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Methane prediction equations 
including genera of rumen bacteria 
as predictor variables improve 
prediction accuracy
Boyang Zhang 1, Shili Lin 2*, Luis Moraes 1,15, Jeffrey Firkins 1, Alexander N. Hristov 3, 
Ermias Kebreab 4, Peter H. Janssen 5, André Bannink 6, Alireza R. Bayat 7, 
Les A. Crompton 8, Jan Dijkstra 9, Maguy A. Eugène 10, Michael Kreuzer 11, Mark McGee 12, 
Christopher K. Reynolds 8, Angela Schwarm 13, David R. Yáñez‑Ruiz 14 & Zhongtang Yu 1*

Methane  (CH4) emissions from ruminants are of a significant environmental concern, necessitating 
accurate prediction for emission inventories. Existing models rely solely on dietary and host animal‑
related data, ignoring the predicting power of rumen microbiota, the source of  CH4. To address this 
limitation, we developed novel  CH4 prediction models incorporating rumen microbes as predictors, 
alongside animal‑ and feed‑related predictors using four statistical/machine learning (ML) methods. 
These include random forest combined with boosting (RF‑B), least absolute shrinkage and selection 
operator (LASSO), generalized linear mixed model with LASSO (glmmLasso), and smoothly 
clipped absolute deviation (SCAD) implemented on linear mixed models. With a sheep dataset (218 
observations) of both animal data and rumen microbiota data (relative sequence abundance of 330 
genera of rumen bacteria, archaea, protozoa, and fungi), we developed linear mixed models to predict 
 CH4 production (g  CH4/animal·d, ANIM‑B models) and  CH4 yield (g  CH4/kg of dry matter intake, DMI‑B 
models). We also developed models solely based on animal‑related data. Prediction performance 
was evaluated 200 times with random data splits, while fitting performance was assessed without 
data splitting. The inclusion of microbial predictors improved the models, as indicated by decreased 
root mean square prediction error (RMSPE) and mean absolute error (MAE), and increased Lin’s 
concordance correlation coefficient (CCC). Both glmmLasso and SCAD reduced the Akaike information 
criterion (AIC) and Bayesian information criterion (BIC) for both the ANIM‑B and the DMI‑B models, 
while the other two ML methods had mixed outcomes. By balancing prediction performance and 
fitting performance, we obtained one ANIM‑B model (containing 10 genera of bacteria and 3 animal 
data) fitted using glmmLasso and one DMI‑B model (5 genera of bacteria and 1 animal datum) fitted 
using SCAD. This study highlights the importance of incorporating rumen microbiota data in  CH4 
prediction models to enhance accuracy and robustness. Additionally, ML methods facilitate the 
selection of microbial predictors from high‑dimensional metataxonomic data of the rumen microbiota 
without overfitting. Moreover, the identified microbial predictors can serve as biomarkers of  CH4 
emissions from sheep, providing valuable insights for future research and mitigation strategies.
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Abbreviations
CH4  Methane
ANIM-B  Animal-based
A:P ratio  Acetate:propionate ratio
ITS1  Internal transcribed spacer 1
ASV  Amplicon sequence variant
VIF  Variance inflation factor
Uncl  Uncultured
BW  Body weight
DMI  Dry matter intake
DMI-B  Dry matter-based
ML  Machine learning
RF  Random forest
RF-B  Random forest combined with boosting
LASSO  Least absolute shrinkage and selection operator
glmmLasso  Generalized linear mixed with LASSO
SCAD  Smoothly clipped absolute deviation
AIC  Akaike information criterion
BIC  Bayesian information criterion
SE  Standard errors
SIS  Sure independence screening
MSPE  Mean square prediction error
RMSPE  Root mean square prediction error
MAE  Mean absolute errors
CCC   Concordance correlation coefficient

As a potent greenhouse gas that contributes significantly to climate change, methane  (CH4) emissions from 
ruminants pose a direct threat to the environment and sustainable agricultural  production1. Methane emis-
sions from ruminants also lead to a waste of part of the ingested feed  energy2. In sheep,  CH4 emissions result in 
approximately a 7% loss of gross energy  intake3. In recent years, there has been growing interest in prediction 
models for  CH4 emissions for several reasons. First, direct measurement of  CH4 emissions from large herds or 
flocks of ruminants is technically difficult and time-consuming, and thus it can be done practically only with 
small numbers of animals in research  settings4. Second, it is not practical or feasible to establish regional, national, 
or global inventories of  CH4 emissions by direct measurement of  CH4 emissions from individual animals. Third, 
statistical models can assist in describing and understanding the relationship among  CH4 emissions, animal 
performance, and other factors (nutritional, microbial, and physiological).

