
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Something new under the sun: transposon sequencing and phylogenomics shed light on
unstudied photosynthetic genes

Permalink
https://escholarship.org/uc/item/5f83f1x1

Author
Johnson, Jeffrey

Publication Date
2019

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5f83f1x1
https://escholarship.org
http://www.cdlib.org/

Something new under the sun: transposon sequencing and phylogenomics shed light on unstudied
photosynthetic genes

By

Jeffrey Johnson

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Microbiology

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Krishna Niyogi, Chair

Professor Arash Komeili

Professor David Savage

Professor Bob Buchanan

Summer 2019

©2019 – Jeffrey Johnson
all rights reserved.

Abstract

Something new under the sun: transposon sequencing and phylogenomics shed light on unstudied
photosynthetic genes

by

Jeffrey Johnson

Doctor of Philosophy inMicrobiology

University of California, Berkeley

Professor Krishna Niyogi, Chair

The core machinery required for oxygenic photosynthesis is well conserved from cyanobacteria to land plants
and in various algal clades, and has been studied intensely for decades. Much remains to be learned, however,
both about the regulation and assembly of the core machinery, and about a host of optional factors associated
with it only in particular lineages or under particular conditions.

I sought to identify unstudied genes required for long-term acclimation to high light intensity in the cyanobac-
terium Synechococcus elongatus PCC 7942 by simultaneously comparing the growth rates of mutants in every
nonessential gene in the genome under low, normal, and high light via RB-TnSeq (growth of a pooled transpo-
son library, followed by sequencing and quantification of DNA barcodes). This was the first study to investigate
low and high light conditions with high enough resolution to assign fitness values to nearly every gene. It con-
firmed that high light mainly damages the Photosystem II reaction center, and that synthesis and recycling of
chlorophyll from damaged PSII subunits is essential for acclimation. It also identified several unexpected genes
with large fitness effects. The include a mysterious intrinsically disordered protein with homology to phasins, an
unusual transcriptional regulator that may physically protect DNA from oxidative damage, and an ABC trans-
porter that takes up amino acids.

Next I grew the transposon library under a range of fluctuating light conditions to determine which genes are
important for fitness only when fluctuations include higher highs or lower lows, alternate quickly or slowly, in-
clude gradual or sudden low-to-high transitions, or mimic the patterns found in dense bioreactor cultures. Many
genes were beneficial only under certain conditions but not others, and some were also found to be detrimental
(knocking them out increased fitness) under certain conditions. The genes identified are implicated in diverse cel-
lular processes relevant to photosynthesis, including: the stringent response to dark periods, alternative electron
sinks (plastoquinone reduction, glycogen synthesis) needed during sudden shifts to high light, and regulation of
transcription.

As part of a separate line of inquiry into genes conserved across photosynthetic species but missing from other
branches of life, I also developed a scripting language that partially automates comparisons between large num-
bers of genomes using a variety of popular sequence search and ortholog-finding programs: BLAST, BLAST re-
ciprocal best hits, HMMER, DIAMOND,MMSeqs2, OrthoFinder, SonicParanoid, and others. It reproducibly
installs all the programs and runs them as needed to perform searches as described in a concise, human-readable
domain-specific language designed to facilitate sharing and incremental improvement of the search algorithms.

1

To Grandma Dorothy, who didn’t quite get to see me graduate.

i

Contents

1 RB-TnSeq to identify genes required under high light 1
1.1 Summary . 1
1.2 Methods . 1

1.2.1 Experimental design . 1
1.2.2 Time 0 Outgrowth . 1
1.2.3 Experimental Outgrowths . 2
1.2.4 Library Prep . 4
1.2.5 Data analysis . 4

1.3 Results . 8
1.3.1 Overview of top hits . 8
1.3.2 Chlorophyll biogenesis/recycling and photosystem stability 9
1.3.3 A disordered, phasin-like protein . 10
1.3.4 Thiamine phosphate synthesis and the Calvin/Benson cycle 11
1.3.5 An unusual TF Protects DNA fromOxidative Damage? 11
1.3.6 A new regulator of the HL stress response? . 12
1.3.7 N-II Amino Acid ABC Transporter . 13
1.3.8 Selection for impaired LPS Export . 13

1.4 Future Directions . 18
1.5 Conclusion . 18

2 RB-TnSeq to identify genes required under fluctuating light 19
2.1 Summary . 19
2.2 Methods . 19

2.2.1 Experimental design . 19
2.2.2 Model for fluctuating light in photobioreactors . 20
2.2.3 Outgrowths and sampling . 21
2.2.4 Library preparation and sequencing . 23
2.2.5 Updated analysis . 23

Clustering counts and fitness ratios . 23
2.2.6 Confirmation of grazer-dependent biofilms . 23

2.3 Results . 26
2.3.1 Quality control and global patterns . 26
2.3.2 Co-fitness clusters . 28
2.3.3 Genes with fitness effects in multiple conditions . 31
2.3.4 Photosynthetic genes without differential fitness . 31

ii

2.3.5 Comparison of harsh low-light conditions . 38
2.3.6 Effect of fluctuation period . 39
2.3.7 Effect of sudden dark-to-light transitions . 39
2.3.8 Constant HL is more stressful than 30 min pulses 39
2.3.9 The modeled ePBR light regime approximates growth in an ePBR 40
2.3.10 Genes specific to constant light . 41
2.3.11 Long-term growth in photobioreactors . 42
2.3.12 Grazer-resistant biofilms are a natural feature . 42

2.4 Discussion . 45
2.5 Future Directions . 46

3 ShortCut: A domain-specific language to facilitate reproducible phylogenomic searches 47
3.1 Summary . 47

3.1.1 Motivation . 47
3.1.2 Background . 48

3.2 Results . 49
3.2.1 Example code . 49
3.2.2 Write searches interactively . 50
3.2.3 Save work and reproduce it later . 53
3.2.4 Reliable software installation . 53
3.2.5 Simplified commands and file organization . 56
3.2.6 Math and set Operations . 56
3.2.7 Prevent simple mistakes using types . 57
3.2.8 Simplified format conversions . 57
3.2.9 Compare alternative methods . 58
3.2.10 Export plots, lists, tables . 59
3.2.11 Automatic parallelization . 59
3.2.12 Automatic updating of results . 59
3.2.13 Demo website . 60

3.3 Methods . 60
3.3.1 Interpreter design . 60

Parsing . 61
Compilation . 61
Evaluation . 63

3.3.2 Repetition . 64
Replace . 64
Permute, Replace, Summarize . 64
Force actual repetition . 65

3.3.3 Hiding irrelevant details . 66
Installation requirements . 66
Runtime requirements . 66
Formatting requirements . 67

3.3.4 Adapting to custom code . 68
Inspecting results outside ShortCut . 68
Including custom scripts . 68

iii

3.3.5 Adapting to custom environments . 70
3.4 Future directions . 70

3.4.1 Sharing and re-use of code and data between users 70
3.4.2 Mark deterministic functions to speed up repeats 71
3.4.3 Automatic runtime estimation and comparison . 71

3.5 Conclusion . 72

4 Conclusion 73

References 79

Appendix A KNLab Scripts 80
A.1 High-throughput growth curves . 80
A.2 QR code labels . 83
A.3 Cpf1-based knockout constructs in cyanobacteria . 83

Appendix B ShortCut Reference 85

iv

Listing of figures

1.1 Design of the TnSeq HL experiment . 2
1.2 OD750 of TnSeq HL outgrowth . 3
1.3 PCR primer design . 4
1.4 The PCR library prep . 5
1.5 The fastqfix script . 6
1.6 TnSeq analysis pipeline . 7
1.7 HL vs LL Overview . 8
1.8 Tetrapyrrole biosynthetic pathway hits . 9
1.9 Weak evidence Synpcc7942_2355 is a phasin . 11
1.10 Staining for PHA granules . 12
1.11 GAFHK domain predictions . 12
1.12 Confirmation of HL growth defect in ∆0247-8 . 15
1.13 ∆0247-8 exhibits “gooey” biofilm . 16
1.14 O-antigen export pathway hits . 16
1.15 Selection for impaired O-antigen at high light . 17

2.1 Growth setup for FL experiments . 20
2.2 Fluctuating light LED patterns . 21
2.3 Mimicking the PBR light regime in flasks . 22
2.4 TnSeq FL growth curves . 24
2.5 Overview of TnSeq outgrowths . 25
2.6 Smears during library prep . 26
2.7 Variation between Time 0 outgrowths . 27
2.8 Clust gene count clusters . 27
2.10 PCA of shared hits . 28
2.9 DESeq2 gene count clusters . 29
2.9 (continued) . 30
2.11 Merging gene count clusters . 32
2.12 FL4 vs FL6 . 38
2.13 HL vs FL3 . 40
2.14 PBRs vs FL6 . 41
2.15 Short- vs long-term PBR . 42
2.17 PBR culture collapse . 43
2.16 Grazed vs healthy PBR . 43
2.18 Growth setup for FL experiments . 44

v

2.19 Grazers in collapsed PBR culture . 44
2.20 Grazers trigger biofilm response . 45

3.1 Steps in a typical cut . 50
3.2 Bash vs ShortCut . 57
3.3 Set operations . 57
3.4 Overview of the interpreter . 61
3.5 Typechecking an assignment statement . 61
3.6 Parsing text . 62
3.7 Function expansion . 62
3.8 The PRS pattern . 65
3.9 PRS example . 65
3.10 Nix packages in ShortCut . 67
3.11 The Leapfrog pipeline . 68
3.12 Orthofinder runtimes . 71

A.1 Growth setups for FL experiments . 81
A.2 Growth curves reveal a HL-specific defect . 82
A.3 Generated QRCodes . 83
A.4 Example gel . 84

vi

Acknowledgments

I’m grateful to my committee members: Bob Buchanan, Arash Komeili, and Dave Savage. You’ve been ex-
tremely supportive and flexible. And especially to my mentor Kris Niyogi! You stuck with me all this time despite
a couple really bizarre plot twists along the way, and were always helpful. I’m a much better scientist now than I
would be without your influence.

Thanks to everyone in the Niyogi lab, past and present, for your help over the years. From way back in my
rotation days with Jose and Patrick all the way up to the last-minute revisions of this dissertation! Especially fresh
in my mind now are Chris Baker, Chris Gee, Robbie, Patrick, Daniel, Tim, ... and of course Marilyn.

I also want to thank everyone who helped me figure out how to science during undergrad: Michal Galdzicki,
Herbert Sauro, Chris Amemiya. EvenMr. Rapin, all the way back in high school. You made biology seem like a
pretty cool field to go into and that was when I started to think about doing the grad school thing.

Thanks Mom and Dad, Brian, and Hillary! For understanding when I had to work during visits home, or
sometimes wouldn’t answer texts, or forgot about dates. Thanks to Michael Gomez who’s been my friend and
roommate throughout most of grad school. I hope we can still keep in touch when you move back to L.A. and I
go wherever I end up going.

And finally, special thanks to Rocio for helping out with what must have been a maddening number of little
delays and administrative snafus.

I couldn’t have done it without all of you, and imagine I might still need more help after graduating. Thanks
for being wonderful people! I’m sorry if I didn’t get your name down. It’s not that I don’t appreciate you, just
that I’m sleep deprived and still need to do one very important last-minute task: file my dissertation an hour be-
fore the deadline. I’ll get you a beer or something in person!

vii

Chapter 1

RB-TnSeq to identify genes required under
high light

1.1 Summary
I grew a randomly barcoded library of cyanobacterial transposon mutants under low, medium, and high light to
determine which genes are required for normal acclimation to high light stress. It revealed that the most critical
genes are related to repair of damaged photosystem II. Specifically, defects in the pathway responsible for synthe-
sizing (or recycling) chlorophyll and inserting it into newly made D1 reaction center subunits have large fitness
costs. Several other genes with large effects on fitness were also identified, whose roles are not obvious. These in-
clude an intrinsically disordered phasin-like protein, an ABC transporter operon, an unusual transcription factor,
and a GAF histidine kinase which help orchestrate the regulatory response to high light.

1.2 Methods
My first attempt failed during the final analysis due to low barcode diversity—the library had experienced a selec-
tion bottleneck during a previous outgrowth in another lab.

1.2.1 Experimental design
I repeated this experiment twice. The first run used light levels ranging from “low low light” (LLL, ~10 µmol
photons m-2 sec-1) to “high high light” (HHL, ~450 µmol photons m-2 sec-1), with three replicates each. FEBA
quality controls (Section 1.2.5) flagged the Time 0 data as having low barcode diversity, so I repeated it starting
from one of the aliquots from the original study48. The second run used a simpler design with more replicates:
four flasks each at low, medium, and high light (7, 70, and 700 µmol photons m-2 sec-1). All the results presented
are from the second run, with the exception of Figure 1.15.

1.2.2 Time 0 Outgrowth
After receiving my second copy of the TnSeq library from the Susan Golden lab at UC San Diego, I did an initial
outgrowth under standard conditions as described in the Rubin paper48. Briefly: the inital aliquot was thawed,
diluted 1.5mL into 300mL BG11, split between 6 250mL flasks, allowed them to recover for 24 hours under 70

1

(a) Growth setup (b) Outgrowths and sampling

Figure 1.1: Design of the TnSeq high light experiment. a. Four replicate flasks per treatment were exposed
to 700 µmol photons m-2 sec-1 from a custom LED panel (JBeamBio) with cool white LEDs (BXRA-56C1100-
B-00, Farnell). HL flasks were left uncovered; NL and LL were covered in several layers of shading mesh until
they received approximately 70 µmol photons m-2 sec-1 and 7 µmol photons m-2 sec-1 respectively. b. Arrows
represent one outgrowth, followed by dilution and freezing samples for later DNA extraction. Red asterisks
represent samples that were sequenced.

µmol photons m-2 sec-1 with no shaking, grown with shaking for 4 days, and finally pooled into one Time 0 sam-
ple. All cultures were grown in air at 30°C with shaking at 100rpm. The only change in outgrowth conditions
was use of pH buffered media (+HEPES) for the first few days. Then the library was split into +/- HEPES treat-
ments and both were sequenced on aMiSeq sequencer (Illumina). -HEPES resulted in slightly improved barcode
diversity (data not shown here, but included in the pipeline), so it was used for all the TnSeq experiments. The
Time 0 sample was spun down at 4000rcf and split into about 30 aliquots, which were frozen for later library
prep and sequencing. The rest was diluted to OD750 0.025 and used immediately for the first experimental out-
growth. The recovery process was repeated for each later Time 0 outgrowth in Chapter 2.

1.2.3 Experimental Outgrowths
Each day I took a 1mL sample from each flask and measured their OD750 on anM-1000 infinite plate reader
(Tecan). I also took full absorbance scans from 400-800nm in order to monitor the bulk state of the cultures.
Because the plate reader has difficulty reading low-density samples, I also measured themmanually using a spec-
trophotometer at 750nm. The manual readings are used in Figure 1.2.

I spun down samples and diluted cultures every few days when they reached an OD750 of around 0.25-0.3
to minimize self-shading, stopping the final outgrowth of each treatment when it had doubled roughly 7 times
(Figure 1.2). The exact number does not seem to be important, but having them consistent simplifies the data
analysis because the proportion of counts represented by each strain does not need to be corrected for number of
generations grown.

2

Figure 1.2: OD750 of TnSeq cultures during the high light outgrowth. Optical density (top) was measured
each day at 750nm to avoid overlap with chlorophyll fluorescence. Cultures were diluted when they reached an
OD750 of around 0.25-0.3 to minimize self-shading. Number of doublings of the bulk culture since each dilution
(middle) was used to calculate total doublings (bottom) and stop each treatment after 7 generations. A flask
of S. elongatus and one of the kanamycin resistance control strain were also grown under the same conditions
(top graphs only) to verify that the TnSeq cultures behaved normally .

3

1.2.4 Library Prep
The standard RB-TnSeq library prep62 consists of DNA extraction followed by one PCRwith a set of primers
that amplify the barcodes and add indexed Illumina adapters for sequencing. I used a 2-PCR variant that makes
use of universal adapter stubs for compatibility with multiple Illumina index sets (Figure 1.3). After optimizing
the new prep (Figure 1.4), both preps were sequenced to compare data quality (data not shown, but included in
the pipeline), and the new prep was used for all further experiments.

Figure 1.3: Primers for the PCR prep, designed by Shana McDevitt at the Vincent J. Coates sequencing core
facility. The U1 and U2 sites are standard for BarSeq experiments, and the stubs are standard for Illumina
adapters. They improve on the standard BarSeq primers in two ways: first, the random sequence helps distin-
guish clusters during the first step of Illumina sequencing, and second, the universal stubs can be extended by
a second PCR into any full-length Illumina adapters to fit in with different sequencing schemes. U2 is a single
primer, while U1 is an equimolar mix of the 4 shown.

1.2.5 Data analysis
After sequencing, my analysis began with a pipeline based on FEBA, a set of scripts first developed for the original
BarSeq paper62, and nowmaintained (as of 2019) byMorgan Price in the Arkin lab.

The initial pipeline (FASTQ files to differential fitness plots) is fully reproducible. An archive of all the nec-
essary software is provided on25 and26. These commands will download and run it using the Nix package man-
ager14 on a Linux or MacOS system:

git clone https://bitbucket.com/jefdaj/tnseq7942-hl.git
cd tnseq7942-hl
nix-build --verbose -j$(nproc) --option build-use-chroot false --keep-going

Note that my second set of TnSeq experiments extended this same pipeline with fluctuating light data. See the
code in Section 2.2.5 for both.

The pipeline begins with fastqfix.py (Figure 1.5) discarding any reads that do not contain the expected flank-
ing sequences, flipping the ones that ended up backward relative to how FEBA expects them to be aligned, and
trimming them to the start of the forward barcode.

Next, the pipeline runs three FEBA scripts: MultiCodes.pl, CombineBarseq.pl, and BarSeqR.pl. The scripts
themselves are unmodified, but I run them in a reproducible Nix environment rather than the standard method
of installing ad-hoc Perl and R packages, and modify the input metadata slightly: the scripts expect a spreadsheet
defining experimental treatments in a format tailored to the Arkin and Deutschbauer labs’ standard workflow in-
volving large numbers of bacterial strains and small molecule stressors. I adapted it to work instead with multiple

4

Figure 1.4: The complete PCR library prep. The green section is a standard DNA extraction from S. elonga-
tus 12, black steps would need to be done for a standard BarSeq prep, and the blue section is new. Red is the
standard sequencing protocol and depends on the core facility involved. Quantification was done by Bioanalzyer
at the QB3 Functional Genomics facility, and sequencing by HiSeq4000 at the QB3 Vincent J. Coates sequenc-
ing facility. Gels show representative PCR2 quality before and after optimization (top and bottom respectively).
The third lane in the bottom labeled 1:400 was the version sequenced.

outgrowths of the same bacteria starting from various timepoints, needed for the fluctuating light experiments in
Chapter 2.

BarSeqR.pl generates a large number of quality control reports with an HTML index explaining them. Most
importantly it breaks experiments into those that succeeded and those that failed quality control, and generates a
file fit_logratios_good.tabwith normalized fitness values per gene for each successful experiment/treatment.

Per-strain fitness is defined as the log2 fold-change in abundance of that strain’s tag between the start and the

5

Figure 1.5: The fastqfix script formats PCR data for FEBA. Because the same universal adapter stub is used
on both ends of my primers, roughly half the sequenced reads are backwards. This script fixes that. It also
trims the leading sequences and removes reads missing the forward and reverse flanking sequences.

end of the outgrowth, with small constants estart and eend added to prevent the values becoming zero or infinite:

fitness = log2

(
nend + eend

nstart + estart

)
+ C (1.1)

Strain-level fitness values are averaged to create gene-level fitness values, then C is chosen to shift the peak of
the gene fitness distribution to zero. The final value can intuitively be thought of as howmany doublings ahead
or behind the group mutants in a given gene were by the end of the growth competition. Quality controls in-
clude several common-sense checks of these values. For example, the first and second half of most genes should
have similar fitness values when considered separately, because an insertion in either one will probably disrupt
the same function. Most S. elongatus genes have roughly 30 to 50 insertions along their length, so the values are
quite robust. Only the middle 80% of each gene is used because even essential genes may permit insertions near
the ends48, and very short genes without enough insertions are not considered further.

The last step in the pipeline is to generate my own reports, mostly by comparing the final fitness values in an R
script. The pipeline is reproducible, but not fully automated; each new experiment requires a Nix file grouping
FASTQ reads into treatments, an updated metadata spreadsheet to pair each treatment with its Time 0 control,
and a new analysis script to make useful comparisons from the FEBA data.

6

Figure 1.6: TnSeq analysis pipeline based on FEBA and adapted to the PCR prep. Available at https:
//bitbucket.org/jefdaj/tnseq-hl.

7

https://bitbucket.org/jefdaj/tnseq-hl
https://bitbucket.org/jefdaj/tnseq-hl

1.3 Results
1.3.1 Overview of top hits
Few fitness values differed significantly between the low and normal light treatments. However, comparing high
to low (or normal) light yielded a large number of strong hits. Genes discussed here were picked by first consider-
ing all genes with a difference of at least 2 between HL and LL fitness ratios, then grouping them by annotation
and/or known functions of their homologs in other organisms. An overview is given in Figure 1.7, and each la-
beled set of genes is discussed in the following sections. A spreadsheet of top hits is also included in Appendix
A.

