image. Each component of stride may independently be positive or negative, but (together
with extent) must specify a region of distinct (non-overlapping) elements. The striding starts at
the remote_ptr.

– local_buffer_stride: The stride between elements in each dimension in the local buffer. Each
component of stride may independently be positive or negative, but (together with extent) must
specify a region of distinct (non-overlapping) elements. The striding starts at the local_buffer.

2.4.6 Synchronization

2.4.6.1 prif_sync_memory

• Description: Ends one segment and begins another, waiting on pending communication operations
with other images.

• Procedure Interface:

subroutine prif_sync_memory(stat, errmsg, errmsg_alloc)
integer(c_int), intent(out), optional :: stat
character(len=*), intent(inout), optional :: errmsg
character(len=:), intent(inout), allocatable, optional :: errmsg_alloc

end subroutine

2.4.6.2 prif_sync_all

• Description: Performs a synchronization of all images in the current team.
• Procedure Interface:

subroutine prif_sync_all(stat, errmsg, errmsg_alloc)
integer(c_int), intent(out), optional :: stat
character(len=*), intent(inout), optional :: errmsg
character(len=:), intent(inout), allocatable, optional :: errmsg_alloc

19

end subroutine

2.4.6.3 prif_sync_images

• Description: Performs a synchronization with the listed images.
• Procedure Interface:

subroutine prif_sync_images(image_set, stat, errmsg, errmsg_alloc)
integer(c_int), intent(in), optional :: image_set(:)
integer(c_int), intent(out), optional :: stat
character(len=*), intent(inout), optional :: errmsg
character(len=:), intent(inout), allocatable, optional :: errmsg_alloc

end subroutine

• Further argument descriptions:
– image_set: The image inidices of the images in the current team with which to synchronize. Note,

if a scalar appears, the compiler should pass its value as a size 1 array, and if an asterisk (*)
appears, the compiler should not pass image_set.

2.4.6.4 prif_sync_team

• Description: Performs a synchronization with the images of the identified team.
• Procedure Interface:

subroutine prif_sync_team(team, stat, errmsg, errmsg_alloc)
type(prif_team_type), intent(in) :: team
integer(c_int), intent(out), optional :: stat
character(len=*), intent(inout), optional :: errmsg
character(len=:), intent(inout), allocatable, optional :: errmsg_alloc

end subroutine

• Further argument descriptions:
– team: Identifies the team to synchronize.

2.4.6.5 prif_lock

• Description: Waits until the identified lock variable is unlocked and then locks it if the acquired_lock
argument is not present. Otherwise it sets the acquired_lock argument to .false. if the identified
lock variable was locked, or locks the identified lock variable and sets the acquired_lock argument
to .true.. Note that if the identified lock variable was already locked by the current image an error
condition occurs.

• Procedure Interface:

subroutine prif_lock(&
image_num, lock_var_ptr, acquired_lock, &
stat, errmsg, errmsg_alloc)

integer(c_int), intent(in) :: image_num
integer(c_intptr_t), intent(in) :: lock_var_ptr
logical(c_bool), intent(out), optional :: acquired_lock
integer(c_int), intent(out), optional :: stat
character(len=*), intent(inout), optional :: errmsg
character(len=:), intent(inout), allocatable, optional :: errmsg_alloc

end subroutine

• Further argument descriptions:
– image_num: the image index in the initial team for the lock variable to be locked
– lock_var_ptr: a pointer to the base address of the lock variable to be locked on the identified

image, typically obtained from a call to prif_base_pointer

20

– acquired_lock: if present is set to .true. if the lock was locked by the current image, or set to
.false. otherwise

2.4.6.6 prif_unlock

• Description: Unlocks the identified lock variable. Note that if the identified lock variable was not
locked by the current image an error condition occurs.

