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CLINICAL CANCER RESEARCH | PRECISION MEDICINE AND IMAGING

Discrimination of Breast Cancer from Healthy Breast
Tissue Using a Three-component Diffusion-weighted
MRI Model
Maren M. Sjaastad Andreassen1, Ana E. Rodríguez-Soto2, Christopher C. Conlin2, Igor Vidi�c8,
Tyler M. Seibert2,4,5, Anne M. Wallace6, Somaye Zare3, Joshua Kuperman2, Boya Abudu7, Grace S. Ahn7,
Michael Hahn2, Neil P. Jerome1,8, AgnesØstlie1, Tone F. Bathen1,9, HaydeeOjeda-Fournier2, Pa

�
l Erik Goa8,9,

Rebecca Rakow-Penner2, and Anders M. Dale2,10

ABSTRACT
◥

Purpose: Diffusion-weighted MRI (DW-MRI) is a contrast-free
modality that has demonstrated ability to discriminate between
predefined benign andmalignant breast lesions. However, howwell
DW-MRI discriminates cancer from all other breast tissue voxels in
a clinical setting is unknown. Here we explore the voxelwise ability
to distinguish cancer from healthy breast tissue using signal con-
tributions from the newly developed three-component multi-b-
value DW-MRI model.

Experimental Design: Patients with pathology-proven breast
cancer from two datasets (n ¼ 81 and n ¼ 25) underwent multi-
b-value DW-MRI. The three-component signal contributions C1

and C2 and their product, C1C2, and signal fractions F1, F2, and
F1F2 were compared with the image defined on maximum
b-value (DWImax), conventional apparent diffusion coefficient
(ADC), and apparent diffusion kurtosis (Kapp). The ability to
discriminate between cancer and healthy breast tissue was

assessed by the false-positive rate given a sensitivity of 80%
(FPR80) and ROC AUC.

Results: Mean FPR80 for both datasets was 0.016 [95%
confidence interval (CI), 0.008–0.024] for C1C2, 0.136 (95% CI,
0.092–0.180) for C1, 0.068 (95%CI, 0.049–0.087) for C2, 0.462 (95%
CI, 0.425–0.499) for F1F2, 0.832 (95% CI, 0.797–0.868) for F1, 0.176
(95% CI, 0.150–0.203) for F2, 0.159 (95% CI, 0.114–0.204) for
DWImax, 0.731 (95% CI, 0.692–0.770) for ADC, and 0.684 (95%
CI, 0.660–0.709) forKapp.Mean ROCAUC forC1C2 was 0.984 (95%
CI, 0.977–0.991).

Conclusions: The C1C2 parameter of the three-component
model yields a clinically useful discrimination between cancer and
healthy breast tissue, superior to other DW-MRI methods and
obliviating predefining lesions. This novel DW-MRI method may
serve as noncontrast alternative to standard-of-care dynamic
contrast-enhanced MRI.

Introduction
Numerous studies have indicated that early breast cancer detec-

tion, with dynamic contrast-enhanced MRI (DCE-MRI), has higher
sensitivity than current screening programs (ultrasound and mam-
mography; refs. 1–5). However, DCE–MRI has a number of limita-
tions such as conflicting results regarding specificity (2–6), depen-
dency on expert radiologist readers, additional scan time and costs,
and the use of gadolinium-based contrast agents that are linked to
deposition in the brain (7). In contrast, diffusion-weighted MRI
(DW-MRI) does not require exogenous contrast and yields quan-
titative information of tissue microstructure by detecting diffusion
of water molecules through application of varying degree of diffu-
sion weighting.

Various diffusion models have demonstrated comparable ability
to DCE-MRI in discriminating between predefined benign and
malignant lesions in small regions of interest (ROI) in the
breast (8–14). However, DW-MRI would increase its clinical utility
and practicality in breast cancer screening, treatment evaluation,
surgical planning, and surveillance if it could also discriminate
cancer from all healthy breast tissue, not relying on lesions being
predefined by radiologists. DW-MRI of healthy breast tissue is
problematic because it consists of varying degree of admixtures of
fatty and fibroglandular tissue (15) which creates an intravoxel fatty
component on DW-MRI (16). Fatty tissue is primarily made up of
adipocytes which contain a large lipid droplet that occupies >90% of
the cell volume, leaving only a small rim of water-containing
cytoplasm. Common fat suppression techniques are designed to
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suppress the lipid component (17). However, studies have reported
highly restricted diffusion in fat-suppressed healthy breast tissue
(18, 19), which suggests that the water component in fatty tissue
remains on conventional DW-MRI. The restricted water compo-
nent in fatty tissue is especially problematic because it confounds
the slow diffusion signal from intracellular cancer tissue. Thus,
advanced imaging techniques are needed to discriminate cancer
from all healthy breast tissue on a voxelwise level including the
restricted water component in the intravoxel fatty tissue.

