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Abstract

Beta-amyloid (Aβ) immunotherapy is a promising intervention to slow Alzheimer’s disease (AD). 

Aging dogs naturally accumulate Aβ and show cognitive decline. An active vaccine against 

fibrillar Aβ 1–42 (VAC) in aged beagles resulted in maintenance but not improvement of 

cognition along with reduced brain Aβ. Behavioral enrichment (ENR) led to cognitive benefits but 

no reduction in Aβ. We hypothesized cognitive outcomes could be improved by combining VAC 

with ENR in aged dogs. Aged dogs (11–12 years) were placed into 4 groups: (1) control/control 

(C/C); (2) control/VAC (C/V); (3) ENR/control (E/C); (4) ENR and VAC (E/V) and treated for 20 

months. VAC decreased brain Aβ, pyroglutamate Aβ, increased CSF Aβ42 and BDNF RNA levels 

but also increased microhemorrhages. ENR reduced brain Aβ and prevented microhemorrhages. 

The combination treatment resulted in a significant maintenance of learning over time, reduced Aβ 
and increased BDNF mRNA despite increased microhemorrhages, however there were no benefits 

to memory. These results suggest that the combination of immunotherapy with behavioral 

enrichment leads to cognitive maintenance associated with reduced neuropathology that may 

benefit people with AD.
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Introduction

Alzheimer’s disease (AD) is associated with progressive cognitive decline and the 

accumulation of senile plaques and neurofibrillary tangles (Mirra, et al., 1991). Senile 

plaques contain beta-amyloid (Aβ), which is a peptide thought to play a causative role in the 

disease (Hardy and Higgins, 1992). Several therapeutics in clinical trials are designed to 

reduce the production and deposition or improve clearance of Aβ (Selkoe and Schenk, 

2003). Immunization with fibrillar Aβ 1–42 in mouse models of AD can reduce or prevent 

deposition of Aβ (Morgan, et al., 2000;Schenk, 1999) and improve memory (Janus, et al., 

2000;Morgan, et al., 2000;Wilcock, et al., 2009;Wilcock, et al., 2004).

Clinical trials in patients with AD have led to only modest positive outcomes, or potentially 

serious adverse events in response to both active (Aβ peptide with a conjugate to stimulate 

an immune response) or passive (administration of anti-Aβ antibodies) (Wisniewski and 

Goni, 2015). Using an active vaccine, AD patients who came to autopsy showed reduced Aβ 
(Ferrer, et al., 2004;Gilman, et al., 2005;Hock, et al., 2003;Masliah, et al., 2005;Nicoll, et 

al., 2003). Notably, using an active vaccine approach, decreased Aβ pathology persisted 5 

years after the last vaccination (Holmes, et al., 2008), although reduced brain Aβ did not 

slow AD progression. A recent Phase 3 clinical trial using solanezumab (a humanized 

version of a mouse antibody m266) in a passive vaccine approach suggest benefits in those 

patients with mild AD, strongly suggesting a prevention approach might be more 

appropriate for these therapies (Doody, et al., 2014;Karran and Hardy, 2014). Adverse 

effects associated with anti-Aβ immunotherapy include edema and microhemorrhages in the 

case of passive vaccines (Sperling, et al., 2012;Wilcock and Colton, 2009) and aseptic 

meningoencephalitis with active vaccine approaches (Boche and Nicoll, 2008). Despite 

these, both are still being explored in a number of clinical trials (Wisniewski and Goni, 

2015).

We have seen similar cognitive and Aβ outcomes to human clinical trials using an active 

anti-Aβ immunotherapeutic approach in the canine model of human brain aging, which 

naturally produces human-type Aβ (Cotman and Head, 2008). Aged canines show a decline 

in memory and learning and a corresponding increase in Aβ pathology (Cotman and Head, 

2008). In a previous study, animals were immunized with fibrillar Aβ1–42 for 2 years. 

Although we found little improvement in cognition, we did find evidence for maintenance of 

prefrontal function (reversal learning) (Head, et al., 2008). Brain Aβ was significantly 

reduced in vaccinated animals. Based on our work with the previous canine study and the 

clinical trials outcomes, we hypothesized that clearing preexisting Aβ was insufficient to 

restore neuronal function. In both dogs (Azizeh, et al., 2000;Frost, et al., 2013) and humans 

(Fonseca, et al., 1999;Frost, et al., 2013), Aβ can be deposited over many years, which 

suggests neurons are chronically exposed to Aβ toxicity. Thus, we introduced a second arm 
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to the study, behavioral enrichment (ENR), which leads to cognitive benefits in aged canines 

through mechanisms independent of Aβ reduction (Fahnestock, et al., 2010;Siwak-Tapp, et 

al., 2008). This combination approach, targeting pathways that can reduce Aβ and restore 

neuronal function, may be more effective than either intervention alone.

We tested the hypothesis that cognitive outcomes from Aβ vaccination could be improved 

with the addition of behavioral enrichment. Thus, a group of aged beagles were assigned to 

one of 4 groups: 1) control/control (C/C); (2) control/vaccine (C/V); (3) behavioral 

enrichment/control (E/C); (4) behavioral enrichment and vaccine (E/V). Over the duration of 

the study, cognition was assessed, antibody titers were measured, and cerebrospinal fluid Aβ 
was assayed. At the end of the study, brain tissue was collected to measure Aβ, 

cerebrovascular pathology, brain derived neurotrophic factor and synaptophysin RNA levels.

Materials and Methods

Animals

As shown in Table 1, the longitudinal study started with 34 beagles (10.5 – 13.6 years – 

Table 1): 31 from Lovelace Respiratory Research Institute (LRRI – Albuquerque, NM) and 3 

from Harlan (Riglan Farms, Inc, Mount Horeb, Wisconsin). Dogs were housed in pairs 

(n=12) or singly (n=22) in kennel buildings with indoor/outdoor runs measuring 91 cm x 

600 cm, which were the same kennels as used in previous studies (Head, et al., 

2008;Milgram, et al., 2005). Some dogs were required to be housed singly as they were 

aggressive towards other dogs. However, the number of animals in each type of housing was 

similar across groups (Table 1). The outdoor portions of the kennels were separated by chain 

link fencing allowing animals to see neighboring dogs and interact. Housing conditions were 

randomized across treatment conditions. Dogs were fed Harlan Teklad Global Diet (25% 

protein - Teklad Pioneer Lab Diets, Madison, WI) once daily and water was available at all 

times. All animals were thoroughly examined prior to inclusion in the study and were 

determined to be in good health. Examinations included physical examination, neurological 

examination and analysis of blood biochemistry values. All procedures were conducted in 

accordance with LRRI approved animal protocols and the NIH Policy on Humane Care and 

Use of Laboratory Animals.

Overall Study Design

The cognitive testing procedures from the previous vaccination study in dogs were repeated 

in the current study to allow direct comparisons between experiments (Head, et al., 2008). 

Dogs were first given a series of baseline cognitive tests to train them to work in the 

apparatus and to assess learning and memory function prior to the initiation of treatment. No 

food deprivation is required for any of the cognitive testing procedures as animals are 

motivated to acquire the food rewards. Subsequently, the vaccine and behavioral enrichment 

protocols were implemented. Dogs in the behavioral enrichment condition were tested 

throughout the treatment period as cognitive enrichment was a component of the study. In 

contrast, dogs provided with only the vaccine were given cognitive testing after ~7 (10 

injections) and 16 (19 injections) months of follow-up to assess longitudinal cognitive 
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responses. At the end of the study, the brains of all treated animals (C/C, E/C, C/V, E/V) 

were used to measure neurobiological outcomes.

Baseline Cognitive Testing

The testing apparatus has been described previously (Milgram, et al., 1994) and was a 0.609 

x 1.15 x 1.08 m wooden box constructed from press board coated with melamine. The box 

was equipped with a sliding black Plexiglas tray containing 3 food wells. Vertical stainless 

steel bars, which could be adjusted to provide openings appropriate for individual dog sizes, 

served as the front of the box. The experimenter sat behind a barrier that is hinged to allow a 

sliding tray to be pushed either towards or out-of-view of the dog. A 60W light was placed 

above the presentation tray to light the objects. Data acquisition was controlled using a 

customized program (MetaCog Testing Systems, New Westminster, B.C., Canada). One 

teaspoon (approximately 4 mls) of wet dog food was formed into a ball and served as the 

food reward. Each dog was given either 10 or 12 trials a day (depending on the task) with 

trials separated by a 30 sec intertrial interval.

