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Exact Tests for Interaction in 
Several 2 x 2 Tables 

Karim F. HIRJI, Stein E. VOLLSET, 
Isildinha M. REIS, and Abdelmonem A. AFIFI 

The investigation of interaction in a series of 2 x 2 tables is warranted in a variety 
of research endeavors. Though many large-sample approaches for such investigations 
are available, the exact analysis of the problem has been formulated for the probability 
statistic only. We present several alternative statistics applicable in this context. We also 
give an efficient polynomial multiplication algorithm to compute exact distributions and 
tail areas for the family of stratum-additive statistics. Besides the probability statistic, 
these include the score, likelihood ratio, and other statistics. In addition to comparing, in 
empirical terms, the diverse computational strategies for exact interaction analysis, we 
also explore the theoretical linkages between them. Data from published papers are used 
for illustration. 

Key Words: Exact inference; Fast Fourier transform; Network algorithm; Polynomial 
multiplication algorithm; Test of homogeneity. 

1. INTRODUCTION 

Epidemiologic, clinical, psychological, or sociological studies may produce data 

depicted as several 2x2 contingency tables. As an example, consider a multicenter two- 
arm binary response clinical trial. Let 7 be the treatment indicator, and Y the response 
variable. Suppose that for k = 1,..., K, the results from the kth clinical center are 

Response 
Y= Y=o 

Treatment Total 
r = 1 ak nk - ak nk 
T = 0 bk mk -bk mk 

Note that for each k, the row sums mk and nk are fixed by design. Let Pk(r) denote 
the probability that a patient at center k responds to treatment r. A stratified logit model 
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formulation of the dependence of response on treatment is 

log I 
pk T)(=1 a k + /T' log { 1pk() } +( 

where ak reflects the stratum effect, and Ok = exp(3k) is the kth stratum treatment- 

response odds ratio. The common odds ratio model, which assumes /3k = 0 for all 
k, is widely applied to such data (Breslow and Day 1980; Gart 1971). Prior to fitting 
the model, however, one needs to assess the constancy of odds ratios across the strata. 
Such an assessment, for instance, constitutes a critical aspect of combining evidence 
from multiple studies (Chalmers 1991; Mosteller and Chalmers 1992). In the statistical 
literature, a test of the invariance of odds ratios across strata is referred to as a test of 

homogeneity or heterogeneity of odds ratios, or as a test for interaction. 
A number of large sample tests for interaction are available (Breslow and Day 1980; 

Jones, O'Gorman, Lemke, and Woolson 1989; Paul and Donner 1989, 1992; Tarone 
1985; Yusuf, Peto, Lewis, Collins, and Sleight 1985). Liang and Self (1985) gave two 

asymptotic tests suitable for sparse data settings. When the data are sparse, or the strata 
small, tests that do not invoke asymptotic approximations are desirable. In this article, 
we deal with such so-called exact tests for the homogeneity of odds ratios in several 
2 x 2 tables. 

Zelen (1971) constructed an exact test for homogeneity that employs the ordering 
principle used in the Fisher-Irwin exact test for a single 2 x 2 table. For computing 
an exact significance level, all collections of K 2 x 2 tables with fixed row, column, 
and strata margins are ranked by their conditional probabilities. Thomas (1975) gave a 

computer algorithm that enumerates all 2 x 2 tables with given margins to implement this 
test. The algorithm of Pagano and Tritchler (1983) computes the Zelen exact p value by 
separately evaluating a numerator and a denominator. A partial enumeration recursion is 
used to obtain the former, and the fast Fourier transform (FFT) is applied to compute 
the latter. Thomas and Gart (1992) gave a program that incorporates an improved direct 
enumeration method. The software package StatXact-Turbo (Cytel Software Corporation 
1992) also performs the Zelen exact test for the constancy of odds ratios in stratified 
data. According to the StatXact manual, the method used is an adaptation of the network 

algorithm of Mehta, Patel, and Wei (1988). However, no specific details are provided. 
All the described algorithms share one feature-they provide exact significance levels 

for the Zelen (1971) exact test only. To date, neither an empirical study of this test nor 
an evaluation of the numerical algorithms proposed for it have been reported. In this 

article, we present an efficient algorithm that enables the exact analysis of interaction 
with a broad class of statistics. It can also be used to evaluate the disparate exact tests 
for homogeneity and their asymptotic counterparts. Before describing the algorithm, we 
first present several statistics pertinent to the problem at hand. 