Advanced, multicomponent partial volumemodels that use extend-
ed ranges of b-values (typically up to 2,000–3,000 seconds/mm2) may
theoretically isolate the slowly diffusing water pool present in cancer
tissue and have become an emerging standard in several imaging
domains (20–26). Here, the DW-MRI signal is modeled as a combi-
nation of exponential decays with corresponding component apparent
diffusion coefficients (ADCs), where the weighting of each component
represents the attribution from a distinct pool of water from the total
diffusion signal. Furthermore, selected multicomponent partial vol-
ume models, such as restriction spectrum imaging (RSI; refs. 24–26),
use tissue-specific, predetermined component ADCs which ensures
linearization of the model, comparability across patients, and rapid
fitting of diffusion signal which is essential for clinical application.
This is fundamentally different from conventional approaches where
ADCs are not fixed but are left free and determined for each voxel
independently. However, thesemethods are not yet well investigated in
the breast.

Initial results of multicomponent partial volume models in the
breast have been demonstrated by Vidi�c and colleagues (12), show-
ing that the normalized magnitude of the slowest component in a
two-component model was excellent (AUC ¼ 0.99) in discrimi-
nating between predefined benign and malignant breast lesions.
Building on these findings, the multicomponent model was opti-
mized to fit the DW-MRI signal across all voxels in all breast tissue,
including cancer and healthy breast tissue, resulting in a three-
component model with empirical ADCs globally determined across
patients, scanners, and sites (19). The three-component model was
able to explain all voxels in all breast tissue, including the restricted
water component in fatty tissue, rather than the averaged signal of
an ROI (27–29).

The main objective of this study is to explore the ability of estimates
derived from a three-component model to discriminate breast cancer
from healthy breast tissue and to compare it with other DW-MRI
methods.

Materials and Methods
Patients

To validate the discriminatory power of the three-component
model across scanners and sites, two datasets of patients with
pathology-proven breast cancer from a U.S. site (n ¼ 81) and a
European site (n ¼ 25) were included (Table 1). Note that 49 cases
from the U.S. site and all cases from the European site were also
used to determine the three-component model with fixed ADCs for
breast tissue (19). In addition, cases from the European site have
been previously used for DW-MRI modeling of previously defined
benign and malignant lesions (12, 30–33), linking DW-MRI signal
to histologic specimen (34) and distortion correction techni-
ques (35). Written informed consent was obtained from patients
at both sites and the studies were conducted in accordance with the
Declaration of Helsinki.

U.S. dataset
Ninety-five patients with pathology-proven breast cancer with no

cytotoxic regimens, chemotherapy, or ipsilateral radiotherapy for this
malignancy prior to MRI scanning were eligible for this retrospective
study. The study was approved by the Institutional Review Board of
the U.S. site. Patients included for evaluation were imaged between
December 2015 and ended in June 2019. Tumor categorization was
done by histopathologic analysis of core needle and open incisional
biopsies. In total, 14 patients were excluded from the study; nine
patients had contralateral cancer or mastectomy, one patient had no
visible cancer tissue on DW-MRI, and in four patients image quality
was low [low signal-to-noise ratio (n¼ 2), poor fat saturation (n¼ 1),
and severe image distortion (n ¼ 1)], resulting in 81 patients.

European dataset
This prospective study was approved by the Regional Committees

for Medical and Health Research Ethics (REC Central Norway, 2011/
568). The recruitment of patients began in August 2014 and ended in
August 2016. Twenty-five patients with pathology-proven breast
cancer with inclusion criteria and tumor categorization similar to that
of the U.S. site were included; for more details, see inclusion of
malignant lesions from Vidi�c and colleagues (12).

MRI acquisition
MRI data were acquired on a 3TGE scanner (MR750, DV25–26, GE

Healthcare) and an eight-channel breast array coil with a bilateral axial
imaging plane for the U.S. dataset, while patients from the European
dataset were imaged with a 3T Siemens scanner (Skyra, VD13-E11,
Siemens Healthcare) and a 16-channel breast array coil with a uni-
lateral sagittal imaging plane. Differences in scanner and pulse
sequence parameters across sites were used to determine that the
discriminatory potential of the three-component model is robust for
data collected in different scanners and pulse sequence parameters. In
addition to gadolinium DCE-MRI and T2 images, both datasets
included high b-value DW-MRI acquisition:

U.S. dataset protocol
Bilateral axial DW-MRI was performed using reduced field of view

(FOV) echo-planar imaging (EPI) including the following parameters:

Translational Relevance

Here we present a novel methodology to discriminate cancer
from surrounding healthy breast tissue. We employ an advanced
diffusion-weighted MRI (DW-MRI) model without the use of a
contrast agent and find highly promising diagnostic properties of
the derived parameter C1C2. The results indicate that C1C2 may
serve as a noncontrast alternative to standard-of-care dynamic
contrast-enhanced MRI, which removes the need to administer
gadolinium contrast, decreasing costs and any accumulation of
gadolinium in the brain. Further clinical utility of C1C2 is reflected
by accounting for admixed fatty tissue in healthy breast tissue and
obliviation of predefined lesions that conventional quantitative
DW-MRI metrics use. Thus, C1C2 may yield increased clinical
utility and practicality in breast cancer evaluation, where lesions are
not predefined. Furthermore, the diagnostic properties were gen-
eralized across sites, scanners, and acquisition protocols, which is
important for feasibility of large-scale studies for validation in
routine breast cancer detection and follow-up.

