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Alpha-band EEG activity in perceptual learning
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Christophe C. Le Dantec $University of California, Riverside, CA, USA
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In studies of perceptual learning (PL), subjects are typically
highly trained across many sessions to achieve perceptual
benefits on the stimuli in those tasks. There is currently
significant debate regarding what sources of brain
plasticity underlie these PL-based learning improvements.
Here we investigate the hypothesis that PL, among other
mechanisms, leads to task automaticity, especially in the
presence of the trained stimuli. To investigate this
hypothesis, we trained participants for eight sessions to
find an oriented target in a field of near-oriented
distractors and examined alpha-band activity, which
modulates with attention to visual stimuli, as a possible
measure of automaticity. Alpha-band activity was acquired
via electroencephalogram (EEG), before and after training,
as participants performed the task with trained and
untrained stimuli. Results show that participants
underwent significant learning in this task (as assessed by
threshold, accuracy, and reaction time improvements) and
that alpha power increased during the pre-stimulus period
and then underwent greater desynchronization at the time
of stimulus presentation following training. However,
these changes in alpha-band activity were not specific to
the trained stimuli, with similar patterns of posttraining
alpha power for trained and untrained stimuli. These data
are consistent with the view that participants were more
efficient at focusing resources at the time of stimulus
presentation and are consistent with a greater
automaticity of task performance. These findings have
implications for PL, as transfer effects from trained to
untrained stimuli may partially depend on differential
effort of the individual at the time of stimulus processing.

Introduction

Perceptual learning (PL) is defined as improvement
in performance on perceptual tasks after training or

experience with stimuli related to those tasks. PL is
typically thought to be an implicit process and has been
shown to occur in numerous modalities and in a wide
variety of animal models, including nonprimates,
nonhuman primates, and humans (for reviews see,
Fahle, 2005; Ghose, 2004; Gilbert, Sigman, & Crist,
2001; Sagi, 2011; Sasaki, Náñez, & Watanabe, 2012). In
the visual modality, PL is often investigated with simple
visual features, such as orientation (Dobres & Seitz,
2010; Schoups, Vogels, Qian, & Orban, 2001; Yang &
Maunsell, 2004), line or dot offset (Fahle, Edelman, &
Poggio, 1995; Hung & Seitz, 2014), and motion (Seitz &
Watanabe, 2005; Zohary, Celebrini, Britten, & New-
some, 1994), although more complex visual stimuli,
such as human faces, have also been successfully used
to study PL (Hussain, Sekuler, & Bennett, 2011).

In PL paradigms, behavioral improvements are often
task-specific and stimulus-specific. For example, if a
key parameter of the stimulus, such as orientation, is
changed, then observed behavioral improvements often
disappear (Fahle, 2005). This specificity led many early
researchers to hypothesize that PL is a result of feed-
forward changes occurring in early visual areas (De
Valois, 1977; Fiorentini & Berardi, 1980; Ramachan-
dran & Braddick, 1973). Subsequently, neuronal
changes in response to PL were reported in early visual
areas that are specific to trained features (Bao, Yang,
Rios, He, & Engel, 2010; Gilbert, Li, & Piech, 2009;
Gilbert et al., 2001; Hua et al., 2010), providing further
evidence for feed-forward models of PL. However,
under certain training conditions, behavioral improve-
ments do generalize to untrained stimuli (Ahissar &
Hochstein, 2004; Deveau, Ozer, & Seitz, 2014; Hung &
Seitz, 2014; Xiao et al., 2008; Zhang et al., 2010). These
observations have led to an important and ongoing
debate as to whether representation or readout changes
are responsible for different observations of PL
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(Ahissar & Hochstein, 2004; Byers & Serences, 2012;
Dosher & Lu, 1998; Fahle, 2005; Hung & Seitz, 2014;
Jeter, Dosher, Liu, & Lu, 2010; Petrov, Dosher, & Lu,
2005; Pilly, Grossberg, & Seitz, 2010; Xiao et al., 2008;
Zhang et al., 2010).

An additional mechanism that may explain at least
some component of transfer in PL is the extent to
which participants are able to focus resources during
task performance after training. This idea of task focus
is often not well defined and typically described with
terms such as attentiveness, alertness, vigilance, and so
on, and each have nuanced meanings that sometimes
depend on the subfield and can be overlapping. Here
we use the terms attention to refer to up and down
regulation of task resources (Posner & Petersen, 1990)
and automaticity to describe the extent to which
attention can be regulated with minimal executive
control.