Figure 1.7: Overview of differential fitness under high vs low light. Shown are normalized fitness values (see
Section 1.2.5 for details) of mutants in each gene for which a reliable value could be calculated. Genes toward
the bottom are more important to fitness (more costly to interrupt) under high light, while those toward the
left are more costly to interrupt under low light.

8

1.3.2 Chlorophyll biogenesis/recycling and photosystem stability

Figure 1.8: Hits in the tetrapyrrole biosynthetic pathway. Reproduced with permission from56, overlayed with
SynPCC7942_ locus IDs of TnSeq hits likely to function in the early or late steps of the pathway, or in stabiliz-
ing PSII while newly synthesized chl proteins are inserted. The Synpcc7942_0246,7,8,9 operon is discussed in
Section 1.3.7.

Insertions in HliC (Synpcc7942_0243) caused the most severe defects; strains bearing them grew normally at
low light but lagged behind by more than 5 generations on average at high light. HliC is one of the four classic
cyanobacterial high-light inducible proteins (HLIPs). It has recently been determined to bind 4 chlorophyll and
2 β-carotene molecules, and is hypothesized to protect chlorophyll protein intermediates during synthesis53. As
expected, other genes related to chlorophyll and PSII biogenesis affect fitness at high light as well. These genes are
summarized in Table 1.1.

PsbT (Synpcc7942_0696) has been shown39,38,40 to be involved in repair of photodamaged PSII in C. rein-
hardtii. It is associated with the QA binding pocket and hypothesized to help stabilize that region during PSII
repair, speeding recovery38 of electron transfer.

9

Locus ID Annotation Known or Predicted Phenotype

SynPCC7942_0243 HliC Perturbed chlorophyll recycling, D1 synthesis
SynPCC7942_0508 Geranylgeranyl reductase Buildup of geranylgeranylated chlorophyll
SynPCC7942_0696 PsbT Inefficient repair of photodamaged PSII
SynPCC7942_1043 Phytol kinase Buildup of geranylgeranylated chlorophyll
SynPCC7942_1679 PsbW Defect in PSII dimerization
SynPCC7942_1793 Thioredoxin (trxA) Impaired oxidative stress and redox regulation

Table 1.1: Hits related to chlorophyll biosynthesis and PSII repair.

PsbW (Synpcc7942_1679, also known as Psb28) is involved in PSII stability too. An Arabidopsis knock-down
was found to have decreased PSII dimer stability at all light levels, which caused a growth phenotype only at high
light52. It is degraded similarly to D1 but unlike D1 its degradation is phosphorylation-independent, leading to
the hypothesis that it degrades when the PSII complex is destabilized during D1 repair. A knockout in Synechocys-
tis has also been studied. It was found49 to associate with the CP43-less PSII monomer, and the knockout caused
a high-light specific growth defect. Most recently, it has also been found in another study using this same TnSeq
library47 to be important for protection against oxidative stress in S. elongatus during darkness.

Vavilin & Vermaas60 used 13C labeling to show that there is continuous turnover of chlorophyll in Synechocys-
tis, especially from damaged PSII during high light, and that the recycled porphyrin rings, rather than de novo
synthesis, are the major source of chlorophyll for PSII repair. This makes sense, as chlorophyll would typically
survive much longer than the D1 protein before requiring degradation.

Although high light is mainly thought to damage PSII, there is some recent evidence that enzymes in the
chlorophyll biosynthesis pathway are also required to prevent PSI damage. Interrupting the phytyl-phosphate
kinase VTE6 (a homolog of Synpcc7942_1043) in Arabidopsis caused destabilization of the PSI complex in high
light61. Phytol-phosphate kinase provides phytyl moieties for phylloquinone, part of the PSI reaction center,
as well as for the antioxidant tocopherol. Since S. elongatus lacks tocopherol, PSI is the more likely target here.
In Synechocystis, knocking out geranylgeranyl reductase (homolog of Synpcc7942_0508) caused instability and
degradation of both photosystems, perhaps due to increased rigidity of the geranylgeranyl tails vs phytyl tails61.

1.3.3 A disordered, phasin-like protein
Insertions in Synpcc7942_2355 show the second largest fitness defects after those in HliC. It is an uncharacter-
ized protein with homology to PhaP, known21 to coat hydrophobic polyhydroxyalkanoate (PHA) granules to
prevent themmerging or interacting with other cellular components in Synechocystis.

Many bacteria, including cyanobacteria, produce PHA granules. However S. elongatus has no predicted PHA
synthase, and was found7 not to produce PHA upon nitrogen starvation. Staining of wild type S. elongatus cells
with Nile Blue A (Figure 1.10) did reveal foci similar in appearance to PHA granules in other species, but there
are no obvious differences between high and low light.

One possibility is that S. elongatusmakes PHA granules via a nonstandard synthase that has been misan-
notated or has multiple functionalities. Another, which would explain the lack of close homology to other
cyanobacterial phasins (Figure 1.9) is that this is a different type of intrinsically disordered protein, perhaps also
involved in chlorophyll biogenesis and PSII repair. It could be serving as a scaffold, increasing stability of an inter-

10

mediate complex, or even interacting with lipids in the thylakoid membrane. Biochemical studies will be required
to elucidate its interaction partners and mechanism of action.

(a) Domain prediction (Phyre2)

(b) Conservation (NCBI BLAST)

Figure 1.9: Weak structural and evolutionary evidence that Synpcc7942_2355 is a phasin.

1.3.4 Thiamine phosphate synthesis and the Calvin/Benson cycle
Synpcc7942_1057 is a thiamine-phosphate synthase. It is a required to make thiamine pyrophosphate, a cofactor
of transketolase in both the oxidative pentose phosphate pathway and the Calvin/Benson cycle. Henkes et al.22
found that a small decrease (20-40%) in transketolase activity almost completely inhibited photosynthesis at high
light. Therefore a bottleneck in carbon fixation is the most likely cause of the high-light fitness defect in strains
with insertions in Synpcc7942_1057.

1.3.5 An unusual TF Protects DNA from Oxidative Damage?
Synpcc7942_0817 is a ferric uptake regulator (FUR) family transcriptional regulator with homologs across
cyanobacteria. Interestingly, the closest one that has been studied (all2473 in Anabeana) has been found31 to
function in the protection of DNA from oxidative damage rather than in transcriptional regulation. Overexpres-
sion in E. coli increased survival rates when challenged with H2O2 or methyl viologen. The authors suggest that
high expression leading to nonspecific binding could be physically blocking damage to the DNA.

11

(a) WT LL (b) WT HL

Figure 1.10: Staining for PHA granules with Blue Nile A. Structured illumination microscopy (with Masakazu
Iwai) revealed foci similar in appearance to the PHA granules known from other cyanobacteria. Green: Blue
Nile A. Red: chlorophyll autoflourescence.

It also happens to be one of the genes I worked on as part of my first high light project on transcription factor
knockouts (See Appendix A). Unfortunately I was never able to get the mutant to segregate, and did not pursue
it further. The only relevant data I have is that it was slow growing (Figure A.1, second from the left). Based on
the fitness phenotype here it should be easier to segregate at low light, or over-expressing it might prove a more
fruitful approach.

1.3.6 A new regulator of the HL stress response?

Figure 1.11: Domain predictions for the GAF HK Synpcc7942_2282 (Interpro).

Synpcc7942_2282 is a two-component histidine kinase likely involved in the high light acclimation response.
It has several interesting sensor domains: CHASE6_C is the C-terminal part of a two-domain periplasmic sensor
found across cyanobacteria; the N-terminal part was reclassified as a separate DICT domain. DICT is found in
photosynthetic bacteria and halophilic archaea, leading to the hypothesis that it could be involved in light sens-
ing8. GAF domains are often involved in light sensing as well, among other functions. It has been predicted4

to be part of the indirect nblA regulon, suggesting that it could be related to bleaching (degradation of phyco-
bilisomes) in response to high light and other stresses. Based on these data, Synpcc7942_2282 could be sensing
nutrients, light, and/or participating in extracellular communication via an unknown signal. The most promis-
ing route to discover more would probably be to profile transcription in knockout and overexpressor lines by
RNAseq.

12

1.3.7 N-II Amino Acid ABC Transporter
The final group of beneficial genes is interesting because they cover an entire operon, Synpcc7942_0246-0249.
Interruption of any one of them leads to a similar fitness defect.

Escudero, Mariscal & Flores named the operon N-II by analogy to its homologs in the filamentous cyanobac-
terium Anabaena (PCC 7120), and showed that it is the major system in S. elongatus for import of acidic amino
acids, neutral amino acids with polar sidechains, and glycine. Knocking it out reduced glutamate uptake most
strongly, to 1-2% of wild type levels16.

Professor Flores kindly provided me with 3 plasmids used in that paper to make deletions in portions of the
operon, which they had also found to behave similarly. I was unable to revive two strains, but grew the third and
used it to transform S. elongatus , resulting in the ∆0247-8 strain (labeled CSLE15b in the paper). It is missing
a region covering most of the two permease proteins, Synpcc7942_-0248. Interrupting them should reliably
prevent the ABC transporter from working, but I did not verify that.

I did verify that the transformants lack Synpcc7942_0247, and grew them in plates to confirm the expected
high light defect (Figure 1.12). I also discovered that they form an unusual biofilm (Figure 1.13) when left in test
tubes without shaking.

This data suggests two distinct hypotheses: first, the fitness defect could be caused by inability to take up gluta-
mate. Second, it could caused by inability to receive an extracellular signal required to inhibit biofilm formation.
S. elongatus has an unusual “reverse quorum sensing” biofilm logic: it releases small GG-motif-containing pep-
tides into the media to suppress biofilm formation at high culture densities50,43. Mutants in export of the signal
have been isolated42, but to my knowledge this is the first indication of a gene required to respond to it.

I favor the first hypothesis though, because it would be consistent with the importance of chlorophyll biosyn-
thesis and D1 repair. It would also immediately explain why the defect is more severe at high light: glutamate is
required both as one of the amino acids for D1 synthesis, and as the starting point for making chlorophyll (Figure
1.8).

But why would S. elongatus need to take up amino acids? Cyanobacteria, as well as diverse heterotrophic bac-
teria, have been found to leak them. This may be due to an inherent property of bacterial membranes and/or
multiple active and passive transport processes depending on the group in question36. Therefore, it is likely that
the TnSeq culture media contains a large amount of free amino acids. Taking them up would be an important
advantage in competitive growth conditions.

This could be tested by growing wild type and ∆0247-8 strains in media supplemented with glutamate, or by
radioactive glutamate uptake assays. The uptake assays could also confirm whether the glutamate is incorporated
into D1 and/or chlorophyll at high light, or perhaps used in photorespiration.

The second hypothesis could be supported by starting wild type and ∆0247-8 cultures from a very low OD
which would normally trigger “biofilmmode”, but in conditioned media from a wild type culture. They would
take up the signal and grow planktonically, whereas ∆0247-8 would not.

1.3.8 Selection for impaired LPS Export
Despite failing the FEBA quality controls, the first TnSeq run did predict some of the same results as the second.
Most obvious was a small set of detrimental genes—that is, interrupting them drastically increased fitness at nor-
mal to high light. They are shown in Figure 1.15. Genes in the same pathway appeared again in the second run
(Figure 1.7, upper left), although they were less prominent.

They seem to be related to export and attachment of O-antigen (lipopolysaccharide) to the outer surface of the
cell, and were separately discovered in a screen for S. elongatusmutants which resist predation by amoebae54. One
explanation is cryptic contamination of the TnSeq culture with grazing eukaryotes—especially in light of similar

13

issues discussed in Section 2.3.12. However, none of the TnSeq cultures grown in flasks collapsed in a similar
manner to the PBRs, even if left growing for months after the experiment (data not shown).

An alternate hypothesis is that the “rough” O-antigen mutants, as they are called due to their appearance un-
der the microscope, are also better suited to growth in flasks at medium to high light intensity. Simkovsky et al.
did find that they have a high light growth advantage, and speculated that knocking out the pathway might be
useful for biofuels since it leads to a grazer-resistant strain that also grows well at high light and auto-flocculates
for easy collection. That would be a disadvantage in many natural systems. Cyanobacterial exopolysaccharides are
used partly for bouyancy, which is important for staying close to the surface. Perhaps when grown with constant
shaking they are a waste of materials. These same genes also appear in the fluctuating light data in Chapter 2, and
their dominance seems to increase the longer the library is grown.

14

(a) Segregation of ∆0247-8 mutants

(b) ∆0247-8 growth curves

Figure 1.12: Confirmation of HL growth defect in ∆0247-8strain. a. 5 out of transformants lack the wild-
type Synpcc7942_0247 gene. b. Wild type S. elongatus and one of the segregated ∆0247-8 strains were each
grown in triplicate in 24-well plates at low (7 µmol photons m-2 sec-1), medium (150 µmol photons m-2 sec-1),
or high (700 µmol photons m-2 sec-1) light. Similar to the TnSeq outgrowths, cultures were diluted every 2-3
days. Dashed lines indicate wild type and solid lines ∆0247-8. Colors indicate light level.

15

Figure 1.13: ABC transporter KO ∆0247-8 exhibits “gooey” biofilm. Left: Test tubes of ∆0247-8 (top) and
kanamycin resistance control strain (bottom) were left out on the benchtop without shaking for several weeks.
Middle, Right. The KO developed a strongly self-adhesive, gelatinous biofilm.

Figure 1.14: O-antigen export pathway hits. Modified from Simkovsky et al.55. Numbers are Synpcc7942 lo-
cus IDs. Purple stars indicate genes identified in the first TnSeq run; yellow stars indicate genes identified in the
second run. Synpcc7942_1904 was proposed to regulate activity of Synpcc7942_1903. Synpcc7942_0388 had
high differential fitness in both runs, and was also identified by Simkovsky et al. Its function remains unknown.

16

Figure 1.15: Selection for impaired O-antigen at high (and normal) light. A small set of genes related to ex-
port of O-antigen stand out from the rest of the first TnSeq run. Mean plus and minus standard deviation of 3
flasks at each light level shown.

17

1.4 Future Directions
Although my custommetadata format was useful for this study, it should be replaced (or at least reconciled) with
the standard one so the data can be added to the Fitness Browser (fit.genomics.lbl.gov), which compares
co-fitness across genes, organisms, and stress conditions for thousands of BarSeq experiments. The S. elongatus
library has lagged behind heterotrophic species in terms of data sharing, despite being the most-requested library
from the original paper (AdamDeutschbauer, personal communication), and I would like to see the website
updated to work for the kinds of comparisons relevant to photosynthetic studies.

More importantly, some of the genes discovered here should investigated further. TnSeq libraries do not allow
easily isolating individual mutants from the population, but they do indicate which conditions to segregate the
transformants under, making separate knockout and complementation strains relatively easy to generate. All the
genes described here should segregate under low light and have phenotypes at high light. I have the knockout con-
structs for a few test genes designed and partially constructed already, as well as in-progress script that generates
all the relevant primer sequences (Appendix A).

1.5 Conclusion
Based on the top hits in this experiment, recycling of chlorophyll from damaged D1 via the phytylase/dephytylase
cycle may be the most crucial HL-specific adaptation. This makes sense, because a defect in the pathway would ei-
ther cause a buildup of highly reactive intermediates, or force cells to shut down photosynthesis entirely to avoid
that buildup. I also found several interesting, unknown genes which will require more thorough characteriza-
tion.

Most of the proteins needed for PSII assembly in plants are deeply conserved and have cyanobacterial ho-
mologs44, so this TnSeq library could be a viable route to more identifying previously unknown components—as
long as they are not absolutely required under standard conditions.

18

fit.genomics.lbl.gov

Chapter 2

RB-TnSeq to identify genes required under
fluctuating light

2.1 Summary
I was also interested in photosynthetic regulation under dynamic conditions, so I also grew the TnSeq library
in multiple fluctuating light conditions and compared the genes required for growth under each. With high vs
low light there was only one clear comparison to make, but here many different comparisons are possible. So in
addition to looking at which genes are beneficial or detrimental in which fluctuating light regimes, I also globally
clustered the data to search for patterns. Many genes and interesting patterns have begun to emerge, but will
require further analysis. Unexpectedly, the flavodiiron proteins flv1 and 3 were not among the strongest hits,
though they were mildly beneficial. Many other genes that appear relevant for growth under fluctuating light
were identified, including alternative electron sinks and an inhibitor of cell division with a role in the stringent
response.

2.2 Methods
Most of the basic methods remain the same as in the constant light experiments in Chapter 1; only the changes
are described here.

2.2.1 Experimental design
6 patterns of fluctuating light (Figure 2.2) and two types of growth vessels (Figure 2.18) were investigated. One
baseline pattern (FL2) was chosen to match conditions previously shown2 to inhibit growth of ∆flv1 and ∆flv3
strains, and 4 others were chosen to facilitate comparisons:

• FL1, 2, and 3 cover a range of time scales: seconds, minutes, hours
• FL2 and 4 compare high/low with low/dark (0 µmol photons m-2 sec-1) fluctuations
• FL2 and 5 have the same period, intensities, overall photon flux, and timescale but FL5 changes intensity
gradually rather than suddenly

19

The final pattern was designed to mimic the light regime found in Phenometrics photobioreactors (ePBR
v1.1) based on a simple empirical model explained next in Section 2.2.2. It combines characteristics of several
others: rapid fluctuations similar to FL1, low intensity periods similar to FL2, and a mix of rapid and gradual
shifts between light levels.

To investigate possible differences in the regulatory mechanisms triggered by complete darkness as opposed
to very low light, the lower growth chamber was covered with a blackout curtain (Figure 2.18a) and PARwas
confirmed as 0 on the light meter. FL6 was done in the same chamber, but without complete darkness. The LED
arrays have a minimum level of about 12 µmol photons m-2 sec-1, so a dim supplemental fluorescent light (~0.5-
0.7 µmol photons m-2 sec-1) was added to approximate the levels in dense PBR culture. The other treatments
were done in the photobioreactors themselves.

(a) Growth chambers (b) Photobioreactors

Figure 2.1: Growth setup for the TnSeq FL experiments. a. Two treatments at a time were exposed to FL,
isolated from each other by a cardboard light barrier (middle), and an additional blackout curtain for low light
treatments (bottom half). b. The PBR FL treatments were grown in 4 photobioreactors (Phenometrics ePBR
v1.1), bubbled with air from an aquarium pump.

2.2.2 Model for fluctuating light in photobioreactors
Based on measured intensity of 512 µmol photons m-2 sec-1 at the top and 0.33 µmol photons m-2 sec-1 at the
bottom (See Figure 2.3), PAR in the 20cm-tall dense S. elongatus culture was estimated to be:

I = Is ∗ 0.6926d

Where I is the intensity at a given depth in µmol photons m-2 sec-1 , Is is intensity at the surface, and d is the
depth in cm. As shown in Figure 2.3, the resulting curve was combined with video tracking of a small marker
object of roughly neutral buoyancy (piece of sponge) to approximate the light levels experienced by a cell over 10
minutes. It is only a rough estimate due to several factors: changes in density during the outgrowths, differences
in motion of a sponge vs a bacterial cell, etc. However, the overall pattern that a given cell experiences mostly

20

Figure 2.2: Fluctuating light LED patterns. Patterns not to scale. Custom LED panels (JBeamBio) with
cool white LEDs (BXRA-56C1100-B-00, Farnell) were programmed with fluctuating light patterns. FL1-3 con-
sist of 90% low light (20 µmol photons m-2 sec-1) interrupted by high light (500 µmol photons m-2 sec-1) at
regular intervals on increasing timescales. FL2 is similar to the condition shown2 to inhibit growth of ∆flv1 and
∆flv3 strains. FL4-6 change other parameters: FL4 alternates dark with normal light (70 µmol photons m-2

sec-1), FL5 makes shifts between low and high light more gradual, and FL6 is an irregular pattern designed to
mimic the light regime found in the PBRs (See Figure 2.3 for details).

low light punctuated by short random spikes up to about 500 µmol photons m-2 sec-1 should hold, and is in
agreeement with a forthcoming study6 that constructs and validates a fluid dynamic model of the light regime in
these same photobioreactors.

An LED array (Figure 2.18, bottom) was programmed to follow the same pattern, with the limitations that
the LEDs could only change intensity once per second, and could not go below about 12 µmol photons m-2 sec-1
. Since complete darkness might have different physiological effects from low light, a dim fluorescent bulb was
also used to supplement with about 0.5-0.75 µmol photons m-2 sec-1.

2.2.3 Outgrowths and sampling
PBR and LED outgrowths were done in parallel starting from the same Time 0 sample as the first LED out-
growths (FL1 and 2). Only one PBR treatment was planned. However, due to contamination by grazers (Section
2.3.12), they had to be repeated twice more. Only two replicates started from the FL3+4 Time 0 sample were

21

Figure 2.3: Mimicking the PBR light regime in flasks. a. Particle tracking: the motion of a small piece of
sponge (yellow, top center) in the PBR culture vessel was recorded for a period of 10 minutes, and particle
tracking was performed in Fiji. b. PAR measurement: the intensity of photosynthetically active radiation (PAR)
reaching the culture was estimated by measuring at the same height in an empty vessel (left), and the intensity
passing through the entire culture was estimated from beneath the vessel (right). (The light meter is inserted
at the bottom; the white device at the top is a magnet being used to hold the stir bar out of the light path.)
c. Intensity was estimated as a function of depth in the culture (see text for details). d. Plot of depth of the
sponge over time as determined by particle tracking. e. Depth data and the extinction curve were used to es-
timate the light intensity experienced by a hypothetical cell taking the same path through dense S. elongatus
culture. f. The light intensity plot was simplified by taking the maximum intensity in each 1-second interval. g.
An LED array was programmed to match the simplified pattern in flasks.

sequenced. Before discovering that grazers were the culprit, a final PBR-only outgrowth was also done on the the-
ory that the collapse could be density-dependent feature. It was growth an extra 5 days in Time 0 conditions and

22

started at a high density, and is included with as PBR treatment F (for “final”).
The extra outgrowths also presented the opportunity to investigate long-term growth and grazer resistance.