Let ,/ = 3, and for k > 2, 3k =/- +k. Then H : /1 .= * = /3K = is equivalent 
to Ho : '2 = * * * K = 0. Furthermore, let rk = ak + bk, Ik = max(0, rk - mk), tk 

ak-lk, and Uk = min(rk, n)-lk. With Tk denoting the random variate whose realization 

is tk, 0 < tk < Uk, we consider a family of stratum-additive statistics of the form 

K 

WK = Sk(Tk). 
k=l 
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Table 1. Statistics for the Exact Analysis of Interaction in a Series of 2 x 2 Tables 

Statistic Sk(tk) 

Zelen {( tk +k ) ( ktk-k )} 

Score (tk-E [TkI Rk= rk; ]) 
var[ Tki Rk= rk;| ] 

Likelihood ratio (tk + Ik)ln{(tk + Ik)/ak} 

+(nk- tk - Ik)ln{(n k - tk - k)(nk -ak)} 

+(rk - tk - k) In{(rk- tk - Ik)bk} 

+(mk -rk + tk + Ik)ln{(mk - rk + tk + Ik)/(mk bk)} 

Chi-square nk(tk+lk-k) 2 + mk(rk-tklk-k) 2 

ak(nk-ak) bk(mk-bk) 
Mixture Model (tk - E[TklRk = rk;]) 2 

X2 (tk + Ik- Ek) 2/Vk 

The expressions for sk(tk) for the Zelen statistic and five other statistics appear in Table 
1. We constructed the five statistics from their published asymptotic counterparts (Jones 
et. al. 1989; Liang and Self 1985; Norton 1945; Paul and Donner 1989, 1992; Yusuf et. 
al. 1985). When we contemplate the exact distribution of a statistic for interaction, the 
scale and shift factors invariant upon fixing all the margins of the 2 x 2 x K layout can 
be omitted. Consequently, we see from Table 1 that the exact versions of the X2 and 
mixture model statistics are markedly simple in contrast to their asymptotic formulations 
in the article cited previously. 

Some explanatory remarks concerning these statistics are in order. Consider the 
score statistic. Here, E[.] and var[.] denote the mean and variance, respectively, of the 
kth conditional hypergeometric distribution when 3k = 3. Paul and Donner (1992) 
considered seven versions of the score statistic. In our work, we deploy two of these, 
namely the statistics labeled T3 and T5. For the first one, which is an unconditional score 
statistic, 3 is the unconditional maximum likelihood estimator (mle) of the common 

log-odds ratio, but for the second, the conditional score statistic, it is the conditional 
mle. We also note that for the purpose of exact analysis, the conditional score statistic is 

equivalent to the modified sparse data statistic of Liang and Self (1985). 
The exact version of the likelihood ratio statistic shown in Table 1 derives from that 

named LRT by Jones et. al. (1989), and the chi-square statistic is the one labeled P in 
the article. In both of these, ak and bk correspond to mle's for the cell counts ak and 
bk computed under the common odds ratio model by the iterative proportional fitting 
algorithm. Liang and Self (1985) also presented a sparse data statistic for a mixture 
model. Computing the exact distribution for it in the context of the stratified logit model 
is equivalent to setting sk(tk) = (tk - E[TklRk = rk; 3])2, where /3 is the conditional 
mle of /. Another exact test is obtained from the heterogeneity statistic of Yusuf et. al. 
(1985). In Table 1, its exact version is denoted the X2 statistic. Here, Ek and Vk are the 
central hypergeometric mean and variance, respectively. 
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A common avenue for exact analysis employs a distribution of the relevant statistic 
that is devoid of nuisance parameters (Agresti 1992). Noting that ETk is sufficient for 

/,, and using arguments akin to those of Zelen (1971), we can show that the appropriate 
reference distribution for testing Ho is 

fK(w, t) = Pr[WK = wlETk = t, Rk = rk, k = 1,.. ., K], 

where t = Z(ak - lk). Now, let wo be the observed value of WK. Then, for the Zelen 
statistic, the exact significance level is computed as 

E fK(w,t;Ho), 
w<wo 

but for the other statistics, it is obtained as 

E fK(w,t;Ho). 

An advantage of tests based on p values computed this way is the guaranteed pro- 
tection of the specified type I error rate. Tests based on asymptotic considerations may, 
on the other hand, exhibit erratic features in this regard in finite samples. 