Three-component DW-MRI Model for Breast Cancer Detection
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spectral attenuated inversion recovery (SPAIR) fat suppression,
TE¼ 82ms, TR¼ 9,000ms, b-values (number of diffusion directions)

¼0,500)6(,1,500)6 ), and 4,000 (15) seconds/mm2, FOV ¼ 160 �
320 mm2, acquisition matrix ¼ 48 � 96, reconstruction matrix ¼
128� 128, voxel size¼ 2.5� 2.5� 5.0mm3, phase-encoding direction
A/P, and no parallel imaging.

European dataset protocol
Unilateral sagittal DW-MRI was performed using Stejskal-

Tanner spin-echo EPI including the following parameters: FatSat
(n ¼ 15) and SPAIR (n ¼ 10) fat suppression, TE ¼ 88 ms, TR ¼
10,600 ms (n ¼ 15) and 11,800 ms (n ¼ 10), b-values (number of
diffusion directions)¼ 0, 200 (6), 600 (6), 1,200 (6), 1,800 (6), 2,400
(6), and 3,000 (6) seconds/mm2, FOV ¼ 180 � 180 mm2, acqui-
sition matrix ¼ 90 � 90, reconstruction matrix ¼ 90 � 90, voxel
size ¼ 2.0 � 2.0 � 2.5 mm3, PE direction A/P, generalized
autocalibrating partially parallel acquisition with acceleration factor
of 2 and 24 reference lines.

Image processing and analysis
Noise correction (36) was performed to account for decreasing

signal-to-noise ratio with increasing b-value. The observed signal
(Sobs) is themean signal across diffusion directions fromone individual
b-value image. Background voxels were selected by manually placing
an ROI in an area in the air outside the breast on the highest b-value
image, yielding the mean background intensity (Sbkg). The corrected
signal intensity (Scorr) calculated from Sobs and Sbkg is given as:

Scorr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sobs2 � Sbkg2

q
ð1Þ

ScorrðScorr <0Þ ¼ 0

Furthermore, corrections for eddy current artifacts, motion (24),
and geometric distortion (37) were applied for the European dataset.

Full-volume cancer and control ROIs were manually defined on
DW-MRI images, guided by all available data in the exam protocol
(including DCE-MRI and anatomic T2 images, Fig. 1), under

Table 1. Table of patient characteristics. ER (estrogen receptor) and PR (progesterone receptor) status were assessed by IHC and was
considered positive if ≥1% stained nuclei was present in 10 high-power fields (50). HER2 status was assessed by IHC and FISH according
toASCO/CAPguidelines 2013 (51) or 2018 (ref. 52; depending on time of recruitment); positivitywas defined as an IHC score of 3þ, or 2þ
with a gene to chromosome ratio ≥ 2.0 by FISH.

U.S. dataset European dataset

No. of patients 81 25
Median patient age, years (range) 51 (20–84) 53 (29–75)
Mean tumor volume, cm3 (range) 13.1 (0.2–105.9) 2.5 (0.5–5.8)
Histologic type

Invasive carcinoma of no special type 64 17
Invasive lobular carcinoma 6 1
Tubular carcinoma 0 1
Mucinous carcinoma 0 1
Carcinoma with medullary features 0 3
Metaplastic carcinoma of no special type 4 0
Invasive papillary carcinoma 0 1
Mixed invasive carcinoma of no special type and invasive lobular carcinoma 3 0
Mixed invasive carcinoma of no special type and mucinous carcinoma 1 0
Ductal carcinoma in situ 3 1

Histologic grade
1 3 5
2 28 9
2/3 0 1
3 47 8
Not analyzed 3 2

ER status
Positive 53 23
Negative 27 1
Not analyzed 1 1

PR status
Positive 50 20
Negative 30 4
Not analyzed 1 1

HER2 status
Positive 14 7
Negative 64 17
Not analyzed 3 1

Lesion type
Mass 67 25
NME 13 0
Mass and NME 1 0

Abbreviation: NME, nonmass enhancement.

Andreassen et al.
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supervision of and validation by two breast radiologists: R. Rakow-
Penner (U.S. dataset) and A. Østlie (European dataset). Cancer
ROIs were drawn for the lesions corresponding to pathology-
proven cancer. Control ROIs were drawn for the entire contralateral
breast (U.S. dataset) and in a cancer-free region in the ipsilateral
breast at least 10 mm away from the cancer ROI (European dataset),
with the aim to include all representative healthy breast tissue,
excluding the axillary region, large cysts (>2.5 cm), and suscepti-
bility artifacts. Cancer and control ROIs were used to determine
discriminatory performance between cancer and healthy breast
tissue, respectively.

For comparison with other DW-MRI methods, the nonnoise-
corrected image defined onmaximum b-value (DWImax), convention-
al ADC (mono-exponential fitting of data), and apparent diffusion
kurtosis (Kapp) were estimated. DWImax was acquired at b ¼ 4,000
seconds/mm2 for the U.S. dataset and b¼ 3,000 seconds/mm2 for the
European dataset. The exponential decay formulas described by Jensen
and colleagues (38) and the corresponding b-value limits, <1,000
seconds/mm2 and <2,000 seconds/mm2, were used for computation
of ADC and Kapp maps, respectively. Note that ADC and Kapp are
calculated diffusion parameters where T2 and proton density depen-
dence are eliminated (38).