Two contaminated and one uncontaminated PBR were left running past the planned end of their outgrowths.
The contaminated cultures were sampled after turning yellow (Figure 2.17), then back to green 4-7 days later.
The long-term uncontaminated culture was sampled twice over the next several weeks, and an earlier sample
was added to make a 4-part time series spanning about a month. To avoid cross-contamination with grazers, no
OD750 measurements were taken during these outgrowths. See Figure 2.5 for an overview of all the TnSeq out-
growths and sampling points, including the constant light experiments from Chapter 1.

2.2.4 Library preparation and sequencing
The optimized DNA extraction and PCR protocol from the first set of experiments resulted in variable quality
during the FL library preps, even after experimenting with various PCR conditions. Some samples were high
quality (one solid band ~180bp), while others had extra bands and/or smearing. This may be due to differences
in the number and composition of cells that could be sampled from different treatments. Final PCR conditions
were chosen to prioritize evenness between samples over clean bands (Figure 2.6).

2.2.5 Updated analysis
This set of experiments uses an extended version of the previous pipeline (Section 1.2.5). It can be downloaded
and run the same way by changing “hl” to “fl”:

git clone https://bitbucket.com/jefdaj/tnseq7942-fl.git
cd tnseq7942-fl
nix-build --verbose -j$(nproc) --option build-use-chroot false --keep-going

Since it also includes the previous results, this version will be the one maintained and referenced in the paper.

Clustering counts and fitness ratios
Barcode counts aggregated at the gene level were clustered using two separate software packages. DESeq2 results
were normalized with a regularized log transform as recommended in the documentation, then scaled by quan-
tiles for visualization.

The Clust Python package1 was used to automatically normalize and cluster gene-level barcode counts (not
fitness values) across all 17 treatments and 68 samples sequenced, including the Time 0 conditions. 8 robust
clusters emerged (Figure 2.8). They are designated C0-7 and contain between 12 and 121 genes each (380 total).

FEBA also has built-in cofitness analysis, which was used to search for genes correlating with the core photo-
synthetic machinery (Figure 2.8).

For the principal component analysis, a distance matrix was constructed using the number of genes with fit-
ness effect > 1 in both conditions, and distances were clustered with k-means (k=9).

2.2.6 Confirmation of grazer-dependent biofilms
Collapsed PBR culture was spun down at 4000rcf and washed with fresh BG11 media. S. elongatus and biofilm
mutants (isolated from the previous outgrowth) were challenged with either supernatant, which would be en-
riched in the toxin, or resuspended pellet, which would be enriched in large cells and their cysts. Cultures were
imaged by Differential interference contrast (DIC) microscopy the next day.

23

Figure 2.4: TnSeq fluctuating light growth curves. OD750 of 1ml samples of TnSeq cultures measure in 24-
well plates on the Tecan Infinite M1000 plate reader. Error bars represent mean +/- standard deviation of 6
replicate flasks each. Raw OD750 (top) was used to calculate doublings since the last dilution and sampling
timepoint (middle), and total doublings since the Time 0 sampling (bottom). Top dashed line marks the target
of 7 generations total growth. Vertical dashed line marks the end of experimental outgrowths, when FL4 and
FL6 were transferred to recovery conditions (70 µmol photons m-2 sec-1).

24

Figure 2.5: Overview of all TnSeq outgrowths (high light and fluctuating light), starting with the aliquot re-
ceived as a gift from the Susan Golden lab. Constant light samples are the ones from the first set of experi-
ments (Chapter 1), also shown in Figure 1.1. Arrows represent one outgrowth, followed by dilution and freezing
samples for later DNA extraction. Red asterisks represent samples that were sequenced. Gold crosses represent
cultures that collapsed, then regrew several days to a week later. Not shown: more PBR outgrowths that also
collapsed and regrew, but were not sequenced.

25

Figure 2.6: Unavoidable smears during the PCR library prep for fluctuating light samples.

2.3 Results
2.3.1 Quality control and global patterns
Barcode counts from the FL experiments were noisier than those from the HL experiment in Chapter 1, but the
larger number of samples also presents the opportunity to compare and filter themmore stringently. Pairwise
comparisons of Time 0 samples with a lax fitness score cutoff of +/- 1 (Figure 2.7) led to 50 false positive hits.
They were removed frommost fitness comparisons, and are represented by red dots in pairwise comparison plots.
A more stringent cutoff was used to define beneficial genes in the FL treatments:

abs(mean(fitness)) − abs(sd(fitness))) >= 2

There are many possible ways to group the FL treatments, so clustering was applied to determine which vari-
ables correlate most strongly with fitness. Gene-level counts were clustered separately using DESeq25 and Clust1,
two packages designed for differential expression data but which can take any count data as input. TnSeq barcode
counts are expected to have different statistical properties from transcripts—for example their up- and down-
“regulation” are limited by cell growth and death rates—so only the most conservative clusters identified by both
packages, using different normalization and clustering algorithms, are presented here.

As shown in the DESeq2 heatmap (Figure 2.9), no single variable is sufficient to explain the clustering of gene-
level counts between samples. PBR samples cluster together, as do each of the constant-light treatments, but the
FL treatments largely overlap. The post-recovery FL4 and FL6 samples mostly cluster together. FL2 and FL5 are
very similar, as expected. The grazed PBR treatment was removed from both analyses because it contains outliers
in a majority of genes, which dominated differences between the other samples.

26

(a) Correlation of gene fitness in FL34 and
FL56 Time 0 samples

(b) Spurious hits in comparison of FL34 and
FL56 Time 0 samples

Figure 2.7: Significant variation between Time 0 outgrowths. Low correlation between Time 0 samples and
the resulting false positives when using a lax fitness cutoff of 1 for pairwise comparisons.

Figure 2.8: Genes clustering by barcode counts across all treatments and samples according to Clust. Auto-
matic normalization and clustering was performed using Clust1 with the the default “tightness” parameter ‘-t 1‘.
Other ‘-t‘ settings produced nearly identical clusters C3, C5, and C6 (data not shown). Axes are arbitrary.

27

Treatments were also clustered using principal component analysis of the number of FEBA hits they have in
common (Figure 2.10), to identify patterns that remain after raw counts are normalized and compared. A permis-
sive cutoff of +/- 1 was used because some treatments have no stronger hits. Time 0 and constant light samples
each cluster together as expected. The PBRf Time 0 treatment diverged from the others, which is also expected
since it was grown longer. The main PBR treatment clusters with FL5 and the pre-recovery FL6 sample as well as
the first long-term PBR timepoint derived from it, while FL1,2,3, and 4 (pre-recovery) all cluster together closely.
This is interesting because they represent mostly the “PBR-like” and “un-PBR-like” FL treatments respectively.
The post-recovery FL4 and FL6, as well as the longer-grown PBR treatments, are all different from each other.
Along with the larger overall differences between post-recovery gene counts in Figure 2.9, this supports the idea
that FL4 and FL6 cultures underwent roughly equivalent selection to the other FL samples during the first stage
of their outgrowths (Figure 2.4), despite little to no increase in OD750.

Figure 2.10: Principal component analysis of shared hits. Distances were computed from the number of genes
with fitness effect > 1 shared by each pair of treatments.

2.3.2 Co-fitness clusters
Three high-confidence gene clusters were identified by both the DESeq2 and Clust algorithms 2.11. Cluster
C3 (Table 2.3), contains photosynthetic genes, including Synpcc7942_1043 and Synpcc7942_2355, the phytyl-
phosphate kinase and putative phasin identified as beneficial under HL in Chapter 1. Phytyl-phosphate kinase
was also beneficial in the FL4, FL6, PBR, and grazed PBR treatments of the current experiment; Synpcc7942_2355
was beneficial in FL4 only. Other genes in the cluster include ndhD1 (Synpcc7942_1976), GGAT (Synpcc7942_2160)
and ycf52 (Synpcc7942_0773), discussed in Section 2.3.5 below, and the unstudied Synpcc7942_0006-0008
operon. The genes in this cluster are all beneficial, mostly in the long-grown treatments (FL4 and FL6 post-
recovery, PBR grazed) and HL.

28

Treatment Beneficial genes Deleterious genes

hl 20 1
fl4_d3 16 5
pbr_grazed 12 32
fl6_d3 7 8
pbr_56 6 0
ll 3 0
nl 3 0
fl5 1 0
fl1 0 2
fl4_d1 0 1

Table 2.1: Numbers of beneficial and detrimental genes discovered (at a cutoff of 2) per treatment.

Figure 2.9 (following page): Genes clustering by barcode counts across all treatments and samples according
to DESeq2. Rows (genes) and columns (samples sequenced) are clustered by patterns in their normalized rlog-
transformed gene-level barcode counts. Column labels encode sample metadata and row labels gene sets. Sam-
ple metadata: Time 0, which Time 0 sample the outgrowth started from; vessel, whether the outgrowth was
done in a flask under an LED array or in a photobioreactor; growth stage, when the sample was taken; growth
rate, bulk growth rate from OD750 (Figure 1.2), where white is unknown; low light, the lowest light intensity
used; high light, the highest light intensity used; ratio, ratio of highest/lowest intensity; fluctuation period, pe-
riod of one high/low cycle, treatment, groups in which all factors match except perhaps the growth stage sam-
pled. Gene sets: Clust, genes clustering in the Clust analysis (Figure 2.8); Removed, genes removed from fitness
plots because their fitness varied by at least 1 between Time 0 samples; PS Term, select photosynthesis-related
gene ontology annotations.

29

Figure 2.9: (continued)

30

Cluster C5 is much larger and contains some of the LPS export pathway genes identified earlier (Section
1.3.8): Synpcc7942_0388, 1126, 1244, 1902, 1904, 2292, and 2293. They are deleterious, mostly in the post-
recovery FL4 and FL6 and PBR grazed treatments. Synpcc7942_1902 is also beneficial in the LL and main PBR
treatments. S. elongatus uses at least one pathway homologous to the Wzm/Wzt system in E. coli to synthesize
exopolysaccharides28, and it is likely that many of these genes participate in that process. It is still unclear whether
they contribute to grazer resistance directly or simply to faster growth in the absence of competition during the
recovery from stress conditions.

Cluster C6 is interesting because it contains the only gene (Synpcc7942_0109) beneficial only under the con-
stant light conditions, discussed in Section 2.3.10. It also contains over half the genes found on the larger of two
S. elongatus plasmids, pANL.

FEBA also includes its own co-fitness analysis, based on fitness values rather than raw counts. The strongest
co-fitness values across all genes were observed between PsbW and the genes in Table 2.8. Several were identified
in Section 1.3.2 as specific to chlorophyll biosynthesis and PSII repair: Synpcc7942_0508, Synpcc7942_2282,
Synpcc7942_0817, Synpcc7942_0247, Synpcc7942_2355. Most are new though, and correlation with that path-
way suggests they are also involved in maintaining photosystem stability under multiple FL conditions.

2.3.3 Genes with fitness effects in multiple conditions
Several LPS export pathway components (Section 1.3.8) have large fitness effects across many of the fluctuating
light treatments as well, but some were removed from the analysis because they also varied between the Time 0
samples. They appear to be important contributors to fitness under any condition involving selection for rapid
growth, or perhaps rapid protein synthesis, and to have some effect under most conditions.

Synpcc7942_2160, annotated as alanine-glyoxylate aminotransferase with a possible role in photorespiration,
has fitness defects of -2 or more in 9 treatments with no obvious pattern uniting them. The strongest defects
were in the FL4 and FL6 recovery outgrowths, FL5, and HL. An alanine-glyoxylate aminotransferase homolog in
Arabidopsiswas found30 to be a photorespiratory Glutamate-glyoxylate aminotransferase (GGAT or GGT).

Synpcc7942_1043, the phytyl kinase identified in Section 1.3.2, was also in beneficial (defect > 2) in the FL4
and FL6 recovery outgrowths and in each PBR treatment.

2.3.4 Photosynthetic genes without differential fitness
As noted in the Rubin et al. paper48, FEBA is unable to uniquely map barcodes to the PSII reaction center
due to paralogs with very similar sequences: psbA (Synpcc7942_0424, 0893, 1389, and 0655), and psbD (Syn-
pcc7942_0655 and 1637). They also classified much of the rest of the core machinery as essential under standard
conditions: cytochrome b559, the internal PSII antenna proteins, core subunits of the cytochrome b6f complex
and PSI, and 2 of 3 PSI subunits responsible for docking with ferredoxin.

Neither of the two flavodiiron proteins present in S. elongatus , flv1 and 3 (Synpcc7942_1810 and 1809 re-
spectively) had large fitness effects under any of the FL conditions studied, except for flv3 in the PBR grazed
treatment. They did both have effects > 1 in all the PBR conditions, and flv3 also in FL4 post-recovery. Previ-
ous work2 showed dramatic phenotypes for knockouts of either gene in conditions similar to the FL2 treatment.
It is possible, though unlikely, that their phenotypes depend on growth as a monoculture rather than in a popula-
tion with other genotypes, or on minor differences in the growth conditions. More likely, the noise in this dataset
simply prevents resolving them from the background without also picking many false positives.

Plastocyanin (Synpcc7942_1088) and cytochrome c553 (Synpcc7942_1630) are not individually required
under any of the conditions studied; the worst fitness defect due to inturrupting either of them is plastocyanin

31

(a) Cluster C3

(b) Cluster C5

(c) Cluster C6

Figure 2.11: Merging DESeq2 and Clust gene count clusters. Three large clusters substantially predicted by
both the DESeq2 and Clust algorithms were merged to create the C3, C5, and C6 clusters discussed in the text.
Genes predicted by Clust but falling outside the main DESeq2 cluster are included in the analysis but not shown
here.

32

Locus ID Annotation Treatment Mean SD Essentiality Cyanos GreenCut

0006 fl6_d3 -2.6 0.6 non-essential no yes
pbr_grazed -2.8 0.5

0007 fl6_d3 -2.9 0.6 non-essential no no
0008 fl6_d3 -3.0 0.8 non-essential no no

pbr_grazed -2.5 0.4 non-essential no no
0072
0185
0773 conserved hypothetical protein

YCF52
fl4_d3 -3.8 0.5 non-essential no yes

0991
1043 fl4_d3 -5.9 0.6 non-essential yes no

fl6_d3 -4.2 1.3
hl -4.4 0.2
pbr_56 -2.0 0.0
pbr_grazed -3.1 0.1

1201
1253
1300
1760
1865
1976 NAD(P)H-quinone oxidoreductase

subunit D
fl4_d3 -4.1 0.4 non-essential yes no

2155
2160 alanine-glyoxylate aminotransferase fl4_d3 -5.4 1.0 beneficial no no

fl5 -3.3 1.2
fl6_d3 -3.1 0.8
hl -3.3 0.7

2334
2355 fl4_d3 -4.3 0.5 non-essential no no

hl -5.1 0.4
2380 fl4_d3 -3.0 0.5 non-essential no no
2490

Table 2.3: Genes in cluster C3, supported by both DESeq2 and Clust, along with fitness values for beneficial
and detrimental genes.

33

Locus ID Annotation Treatment Mean SD Essentiality Cyanos GreenCut

0379 hypothetical protein fl6_d3 3.2 0.8 non-essential yes no
0388 probable glycosyltransferase fl4_d1 2.6 0.5 beneficial no no

fl4_d3 3.1 0.9
fl6_d3 5.6 1.2
pbr_grazed 5.3 0.1

0479 GTP-binding protein LepA fl6_d3 3.2 0.4 non-essential yes yes
0628 spermidine synthase pbr_grazed 3.0 0.6 beneficial no no
1126 ABC transporter permease protein fl6_d3 4.1 1.7 non-essential no no

pbr_grazed 4.6 0.3
1244 ATPase pbr_grazed 2.9 0.3 beneficial no no
1902 putative glycosyltransferase fl6_d3 4.3 0.9 beneficial no no

ll -3.9 0.8
pbr_56 -3.1 0.3
pbr_grazed 4.9 0.1

1904 hemolysin secretion protein-like fl4_d3 2.9 0.7 non-essential no no
fl6_d3 3.6 0.3
hl 2.6 0.5

2063 stationary phase survival protein
SurE

pbr_grazed 2.9 0.9 non-essential yes no

2292 hypothetical protein fl4_d3 2.9 0.7 non-essential no no
fl6_d3 3.8 0.5

2293 hypothetical protein fl4_d3 2.9 0.7 non-essential no no
fl6_d3 3.8 0.7

Table 2.5: Genes in cluster C5, supported by both DESeq2 and Clust, that also had a fitness effect >= 2 in at
least one treatment. Additional genes in C5 with no phenotype identified: 0025, 0110, 0169, 0173, 0201, 0266,
0279, 0398, 0431, 0457, 0458, 0465, 0494, 0592, 0594, 0596, 0650, 0707, 0739, 0743, 0811, 0868, 0882, 0936,
0949, 0962, 1004, 1010, 1071, 1084, 1130, 1146, 1152, 1161, 1223, 1228, 1266, 1288, 1295, 1318, 1367, 1393,
1430, 1450, 1452, 1508, 1566, 1569, 1589, 1599, 1620, 1646, 1691, 1716, 1718, 1746, 1748, 1794, 1893, 1921,
1978, 2054, 2056, 2080, 2088, 2093, 2172, 2185, 2264, 2279, 2309, 2335, 2388, 2462, 2469, 2600, B2628,
B2635, B2638, B2651, B2659, and B2664.

34

Locus ID Annotation Treatment Mean SD Essentiality Cyanos GreenCut

0024
0109 DNA-binding ferritin-like protein

(oxidative damage protectant)-like
hl -3.8 0.3 non-essential no no

ll -2.9 0.2
nl -3.4 0.3

0625 Single-stranded nucleic acid binding
R3H

hl -2.3 0.2 non-essential no no

0966
1444
2573
2574
2575

Table 2.7: Genes in cluster C6, supported by both DESeq2 and Clust, along with fitness values for beneficial
and detrimental genes. Besides these 8 genes on the chromosome, 40 more were identified on pANL: B2615,
B2616, B2617, B2618, B2619, B2620, B2621, B2622, B2623, B2624, B2625, B2627, B2629, B2630, B2631,
B2632, B2633, B2634, B2636, B2640, B2642, B2643, B2644, B2649, B2650, B2653, B2654, B2655, B2657,
B2658, B2660, B2661, B2662, and B2663.

35

Locus ID Annotation PsbWCofitness

Synpcc7942_0568 cytosine deaminase 0.87
Synpcc7942_0508 geranylgeranyl reductase 0.85
Synpcc7942_0774 esterase 0.83
Synpcc7942_2282 GAF sensor signal transduction histidine kinase 0.83
Synpcc7942_0817 putative ferric uptake regulator, FUR family 0.82
Synpcc7942_0259 hypothetical protein 0.82
Synpcc7942_0360 hypothetical protein 0.81
Synpcc7942_1110 response regulator receiver domain protein (CheY-like) 0.81
Synpcc7942_0625 Single-stranded nucleic acid binding R3H 0.8
Synpcc7942_2052 probable oligopeptides ABC transporter permease protein 0.79
Synpcc7942_1869 probable cation efflux system protein 0.78
Synpcc7942_1870 Secretion protein HlyD 0.77
Synpcc7942_1947 hypothetical protein 0.76
Synpcc7942_0805 hypothetical protein 0.75
Synpcc7942_0690 ATP-dependent Clp protease adaptor protein ClpS 0.74
Synpcc7942_0434 hypothetical protein 0.74
Synpcc7942_2094 Beta-Ig-H3/fasciclin 0.73
Synpcc7942_0862 hypothetical protein 0.73
Synpcc7942_2324 glutathione synthetase 0.72
Synpcc7942_0650 hypothetical protein 0.72
Synpcc7942_0247 ABC-type permease for basic amino acids and glutamine 0.71
Synpcc7942_1088 plastocyanin 0.71
Synpcc7942_2464 N-acetylmannosamine-6-phosphate 2-epimerase 0.71
Synpcc7942_0771 hypothetical protein 0.71
Synpcc7942_0878 ribonuclease, Rne/Rng family 0.7
Synpcc7942_1682 Sulphate transport system permease protein 2 0.7
Synpcc7942_2355 hypothetical protein 0.7
Synpcc7942_0431 hypothetical protein 0.7
Synpcc7942_0567 hypothetical protein 0.7
Synpcc7942_2266 periplasmic polyamine-binding protein of ABC transporter 0.7
Synpcc7942_0246 extracellular solute-binding protein, family 3 0.69
Synpcc7942_2104 cyanate hydratase 0.69
Synpcc7942_0652 hypothetical protein 0.69
Synpcc7942_0642 bacterioferritin comigratory protein 0.69
Synpcc7942_1628 hypothetical protein 0.68
Synpcc7942_1140 hypothetical protein 0.68

Table 2.8: Genes strongly associated with PsbW (Psb28) via FEBA co-fitness.