Dogs were tested 5 days a week. Dogs were first given an object discrimination and reversal 

learning task. The first test session was used to establish object preferences. On each trial, 

the hinged door of the barrier separating the tester and the dog was raised, and the 

presentation tray was pushed forward. The left and right food wells were covered by the two 

objects. The food reward was placed inside both the left and right food wells beneath each 

stimulus. Dogs were required to displace an object to obtain the hidden reward. Ten trials 

were given with two objects presented simultaneously (yellow plastic coffee jar lid and blue 

plastic Lego block) and with both objects baited. The objects appeared randomly 5 times 

each on the left or right side. The preferred object was whichever object was chosen more 

frequently (i.e. 6 or more times). Subsequently, the preferred object was used as the positive 

stimulus. After establishing preferences, each subject was given 10 daily trials with the food 

reward located beneath the designated positive object. To prevent the dogs from using 

olfactory cues, the food odor was smeared over both wells and a piece of food was pressed 

inside the negative stimulus such that the dog could smell it but not see it or eat it. A correct 

response was recorded when dogs approached and displaced the positive stimulus. An error 

was committed if dogs chose the negative object. One correction per test session was 

allowed and subsequent errors resulted in an immediate withdrawal of the tray leaving the 

dog unrewarded. Dogs were trained until one of two criterion levels was met: 9/10 correct on 

one day or 8/10 correct on two consecutive days. An additional 3 days of testing was 

provided to ensure that animals maintained an average of 70% or better correct. A maximum 

of 400 trials were given if a dog could not reach criterion. After dogs had reached criterion 

in the object discrimination problem, the reward contingencies of the positive and negative 

stimuli were reversed. Testing was continued on this task until the same criterion as for the 

object discrimination test was met. All other testing procedures were identical to those used 

with object discrimination learning.

Following discrimination learning, dogs were given a spatial non matching to position 

memory task as described in our previous study (Head, et al., 2008). To assess spatial 

acquisition and memory, we used a 2- choice non matching to position task. Animals were 
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first shown a single red Lego block covering either the left or right food wells. Animals 

displaced the object on one side (e.g. L) to obtain the reward. A 5-second delay interval 

followed, after which, animals were shown two identical red Lego blocks with the reward 

hidden under the object on the side not rewarded previously (e.g. R). Dogs were given 10 

trials per day with a 30 second intertrial interval and were tested for 40 days. During this 40-

day period, when criterion was met at a 5-second delay, the delay was progressively 

increased to 10, 20, 30, 50, 70 and then 90 seconds. Two scores were derived from this 

learning phase of the task: maximal memory and total number of errors to reach criterion at 

the 5-second delay. Subsequently, animals were given 20 days of a variable delay problem. 

In this task, used to assess working memory, animals were exposed to delays of either 20, 70 

or 110 seconds on each day of testing. The order of the delay interval presentation was 

random but each delay appeared 4 times/day and 12 trials were given each day. Accuracy 

scores for each delay interval were calculated as a measure of spatial working memory and 

used for repeated measures comparisons after treatment was started.

The total errors made for discrimination and reversal learning and for acquisition of the 

spatial memory task were summed and dogs were ranked according to these total error 

scores.

Aβ Vaccine

Fibrillar Aβ was prepared by adding 500 μl of sterile phosphate buffered saline (PBS pH 

7.5) to 0.5 mg of peptide (provided by Dr. Charles Glabe, University of California at Irvine, 

Irvine, CA), the sample was vortexed, and incubated overnight at 37°C in a water bath prior 

to conjugation with the adjuvant. To prepare Aβ for immunization, each dog received 0.5 mg 

of fibrillar Aβ (500 μl) that was added to 50 μl of 2% aluminum hydroxide (alum) 

suspension (Accurate Chemical, Westbury, NY) and 450 μl of PBS and vortexed. All 

animals that did not receive fibrillar Aβ 1–42 were given alum injections. Animals were 

immunized subcutaneously in the back of the neck and monitored for adverse reactions. 

After 2 weeks, animals were boosted with an additional injection followed by monthly 

injections thereafter. The rationale for using an active vaccine approach was twofold: (1) to 

use an identical vaccination approach as in our previous study to confirm and extend our 

results; (2) a passive vaccine approach was prohibitive in terms of the volumes required and 

the infusion process.

Behavioral Enrichment

Dogs in the behavioral enrichment group were given two 20-min walks outdoors in groups 

of 3–4 animals each week. Play toys were rotated through their kennels on a weekly basis. 

Cognitive enrichment involved additional testing procedures including: landmark 

discrimination learning (1 month of treatment), oddity discrimination learning (4.3 months 

of treatment) and a retest on landmark discrimination after ~15 months of treatment (See 

Table 2 – more detailed descriptions to follow). For these cognitive tasks, only dogs 

receiving behavioral enrichment were included. In a previous study, although the kennels 

were identical, behavioral enrichment also included pair housing as compared to single 

housing, but this was not possible in the current study given the number of animals that 
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required single housing (Milgram, et al., 2005). Table 1 shows the number of animals in 

each group that were singly housed.

Treatment Groups

Animals were assigned to one of four treatment groups balancing for baseline cognitive test 

scores, sex, and age. All control animals received alum only as the injection while those 

receiving the active vaccine were injected with fibrillar Aβ1–42 mixed with alum. These 

groups included 1) control/control (n=8; C/C); (2) control/vaccine (n=8; C/V); (3) 

behavioral enrichment/control (n=8; E/C); (4) behavioral enrichment and vaccine (n=10; 

E/V). (Table 1). The study timeline is provided in Table 2.

Enrichment Task - Landmark Discrimination and Variable Landmark Test

The landmark discrimination task and variable landmark discrimination task represent tests 

of spatial attention (Milgram, 1999;Milgram, et al., 2002). The first phase, Landmark 0, 

involved showing animals two identical objects (wooden blocks) with a third object, the 

landmark, placed on top of the object associated with a food reward. The correct response 

was to select the object associated with the landmark. Animals were trained until criterion 

was met, either by obtaining a score of 9/10 on one day or 8/10 on two consecutive days of 

testing. A maximum of 40 days (400 trials) was given for all of the landmark tasks. In the 

next phase of testing, the landmark was moved at successively greater distances (1, 4 or 10 

cm) away from the reward object with animals required to meet criterion before progressing 

to testing with a larger landmark distance. Animals that could not solve the problem at any 

of the longer distances within 400 trials stopped testing on this stepwise protocol. Once all 

animals had been tested out to a 10 cm distance on the landmark discrimination task or had 

reached the maximum number of trials for a single distance, all animals were given a 

variable landmark distance test. In this test, animals were given 12 trials per day with the 

landmark being placed 1, 4 or 10 cm away from the correct object. These three distances 

appeared for 4 trials per day with 12 trials/day in total and dogs were given a total of 20 days 

of testing (240 trials).

Landmark discrimination learning was initiated after animals had been immunized twice 

(initial, 2 weeks), which was 1 month into the treatment phase of the study. In previous 

studies, the landmark task and the variable landmark procedure were age sensitive and 

improved in aged dogs with behavioral enrichment (Milgram, 1999;Milgram, et al., 2002). 

Following landmark discrimination learning, the variable landmark task was administered 

for 20 days. After 15.2 months of treatment (18 immunizations), dogs were given another 20 

days of variable distance landmark testing as described previously.

Enrichment Task - Oddity Discrimination

After 4.3 months of treatment and 5 immunizations, dogs were given the next behavioral 

enrichment task, oddity discrimination learning, a measure of complex learning ability 

(Milgram, et al., 2002). In previous studies, the oddity discrimination task was age sensitive 

and distinguished animals receiving behavioral enrichment from controls (Cotman, et al., 

2002;Milgram, et al., 2005). This task involved 4 sets of 3 objects. Two objects of each set 

were identical and one was novel. Animals were shown the first set and all 3 objects 
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simultaneously, with a food reward hidden under the novel object. Dogs were given 12 trials 

per day with the location of the food reward appearing once in each of the 3 food wells each 

day. Once dogs learned the first problem, the next set of objects was used. The dogs were 

required to reach criterion levels of responding from each object set prior to moving to the 

more difficult object sets. Animals that failed to learn one of the oddity problems within 40 

days of testing were stopped. The similarity between the odd object and the two identical 

object increased with each problem set such that the last problem, oddity 4 was the most 

difficult to discriminate.