A diverse set of prediction models has been developed to predict enteric  CH4 emissions from  sheep5 and 
 cattle6,7. These prediction equations include predictor variables describing the dietary composition, feed intake, 
rumen fermentation profiles, and other animal traits such as body weight (BW), but not individual taxa (genera 
or species) of the rumen microbiota. These prediction models vary considerably in robustness and prediction 
 accuracy8,9. The rumen microbiota is solely responsible for  CH4 emissions from ruminants. Specifically, rumen 
bacteria, fungi, and protozoa digest and ferment the ingested feed and produce the substrates (methylamines, 
hydrogen,  CO2, and formate) that are then used by the rumen methanogens to produce  CH4

10. Thus, the rumen 
microbiota is directly responsible for the  CH4 emitted by ruminants although it can be affected by several factors, 
including diet and host-related  factors11. Indeed, several studies have reported strong associations or correla-
tions of some bacteria, methanogens, or protozoa with or qualitatively indicative of  CH4  production12,13. In this 
context, we hypothesized that the inclusion of individual taxa of the ruminal microbiota as predictor variables, 
in addition to animal and feed-related predictor variables, in  CH4 prediction models would improve our ability 
to predict  CH4 emissions. Methane prediction equations or models containing rumen microbial taxa as predictor 
variables may also help understand their roles and importance in enteric  CH4 emissions. The objective of this 
study was to develop such prediction models using multiple statistical/machine learning (ML) methods and a 
dataset that contained both animal-related data and metataxonomic data of the rumen microbiota of a cohort 
of sheep that were not subjected to any dietary interventions.

Methods
Dataset
This study did not involve the use of any animals, and thus no approval of the Institutional Animal Care and 
Use Committee was required. The dataset (Supplementary Table 1) used in this study was generated in a previ-
ous study that compared the rumen microbiota and  CH4 emissions among a group of New Zealand sheep that 
were not subjected to any dietary  interventions13. The animal experiment and analyses were detailed in another 
 report14. Briefly, 1225 sheep were fed a pelleted alfalfa diet (without any anti-methane inhibitors) twice daily 
at two times their maintenance requirement for energy (based on BW).  CH4 emissions from 340 individual 
animals were measured with open-circuit respiration chambers twice in two independent measuring rounds 
(10–15 days apart) with each time lasting for two consecutive  days14.  CH4 production (g  CH4/animal·d) and 
 CH4 yield (g  CH4/kg of dry matter intake, DMI) were calculated. Feed intake and BW of the 340 individual 
animals were also recorded. Rumen samples were collected from 118 of the 340 sheep, with 60 representing the 
highest and 58 representing the lowest  CH4 yield sheep, immediately after each  CH4 emission measurement (cor-
responding to 17–18 h after the last feeding) using the stomach tubing method. The two groups of sheep were 
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balanced by BW (24–60 kg), sex, and breeds (indicated below). The rumen fermentation characteristics, includ-
ing acetate:propionate (A:P) ratio, were analyzed using gas–liquid chromatography. We provided the density 
plots of the  CH4 data (g/d and g/kg of DMI, Supplementary Fig. 1). Both density curves appeared to represent 
the mixture of the two groups, which is consistent with the data feature (high and low emission sheep) and with 
the patterns found in the previous  study13.

Two rumen samples were collected (10 to 15 days apart) from each sheep and the composition and structure of 
the rumen microbiota were analyzed using metataxonomics sequencing the 16S rRNA genes of both bacteria and 
archaea, 18S rRNA gene of protozoa, and internal transcribed spacer 1 (ITS1) of  fungi13. One sheep was excluded 
due to missing data, and 16 sheep were represented by only one sample that yielded complete metataxonomic 
data. This resulted in a cumulative 218 observations, with 101 sheep each contributing two observations and the 
remaining 16 sheep contributing one observation.

In this study, we retrieved the metataxonomic sequencing data of the sheep rumen samples from the EMBL 
database per the accession numbers (ERP003779 for Bacteria, ERP003773 for Archaea, ERP003772 for ciliate 
protozoa, and ERP003764 for anaerobic fungi). The sequences were then analyzed using  DADA215. Briefly, the 
amplicon sequences were clustered into amplicon sequence variants (ASVs), which were then taxonomically 
assigned to individual taxa using specialty databases: the Silva database (version 138.1) for bacteria, archaea, and 
 protozoa16; and the UNITE database for  fungi17. The relative sequence abundance of each genus was calculated 
as the sum of the relative sequence abundance of all the ASVs assigned to the respective genus. The sequences 
of the ASVs that were classified to an unclassified genus (Uncl_genus) are listed in Supplementary Table 2. Only 
the genera that each had a relative sequence abundance reaching > 1% in all the samples were used as microbial 
variables. For an Uncl_genus, its higher and known taxon name was used to show its taxonomic lineage. In 
total, 330 microbial genera were obtained and used, including 308 genera of bacteria, 9 genera of archaea, 5 
genera of protozoa, and 8 genera of fungi. The relative sequence abundance data of the microbial genera were 
log-transformed before the modeling process. In addition to the rumen microbiota data and  CH4 emission data 
 (CH4 production, g  CH4/animal·d;  CH4 yield, g  CH4/kg of DMI), the dataset also contained the following five 
animal-related data of the individual sheep: DMI (kg/d), BW (kg), A:P ratio, sex, and breed (Coopworth, Cor-
riedale, Finnish Landrace, Perendale, Romney, and Texel).