• Procedure Interface:

subroutine prif_unlock(&
image_num, lock_var_ptr, stat, errmsg, errmsg_alloc)

integer(c_int), intent(in) :: image_num
integer(c_intptr_t), intent(in) :: lock_var_ptr
integer(c_int), intent(out), optional :: stat
character(len=*), intent(inout), optional :: errmsg
character(len=:), intent(inout), allocatable, optional :: errmsg_alloc

end subroutine

• Further argument descriptions:
– image_num: the image index in the initial team for the lock variable to be unlocked
– lock_var_ptr: a pointer to the base address of the lock variable to be unlocked on the identified

image, typically obtained from a call to prif_base_pointer

2.4.6.7 prif_critical

• Description: The compiler shall define a coarray, and establish (allocate) it in the initial team, that
shall only be used to begin and end the critical block. An efficient implementation will likely define
one for each critical block. The coarray shall be a scalar coarray of type prif_critical_type and the
associated coarray handle shall be passed to this procedure. This procedure waits until any other image
which has executed this procedure with a corresponding coarray handle has subsequently executed
prif_end_critical with the same coarray handle an identical number of times.

• Procedure Interface:

subroutine prif_critical(&
critical_coarray, stat, errmsg, errmsg_alloc)

type(prif_coarray_handle), intent(in) :: critical_coarray
integer(c_int), intent(out), optional :: stat
character(len=*), intent(inout), optional :: errmsg
character(len=:), intent(inout), allocatable, optional :: errmsg_alloc

end subroutine

• Further argument descriptions:
– critical_coarray: the handle for the prif_critical_type coarray associated with a given

critical construct

2.4.6.8 prif_end_critical

• Description: Completes execution of the critical construct associated with the provided coarray
handle.

• Procedure Interface:

subroutine prif_end_critical(critical_coarray)
type(prif_coarray_handle), intent(in) :: critical_coarray

end subroutine

• Further argument descriptions:
– critical_coarray: the handle for the prif_critical_type coarray associated with a given

critical construct

21

2.4.7 Events and Notifications

2.4.7.1 prif_event_post

• Description: Atomically increment the count of the event variable by one.
• Procedure Interface:

subroutine prif_event_post(&
image_num, event_var_ptr, stat, errmsg, errmsg_alloc)

integer(c_int), intent(in) :: image_num
integer(c_intptr_t), intent(in) :: event_var_ptr
integer(c_int), intent(out), optional :: stat
character(len=*), intent(inout), optional :: errmsg
character(len=:), intent(inout), allocatable, optional :: errmsg_alloc

end subroutine

• Further argument descriptions:
– image_num: the image index in the initial team for the event variable to be incremented
– event_var_ptr: a pointer to the base address of the event variable to be incremented on the

identified image, typically obtained from a call to prif_base_pointer

2.4.7.2 prif_event_wait

• Description: Wait until the count of the provided event variable is greater than or equal to until_count,
and then atomically decrement the count by that value. If until_count is not present it has the value
1.

• Procedure Interface:

subroutine prif_event_wait(&
event_var_ptr, until_count, stat, errmsg, errmsg_alloc)

integer(c_ptr), intent(in) :: event_var_ptr
integer(c_intmax_t), intent(in), optional :: until_count
integer(c_int), intent(out), optional :: stat
character(len=*), intent(inout), optional :: errmsg
character(len=:), intent(inout), allocatable, optional :: errmsg_alloc

end subroutine

• Further argument descriptions:
– event_var_ptr: a pointer to the event variable to be waited on
– until_count: the count of the given event variable to be waited for. Has the value 1 if not

provided.

2.4.7.3 prif_event_query

• Description: Query the count of an event.
• Procedure Interface:

subroutine prif_event_query(event_var_ptr, count, stat)
integer(c_ptr), intent(in) :: event_var_ptr
integer(c_intmax_t), intent(out) :: count
integer(c_int), intent(out), optional :: stat

end subroutine

• Further argument descriptions:
– event_var_ptr: a pointer to the event variable to be queried
– count: the current count of the given event variable.

22

2.4.7.4 prif_notify_wait

• Description: Wait on notification of a put operation

• Procedure Interface:

subroutine prif_notify_wait(&
notify_var_ptr, until_count, stat, errmsg, errmsg_alloc)

integer(c_ptr), intent(in) :: notify_var_ptr
integer(c_intmax_t), intent(in), optional :: until_count
integer(c_int), intent(out), optional :: stat
character(len=*), intent(inout), optional :: errmsg
character(len=:), intent(inout), allocatable, optional :: errmsg_alloc

end subroutine

• Further argument descriptions:

– notify_var_ptr: a pointer to the notify variable to be waited on. The referenced variable shall
be of type prif_notify_type.