In this article, we describe an efficient algorithm that computes exact distributions and 

significance levels for the family of stratum-additive statistics. This family includes all the 

previously mentioned statistics. For the Zelen statistic, we show that our algorithm is more 
versatile and efficient compared to those published earlier. The interconnections between 
diverse algorithmic approaches are also pointed out. We now present our algorithm for 
exact homogeneity testing in stratified 2 x 2 tables. 

2. RECURSIVE POLYNOMIAL 
MULTIPLICATION (RPM) ALGORITHM 

We show that determination of the null distribution of WK can be depicted as 

evaluating the product of several polynomials. The problem of computing a tail area of 
the distribution then becomes one of multiplying selected terms from these polynomials. 
To establish these assertions, we first derive, in Lemma 1, the null conditional probability 
generating function of WK. Lemma 2 shows that the generating function is obtainable 
from a partial product of a series of bivariate polynomials. Lemma 3 then indicates how 
the null distribution of WK is extracted from the generating function. From here on we 
let Tk = Ti + * * + Tk. 

Lemma 1. For 1| I < I and k < K, the conditional probability generating function 

of Wk under Ho, E[Owk Tk+ = m, Rj = rj, j = 1,..., k; Ho], denoted as Gk(m, 0), is 

{Ak6k(m)}-1 j {ijk 1Wj (t j) (tJ)} 
Stj =m 

where 

6k(m) = Pr[T+ = mlRj = rj,j = 1,..., k; Ho], 
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r3(tj) = tj + lj ) r- tj -Ij 

and 

ak = n (nj mj ) 
j=l rj 

Lemma 2. Define the bivariate polynomial Hk (0, ') as 

k 

k I Eo<x<uj 0X<Sj(X) 7.() }.- 
j=l 

Also let Fk(m, 4) comprise all terms of Hk(0, i) in which the power of 0 is m. Then 

Gk(m, ') = Fk(m, )/{Ak6k(m)}. In particular, GK(t, ) = FK (t, V)/{AK6K(t)}. 

Lemma 3. Suppose Q is the conditional sample space of WK, and let FK(t, b) = 

EW,- c(w). w. Then Ewe. c(w) = AK6K(t), and fK(w, t; Ho) = c(w)/lE,wE c(w)} . 

Lemma 1 is readily proved for k = 2, and the result extended to k > 2 by induction. 
The main portion of the proof in both cases is almost the same as the derivation of the 
convolution of two independent discrete random variables. Lemma 2 is a restatement of 
a basic result in polynomial algebra regarding the coefficient of a term in the convolution 
of several polynomials. Lemma 3 follows from it by means of straightforward algebra. 
We note that lemma 3 indicates that if the complete distribution of WK is extracted from 
the polynomial FK(t, /), then a separate computation of the denominator 6K(t) is not 

necessary. The main question then is how to determine FK (t, 0) in an efficient manner. 
In Theorem 1, proved in Appendix A, we give a recursive algorithm to compute this 

polynomial. 

Theorem 1. For k = 1,..., K, let Nlk = max(O, t+u - u), N2k = min(t, u+), 
andfor Nlk < n < N2k, ml(n) = max(O, n-N2,k -) and m2(n) = min(uk, n-Nl,k-1). 
Also let F1(n, V)) = 7rl(n)bss'(n). Then FK(t, 4') obtains from implementing, for k = 

2,..., K, the recursion 

m2(n) 

Fk(n,i)= E rk(X)Sk(X)Fk_I (n-x) ). (2.1) 
x=ml (n) 

Even with such a recursion, however, computing the complete distribution of WK 
is generally an onerous task, especially if there are many strata. For an exact p value, 
we need the area in a tail of the distribution. Theorem 2 shows how this is obtained in 
an efficient manner by imposing two conditions on recursion (2.1). 

Theorem 2. Let wo be the observed value of WK, and for k < K, and n < t, let 

K K 

/Ik(n) = max E sj(tj), vk(n) = min sj(tj), 
j=k j=k 
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and 

Ak(n) k= E{ l-i (tj) }, 

where the maximization, minimization, and summation, respectively, are over all 
(tk, ..., tK) satisfying tk + - * + tK = n, O < tj < uj, tj integer, j = k, k + 1,...,K. 
Also let LK+1 (n) = VK+1 (n) = 0 and AK+1 (n) = 1 for all n. 