To ensure that regions outside of the breast were not included in
analysis, control ROIs were masked using intensity thresholding and
three-dimensional connected components (U.S. dataset) or manually
delineated within the breast boundary (European dataset) and
reviewed by R. Rakow-Penner (U.S. dataset) and A. Østlie (European
dataset) (Figs. 1 and 4). In addition, all undefined values (zero and
infinite) on the image defined on b¼ 0 seconds/mm2, ADC, and Kapp

were excluded.

Three-component modeling of diffusion signal
The corrected diffusion signal across all available b-values was fitted

with a triexponential model, expressed as:

Scorr bð Þ ¼ N C1 � e�b�ADC1 þ C2 � e�b�ADC2 þ C3 � e�b�ADC3
� � ð2Þ

where Scorr is the corrected diffusion signal in arbitrary units, b is the b-
value in seconds/mm2, and Ci denotes the voxelwise unitless signal
contribution of each component. Note that [C1þC2þC3] / r�exp
(�TE/T2eff), where r represents the proton density and T2eff the
effective T2 relaxation time in a given voxel. This model has been
shown to represent the best fit across all voxels from both cancer and
healthy breast tissue determined across patients, scanners, and
sites (19), and yielded the fixed component ADC values used in this
analysis: ADC1 ¼ 0 mm2/second, ADC2 ¼ 1.4 � 10�3 mm2/second,
and ADC3 ¼ 10.2 � 10�3 mm2/second. Fixing ADCs ensures linear-
ization of the model and comparability of signal contributions across
voxels and patients and avoids overfitting; the use of ADC1 ¼ 0 mm2/
second means this component behaves not as a distinct exponential as
in other tissue (20, 21, 24, 39) but as a constant offset. Hence, we use the
term “three-component” for the fitted model instead of “triexponen-
tial.” All voxels were normalized to the 98th percentile of intensity
within the b ¼ 0 seconds/mm2 image, indicated by the normalization
factor (N). This was done to address different image intensity scaling
while simultaneously preserving contribution of proton density and
T2 to the DW-MRI signal.

Alternatively, the equation can be written by normalizing to the
signal at b¼ 0 second/mm2 per voxel (S0), yielding signal fractions (Fi)
rather than signal contributions (Ci). Thus, Fi is related directly to
diffusion and more clearly separated from proton density and T2
properties, given as:

Scorr bð Þ ¼ S0 F1 � e�b�ADC1 þ F2 � e�b�ADC2 þ F3 � e�b�ADC3
� � ð3Þ

where F1 þ F2 þ F3 ¼ 1 and S(0) / r�exp(�TE/T2eff). This means
that the signal contributions include voxelwise T2-weighting and
proton density effects, while the signal fractions are only sensitive to
diffusion component effects.

Figure 1.

Parameter maps for DWImax, C1, C2, C1C2 with FPR80, T2 images with cancer (red) and control (green) ROI overlay and probability density colormaps for cancer and
control givenC1 andC2 for three representative cases from theU.S. dataset. ROIs are here only displayed for one slice but are delineated for the full volume. FPR80 vary
depending on the composition of healthy breast tissue in relation to the magnitude of C1 and C2 in cancer. A, Mixed tissue composition with cancer high on both
dimensions. B, Abundant fibroglandular tissue and high C1-magnitude of cancer. C, Abundant fatty tissue and high C2-magnitude of cancer. DWImax and C1

performance is poorest in C, C2 in B while C1C2 has perfect performance across cases. Colormaps are given on a logarithmic scale normalized to the maximum
probability density value. y- and x-axis are defined by the maximum value for each case. Gray level windows for all images are scaled to the maximum andminimum
signal intensity of each case and given in arbitrary unites. Au, arbitrary unit;Ci, signal contribution;DWImax, image defined onmaximumb-value; FPR80, false-positive
rate given sensitivity of 80%; ROI, region of interest.
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The following parametric maps were estimated from Equation 2:
C1C2, C1, and C2. The parameters C1 and C2 were estimated directly
from the model, while C1C2 is the corresponding product. Similarly,
F1F2, F1, and F2 were estimated from Equation 3. The parametric maps
C3 and F3 were not included because of the low cancer conspicuity
of the third component (19). For completeness, the product of S0 and
signal fractions, S0F1F2, S0F1, and S0F2, were estimated to investigate
the relative importance of T2 and proton density effects.

Discriminating performance between cancer and healthy breast
tissue

Clinical utility of the three-component derived parametric maps
was assessed by comparing the voxelwise discriminatory performance
between cancer (cancer ROIs) and healthy breast tissue (control ROIs)
of C1C2, C1, C2, F1F2, F1, F2, S0F1F2, S0F1, and S0F2 to DWImax, ADC,
and Kapp. Because there were approximately 52 times more healthy
breast tissue voxels than cancer voxels, performance in discriminating
between cancer and healthy breast tissuewas examined for all voxels by
the expected false-positive rate given a sensitivity of 80% (FPR80). In
addition, the conventional performance measures ROC AUC, sensi-
tivity, specificity, and accuracy were estimated. Sensitivity, specificity,
and accuracywere calculated for the threshold value providing optimal
accuracy, defined as the mean sensitivity and specificity, assuming
equal prevalence of cancer and healthy breast tissue voxels. All three-
component derived parametric maps, DWImax, and Kapp (29) were
assumed to have higher intensity for cancer compared with healthy
breast tissue, while the opposite was assumed for ADC (27, 28).
Average signal of the cancer and control ROIs were calculated, and
differences were compared using a Mann–Whitney U test with a
threshold significance level of 0.05.