– until_count: the count of the given notify variable to be waited for. Has the value 1 if not
provided.

2.4.8 Teams

Team creation forms a tree structure, where a given team may create multiple child teams. The initial team
is created by the prif_init procedure. Each subsequently created team’s parent team is then the current
team. Team membership is thus strictly hierarchical, following a single path along the tree formed by team
creation.

2.4.8.1 prif_form_team

• Description: Create teams. Each image receives a team value denoting the newly created team
containing all images in the current team which specify the same value for team_number.

• Procedure Interface:

subroutine prif_form_team(&
team_number, team, new_index, stat, errmsg, errmsg_alloc)

integer(c_intmax_t), intent(in) :: team_number
type(prif_team_type), intent(out) :: team
integer(c_int), intent(in), optional :: new_index
integer(c_int), intent(out), optional :: stat
character(len=*), intent(inout), optional :: errmsg
character(len=:), intent(inout), allocatable, optional :: errmsg_alloc

end subroutine

• Further argument descriptions:
– new_index: the index that the current image will have in its new team

2.4.8.2 prif_get_team

• Description: Get the team value for the current or an ancestor team. It returns the current team if
level is not present or has the value PRIF_CURRENT_TEAM, the parent team if level is present with the
value PRIF_PARENT_TEAM, or the initial team if level is present with the value PRIF_INITIAL_TEAM

• Procedure Interface:

subroutine prif_get_team(level, team)
integer(c_int), intent(in), optional :: level
type(prif_team_type), intent(out) :: team

end subroutine

23

• Further argument descriptions:
– level: identify which team value to be returned

2.4.8.3 prif_team_number

• Description: Return the team_number that was specified in the call to prif_form_team for the
specified team, or -1 if the team is the initial team. If team is not present, the current team is used.

• Procedure Interface:

subroutine prif_team_number(team, team_number)
type(prif_team_type), intent(in), optional :: team
integer(c_intmax_t), intent(out) :: team_number

end subroutine

2.4.8.4 prif_change_team

• Description: changes the current team to the specified team. For any associate names specified
in the CHANGE TEAM statement the compiler should follow a call to this procedure with calls to
prif_alias_create to create the alias coarray handle, and associate any non-coindexed references to
the associate name within the CHANGE TEAM construct with the selector.

• Procedure Interface:

subroutine prif_change_team(team, stat, errmsg, errmsg_alloc)
type(prif_team_type), intent(in) :: team
integer(c_int), intent(out), optional :: stat
character(len=*), intent(inout), optional :: errmsg
character(len=:), intent(inout), allocatable, optional :: errmsg_alloc

end subroutine

2.4.8.5 prif_end_team

• Description: Changes the current team to the parent team. During the execution of prif_end_team,
the PRIF implementation will deallocate any coarrays allocated during the change team construct.
Prior to invoking prif_end_team, the compiler is responsible for invoking prif_alias_destroy for
any prif_coarray_handle handles created as part of the change team statement.

• Procedure Interface:

subroutine prif_end_team(stat, errmsg, errmsg_alloc)
integer(c_int), intent(out), optional :: stat
character(len=*), intent(inout), optional :: errmsg
character(len=:), intent(inout), allocatable, optional :: errmsg_alloc

end subroutine

2.4.9 Collectives

2.4.9.1 Common arguments

• a
– Argument for all the collective subroutines: prif_co_broadcast, prif_co_max, prif_co_min,

prif_co_reduce, prif_co_sum,
– may be any type for co_broadcast or co_reduce, any numeric for co_sum, and integer, real, or

character for co_min or co_max
– is always intent(inout)
– for co_max, co_min, co_reduce, co_sum it is assigned the value computed by the collective

operation, if no error conditions occurs and if result_image is absent, or the executing image is
the one identified by result_image, otherwise a becomes undefined

24

– for co_broadcast, the value of the argument on the source_image is assigned to the a argument
on all other images

• source_image or result_image
– These arguments are of type integer(c_int), to minimize the frequency that integer conversions

will be needed.