Assume we are at the kth stage of the recursion (2.1) and we consider a term with 
n = t+ and power of b equal to wk. We check the potential for this term to eventually 
converge into the right tail by the following two criteria: 

1. Trimming criterion. Suppose Wk + P/k+l (t - t+) < Wo, then we omit this term in 

the kth stage polynomial Fk(t+, V)) from further consideration. 
2. Augmentation criterion. Suppose wk + /k+1 (t- t+) > WO, then we add the con- 

tribution of all subsequent terms emanating from this term to the right tail as 

Contribution = Contribution + dk (Wk ) Ak+ (t - t), 

where dk(wk) is the coefficient of the term in Fk(t+, 0b) for which the exponent of b is 

Wk. Then we also delete this term from the recursion. 

After trimming and augmenting at stage K of the recursion, we compute the right tail 

probability as Contribution/A1 (t), where A1 (t) = AKSK(t). 
A proof of this theorem appears in Appendix A. To calculate the left tail area, as 

for the Zelen statistic, we just reverse roles of the quantities used in the trimming and 

augmentation criteria. In Appendix B we give a backward induction scheme to compute 
Pk (-), Vk (.), and Ak (.) for all k. Note that backward induction also yields the denominator 
\A (t) = AK6K(t). 

We have implemented the polynomial multiplication algorithm with trimming and 

augmentation in FORTRAN-77. The source code was compiled in an IBM-PC compatible 
environment with the Lahey F77L-EM/32 compiler (Lahey Computer Systems 1993). 
Several practical issues need to be mentioned. The efficiency of the algorithm depends 
on available RAM memory, degree of rounding used for the statistic, and the method 
used for storing the recursion vectors (k, t+, wk) and the coefficients dk(wk). The choice 
of the rounding factor will be discussed subsequently. We used hashing with sequential 
search to store intermediate stage vectors (Sedgewick 1983). Another key issue is whether 
vectors generated at each stage are tested for trimming and augmentation as they are 

generated, or are stored first and tested at the end. The first strategy reduces storage 
and retrieval time but increases the number of tests done. On the other hand, when 
there are many intermediate stage vectors, the second strategy can be quite inefficient. 
Our implementation uses both of these techniques, switching from one to the other as 
the number of vectors varies. A further improvement derives from processing identical 
strata in a single recursion step-this involves a slight modification of the recursion 

given in Theorem 1. Changing the order by which the strata are processed also impacts 
computational efficiency. This will be illustrated in the following, when we compare our 

algorithm with the existing methods. 
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Table 2. BD6.DAT 

Cancer Controls 
80 + g 0 - 79g 80 + g 0-79g 

1 0 9 106 
4 5 26 164 

25 21 29 138 
42 34 27 139 
19 36 18 88 
5 8 0 31 

NOTE: Column headings represent level 
of alcohol consumption. Source: Breslow 
and Day (1980, p. 137). 

3. COMPARISONS WITH OTHER ALGORITHMS 

Because all previous algorithms for the exact analysis of interaction in a series 
of 2 x 2 tables invoke the Zelen statistic only, our comparisons are confined to it. All 

computations reported in this article were done on an IBM compatible PC with a Pentium 

microprocessor running at 60 MHz and with 8 Mb of random access memory. 
We first compare our algorithm with those of Pagano and Tritchler (1983) and 

Thomas and Gart (1992), referred to as P&T and T&G, respectively. P&T was im- 

plemented as in Pagano and Tritchler (1983): the numerator was computed using their 

partial enumeration method, and the denominator with a fast Fourier transform (FFT). 

Double-precision versions of the FFT subroutines given in Press, Flannery, Teukolsky, 
and Vetterling (1992) were used. Specifically, the subroutine TWOFFT was used to com- 

pute the forward transform of two strata at a time, and the subroutine REALFT used 
for computing the inverse transform of the convolution. We also obtained the program 
IC2X2.EXE (version 2.04) from Donald Thomas which implements the algorithms in 
Thomas and Gart (1992) under a 32-bit DOS environment. 