36

Locus ID N Treatments

0388 9 fl1 fl3 fl4_d1 fl4_d3 fl6_d3 hl ll pbr_524 pbr_grazed
2160 9 fl2 fl3 fl4_d3 fl5 fl6_d3 hl ll pbr_524 pbr_617
1902 8 fl3 fl4_d1 fl4_d3 fl6_d3 ll pbr_524 pbr_56 pbr_grazed
1043 7 fl4_d3 fl6_d3 hl pbr_524 pbr_56 pbr_617 pbr_grazed
0006 5 fl4_d3 fl6_d3 pbr_524 pbr_617 pbr_grazed
0007 5 fl4_d3 fl6_d3 pbr_524 pbr_617 pbr_grazed
0008 5 fl4_d3 fl6_d3 pbr_524 pbr_617 pbr_grazed
1904 5 fl3 fl4_d1 fl4_d3 fl6_d3 hl
2292 5 fl3 fl4_d1 fl4_d3 fl6_d3 pbr_617
0399 4 fl4_d3 hl ll nl
1410 4 fl1 nl pbr_524 pbr_56
1694 4 fl5 fl6_d3 pbr_617 pbr_grazed
2293 4 fl3 fl4_d3 fl6_d3 pbr_617
0109 3 hl ll nl
0379 3 fl4_d3 fl6_d3 pbr_grazed
0773 3 fl4_d3 fl6_d3 pbr_617
1126 3 fl3 fl6_d3 pbr_grazed
1140 3 fl4_d3 hl pbr_617
1244 3 pbr_56 pbr_617 pbr_grazed
1334 3 fl3 fl4_d3 fl6_d3
1448 3 pbr_524 pbr_56 pbr_617
2099 3 fl4_d3 hl nl
2324 3 fl4_d3 hl pbr_grazed
2355 3 fl4_d3 hl pbr_617
2586 3 fl1 fl2 fl4_d3

Table 2.10: Genes discovered (at a cutoff of 2) in at least 3 different treatments, including those that were
removed from other analyses.

37

(a) Pre-recovery FL4 vs 6 (b) Post-recovery FL4 vs 6

Figure 2.12: Differential fitness between FL4 and FL6 before and after recovery outgrowth. Note that the
plots use different cutoffs.

under high light with a fitness of -1.14. This is in agreement with previous results29,15 showing that they must
both be knocked out before a growth defect appears.

2.3.5 Comparison of harsh low-light conditions
The FL4 and FL6 patterns caused near-complete growth arrest of S. elongatus during their outgrowths, so after
8 days each was transferred back to the Time 0 condition (constant 70 µmol photons m-2 sec-1) for recovery (Fig-
ure 2.4). Samples from before and after recovery were sequenced. Neither tells the complete story: pre-recovery
samples are noisy because there had been fewer generations of growth, but post-recovery samples may primar-
ily measure fitness during the recovery itself. Comparing the pre-recovery samples using a permissive cutoff of
+/- 1 reveals only one differentially fit gene: sulA (Synpcc7942_2477). It is beneficial in FL4 but detrimental in
FL6. sulA directly destabilizes FtsZ ring formation32 as part of the stringent response10, which has recently been
shown23 to be triggered by darkness (“starvation” of light) in S. elongatus . The fitness effect here suggests that
inhibiting division is an important component of survival under low/dark fluctuating light, but is unhelpful in
the PBR light regime. Further study would be needed to determine whether the effect depends on the difference
between low and zero light during dark periods. Assuming that preventing division is advantageous during both
conditions, the most plausible explanation may be that sulA is required to maintain growth arrest only during
periods of complete darkness.

Comparison of the post-recovery samples is also interesting: glycogen-branching enzyme (glgB, Synpcc7942_1085)
and ndhD1 (Synpcc7942_1976) are both strongly beneficial in FL4 only, while lepA (Synpcc7942_0479, re-
named Elongation Factor 4) is detrimental only in FL6. It is not obvious why an elongation factor found to be
necessary for efficient translation during high light in Arabidopsis chloroplasts24 would be detrimental in fluctu-
ating light, but one clue is that it is moderately co-fit with Synpcc7942_0388 and Synpcc7942_1902, which are
detrimental under multiple FL conditions. The glgB and ndhD effects are easier to interpret: they suggest that
alternative electron sinks (glycogen synthesis and oxidation of quinones/plastoquinones) are important in FL4
during the repeated sudden dark-to-light transitions. This is expected since the Calvin/Benson cycle takes time to

38

locusId treatments desc

Synpcc7942_1566 fl1 polyphosphate kinase
Synpcc7942_1674 fl1 hypothetical protein
Synpcc7942_1996 fl1, fl2 hypothetical protein
Synpcc7942_2586 fl1, fl2 hypothetical protein
Synpcc7942_0095 fl2 two component transcriptional regulator, winged helix family
Synpcc7942_2160 fl2, fl3 alanine-glyoxylate aminotransferase
Synpcc7942_1334 fl3 aminodeoxychorismate synthase, subunit I
Synpcc7942_2293 fl3 hypothetical protein
Synpcc7942_2292 fl3 hypothetical protein
Synpcc7942_1126 fl3 ABC transporter permease protein

Table 2.11: Genes with fitness effects during fast, medium, and slow 20/500 µmol photons m-2 sec-1 square
waves.

reach full sink capacity, and was found to impose a “penalty” on photosynthetic productivity in both S. elongatus
and C. reinhardtii during fluctuating light on similar timescales18.

2.3.6 Effect of fluctuation period
S. elongatus cells contain polyphosphate bodies in their nucleoids. When grown in a diurnal cycle the number of
bodies increases during light periods, whereas their size increases in the dark51. They have been shown to asso-
ciate closely with DNA, and are hypothesized to provide phosphate for DNA replication51. The polyphosphate
kinase identified here (Synpcc7942_1566) could be involved in regulating that process. If so, the fitness benefit
(+2) of inturrupting it only in the fastest condition suggests that it responds fast enough to cope with light/dark
cycles on the scale of hours or minutes, but not seconds. Inturrupting the two-component response regulator
Synpcc7942_0095 also confers a positive fitness effect (+2), but only on the 5 minute timescale. This could also
be explained in a similar manner if it operates on a timescale of minutes: the 30-second fluctuations may be fast
enough to average out, and 4-hour fluctuations may be handled by other mechanisms overlapping with the high
light response. Either theory would need to be tested.

2.3.7 Effect of sudden dark-to-light transitions
No genes were found with differential fitness > 2 (or even 1) between the FL2 and FL5 treatments. This is also
an interesting result, suggesting that the suddenness of low-to-high light transitions makes little difference to S.
elongatus cells.

2.3.8 Constant HL is more stressful than 30 min pulses
Constant HL is much more stressful than 30 minute periods of HL interrupted by low(er) light. Only glgB
(glycogen branching enzyme, see 2.3.5 above) was more important in the slow FL treatment, consistent with a
role as the initial electron sink upon shift to HL.

39

Figure 2.13: HL vs FL3 (30 min HL every 4 hr).

2.3.9 The modeled ePBR light regime approximates growth in an ePBR
Perhaps surprisingly, given the growth response, gene fitness at both timepoints was broadly similar to fitness in
the photobioreactors FL6 was designed (Figure 2.3) to mimic. The only prominent exception vs pre-recovery is
nadA (Synpcc7942_1448, quinolate synthetase), which has a defect in the photobioreactors. It is required for
de novo synthesis of NAD from aspartate17. The process which should be beneficial but not essential in both
conditions. The protein contains a (4Fe-4S)2+ cluster and is inactivated by exposure to oxygen41, so a reasonable
interpretation is that bubbling the PBRs with air increases its degradation rate. A follow-up experiment includ-
ing similarly aerated flasks would be necessary to confirm that.

Post-recovery, the two treatments were still similar. The main difference is the benefit of knocking out LPS ex-
port pathway genes during the recovery phase, a phenomenon found under other conditions as well; see Section
2.3.3. Synpcc7942_0205, which increases fitness in the PBR but decreases it in FL6, is also involved in NAD syn-
thesis. Its homolog in Synechocystis has been shown46 to be bifunctional, able to act as a nicotinamide mononu-
cleotide adenylyltransferase and also a ‘Nudix’ hydrolase. A recent study37 demonstrated that several Nudix hy-
drolases are involved in adjusting the relative levels of redox carriers in Arabidopsis chloroplasts, so the role of
Synpcc7942_0205 here may be more complicated. It would make sense for its contribution to depend on growth
rate and photosynthetic conditions, and therefore to be different between the pre- and post-recovery samples.

Two last two genes with large differential fitness in the post-recovery outgrowth are rsmG (rRNA small sub-
unit methyltransferase, Synpcc7942_0267)

40

(a) Pre-recovery (dilution 2) (b) Post-recovery (dilution 3)

Figure 2.14: Fitness in PBRs vs PBR light pattern (FL6) in flasks, before and after recovery of the flask cul-
ture under constant 70 µmol photons m-2 sec-1 for an additional 4 generations.

2.3.10 Genes specific to constant light
Two genes, Synpcc7942_0109 and Synpcc7942_0399, caused fitness defects when interrupted in any of the
constant light levels (averaging -3.4 and -2.7 respectively), but no significant defects in fluctuating light or eP-
BRs. The only exception is that Synpcc7942_0399 also caused a defect (-3.3) during recovery from FL4; the
recovery outgrowth was also under constant 70 µmol photons m-2 sec-1 . Synpcc7942_0109 is annotated as a
DNA-binding ferritin-like protein that could protect against oxidative damage and be involved in iron storage.
Its expression was also correlated with many genes on the pANL plasmid (Section 2.3.2). Synpcc7942_0399 is
unknown but conserved across cyanobacteria.

41

2.3.11 Long-term growth in photobioreactors

Figure 2.15: Short- vs long-term PBR fitness.

2.3.12 Grazer-resistant biofilms are a natural feature
Collapsed PBR cultures were examined under the microscope and found to be filled with small, fast-moving, eu-
karyotic heterotrophs. The heterotrophs remained after recovery, but coexisted with large masses of S. elongatus
cells (Figure 2.19). They were observed skimming rapidly along the surfaces of the biofilms, but presumably do
not impact the cells in their interior.

It was unclear whether heterotrophs caused the biofilm, or only appeared afterward and scavenged dead cells.
S. elongatus has also been shown to have an “apoptosis-like” mechanism in which it releases a compound into
the media causing rapid oxidative damage and death of its own cells, as well as those of other photosynthetic mi-
crobes13. That mechanism could be abnormally activated in some subset of the TnSeq mutants, causing collapse
of the whole culture only under particular conditions. As shown in Figure 2.20, supernatant from a freshly col-
lapsed had no effect on wild type, while the washed pellet caused biofilm formation. Grazing heterotrophs were
also present in the pellet-challenged culture. The TnSeq biofilm culture remained a biofilm in all conditions as
expected, but also produced a population of planktonic cells in the supernatant-challenged culture only.

42

Figure 2.17: PBR culture collapse. Left: collapsed culture. Right: healthy culture.

Figure 2.16: Grazed vs healthy PBR fitness.

Consistent with biofilms as a natural predation defense, the PBR grazed treatment (2 replicate PBRs) showed
a relatively normal distribution of mutant fitness. It was skewed far enough to fail the FEBA quality controls and
to necessitate removal from clustering (Figure 2.9), but still showed far more diversity than would be expected
if only a few resistant mutants had survived a severe bottleneck. Many genes have differential fitness, but the
strongest (Figure 2.16) are mostly LPS export pathway genes (Section 1.3.8), consistent with a role in grazer re-
sistance and/or rapid recovery. Surprisingly, there is also an even stronger hit in psaK, a small protein associated
with the periphery of PSI monomers59. It is unclear what effect is would have on biofilm formation or grazer
resistance.

43

(a) Growth chambers (b) Photobioreactors

Figure 2.18: Growth setup for the fluctuating light experiments. a. Two treatments at a time were exposed to
FL, isolated from each other by a cardboard light barrier (middle), and an additional blackout curtain for low
light treatments (bottom half). b. The PBR FL treatments were grown in 4 photobioreactors (Phenometrics
ePBR v1.1), bubbled with air from an aquarium pump.

Figure 2.19: Grazers in collapsed PBR culture. Zeiss AxioImager A.2 400X. Left: unidentified bodies resem-
bling Amoeba HGG1 cysts found by Simkovsky et al.54. Top right: a 3-dimensional biofilm formed by S. elon-
gatusin the presence of the predator. Bottom right: the unidentified predator compared to S. elongatuscells,
and enlarged (inset).

44

Figure 2.20: Grazers trigger the biofilm response. Differential interference contrast (DIC) microscope images
at 100X of S. elongatusand the TnSeq biofilm culture. Each was challenged with supernatant or pellet derived
from a collapsed TnSeq PBR culture, then imaged the next day.

2.4 Discussion
Gene counts were noisier in this set of experiments compared to the constant-light outgrowths in Chapter 1.
Several differences probably contribute: shorter and fewer reads per sample, less uniform library prep due to dif-
ferences in the number and growth stage of cells that could be sampled between treatments. However I suspect
the major difference is that the first set of experiments started directly frommy original outgrowth, whereas these
went through an extra cycle of freezing, thawing, and recovery under standard conditions. The treatments with
the best resolution of phenotypes here were the ones grown longest, so future experiments with the S. elongatus
TnSeq library should aim to continue the outgrowths past 7 generations.

I found only relatively minor phenotypes for interruptions of flv1/3, despite picking the FL conditions specif-
ically to detect them. I expect that starting with an earlier copy of the library, continuing the outgrowths past 7
generations, or deeper sequencing would reveal phenotypes for them under these same experimental conditions.
Unfortunately, if true that also suggests this study may have missed other genes of similar effect.

The particulars of this study did lead to another interesting finding, though: in contrast to the Rubin paper48,
I found prominent deleterious genes under multiple conditions. The most likely explanation is that they are not
evident at first, but come to dominate as the library goes through successive outgrowths. I also found them to be
more prominent in conditions involving stress followed by recovery, which the initial study sought to minimize.

Harsh fluctuating light never continues for days at a time–or even for one entire day—in natural systems, so
no organism would be expected to evolve optimal responses to it. This study bears that out, finding a range of
genes that can be knocked out to increase fitness under various FL regimes. Knocking out the positive-fitness
enzymes and regulatory factors identified here could be a promising strategy to increase yields in reactors with
fluctuations of similar periods (around 30 seconds to 5 minutes/cycle), or even faster. The impromptu grazer
resistance screen presented here could also be useful for engineering more effective biofuels strains, since contami-
nation is a common challenge in large-scale cultures20.

45

2.5 Future Directions
The S. elongatus TnSeq library is a valuable tool for dissecting photosynthetic pathways, and this study shows
that there are many genes of large individual effect remaining to be found under various light conditions. Rather
than comparing several discrete conditions as I have done here, one promising direction would be to miniaturize
the process to study light and/or nutrient gradients, much as is already being done with heterotrophic bacteria45.
Graham et al.18 used an LED projector to illuminate individual wells in a 384-well plate with a range of fluctuat-
ing light patterns. The same setup could be used to grow the RB-TnSeq library, allowing us to investigate much
more subtle photosynthetic phenotypes than have been possible before by isolating fitness defects to specific light
conditions. Alternatively, the experiment could be scaled up by growth in multiple large plates, the way I did my
first high-throughput growth curves (Appendix A).

46

Chapter 3

ShortCut: A domain-specific language to
facilitate reproducible phylogenomic searches

3.1 Summary
Phylogenomic “cuts” are one name for lists of genes whose pattern of evolutionary conservation suggests they
may be important for a process of interest, such as photosystem assembly or chloroplast retrograde signaling. The
GreenCut34,27 and similar lists have historically been successful at identifying candidates for further study, but
no standard methodology exists for making them or measuring their quality. They tend to involve a small num-
ber of common tools—BLAST searches, set subtraction, perhaps construction of gene or genome trees, and man-
ual curation—that must be combined in unique ways depending on the organisms and traits involved. Because
a variety of workflows are needed, the overall process is difficult to automate with any single program. ShortCut
is an attempt to overcome that limitation using a domain-specific language: rather than one finished algorithm,
it provides many small functions that can be rearranged to create algorithms tailored to specific questions. It also
provides a novel method of measuring their robustness to changes in the search parameters. The scripts are inter-
active, facilitating quick comparison of many possible methods to find the most reliable list of candidate genes.
But more importantly, they are reproducible; their adoption has the potential to accelerate research by allowing
existing searches to be reused in future projects, or continuously updated as new genomes are published.

3.1.1 Motivation
This project began as a means to find genes likely involved in PSII assembly, but quickly took on a life of its own.
Robert Calderon, a previous student in the lab, was studying the PSII assembly factor RBD111. He noticed that
it was absent from the recently-discovered cyanobacterium Atelocyanobacterium thalassa19, which adopted a
symbiotic nitrogen-fixing lifestyle and subsequently lost PSII. He found several other genes with similar profiles
manually, and recruited me to help with a larger-scale automated search.

I wrote several early iterations of the search in Bash (the standard language for scripting Linux commands),
but found it difficult and error-prone to keep both the biology and programming details in mind simultane-
ously. I began trying to separate the code from a minimal description of the problem to be solved so each part of
it could be verified on its own. Eventually I realized that my “minimal description” constituted a domain-specific
language, and the code for translating that description into a series of steps could be better written as a compiler
for that language. Furthermore, I noticed that this is a general problem faced by many biologists. My language

47

1 pnas[journal] AND (photosynthesis OR cyanobacteria)

1 { stdenv, fetchurl, cmake, perl, zlib, unzip }:
2
3 stdenv.mkDerivation rec {
4 name = "mmseqs2-${version}";
5 version = "67b4ca0708a5cd2a0f87220b97f11e562f6c7842";
6 src = fetchurl {
7 url = "https://github.com/soedinglab/MMseqs2/archive/${version}.zip";
8 sha256 = "0fm3k2y4qc3830pvgixjjsra8ssfdsfr7yyzrcca42pmr750rwzc";
9 };
10 buildInputs = [cmake perl zlib unzip];
11 postUnpack = ''
12 patchShebangs MMseqs2-${version}
13 '';
14 preConfigure = ''
15 cmakeFlags="$cmakeFlags -DCMAKE_BUILD_TYPE=RELEASE \
16 -DCMAKE_INSTALL_PREFIX=$out -DHAVE_AVX_EXTENSIONS=0 -DHAVE_AVX2_EXTENSIONS=0"
17 '';
18 }

Listing 1: DSLs range from simple to complicated.

was already close to general enough to be useful in other studies... why not go all the way, and develop something
that can be widely reused?

3.1.2 Background
Domain-specific languages (DSLs) are distinguished from general-purpose programming languages by being
relatively simple and limited. They can only express solutions to a particular type of problem, but they do it suc-
cinctly. Like technical jargon, they reduce ambiguity and make communication more efficient. A simple example
is the text-based “advanced search” features found on websites such as Google or PubMed. Each website uses
a different syntax that makes one type of search easier by not needing to handle the other use cases. A more ad-
vanced example is Nix14, which I use as part of ShortCut to reproducibly install dependences (see Listing 1). It
borders on being general-purpose.

The key feature of a problem well suited to being solved with a domain-specific language is that it should have
a relatively small number of basic operations, but a large number of ways they may need to be combined. They
are designed to hide irrelevant detail while exposing anything that a “domain expert” might need to change. In
the case of ShortCut irrelevant details are things like the command line arguments required by each program or
where to save intermediate files, and details that need to be exposed are things like which sequence files to com-
pare, which search programs to use at each step, and in some cases an e-value cutoff.

The difference between a program and a programming language interpreter is fuzzier than most non-programmers
imagine; “code” can be viewed as just an unusually flexible configuration file for the main program, called the in-
terpreter. ShortCut started as a simple BLAST script, then grew into a confusing series of scripts managed by
configuration files (See Figure 2). When those became unmanageable, the interpreter was written to generate a
similar series of steps frommore human-readable (and therefore less error-prone) descriptions.

48

[blastconserved]
script = bin/blast.sh
skip = false
verbosity = 3
cache_dir = tmp/blast_cache
genomes_dir = tmp/fna
output_csv = tmp/blast1.csv
queries_fasta = tmp/conserved.faa

[comparegenes]
script = bin/comparegenes.R
skip = false
verbosity = 3
file1 = tmp/ps2cut_robbie.txt
file2 = tmp/ps2cut_jeff.txt

[choosegenomes]
script = bin/choosegenomes.R
skip = false
verbosity = 3
include_cutoff = 1e-3
include_regex = .*
input_csv = tmp/blast1.csv
output_txt = tmp/genomes.txt

[blastvariable]
script = bin/blast.sh
skip = false
verbosity = 3
cache_dir = tmp/blast_cache
exclude_regex = jgi_IMG-2502171196
genomes_dir = tmp/fna

list_genomes = tmp/genomes.txt
output_csv = tmp/blast2.csv
queries_fasta = tmp/plastidcut2.faa

[choosegenes]
script = bin/choosegenes.R
skip = false
verbosity = 3
exclude_cutoff = 1.0
exclude_regex = jgi_IMG-2502171196
include_cutoff = 15
include_regex = .*
input_csv = tmp/blast2.csv
output_txt = tmp/ps2cut_jeff.txt

Listing 2: Complicated configuration file or simple language? An early description of the PSIIcut lists scripts to
run and the arguments to run them with.