The concept of automaticity has been studied for
decades yet remains relatively difficult to define. For
example, Posner and Snyder (1975) defined automatic
processes as those which do not rely on conscious
attention, Jacoby (1991) defined automaticity as
processing that ‘‘occurs as a passive consequence of
stimulation, is not necessarily accompanied by aware-
ness, and requires neither intention nor processing
capacity,’’ while Logan (1992) argued that automaticity
is ‘‘processing that involves a different way of
attending.’’ To address changes of task processing after
PL, here we offer an operational definition of
automaticity: When a task is more automatic, it can be
performed with more efficient use of resources and less
attention is required to perform the task to maintain, or
achieve superior, task performance. This definition is
not meant to be authoritative but is one that fits into
many of these theories of attentional and automatic
processes. While automaticity has been described
conceptually, there is a question of how best to measure
it. A difficulty is that behavioral measures of automa-
ticity have the potential to disrupt the flow of the
learned task. For this reason we chose to measure a
possible correlate of automaticity, namely alpha-band
electroencephalogram (EEG) activity.

The alpha bandwidth found within EEG refers to the
set of frequencies ranging approximately from 8–12 Hz.
This bandwidth was first observed and studied by
Berger (1929), who noted that the amplitude of activity
in these frequencies increased significantly when human
subjects sat quietly with their eyes closed. A large body
of evidence points towards thalamo-cortico connec-
tions as the source of alpha oscillations (for a review,
see Hughes & Crunelli, 2005) although evidence also
exists for intracortical sources (Bollimunta, Chen,
Schroeder, & Ding, 2008; Jones, Pritchett, Stufflebeam,
Hämäläinen, & Moore, 2007; Lopes da Silva, van
Lierop, Schrijer, & Storm van Leeuwen, 1973;

Ronnqvist, McAllister, Woodhall, Stanford, & Hall,
2013; Silva, Amitai, & Connors, 1991). Alpha power is
most prominent in occipital channels of the EEG but
can also be found across other areas of the scalp (e.g.,
Rolandic alpha rhythms found over sensory-motor
areas). These alpha oscillations have been shown to
vary significantly based on a participant’s cognitive
state (Berger, 1929; Klimesch, 2012), and level of alpha
power during a range of tasks can predict performance
(Hanslmayr, Gross, Klimesch, & Shapiro, 2011; Payne
& Sekuler, 2014).

Importantly for the current study, alpha power is
generally found to be reduced with greater effort and
attention to visual tasks (Bollimunta et al., 2008;
Ergenoglu et al., 2004; Hanslmayr et al., 2007; Nenert,
Viswanathan, Dubuc, & Visscher, 2012; Snyder &
Foxe, 2010; Vaden, Hutcheson, McCollum, Kentros, &
Visscher, 2012). For example, Hanslmayr et al. (2007)
found that participants with lower overall alpha power
better discriminated brief visual stimuli, Snyder and
Foxe (2010) found that alpha power modulates
depending on which features of visual stimuli were
being attended, and Chaumon and Busch (2014) found
that occipital alpha power before high-contrast visual
detection trials correlated negatively with performance.
Results such as these provide evidence for the
‘‘inhibition’’ hypothesis of alpha oscillations, which
states that strong alpha power reflects top-down
inhibition on processes that are not being used for a
task, whereas alpha power is suppressed for processes
that are needed for a task (Klimesch, Sauseng, &
Hanslmayr, 2007; Sigala, Haufe, Roy, Dinse, & Ritter,
2014). While the link between alpha power and
automaticity is not fully established, alpha power is
modulated by precisely the elements that define the
automaticity of the task: Less attention is required of
automatic tasks, and less attention leads to increases in
alpha power (Jensen & Mazaheri, 2010). Other task
conditions can modulate alpha power—for example,
holding items in working memory can increase alpha
power (Jensen, Gelfand, Kounios, & Lisman, 2002),
though it has been argued that this effect is, in fact,
driven by decreased attention to anticipated visual
distraction (Bonnefond & Jensen, 2012). However,
when stimulus parameters and task demands are
otherwise held constant, most current interpretations
show changes in alpha power during a visual task as
reflecting changes in the level of attention being
directed to a stimulus (Foxe & Snyder, 2011; Jensen &
Mazaheri, 2010; Jensen, Spaak, & Zumer, 2014; Lange,
Keil, Schnitzler, van Dijk, & Weisz, 2014; Palva &
Palva, 2011). Thus, for the purposes of this paper, we
chose to examine how alpha power is modulated
following PL.