Cognitive Outcomes Across All Treatment Groups

At pre-determined intervals, all dogs on study were administered tests of size and black/

white discrimination learning, size and black/white reversal learning and spatial memory 

testing (Table 2). This allowed comparison across all 4 groups to detect synergistic effects of 

the combined treatment. Dogs were included in each cognitive test analysis if they 

completed that task. If a dog had to be removed from the study, and did not complete a task, 

the scores were not included for that task in the data analysis.

Size Discrimination and Reversal Learning

After animals were treated for a period of 7.6 months and had received 10 immunizations, 

they were given a size discrimination and reversal problem. The procedures were identical to 

those used during baseline testing except the objects differed in size (one red wooden block 

vs 2 wooden blocks stacked) (Milgram, et al., 2005).

Black/White Discrimination and Reversal Learning

After animals were treated for a period of 16.1 months and had received 19 immunizations, 

they were given a black/white discrimination and reversal problem. The procedures were 

identical to those used during baseline and size discrimination testing except the objects 

were either a black or white lego block (Milgram, et al., 2005).

Spatial Learning and Memory

At two time points during the study, a 3-choice spatial memory task was used. The 3-choice 

delayed non matching to position task has been described previously (Chan, et al., 2002) and 

is sensitive to benefits of an antioxidant diet and behavioral enrichment with minimal 

practice effects (Milgram, et al., 2005). Dogs were first shown a single red Lego block 

covering either the left, right or center food wells. Once the object was displaced and the 

reward obtained, a 5-second delay interval followed. After the delay, animals were shown 2 

identical red Lego blocks, one covering the well seen previously, and the other covering one 

of the two remaining food wells. The correct response was to select the object covering the 

novel food well. Dogs were given 50 days of testing with 12 trials/day with the location of 

the reward appearing 4 times each in the 3 food wells. During the 50 days of testing, if an 

animal reached criterion at the 5-second delay, the delay was increased by 10 second 

increments. This was continued over the 50 days of testing with gradually increasing delay 

intervals. Following incremental delay interval increases over a 50-day period, dogs were 

given a variable delay procedure for 20 days. As with the 2-choice spatial memory task, 
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dogs would be exposed to either a 20, 70, or 110 second delay in a single day of testing. 

Accuracy scores for each delay interval were calculated as a measure of spatial working 

memory. Animals were tested at two time points, the first was after 11.9 months of treatment 

and 14 immunizations and the second after 18.1 months of treatment and 21 immunizations.

Blood and Cerebrospinal Fluid Samples

Blood was collected from individual animals at baseline, 2 weeks, 1, 2, 3, 4, 5, 6, 12, 18 and 

23 months after the first vaccination immediately prior to injections of the vaccine. Blood 

was collected by jugular venipuncture for both serum (10mL) and plasma (10mL in EDTA). 

Cerebrospinal fluid (CSF) samples were taken at baseline, after 12 months of treatment, and 

19.6 months of treatment immediately prior to necropsy. For CSF sampling, dogs were 

anesthetized with isoflurane and placed in lateral recumbency. The dorsal head and neck 

area was clipped and aseptically prepared, and a spinal needle was advanced into the 

cerebellomedullary cistern to collect approximately 1.5mL of CSF.

Necropsy and Brain Tissue Preparation

At the end of the study, following blood collection, anesthesia was induced and CSF 

collected. Subsequently, pentobarbital-based euthanasia solution was infused intravenously. 

Once heart sounds could no longer be auscultated, the brain was rapidly removed. The left 

hemisphere was placed in 4% paraformaldehyde at 4°C for 72–80 h before transfer to PBS, 

pH 7.4, with 0.02% sodium azide and stored at 4°C. The right hemisphere was sectioned 

coronally and flash frozen to −80°C. The following subregions were dissected for each 

outcome measure: prefrontal cortex (PFCTX), parietal cortex (PCTX), and occipital cortex 

(OCTX).

Serum Titers

Aβ 1–42 antibody response was measured over nine time points of the study by enzyme-

linked immunosorbent assay (ELISA) (Head, et al., 2008).

CSF and Brain Aβ ELISA

Beta amyloid (1–40, 1–42, and total) was measured in CSF and tissue by sandwich ELISA. 

Aβ was extracted from frozen tissue measured as previously described (Head, et al., 

2010;Murphy, et al., 2010). Briefly, frozen PFCTX, PCTX) and OCTX were extracted first 

in PBS, then sodium dodecyl sulfate (SDS) and last, formic acid (FA). Antibodies Ab42.5 

(human sequence Aβ1–16) for Aβ 1–40 capture, and 2.1.3 (end specific for Aβ 1–42) were 

used. Biotinylated 13.1.1 (end specific for Aβ1–40) or 4G8 (human sequence Aβ 17–24, 

Covance, Dedham, MA) were used to measure total levels of Aβ 1–40 and Aβ 1–42 in CSF 

and in each brain fraction (PBS, SDS, and FA).

Aβ Plaque Load

Tissue was stained for Aβ plaques using previously published methods (Head, et al., 2008) 

and anti-Aβ 42 (Invitrogen, Carlsbad, CA; 1:500, raised against Aβ36–42), 6E10 (Aβ1–16, 

Covance, Dedham, MA; 1:1000), and PyroGlu3 (Novus Biological, Littleton, CO; 1:500) 

antibodies. Tissue was pre-treated in 90% formic acid for 4 min (Kitamoto, 1987).
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RNA Studies

PCTX and OCTX were available for RNA studies of the levels of brain derived neurotrophic 

factor. The methods have been published previously (Wilcock, et al., 2015). Briefly, frozen 

brain tissue was pulverized using a mortar and pestle on dry ice with liquid nitrogen, and the 

frozen pulverized tissue was stored at −80°C. RNA was extracted from approximately 80mg 

frozen pulverized tissue using the Trizol Plus RNA Purification System (Life Technologies, 

Grand Island NY) according to the manufacturer’s instructions. RNA was quantified using 

the Biospec Nano spectrophotometer (Shimadzu, Columbia MD) and cDNA was reverse 

transcribed using the cDNA High Capacity kit (Applied Biosystems, Foster City CA) 

according to the manufacturer’s instructions. Real-time PCR was performed using Taqman 

gene expression probe AB105074.1 (PMID NM_001002975.1) (Applied Biosystems, Foster 

City CA). Gene expression data were normalized to 18S rRNA expression. Fold-change was 

determined using the 2(delta delta Ct) method (Livak and Schmittgen, 2001).

Prussian Blue Staining

Prussian blue staining was used to identify microhemorrhages in PFCTX and OCTX tissue 

for all study cases using methods based on previous studies (Wilcock, et al., 2004).

Image Analysis for Plaque Load and Prussian Blue Counts

To quantify the extent of Aβ plaque labeling, images were captured using ImagePro 6.3 with 

an Olympus Q-Color 5 camera on an Olympus BX51 microscope at 20x objective 

uniformly, five of the superficial layers and five of the deep layer for a total of 10 fields/

section. One section from each of the brain regions indicated for each dog was quantified in 

this way. Quantification was done by image analysis using ImageJ to yield load values, the 

percent area occupied by positive labeling similar to our previous report (Head, et al., 2008). 

Quantification of Prussian blue staining was by counting microhemorrhages in each tissue 

section using a 20X objective and counting within 10 fields/section. Prussian blue labeling 

within 2 cell diameters of a blood vessel was considered a microhemorrhage. Counts were 

totaled for each animal in each of the brain regions (Wilcock, et al., 2004).