2.4.9.2 prif_co_broadcast

• Description: Broadcast value to images
• Procedure Interface:

subroutine prif_co_broadcast(&
a, source_image, stat, errmsg, errmsg_alloc)

type(*), intent(inout), contiguous, target :: a(..)
integer(c_int), intent(in) :: source_image
integer(c_int), optional, intent(out) :: stat
character(len=*), intent(inout), optional :: errmsg
character(len=:), intent(inout), allocatable, optional :: errmsg_alloc

end subroutine

2.4.9.3 prif_co_max

• Description: Compute maximum value across images
• Procedure Interface:

subroutine prif_co_max(&
a, result_image, stat, errmsg, errmsg_alloc)

type(*), intent(inout), contiguous, target :: a(..)
integer(c_int), intent(in), optional :: result_image
integer(c_int), intent(out), optional :: stat
character(len=*), intent(inout), optional :: errmsg
character(len=:), intent(inout), allocatable, optional :: errmsg_alloc

end subroutine

2.4.9.4 prif_co_min

• Description: Compute minimum value across images
• Procedure Interface:

subroutine prif_co_min(&
a, result_image, stat, errmsg, errmsg_alloc)

type(*), intent(inout), contiguous, target :: a(..)
integer(c_int), intent(in), optional :: result_image
integer(c_int), intent(out), optional :: stat
character(len=*), intent(inout), optional :: errmsg
character(len=:), intent(inout), allocatable, optional :: errmsg_alloc

end subroutine

2.4.9.5 prif_co_reduce

• Description: Generalized reduction across images
• Procedure Interface:

subroutine prif_co_reduce(&
a, operation, result_image, stat, errmsg, errmsg_alloc)

type(*), intent(inout), contiguous, target :: a(..)
type(c_funptr), value :: operation

25

integer(c_int), intent(in), optional :: result_image
integer(c_int), intent(out), optional :: stat
character(len=*), intent(inout), optional :: errmsg
character(len=:), intent(inout), allocatable, optional :: errmsg_alloc

end subroutine

2.4.9.6 prif_co_sum

• Description: Compute sum across images
• Procedure Interface:

subroutine prif_co_sum(&
a, result_image, stat, errmsg, errmsg_alloc)

type(*), intent(inout), contiguous, target :: a(..)
integer(c_int), intent(in), optional :: result_image
integer(c_int), intent(out), optional :: stat
character(len=*), intent(inout), optional :: errmsg
character(len=:), intent(inout), allocatable, optional :: errmsg_alloc

end subroutine

2.4.10 Atomic Memory Operation

All atomic operations are blocking operations.

2.4.10.1 Common arguments

• atom_remote_ptr
– Argument for all of the atomic subroutines
– is type integer(c_intptr_t)
– is the location of the atomic variable on the identified image to be operated on
– it is the responsibility of the compiler to perform the necessary operations on the coarray or

coindexed actual argument to get the relevant remote pointer
• image_num

– identifies the image on which the atomic operation is to be performed
– is the image index in the initial team

2.4.10.2 Non-fetching Atomic Operations Perform specified operation on a variable in a coarray
atomically.

2.4.10.2.1 Common argument

• value: value to perform the operation with

2.4.10.2.2 prif_atomic_add, Addition

subroutine prif_atomic_add(atom_remote_ptr, image_num, value, stat)
integer(c_intptr_t), intent(in) :: atom_remote_ptr
integer(c_int), intent(in) :: image_num
integer(atomic_int_kind), intent(in) :: value
integer(c_int), intent(out), optional :: stat

end subroutine

2.4.10.2.3 prif_atomic_and, Bitwise And

subroutine prif_atomic_and(atom_remote_ptr, image_num, value, stat)
integer(c_intptr_t), intent(in) :: atom_remote_ptr