Linear mixed model
In our dataset, most animals (101 out of 118) had two records of  CH4 emissions and other data (except for sex 
and breed). These repeated measurements from the same sheep were likely to be more akin to each other than 
to the measurements from a different sheep. Thus, the two records from the same sheep were expected to be 
correlated. Linear mixed-effects models were used to model the dependence of the data and account for cor-
relations between the two repeated measurements. The general structure of the model was described as follows:

where  yij is the observed  CH4 emissions from the ith animal and jth observation (i = 1, …, 118 and j = 1, 2), set 
as either g  CH4/animal·d (referred to as ANIM-B models) or g  CH4/kg of DMI (referred to as DMI-B models); 
Xi = (1, DMI, BW, A:P ratio, sex, breed, microbial variables) is the design vector for the fixed effects containing the 
values of the predictor variables for the ith animal and the “1” entry for the intercept (DMI was not included as a 
variable in developing the DMI-B models because it is a dependent variable in those models); β is the coefficients 
vector of the fixed effects describing the relationships between  CH4 emissions and the predictor variables; αi is 
the random animal effects to account for intra-animal correlation between the two measurements; and εij is the 
random error. The αi was assumed to be independent and identically distributed with mean zero and variance 
σα

2 , and the εij errors were assumed to be independent and identically distributed with mean zero and variance 
σ 2 . Further, it was assumed that random effects and errors were mutually independent.

Machine learning methods
The rumen microbiota is diverse, containing many hundreds to thousands of distinct species of microbes at 
varying relative sequence abundance. The inclusion of such a large number of microbial variables in prediction 
models can lead to overfitting. Additionally, relative abundance data of microbiota are usually on different scales, 
zero-inflated, sparse, and over-dispersed. Thus, proper selection of microbial predictor variables to be included 
in prediction models is crucial in model development. In the present study, we used four ML methods to select 
microbial predictor variables: random forest combined with boosting (RF-B) using the randomForest and gbm 
 packages18, least absolute shrinkage and selection operator (LASSO) using the glmnet  package19, generalized 
linear mixed model with LASSO (glmmLasso) using the glmmLasso  package20, and smoothly clipped absolute 
deviation (SCAD) using the splmm  package21. We opted for both LASSO and glmmLasso because the former 
does not consider intra-animal correlation, while the latter takes these correlations into account by utilizing 
the linear mixed-effect model described in Eq. (1). Each of the ML methods was evaluated for both prediction 
performance and fitting performance. Specifically, to evaluate prediction performance (based on 200 evaluations 
with random data splitting into testing data and training data (see section ‘Evaluation of prediction performance’ 
below), each ML method was used to make variable selection (selection for both animal and microbial predictor 
variables). Using the lmer function of the lme4  package22, we also fitted conventional models utilizing solely the 
animal-related data (i.e., BW, A:P ratio, and DMI (DMI was used only in developing the ANIM-B models)) as 
predictors. The two categorical variables (sex and breed) were not included in the prediction models because 
their addition did not lead to improvement in prediction performance (data not shown). The sets of variables 
selected by glmmLasso, LASSO, SCAD, RF-B, and conventional modeling were then separately fitted with a 
linear mixed model, and the resultant models were used to predict  CH4 emissions. Further, to evaluate fitting 

(1)yij = Xiβ + αi + εij
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performances, linear mixed models were fitted with all available data by selecting the variables using the ML and 
the conventional method. The Akaike information criterion (AIC) and Bayesian information criterion (BIC) 
of those models were computed using the ANOVA function in R v4.0.223. The estimated standard deviation of 
the animal random effects ( ̂σα ), coefficients, and associated standard errors (SE) of the predictor variables were 
computed using the lmer  function22. The observations and residuals versus the model predictions were plotted 
to evaluate the linear mixed model assumptions for all the ML models.

Evaluation of prediction performance
Prediction performance was validated in five steps. Step 1 involved screening the independent variables using 
the sure independence screening (SIS) test implemented in the SIS package in  R24. This step was omitted for the 
RF-B method because this method can handle high-dimensional data without the need for data prescreening 
when building the decision trees. To check for potential multicollinearity, the variance inflation factor (VIF) was 
examined, and variables with a VIF < 5 were retained as recommended by Niu et al.7.

Step 2 began by randomly splitting the dataset into testing data (20% of the data) and training data (the 
remaining data). The training data were standardized by mean centering (subtracting each variable from the 
corresponding mean) and scaling (dividing each variable by its corresponding standard deviation). The testing 
data were standardized based on the centering and scaling from the training data. To prevent data leaking of 
the repeated records from the same animal, the two repeated records were always allocated to either the testing 
data or the training data.