Studies in Archived Brain Tissues from Dogs for Plaque Load and Prussian Blue

We were interested in estimating the burden of Aβ pathology and microhemorrhages in our 

dogs prior to the start of treatment to characterize changes in pathology over time and with 

immunotherapy/behavioral enrichment. These dogs are referred to as the pre-treatment 

animals. We selected 10 dogs that ranged in age from 10.8 to 13.5 years to compare changes 

in plaque loads and number of microhemorrhages before treatment to 19 months of 

treatment in a cross-sectional approach. These pretreatment dogs had no previous treatment 

or cognitive testing. Tissue for the pretreatment dogs was collected and stored (in PBS with 

sodium azide at 4°C) using the same methods as the experimental dogs. 

Immunohistochemistry was used to measure total Aβ, Aβ 42, and PyroGlu3 plaque loads in 

the PFCTX and PCTX. Prussian Blue staining was used to count the number of 

microhemorrhages in the PFCTX and OCTX regions of the brain. All sections from the 

pretreatment dogs and the current study samples were run in parallel to reduce variability as 

a consequence of multiple immunohistochemistry experiments.
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Data Analysis

Group comparisons for each outcome measure used several approaches depending on the 

groups being compared and if there were repeated measures involved. ANOVA was used to 

compare all 4 treatment groups (C/C, E/C, C/V, E/V) groups on baseline cognitive test 

scores to ensure they were balanced with respect to error scores. T-tests were used to 

evaluate differences due to vaccine treatment in dogs assigned to behavioral enrichment 

(landmark test, oddity test) comparing the E/C and E/V groups. A repeated measures general 

linear models approach including all 4 groups was used to compare the main effects of 

vaccine alone, the behavioral enrichment alone, and to test the interaction (combination 

treatment group) for changes in Aβ antibody serum titers. A generalized linear mixed model 

(GLMM) for a repeated measures design was used to compare repeated measures on CSF 

Aβ and cognitive error scores among the four treatment groups corresponding to the visual 

discrimination and reversal tasks: object, size, and black/white. In all the analyses, cognitive 

error scores (both discrimination errors and reversal errors) were assumed to follow a 

Poisson distribution. An ANOVA was used to compare all 4 treatment groups (C/C, E/C, 

C/V, E/V) groups on brain Aβ measures. For microhemorrhage counts, we used a chi-square 

test to compare groups as this was a nonparametrically distributed outcome measure

While on study, 11 animals required euthanasia at different time points for medical issues 

unrelated to the treatments that could not be managed without discomfort. Given the age of 

the animals at the start of the study (~11–12 years) and their age at the end of the study (>13 

years), this is not unexpected as the median age at death of beagles in this colony is 13.2 

years (i.e. 50% of the animals are typically lost) (Lowseth, et al., 1990). Cognitive test 

scores were included in the analysis if they had completed the task prior to death. Only dogs 

that completed the study (including animals that could not be cognitively tested but 

maintained on treatment) were included in the neurobiological outcome measures analyses. 

Missing scores due to death were assumed to occur at random, while missing scores due to 

not learning the black-white reversal task were assigned the maximum value of given chance 

levels of performance (value 190 for all tasks). Statistical significance for omnibus tests was 

determined at the 0.05 level. Post hoc comparisons used the Bonferroni or LSD correction.

Results

At baseline, there were no significant differences between groups for scores on object 

discrimination learning (F(3,33=0.56 p=0.64) or object reversal learning (F(3,33)=0.03 

p=0.99) indicating that animals were well-matched on the basis of associative learning and 

executive function. Spatial learning scores were equivalent across the 4 groups 

(F(3,33)=0.48 p=0.70). Spatial memory (20s, 70s, 110s) was also evenly matched across 

groups at baseline with all showing a significantly reduced accuracy with increasing delays 

(F(2,56)=5.94 p=0.005) but no main effects of behavioral enrichment (ENR - (F(2,56)=0.19 

p=0.83), the vaccine (VAC -(F(2,56)=1.40 p=0.26), nor a group by delay interaction 

(F(2,56)=1.03 p=0.37).
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Fibrillar Aβ Antibody Titers

To determine if the anti-fibrillar Aβ given to VAC treated animals induced an immune 

response, we measured fibrillar Aβ1–42 antibody titers (Figure 1A). Fibrillar Aβ antibody 

titers significantly increased over time in VAC animals (F(1,19)=13.6 p=0.002). No main 

effect of ENR was seen on antibody titers (F(1,19)=2.0 p=0.17). Further, there was no 

interaction between the two treatments (F(1,19)=1.82 p=0.19). .

Landmark Discrimination Learning

All dogs receiving ENR were given the landmark discrimination task. A significantly higher 

error score was observed at the 1 month test in the dogs provided with the vaccine and 

behavioral enrichment (E/V) relative to the dogs receiving behavioral enrichment (E/C) 

alone (t(16)=2.7 p=0.016)(data not shown). However, based on our previous research, rather 

than the vaccinated dogs doing more poorly, this effect was due to significantly lower error 

scores in all dogs, particularly in the E/C group compared to previous studies of similarly 

aged dogs (Milgram, et al., 2002). No other group differences were noted in landmark 1, 2 

or 4 at either time point. The variable distance landmark test was conducted for a period of 

20 days with 1, 2 or 4 cm distances appearing each day. The total number of errors made and 

accuracy during the 20 days of testing was not different between the E/V and E/C groups 

(data not shown).

Oddity Discrimination Learning

After 4.3 months of VAC treatment, a comparison was made between the E/V and E/C dogs 

on the oddity task. In a repeated measures analysis (4 oddity tasks) using only dogs (n=15) 

that were able to reach criterion levels of responding on all tasks there was a significant main 

effect of the task (F(3,39)=4.75 p=0.006) suggesting increasing difficulty as was intended, 

but no treatment group by oddity task interaction (F(3,39)=0.39 p=0.76). Overall there were 

no treatment group differences (F(1,13)=3.41 p=0.088) (data not shown).

Repeated Visual Discrimination and Reversal Learning

To detect any treatment effects over time, a possible maintenance of function, and a 

synergistic effect of the ENR on VAC, we compared baseline object discrimination to size 

discrimination (7.6 months of treatment) and to black/white discrimination (16.1 months of 

treatment) only in animals able to reach criterion for all 3 tasks (Figure 1B). Discrimination 

learning errors over time showed a highly significant treatment group by time interaction (P 

< 0.0001). Post hoc comparison of the treatment effects shows that for each treatment group 

the three tasks differ from one another. For object and size discrimination, there was no 

significant difference among the 4 groups. For the black/white discrimination task, the effect 

of time for the combination group (E/V) is significantly smaller than the effects for C/C and 

C/V groups (P =0.03 for each comparison) but only marginally smaller than the effect for 

E/C (P = 0.054). The results of treatment on discrimination learning over time indicate that 

the combination treatment group shows a synergistic maintenance of cognition over time.

Errors on the repeated reversal tasks revealed a highly significant treatment group by time 

interaction with means at baseline being 11.12 errors, to size reversal with 33.2 errors and 

then black/white discrimination with 32.3 errors (P < 0.0001)(Figure 1C). For the black/
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white reversal task the E/C group differs from the other three groups while the C/V group 

also differs from E/V and C/C, which do not differ from one another. These results suggest 

that there was impairment in reversal learning in the dogs receiving the vaccine alone, which 

was ameliorated with the addition of behavioral enrichment. Further, the dogs receiving the 

behavioral enrichment alone had the lowest average error scores.

Spatial Acquisition and Memory

Once dogs had been treated for 11.9 months or for 18.1 months (Table 2), they were tested 

on the 3-choice spatial memory task where the delays of 20, 70 or 110 seconds could occur 

on a single day. Only dogs that were able to complete all the testing across the 2 time points 

were included in the analysis. Neither treatment alone or when combined resulted in 

improved spatial memory. To detect any changes in spatial memory as a function of 

treatment over the 18 months of the study, a repeated measures analysis was used for each 

delay interval separately (20, 70, 110s). At the 20 second delay (F(2,36)=16.12 p<0.0005), 

the 70 second delay (F(2,36)=5.51 p=0.008) and the 110 second delay (F(2,36)=17.32 

p<0.0005) there was an overall decrease in accuracy over time suggesting an aging effect. 

There was no apparent maintenance of spatial memory over time as a function of treatment 

or an effect of the combined treatment (data not shown).