26

integer(c_int), intent(in) :: image_num
integer(atomic_int_kind), intent(in) :: value
integer(c_int), intent(out), optional :: stat

end subroutine

2.4.10.2.4 prif_atomic_or, Bitwise Or

subroutine prif_atomic_or(atom_remote_ptr, image_num, value, stat)
integer(c_intptr_t), intent(in) :: atom_remote_ptr
integer(c_int), intent(in) :: image_num
integer(atomic_int_kind), intent(in) :: value
integer(c_int), intent(out), optional :: stat

end subroutine

2.4.10.2.5 prif_atomic_xor, Bitwise Xor

subroutine prif_atomic_xor(atom_remote_ptr, image_num, value, stat)
integer(c_intptr_t), intent(in) :: atom_remote_ptr
integer(c_int), intent(in) :: image_num
integer(atomic_int_kind), intent(in) :: value
integer(c_int), intent(out), optional :: stat

end subroutine

2.4.10.3 Atomic Fetch Operations Perform specified operation on a variable in a coarray atomically
and save its original value.

2.4.10.3.1 Common arguments

• value: value to perform the operation with
• old: is set to the initial value of the atomic variable

2.4.10.3.2 prif_atomic_fetch_add, Addition

subroutine prif_atomic_fetch_add(&
atom_remote_ptr, image_num, value, old, stat)

integer(c_intptr_t), intent(in) :: atom_remote_ptr
integer(c_int), intent(in) :: image_num
integer(atomic_int_kind), intent(in) :: value
integer(atomic_int_kind), intent(out) :: old
integer(c_int), intent(out), optional :: stat

end subroutine

2.4.10.3.3 prif_atomic_fetch_and, Bitwise And

subroutine prif_atomic_fetch_and(&
atom_remote_ptr, image_num, value, old, stat)

integer(c_intptr_t), intent(in) :: atom_remote_ptr
integer(c_int), intent(in) :: image_num
integer(atomic_int_kind), intent(in) :: value
integer(atomic_int_kind), intent(out) :: old
integer(c_int), intent(out), optional :: stat

end subroutine

27

2.4.10.3.4 prif_atomic_fetch_or, Bitwise Or

subroutine prif_atomic_fetch_or(&
atom_remote_ptr, image_num, value, old, stat)

integer(c_intptr_t), intent(in) :: atom_remote_ptr
integer(c_int), intent(in) :: image_num
integer(atomic_int_kind), intent(in) :: value
integer(atomic_int_kind), intent(out) :: old
integer(c_int), intent(out), optional :: stat

end subroutine

2.4.10.3.5 prif_atomic_fetch_xor, Bitwise Xor

subroutine prif_atomic_fetch_xor(&
atom_remote_ptr, image_num, value, old, stat)

integer(c_intptr_t), intent(in) :: atom_remote_ptr
integer(c_int), intent(in) :: image_num
integer(atomic_int_kind), intent(in) :: value
integer(atomic_int_kind), intent(out) :: old
integer(c_int), intent(out), optional :: stat

end subroutine

2.4.10.4 Atomic Access Atomically set or retrieve the value of an atomic variable in a coarray.

2.4.10.4.1 Common argument

• value: value to which the variable shall be set, or retrieved from the variable

2.4.10.4.2 prif_atomic_define, set variable’s value

interface prif_atomic_define
subroutine prif_atomic_define_int(&

atom_remote_ptr, image_num, value, stat)
integer(c_intptr_t), intent(in) :: atom_remote_ptr
integer(c_int), intent(in) :: image_num
integer(atomic_int_kind), intent(in) :: value
integer(c_int), intent(out), optional :: stat

end subroutine

subroutine prif_atomic_define_logical(&
atom_remote_ptr, image_num, value, stat)

integer(c_intptr_t), intent(in) :: atom_remote_ptr
integer(c_int), intent(in) :: image_num
logical(atomic_logical_kind), intent(in) :: value
integer(c_int), intent(out), optional :: stat

end subroutine
end interface

2.4.10.4.3 prif_atomic_ref, retrieve variable’s value

interface prif_atomic_ref
subroutine prif_atomic_ref_int(&

value, atom_remote_ptr, image_num, stat)
integer(atomic_int_kind), intent(out) :: value
integer(c_intptr_t), intent(in) :: atom_remote_ptr
integer(c_int), intent(in) :: image_num