In the present study, we examine how psychophys-
ical and electrophysiological measures change as
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participants gain proficiency in a visual search task. We
find that there are indeed substantial changes in how
alpha-band activity is regulated after learning (with
higher alpha in the pre-stimulus period followed by
greater alpha desynchronization during stimulus pro-
cessing) and suggest that these may provide a basis for
understanding aspects of stimulus transfer after PL.

Methods

Participants

Eight undergraduates at the University of California,
Riverside (age range 19–25 years) were included in this
study. Inclusion required completion of all experimen-
tal procedures without technical errors, such as
improperly affixed electrodes, or excessive muscular
noise in the EEG. Participants were paid $10 an hour
for their participation, gave written informed consent
as approved by the Human Research Review Board,
and had normal or corrected-to-normal vision.

Display apparatus

An Apple Mac Mini (Apple, Inc., Cupertino, CA)
running OSX 10.5.6 controlled the experiment. The
stimuli were displayed on a 24-in. wide Sony Trinitron
(Sony Corp., Tokyo, Japan) CRT monitor with a
resolution of 1600 3 1200 pixels and a refresh rate of
100 Hz. Participants sat 50–55-in. from the screen with
their heads restrained by a chinrest. The range in
distance is due to individual differences in posture
because a chinrest was used without a forehead
restraint. An EyeLink 1000 eyetracking system (SR
Research, Ltd., Mississauga, ON, Canada) was used
with custom software to ensure that stimuli were only

displayed while participants fixated on the center of the
screen. Stimuli were created and controlled by custom
code written in Matlab (The Mathworks, Inc., Natick,
MA), using the Psychophysics Toolbox (Brainard,
1997; Kleiner, Brainard, & Pelli, 2007). Mediating the
connection between the monitor, the computer, and the
EEG system was a Datapixx processor (Vpixx Tech-
nologies, Inc., Saint-Bruno, QC, Canada) which
enables a 16-bit digital-to-analog conversion (DAC),
allowing for a 256-fold increase in the display’s possible
contrast values, and which provides monitor-refresh–
locked stimulus presentations for accurate timing of
stimuli and response triggers.

PL training

The PL training took place over 8 days and began 1
day after the pre-test (Figure 1). On each day,
participants performed a visual search task for
approximately 1 hr (Figure 2). The stimuli in the task
comprised white or black lines (0.18 3 18; 95 cd/m2 and
5.5 cd/m2, respectively) that were presented on a gray
background (40 cd/m2). On each trial, participants first
fixated on a centrally presented red dot for 1100–2000
ms (determined pseudorandomly). The trial only
proceeded if the participant maintained fixation for this
period of time. After fixation, a search display was
presented for 100 ms, followed by a blank gray
response screen that was presented for up to 2000 ms
during which the participant made a response, and a
further 500-ms intertrial interval (ITI).

The participant’s task in each trial was to find a
target line within a set of distractor lines in the search
display and report with a keypress (‘‘1’’ for white and
‘‘2’’ for black) during the response period whether the
line was white or black. The target line was defined by
its orientation, which could be either 458 or 1358
(counterbalanced across participants), and was ran-
domly assigned its color for each trial. The orientations
of the distractors were determined by a staircase
wherein the distractor lines were offset from the target
line by a number of degrees between 08–908, which we
refer to as h. After every 24 trials, h was adjusted
according to the participant’s performance such that if
the average performance for the previous 24 trials was
above 80% correct then h was decreased, making the
task more difficult, and if the average performance was
lower than 70% correct then h was increased, making
the task easier (Le Dantec, Melton, & Seitz, 2012).
Each training session took place on a separate day,
consisted of 1,200 trials, and lasted approximately 1 hr.
The 1,200 trials of each session were split into eight
blocks with a short participant-controlled break
between each block. In addition, on the first day of the
experiment, there was a familiarization session in which

Figure 1. Schedule of the experimental sessions. Day 1 consisted

of a familiarization session, Day 2 consisted of the pre-test, Days

3–10 consisted of the training sessions, and Day 11 consisted of

the post-test.
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participants were instructed on the task and ran 20
practice trials with visual feedback.