Results
Sample

The total number of voxels from cancer and healthy breast tissue
from both datasets was 37,659 and 1,946,186, respectively.

Optimized three-component model parameters for
discrimination

Probability density colormaps for the three-component model
given C1 and C2 including all voxels across patients and datasets are
plotted for cancer (cancer ROIs, Fig. 2A) and healthy breast tissue
(control ROIs, Fig. 2B). These maps display two distinct probability

density distributions for cancer and healthy breast tissue. The product
C1C2 discriminates cancer from healthy breast tissue voxels, where
voxels low on one or two dimensions corresponds to healthy breast
tissue voxels, while cancer probability increases with increased mag-
nitude on C1 and C2.

The relationship between C1 and C2 demonstrates that voxels with
high magnitude on both dimensions had the highest probability of
cancer (Fig. 1A); representative cases are given in Fig. 1, and all cases
are given in Supplementary Fig. S1–106. Discrimination performance
varied depending on composition of healthy breast tissue in relation to
the magnitude of C1 and C2 in cancer. FPR80 was higher (indicating
more false-positive voxels) forC1 andDWImax in a case with abundant
fat-suppressed fatty tissue and high C2-magnitude of corresponding

Figure 2.

Probability density colormaps for
the three-component model given C1

and C2 including all voxels across
patients and datasets are given for
cancer (cancer ROIs; A) and healthy
breast tissue (control ROIs; B). These
maps display two distinct probability
density distributions for cancer and
healthy breast tissue. Cancer probabil-
ity increases with increased magnitude
on C1 and C2. Colormaps are given on
a logarithmic scale normalized to
the maximum probability density
value. Au, arbitrary unit; Ci, signal
contribution.

Figure 3.

The FPR80 is the false-positive rate given a sensitivity of 80% for discriminating
cancer from healthy breast tissue for three-component model signal contribu-
tions (C1C2, C1, C2) and signal fractions (F1F2, F1, F2),DWImax,ADC and Kapp, given
per patient across the U.S. and European dataset. Median values indicated by
lines; boxes show interquartile range, block bars show data range and red
crosses show outliers. The worst FPR80 for all maps is 0.9934, which would be
9,934 false-positive voxels of one breast (one control ROI) approximated to
contain 10,000 voxels (�30 cL). ADC; conventional apparent diffusion coeffi-
cient; Ci, signal contribution; DWImax, image defined on maximum b-value;
Fi, signal fraction; Kapp, apparent diffusion kurtosis.
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cancer (Fig. 1C), compared with abundant fibroglandular tissue and
high C1-magnitude of corresponding cancer (Fig. 1B). The opposite
was seen for C2, while C1C2 suppressed both fibroglandular and fatty
tissue. This shows that the C1C2 parameter derived from the three-
component model provided the optimal discrimination performance
between cancer and healthy breast tissue.

All signal contributions (C1C2, C1, C2) performed better than signal
fractions (F1F2, F1, and F2), given in Fig. 3. Signal fractions where S0
was included (S0F1F2, S0F1 and S0F2) performed nearly equal to
corresponding signal contributions (C1C2, C1, C2; see Supplementary
Tables S1 and S2).

Discriminatory performance of C1C2 compared with other
DW-MRI methods

Mean FPR80 for both datasets was 0.016 (95% CI, 0.008–0.024) for
C1C2, 0.136 (95%CI, 0.092–0.180) for C1, 0.068 (95% CI, 0.049–0.087)
for C2, 0.462 (95% CI, 0.425–0.499) for F1F2, 0.832 (95% CI, 0.797–
0.868) for F1, 0.176 (95%CI, 0.150–0.203) for F2, 0.159 (95%CI, 0.114–
0.204) for DWImax, 0.731 (95% CI, 0.692–0.770) for ADC, and 0.684
(95% CI, 0.660–0.709) for Kapp (Fig. 3). C1C2 achieved the lowest
FPR80 with a mean ROC AUC of 0.984 (95% CI, 0.977–0.991) when
compared with other DW-MRI methods. Discriminatory perfor-
mance was similar across datasets; see Supplementary Tables S1 and

Figure 4.