In step 3, glmmLasso, LASSO, SCAD, and RF-B were individually used to select predictor variables from the 
training data. For glmmLasso and SCAD, the optimal tuning parameter λ was determined using BIC. Two incre-
ments of λ, 0.1 and 0.5, were also evaluated, but the results were virtually the same (data not shown) except for a 
substantial increase in computing time. For LASSO, tenfold cross-validation was used to determine the optimal 
tuning parameter λ. For RF-B, the top 10 important variables identified using the randomForest package were 
selected when the number of decision trees was set as 500, and the number of variables randomly sampled as 
candidates at each split (using mtry in the randomForest package) was set as 40. The top 10 important variables 
determined by boosting using the gbm package were also selected with the default settings applied. The union 
of the variables selected by random forest and boosting was kept.

Step 4 involved separately refitting a linear mixed model with the sets of selected variables using each of the 
ML methods and the training data. Predictions were then made using the values of the variables from the testing 
data. All the predictions and observations were recorded.

Step 5 repeated steps 2 to 4 for 200 times (sufficiently large and not too computationally intensive) by re-
splitting the data into testing and training data in each iteration. Mean squared prediction error (MSPE), root 
MSPE (RMSPE), mean absolute errors (MAE), and Lin’s concordance correlation coefficients (CCC) were cal-
culated using the equations specified in the section ‘Model evaluation equations’ below. We utilized RMSPE, 
MAE, and CCC to provide a comprehensive evaluation of the model performance. In particular, MAE is a robust 
assessment that is less sensitive to extreme values compared to RMSPE, whereas CCC can provide information 
on the precision and accuracy of the prediction.

Model evaluation equations
The values of MSPE, RMSPE, and MAE of all the models were calculated using the equations shown  below25. The 
unit of MSPE was (g/d)2 for the ANIM-B models and (g/kg)2 for the DMI-B models. Lin’s CCC was calculated 
by the epi.ccc function in the epiR package in  R26.

where Oi is the  CH4 emissions of ith observation; Pi is  CH4 prediction from the model; N is the total number 
of observations; So is the standard deviation of the observations; Sp is the standard deviation of the predictions; 
o is the mean of the observations; p is the mean of the predictions; Sop is the covariance of the observations and 
the predictions.

The R codes we used in the present study were available at GitHub (https:// github. com/ yu2269/ 
CH4_prediction_model).

Results
Model performance
Tables 1 and 2 summarize the prediction performances of the ANIM-B and the DMI-B models developed using 
both the ML and the conventional methods, based on random data splitting (200 times). The ML methods 

MSPE =
∑N

i=1
(Oi − Pi)

2

N

MAE =
∑N

i=1
|(Oi − Pi)|
N

RMSPE =
√
MSPE

CCC =
2sop

s2o + s2p + (o− p)2

https://github.com/yu2269/CH
https://github.com/yu2269/CH
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notably improved the performance of ANIM-B models, reducing RMSPE (by − 1.25% for SCAD and 3.8% for 
glmmLasso) and MAE (by − 0.39% for SCAD and 5.08% for LASSO), while increasing CCC (by 2.64% for SCAD 
and 9.8% for LASSO), as compared to the conventional method. Similarly, the ML methods enhanced the per-
formance of DMI-B models, reducing RMSPE (by 6.22% for glmmLasso and 11.12% for LASSO) and MAE (by 
7.36% for RF-B and 13.31% for LASSO) and increasing CCC (by 68.73% for glmmLasso and 106.18% for LASSO). 
Tables 3 and 4 present the fitting performance of the ANIM-B and the DMI-B models developed using both the 
ML methods and the conventional method, based on the entire dataset. Compared to the conventional method, 
the ML methods decreased BIC (by − 33 for LASSO and 19 for glmmLasso) and AIC (by − 152 for LASSO and 
53 for glmmLasso) for the ANIM-B models. Similarly, for the DMI-B models, the ML methods decreased BIC 
(by − 201 for RF-B and 5 for glmmLasso and SCAD) and AIC (by − 157 for RF-B and 18 for glmmLasso), as 
compared to the conventional method.

The final models were selected by balancing the prediction performance and the fitting performance. Among 
the ANIM-B models, the glmmLasso model had the lowest BIC and AIC (Table 3). It also had the lowest RMSPE 
in prediction performance (Table 1). Thus, we selected the ANIM-B glmmLasso model as the final model. For 
the prediction performance of the DMI-B models, the LASSO model had a lower RMSPE than the SCAD model 
(1.89 vs. 1.92), which was lower than that of the glmmLasso model (Table 2), but the LASSO model had a higher 
BIC and AIC than the SCAD model and the glmmLasso model (Table 4). The DMI-B SCAD model also had 

Table 1.  Prediction performance of the animal-based (ANIM-B) models  (CH4 production; g/d) developed 
using conventional method and four machine learning methods. *The conventional method only used animal-
related data; the relative abundance of all the microbial data was log-transformed; glmmLasso, generalized 
linear mixed model combined with LASSO; LASSO, least absolute shrinkage and selection operator; SCAD, 
smoothly clipped absolute deviation implemented on linear mixed models; RF-B, random forest combined 
with boosting. The data were randomly split into a training set and a testing set (80:20) 200 times and were 
standardized by mean centering and scaling (detailed in “Methods”).