Pre- and post-testing

One day before training and 1 day after training, pre-
and post-test sessions were conducted. These sessions
were similar to the training sessions with three main
differences. First, EEG recordings were collected
during these test sessions. Second, the target line could
either be of the trained orientation or untrained
orientation, run in separate, interleaved blocks so that

the participants knew which orientation to search for in
each block of trials. Third, instead of a staircase
determining h, the offset of the distractor lines was set
to 308 for all pre-test trials and 158 for all post-test
trials. This was done to avoid stimulus-driven differ-
ences in processing between orientations while keeping
stimuli close to threshold. An examination of the
average beginning and ending h thresholds in the
training sessions (Figure 4, in Results below) confirm
that 308 and 158 were very near the obtained average
thresholds.

Each session consisted of 1,200 trials, lasted ap-
proximately 1.5 hr (plus additional time for EEG set-

Figure 2. Diagram of a single trial. After a fixation period the stimulus array appeared for 100 ms. (The target is marked for illustrative

purposes here but was distinguishable only by its orientation during actual presentations.) This was followed by a blank screen while

the response was made and a 500-ms intertrial interval after the response.
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Figure 3. (A) Overhead view of the placement of 128 electrodes using the BioSemi ActiveTwo system. Red highlighted regions denote

electrodes used in the alpha power analyses, corresponding approximately to sites Oz, O1, O2, PO7, PO8, PO9, PO10, P3, and P4. (B)

Diagram of the pre-stimulus period (yellow shaded region), the stimulus processing period (red shaded region), and

desynchronization (the difference between the mean pre-stimulus period and mean stimulus processing period) used in the alpha

power analyses. The pre-stimulus period consists of the 1000 ms before the stimulus onset (0 ms). The stimulus processing period

consists of the 250–500 ms after the stimulus onset.
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up), and was split into eight blocks with a 30-s break
between each block and a 3-min break half-way
through the session in which participants were required
to get up and stretch. Each of the eight blocks consisted
of 150 trials and each block alternated between
containing targets of a trained orientation or targets of
an untrained orientation, for a total of 600 trials in each
condition.

Electroencephalography

EEG was recorded using 128-active Ag/AgCl elec-
trodes (ActiveTwo system, BioSemi, Inc., Amsterdam,
Netherlands) at a rate of 1024 Hz. All electrodes were
mounted in an elastic ActiveTwo cap according to the
BioSemi layout and labeled according to the 10/20
system (Oostenveld & Praamstra, 2001; Figure 3A).
Given that alpha power is most prominent in occipital
channels, and that we were analyzing a visual task, a
bilateral selection of nine occipital and parietal
electrodes was analyzed, corresponding approximately
to sites Oz, O1, O2, PO7, PO8, PO9, PO10, P3, and P4
(Figure 3A, highlighted regions). The selection of
electrode sites to analyze was based on post hoc
analyses of where the greatest overall areas of alpha
power occurred in the recorded EEGs. Horizontal and
vertical electrooculograms (HEOG and VEOG, re-
spectively) were recorded, using additional electrodes
affixed with adhesive disks at, respectively, the outer
right and left canthi (HEOG) and below the right and
left eye (VEOG). Conductive gel was applied to
maintain the contact between the electrodes and the
scalp (Signa Gel, Parker Laboratories, Inc., Fairfield,
NJ).

After recording, EEG data were initially processed
using EMSE Suite 5.4 (Source Signal Imaging, Inc.,
San Diego, CA). The data were first referenced to the
average of all active electrodes (Keil et al., 2014) and
filtered using zero phase-shift Butterworth high- and
low-pass filters with half-amplitude cutoffs of 0.01 and
100 Hz, respectively. Ocular artifacts were corrected
using a proprietary algorithm of the EMSE Suite that is
designed to remove eyeblink noise without removing
the underlying signal.

After processing using EMSE Suite software, time-
frequency analysis was conducted using Matlab and the
FieldTrip toolbox (Oostenveld, Fries, Maris, & Schof-
felen, 2011). The data were segmented into 6-s periods
centered on each stimulus presentation and convolved
with a Morlet wavelet. The frequencies of interest
extracted were 2–20 Hz, and each wavelet had a width
of seven cycles.