C1C2,DWImax,ADC andKappwith FPR80 for discrimination between cancer (red arrowhead) and healthybreast tissue (entire cancer-free contralateral breast for theU.
S. dataset, cancer-free ipsilateral breast for theEuropeandataset) for representative cases from theU.S. (A–E) andEuropean (F) dataset. All cases demonstrate visual
similarity between DCE-MRI and C1C2 maps with excellent performance compared with ADC and Kapp. A, Excellent performance by C1C2 and DWImax. B, Excellent
performancebyC1C2 andDWImax displaying full extent of cancer involving skin.C,Excellent performance byC1C2 andpoor performancebyDWImax,ADC, andKapp in a
casewith abundant fatty tissue.D, C1C2 improves poor DCE-MRI specificity in a casewithmarked background parenchymal enhancement, but partial volume artifact
from the interface offibroglandular and fatty tissue in the contralateral breast results in a lowdiscriminatory performance.E,AcasewithNMEDCISwhere all diffusion
maps fail; C1C2 has reduced signal intensity from cancer relative to the high-signal intensity from ipsilateral subarealor ducts. F, Sagittal image plane illustrating same
trends in the European dataset. The worst FPR80 for all maps is 0.9934, which would be 9,934 false-positive voxels of one breast (one control ROI) approximated to
contain 10,000 voxels (�30 cL). Gray levelwindows for all images are scaled to themaximumandminimumsignal intensity of each case.ADC, conventional apparent
diffusion coefficient; Au, arbitrary unit; Ci, signal contribution; DCE-MRI, dynamic contrast-enhanced MRI; DCIS; ductal carcinoma in situ; DWImax, image defined on
maximum b-value; FPR80, false-positive rate given sensitivity of 80%; Kapp, apparent diffusion kurtosis; NME; nonmass enhancement.
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S2 for all conventional performance measures and FPR80 given for the
two datasets separately. Average signal of the cancer and control ROIs
are shown in Supplementary Table S3. All cancer and control ROIs
were significantly different (P < 1 � 10�9).

C1C2 had excellent performance compared with ADC and Kapp in a
wide range of representative cases (Fig. 4). DWImax performs well
in several cases (Fig. 4A and B) but underperforms compared
with C1C2, overall (Fig. 3) and particularly in a case with abundant
fatty tissue (Fig. 4C). In addition, C1C2 visually improves poor DCE-
MRI specificity in a case with marked background parenchymal
enhancement (Fig. 4D). However, C1C2 underperforms in cases
with sparse signal from cancer, such as case of nonmass enhance-
ment (NME) ductal carcinoma in situ (DCIS; Fig. 4E). In this case,
all DW-MRI–derived maps failed to identify cancer compared with
healthy breast tissue. Furthermore, there was high diffusion signal
from some healthy breast tissue components such as proteinaceous
cysts (Fig. 5B), subareolar ducts (Fig. 5A), and partial volume
artifact from the interface of fibroglandular and fatty tissue (Fig. 4D
and Fig. 5C). High diffusion signal from proteinaceous cysts and
subareolar ducts may be defined as nonsuspicious with the assis-
tance of T2 images (Fig. 5A and B).

Discussion
Our study shows that cancer can be noninvasively discriminated

from healthy breast tissue using the derived parameterC1C2 based on a
three-component DW-MRI model, with results comparable with
cancer detection using DCE-MRI (refs. 2–6; FPR80 mean, 0.016;

95% CI, 0.008–0.024 and ROC AUC mean, 0.984; 95% CI, 0.977–
0.991). This means that C1C2 achieved very low false-positive rates
while detecting 80% or more of the defined cancer voxels. The
discriminatory power of C1C2 was superior to that of independent
signal contributions and signal fractions, conventional DW-MRI-
estimates (ADC) and other methods, including diffusion kurtosis
imaging (Kapp) and DWImax. The three-component model was per-
formed across two different sites, scanners, and acquisition protocols,
suggesting potential for clinical applications. The development of this
advancedDW-MRImethod allows for improved conspicuity of cancer
relative to background breast tissue. This lays the foundation for a
quantitative framework specific to pathology which may serve as an
alternative to DCE-MRI.

The high discriminatory performance is due to the characteristics
of the novel C1C2 parameter. In addition to malignancy, individual
signal contributions from the three-component model were sensi-
tive to the two primary components of healthy breast tissue: fatty
(C1) and fibroglandular (C2) tissue. As the lipid component of fatty
tissue signal is suppressed by application of fat suppression in this
study (SPAIR and FatSat), we hypothesize that signal on C1 comes
from the restricted water component within adipocytes in fatty
tissue (18, 19). Furthermore, neither component was sensitive to
tissue with very fast diffusion properties, such as vessels, necrosis, or
edema. By combining the signal contributions of the two slowest
components C1 and C2, the majority of signal from fatty and
fibroglandular tissue was suppressed so that the output image was
predominantly sensitive to cancer compared with healthy breast
tissue. This is particularly useful because of the varying degree of

Figure 5.

DCE-MRI and T2 images with corresponding C1C2 images
illustrating false positives on C1C2 (yellow arrow). A and
B, Show that false-positive lesions onC1C2 can be defined
as nonsuspicious with the assistance of T2 images by a
hyperintense signal on the T2 image correlated with
clearly benign morphology. A, High signal involving
subareolar ducts on T2 image and C1C2, not visible on
DCE-MRI.B,Cyst visible on T2 image andC1C2, not visible
onDCE-MRI.C,Demonstration of limitationofC1C2where
background parenchymal enhancement visible on DCE-
MRI and T2 image creates a partial volume artifact
corresponding to the interface between fatty and fibro-
glandular tissue on C1C2. Au, arbitrary unit; Ci, signal
contribution; DCE-MRI, dynamic contrast-enhanced MRI.
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admixture of fatty and fibroglandular tissue in the breast. In
fact, histologic evaluation of healthy breast tissue specimen dem-
onstrated on average 29.7% fatty tissue component in dense
breasts and 80.6% in nondense breasts (15). Thus, C1C2 may
account for women with varying degree of admixed fatty tissue
which is known to be an issue on conventional DW-MRI (16).
While optimized for cancer discrimination, the detailed relationship
between the three-component model and breast microstructure
remains to be studied, as it has been for the two-component
model (34, 40).