Conventional glmmLasso LASSO SCAD RF-B

RMSPE 2.96 2.85 2.85 3.00 2.91

Reduction of RMSPE (%) – 3.80 3.62 -1.25 1.52

MAE 2.29 2.18 2.17 2.29 2.21

Reduction of MAE (%) – 4.60 5.08 -0.39 3.50

CCC 0.64 0.70 0.71 0.66 0.68

Increase of CCC (%) – 9.49 9.80 2.64 5.29

Table 2.  Prediction performance of the dry matter intake-based (DMI-B) models  (CH4 yield; g/kg DMI) 
developed using conventional method and four machine learning methods. See the notes of Table 1.

Conventional glmmLasso LASSO SCAD RF-B

RMSPE 2.12 1.99 1.89 1.92 1.99

Reduction of RMSPE (%) – 6.22 11.12 9.66 6.50

MAE 1.65 1.51 1.43 1.48 1.52

Reduction of MAE (%) – 8.21 13.31 9.97 7.36

CCC 0.28 0.46 0.57 0.51 0.48

Increase of CCC (%) – 68.73 106.18 84.36 73.09

Table 3.  Fitting performance of the animal-based (ANIM-B) models  (CH4 production; g/d) fitted with the 
variables selected from all the available data by the conventional method and machine learning methods. See 
the notes of Table 1.

Conventional glmmLasso LASSO SCAD RF-B

BIC 1070 1051 1103 1065 1095

Reduction of BIC – 19 − 33 5 − 25

AIC 1050 997 1202 1028 1031

Reduction of AIC – 53 − 152 22 19

Number of variables 3 13 27 8 17
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the fewest variables (6 in total, Table 4) among the ML models. Thus, the DMI-B SCAD model was selected as 
the final DMI-B model.

We assessed the performance of the models by plotting the observed  CH4 emissions against the  CH4 emissions 
predicted using the final ANIM-B and the DMI-B models, along with the corresponding studentized residu-
als (Supplementary Figs. 2 and 3, respectively). Both the ANIM-B glmmLasso and the DMI-B SCAD models 
showed more tightly clustered and less scattered patterns in the observation vs. prediction plots, as compared to 
the ANIM-B and the DMI-B conventional models (Supplementary Figs. 2A,B and 3A,B, respectively). On the 
studentized residuals vs. predictions plots, the two ANIM-B and the DMI-B ML models also had tighter and 
more symmetric patterns around the regression lines that had smaller slopes compared to the ANIM-B and the 
DMI-B conventional models (Supplementary Figs. 2a,b and 3a,b, respectively).

Animal‑based (g  CH4/animal·d) prediction models
The final ANIM-B glmmLasso model contained three animal-related predictor variables (DMI, A:P ratio, and 
BW) and 10 bacterial genera (or equivalents) of rumen bacteria out of the 308 genera (Table 5). None of the 
protozoal, fungal, or archaeal genera was selected as predictor variables. The three animal-related variables all 
had a positive coefficient. Of the 10 microbial predictor variables, four had a positive coefficient: 0.59 for the 
Uncl_genus of Oscillospiraceae, 0.49 for the Uncl_genus of the order Clostridia, 0.46 for the Uncl_Family of 
the order Gastranaerophilales, and 0.24 for the genus Moryella. The remaining six genera had a negative coef-
ficient: Uncl_Family of the order RF39 (‒0.27), the genus Prevotella_7 (‒0.30), the Uncl_Genus of Marinifilaceae 
(‒0.34), the genus Syntrophococcus (‒0.37), the genus Oribacterium (‒0.40), and the Uncl_Family of the order 
Oscillospirales (‒0.44). The ANIM-B conventional model had the same three of the five animal-related data as 
predictor variables (DMI, A:P ratio, and BW). Compared to the ANIM-B conventional model, the ANIM-B 
glmmLasso model had a reduced σ̂α (1.59 vs. 2.04), RMSPE (by 3.8%), and MAE (by 4.6%), and increased CCC 

Table 4.  Fitting performance of the dry matter intake-based (DMI-B) models  (CH4 yield; g/kg DMI) fitted 
with the variables selected from all the available data by the conventional method and machine learning 
methods. See the notes of Table 1.