In order to prevent individual differences in raw
alpha power (which can vary dramatically between
individuals) from driving the results, all alpha power

values were normalized to a [0–1] scale before being
analyzed. For each subject, the minimum and maxi-
mum alpha power value was calculated. The minimum
value was then subtracted from all alpha values and the
result divided by the difference between the maximum
and minimum values (i.e., the range). This transformed
each subject’s alpha values such that the minimum
value became 0 and the maximum value became 1, with
all other values falling within the [0–1] range.

EEG data were analyzed primarily by comparing
pre-test alpha power versus post-test alpha power.
Within the pre- and post-tests, two time periods of
interest were defined—a pre-stimulus period, 1000 ms
preceding the stimulus onset in each trial for each
participant, and the stimulus processing period, 250–
500 ms following the stimulus onset in each trial for
each participant (Figure 3B). These two periods were
defined post hoc based on the length of pre-stimulus
fixation and on the average timing of alpha desyn-
chronization (desynchronization, in this usage, de-
scribing a decrease in overall alpha power following
stimulus presentation). Statistical tests to determine
differences between the pre-test and post-test values
within these periods were performed by calculating the
mean power during the period of interest in the pre-
and post-tests for each participant and conducting
either repeated measures factorial ANOVA or paired-
samples t tests between those mean values, depending
on the analysis of interest.

Results

Behavioral results

Behavioral results, in the form of orientation
thresholds, response accuracy, and reaction times
(RTs), all demonstrate classical evidence of PL.
Orientation thresholds (h) decreased as a function of
training (Figure 4; effect of day: F [7, 56]¼ 5.88, p¼
0.000038, g2¼ 0.42) and a planned t test between h on

Figure 4. Orientation offset (h) threshold as a function of

training day. Dashed lines denote 61 SEM.
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the first and last day of training (mean of 28.448 and
11.968, respectively) revealed a significant learning
effect, t(14) ¼ 5.59, p¼ 0.000067, Cohen’s d ¼ 2.98.
Accuracy improved overall as a function of training
from the pre-test to the post-test (Figure 5A; main
effect of test session: F [1, 7] ¼ 11.02, p ¼ 0.013, g2 ¼
0.18); however, this was largely due to the greater
increase in accuracy for trained targets as compared to
untrained targets (Target 3 Session interaction: F [1, 7]
¼ 76.37, p¼ 0.0001, g2¼ 0.17). Similarly, RTs show an
overall decrease in latency as a function of training
from the pre-test to the post-test (Figure 5B; main
effect of test session: F [1, 7] ¼ 10.78, p ¼ 0.013, g2 ¼
0.13), and also showed a significant interaction between
trained/untrained targets and testing session, where the
trained targets showed a greater decrease in RT than
the untrained targets (Target3Session interaction: F [1,
7]¼13.29, p¼0.0082, g2¼0.024). These data show that
learning is, at least in part, specific to the trained
orientation.

EEG data

To evaluate how alpha changed with PL, we
analyzed alpha power across all trials of the pre- versus
the post-test. Our first observation is that during the
pre-stimulus period (1000 ms prior to stimulus onset;
see Figure 3B), there is significantly more alpha power
in the post-test than in the pre-test, t(7)¼ 3.97, p ¼
0.0054, Cohen’s d ¼ 1.40, mean normalized alpha
power values of 0.67 and 0.39, respectively (Figure 6A).
Topographic maps for the pre-stimulus periods in the
pre- and post-test can be seen in Figure 6B. Lighter
regions represent more alpha power and darker regions
represent less alpha power.

Once the stimulus appears, there is a notable
reduction of alpha (often referred to as alpha desyn-
chronization) with a greater desynchronization of alpha

Figure 5. Accuracy (A) and RTs (B) for trained targets (blue bars) and untrained targets (red bars) during the pre-test and post-test. Error

bars denote 61 SEM. h denotes the orientation offset, in degrees, between the target and the distractors in the pre- and post-test.