CSF Aβ

For CSF Aβ outcome measures, only animals that completed over 18 months of the 

treatment protocol and where CSF samples were acquired at every time point were included 

(n=21; C/C-7, E/C-4, C/V-5, E/V-5). None of the effects in the linear mixed model (LMM) 

for CSF Aβ40, namely, the main effect due to VAC or ENR, the interaction between VAC 

and ENR, the main effect due to time, and the interactions between time and VAC, time and 

ENR, or time, VAC and ENR are significant (P >0.11 for each effect).

However, for CSF Aβ42 (Figure 2A) there is a significant main effect due to the VAC (P = 

0.01) in that the adjusted mean CSF Aβ42 level in the presence of VAC is 134.4 pmol ± 7.1, 

which is higher than CSF Aβ42 measures in the absence of the VAC (104.7 ± 7.6). None of 

the other effects in the LMM are significant (P > 0.12) although there is a hint of an 

interaction between VAC and ENR. The increased CSF Aβ42 VAC effect appears to be 

associated with the presence of ENR (ENR with no VAC at 92.9 ± 12.5 and with VAC at 

139.8 ± 9.8). This is in contrast to CSF Aβ42 in groups with no VAC at 116.5 ± 8.7 versus 

those with the VAC at 129.0 ±10.3 in the absence of ENR, indicating a much smaller VAC 

effect (P = 0.12 for the interaction between ENR and VAC).

Brain Aβ

We hypothesized that the levels of Aβ1–40 and Aβ 1–42 in the brain would be reduced due 

to the vaccine as we reported previously (Head, et al., 2008) and possibly further reduced 

with the presence of behavioral enrichment. As a first test of this hypothesis we measured 

the extent of plaques containing Aβ42, total Aβ (using 6E10 Aβ1–16), and pyroglutamate 

Aβ in the PFCTX, PCTX and OCTX by immunohistochemistry. For these analyses we used 

an ANOVA with a 2 x 2 factorial design with factors VAC (yes/no) and ENR (yes/no) to 

compare mean responses.
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Aβ42 plaque load was significantly decreased as a result of VAC (both C/V and E/V groups) 

in the PFCTX (p<0.01), OCTX (p=0.01), and PCTX (p=0.03) (Figure 2B). No additive 

effects were seen between the VAC and ENR in reducing Aβ42 plaque load in any brain 

region sampled. Representative examples of immunolabeling in the prefrontal cortex for 

each treatment group are shown in Figures 2E–H. Total Aβ (6E10) plaque load was reduced 

by the VAC in all brain regions (PFCTX, p<0.01; OCTX, p=0.03; PCTX, p=0.04) (Figure 

2C). No additive effects were detected in the combination treatment group in decreasing 

total Aβ plaque loads in any of the brain regions sampled. Previous immunotherapy studies 

have not evaluated effects of an anti-fibrillar Aβ1–42 vaccine on post-translationally 

modified Aβ. Since post-translationally modified Aβ, more specifically AβpE3, is 

considered to be a more toxic and chronobiologically older form of Aβ, we tested our 

vaccine on its ability to reduce this form of Aβ. We hypothesized that VAC would 

significantly reduce AβpE3 plaque loads in all regions examined. AβpE3 plaque loads were 

decreased only in PFCTX (p=0.01) but not PCTX or OCTX (Figure 2D). No main effects of 

the ENR or an ENR by VAC interaction were observed.

As a second test of this hypothesis and to confirm reductions in Aβ plaque loads, we 

measured PBS, SDS, and FA extracted Aβ 1–40 and Aβ 1–42 by sandwich ELISA (Figure 

3). For these analyses we used an ANOVA with a 2 x 2 factorial design with factors VAC 

(yes/no) and ENR (yes/no) to compare mean responses. There was a significant amount of 

individual variability in the amounts of Aβ measured and no treatment effects were observed 

for either Aβ40 (Figure 3A) or Aβ42 (Figure 3D) extracted from the PBS soluble fraction. 

In SDS extracted Aβ42 (Figure 3B), there was a significant main effect of the VAC with 

reduced levels in the PFCTX and OCTX (p<.05) but not in Aβ40 (Figure 3E). FA extracted 

Aβ42 (Figure 3C) was decreased in the PFCTX, PCTX and OCTX consistent with plaque 

load outcomes; FA extracted Aβ40 (p=0.01) in the PFCTX and Aβ42 (p=0.01) extracted 

from PFCTX, PCTX and OCTX was decreased in VAC dogs but not ENR dogs and there 

was no interaction between the two treatments. The OCTX also showed evidence of reduced 

FA extracted Aβ42 in the ENR group (p=0.01), the VAC group (p=0.02) as well as an 

interaction with in the combination group (p=0.03). This interaction effect appears to result 

in less of an Aβ42 reduction for combination treatment group animals relative to dogs 

provided with the VAC alone.

Comparison of Aβ Plaque Loads of Study Dogs to Pretreatment Brains

The PFCTX had lower Aβ42 plaque loads due to ENR that trended towards significance. In 

addition, although no ENR effect was seen statistically in lowering total Aβ plaque loads in 

the PFCTX and PCTX, the E/C treatment group did have significantly lower loads than the 

C/C group. It is unclear if these lower plaque loads were due to a clearance of pre-existing 

Aβ or maintenance of Aβ pathology at the same level that was present at the start of 

treatment by the ENR. To investigate this further, we used PFCTX and PCTX tissue of 

archive cases that were age-matched to study cases at their baseline age and immunostained 

them for Aβ42 (10/10 animals were positive based on a cut off of 1% load), total Aβ (10/10 

positive) and AβpE3 (1/10 positive). The results provided measurements that represented the 

Aβ plaque loads of the study cases at baseline before treatment began. The Aβ loads 

obtained from this archival group are also shown in Figure 2B, C and D.
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In the PFCTX, significant group effects were seen in the reduction of Aβ42 (p<0.001), total 

Aβ (p<0.001), and AβpE3 (p=0.009) plaque loads between the pre-treatment group to the 

study treatment groups. The pre-treatment group had significantly lower Aβ42 (p=0.050) 

and total Aβ (p=0.014) plaque loads than the C/C group indicating an increase in plaque 

loads with age. The plaque loads of the pre-treatment group did not statistically differ from 

the E/C group, suggesting a maintenance effect due to the ENR (p<.05). Similar results were 

observed in the PCTX. A significant group difference was noted when comparing Aβ42 

(p=0.003), total Aβ (p=0.021), and AβpE3 (p=0.020) plaque loads between the pre-

treatment group to the study treatment groups in the PCTX (Figures 2B,C,D). As seen in the 

PFCTX, the pre-treatment group Aβ42 plaque load did not differ significantly from the E/C 

group in the PCTX, again suggesting that ENR was likely maintaining Aβ42 plaque loads at 

levels that were in the brain 2 years prior.

Treatment Effects on Microhemorrhages

Based on previous studies in transgenic mice (Pfeifer, et al., 2002;Racke, et al., 

2005;Wilcock and Colton, 2009;Wilcock, et al., 2007;Wilcock, et al., 2004) and human 

clinical trials (Uro-Coste, et al., 2010), we hypothesized that the two VAC groups may have 

more microhemorrhages than those animals receiving no VAC. The total number of bleeds 

across all brain regions sampled ranged between 0 and 23 and we used a Kruskal-Wallis test 

to compare the groups. The most bleeds were seen in the PFCTX having a range from 1 to 

10 bleeds, with the exception of one dog having 17 bleeds (representative examples are 

provided in Figure 4B, C, D). This canine in particular was a female, started the study at the 

age of 11.6 years, and was in the E/C treatment group. The OCTX had bleed counts ranging 

from 0 to 7. Neither ENR (H(1)=0.025 p=0.876) nor VAC (H(1)=0.350 p=0.554) 

significantly increased microhemorrhage frequency in the PFCTX (Figure 4A). In the 

OCTX, there was a statistically significant overall increase in microhemorrhages due to the 

VAC (H(1)=6.501 p=0.011) (C/V and E/V groups - Figure 4A,D). Interestingly, fewer 

microhemorrhages were detected in the E/C animals in the OCTX compared to C/V animals 

(Figure 4A). It is possible that this decrease in microhemorrhages of the E/C group (non 

VAC animals) could have led to the statistically apparently higher frequency of 

microhemorrhages due to the VAC.