Conventional glmmLasso LASSO SCAD RF-B

BIC 894 889 969 889 1095

Reduction of BIC – 5 − 75 5 − 201

AIC 874 856 868 859 1031

Reduction of AIC – 18 6 15 − 157

Number of variables 2 9 25 6 17

Table 5.  Coefficients and the associated standard errors (SE) of the predictor variables of the final ANIM-B 
 (CH4 production; g/d) model. The bolded genera were shared between the ANIM-B and the DMI-B models. 
Uncl unclassified. For all the models, the predictor variables were centered and scaled to have a mean of 0 
and variance of 1. **Log-transformed relative sequence abundance. 1 Developed using glmmLasso and all the 
available data after log transformation of the microbial data. 2 Developed using conventional model and only 
animal-related data.

Predictor variables glmmLasso1 Conventional2

Animal

Intercept 21.9 (0.19) 21.9 (0.23)

Body weight (kg) 1.17 (0.24) 1.48 (0.18)

Dry matter intake (kg/d) 1.35 (0.24) 1.18(0.25)

Acetate to propionate (A:P) ratio 1.17 (0.18) 1.29 (0.26)

Bacteria**

Uncl_Genus of Oscillospiraceae 0.59 (0.17)

Uncl_Genus of the order Clostridia 0.49 (0.16)

Uncl_Family of the order Gastranaerophilales 0.46 (0.17)

Genus Moryella 0.24 (0.15)

Uncl_Family of the order RF39 − 0.27 (0.16)

Genus Prevotella 7 − 0.30 (0.18)

Uncl_Genus of Marinifilaceae − 0.34 (0.16)

Genus Syntrophococcus − 0.37 (0.17)

Genus Oribacterium − 0.40 (0.17)

Uncl_Family of Oscillospirales − 0.44 (0.18)

Number of predictors 13 3

σ̂α 1.59 2.04
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(by 9.49%). The ANIM-B glmmLasso model also had a lower AIC and BIC than the ANIM-B conventional 
model (by 53 and 19, respectively).

Dry matter intake‑based (g CH4/kg of DMI) prediction model
The final DMI-B SCAD model had six predictor variables: one animal-related predictor variable (A:P ratio) and 
five bacterial genera as microbial predictor variables (Table 6). No protozoal, fungal, or archaeal genera were 
selected as predictor variables. The A:P ratio predictor variable had a positive coefficient. Except for Uncl_Family 
of the order Gastranaerophilales (with a coefficient of 0.50), the other four microbial predictor variables were 
all known genera, all of which had a negative coefficient: − 0.24 for Pseudoramibacter, − 0.33 for Megasphaera, 
− 0.39 for Selenomonas, and − 0.40 for Oribacterium. The DMI-B conventional model had two animal-related 
predictor variables (A:P ratio and BW), and both had a positive coefficient. Compared to the DMI-B conventional 
model, the DMI-B SCAD model had a reduced σ̂α (0.98 vs. 1.47), RMSPE (by 9.66%), and MAE (by 9.97%), and 
increased CCC (by 84.36%). Compared to the DMI-B conventional model, the DMI-B SCAD model reduced 
both AIC and BIC (by 15 and 5, respectively).

Discussion
The rumen microbiota is responsible for about 90% of the  CH4 emitted from  sheep27. With respect to  CH4 
production, rumen microbes can be categorized as producers of methanogenesis substrates (primarily bacteria 
and protozoa),  CH4 producers (i.e., methanogens), and those that influence  CH4 production by interacting 
with the above two categories either positively (e.g., through mutualism and commensalism) or negatively (i.e., 
through amensalism, competition, and predation) interactions. Thus, some of the rumen microbes could have 
a quantitative relationship with the overall  CH4 emissions. Using four statistical/ML methods and one dataset 
(218 observations) that contains both animal-related data and metataxonomic data of the rumen microbiota 
(330 genera in total), we developed ML models for improved prediction of  CH4 production (g  CH4/animal·d) 
and  CH4 yield (g  CH4/kg of DMI) from sheep, which include rumen microbes as predictor variables.

New ML models including microbial predictor variables
As evaluated for prediction performance, it is evident that all the ML models, except for the ANIM-B SCAD 
model, improved prediction of  CH4 emissions in terms of error, bias, and accuracy when compared with the 
conventional models. Additionally, the improvement in prediction performance demonstrated in the evaluation 
with testing data randomly selected from the entire dataset suggests the potential usefulness of these models over 
a broad range of  CH4 emissions. The improvement in  CH4 prediction by the final ANIM-B glmmLasso model 
and the final DMI-B SCAD model is also evident in the plots of the predictions vs. the observations along with 
the studentized residuals. In addition to the same animal-related predictor variables included in the conventional 
models (except for the exclusion of BW in the DMI-B SCAD model), the final ML included genera of bacteria 
as predictor variables. The improvement in prediction performance strongly suggests that the inclusion of these 
microbial predictor variables might have fine-tuned the models. Moreover, the improved predictions of the 
final ML models align well with the assumptions of linear mixed models. These findings suggest that microbial 
predictor variables can differentiate sheep based on  CH4 production levels, offering promising prospects for 
capturing variations in  CH4 emissions and helping achieve accurate  CH4 prediction.