The following data sets highlight the relative features of these algorithms. (1) BD6. 
DAT: These data, stratified by age and shown in Table 2, are reproduced from Breslow 
and Day (1980), and are from a study of alcohol consumption and esophageal cancer. (2) 
P&T91.DAT: These data, with nine strata, are from Pagano and Tritchler (1983). They 

Table 3. P&T91.DAT 

Y=1 Y=O 
= 1 T=0 = 1 T=0 

7 6 1 2 
1 3 5 3 
4 5 6 7 
3 6 7 5 
6 6 7 5 
5 14 2 2 
7 2 5 3 
1 6 7 3 
8 5 7 3 

NOTE: Strata order different from 
the original. Source: Pagano and 
Tritchler (1983). 
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Table 4. Exact Zelen Test Computing Times of Four Algorithms 

CPU Time (seconds) 
Data set p value Sort P&T (1983) T&G (1993) RPM SXT 

BD6.DAT .09924 No 5 <1 2 4 
Asc 4 <1 2 4 
Des 7 <1 1 4 

P&T91.DAT .56745 No 60 7 2 4 
Asc 55 7 2 4 
Des 76 7 1 4 

P&T92.DAT .07688 No 6908 880 22 28 
Asc 6905 880 29 36 
Des 8811 880 20 42 

P&T181.DAT .69962 No Inf Inf 53 23 
Asc Inf Inf 32 18 
Des Inf Inf 22 16 

NOTE: Sorting by range of the stratum hypergeometric distribution (Asc = ascending sort, 
Des = descending sort); Inf = Infeasible, which means more than 24 hours; SXT = StatXact- 
Turbo version 2.11 run at four significant digit accuracy; rounding factor used for RPM = 
104 

appear in Table 3. (3) P&T92.DAT: These data were generated from P&T91.DAT by 
doubling each cell count. (4) P&T181.DAT: Here, a data set with 18 strata was formed 
from P&T91.DAT by attaching to it a copy of itself. 

Table 4 shows the comparative results for these data. In all cases, P&T is the least 
efficient of the three methods. The computing times of P&T and T&G rise rapidly as 
the number of strata, or the stratum size, increases. In the example with K = 18, both 
these methods did not converge in 24 hours. The computing time of RPM, on the other 
hand, increased only moderately. The efficiency of T&G is unaffected by sorting as 
the program always sorts the strata prior to computation. P&T performs best when the 
strata are sorted in an increasing order by stratum range, and RPM performs best when 
a decreasing sort is used. 

We now compare the RPM method with the network algorithm for the homogeneity 
testing problem. The latter has not been published, but a version of it is programmed in 
StatXact-Turbo (Cytel Software Corporation 1992). Like the other algorithms, it too uses 
the Zelen statistic only. Our comparison of these two algorithms rests on the following 
theoretical result. 

Theorem 3. The RPM algorithm for testing interaction in several 2 x 2 tables is 
also a network algorithm. 

The proof of this appears in Appendix A. There we show a one-to-one correspon- 
dence between all the steps of the RPM algorithm and a network algorithm for the 

problem. Given this equivalence, we were not surprised to find that the computing times 
of the two methods were of the same order of magnitude. Differences in both directions 
were observed; these may be due to the specifics of implementation or, for larger prob- 
lems, they may flow from the possible use in StatXact of some Monte Carlo method. 
Publication of the details of the StatXact algorithm is needed to resolve these questions. 
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Table 5. Pregnancy Data Sets 

PREG1.DAT (K = 7) PREG2.DAT (K = 8) 
Y=1 Y=O Y=1 Y=O 

=1 T =0 = =0 = 1 =0 = 1 =0 

4 74 2 74 24 54 18 58 
3 77 3 85 2 48 9 40 
8 31 3 37 6 74 8 80 
4 11 7 7 5 34 14 26 
0 18 7 18 3 12 3 11 
1 96 1 97 35 28 33 30 

12 48 13 40 0 18 9 16 
1 59 1 52 

Source: Goldstein, Sacks, and Chalmers (1987). 

Now consider the matter of accuracy. For the RPM algorithm, the results in Table 
4 were obtained with the rounding factor 104 applied to Sk(tk). The resulting p values 

agreed with those from StatXact, P&T (with one exception noted in the following), and 
T&G to four significant digits. This issue is considered further in Section 5. 