3.2 Results
3.2.1 Example code
First, what does the code look like? Based on early feedback, the most common first step for new users will prob-
ably be finding reciprocal BLAST best hits between species not yet published in the major databases. Here is an
example with BLASTp.

mgen = load_faa "data/Mycoplasma_genitalium_protein_refseq.faa"
syne = concat_faa [gbk_to_faa "cds" (load_gbk "data/SynPCC7942_chr.gbk"),

gbk_to_faa "cds" (load_gbk "data/SynPCC7942_pANL.gbk")]
result = blastp_rbh 1e-10 mgen syne

Listing 3: First steps toward a cut: reciprocal best BLASTp between two proteomes, one of which needs to be
converted to FASTA first by extracting features labeled “cds” in two GenBank files and concatenating them.

49

Figure 3.1: Steps in a typical cut script.

With code saved to my-first-blast.cut in the same directory as the proteome files, the script can be run
like this:

shortcut --script my-first-blast.cut --output results.txt
It should result in a results.txt like this:

WP_010869318.1 Synpcc7942_0563 47.583 662 325 5 11 ...
WP_014894509.1 Synpcc7942_0848 49.796 980 444 9 8 ...
WP_014894005.1 Synpcc7942_1662 33.424 368 226 8 16 ...
WP_009885724.1 Synpcc7942_1795 33.571 140 92 1 3 ...
WP_010869493.1 Synpcc7942_1100 27.209 430 279 11 23 ...
...

For simple questions like “Howmany LHC (light harvesting complex) proteins does this genome encode?”,
the only remaining step would be to make a list of unique hit IDs with the extract_targets function. More
detailed scripts can start simple, then be elaborated until they follow a pattern more like Figure 3.1 and look more
like the GreenCut2 (Listing 4). They might also build from another cut as a starting point, compare multiple
search methods, or include a custom script to analyze/plot the output.

3.2.2 Write searches interactively
Cut scripts can be written in a text file and run with shortcut --script, but they can also be written interac-
tively with shortcut --interactive. There are several advantages:

• Tab-completion of types, function, and variable names
• Type-checking of each line as it is written (Section 3.2.7)
• Ability to print or plot variables, checking that they make sense

50

Two major criteria were used to generate the inventory of GreenCut2 proteins...

First, the Chlamydomonas proteins of the GreenCut2 must have an ortholog
encoded by the nuclear genomes of the green lineage organisms A. thaliana
(TAIR v8), P. patens (JGI v1.1), O. sativa (japonica) (TIGR v5.0), P.
trichocarpa (JGI v1.1), ...
chlamy = load_faa "Creinhardtii_281_v5.5.protein_primaryTranscriptOnly.fa"
athal = load_faa "TAIR8_pep_20080412"
physco = load_faa "Physcomitrella_patens_UP000006727.faa" # TODO try removing it for Robbie
osativa = load_faa "Oryza_sativa.IRGSP-1.0.pep.all.fa"
ptricho = load_faa "Populus_trichocarpa.Pop_tri_v3.pep.all.fa"
greens = [chlamy, athal, physco, osativa, ptricho]

... and one of the three Ostreococcus species with fully
sequenced genomes (O. lucimarinus (JGI v2.0), O. tauri (JGI v2.0), or
Ostreococcus sp. RCC809 (JGI v2.0)).
oluci = load_faa "Ostreococcus_lucimarinus_UP000001568.faa"
otauri = load_faa "Ostreococcus_tauri_UP000009170.faa"
orcc809 = load_faa "OstreococcusRCC809v2.allModels.proteins.fasta"
ostreococcus = [oluci, otauri, orcc809]

Second, proteins with orthologs in the green lineage organisms listed above
were only included in the GreenCut2 if they had no ortholog in Pseudomonas
aeruginosa str. PA01, Staphylococcus aureus subsp. aureus str. N315,
Dictyostelium discoideum AX4, Phytophthora sojae, Neurospora crassa OR74A,
Methanosarcina acetivorans str. C2A, Sulfolobus solfataricus str. P2,
Caenorhabditis elegans, and Homo sapiens.
pseudomonas = load_faa "Pseudomonas_aeruginosa_PAO1_107.faa"
staph = load_faa "Staph_aureus_N315.faa"
disco = load_faa "Dictyostelium_discoideum_UP000002195.faa"
p_sojae = load_faa "Phytophthora_sojae_UP000002640.faa"
neurospora = load_faa "Neurospora_crassa_UP000001805.faa"
methano = load_faa "Methanosarcina_acetivorans_UP000002487.faa"
saccharo = load_faa "Saccharolobus_solfataricus_UP000001974.faa" # formerly sulfolobus
c_elegans = load_faa "Caenorhabditis_elegans_UP000001940.faa"
human = load_faa "GRCh38_latest_protein.faa"
non_ps = [pseudomonas, staph, disco, p_sojae, neurospora, methano, saccharo, c_elegans, human]
proks = [pseudomonas, staph, methano, saccharo]

Searches for orthologs in Cyanidioschyzon merolae str. 10D, ...
cmero = load_faa "Cmero_UP000007014.faa"
red_algae = [cmero]

... Thalassiosira pseudonana (JGI v2.0), and Phaeodactylum tricornutum (JGI
v3.0) also were conducted, but for inclusion in the GreenCut2, we did not
require that a Chlamydomonas protein have an ortholog in these organisms.
ptr = load_faa "Phaeodactylum_tricornutum_UP000000759.faa"
tps = load_faa "Thalassiosira_pseudonana_UP000001449.faa"
diatoms = [ptr, tps]

everyone = greens | ostreococcus | non_ps | red_algae | diatoms

51

A mutual best BLASTP hit (E-value <1e-10) was used to establish orthology to
a Chlamydomonas protein. Additional eukaryotic proteins that were not a
mutual best hit but had >50% amino acid identity to a Chlamydomonas protein
within an ortholog cluster were selected as in-paralogs (co-orthologs
throughout).
fwd_hits = blastp_each 1e-10 chlamy everyone
fwd_euk_hits = blastp_each 1e-10 chlamy (everyone ~ proks)
rev_hits = blastp_rev_each 1e-10 chlamy everyone
rb_hits = reciprocal_best_all fwd_hits rev_hits
more_hits = concat_bht (filter_pident_each 50 fwd_euk_hits)
families = greencut2_families rb_hits more_hits

greencut2 = ortholog_in_all families [chlamy, ptricho, athal, osativa, physco]
& ortholog_in_min 1 families ostreococcus
~ ortholog_in_any families non_ps

plantcut2 = greencut2 & ortholog_in_all families red_algae
diatomcut2 = greencut2 & ortholog_in_min 1 families diatoms
viridicut2 = greencut2 ~ plantcut2 ~ diatomcut2
plastidcut2 = plantcut2 & diatomcut2

save lists of Chlamydomonas IDs for each cut
cre_ids = extract_ids chlamy
greencut2_cre = any greencut2 & cre_ids
plantcut2_cre = any plantcut2 & cre_ids
diatomcut2_cre = any diatomcut2 & cre_ids
viridicut2_cre = any viridicut2 & cre_ids
plastidcut2_cre = any plastidcut2 & cre_ids

and same with Arabidopsis
at_ids = extract_ids athal
greencut2_at = any greencut2 & at_ids
plantcut2_at = any plantcut2 & at_ids
diatomcut2_at = any diatomcut2 & at_ids
viridicut2_at = any viridicut2 & at_ids
plastidcut2_at = any plastidcut2 & at_ids

The final output lists:
result =
[greencut2_cre
, plantcut2_cre
, diatomcut2_cre
, viridicut2_cre
, plastidcut2_cre
, greencut2_at
, plantcut2_at
, diatomcut2_at
, viridicut2_at
, plastidcut2_at
]

Listing 4: Re-implementation of the GreenCut2 in ShortCut based on Karpowicz et al.27.

52

Welcome to the ShortCut interpreter!
Type :help for a list of the available commands.

shortcut —▶ :help
You can type or paste ShortCut code here to run it, same as in a script.
Unlike in a script though, you can also evaluate and redefine variables.
There are also some extra commands specific to --interactive mode:

:help to print info about a function or filetype
:load to clear the current session and load a script
:reload to reload the current script
:write to save the whole script (or dependencies of a specific variable)
:needs to show which variables a given variable depends on
:neededfor to show which variables depend on the given variable
:drop to discard the current script (or a specific variable)
:quit to discard the current script and exit the interpreter
:type to print the type of an expression
:show to print an expression along with its type
:! to run the rest of the line as a shell command (disabled in --secure mode)

Listing 5: Interactive commands specific to the interpreter.

The interpreter can be used to set up and typecheck a long script to be run later, or to run (evaluate) specific
variables live. A common pattern for combining the two modes is to experiment live on a subset of the data, then
run the same script on everything separately; see Section 3.3.2).

3.2.3 Save work and reproduce it later
At any point, work in the interpreter can be saved by writing it to a script. Either the whole script with :write
all-my-work-so-far.cut, or everything needed for a particular variable with

:write myvar just-the-steps-to-myvar.cut. This is a major advantage compared to most program-
ming languages, because people typically experiment for a while before deciding they need to save their work. At
that point, other languages have no built-in way to reconstruct the series of steps needed to get to the current in-
teresting result; one has to learn from experience to write down the steps in a separate script as they go. ShortCut
makes reproducibility the default instead.

3.2.4 Reliable software installation
Bioinformatics software is typically messy and difficult to install. Sometimes it can so idiosyncratic that another
paper is required to improve the installation process3, or the authors may not even grant permission to try57.
ShortCut reproducibly installs all the programs it depends on and guarantees that they will be compatible ver-
sions. See Listing 8 for instructions.

53

Welcome to the ShortCut interpreter!
Type :help for a list of the available commands.

shortcut —▶ load_list "data/proteomes-mmseqs.txt"
["data/Mycoplasma_agalactiae_small.faa",
"data/Mycoplasma_bovis_small.fa",
"data/Mycoplasma_genitalium_small.faa",
"data/Mycoplasma_hyopneumoniae_small.faa"]

shortcut —▶ load_faa_each (load_list "data/proteomes-mmseqs.txt")
[>gi|290752267|emb|CBH40238.1|
MNINSPNDKEIALKSYTETFLDILRQELGDQMLYKNFFANFEIKDVSKIGHITIGTTNVTPNSQYVIRAY
ESSIQKSLDETFERKCTFSFVLLDSAVKKKVKRERKEAAIENIELSNREVDKTKTFENYVEGNFNKEAIR
IAKLIVEGEEDYNPIFIYGKSGIGKTHLLNAICNELLKKEVSVKYINANSFTRDISYFLQENDQRKLKQI
RNHFDNADIVMFDDFQSYGIGNKKATIELIFNILDSRINQKRTTIICSDRPIYSLQNSFDARLISRLSMG
...

shortcut —▶ :load my-first-blast.cut
mgen = load_faa "data/Mycoplasma_genitalium_protein_refseq.faa"
syne = concat_faa [gbk_to_faa "cds" (load_gbk "data/SynPCC7942_chr.gbk"),

gbk_to_faa "cds" (load_gbk "data/SynPCC7942_pANL.gbk")]
result = blastp_rbh 1e-10 mgen syne

shortcut —▶ result
WP_010869318.1 Synpcc7942_0563 47.583 662 325 5 ...
WP_014894509.1 Synpcc7942_0848 49.796 980 444 9 ...
WP_014894005.1 Synpcc7942_1662 33.424 368 226 8 ...
WP_009885724.1 Synpcc7942_1795 33.571 140 92 1 ...
WP_010869493.1 Synpcc7942_1100 27.209 430 279 1 ...
...

Listing 6: The interactive ShortCut interpreter. You can load, save, run and redefine particular variables live.

54

shortcut —▶ :help score_replacments

score_replaced : <outputnum> <inputvar> <inputlist> -> <input>.scores

Shorthand for the common use case where you want to score your cut by some
metric, for example number of hits, then vary one of the input parameters and
see how the score changes.

Arguments are the same as for replace_each, except the output variable must be a
number. It returns a table of scores and the corresponding inputs. You can
inspect them yourself, or plot them in ShortCut.

Examples:

linegraph
"How does the cutoff change the number of hits?"
(score_replaced (length hits) initial_cutoff alternate_cutoffs)

Listing 7: Built-in help with modules, types, and functions.

install Nix if needed
curl https://nixos.org/nix/install | sh

install ShortCut
git clone https://github.com/jefdaj/shortcut.git
cd shortcut
nix-build --verbose -j$(nproc)

run self-tests
./result/bin/shortcut --test

Listing 8: Installation of ShortCut using the Nix package manager14. The last step is optional and runs about
700 self-tests after installation to confirm all the included programs are working. This process should work on
Linux and MacOS; Windows is unsupported for now.

55

ShortCut includes a variety of common sequence search programs:

• NCBI BLAST+
• CRB-BLAST
• HMMER
• DIAMOND
• MMSeqs2

And several different ortholog-finding programs:

• Orthofinder
• SonicParanoid
• Reciprocal best hits (implemented here)
• Greencut2 gene families (re-implemented here based on the published method)

There are also several other miscellaneous programs I found useful, includingMUCSLE for sequence align-
ments and BUSCO to assess genome quality based on howmany of the expected universally conserved single-
copy orthologs it contains.

3.2.5 Simplified commands and file organization
One of the main goals is to simplify the use of each program as much as possible while maintaining enough flex-
ibility to meet most use cases. For example, the Bash commands and ShortCut commands in Listing 3.2 are
roughly equivalent, but the ShortCut code is much closer to how it would typically be described out loud or
in a methods section. Biologically important details like whether to make a protein or nucleic acid database are
controlled implicitly by choosing the load_faa (FASTA amino acid) and blastp functions.

Each time it evaluates a variable, ShortCut writes the result to a file of the same name in the temporary direc-
tory (/.shortcut/vars by default). That eliminates having to remember what things were named, but still
makes them available to open in another program when needed.

3.2.6 Math and set Operations
Most of what ShortCut does is glue together external scripts. But there are also a few common operations built
in to help compare the results. Set operations are a natural way to express phylogenomic cuts (See Figure 3.3 and
Section 4), and math is often useful for defining quality metrics (Listing 9).

n_found = length (mycut & previously_known)
percent_found = n_found / length mycut * 100
percent_missed = 100 - (n_found / length previously_known * 100)

Listing 9: Three simple ways of estimating the quality of a cut: number of known genes rediscovered, percent-
age of known genes rediscovered, and percentage of known genes missed (not rediscovered).

56

1 # Look manually for unusual characters in sequence IDs (commas in this case)
2 # and remove them. This step varies based on your intended downstream use.
3 sed 's/,/-/g' query-transcriptome.faa > query-transcriptome-safe.faa
4 sed 's/,/-/g' subject-transcriptome.faa > subject-transcriptome-safe.faa
5

6 # Make the BLAST database
7 mkdir -p blastdb
8 makeblastdb -in subject-transcriptome-safe.faa -out blastdb/subject \
9 -title subject -dbtype prot -parse_seqids
10

11 # Then run BLAST
12 blastp -db blastdb/subject -query query-transcriptome-safe.faa \
13 -evalue 1e-10 -outfmt 6 > hits.tsv

1 # Load files, then run BLAST
2 query = load_faa "query-transcriptome.faa"
3 subject = load_faa "subject-transcriptome.faa"
4 blastp 1e-10 query subject

Figure 3.2: Roughly equivalent code for running NCBI BLAST+ through its native interface and wrapped by
ShortCut.

Figure 3.3: Set operations can be used to represent anything that could be drawn as a Venn Diagram. In
ShortCut they operate on lists of any other type, and come as either binary operators (top row) that take two
lists and produce a third, or as regular functions (bottom) that operate on a list of lists.

3.2.7 Prevent simple mistakes using types
ShortCut tags each expression in a script with a filetype: string, number, FASTA amino acid, list of FASTA
amino acid, etc. Each function has rules for the types it will accept, and will prevent the user from accidentally
passing it the wrong ones. For example in my-first-blast.cut (Listing 3), it would cause an error to use one
of the load_gbk functions directly in blastp_rbh, because it only accepts FASTA amino acid files. It would
also cause an error to pass it a FASTA nucleic acid file (blastn_rbh or tblastnwould be appropriate for that
instead), if the arguments in the wrong order (e-value cutoff last instead of first), or if there is a typo in one of
the variable names. Without typechecking, these sorts of trivial mistakes will almost always derail a long script at
some point.

3.2.8 Simplified format conversions
A few standard formats—mainly FASTA files and BLAST hit tables—can be used by multiple programs included
in Shortcut, but otherwise it is not possible to pass the output of one to another directly. Bioinformaticians

57

would normally inspect the data from each step in their pipelines and write scripts specifically to put each in a
format that can be understood by the next. ShortCut simplifies that process, first by putting the output of each
step in a single standard format when possible, and second by providing conversion functions and using types to
prevent them being used in invalid ways.

An example of the first strategy is that all the sequence searching programs are configured to return BLAST hit
tables, or are wrapped by extra scripts to convert their output to that format.

An example of the second is that each ortholog-finding program is given its own result type (see ofr, spr, and
gcr in Table B.1). To compare their results, a list of orthogroups needs to be extracted first with the orthogroups
function. That could be done automatically of course, but a separate step leaves open the possibility of using
their results in other ways too, which might not be compatible. For example a species_tree function could be
written that would extract a consensus species tree fromOrthofinder results, but would not work on GreenCut
results. Similarly, GreenCut results could be separated into lists of orthologs (reciprocal best hits) and paralogs
(the rest), but Orthofinder makes no such distinction.

3.2.9 Compare alternative methods
Another major advantage in a scientific context is that ShortCut explicitly includes trying alternatives as part of
the code. In most languages this is done simply by editing the code and re-running it each time. That works well
when programming, but when conducting experiments it can lead to accidental p-hacking (trying various study
designs until one gives the “correct” result), or at least to publishing only the final working version and forgetting
to document the series of experiments that led to it.

As an example, consider the e-value cutoff in Listing 3 above. Would lowering it lead to more or fewer hits?
The script could be edited and re-run to find out, but this is more explicit:

mgen = load_faa "data/Mycoplasma_genitalium_protein_refseq.faa"
syne = concat_faa [gbk_to_faa "cds" (load_gbk "data/SynPCC7942_chr.gbk"),

gbk_to_faa "cds" (load_gbk "data/SynPCC7942_pANL.gbk")]

first try the same as before, but make cutoff a variable
cutoff = 1e-10
hits = blastp_rbh cutoff mgen syne

now try it with a range of cutoffs
alternate_hit_tables = replace_each hits cutoff [1e-5, 1e-10, 1e-50, 1e-20, 1e-50]
result = length_each alternate_hit_tables

Listing 10: An explicit experiment in code: how does changing the e-value cutoff affect the number of recip-
rocal best hits? The replace_each line can be thought of as “repeatedly calculate hits, replacing cutoff with
each of these alternate cutoffs”.

ShortCut also standardizes the inputs of the ortholog-finding programs (OrthoFinder, SonicParanoid, and
my re-implementation of the GreenCut algorithm) so they can each be run starting from precalculated all-vs-all
BLAST hits, and provides functions (ending in _ava) to generate those all-vs-all hits with each sequence search-
ing program.

58

mgen = load_faa "data/Mycoplasma_genitalium_small.faa"
mycos = load_faa_each (load_list "data/100-mycoplasma-proteomes.txt")

alternative sequence search algorithms
note that you might want different cutoffs
blast_hits = blastp_ava 1e-10 mycos
diamond_hits = diamond_blastp_ava 1e-10 mycos
mmseqs_hits = mmseqs_search_ava 1e-10 mycos

alternative ortholog-finding algorithms, all using the blast hits for simplicity
note that unlike the other two, the greencut algorithm requires a reference species
of_groups = orthogroups (orthofinder_ava blast_hits)
sp_groups = orthogroups (sonicparanoid_ava blast_hits)
gc_groups = orthogroups (greencut2_families_ava mgen blast_hits)

make a very conservative list of only the orthogroups that all
3 algorithms agree span at least 90% of the mycoplasma species
result = all [ortholog_in_min 0.9 of_groups mycos,

ortholog_in_min 0.9 sp_groups mycos,
ortholog_in_min 0.9 gc_groups mycos]

Listing 11: Separate sequence searches and ortholog finding with the all-vs-all hits type.

Decoupling the two makes it possible to compare them separately. One can try multiple ortholog finders with
minimal extra compute time or compare sequence searches in an attempt to make the chosen ortholog finder
faster or more sensitive, depending on the species involved. This is the first program that allows comparing them
directly on research data this way, which will also make it easier to verify whether newly released programs give
similar results to older ones.

3.2.10 Export plots, lists, tables
ShortCut also includes functions to make basic plots (Listing 12), as well as simple text files and “set membership
tables”, spreadsheets in which rows are typically sequence IDs and columns sets of results. It does not aim for
publication quality plots, but a custom script could be written for that if needed (Section 3.3.4).

3.2.11 Automatic parallelization
ShortCut will run multiple functions in parallel as long as they do not depend on each other. For example in
Listing 12 it will load and convert files in parallel, then do the alternate versions of the BLAST search in parallel,
then finally make the plot.

3.2.12 Automatic updating of results
If one of the input files mentioned in the cut script changes, ShortCut will recalculate any variables that depend
on it when re-run. This is especially useful for updating cuts as new genome annotations are released, but it could
also be used to keep updated on local changes. For example there could be a directory of “species to base my or-
thogroups on” or a file listing genes to include or exclude at some step, and it would continuously update the
results.