The bacterial genera included in the ML models
Despite the dataset containing 330 genera of microbes, only a small number of genera were selected as microbial 
predictor variables, and their inclusion did not lead to model overfitting. Notably, all the microbial predictor 

Table 6.  Coefficients and the associated standard errors (SE) of the predictor variables of the final DMI-B 
 (CH4 yield; g/kg DMI) model. The bolded genera were shared between the ANIM-B and the DMI-B models. 
Uncl unclassified. For all models, the predictor variables were centered and scaled to have a mean of 0 and 
variance of 1. **Log-transformed relative sequence abundance. 1 Developed using SCAD and all the available 
data after log-transformation of the microbial data. 2 Developed using conventional model and only animal-
related data except DMI.

Predictor variables SCAD1 Conventional2

Animal

Intercept 15.13 (0.13) 15.12 (0.17)

Body weight (kg) – 0.89 (0.13)

Acetate to propionate (A:P) ratio 0.93 (0.12) 0.25 (0.16)

Bacteria**

Uncl_Family of the order Gastranaerophilales 0.50 (0.12)

Genus Pseudoramibacter − 0.24 (0.12)

Genus Megasphaera − 0.33 (0.12)

Genus Selenomonas − 0.39(0.13)

Genus Oribacterium − 0.40 (0.12)

Number of predictors 6 2

σ̂α 0.98 1.47
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variables in both the ANIM-B and the DMI-B prediction models are genera of bacteria, with the majority belong-
ing to Firmicutes, an abundant phylum of rumen microbiota. Interestingly, no archaea, protozoa, or fungi were 
selected as predictor variables in any of the ML models. The absence of methanogen genera in the models might 
seem counterintuitive, given their role as  CH4 producers. However, previous studies have shown that the abun-
dance of rumen methanogens, even that of the most abundant genus, Methanobrevibacter28, has very a weak to 
no correlation with  CH4  production12,29. Furthermore, changes in diets that significantly affected  CH4 production 
were not found to lead to substantial alterations in the relative sequence abundance of Methanobrevibacter30. 
Thus, the lack of methanogens in the final prediction models is not surprising. At low abundance, methanogens, 
fungi, and protozoa might have little predicting power for  CH4 emissions.

Both the ANIM-B and DMI-B ML models included the genus Oribacterium and one unclassified genus of 
the order Gastranaerophilales (the Uncl_Family of the order Gastranaerophilales) with a negative and a positive 
coefficient, respectively. Although the function of this unclassified genus is not known, its large coefficients in 
both prediction models suggest a high predicting power. Interestingly, Gastranaerophilales has been shown to be 
negatively associated with milk yield in dairy  cattle31 and negatively associated with growth in  lambs32. Regard-
ing the genus Oribacterium, it had a negative coefficient in both the final ANIM-B and the DMI-B models. This 
aligns with Oribacterium being a potential  H2 sink in the rumen of  sheep33 and its negative association with  CH4 
emissions documented in dairy  cows34. Future research is warranted to explore and verify if Oribacterium has 
a quantitative relationship with rumen  CH4 production and can be used as a predictor variable or biomarker 
of  CH4 emissions.

In addition to the two genera shared with the DMI-B SCAD model, the ANIM-B glmmLasso model included 
another eight genera, five of which were unclassified, and their functions remain unknown. Among these genera, 
Moryella, Prevotella_7, and Syntrophococcus are known genera of bacteria, but their association or correlation 
with  CH4 emissions in ruminants has not been reported in the literature. Prevotella_7 is a newly established 
 genus35, consisting of P. multiformis, P. multisaccharivorax, and uncultured bacteria from the oral cavities and the 
rumen (https:// www. arb- silva. de/). Studies have shown that both P. multiformis and P. multisaccharivorax were 
enriched by concentrate-based diets correlated with decreased  CH4  emissions36,37. In buffalos, a higher relative 
sequence abundance of Prevotella (closely related to Prevotella_7) was associated with low  CH4  emissions38. 
Prevotella is considered to be hydrogen-consuming39, making the inclusion of Prevotella_7 as a predictor variable 
with a negative coefficient not surprising. As for Moryella and Syntrophococcus, the literature has no information 
about their relationship with  CH4 emissions, except for one in vitro study that showed a positive correlation 
between Syntrophococcus and maximum  CH4 production, but a negative correlation with the appearance of peak 
 CH4  production40. Future quantitative studies are needed to verify the qualitative relationship between these 
two genera and  CH4 emissions.