With the observation that E/C group had fewer microhemorrhages in the OCTX compared to 

the other treatment groups and C/C group, we wanted to determine whether ENR was 

reducing the number of microhemorrhages or having a maintenance effect as observed with 

plaque loads. To do this we used the same 10 archive cases used for plaque load analysis that 

were age-matched to study dogs at the start of the study (10.5–13.6 years) (pre-treatment). 

The total number of microhemorrhages in the PFCTX from this pre-treatment group of dogs 

ranged from one to eight, similar to numbers in the treatment groups and control group. 

Statistically, there was no group difference in microhemorrhage counts in the PFCTX 

between the pre-treatment group and the four study groups (χ2(4)=1.103 p=0.894) (Figure 

4A). In the OCTX, pre-treatment dogs only showed 0 to 3 microhemorrhages compared to 

the 0 to 7 range seen in the study dogs. There were significantly different microhemorrhage 

counts between the groups (the four study groups 2(4)=15.400 p=0.004). The pre-treatment 

group showed approximately the same number of microhemorrhages as the E/C treatment 
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group (Figure 4A). While the C/C, C/V, and E/V treatment groups were not different in 

number of microhemorrhages, they generally were higher than the pre-treatment and E/C 

groups. This would suggest that the E/C treatment was having a maintenance or protective 

effect against microhemorrhages in the OCTX while all other treatment groups experienced 

more microhemorrhages with age independently of the VAC.

Brain derived neurotrophic factor as a function of treatment

We next tested the hypothesis that brain derived neurotrophic factor (BDNF) RNA levels 

would be increased in dogs provided with ENR and possibly further increased when 

combined with Aβ clearance with the vaccine. Figure 5 shows that relative to the C/C group, 

the parietal cortex of the C/V group had increased BDNF mRNA (~1.4 fold) that were not 

significant but the combination treatment (E/V) was associated with a significant increase in 

BDNF mRNA level (1.6 fold). The E/C group was not different from the CC group (~0.7 

fold). No systematic differences in the occipital cortex were observed in BDNF mRNA level 

(data not shown).

Discussion

The current study hypothesized that aged dogs with pre-existing Aβ pathology vaccinated 

with fibrillar Aβ1–42 would show reduced Aβ neuropathology as observed previously, but 

also improved cognition if the vaccine was combined with behavioral enrichment. 

Consistent with previous studies in aged dogs, the active Aβ vaccine alone did not improve 

cognition (Head, et al., 2008). As hypothesized, dogs in the combination treatment group 

showed a slowing in cognitive decline on a measure of visual discrimination learning. The 

addition of ENR on the vaccine was particularly striking on a measure of executive function 

(reversal learning). We observed impaired function in dogs provided with the VAC alone that 

was significantly improved with the addition of ENR. Brain Aβ was reduced with the VAC 

in the current study similar to our previous report (Head, et al., 2008). BDNF mRNA levels 

were increased significantly in dogs provided with the combination treatment, providing a 

possible mechanism underlying cognitive improvements and similar to a previous study of 

the combination effects of behavioral enrichment with an antioxidant diet (Fahnestock, et al., 

2010). Interestingly, there were several unexpected findings in the current study. First, ENR 

resulted in less brain Aβ on a subset of the brain regions sampled, consistent with some but 

not all AD mouse model studies (Lazarov, et al., 2005) but novel with respect to canines 

(Pop, et al., 2010). Second, ENR may slow cerebrovascular pathology in aging dogs, which 

may have significant clinical implications for trials testing immunotherapy in patients with 

AD. A summary of the outcome measures are provided in Table 3.

Effects of the VAC on aging dogs

Cognition—We had previously published the results of an Aβ vaccine in aging dogs 

showing no improvements in learning and memory, but evidence of a maintenance of 

function on an executive function task (reversal learning) (Head, et al., 2008). We observed 

some similar and yet interesting differences in the current study. There was no evidence of 

an improvement in learning or memory in VAC dogs, similar to our previous report (Head, et 

al., 2008). This contrasts with another study of pet dogs (6–18 years, differing breeds) with 
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cognitive dysfunction syndrome that showed rapid improvements in cognition in response to 

active Aβ immunotherapy (Bosch, et al., 2013). It is interesting that in the Bosch et al., study 

that the authors used Aβ40 or Aβx-40 peptides as the immunogen in contrast to the current 

study using fibrillar Aβ1–42. Despite these differing approaches, the mechanism underlying 

rapid cognitive improvements in one study and slower decline in the current study have yet 

to be determined.

We also found that dogs receiving the VAC alone showed impaired executive function that 

evolved after 16 months of treatment. Interestingly, this was ameliorated with the presence 

of ENR as will be discussed shortly. This was unexpected given our previous work showing 

that the same vaccine slowed reversal learning deficits over time (Head, et al., 2008). When 

comparing the two studies, dogs in our previous study were between 9.3 and 9.5 years of age 

when treatment was initiated, whereas in the current study, dogs were 11.5 to 11.9 years of 

age. Thus, an earlier intervention resulted in benefits to executive function that could not be 

elicited in the older animals unless combined with behavioral enrichment.

Aβ Neuropathology—Active Aβ vaccination and passive immunotherapy studies show 

positive results in reducing Aβ plaque pathology in both animal models and patients with 

AD (DeMattos, et al., 2001;Head, et al., 2008;Release, 2012;Salloway, et al., 2014;Salloway, 

et al., 2009;Schenk, et al., 1999;Silverman, 2012;Teich, 2012). VAC in dogs reduces brain 

Aβ42 measured by plaque load and both Aβ40 and Aβ42 measured biochemically in the 

insoluble FA fraction as reported previously (Head, et al., 2008). These results are also 

similar to another report of immunotherapy with Aβ in dogs showing reduced Aβ plaque 

pathology (Neus Bosch, et al., 2015). Novel outcomes of the current study indicate first, that 

PBS soluble Aβ in the brain was not reduced, suggesting the VAC did not change Aβ 
production per se. SDS soluble Aβ42 was reduced in response to the VAC but not Aβ40. 

Post-translationally modified Aβ, including AβpE3, is toxic and involved in the initial stages 

of the disease thereby making it a crucial therapeutic target for clearance in a clinical setting 

(Alexandru, et al., 2011;He and Barrow, 1999;Russo, et al., 2002;Schilling, et al., 

2006;Schlenzig, et al., 2009;Wirths, et al., 2009). In the current study, AβpE3 was cleared in 

VAC dogs, particularly in the prefrontal cortex. This outcome is promising for human 

clinical trials given that a significant amount of Aβ is post translationally modified and 

thought to be highly aggregated and less amenable to clearance in dog (Azizeh, et al., 

2000;Chambers, et al., 2011;Frost, et al., 2013;Schmidt, et al., 2015) and human brain 

(Azizeh, et al., 2000;Fonseca, et al., 1999;Frost, et al., 2013). Last, CSF Aβ42 was increased 

in dogs receiving the VAC suggesting clearance from the brain parenchyma that could be 

detected peripherally. An inverse correlation between CSF and brain Aβ has been reported 

in humans (Blennow, et al., 2015;Strozyk, et al., 2003) and dogs (Head, et al., 2010) 

suggesting that as brain Aβ deposits it is depleted from the CSF (DeMattos, et al., 2002). 

Thus, CSF levels of Aβ42 may serve as a useful noninvasive outcome measure to detect 

beneficial effects of immunotherapy on brain Aβ.

Microhemorrhages—Because previous human clinical trials using active vaccination 

with fibrillar Aβ1–42 was associated with several cases of meningoencephalitis (Gilman, et 

al., 2005;Hock, et al., 2003), passive immunization is currently being investigated in mild to 
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moderate AD. This passive immunotherapy approach also reduces Aβ pathology and leads 

to modest reductions in rates of cognitive decline (Doody, et al., 2014;Doody, et al., 

2014;Salloway, et al., 2014;Salloway, et al., 2014). Passive immunotherapies, however, lead 

to microhemorrhages in mouse models (Wilcock, et al., 2004) and in human clinical trials 

(Sperling, et al., 2012). The presence of microhemorrhages could increase risk of further 

cognitive impairment (Blitstein and Tung, 2007;Viswanathan and Chabriat, 2006). Thus, we 

also measured the extent of microhemorrhages in VAC animals and noted an increase in 

microhemorrhages in the occipital cortex, but not prefrontal cortex suggesting canines can 

provide a useful model to detect adverse outcomes in response to immunotherapy.