59

scores = score_repeats (length hits) cutoff [1e-5, 1e-10, 1e-50, 1e-20, 1e-50]
result = linegraph "How does the number of hits depend on e-value?" scores

Listing 12: Plot how the number of reciprocal best hits depends on the e-value cutoff. Assumes the rest of the
BLASTp script is loaded from above.

cyano_proteomes = load_faa_each (glob_files "cyanobacteria/*_refseq.faa")
cyano_orthogroups = orthogroups (sonicparanoid cyano_proteomes)
result = cyano_orthogroups

Listing 13: A script designed to auto-update. If the list of files matching the glob pattern has changed since
the last run, any variables that depend on it will be recalculated. Note that unless the algorithm is meant to
handle changing files, explicitly listing the ones it does handle should be preferred for clarity.

3.2.13 Demo website
Though easier to install than comparable bioinformatics software, trying ShortCut still takes enough time that
most potential users will not bother. Therefore, I built a web-based demo. The site (shortcut.pmb.berkeley.
edu) is a work in progress but already includes the demo terminal, a tutorial, auto-generated function reference,
and loadable examples. Code for the website is also available at github.com/jefdaj/shortcut-demo. It in-
cludes ShortCut itself, and can be reproducibly built with nix-build in the same way (Listing 8). This could
be useful for labs or institutions to host a version of the demo for internal use, either for intellectual property
reasons or to use a faster computer.

3.3 Methods
3.3.1 Interpreter design
This section explains the process of turning text descriptions in the DSL into a series of commands to run to
actually calculate the result. The design leads naturally to most of the unique features of ShortCut relative to
other languages.

60

shortcut.pmb.berkeley.edu
shortcut.pmb.berkeley.edu
github.com/jefdaj/shortcut-demo

Figure 3.4: The overall process of interpreting a cut script. Each script includes a default result variable,
which is overridden interactively by the user each time they type an expression.

Figure 3.5: Typechecking an assignment statement. The load_faa function takes a string (str) and produces
a FASTA amino acid (faa) file by loading it. Since it was passed a string as input, the types match. Finally,
the same type is assigned to the textttmgen variable. When that variable is passed to another function later, it
will have to be one that accepts an faa file.

Parsing
The first step is to transform human-readable text into a data structure annotated with the information that will
be needed during the rest of the evaluation process. This is also the step where types are checked, and any mal-
formed statements (typos in function names or missing parentheses, for example) are rejected.

A script is a list of assignment statements (Figure 3.6), and the entire program state consists of a script, stored
command line arguments, and sets of the files and sequence IDs currently loaded. Whereas traditional imperative
(step-by-step, rather than dependency-based) programming languages maintain a large and complex state that
depends on the sequence of user actions taken, ShortCut only maintains the script itself and derives everything
else from that as needed. This ensures that the script can always be written to a file and used to reproduce the
current state later (Section 3.2.3).

Compilation
Once the input text has been validated and put in a more useful internal format, ShortCut matches each part of
the code to a destination file, and decides what commands would need to be run to generate that file. Note that
these commands will never actually be run unless the user asks to produce the file, or another file that depends on
it.

One of the major goals of ShortCut is to ensure that two equivalent expressions map to the same temporary
file (“tmpfile”). This is important both to reduce unnecessary computation and to ensure that set operations

61

Figure 3.6: Parsing text into a useful data structure. ShortCut constructs an internal description with informa-
tion like the function or variable name and the assigned type, validating each part of the text as it goes. This
function call does not depend on any earlier variables, but if it did the empty list here ([]) would hold refer-
ences to them. ReplaceID and RepeatSalt are only used for the replace and repeat operations respectively.

Figure 3.7: Expansion of function calls. Some functions can be easily expressed in terms of other, simpler
intermediates. ShortCut expands them during the compilation step. The internal data structure saved (see
Figure 3.6) contains the first (top) version, so upon saving it reacreates the original code. The compiled file-
building rules are based on the last version.

62

(Section 3.2.6) do not include the same set element twice under different filenames. Therefore each expression is
assigned one canonical path, and may also have alternative paths that link to that.

mgen_genbank = load_gbk "data/Mycoplasma_genitalium_M2321.gbk"
mgen_fasta = gbk_to_faa "cds" mgen_genbank
result = mgen_fasta

/home/jefdaj/.shortcut
├── cache
│ ├── lines
│ │ ├── f094bac04c.txt
│ │ └── fcfb7a47a6.txt
│ ├── load
│ │ └── 28ce925871.gbk -> /home/jefdaj/shortcut/data/Mycoplasma_genitalium_M2321.gbk
│ └── seqio
├── exprs
│ ├── gbk_to_faa
│ │ └── 262cf7e4e4_cdab12f059_0.faa
│ ├── load_gbk
│ │ └── 15e3d91521_0.gbk -> ../../cache/load/28ce925871.gbk
│ └── str
│ ├── 90811d06ee_0.str -> ../../cache/lines/f094bac04c.txt
│ └── b4da62b027_0.str -> ../../cache/lines/fcfb7a47a6.txt
├── history.txt
├── profile.html
└── vars

├── mgen_fasta.faa -> ../exprs/gbk_to_faa/262cf7e4e4_cdab12f059_0.faa
├── mgen_genbank.gbk -> ../exprs/load_gbk/15e3d91521_0.gbk
└── result -> ../vars/mgen_fasta.faa

Listing 14: Mapping expressions to tmpfiles. Variables are mapped to human-readable filenames supplied by
the user and expressions are mapped to paths determined by hashing each component of their data structures
(see Figure 3.6). Expressions are further de-duplicated by pointing symbolic links to module-specific cache direc-
tories to ensure that set operations do not count them twice.

This complicated tree of tmpfiles is also well-suited to moving data around, as discussed in Section 3.4.1. In
Listing 14, notice that only the cache/load directory contains any references to files outside the temporary
directory, and those references are hashed to depend on the file content rather than its name. Therefore the tem-
porary files could be copied to another directory or another computer, and Shortcut would still match everything
up and resume where it left off. Only variables depending on different input data in the new location would be
recalculated.

Evaluation
The last step is to pick a file that needs building (the result variable), build all of its dependency files first, then
run the commands that the compiled rules say will generate it. To build the dependencies, their dependencies
are built first and then their commands are run, and so on. It naturally leads to calculating only what needs to be
calculated for the current result variable, to building things in parallel when possible, and to re-using any files that
have been built already.

63

3.3.2 Repetition
Replace
Since scripts are stateless data (all actions are explicit in the script itself), they can be edited during compilation
and remain valid. ShortCut uses this property to implement the special replace and replace_each functions.
They create copies of the script up to that point, edit the duplicate(s) by replacing one variable with another, and
concatenate them. It sounds complicated, but in practice the code is simple to use. One common pattern is to
figure out the search interactively on a small amount of data, then scale up by repeating it with more (Listing 15).

mgen = load_faa "data/Mycoplasma_genitalium_small.faa"
maga = load_faa "data/Mycoplasma_agalactiae_small.faa"
mycoplasma = load_faa_each (load_list "data/100-mycoplasma-proteomes.txt")

make proteomes to use a variable so it can be replaced later,
and do a small test run to make sure the code runs properly
proteomes_to_use = [maga]
small = diamond_blastp_each 1.0e-50 mgen proteomes_to_use

try scaling it up: first to 5 proteomes, then all the rest
bigger = replace small proteomes_to_use (sample 5 mycoplasma)
biggest = replace small proteomes_to_use mycoplasma

Listing 15: Test code with small data, then scale up. Note that no extra BLAST searches are being done by
adding the small and bigger parts relative to running biggest only, because ShortCut reuses the ones that
have already been done each time.

Permute, Replace, Summarize
Rather than trying different versions of a variable one at a time, it is often helpful to try a whole list of them at
once and summarize the results. The “permute” and “summarize” steps take different forms depending on the
purpose. For example the permutations could be a list of e-value cutoffs to try or a list of alternative reference
genomes to start the search from. The summary could be to print the results, plot them as in Listing 12, or keep
just the minimum or maximum.

64

Figure 3.8: Visualizing the PRS pattern. You have the program on the left and want to know, “What happens
to var6 if I change var1?”. The replace_each function recalculates var6 starting from 3 alternate versions of
var1. This example only contains the “permute” and “replace” steps; “summarize” would be applied to var6s
afterward. Omitted for simplicity: each var2 permutation also depends on var0 and each var5 permutation on
var3.

Figure 3.9: A more practical example of the PRS pattern, which tests how the number of BLAST hits depends
on the e-value cutoff.

Force actual repetition
By default, ShortCut deduplicates (caches) all function calls. Most of the time this is a good idea. There are at
least two cases when it interferes though: when measuring runtime of the code, and when assessing determinism—
do the results vary when the code is run more than once?

65

shortcut —▶ sample 10 (range_integers 1 100)
[36, 10, 43, 88, 87, 42, 3, 80, 72, 51]

shortcut —▶ sample 10 (range_integers 1 100)
[36, 10, 43, 88, 87, 42, 3, 80, 72, 51]

shortcut —▶ nums = range_integers 1 100
shortcut —▶ nums10 = sample 10 nums
shortcut —▶ repeat nums10 nums 2
[[36, 10, 43, 88, 87, 42, 3, 80, 72, 51], [98, 55, 72, 45, 59, 85, 58, 12, 34, 79]]

Listing 16: Repeat is required for random sampling.

The most common case that will probably trip users up is random samples. Most people would expect the
code in Listing 16 to take two different random samples, but they refer to the same expression which is only eval-
uated once. To get around that the special function repeat alters the RepeatSalt of each of its arguments (See
Figure 3.6), causing them to be compiled to different files and evaluated separately.

3.3.3 Hiding irrelevant details
Not everything can be fixed by an elegant design; the individual programs involved have many idiosyncracies that
need to be worked around individually. I have put significant effort into working around as many of them as
possible so that everything runs reliably, and the user only has to specify things that depend on the kind of search
they want to run.

Installation requirements
Installing dependencies is almost certainly the biggest barrier preventing biologists from trying new bioinfor-
matic methods. Most people would try running a command to see if it works, but would not spend time reading
the manual and running various install commands to get to the point of first trying it.

ShortCut solves this by using a package manager called Nix (nixos.org/nix) to install the exact dependen-
cies needed, separate from anything else the user might have on their system. It also keeps them separate from
each other, which is necessary because they are sometimes incompatible. I wrote a build script (“Nix package”)
for each program that did not have one already (See Listing 1 for an example).

Nix also helps solve the related problem of how to ensure ShortCut itself will keep working in the future. An
archive of all software needed to run it (besides Nix) can be exported to a file and re-imported from another
computer later (Listing 17). The archive includes everything—several incompatible versions of Python, parts
of Linux, Perl, R, all the way up to the user-facing programs. The resulting file is several gigabytes, but it is self-
contained enough to ensure that the code will not break due to updates.

Runtime requirements
Once installed in an idiosyncratic way, many programs expect to be run in an idiosyncratic way too. For some
functions, generating a file just means running the corresponding script. But for others there are more steps: cre-
ate a directory, make links to all the input files in that directory, run the script, sanitize the output file, etc. The
“build and run rules” paradigm is flexible enough to handle whatever steps are needed. For example, SonicPara-
noid requires the user to write a custom configuration file before running the program, explicitly listing the files

66

nixos.org/nix

Figure 3.10: Dependencies between reusable Nix packages included in ShortCut. Not shown: custom scripts,
small programs for loading, converting, or plotting, programming languages, built-in features like set operations.

export now
nix-store --export $(nix-store -qR $(type -p shortcut)) \

> 2019-08-16_shortcut-long-term-archive.nix

restore later
nix-store --import < 2019-08-16_shortcut-long-term-archive.nix

Listing 17: Exporting all dependencies to a file and re-importing them later.

and settings that will be used. ShortCut generates one from a template each time the function is called. Another
example is that BLAST often fails to find its database file unless run from the same directory and given a name
without the file extension. Individually these are minor annoyances, but they tend to build up enough friction
that experimenting with a different way of designing a cut could take hours rather than a few minutes after going
through themmanually.

Formatting requirements
There have also been bugs caused by differing expectations between programs. For example, some cannot handle
certain characters in FASTA sequence IDs, and will mysteriously fail if given the wrong ones. To get around it,
when ShortCut “loads” a FASTA file it removes the IDs and replaces them with short standardized names includ-
ing the hash of the original (Figure 18). It uses the meaningless but reliable hashed names internally, then puts
back the originals when writing final output for the user.

67

seqid_0169657d2a WP_041593677.1 adhesin [Mycoplasma genitalium]
seqid_01e28e6809 WP_010869388.1 hypothetical protein [Mycoplasma genitalium]
seqid_01f33cdd44 WP_010869346.1 ribonuclease Y [Mycoplasma genitalium]
...

Listing 18: Sanitizing FASTA sequence IDs. ShortCut generates the IDs on the left for internal use, then puts
the originals back at the end.

3.3.4 Adapting to custom code
Although ShortCut can do many things, the reality of science is that a given study is likely to need something
more advanced, and researchers will not necessarily know what they need beforehand. Therefore it is important
to include “escape hatches” to inspect the intermediate results themselves or add custom code.

Inspecting results outside ShortCut
ShortCut only categorizes the input and output files from the scripts it runs. They are out of the way, but can
still be found if needed in the .shortcut/cache directory (Listing 19).

Including custom scripts
The script function can be used to make a ShortCut function out of a separate script. This would be useful if
to alter only one step in the script, for example by removing certain hits from a hit table, or to tack on an entire
custom analysis. Figure 3.11 and Listing 20 give an example of the second option. I expect another common use
will be to take the final results of the script and plot them with a custom R script to make publication-quality
figures.

Figure 3.11: Overview of the LeapFrog pipeline. Reproduced with permission from33, and available at
github.com/josephryan/leapfrog. A frog transcriptome is used as a “bridge” to find orthologs in two species
(Human and a flatworm) by transitive homology that are too distant to be discovered by ortholog-finding pro-
grams otherwise.

68

github.com/josephryan/leapfrog

shortcut —▶ :load tests/scripts/orthofinder_basic.cut
smallbacteria = load_faa_each ["data/Mycoplasma_agalactiae_small.faa",

"data/Mycoplasma_genitalium_small.faa"]
ofres = orthofinder smallbacteria
result = ofres

orthofinder_basic.cut —▶ ofres
Number of species 2
Number of genes 374
Number of genes in orthogroups 75
Number of unassigned genes 299
Percentage of genes in orthogroups 20.1
Percentage of unassigned genes 79.9
Number of orthogroups 34
Number of species-specific orthogroups 0
Number of genes in species-specific orthogroups 0
Percentage of genes in species-specific orthogroups 0.0
Mean orthogroup size 2.2
Median orthogroup size 2.0
G50 (assigned genes) 2
G50 (all genes) 1
O50 (assigned genes) 16
O50 (all genes) 146
Number of orthogroups with all species present 34

/home/jefdaj/.shortcut/cache/orthofinder/1553eeea0a/OrthoFinder/Results_
├── Comparative_Genomics_Statistics
│ ├── Duplications_per_Orthogroup.tsv
│ ├── Duplications_per_Species_Tree_Node.tsv
│ ├── Orthogroups_SpeciesOverlaps.tsv
│ ├── OrthologuesStats_many-to-many.tsv
│ ├── OrthologuesStats_many-to-one.tsv
│ ├── OrthologuesStats_one-to-many.tsv
│ ├── OrthologuesStats_one-to-one.tsv
│ ├── OrthologuesStats_Totals.tsv
│ ├── Statistics_Overall.tsv
│ └── Statistics_PerSpecies.tsv
├── Gene_Duplication_Events
│ ├── Duplications.tsv
│ └── SpeciesTree_Gene_Duplications_0.5_Support.txt
├── Gene_Trees
│ ├── OG0000000_tree.txt
│ └── OG0000001_tree.txt
...

Listing 19: Accessing cached tmpfiles. Orthofinder calculates many results besides the orthogroups used by
ShortCut. They can be found in the cache directory.

69

1 reference = load_faa "Human_refseq_proteome.faa" # 1
2 bridge = load_fna "P_vittatus_transcriptome.fna" # 2
3 target = load_fna "Platyhelminthes_transcriptome.fna" # 3
4

5 # First version
6 e = 1e-5
7 hits1v2 = tblastn e reference bridge
8 hits2v1 = blastx e bridge reference
9 hits1v3 = tblastn e reference target
10 # note that there's no 3v1 (target -> reference)
11 hits2v3 = tblastx e bridge target
12 hits3v2 = tblastx e target bridge
13 # the "bht" here tells shortcut that the script returns a BLAST hits table
14 leap1 = script "leapfrog.sh" "bht" e hits1v2 hits2v1 hits1v3 hits2v3 hits3v2
15

16 # Second version
17 leap2 = leapfrog e reference bridge target

1 #!/usr/bin/env bash
2 outpath="$1"; shift
3 leapfrog --eval="$(cat $1)" \
4 --1v2="$2" --2v1="$3" --1v3="$4" --2v3="$5" --3v2="$6" > "$outpath"

Listing 20: Including a custom script. Top: Two ways of integrating the LeapFrog pipeline into a cut script.
The first (straighforward) version uses only the code shown and is appropriate for a single study. The second
uses a ShortCut “module” (Haskell code), and allows for simpler re-use by others. Bottom: Bash script used in
combination with either option to wrap the leapfrog command.

3.3.5 Adapting to custom environments
Research code also needs to run on unusual computers with institution-specific requirements. ShortCut has
been used developed for use on the Berkeley High-Performance Compute cluster9, and should also be adaptable
to most other environments. The main tool for adjusting ShortCut to run on a computer with unusual require-
ments is the wrapper script option (--wrapper). Rather than running commands directly as usual, ShortCut
will send everything it would run through the wrapper script instead, which can be edited as needed to include
any system-specific quirks. An example is included for running on the Berkeley cluster. Rather than running
commands immediately it queues each one to run on a separate compute node when available and waits for it
to finish. The Berkeley script also needs to work around the inability to install software on the cluster directly.
ShortCut and all its dependencies are included in an isolated virtual machine instead, and the script calls that.
The process is fairly convoluted, and shows that the wrapper script idea is flexible enough to be used in most aca-
demic or industry environments.

3.4 Future directions
3.4.1 Sharing and re-use of code and data between users
ShortCut maps the result of every function call to a unique filename (See Listing 14) independent of both the
machine used and what the user names their variables—only the actual data is considered. Therefore, the files

70

could be shared between users. Before computing a result, ShortCut could check whether the corresponding file
already exists on one or more servers, and if so fetch it rather than recalculating it. In fact, Shake35 (the library
used by ShortCut internally to decide which files to build in which order) already includes an option to do that.
Only a few modifications would be needed to enable the ShortCut demo server (Section 3.2.13) to cache and
distribute files requested by users. It could be used to dramatically speed up common BLAST searches by precal-
culating them. Furthermore, a similar mechanism is used by Nix to cache and distribute software dependencies.
It could also be enabled on the server, speeding up initial installation of ShortCut.

3.4.2 Mark deterministic functions to speed up repeats
Some functions, for example concat_faa and reciprocal_best, are completely deterministic. ShortCut
should map them to the same tmpfile no matter their repeat salt (Section 3.6). The resulting speed-up may
or may not be significant depending on the overall cut script design; in many cases nondeterministic sequence
searches would still dominate.

3.4.3 Automatic runtime estimation and comparison
Removing repeats would, however, make runtime estimation more difficult. The simplest solution is probably to
have a “timing” mode in which all function deduplication is turned off.

Figure 3.12: OrthoFinder runtimes plotted for random lists of increasing size sampled from a 172 cyanobacte-
rial genomes (using their predicted proteomes).

Figure 3.12 shows an experiment to determine howOrthoFinder scales with increasing numbers of small pro-
teomes. ShortCut could automatically generate figures like this using the sample, score_replaced, and plot

71

functions. They would work with more complicated series of steps as well, and be especially helpful for determin-
ing the behavior of multi-step algorithms where the relationship may not follow any obvious curve.

3.5 Conclusion
Why go to the trouble of making a (relatively) user-friendly scripting language when I could have found all the
bugs in my configuration files and published the PSIIcut much more quickly instead? The main reason is that
I had to go through much of the same work to be confident in my own searches. The first few did not produce
trustworthy candidate gene lists. They were missing obvious genes that should have been included, or they had
a much smaller number of hits than expected. By the time I simplified the descriptions far enough and put in
enough error checks to be confident, it was most of a language. I hope that by going a little further than strictly
necessary—creating the website, writing documentation, and incorporating a large number of possible search
functions (see Table B.2 for the complete list)—I can help other people be confident in theirs too.

The system developed here helps codify a particular type of common phylogenomic search, sometimes called
a “cut”. It simplifies the common task of searching for homologs of across multiple species and comparing the re-
sults. It is simple enough that most biologists with the inclination should be able to install and use it, and flexible
enough to answer a variety of research questions that are hard to address using existing tools, such as the NCBI
website. Perhaps most importantly, it facilitates reuse of methods between studies by introducing a language that
is human-readable for inclusion in supplemental materials, yet able to reliably reproduce the same results years
later on different computers.

The Nix packages developed here can also be used separately from ShortCut. I will be uploading them to the
Nix packages repository at github.com/nixos/nixpkgs, and to my knowledge they will represent the easiest
way to install most of these tools—especially for the ones containing code frommore than one language, which
usually require keeping multiple language-specific release schedules in sync.