For some data, we noted that P&T produced highly inaccurate results. The source of 
the errors was traced to the use of the FFT to compute the denominator, 6K(t), for data 
sets in which it is very small. We illustrate this point using BD6.DAT. For these data, the 
correct 6K(t), as determined by backward induction and verified by direct computation 
of the conditional distribution for the common odds ratio model, is .5236 x 10-1. The 
FFT method, however, gave 6K(t) = .1186 x 10-15. Thus, while the correct Zelen 
statistic exact p value is .09924, P&T yields .0004381. The impact of the FFT-induced 
error on testing the null hypothesis in the common odds ratio model is inconsequential 
(Vollset, Hirji, and Elashoff 1991); however, for testing the heterogeneity of odds ratios, 
that is seen not to be the case. For BD6.DAT, the unconditional and conditional score 

asymptotic p values are .1074 and .1079, respectively. With such data, the algorithm of 

Pagano and Tritchler (1983) may thus yield results substantially less precise compared 
to that provided by an approximate test. 

4. APPLICATIONS 

Using the Zelen, score, and X2 statistics, we present analyses of interaction in 
three real data sets. The first, BD6.DAT, is given in Table 2. The other two, labeled 
PREG1.DAT and PREG2.DAT in Table 5, are from a review of the use of hormone 
administration for maintenance of pregnancy (Goldstein, Sacks, and Chalmers 1987). 
PREG1.DAT is from table 38.9 in that report, and shows the effect of progestogens on 
miscarriage, stillbirth, or neonatal death. PREG2.DAT is extracted from table 38.10 of 
the report; we have deleted two uninformative strata with no events. It shows the effect 
of progestogens on prematurity as observed in ten studies. 

The results of our analyses are in Table 6. Consider first BD6.DAT. The three 
exact p values here are similar, ranging from .09 to .10. The two score asymptotic p 
values are slightly larger. But the X2 asymptotic p value is much smaller. This statistic, 
advocated by Yusuf et al. (1985), is identical to the asymptotic statistic for homogeneity 
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Table 6. Interaction Test Results for BD6.DAT, PREG1.DAT, and PREG2.DAT 

CPU Time p value 
Data: Statistic Exact Exact Asymptotic 

BD6.DAT 
Zelen 1 .09924 

Conditional Score 1 .09168 .10789 
Unconditional Score 1 .09151 .10739 

X 2 1 .08563 .00682 
PREG1.DAT 

Zelen 2 .05935 
Conditional Score 2 .07921 .08758 

Unconditional Score 2 .07919 .08750 
X 2 .08090 .09211 

PREG2.DAT 
Zelen 16 .00761 

Conditional Score 17 .01132 .01542 
Unconditional Score 17 .01132 .01538 

X2 17 .01203 .01809 
NOTE: Data sorted in a descending order by range of hypergeometric dis- 
tribution; rounding factor used for RPM is 104. 

of Zelen (1971). Halperin et al. (1977) critiqued the validity of the asymptotic distribution 

designated for it by Zelen (1971). However, for BD6.DAT, as in the two other examples 
to follow, the exact X2 p value is similar to the two exact score statistic p values. The 

problem may therefore lie not with the use of the statistic per se as with the validity of 
the approximations used for it. 

Now consider the results for PREG1.DAT and PREG2.DAT. For both these data sets 
we note that, in terms of exact analysis, the Zelen statistic provides stronger evidence 
for heterogeneity than do the other three. Moreover, the exact p values for these three 
statistics are similar. The Zelen statistic is the only one in current use. This discordance 
between it and the other statistics warrants further study. 

It is pertinent to mention here that in the three examples described earlier the total 

sample size is not small, and even the counts in the strata are not that low. That even 
for such data exact and asymptotic p values differ to the extent they do, both between 
and within themselves indicates the need for an appropriate evaluation of the ways of 

computing exact and asymptotic significance levels. Such an evaluation should examine 
issues like conservativeness, bias, and power over a comprehensive configuration of 
model parameters and data (Agresti 1992). 

Finally, we comment on the mixture model statistic. Liang and Self (1985) derived 
it from a model distinct from the logit model assumed by us. However, we use this 
statistic to address the following question: If the logit model is the true model for the 

data, does the use of the mixture model statistic yield significance levels similar to 
those from statistics based on the correct model? Ordinarily, answers to such questions 
are confounded by inaccuracies in the asymptotics employed. The algorithm we give 
permits us to circumvent that problem. From the comparisons done with several data 

sets, we found that the mixture model statistic tends to give exact p values markedly 
different from those derived from other statistics. For example, while the exact p values 
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for BD6.DAT for the four statistics shown in Table 6 are between .09 and .10, the exact 
mixture model statistic p value is .2095. A more detailed study of this issue is also 
warranted. 