Another important aspect attributing to the high discriminatory
performance is the retainment of T2 and proton density contribu-
tion to the DW-MRI signal. On conventional DW-MRI, T2 effects
on DW-MRI signal is considered an inconvenience and is therefore
eliminated (41). In this study, we present signal contributions that
include contribution from voxelwise proton density and T2, while
the signal fractions are defined to only be sensitive to diffusion
effects. Thus, the importance of T2 and proton density is clearly
demonstrated by the signal contributions C1C2, C1, and C2 per-
forming far better than their signal fraction counterparts F1F2, F1,
and F2. We further see these effects by signal fractions performing
nearly equal to corresponding signal contributions once the signal
at b ¼ 0 second/mm2, S0, was included, which demonstrates that Ci

� S0Fi. This has also been shown in separating benign and malig-
nant breast lesions, where S0 (which has no diffusion weighting),
yielded a relatively high AUC of 0.85 (12).

We hypothesize that contributing factors to the poor perfor-
mance of ADC and Kapp include the restricted water component
within adipocytes in fatty tissue not accounted for by fat suppres-
sion techniques and elimination of proton density and T2 effects
that add to cancer discrimination. The FPR80 discriminatory per-
formance of ADC and Kapp varied greatly across subjects; at best,
performing around 0.2 in selected cases (Fig. 4A), but overall do no
better than chance. Previous studies have demonstrated significant
differences between cancer and healthy breast tissue by ADC (27, 28)
and Kapp (29). However, these studies have been performed by
signal averaged across ROIs and not voxelwise, which does not
reflect the heterogeneity of healthy breast tissue including admix-
ture of fatty and fibroglandular tissue. Conversely, DWImax shares
the same basic properties as C1C2 (diffusion-, T2-, and proton
density–weighting) and performs noticeably better than ADC and
Kapp and have several cases with perfect performance (Fig. 1A
and B and Fig. 4A and B). However, DWImax is also prone to
influence from restricted water from fatty tissue and performs worse
than C1C2 on average. C1C2 better accounts for all healthy breast
tissue including the restricted water component from fatty tissue,
conferring a major advantage over DWImax and the other DWI
estimates (Fig. 4C), as fibroglandular tissue is admixed with fatty
tissue, and approximately 50% of women have almost entirely fatty
breast tissue or scattered fibroglandular tissue (42).

For C1C2 to be a noninvasive alternative to DCE-MRI for breast
cancer detection, it must have comparable or improved sensitivity and
specificity. DW-MRI is known to improve detection specificity (8, 43),
which is beneficial as lesion-level DCE-MRI specificity have been
reported to range from 72% to 97% (2–6). In our study, performance
was assessed per voxel, and the patient cohort was heterogenous,
consisting of a large range of tumor volumes (mean, 10.6 cm3; range,
0.2–105.9 cm3), not reflecting the typical patient pool in the screening
or surveillance setting which typically have smaller lesions. However,
the high performance of discriminating cancer from all other breast

tissue in comparison with other DW-MRI–based methods is highly
promising and suggests clinical utility comparable with DCE-MRI.
C1C2 may be particularly useful when DCE-MRI demonstrates
false-positive (Fig. 4D; ref. 44) and false-negative (45) interpreta-
tions in patients with moderate and marked background paren-
chymal enhancement. Furthermore, false-positive findings on C1C2

can be defined as nonsuspicious by a hyperintense signal on the T2
image correlated with clearly benign morphology (Fig. 5A and B).
While proteinaceous cysts (Fig. 5B) are well-known false positives
on DW-MRI (46), subareolar ducts (Fig. 5A) are not commonly
reported and may be due to T2 influence on C1C2. This indicates
that C1C2 may assist in a noncontrast workflow with anatomic T1
and/or T2 sequences which can remove the need to administer
gadolinium contrast and any accumulation of gadolinium in the
brain (7).

The three-component model lays the foundation for a computa-
tionally efficient and standardized framework for breast cancer detec-
tion generalizable across sites, scanners, and acquisition protocols. By
using globally determined, fixed component ADCs, the three-
component model allows for rapid fitting of diffusion signal suitable
for application as a turn-key processing stream on both GE and
Siemens platforms. These factors are vital for implementation in
standard-of-care breast MRI. Furthermore, the three-component
model is performed on data acquired on extended imaging protocols
(b-values up to 3,000–4,000 seconds/mm2) and requires at least three
separate nonzero b-values. Inclusion of higher b-values improves
discrimination by allowing better estimates of very slow diffusion
characteristics of intracellular fluid within hypercellular tumors
(9–12, 20–26). However, high b-value acquisition also results in an
increased scan time, where the protocol used for the European dataset
in this study for (including seven b-values up to 3,000 seconds/mm2)
had a scan time of approximately 8 minutes compared with a standard
DW-MRI protocol (including two b-values) which are typically per-
formed in 1–3 minutes. We argue that the substantially increased
discriminatory performance of the derived C1C2 parameter compared
with conventional DW-MRI justifies the increase in scan time,
which is also the same scan time as conventional DCE-MRI. This
does, however, illustrate the need for optimized b-value protocols
for improved scan time efficiency, which is an area of interest for
future development.