The DMI-B SCAD model did not include BW as a predictor variable, but the inclusion of bacterial predictor 
variables improved the prediction accuracy. This suggests that these bacterial predictor variables might have 
reduced the variation in  CH4 prediction introduced by BW. In addition to the two unknown genera discussed 
earlier, the final DMI-B SCAD model included three known genera (Pseudoramibacter, Megasphaera, and Sele-
nomonas), which were not included in the final ANIM-B glmmLasso model. While the literature has no infor-
mation about any potential association between Pseudoramibacter and  CH4 emissions, Pseudoramibacter was 
reported to be positively correlated with feed efficiency in  sheep41. Similarly, it remains unknown if Megasphaera 
or Selenomonas has any association or correlation with  CH4 emissions in the absence of anti-methane inhibitors. 
However, one in vitro study has shown that calcium salts of long-chain fatty  acids42, tucuma  oil43, and ginkgo 
 extract44 decreased  CH4 emissions while increasing propionate and the abundance of Megasphaera and Selenom-
onas. Encapsulated nitrate has also been found to reduce  CH4 emissions while increasing Selenomonas in  steers45. 
Additionally, Megasphaera was more abundant in low than in high  CH4-yield  sheep46. Thus, the negative coef-
ficients of both Megasphaera and Selenomonas in the DMI-B SCAD model align with their negative association 
with  CH4 emissions and their ability to consume hydrogen and produce  propionate33,39,47,48. It should be noted 
that many of these correlations were observed in ruminants that were subjected to dietary interventions using 
anti-methane inhibitors, which could directly or indirectly affect these genera, skewing their relationships with 
 CH4 production. Future research is warranted to determine their relationship with  CH4 emissions in the absence 
of anti-methane inhibitors and their predicting power of  CH4 emissions.

Potential limitations of the sheep dataset and the selected models
The dataset used in developing the prediction models was from one study using a relatively small number of 
sheep that were fed the same  diet13. A larger database from multiple studies using different diets would improve 
prediction models and enhance their applicability across a broad range of feeding systems. However, currently, 
no such a database exists. A few studies in the literature have reported rumen microbiota data together with  CH4 
emission data, and we attempted to combine these data into a larger dataset. However, most of the studies used 
anti-methane inhibitors, likely skewing the microbiota data. Additionally, different studies sequenced different 
regions of the 16S rRNA or 18S rRNA gene, making it impossible to combine the sequence data for microbiota 
analysis. To facilitate the combination of sequence data from multiple studies, a standardized metataxonomic 
protocol should be adopted.

Metataxonomic analysis of the rumen microbiota incurs additional cost, which may hinder the adoption and 
application in the livestock industry, but it is relatively small and justifiable for several reasons. First, amplicon 
sequences are routinely generated and analyzed in numerous studies to understand the microbiological under-
pinning of treatment effects or group differences, making sequencing cost a part of the study cost. Second, the 
cost of amplicon sequencing has been steadily decreasing, and with the advent of new sequencing technologies 
(e.g., the Illumina NovaSeq 6000), it is expected to further decrease. Third, accurate and precise  CH4 emission 

https://www.arb-silva.de/
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prediction is becoming increasingly important for precision livestock farming, which is an essential approach 
to increase feed efficiency while reducing  CH4 emissions for a sustainable industry of ruminants. Improved 
prediction of  CH4 emissions can assist researchers and farmers in improving the overall feed efficiency and 
sustainability of livestock production.

Conclusion
Using machine learning methods, we successfully developed animal-based and dry matter intake-based  CH4 
prediction models that include both animal data and microbial genera as predictor variables. The inclusion of 
microbial predictor variables improved  CH4 emission prediction in terms of error, bias, and accuracy compared 
to the conventional models that solely contain animal-related data, particularly for predicting  CH4 yield (g 
 CH4/kg of DMI). Notably, the coefficients (positive or negative) of some of the predictor variables from known 
bacterial genera (e.g., Oribacterium, Prevotella_7, Megasphaera, and Selenomonas) align well with their known 
associations or correlations (positive or negative) with  CH4 emissions and/or with their known functions in the 
rumen ecosystem, such as hydrogen consumption. However, the role and association of other predictor variables 
of known genera (e.g., Moryella, Pseudoramibacter, and Syntrophococcus), as well as the unclassified genera, with 
 CH4 emissions remain unknown.

While further improvements in  CH4 prediction models would benefit from extensive databases encompass-
ing rumen bacteria, archaea, fungi, and protozoa, along with animal-related data from multiple studies, this 
study demonstrated the potential and feasibility to include rumen microbes as predictor variables to improve 
 CH4 predictions from sheep, likely from cattle also. A standardized approach to generate and analyze rumen 
microbial data is imperative to facilitate the compilation of multiple datasets from numerous studies. Such efforts 
will contribute to a better understanding of the rumen microbiota’s impact on  CH4 emissions and improved 
prediction models for sustainable agricultural practices.

Data availability
The sequence and animal data used in this study were published by Kittelmann, et al.13 and can be downloaded 
from the EMBL database (accession numbers: ERP003779 for Bacteria, ERP003773 for Archaea, ERP003772 
for ciliate protozoa, and ERP003764 for anaerobic fungi). The R codes used in this study are available at https:// 
github. com/ yu2269/ CH4_ predi ction_ model.
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