5. ALGORITHMS FOR EXACT ANALYSIS 

We now explore the linkages between the algorithms for exact inference on the 
interaction in a series of 2 x 2 tables. Let t = (tl,..., tK), and consider the set T = 
{t : tl + * + tK = t,0 < tk < Uk,k = 1,..., K}. Each element of T corresponds to 
a 2 x 2 x K contingency table with the margins fixed. 

5.1 CELL-WISE VERSUS STAGE-WISE RECURSION 

We define a cell-wise recursive process for computing the exact distribution of WK 
as one founded upon generation of the individual members of T. In terms of polynomial 
multiplication, this involves selection of a term at a time from each polynomial 

E 7j(x)OxbSJ(x), 

O<x<Uj 

provided the K-fold combination of terms is constrained so that the powers of 0 sum to t. 
Repetitive multiplication, over a maximum VK = (1 + u) ... (1 + UK) combinations of 
such terms, generates the required distribution. In the network context, cell-wise recursion 
enumerates all the paths in the network. The effort entailed in cell-wise recursion rises 
rapidly as K or max(UK), and hence VK, increase. The computation of the numerator 
in the algorithm of Pagano and Tritchler (1983) uses cell-wise recursion. Judging from 
its empirical performance and the partial description given in the article, the algorithm 
of Thomas and Gart (1992) also appears to employ cell-wise recursion. When we need 
a tail area, cell-wise recursion is improved by trimming and augmentation. Pagano and 
Tritchler (1983) gave a technique to trim at the last two steps of generating an element of 
T. The backward-induction-derived criteria are also applicable in the cell-wise context, 
provided the statistic under consideration is stratum additive. 

Another avenue to compute the exact distribution of WK is the stage-wise recursive 
approach. This is what we implemented. Let tk = (tll,..., tk), and Tk = {tk : max(0, t- 

(Uk+l + + UK)) < t+ < min(u ,t),0 < tj < u,j = 1,... ,k}. The T = TK. 
The stage-wise approach is based on generating the classes of pairs {(tK, wk) tk e 

Tk}, k = 1,..., K in a recursive manner. All computations at a stage are completed 
before embarking on the next one; unlike in cell-wise recursion, there is no return to an 
earlier stage. In polynomial terms, this implies performing recursion (2.1) for all powers 
of 0 and 0, before proceeding further, while under network theory it requires processing 
all records at all the nodes of a particular stage before going on. 

Stage-wise recursion derives its efficiency from the aggregation of multiple sub- 
sequences in Tk into the same pair (tK,wk). This obviates separate computation for 
each subsequence, and enables joint performance of the trimming and augmentation 
tests. We implemented the polynomial approach using both the stage-wise and the cell- 
wise approach. The former was distinctly more efficient. For example, for the data set 
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P&T92.DAT with K = 9, the cell-wise method with descending sort, and trimming and 

augmentation using backward induction bounds, gave the Zelen test exact p value in 229 
seconds; the stage-wise approach took only 21 seconds. 

We note that when K is small, or with moderately large K but sparse strata, the 
Thomas and Gart (1992) cell-wise algorithm is very efficient, outperforming all the other 
methods. However, the differences in computing time between various methods in such 

problems do not exceed a few seconds. This cell-wise approach, and more so that of 

Pagano and Tritchler (1983), can witness a dramatic decrease in efficiency as the range 
of the stratum hypergeometric distributions, or the number of strata increase. Thus, for 
P&T92.DAT, the cell-wise polynomial approach at 229 seconds is about 30 times faster 
than the Pagano and Tritchler (1983) approach, and four times faster than the Thomas and 
Gart (1992) algorithm (see Tab. 4). This is due to the use of backward-induction-derived 

trimming and augmentation criteria. 

Computer implementation of the cell-wise approach requires less memory than the 

stage-wise approach does. The higher memory requirements of the latter are necessitated 

by the need to store, for the current and previous stage, all triplets (t+, Wk, dk(wk)). In 
order to keep the number of records at a manageable level, wk can be rounded. This 
tends to introduce inaccuracies in the final result. If a low rounding factor is used, a result 

generally less accurate than that from the cell-wise approach may ensue. The question 
of rounding in stage-wise algorithms arises for other problems as well. For example, 
for stratified linear rank statistics, the StatXact-Turbo manual recommends the default 

rounding factor 103. For the problem of exact interaction analysis, we experimented with 
factors ranging from 102 to 106 in a variety of data, and for different statistics. Our 

general conclusion is that the rounding factor 104 suffices to rapidly give p values almost 

always accurate to four significant digits. That holds for data with very small or very 
large p values, and also for data for which the cell-wise approach is either too slow or 
infeasible. The four significant digit concordance of the p values obtained by the different 
methods for the data in Table 4 illustrate this claim. 