Effects of ENR on aging dogs

Cognition—Dogs provided with ENR in our previous studies showed improved 

cognition(Milgram, et al., 2002), maintenance of cognition and improved memory (Cotman, 

et al., 2002;Milgram, et al., 2005). However, ENR dogs we described previously did not 

show reduced brain Aβ suggesting that the mechanism of action was independent of Aβ 
deposition (Pop, et al., 2010). Interestingly, we did not observe similar outcomes in the 

current study: ENR dogs did not show improved cognition, nor maintenance of cognition. 

This outcome was unexpected as our previous research suggested that ENR was a robust 

means to improve cognitive function in dogs (Costa, et al., 2006;Cotman and Head, 

2008;Lazarov, et al., 2005). The reasons for this may be two-fold. First, dogs in the previous 

study were younger when treatment was started and as such, may have been more responsive 

to the enrichment protocol whereas the older animals in the current study did not show the 

same benefits. Second, standard housing-enrichment programs have matured from earlier 

studies such that an ENR threshold may have been met between all treatment groups and 

further benefits did not occur with the additional environmental enrichment and cognitive 

training that was provided in this study. It is possible the lack of consistent pair housing as 

compared to single housing used previously may have led to larger cognitive benefits than 

observed here (Milgram, et al., 2005). Alternatively, our previous study may have revealed 

that singly housed dogs were impoverished relative to the pair housed animals. A more 

intensive program may be required for future treatment studies.

Aβ Neuropathology—Novel findings in the current study relate to the effects of ENR on 

Aβ deposition. In our previous ENR study in canines we did not observe a reduction in Aβ 
pathology after over 2 years of treatment (Pop, et al., 2010). However, in the current study, 

we observed ENR led to reduced total Aβ plaque loads, similar to previous reports in 

transgenic mouse models of AD (Costa, et al., 2006;Lazarov, et al., 2005). Reduced plaque 

loads in response to ENR in the current study may indicate a prevention benefit. Lower 

plaque loads in ENR animals may be due to a slowing of Aβ accumulation. Tissue samples 

from dogs that were the same age as animals at the start of the study allowed us to estimate 

the extent of Aβ at baseline. The pre-treatment dogs exhibited significantly lower plaque 

loads than control dogs for all types of Aβ examined illustrating the increase of plaque loads 

in the canine with age over the ~ 2 year period of time. Further, the pre-treatment dog Aβ 
plaque pathology most closely resembled that of the E/C treatment group suggesting that 

ENR led to maintenance of plaque load in treated dogs rather than a clearance/reduction of 

existing Aβ plaques. The results of the studies with AβpE3 confirm and extend this 
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interpretation. AβpE3 plaque loads were not reduced in dogs that received ENR suggesting 

that pre-existing plaque pathology was not cleared, in contrast to the VAC dogs. The 

mechanism by which Aβ is reduced in dogs provided with ENR has yet to be explored but 

previous studies argue against changes in alpha-secretase activity and total APP (Pop, et al., 

2010).

Microhemorrhages—As described previously, microhemorrhage frequency was 

increased in the occipital cortex due to the VAC. However, the ENR dogs had a significantly 

lower number of microhemorrhages. By comparing ENR (E/C) animals to pre-treatment 

brain samples, we found that dogs that were 2 years younger showed a similar number of 

microhemorrhages in the OCTX as the E/C treatment group. This observation suggests that 

ENR may protect from age-associated increases in microhemorrhages. Similar 

cerebrovascular benefits have been reported in transgenic mouse models of AD (Herring, et 

al., 2008).

Synergist Effects of Combining ENR with VAC

The overarching goal of the study was to test the hypothesis that the combination of ENR 

and VAC would lead to cognitive benefits and reduced brain pathology. To some extent, our 

hypothesis was supported and yet in other aspects, refuted. As expected, dogs receiving the 

VAC developed anti-Aβ1–42 titers over time.

In terms of cognitive outcomes, the results were modest. We observed that dogs receiving 

the combination treatment showed a significant maintenance of learning on a series of visual 

discrimination tasks that was larger than either ENR or VAC alone. The ENR also appears to 

ameliorate executive dysfunction in VAC only treated dogs although it cannot improve dogs 

to levels observed in the ENR condition alone. However, none of the treatments improved 

memory. The combination treatment group showed significantly reduced prefrontal, and 

parietal and in some cases occipital Aβ in terms of plaque loads, posttranslationally 

modified Aβ, and insoluble Aβ although not lower than the VAC alone. Given that the VAC 

essentially cleared Aβ plaques, it is not surprising we could not detect further reductions. 

However, the benefits of ENR on reducing microhemorrhages could not be observed with 

the combination treatment suggesting that the VAC drives this pathology to a greater extent 

than ENR counteracting the effect. The implications of our observation of increased 

numbers of microhemorrhages in the VAC group are that the response of aging dogs to the 

vaccine is similar (and possibly predictive) of human clinical trials outcomes and also 

suggests a common pathological mechanism.

Another novel outcome to the current study involved the measures of BDNF mRNA. BDNF 

is a critical growth factor supporting neuron and synapse health (Ando, 2002;Lu, et al., 

2008), and is reduced in AD transgenic mice and in human AD brain (Holsinger, et al., 

2000;Intlekofer and Cotman, 2013;Michalski and Fahnestock, 2003;Poon, et al., 2011). 

BDNF levels can be increased in by physical activity (Cotman, et al., 2007;Intlekofer and 

Cotman, 2013) and by environmental enrichment (Wolf, et al., 2006;Zajac, et al., 2010). In 

dogs, aging is associated with significantly reduced BDNF mRNA in temporal cortex that 

can be improved when animals are provided with a combination of behavioral enrichment 
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and an antioxidant diet (Fahnestock, et al., 2010). To determine if downstream pathologies 

associated with Aβ may be modified with behavioral enrichment or in vaccinated dogs, we 

measured RNA levels of BDNF. In the current study we found that BDNF mRNA was 

increased in vaccinated dogs and significantly increased in the combination group. Thus, 

reducing Aβ may be linked to increased BDNF and may in part, be associated with the 

cognitive maintenance observed in the current study.

Conclusions

Behavioral enrichment slows Aβ accumulation and reduces the rate of microhemorrhages, 

while an Aβ vaccine clears pre-existing Aβ pathology including post-translationally 

modified Aβ.The combination treatment maintained visual discrimination learning over ~19 

months suggesting a slowing of cognitive decline. Several clinical trials are underway that 

are assessing lifestyle modifications including exercise and cognitive training in 

nondemented elderly (for a review see (Solomon, et al., 2014)). Aged canines may represent 

an early AD phenotype (Cotman and Head, 2008) that is associated with selective 

hippocampal neuron losses (Siwak-Tapp, et al., 2008). The combination treatment approach 

described in this experiment may be more efficacious if implemented prior to significant 

cognitive decline and Aβ deposition that occurs in dogs beginning around 6–8 years 

(Cotman and Head, 2008). However, it is exciting to note that even in animals with extensive 

Aβ deposition and cognitive dysfunction that benefits could be elicited, which is promising 

for patients with mild-moderate AD. In the future, prevention studies using a combination 

therapy approach in middle aged dogs may result in memory maintenance, and including 

imaging techniques that enable us to visualize cerebrovascular benefits will be helpful.
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Highlights for Review

• Aβ immunotherapy in aged canines leads to reduced brain Aβ

• Aβ immunotherapy increased microhemorrhages and impaired 

executive function

• Behavioral enrichment improved executive function over time

• A combination of Aβ vaccination with behavioral enrichment leads to 

cognitive maintenance

• A combination reduced brain Aβ, increased BDNF and increased 

microhemorrhages.
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Figure 1. 
Effects of the anti-Aβ1–42 vaccine on antibody titers and cognition over time. Anti-fibrillar 