The GreenCut update will be of independent interest regardless of the code used to make it of course. But I
hope that including the code will also help make future updates easier and more frequent, and encourage incre-
mental improvement as new genome annotations and software tools are released.

72

github.com/nixos/nixpkgs

Chapter 4

Conclusion

Clearly I have more aptitude for computers than for molecular biology. Despite that, I think the most exciting
direction to take the TnSeq experiments from here is to make knockouts and discover the actual functions of
some of the genes identified so far, rather than only speculating. Is Synpcc7942_2355 actually a phasin, or does it
perform some unexpected role in stabilizing D1 repair? Or something else? Do the putative chlorophyll insertion
pathway genes act in a complex? Does cofitness with PsbW imply physical interactions between many of the pro-
teins? Do knockouts of positive-fitness genes increase growth under industrially relevant bioreactor conditions?

TnSeq libraries themselves are also a very promising tool. They have been successfully scaled to hundreds of
simultaneous experiments with heterotrophic bacteria, and with only small modifications the same protocols
could be adjusted to map out detailed fitness landscapes showing the interactions between, for example, bicarbon-
ate concentration and light intensity for all nonessential genes. The fluctuating light experiments in Chapter 2
suggest that photosynthetic phenotypes can readily be identified under nonstandard conditions.

Finally, having spent so long developing ShortCut as a tool for phylogenomic searches, I think it will be ex-
citing to create a variety of “cuts” and demonstrate that they improve on previous efforts: the GreenCut up-
date (nearly done), an expanded PSIIcut taking into account the newly discovered melainabacteria as a non-
photosynthetic outgroup to cyanobacteria, as well as several recently discovered A. thalassa strains; cuts for di-
atoms, red algae, and other lineages. Cuts focused on particular structures like bacterial microcompartments. I
am also interested in encouraging other people to join in and/or make their own cuts; the point is to enable “do-
main experts” to investigate the species they are experts in, rather than for a programmer to try to do it for them.
Most exciting will be if some of them can be convinced to build on each others’ work.

73

References

[1] Abu-Jamous, B. & Kelly, S. (2018). Clust: Automatic extraction of optimal co-expressed gene
clusters from gene expression data. Genome Biology, 19(1), 172. https://doi.org/10.1186/
s13059-018-1536-8.

[2] Allahverdiyeva, Y., Mustila, H., Ermakova, M., Bersanini, L., Richaud, P., Ajlani, G., Battchikova, N.,
Cournac, L., & Aro, E.-M. (2013). Flavodiiron proteins Flv1 and Flv3 enable cyanobacterial growth and
photosynthesis under fluctuating light. Proceedings of the National Academy of Sciences of the United
States of America, 110(10), 4111–4116.

[3] Almeida-E-Silva, D. C. & Vêncio, R. Z. (2015). Sifter-T: A scalable framework for phylogenomic proba-
bilistic protein domain functional annotation. BMC Bioinformatics, 16(8), A4. https://doi.org/10.
1186/1471-2105-16-S8-A4.

[4] Álvarez-Escribano, I., Vioque, A., &Muro-Pastor, A. M. (2018). NsrR1, a Nitrogen Stress-Repressed
sRNA, Contributes to the Regulation of nblA in Nostoc sp. PCC 7120. Frontiers inMicrobiology, 9.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6166021/.

[5] Anders, S. &Huber, W. (2010). Differential expression analysis for sequence count data. Genome Biology,
11(10), R106. http://genomebiology.com/2010/11/10/R106.

[6] Andersson, B., Shen, C., Cantrell, M., Dandy, D. S., & Peers, G. (2019). The Fluctuating Cell-Specific
Light Environment and its Effects on Cyanobacterial Physiology. Plant Physiology.

[7] Ansari, S. & Fatma, T. (2016). Cyanobacterial Polyhydroxybutyrate (PHB): Screening, Optimization and
Characterization. PLOS ONE, 11(6), e0158168. https://journals.plos.org/plosone/article?
id=10.1371/journal.pone.0158168.

[8] Aravind, L. & Ponting, C. P. (1997). The GAF domain: An evolutionary link between diverse phototrans-
ducing proteins. Trends in Biochemical Sciences, 22(12), 458–459. http://www.sciencedirect.com/
science/article/pii/S0968000497011481.

[9] Berkeley, U. (2019). CGRL (Vector/Rosalind) User Guide.

[10] Bi, E. & Lutkenhaus, J. (1993). Cell division inhibitors SulA andMinCD prevent formation of the FtsZ
ring. Journal of Bacteriology, 175(4), 1118–1125. https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC193028/.

74

https://doi.org/10.1186/s13059-018-1536-8
https://doi.org/10.1186/s13059-018-1536-8
https://doi.org/10.1186/1471-2105-16-S8-A4
https://doi.org/10.1186/1471-2105-16-S8-A4
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6166021/
http://genomebiology.com/2010/11/10/R106
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0158168
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0158168
http://www.sciencedirect.com/science/article/pii/S0968000497011481
http://www.sciencedirect.com/science/article/pii/S0968000497011481
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC193028/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC193028/

[11] Calderon, R. H., García-Cerdán, J. G., Malnoë, A., Cook, R., Russell, J. J., Gaw, C., Dent, R. M.,
de Vitry, C., & Niyogi, K. K. (2013). A Conserved Rubredoxin Is Necessary for Photosystem II Accu-
mulation in Diverse Oxygenic Photoautotrophs. Journal of Biological Chemistry, 288(37), 26688–26696.
http://www.jbc.org/content/288/37/26688.

[12] Clerico, E. M., Ditty, J. L., & Golden, S. S. (2007). Specialized techniques for site-directed mutagenesis
in cyanobacteria. In Circadian Rhythms, volume 362 ofMethods inMolecular Biology (pp. 155–171).
Springer. http://link.springer.com/10.1007/978-1-59745-257-1_11.

[13] Cohen, A., Sendersky, E., Carmeli, S., & Schwarz, R. (2014). Collapsing Aged Culture of the Cyanobac-
terium Synechococcus elongatus Produces Compound(s) Toxic to Photosynthetic Organisms. PLoS
ONE, 9(6), e100747. http://dx.plos.org/10.1371/journal.pone.0100747.

[14] Dostra, E. (2019). Nix: The Purely Functional Package Manager. https://nixos.org/nix/.

[15] Durán, R. V., Hervás, M., De La Rosa, M. A., & Navarro, J. A. (2004). The efficient functioning of
photosynthesis and respiration in Synechocystis sp. PCC 6803 strictly requires the presence of either cy-
tochrome c6 or plastocyanin. The Journal of Biological Chemistry, 279(8), 7229–7233.

[16] Escudero, L., Mariscal, V., & Flores, E. (2015). Functional Dependence between Septal Protein SepJ
from Anabaena sp. Strain PCC 7120 and an Amino Acid ABC-Type Uptake Transporter. Journal of
Bacteriology, 197(16), 2721–2730. https://jb.asm.org/content/197/16/2721.

[17] Gerdes, S. Y., Kurnasov, O. V., Shatalin, K., Polanuyer, B., Sloutsky, R., Vonstein, V., Overbeek, R., &
Osterman, A. L. (2006). Comparative Genomics of NAD Biosynthesis in Cyanobacteria. Journal of
Bacteriology, 188(8), 3012–3023. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1446974/.

[18] Graham, P. J., Nguyen, B., Burdyny, T., & Sinton, D. (2017). A penalty on photosynthetic growth
in fluctuating light. Scientific Reports, 7(1), 12513. https://www.nature.com/articles/
s41598-017-12923-1.

[19] Hagino, K., Onuma, R., Kawachi, M., &Horiguchi, T. (2013). Discovery of an endosymbiotic nitrogen-
fixing cyanobacteriumUCYN-A in Braarudosphaera bigelowii (Prymnesiophyceae). PloS One, 8(12),
e81749.

[20] Hannon, M., Gimpel, J., Tran, M., Rasala, B., &Mayfield, S. (2010). Biofuels from algae: Challenges and
potential. Biofuels, 1(5), 763. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3152439/.

[21] Hauf, W., Watzer, B., Roos, N., Klotz, A., & Forchhammer, K. (2015). Photoautotrophic Polyhydroxybu-
tyrate Granule Formation Is Regulated by Cyanobacterial Phasin PhaP in Synechocystis sp. Strain PCC
6803. Applied and EnvironmentalMicrobiology, 81(13), 4411–4422. https://www.ncbi.nlm.nih.
gov/pmc/articles/PMC4475881/.

[22] Henkes, S., Sonnewald, U., Badur, R., Flachmann, R., & Stitt, M. (2001). A small decrease of plastid
transketolase activity in antisense tobacco transformants has dramatic effects on photosynthesis and
phenylpropanoid metabolism. The Plant Cell, 13(3), 535–551.

[23] Hood, R. D., Higgins, S. A., Flamholz, A., Nichols, R. J., & Savage, D. F. (2016). The stringent response
regulates adaptation to darkness in the cyanobacterium Synechococcus elongatus. Proceedings of the
National Academy of Sciences, 113(33), E4867–E4876. http://www.pnas.org/content/113/33/
E4867.

75

http://www.jbc.org/content/288/37/26688
http://link.springer.com/10.1007/978-1-59745-257-1_11
http://dx.plos.org/10.1371/journal.pone.0100747
https://nixos.org/nix/
https://jb.asm.org/content/197/16/2721
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1446974/
https://www.nature.com/articles/s41598-017-12923-1
https://www.nature.com/articles/s41598-017-12923-1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3152439/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4475881/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4475881/
http://www.pnas.org/content/113/33/E4867
http://www.pnas.org/content/113/33/E4867

[24] Ji, D.-L., Lin, H., Chi, W., & Zhang, L.-X. (2012). CpLEPA Is Critical for Chloroplast Protein Synthesis
Under Suboptimal Conditions in Arabidopsis thaliana. PLoS ONE, 7(11). https://www.ncbi.nlm.
nih.gov/pmc/articles/PMC3499520/.

[25] Johnson, J. D. (2019a). Jefdaj / tnseq7942-hl — Bitbucket.

[26] Johnson, J. D. (2019b). Nix Packages collection. https://github.com/jefdaj/nixpkgs.

[27] Karpowicz, S. J., Prochnik, S. E., Grossman, A. R., &Merchant, S. S. (2011). The GreenCut2 Resource,
a Phylogenomically Derived Inventory of Proteins Specific to the Plant Lineage. Journal of Biological
Chemistry, 286(24), 21427–21439. http://www.jbc.org/cgi/doi/10.1074/jbc.M111.233734.

[28] Kehr, J.-C. & Dittmann, E. (2015). Biosynthesis and Function of Extracellular Glycans in Cyanobacteria.
Life, 5(1), 164–180. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4390846/.

[29] Laudenbach, D. E., Herbert, S. K., McDowell, C., Fork, D. C., Grossman, A. R., & Straus, N. A. (1990).
Cytochrome c-553 is not required for photosynthetic activity in the cyanobacterium Synechococcus. The
Plant Cell, 2(9), 913–924.

[30] Liepman, A. H. &Olsen, L. J. (2003). Alanine Aminotransferase Homologs Catalyze the Gluta-
mate:Glyoxylate Aminotransferase Reaction in Peroxisomes of Arabidopsis. Plant Physiology, 131(1),
215–227. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC166801/.

[31] López-Gomollón, S., Sevilla, E., Bes, M. T., Peleato, M. L., & Fillat, M. F. (2009). New insights into
the role of Fur proteins: FurB (All2473) from Anabaena protects DNA and increases cell survival under
oxidative stress. Biochemical Journal, 418(1), 201–207. http://www.biochemj.org/content/418/1/
201.

[32] Marbouty, M., Saguez, C., Cassier-Chauvat, C., & Chauvat, F. (2009). Characterization of the FtsZ-
Interacting Septal Proteins SepF and Ftn6 in the Spherical-Celled Cyanobacterium Synechocystis Strain
PCC 6803. Journal of Bacteriology, 191(19), 6178–6185. https://jb.asm.org/content/191/19/
6178.

[33] Martín-Durán, J. M., Ryan, J. F., Vellutini, B. C., Pang, K., &Hejnol, A. (2017). Increased taxon
sampling reveals thousands of hidden orthologs in flatworms. Genome Research, 27(7), 1263–1272.
http://genome.cshlp.org/content/27/7/1263.

[34] Merchant, S. S., Prochnik, S. E., Vallon, O., Harris, E. H., Karpowicz, S. J., Witman, G. B., Terry, A.,
Salamov, A., Fritz-Laylin, L. K., Marechal-Drouard, L., Marshall, W. F., Qu, L.-H., Nelson, D. R.,
Sanderfoot, A. A., Spalding, M. H., Kapitonov, V. V., Ren, Q., Ferris, P., Lindquist, E., Shapiro, H.,
Lucas, S. M., Grimwood, J., Schmutz, J., Cardol, P., Cerutti, H., Chanfreau, G., Chen, C.-L., Cognat,
V., Croft, M. T., Dent, R., Dutcher, S., Fernandez, E., Fukuzawa, H., Gonzalez-Ballester, D., Gonzalez-
Halphen, D., Hallmann, A., Hanikenne, M., Hippler, M., Inwood, W., Jabbari, K., Kalanon, M., Kuras,
R., Lefebvre, P. A., Lemaire, S. D., Lobanov, A. V., Lohr, M., Manuell, A., Meier, I., Mets, L., Mittag,
M., Mittelmeier, T., Moroney, J. V., Moseley, J., Napoli, C., Nedelcu, A. M., Niyogi, K., Novoselov,
S. V., Paulsen, I. T., Pazour, G., Purton, S., Ral, J.-P., Riano-Pachon, D. M., Riekhof, W., Rymarquis,
L., Schroda, M., Stern, D., Umen, J., Willows, R., Wilson, N., Zimmer, S. L., Allmer, J., Balk, J., Bisova,
K., Chen, C.-J., Elias, M., Gendler, K., Hauser, C., Lamb, M. R., Ledford, H., Long, J. C., Minagawa,
J., Page, M. D., Pan, J., Pootakham,W., Roje, S., Rose, A., Stahlberg, E., Terauchi, A. M., Yang, P., Ball,

76

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3499520/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3499520/
https://github.com/jefdaj/nixpkgs
http://www.jbc.org/cgi/doi/10.1074/jbc.M111.233734
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4390846/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC166801/
http://www.biochemj.org/content/418/1/201
http://www.biochemj.org/content/418/1/201
https://jb.asm.org/content/191/19/6178
https://jb.asm.org/content/191/19/6178
http://genome.cshlp.org/content/27/7/1263

S., Bowler, C., Dieckmann, C. L., Gladyshev, V. N., Green, P., Jorgensen, R., Mayfield, S., Mueller-
Roeber, B., Rajamani, S., Sayre, R. T., Brokstein, P., Dubchak, I., Goodstein, D., Hornick, L., Huang,
Y. W., Jhaveri, J., Luo, Y., Martinez, D., Ngau, W. C. A., Otillar, B., Poliakov, A., Porter, A., Szajkowski,
L., Werner, G., Zhou, K., Grigoriev, I. V., Rokhsar, D. S., & Grossman, A. R. (2007). The Chlamy-
domonas Genome Reveals the Evolution of Key Animal and Plant Functions. Science, 318(5848), 245–
250. http://www.sciencemag.org/cgi/doi/10.1126/science.1143609.

[35] Mitchell, N. (2019). Shake Build System.

[36] Montesinos, M. L., Herrero, A., & Flores, E. (1995). Amino acid transport systems required for dia-
zotrophic growth in the cyanobacterium Anabaena sp. strain PCC 7120. Journal of Bacteriology, 177(11),
3150–3157.

[37] Ogawa, T. & Yoshimura, K. (2019). Modulation of the subcellular levels of redox cofactors by Nudix
hydrolases in chloroplasts. Environmental and Experimental Botany, 161, 57–66. http://www.
sciencedirect.com/science/article/pii/S0098847218312814.

[38] Ohnishi, N., Kashino, Y., Satoh, K., Ozawa, S.-I., & Takahashi, Y. (2007). Chloroplast-encoded polypep-
tide PsbT is involved in the repair of primary electron acceptor QA of photosystem II during photoinhibi-
tion in Chlamydomonas reinhardtii. The Journal of Biological Chemistry, 282(10), 7107–7115.

[39] Ohnishi, N. & Takahashi, Y. (2001). PsbT polypeptide is required for efficient repair of photodamaged
photosystem II reaction center. The Journal of Biological Chemistry, 276(36), 33798–33804.

[40] Ohnishi, N. & Takahashi, Y. (2008 Oct-Dec). Chloroplast-encoded PsbT is required for efficient biogen-
esis of photosystem II complex in the green alga Chlamydomonas reinhardtii. Photosynthesis Research,
98(1-3), 315–322.

[41] Ollagnier-de Choudens, S., Loiseau, L., Sanakis, Y., Barras, F., & Fontecave, M. (2005). Quinolinate
synthetase, an iron-sulfur enzyme in NAD biosynthesis. FEBS letters, 579(17), 3737–3743.

[42] Parnasa, R., Nagar, E., Sendersky, E., Reich, Z., Simkovsky, R., Golden, S., & Schwarz, R. (2016). Small
secreted proteins enable biofilm development in the cyanobacterium Synechococcus elongatus. Scientific
Reports, 6, 32209.

[43] Parnasa, R., Sendersky, E., Simkovsky, R., Waldman Ben-Asher, H., Golden, S. S., & Schwarz, R. (2019).
A microcin processing peptidase-like protein of the cyanobacterium Synechococcus elongatus is essential
for secretion of biofilm-promoting proteins. EnvironmentalMicrobiology Reports.

[44] Plöchinger, M., Schwenkert, S., von Sydow, L., Schröder, W. P., &Meurer, J. (2016). Functional Update
of the Auxiliary Proteins PsbW, PsbY, HCF136, PsbN, TerC and ALB3 inMaintenance and Assembly of
PSII. Frontiers in Plant Science, 7. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4823308/.

[45] Price, M. N., Zane, G. M., Kuehl, J. V., Melnyk, R. A., Wall, J. D., Deutschbauer, A. M., & Arkin, A. P.
(2018). Filling gaps in bacterial amino acid biosynthesis pathways with high-throughput genetics. PLOS
Genetics, 14(1), e1007147. http://journals.plos.org/plosgenetics/article?id=10.1371/
journal.pgen.1007147.

77

http://www.sciencemag.org/cgi/doi/10.1126/science.1143609
http://www.sciencedirect.com/science/article/pii/S0098847218312814
http://www.sciencedirect.com/science/article/pii/S0098847218312814
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4823308/
http://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1007147
http://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1007147

[46] Raffaelli, N., Lorenzi, T., Amici, A., Emanuelli, M., Ruggieri, S., &Magni, G. (1999). Synechocystis
sp. slr0787 protein is a novel bifunctional enzyme endowed with both nicotinamide mononucleotide
adenylyltransferase and ‘Nudix’ hydrolase activities. FEBS Letters, 444(2-3), 222–226. https://febs.
onlinelibrary.wiley.com/doi/abs/10.1016/S0014-5793%2899%2900068-X.

[47] Rubin, B. E., Huynh, T. N., Welkie, D. G., Diamond, S., Simkovsky, R., Pierce, E. C., Taton, A., Lowe,
L. C., Lee, J. J., Rifkin, S. A., Woodward, J. J., & Golden, S. S. (2018). High-throughput interaction
screens illuminate the role of c-di-AMP in cyanobacterial nighttime survival. PLOS Genetics, 14(4),
e1007301. http://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.
1007301.

[48] Rubin, B. E., Wetmore, K. M., Price, M. N., Diamond, S., Shultzaberger, R. K., Lowe, L. C., Curtin, G.,
Arkin, A. P., Deutschbauer, A., & Golden, S. S. (2015). The essential gene set of a photosynthetic organ-
ism. Proceedings of the National Academy of Sciences of the United States of America.

[49] Sakata, S., Mizusawa, N., Kubota-Kawai, H., Sakurai, I., &Wada, H. (2013). Psb28 is involved in recovery
of photosystem II at high temperature in Synechocystis sp. PCC 6803. Biochimica Et Biophysica Acta,
1827(1), 50–59.

[50] Schatz, D., Nagar, E., Sendersky, E., Parnasa, R., Zilberman, S., Carmeli, S., Mastai, Y., Shimoni, E., Klein,
E., Yeger, O., Reich, Z., & Schwarz, R. (2013). Self-suppression of biofilm formation in the cyanobac-
terium Synechococcus elongatus. EnvironmentalMicrobiology, 15(6), 1786–1794.

[51] Seki, Y., Nitta, K., & Kaneko, Y. (2014). Observation of polyphosphate bodies and DNA during the cell
division cycle of Synechococcus elongatus PCC 7942. Plant Biology (Stuttgart, Germany), 16(1), 258–
263.

[52] Shi, L.-X., Lorković, Z. J., Oelmüller, R., & Schröder, W. P. (2000). The LowMolecular Mass PsbW
Protein Is Involved in the Stabilization of the Dimeric Photosystem II Complex in Arabidopsis thaliana.
Journal of Biological Chemistry, 275(48), 37945–37950. http://www.jbc.org/content/275/48/
37945.