Figure 6. (A) Peristimulus period of normalized alpha power as a

function of pre-test (thick solid blue line) and post-test (thick

dashed red line) with all trial conditions contributing. Thin

dashed lines denote 61 SEM. (B) Scalp distributions showing

normalized alpha power during the pre-stimulus period (�1000–
0 ms) as a function of pre-test and post-test (left side) and

normalized alpha power during the stimulus processing period

(250–500 ms) as a function of pre-test and post-test (right side).

Lighter regions denote more relative alpha power, darker regions

denote less relative alpha power. Nose is up, left on left.
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in the post-test compared to in the pre-test. (Note here
there are actually two phases of alpha desynchroniza-
tion—one occurring around 500 ms before stimulus
onset that corresponds with the onset of the fixation
period and another at 0 ms when the stimulus array
appeared. We refer to the post-stimulus desynchroni-
zation in subsequent usage.) Clarifying this effect, we
examined whether the extent of alpha desynchroniza-
tion (1000-ms pre-stimulus period minus stimulus
processing period—250–500 ms) significantly differed
between the pre-/post-test. Here a 2 (Test session) 3 2
(Trial period) ANOVA showed a significant Session 3

Period interaction, F(1, 7) ¼ 13.36, p ¼ 0.0081, g2¼
0.044, signifying that the amount of alpha desynchro-
nization at the time of stimulus processing was greater
after PL. Notably, alpha was also slightly, but
significantly, greater during the stimulus processing
period (250–500 ms after stimulus onset; see Figure 3B)
in the post-test than in the pre-test, t(7)¼ 2.53, p ¼
0.039, Cohen’s d¼ 0.90; mean normalized alpha power
values of 0.13 and 0.066, respectively. Topographic
maps for the stimulus processing periods of the pre-
and post-test can be seen in Figure 6B.

Together, these results are consistent with the view
that subjects learn to allocate their attentional re-
sources more effectively after training, exerting fewer
attentional resources during the pre-stimulus period, as
indicated by the greater pre-stimulus period alpha
power, and then appropriately allocating attention at
the time of stimulus onset, as indicated by the strong
alpha desynchronization. Further, the finding that
alpha power was greater after training during the
stimulus processing period is consistent with our view
of automaticity—that after training participants could
perform a more difficult task with less focus.

A key question regards the extent to which changes
in alpha power between the pre- and post-test reflect
the specificity of the PL. To test this, we compared
alpha power between trials with trained versus un-
trained targets in the post-test (Figure 7). Within the
pre-stimulus period there is a notable lack of difference
between the trained and untrained conditions, t(7)¼
0.23, p ¼ 0.82, Cohen’s d¼ 0.083; mean normalized
alpha power values of 0.62 and 0.63, respectively,
without a significant change in alpha desynchroniza-
tion, F(1, 7) ¼ 1.22, p ¼ 0.31, g2¼ 0.00077. However,
there was a trend for slightly greater alpha power in the
trained compared to untrained condition in the
stimulus processing period, t(7)¼ 1.93, p¼ 0.095,
Cohen’s d¼ 0.68; mean normalized alpha power values
of 0.11 and 0.086, respectively. Of note, while there are
apparent differences in alpha between the trained and
untrained conditions growing in the 500–1000-ms time
period, these are during the response period and are
likely related to the different RTs observed between
these conditions. As a whole, these results suggest that
the observed changes in alpha with learning are largely
independent of the specificity found in the behavioral
results.

While it is clear that changes in alpha EEG activity
occurred between the pre- and post-testing sessions, an
important question is whether these are correlated with
task performance. An examination of the correlation
between alpha power and individual trials could
potentially provide additional insight into these results.
To this effect, the alpha power in the pre-stimulus
period, the stimulus processing period, and the level of
alpha desynchronization were calculated for each trial
and then correlated with RTs and accuracy. In no case,
whether in individual participants or combined across
participants, did we find an r2 . 0.05, or any
correlation with a p , 0.05. Likewise we also examined
whether there were correlations with changes in
training-related alpha power (pre-stimulus, desynchro-
nization, and stimulus processing) and changes in RTs
or threshold, and again found no significant correla-
tions. We further address these correlational analyses in
the discussion.