Aβ1–42 IgG responses increased and were maintained over time in groups receiving the 

vaccine (A)(*p<.05 between VAC (n=12) and non VAC (n=11)). To detect treatment effects 

from all 4 groups over time, a discrimination task (B) was used. Discrimination learning 

error scores increased over time suggesting both increased task difficult and an underlying 

aging process (B). The combination treatment group (E/V (n=7 completers)) performed the 

best overall (*p<.05) and showed slower decline than either treatment alone. (C) Reversal 

learning was associated with the E/C (n=4 completers) group having the lowest errors scores 

over time overall suggesting a maintenance of cognition (*p<.05). Interestingly, the C/V 

(n=3 completers) group had the highest error scores overall but this was ameliorated by the 

presence of ENR (**p<.05) such that the E/V (n=7 completers) group was similar to the C/C 

(n=7 completers) group. Error bars represent standard errors of the mean.
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Figure 2. 
CSF and brain Aβ changes with treatment. (A) CSF Aβ1–42 was significantly higher in the 

dogs receiving the VAC at 12 months of treatment (n=17) and at the end of the study (n=14)

(*p<.05). (B) Aβ42 plaque loads were variably affected depending on the brain region 

sampled. In the PFCTX cortex, the C/C (n=8) group had significantly higher Aβ42 than the 

pretreatment group (n=10), and the pretreatment group was significantly higher, in turn, than 

both groups that received the VAC (C/V (n=8) and E/V (n=8) (#p<.05 when comparing the 

pretreatment group to other groups). The pretreatment Aβ42 loads were similar to the ENR 

only condition (E/C) suggesting a halting of Aβ42 deposition. In both the PFCTX and the 

PCTX, the C/C group had significantly higher Aβ42 loads than the C/V and E/V groups 

(*p<.05). However in the PFCTX, there was an additional reduction in Aβ42 plaque load in 

the E/C group relative to C/C (*p<.05 when comparing C/C to other groups) but not in the 

parietal or occipital cortex. A similar trend was observed in the OCTX but these differences 

did not reach statistical significance (note – there were no data from the pretreatment group 

for this brain region). (C) 6E10 plaque loads were also variably affected depending on the 

brain region sampled. In the PFCTX cortex, the C/C group had significantly higher 6E10 

loads than the pretreatment group (#p<.05 when comparing the pretreatment group to other 

groups). The pretreatment 6E10 loads were similar to all other treatment groups. In the 

PFCTX, the C/C group had significantly higher 6E10 loads than the C/V and E/V groups 

(*p<.05 when comparing C/C to other groups). A similar trend was observed in the PCTX 

and the OCTX but these differences did not reach statistical significance (note – there were 

no data from the pretreatment group for the OCTX region). (D) AβpE3 plaque loads were 

variably affected depending on the brain region sampled. In the prefrontal cortex, the C/C 

and the E/C group had significantly higher AβpE3 than the pretreatment group ( #p<.05 

when comparing the pretreatment group to other groups). In the PFCTX, the C/C group had 

significantly higher AβpE3 loads than the C/V and E/V groups (*p<.05 when comparing 

C/C to other groups). A similar pattern was observed in the PCTX and the OCTX but these 

differences did not reach statistical significance (note – there were no data from the 
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pretreatment group for OCTX region). Representative Aβ immunostained sections 

(representing the average % load for each group) from the PFCTX showing reduced 

pathology relative to the C/C group (E) in the E/C (F), C/V (G), and E/V (H).
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Figure 3. 
PBS, SDS and FA extracted Aβ1–40 and Aβ1–42 as a function of treatment and brain 

region. PBS (A), SDS (B) and FA (C) extracted Aβ1–42 was significantly decreased in dogs 

receiving the vaccine (n=18) relative to those not vaccinated (n=16) primarily in the PFCTX 

and OCTX. The PCTX did not show significant changes. In PBS (D), SDS (E) and FA (F) 

extracted Aβ1–40 measures, fewer differences were noted except the vaccine led to 

significant decreases in PFCTX and OCTX Aβ1–40 in the FA fraction. Bars indicate group 

averages, error bars are standard errors of the mean. Lines with * indicate significant group 

differences in the VAC group from the non vaccine group at the p<.05 level.

Davis et al. Page 29

Neurobiol Aging. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
An Aβ vaccine increases the frequency of microhemorrhages. The average frequency of 

microhemorrhages was unchanged in the PFCTX. However, in the OCTX there were 

increased mean numbers of microhemorrhages in both groups of vaccinated dogs (n=18) 

(*p<.05) as compared with the C/C dogs (A). Untreated aged dogs (n=8) had more 

microhemorrhages than dogs 2 years younger (n=10) (**p<.05). Dogs provided with 

behavioral enrichment only (E/C (n=18) had an equivalent number of microhemorrhages 

compared with dogs 2 years younger. Error bars represent standard errors of the mean. 

Examples of Prussian blue staining in the B. PFCTX of a dog in the E/V group at lower 

magnification showing microhemorrhages (arrows) and C. higher magnification (arrows). D 

shows a blood vessel with a microhemorrhage in the OCTX of a dog receiving the vaccine 

alone (arrows).
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Figure 5. 
Parietal BDNF mRNA levels as a function of treatment. Dogs provided with either the Aβ 
vaccine alone (n=8) or in combination with behavioral enrichment (n=10) show significantly 

increased levels of parietal BDNF mRNA than untreated animals (*p<.05). Dogs provided 

with only behavioral enrichment (n=8) are not significantly different from controls (n=8).
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Table 2

Study timeline

Cognitive Task Time on Treatment (months) Number of Injections

Baseline Discrimination Learning 0 0

Baseline Discrimination Reversal 0 0

Spatial Maximal Memory 0 0

Spatial Memory 0 0

Landmark Discrimination* 1 2

Oddity Discrimination* 4.3 5

Size Discrimination and Reversal 7.6 10

T1 Spatial Maximal Memory 9.4 11

T1 Spatial Memory 11.9 14

T2 Landmark Discrimination* 15.2 18

Black/White Discrimination and Reversal 16.1 19

T2 Spatial Memory 18.1 21

Brain Tissue Harvested 19.6 23

*
tasks given to the behavioral enrichment group animals only.
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Table 3

Summary of outcome measures*

Outcome Measure E/C C/V E/V

Aβ antibody titers N/C Increased Increased

Cognition

Landmark Discrimination N/C N/A N/C

Oddity Discrimination N/C N/A N/C

Repeated Visual Discrimination N/C N/C Improved

Repeated Reversal Learning Improved Impaired N/C

Spatial Memory N/C N/C N/C

CSF
CSF Aβ1–40 N/C N/C N/C

CSF Aβ1–42 Decreased Increased Increased

A β Plaques

Aβ1–42 Plaques

 Prefrontal Decreased Decreased Decreased

 Parietal N/C Decreased Decreased

 Occipital N/C Decreased Decreased

Aβ total (6E10)

 Prefrontal N/C Decreased Decreased

 Parietal N/C Decreased Decreased

 Occipital N/C Decreased Decreased

AβpE3 Plaques

 Prefrontal N/C Decreased Decreased

 Parietal N/C N/C N/C

 Occipital N/C N/C N/C

Aβ ELISA

PBS soluble Aβ1–42 N/C N/C N/C

PBS soluble Aβ 1–40 N/C N/C N/C

SDS soluble Aβ1–42

 Prefrontal N/C Decreased Decreased

 Parietal N/C N/C N/C

 Occipital N/C N/C N/C

SDS soluble Aβ1–40 N/C N/C N/C

FA soluble Aβ1–42

 Prefrontal N/C Decreased Decreased

 Parietal N/C Decreased Decreased

 Occipital Decreased Decreased Decreased

FA soluble Aβ1–40

 Prefrontal N/C Decreased Decreased

 Parietal N/C N/C N/C

 Occipital N/C N/C N/C

Microhemorrhages
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Outcome Measure E/C C/V E/V

 Prefrontal N/C N/C N/C

 Occipital N/C Increased Increased

Growth Factor (BDNF) N/C Increased Increased

*
Increases/decreases were statistically significantly different from the C/C group. N/C – no change from C/C group N/A – not applicable
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