[53] Shukla, M. K., Llansola-Portoles, M. J., Tichý, M., Pascal, A. A., Robert, B., & Sobotka, R. (2018). Bind-
ing of pigments to the cyanobacterial high-light-inducible protein HliC. Photosynthesis Research, 137(1),
29–39.

[54] Simkovsky, R., Daniels, E. F., Tang, K., Huynh, S. C., Golden, S. S., & Brahamsha, B. (2012). Impairment
of O-antigen production confers resistance to grazing in a model amoeba–cyanobacterium predator–prey
system. Proceedings of the National Academy of Sciences of the United States of America, 109(41), 16678–
16683. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3478625/.

[55] Simkovsky, R., Effner, E. E., Iglesias-Sánchez, M. J., & Golden, S. S. (2016). Mutations in Novel
Lipopolysaccharide Biogenesis Genes Confer Resistance to Amoebal Grazing in Synechococcus elonga-
tus. Applied and EnvironmentalMicrobiology, 82(9), 2738–2750. http://www.ncbi.nlm.nih.gov/
pmc/articles/PMC4836432/.

[56] Sobotka, R. (2014). Making proteins green; biosynthesis of chlorophyll-binding proteins in cyanobacteria.
Photosynthesis Research, 119(1), 223–232. https://doi.org/10.1007/s11120-013-9797-2.

78

https://febs.onlinelibrary.wiley.com/doi/abs/10.1016/S0014-5793%2899%2900068-X
https://febs.onlinelibrary.wiley.com/doi/abs/10.1016/S0014-5793%2899%2900068-X
http://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1007301
http://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1007301
http://www.jbc.org/content/275/48/37945
http://www.jbc.org/content/275/48/37945
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3478625/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4836432/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4836432/
https://doi.org/10.1007/s11120-013-9797-2

[57] Sonnhammer, E. L. & Östlund, G. (2015). InParanoid 8: Orthology analysis between 273 proteomes,
mostly eukaryotic. Nucleic Acids Research, 43(Database issue), D234–D239. https://www.ncbi.nlm.
nih.gov/pmc/articles/PMC4383983/.

[58] Ungerer, J. & Pakrasi, H. B. (2016). Cpf1 Is A Versatile Tool for CRISPRGenome Editing Across Diverse
Species of Cyanobacteria. Scientific Reports, 6, 39681. http://www.nature.com/srep/2016/161221/
srep39681/full/srep39681.html.

[59] Vanselow, C., Weber, A. P. M., Krause, K., & Fromme, P. (2009). Genetic analysis of the Photosystem
I subunits from the red alga, Galdieria sulphuraria. Biochimica et Biophysica Acta (BBA) - Bioenergetics,
1787(1), 46–59. http://www.sciencedirect.com/science/article/pii/S0005272808006920.

[60] Vavilin, D. & Vermaas, W. (2007). Continuous chlorophyll degradation accompanied by chlorophyllide
and phytol reutilization for chlorophyll synthesis in Synechocystis sp. PCC 6803. Biochimica et Biophysica
Acta (BBA) - Bioenergetics, 1767(7), 920–929. http://www.sciencedirect.com/science/article/
pii/S0005272807000783.

[61] Wang, L., Li, Q., Zhang, A., Zhou, W., Jiang, R., Yang, Z., Yang, H., Qin, X., Ding, S., Lu, Q., Wen, X., &
Lu, C. (2017). The Phytol Phosphorylation Pathway Is Essential for the Biosynthesis of Phylloquinone,
which Is Required for Photosystem I Stability in Arabidopsis. Molecular Plant, 10(1), 183–196. http:
//www.sciencedirect.com/science/article/pii/S1674205216303069.

[62] Wetmore, K. M., Price, M. N., Waters, R. J., Lamson, J. S., He, J., Hoover, C. A., Blow, M. J., Bristow,
J., Butland, G., Arkin, A. P., & Deutschbauer, A. (2015). Rapid Quantification of Mutant Fitness in
Diverse Bacteria by Sequencing Randomly Bar-Coded Transposons. mBio, 6(3), e00306–15. http:
//mbio.asm.org/content/6/3/e00306-15.

79

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4383983/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4383983/
http://www.nature.com/srep/2016/161221/srep39681/full/srep39681.html
http://www.nature.com/srep/2016/161221/srep39681/full/srep39681.html
http://www.sciencedirect.com/science/article/pii/S0005272808006920
http://www.sciencedirect.com/science/article/pii/S0005272807000783
http://www.sciencedirect.com/science/article/pii/S0005272807000783
http://www.sciencedirect.com/science/article/pii/S1674205216303069
http://www.sciencedirect.com/science/article/pii/S1674205216303069
http://mbio.asm.org/content/6/3/e00306-15
http://mbio.asm.org/content/6/3/e00306-15

Appendix A

KNLab Scripts

This section briefly describes several scripts I developed to help with common lab tasks, which may be useful to
future researchers. The scripts are available at github.com/jefdaj/knlab-scripts.

A.1 High-throughput growth curves
Before switching to the use of the Synechococcus elongatus PCC 7942 RB-TnSeq library, I started a similar inves-
tigation of 57 knockouts of predicted transcription factors (TFs) made by a previous student in the lab, Patrick
Shih. I grew the strains in clear plates, plotted their growth, and looked for TFs whose absence caused high-light-
specific growth defects. Growth in individual wells is highly variable, depending on factors like shaking speed,
differential evaporation of wells on the edges of the plate, and irregular illumination of the growth chamber.

In the process of adjusting for that, I developed an efficient workflow for high-throughput growth curves
using the TecanM-1000 plate reader. I used many replicates (typically 3-6 per plate) of each strain, arranged in
repeating patterns. The plates themselves can be filled quickly with a multichannel pipettor, so data analysis be-
came the bottleneck. The tecan-growth-curves family of scripts streamlines it by extracting data frommany
Microsoft Excel sheets (one per plate per timepoint), merging it with separate metadata about the wells, and
plotting it in R. Any relevant metadata can be included, for example strain, light level, antibiotic concentration,
distance from the nearest edge or corner, or days grown.

Figure A.1 shows an example of the plates and maximum growth rates per strain calculated fromOD750 mea-
surements. Figure A.2 shows an example of calculating those growth rates using the

tecan-growth-curves scripts.

80

github.com/jefdaj/knlab-scripts

(a) Plates with shading mesh (b) Plates uncovered

(c) Growth rates

Figure A.1: a. A series of light levels created by shading mesh over clear 24-well plates. b. The same plates
uncovered. An overall low to high light gradient phenotype is visible, as well as a “bright spot” in the bottom
right caused by uneven illumination and repeating patterns caused by average differences in high light response
between strains. c. Comparison of maximum growth rates derived from twice-daily OD750 measurements of all
plates.

81

(a
)

W
T

(b
)

W
T

Cm
R

(c
)

W
T

Km
R

Fi
gu

re
A

.2
:

Gr
ow

th
cu

rv
es

re
ve

al
a

HL
-sp

ec
ifi

c
de

fe
ct

ca
us

ed
by

an
tib

io
tic

re
sis

ta
nc

e
ca

ss
et

te
s.

Th
e

ch
lor

oa
m

ph
en

ico
la

nd
ka

na
m

yc
in

re
sis

ta
nc

e
ge

ne
sa

re
de

tri
m

en
ta

la
th

ig
h

lig
ht

,e
ve

n
wh

en
gr

ow
n

in
pl

ain
BG

11
m

ed
ia

wi
th

no
an

tib
io

tic
s.

In
di

vid
ua

ln
oi

sy
O

D 7
50

da
ta

po
in

ts
ar

e
sh

ow
n

as
do

ts
,o

ve
rla

ye
d

wi
th

lin
es

sh
ow

in
g

m
ea

n
pl

us
or

m
in

us
st

an
da

rd
de

via
tio

n
pe

rs
tra

in
.D

ou
bl

in
gs

pe
rd

ay
ar

e
ca

lcu
lat

ed
as

th
e

de
riv

at
ive

of
th

e
m

ea
n

gr
ow

th
cu

rv
es

.

82

A.2 QR code labels
I also developed a mundane but generally applicable qrlabels script for labeling small tubes or boxes with
randomly-generated QR codes. The IDs can be tied to a lab database, which anyone can easily access by scanning
the URL with their phone. The labels are freezer-safe to -20°C, but tend to fall off at -80°C or in liquid nitrogen.

Figure A.3: QR codes suitable for printing on “Tough Spot” freezer-safe stickers. The qrlabels script gener-
ates small QR codes with a custom prefix + random UUID. Set the prefix to a database query URL to look up
sample information via smartphone.

A.3 Cpf1-based knockout constructs in cyanobacteria
Finally, I am in the process of developing a script to automate initial primer selection for making cyanobacterial
knockout and complementation constructs based on the Cpf1 nuclease, which is preferred in cyanobacteria due
to Cas9 toxicity58. The script has been tested (Figure A.4) only on the S. elongatusgenome so far, but the method
should work in diverse cyanobacteria58. Primer design functions work, but the resulting constructs have not
been transformed into cyanobacteria yet.

83

Figure A.4: PCR of flanking sequences for homologous recombination designed with the script.

84

Appendix B

ShortCut Reference

Table B.1: ShortCut file types as of version 0.8.4.11.

Extension File Type

aln multiple sequence alignment
ava all-vs-all hit table listing
bht tab-separated table of blast hits (outfmt 6)
blh BUSCO lineage HMMs
bsr BUSCO results
bst BUSCO scores table
crb tab-separated table of conditional reciprocal blast best hits
dmnd DIAMOND database
fa FASTA (nucleic OR amino acid)
faa FASTA (amino acid)
faa.gz gzipped fasta amino acid (proteome)
fna FASTA (nucleic acid)
fna.gz gzipped fasta nucleic acid acid (gene list or genome)
gbk genbank
gcr GreenCut results
hht HMMER hits table
hittable BLAST hit table-like
hmm hidden markov model
listlike files that can be treated like lists
mms MMSeqs2 sequence database
ndb BLAST nucleotide database
num number in scientific notation
ofr OrthoFinder results
og orthogroups (orthofinder, sonicparanoid, or greencut results)
pdb BLAST protein database
png plot image
pssm PSI-BLAST position-specific substitution matrix as ASCII
search intermediate table describing biomartr searches
spr SonicParanoid results
tsv set membership table (spreadsheet)

85

Table B.2: ShortCut function types as of version 0.8.4.11.

Module Function Type Signature

Replace replace [oldend] [oldstart] [newstart] → [newend]
replace_each [oldend] [oldstart] [newstart].list → [newend].list

Repeat repeat [end] [start] num → [end].list
Math * num num → num

+ num num → num
- num num → num
/ num num → num

Load glob_files str → str.list
load_list str → str.list

Sets & [type].list → [type].list → [type].list
all [type].list.list → [type].list
any [type].list.list → [type].list
diff [type].list.list → [type].list
some [type].list.list → [type].list
| [type].list → [type].list → [type].list

[type].list → [type].list → [type].list
SeqIO concat_faa faa.list → faa

concat_faa_each faa.list.list → faa.list
concat_fna fna.list → fna
concat_fna_each fna.list.list → fna.list
extract_ids fa → str.list
extract_ids_each fa.list → str.list.list
extract_seqs fa str.list → fa
extract_seqs_each fa.list → str.list.list
gbk_to_faa str gbk → faa
gbk_to_faa_each str gbk.list → faa.list
gbk_to_fna str gbk → fna
gbk_to_fna_each str gbk.list → fna.list
load_faa str → faa
load_faa_each str.list → faa.list
load_faa_glob str → faa.list
load_fna str → fna
load_fna_each str.list → fna.list
load_fna_glob str → fna.list
load_gbk str → gbk
load_gbk_each str.list → gbk.list
load_gbk_glob str → gbk.list
split_faa faa → faa.list
split_faa_each faa.list → faa.list.list
split_fna fna → fna.list
split_fna_each fna.list → fna.list.list
translate fna → faa
translate_each fna.list → faa.list

BiomartR get_genomes str.list → fna.gz.list
get_proteomes str.list → faa.gz.list
parse_searches str.list → search

BlastDB blastdbget_nucl str → ndb

86

Module Function Type Signature

blastdbget_prot str → pdb
blastdblist str → str.list
load_nucl_db str → ndb
load_nucl_db_each str.list → ndb.list
load_prot_db str → pdb
load_prot_db_each str.list → pdb.list
makeblastdb_nucl fa → ndb
makeblastdb_nucl_all fa.list → ndb
makeblastdb_nucl_each fa.list → ndb.list
makeblastdb_prot faa → pdb
makeblastdb_prot_all faa.list → pdb
makeblastdb_prot_each faa.list → pdb.list
singletons [type].list → [type].list.list

BLAST+ blastn num fna fna → bht
blastn_db num fna ndb → bht
blastn_db_each num fna ndb.list → bht.list
blastn_each num fna fna.list → bht.list
blastp num faa faa → bht
blastp_db num faa pdb → bht
blastp_db_each num faa pdb.list → bht.list
blastp_each num faa faa.list → bht.list
blastx num fna faa → bht
blastx_db num fna pdb → bht
blastx_db_each num fna pdb.list → bht.list
blastx_each num fna faa.list → bht.list
concat_bht bht.list → bht
concat_bht_each bht.list.list → bht.list
megablast num fna fna → bht
megablast_db num fna ndb → bht
megablast_db_each num fna ndb.list → bht.list
megablast_each num fna fna.list → bht.list
tblastn num faa fna → bht
tblastn_db num faa ndb → bht
tblastn_db_each num faa ndb.list → bht.list
tblastn_each num faa fna.list → bht.list
tblastx num fna fna → bht
tblastx_db num fna ndb → bht
tblastx_db_each num fna ndb.list → bht.list
tblastx_each num fna fna.list → bht.list

BlastHits best_hits hittable → bht
best_hits_each hittable.list → bht.list
extract_queries hittable → str.list
extract_queries_each hittable.list → str.list.list
extract_targets hittable → str.list
extract_targets_each hittable.list → str.list.list
filter_bitscore num hittable → bht
filter_bitscore_each num hittable.list → bht.list
filter_evalue num hittable → bht
filter_evalue_each num hittable.list → bht.list

87

Module Function Type Signature

filter_pident num hittable → bht
filter_pident_each num hittable.list → bht.list

ListLike length listlike → num
length_each listlike.list → num.list

PsiBLAST psiblast num faa faa → bht
psiblast_all num faa faa.list → bht
psiblast_db num faa pdb → bht
psiblast_db_each num faa pdb.list → bht.list
psiblast_each num faa faa.list → bht.list
psiblast_each_pssm num pssm.list faa → bht.list
psiblast_each_pssm_db num pssm.list pdb → bht.list
psiblast_pssm num pssm faa → bht
psiblast_pssm_all num pssm faa.list → bht
psiblast_pssm_db num pssm pdb → bht
psiblast_pssm_db_each num pssm pdb.list → bht.list
psiblast_pssm_each num pssm faa.list → bht.list
psiblast_pssms num pssm.list faa → bht
psiblast_pssms_all num pssm.list faa → bht
psiblast_pssms_db num pssm.list pdb → bht
psiblast_train num faa faa → pssm
psiblast_train_all num faa faa.list → pssm
psiblast_train_db num faa pdb → pssm
psiblast_train_db_each num faa pdb.list → pssm.list
psiblast_train_each num faa faa.list → pssm.list
psiblast_train_pssms num faa.list faa → pssm.list
psiblast_train_pssms_db num faa.list pdb → pssm.list

CRB-BLAST crb_blast fna fa → crb
crb_blast_each fna fa.list → crb.list

HMMER extract_hmm_targets hht → str.list
extract_hmm_targets_each hht.list → str.list.list
hmmbuild aln → hmm
hmmbuild_each aln.list → hmm.list
hmmsearch num hmm faa → hht
hmmsearch_each num hmm.list faa → hht.list

BlastRBH blastn_rbh num fna fna → bht
blastn_rbh_each num fna fna.list → bht.list
blastn_rev num fna fna → bht
blastn_rev_each num fna fna.list → bht.list
blastp_rbh num faa faa → bht
blastp_rbh_each num faa faa.list → bht.list
blastp_rev num faa faa → bht
blastp_rev_each num faa faa.list → bht.list
megablast_rbh num fna fna → bht
megablast_rbh_each num fna fna.list → bht.list
megablast_rev num fna fna → bht
megablast_rev_each num fna fna.list → bht.list
reciprocal_best bht bht → bht
reciprocal_best_all bht.list bht.list → bht
tblastx_rbh num fna fna → bht

88

Module Function Type Signature

tblastx_rbh_each num fna fna.list → bht.list
tblastx_rev num fna fna → bht
tblastx_rev_each num fna fna.list → bht.list

MUSCLE muscle faa → aln
muscle_each faa.list → aln.list

Sample sample num [type].list → [type].list
Permute leave_each_out [type].list → [type].list.list
Scores extract_scored [type].scores → [type].list

extract_scores [type].scores → num.list
score_repeats [oldend] [oldstart] [newstart].list → [newend].scores

Plots histogram str num.list → png
linegraph str num.scores → png
scatterplot str num.scores → png
venndiagram [type].list.list → png

OrthoFinder orthofinder faa.list → ofr
Diamond diamond_blastp num faa faa → bht

diamond_blastp_db num faa dmnd → bht
diamond_blastp_db_each num faa dmnd.list → bht.list
diamond_blastp_db_more_sensitive num faa dmnd → bht
diamond_blastp_db_more_sensitive_each num faa dmnd.list → bht.list
diamond_blastp_db_more_sensitive_rev num dmnd faa → bht
diamond_blastp_db_rev num dmnd faa → bht
diamond_blastp_db_sensitive num faa dmnd → bht
diamond_blastp_db_sensitive_each num faa dmnd.list → bht.list
diamond_blastp_db_sensitive_rev num dmnd faa → bht
diamond_blastp_each num faa faa.list → bht.list
diamond_blastp_more_sensitive num faa faa → bht
diamond_blastp_more_sensitive_each num faa faa.list → bht.list
diamond_blastp_more_sensitive_rev num faa faa → bht
diamond_blastp_more_sensitive_rev_each num faa faa.list → bht.list
diamond_blastp_rev num faa faa → bht
diamond_blastp_rev_each num faa faa.list → bht.list
diamond_blastp_sensitive num faa faa → bht
diamond_blastp_sensitive_each num faa faa.list → bht.list
diamond_blastp_sensitive_rev num faa faa → bht
diamond_blastp_sensitive_rev_each num faa faa.list → bht.list
diamond_blastx num fna faa → bht
diamond_blastx_db num fna dmnd → bht
diamond_blastx_db_each num fna dmnd.list → bht.list
diamond_blastx_db_more_sensitive num fna dmnd → bht
diamond_blastx_db_more_sensitive_each num fna dmnd.list → bht.list
diamond_blastx_db_more_sensitive_rev num dmnd fna → bht
diamond_blastx_db_rev num dmnd fna → bht
diamond_blastx_db_sensitive num fna dmnd → bht
diamond_blastx_db_sensitive_each num fna dmnd.list → bht.list
diamond_blastx_db_sensitive_rev num dmnd fna → bht
diamond_blastx_each num fna faa.list → bht.list
diamond_blastx_more_sensitive num fna faa → bht
diamond_blastx_more_sensitive_each num fna faa.list → bht.list

89

Module Function Type Signature

diamond_blastx_more_sensitive_rev num faa fna → bht
diamond_blastx_more_sensitive_rev_each num faa fna.list → bht.list
diamond_blastx_rev num faa fna → bht
diamond_blastx_rev_each num faa fna.list → bht.list
diamond_blastx_sensitive num fna faa → bht
diamond_blastx_sensitive_each num fna faa.list → bht.list
diamond_blastx_sensitive_rev num faa fna → bht
diamond_blastx_sensitive_rev_each num faa fna.list → bht.list
diamond_makedb faa → dmnd
diamond_makedb_all faa.list → dmnd
diamond_makedb_each faa.list → dmnd.list

MMSeqs mmseqs_createdb fa → mms
mmseqs_createdb_all fa.list → mms
mmseqs_search num fa fa → bht
mmseqs_search_db num fa mms → bht

SonicParanoid sonicparanoid faa.list → spr
OrthoGroups orthogroup_containing og str → str.list

orthogroups og → str.list.list
orthogroups_containing og str.list → str.list.list
ortholog_in_all og faa.list → str.list.list
ortholog_in_all_str str.list.list str.list.list → str.list.list
ortholog_in_any og faa.list → str.list.list
ortholog_in_any_str str.list.list str.list.list → str.list.list
ortholog_in_max num og faa.list → str.list.list
ortholog_in_max_str num str.list.list str.list.list → str.list.list
ortholog_in_min num og faa.list → str.list.list
ortholog_in_min_str num str.list.list str.list.list → str.list.list

Busco busco_fetch_lineage str → blh
busco_filter_completeness num bst faa.list → faa.list
busco_list_lineages str → str.list
busco_percent_complete bsr → num
busco_percent_complete_each bsr.list → num.list
busco_proteins blh faa → bsr
busco_proteins_each blh faa.list → bsr.list
busco_scores_table bsr.list → bst
busco_transcriptome blh fna → bsr
busco_transcriptome_each blh fna.list → bsr.list
concat_bst bst.list → bst
load_lineage str → blh

Range range_add num num num → num.list
range_exponent num num num num → num.list
range_integers num num → num.list
range_length num num num → num.list
range_multiply num num num → num.list

SetsTable sets_table lit.list.list → tsv
GreenCut greencut2_families bht bht → gcr

90