Several diffusion methods aim to isolate the signal from the
slowly diffusing water component from cancer tissue by utilizing
broad b-value ranges (9–12, 20–26). Diffusion kurtosis imaging is
based on a simple mathematical representation of diffusion data
where the derived parameter Kapp has proven potential utility in the
breast (9–11, 29). More advanced, multicomponent partial volume
models with fixed ADCs have been developed to further probe the
microstructure in the brain and prostate: RSI (refs. 24–26; on which
the three-component model is based), the vascular, extracellular,
and restricted diffusion for cytometry in tumors (VERDICT)
model (21), and the hybrid multidimensional MRI model (22). A
key difference between RSI/three-component model and the hybrid
multidimensional MRI model is that the hybrid model does not
use predetermined, fixed component ADCs, making comparison
of corresponding signal contributions across patients and voxels
difficult. Nevertheless, the hybrid model does incorporate multi-
echo information not available in our study. Moreover, the T2
and proton density effects seen in RSI/three-component model
are removed from the two other models, potentially reducing
cancer conspicuity. Although the other multicomponent partial
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volume models have shown promising results as cancer biomarkers
in the prostate, for example, these results may be limited in
breast, where fatty tissue is an important component of healthy
breast tissue.

The three-component model may share biophysical similarities
with the two-component intravoxel incoherent motion (IVIM)
model (47). The two fastest component ADCs from the three-
component model, ADC2 ¼ 1.4 � 10�3 mm2/second and ADC3 ¼
10.2 � 10�3 mm2/second, are an order of magnitude apart and in
the range of diffusion coefficients typically fitted for an IVIM
model in breast tissue (“pure tissue diffusion coefficient” and
“pseudodiffusion coefficient”; refs. 48, 49). Therefore, we interpret
that ADC2 and the “pure tissue diffusion coefficient” from IVIM
represent hindered diffusion of fibroglandular tissue, while ADC3

and the “pseudodiffusion coefficient” from IVIM represent the
very fast diffusion properties from pseudodiffusion/perfusion. This
means that the optimized three-component model by Rodríguez-
Soto and colleagues (19) is similar to an IVIM model with an
additional offset C1 with ADC1 ¼ 0 mm2/second, which manifests
in the high b-value range and accounts for the restricted water
component in fatty tissue. The IVIM model focuses on perfusion
properties fit to mid b-value data (typically up to 800–1,000
seconds/mm2) and are therefore not sensitized to these very
restricted diffusion properties. Moreover, as previously discussed,
signal contributions include voxelwise T2-weighting and proton
density effects which is very important for discriminatory perfor-
mance, while the signal fractions were only sensitive to diffusion
component effects, and as such are more directly comparable with
the signal fractions in an IVIM model.

There were some limitations to our study. First, the three-
component methodology did not correct for partial volume artifacts
which occurred at the interface between fatty and fibroglandular
tissue on C1C2 (Fig. 4D and Fig. 5C). Such artifacts have the
potential to be corrected, which was not investigated in this study
but is an area of interest for future improvement. Another limita-
tion concerned the definition of control ROIs; although we ensured
that all control ROIs were verified as cancer-free, based on MRI
review by an expert breast radiologist (both datasets) and exclusion
of cases with pathology-proven contralateral cancer in the U.S.
dataset, we cannot know whether occult cancer may have been
included in the control ROIs. The unilateral European dataset may
have been particularly prone to this, as the control ROIs were
defined in the same breast as the cancer (this also made the size of
control ROIs dependent on the extent of cancer and thus variable
from case to case in that dataset). Finally, detection performance is
commonly evaluated at the lesion level. This study used a voxelwise
false-positive rate, FPR80, as its performance measure, which does
not give an absolute measure comparable with other literature.
However, we argue that such a measure is useful from a radiologist’s
perspective, because it mimics a breast cancer examination where all
voxels in the entire image are used.

In conclusion, our study is the first to demonstrate that the derived
parameterC1C2, which is the product of the two slowest components of
a three-component DW-MRI model, yields a clinically useful, non-
invasive method for discrimination between cancer and healthy breast
tissue. The model eliminates the need for predefined lesions that
conventional quantitative DW-MRI metrics use and accounts for all
healthy breast tissue, including the restricted water component from
fatty tissue. Together with anatomic images, C1C2 has the potential to

assist in a combined, noncontrast workflow which could serve as an
alternative to DCE-MRI. The highly promising diagnostic properties
were generalized across sites, scanners, and acquisition protocols,
which is important for feasibility of large-scale studies for validation
in routine breast cancer detection and follow-up in comparison with
DCE-MRI.
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