Discussion

Here we examined alpha power in EEG recordings
and its relationship to PL. Behavioral results (Figures 4
and 5) show that PL occurred over the training period
with improved orientation discrimination thresholds
and superior accuracy and lower response latencies for
the trained compared to the untrained target orienta-
tions. After training, EEG alpha power during the
prestimulus period increased, and desynchronization

Figure 7. Peristimulus period of normalized alpha power as a

function of trained targets (thick solid blue line) and untrained

targets (thick dashed red line) within the post-test only. Thin

dashed lines denote 61 SEM. The pre-stimulus period is

�1000–0 ms and the stimulus processing period is 250–500 ms.

Journal of Vision (2015) 15(10):7, 1–12 Bays, Visscher, Le Dantec, & Seitz 7



during the stimulus processing period also increased.
However, while the change in alpha power with PL was
dramatic and strongly significant, these changes did not
appear to reflect a stimulus-specific component of
learning in this task. We suggest that these results are
consistent with the hypothesis of an increase of
automaticity with learning, and that this increase is at
least partially stimulus independent.

Changes in alpha power have been shown to reflect
modulations in the level of attention to a visual
stimulus (for example, Bollimunta et al., 2008; Erge-
noglu et al., 2004; Hanslmayr et al., 2007; Nenert et al.,
2012; Snyder & Foxe, 2010; Vaden et al., 2012). It is
debatable whether these attentional modulations are
driven by active suppression of visual inputs (Kelly,
Lalor, Reilly, & Foxe, 2006), processes such as
vigilance (Klimesch, 1999), or some combination.
Regardless, changes in alpha power relate to atten-
tional modulations of visual stimuli and help regulate
transfer of information during visual processing
(Romei, Gross, & Thut, 2010; Thut, Nietzel, Brandt, &
Pascual-Leone, 2006). The extensive previous literature
examining modulations of occipital alpha power thus
suggests that alpha power can be interpreted in the
context of attention to vision and automaticity, as
defined in the Introduction.

Our strongest results were that training resulted in
more alpha power during the pre-stimulus period and
larger alpha desychronization after stimulus onset. The
increase in desynchronization after training fits in well
with the inhibition theory of alpha (Klimesch et al., 2007;
Payne & Sekuler, 2014; Sigala et al., 2014)—after
training, fewer resources are needed for the overall task
during the pre-stimulus period, but as soon as resources
are needed to perform themost demanding portion of the
task, alpha levels are lowered, thereby releasing the
resources from inhibition. Because participants achieve
superior task performance despite apparently allocating
fewer attentional resources to the task, this result
suggests that the task became more automatic after
training, though the results cannot be conclusively linked
to automaticity.While other models can be considered to
explain the EEG data, for example, boredom with the
task following training, such models are less consistent
with the larger alpha desychronization observed. This
observation seems most consistent with a more efficient
deployment of resources following training.

While it is natural to assume that changes in alpha
should be related to task performance, there are a
number of reasons to expect that direct correlations
may not be in evidence. First off, there were only eight
participants and numerous factors (differences in
wakefulness, use of caffeine or other drugs, differences
in impedance between the sessions, etc.) could impact
how individual magnitudes of change of alpha may not
be linearly related to changes in performance levels,

especially across sessions. There are also possible
cognitive explanations that could have given rise to a
lack of correlations. For example, if participants
actively regulate (whether implicitly or explicitly) task-
related resources, then changes in alpha power with
training would reflect how much alpha power the
system can tolerate during task performance. This
would mean that accuracy, RT, or threshold would be
kept relatively constant while alpha fluctuates, leading
to no expected correlation. A lack of correlations of
alpha power with performance and learning may be
consistent with a subject’s being able to regulate the
amount of alpha that can be tolerated based upon their
skill at the task. Further research will be required to
substantiate this postulate, but in any event, the lack of
correlations found between alpha power and perfor-
mance is not evidence for or against our interpretation.