28

integer(c_int), intent(out), optional :: stat
end subroutine

subroutine prif_atomic_ref_logical(&
value, atom_remote_ptr, image_num, stat)

logical(atomic_logical_kind), intent(out) :: value
integer(c_intptr_t), intent(in) :: atom_remote_ptr
integer(c_int), intent(in) :: image_num
integer(c_int), intent(out), optional :: stat

end subroutine
end interface

2.4.10.4.4 prif_atomic_cas, Compare and Swap If the value of the atomic variable is equal to the
value of the compare argument, set it to the value of the new argument. The old argument is set to the
initial value of the atomic variable.

interface prif_atomic_cas
subroutine prif_atomic_cas_int(&

atom_remote_ptr, image_num, old, compare, new, stat)
integer(c_intptr_t), intent(in) :: atom_remote_ptr
integer(c_int), intent(in) :: image_num
integer(atomic_int_kind), intent(out) :: old
integer(atomic_int_kind), intent(in) :: compare
integer(atomic_int_kind), intent(in) :: new
integer(c_int), intent(out), optional :: stat

end subroutine

subroutine prif_atomic_cas_logical(&
atom_remote_ptr, image_num, old, compare, new, stat)

integer(c_intptr_t), intent(in) :: atom_remote_ptr
integer(c_int), intent(in) :: image_num
logical(atomic_logical_kind), intent(out) :: old
logical(atomic_logical_kind), intent(in) :: compare
logical(atomic_logical_kind), intent(in) :: new
integer(c_int), intent(out), optional :: stat

end subroutine
end interface

• Further argument descriptions:
– old: is set to the initial value of the atomic variable
– compare: the value with which to compare the atomic variable
– new: the value to set the atomic variable too if it is initially equal to the compare argument

3 Future Work
At present all communication operations are semantically blocking on at least local completion. We acknowl-
edge that this prohibits certain types of static optimization, namely the explicit overlap of communication with
computation. In the future we intend to develop split-phased/asynchronous versions of various communication
operations to enable more opportunities for static optimization of communication.

29

4 Acknowledgments
This research is supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the
U.S. Department of Energy Office of Science and the National Nuclear Security Administration

This research used resources of the National Energy Research Scientific Computing Center (NERSC), a U.S.
Department of Energy Office of Science User Facility located at Lawrence Berkeley National Laboratory,
operated under Contract No. DE-AC02-05CH11231

5 Copyright
This work is licensed under CC BY-ND

This manuscript has been authored by authors at Lawrence Berkeley National Laboratory under Contract No.
DE-AC02-05CH11231 with the U.S. Department of Energy. The U.S. Government retains, and the publisher,
by accepting the article for publication, acknowledges, that the U.S. Government retains a non-exclusive,
paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or
allow others to do so, for U.S. Government purposes.

6 Legal Disclaimer
This document was prepared as an account of work sponsored by the United States Government. While
this document is believed to contain correct information, neither the United States Government nor any
agency thereof, nor the Regents of the University of California, nor any of their employees, makes any
warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness
of any information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or service by its trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the
University of California. The views and opinions of authors expressed herein do not necessarily state or reflect
those of the United States Government or any agency thereof or the Regents of the University of California.

30

https://creativecommons.org/licenses/by-nd/4.0/

	Problem description
	Proposed solution
	Parallel Runtime Interface for Fortran (PRIF)
	Delegation of tasks between the Fortran compiler and the PRIF implementation
	Caffeine - LBL's Implementation of the Parallel Runtime Interface for Fortran

	Types Descriptions
	Fortran Intrinsic Derived types
	Constants in ISO_FORTRAN_ENV
	PRIF specific types

	Procedure descriptions
	Common arguments
	Integer and Pointer Arguments
	Program startup and shutdown
	Image Queries
	Coarrays
	Synchronization
	Events and Notifications
	Teams
	Collectives
	Atomic Memory Operation

	Future Work
	Acknowledgments
	Copyright
	Legal Disclaimer