We found that participants showed both increased
pre-stimulus alpha power and increased stimulus pro-
cessing period desynchronization after training. The
pattern of our results supports a model where automa-
ticity leads to efficient allocation of attentional resources
through, as noted above, keeping the level of resource use
relatively low until the moment when it is needed, at
which time there is strong alpha desynchronization. Of
course, there are other possible sets of results that would
have been consistent with changing allocation of
resources. For example, suppose the finding had been
that after training, pre-stimulus power and post-stimulus
desynchronization were weaker than before training,
instead of stronger as we actually found. The level of
post-stimulus desynchronization has been thought to
reflect the recruitment of attentional resources to process
a stimulus (Van Winsum, Sergeant, & Geuze, 1984).
Thus, weaker desynchronization after training would
have indicated that subjects could perform the task while
recruiting fewer visual cortical resources on a trial-by-
trial basis, consistent with greater task automaticity.
However, the structure of this hypothetical automaticity
is of a different kind than what we observed. We did not
find that there were fewer resources used on a trial-by-
trial manner during stimulus presentation (as measured
by desynchronization or power during the stimulus
processing period). Instead we found stronger alpha
power during the pre-stimulus period in the post-test
than the pre-test, even though the task required more
precision of orientation processing in the post-test than in
the pre-test. These data are consistent with a model of
automaticity in which, following training, subjects could
perform the task using fewer visual cortical resources to
prepare for trials, while the trial-to-trial resource use was
unchanged.

However, there is also the possibility the changes in
alpha are epiphenomenal and are unrelated to PL. The
issue of causality is one that is difficult to address, and in
fact, even if significant correlations with behavior had
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been found, then this still would be insufficient to prove
that changes in alpha were causal or even directly related
to PL. While we thus realize that some aspects of the
current results are preliminary, in that the causal
relations between changes in alpha and PL are not
determined, they do raise important issues about the
relationship of alpha power to PL that have not
previously been raised in the literature. The benefit of
using neural measures like EEG is that we can use them
in this way to help us better understand the temporal
profile of processes associated with constructs like
automaticity. Given the current debate in the field about
the myriad mechanisms involved in PL, we believe that
the data reported help provide additional understanding
of what changes in the brain occur after extensive
training, although readers may come to different
conclusions than we do. Further research will be required
to gain more understanding of how changes in alpha and
the regulation of alpha may be related to components of
behavioral changes found in PL.

An interesting question is to what extent changes in
alpha may also represent specific components of PL. For
example, one may expect for the trained orientation that
participants would be even more automatic in their
deployment of resources (especially given that trained
and untrained orientations were given in separate
blocks). Consistent with this, we did find a trend for
stronger alpha power during the stimulus processing
period for trained stimuli, though the magnitude of this
effect is small compared to the pre- versus post-test
changes in alpha that were observed. The different RT of
these trained versus untrained conditions may also
contribute to this effect. Furthermore, other aspects of
PL may also explain some aspects of the transfer of the
alpha effect to untrained orientations. Comparison of the
accuracy and RT performance for untrained stimuli in
pre- versus post-test shows that, despite the fact that h
changed from 308 in the pre-test to 158 in the post-test,
accuracy and RT were maintained. This substantial
amount of nonspecific learning could reflect learning of
other aspects of the stimulus array such as the
characteristics of the background elements (Le Dantec et
al., 2012), specific locations of training (Le Dantec &
Seitz, 2012), or other factors related to the task. These
and other factors may also be related to changes in alpha
power, and future research will be required to more fully
describe how different components of learning contribute
to the changes in alpha power observed here.

As a whole, our results enrich the current discussion in
the literature regarding the mechanisms that underlie PL.
Instead of the classic view that PL is a unitary process
reflecting changes in processing in low-level perceptual
areas (Fahle, 2004; Fiorentini & Berardi, 1980; Gilbert et
al., 2001), the field is increasingly recognizing that PL
involves plasticity in myriad brain processes related to
the trained task and stimuli (Watanabe & Sasaki, 2015).

For example, PL has been observed in both early
(Schoups et al., 2001) and late processing stages (Law &
Gold, 2008) and can be at least partially explained by
changes in decision processes (Dosher, Jeter, Liu, & Lu,
2013). In fact, small changes in training procedures can
give rise to substantial changes in the behavioral
characteristics of PL and likely the underlying distribu-
tion of learning across the brain (Hung & Seitz, 2014).
Our results add to this literature and are consistent with
models of PL that posit that attention is a contributing
factor (Byers & Serences, 2012) and suggest that a
component of transfer found in studies of PL may
depend on an individual’s brain state at the time of
stimulus processing.While more research will be required
to clarify the links between alpha EEG, automaticity,
and PL, the present results suggest that alpha EEG is a
useful window into an individual’s level of attention
during task performance and may help us better
understand what is learned during PL.

Keywords: perceptual learning, EEG, alpha, automa-
ticity
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