An additional point of note is that the stage-wise approach is applicable to con- 

ditionally stratum-additive statistics only. All the statistics described earlier are of this 

type. A commonly used large sample statistic violating this property is the Breslow and 

Day (1980) statistic for homogeneity. For performing exact analysis with this statistic 
we may set 

Sk (tk) 
- (t - ek [ml]) 

Vk[0m] 

where /3m is the Mantel-Haenszel estimate of the common log-odds ratio, and ek[/n] 
and vk[/3m] are asymptotic estimates of E[Tk Rk;/3m] and var[TklRk; /m], respectively. 
The fact that /3m depends on the interior cell values makes the statistic nonstratum- 

additive, precluding the use of the stage-wise approach for it. Furthermore, we note that 
for this statistic, even if a cell-wise recursive approach was used, we cannot apply the 
backward-induction-derived trimming and augmentation criteria, since even the use of 
these is confined to stratum-additive statistics. Another statistic not conditionally stratum- 
additive is that of Cochran (1954). The development of efficient algorithms for exact 

analysis using such statistics is an unexplored research area. 
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5.2 POLYNOMIAL GENERATION VERSUS POLYNOMIAL EVALUATION 

Another conceptual distinction in algorithmic design is between polynomial gen- 
eration and polynomial evaluation. Both the complete distribution of WK and its tail 
are embodied in the polynomial FK(t, 4'). The cell-wise and stage-wise approaches are 

polynomial generation approaches because they deploy recursion (2.1) to either directly 
construct this polynomial, or to compute the sum of the coefficients of selected terms 
of the polynomial. A polynomial evaluation approach, on the other hand, uses recursion 
(2.1) to evaluate the polynomial at several values of b, and then uses a polynomial 
inversion algorithm to construct the required polynomial. If the evaluations are done 
at the complex roots of unity, the fast Fourier transform is used in the inversion step 
(Press et al. 1992). The use of trimming and augmentation has not been developed for 
this approach. Thus, even a significance level computation necessitates the generation of 
the entire distribution. Furthermore, rounding errors associated with the Fourier trans- 
form introduce inaccuracies in the final result (Duhamel and Vetterli 1991). The memory 
requirements of the evaluation approach are comparable to those of cell-wise recursion. 

The algorithm of Pagano and Tritchler (1983) is an amalgam of polynomial genera- 
tion and evaluation; the numerator is computed by cell-wise polynomial generation, and 
the denominator by an FFT-based evaluation approach. A comprehensive FFT approach 
for this problem would compute both the numerator and the denominator using the FFT. 
However, the potential for error noted earlier would be compounded by the introduction 
of errors in both the numerator and the denominator. Vollset, Hirji, and Elashoff (1991) 
showed that for the common odds ratio model the FFT method gives precise p values but 
very inaccurate confidence limits. Our results show that for testing interaction in several 
2 x 2 tables, the FFT-derived p values can be highly inaccurate. Moreover, this method 
is less efficient compared to the other alternatives. The tendency to yield substantially 
imprecise p values in the Pagano and Tritchler (1983) algorithm can be rectified by using 
backward induction instead of the FFT to compute the denominator. This, however, does 
not improve efficiency, since computation of the denominator ordinarily takes up less 
than .1% of the total time. 

To summarize, we have shown that the algorithmic approaches for exact analysis 
of interaction in stratified 2x2 tables are based, in one way or another, upon recursion 
(2.1). This recursion embodies all the elements of the isomarginal set T. What distin- 
guishes the algorithms is how the recursion is used: in a cell-wise or stage-wise manner, 
or for an evaluative or generative purpose. Connecting and contrasting computational 
algorithms through such a scheme has ramifications beyond the problem under study, 
and is applicable to many models for exact analysis of discrete and continuous data. 

In conclusion, the recursive polynomial multiplication method presented in this arti- 
cle gives accurate exact significance levels for a variety of conditionally stratum-additive 
statistics in a reasonable time even for moderately large data sets. Using this algorithm, 
we have embarked on a comprehensive study of exact and asymptotic tests for interaction 
in several 2 x 2 tables. In addition to the statistics already mentioned, we will implement 
our algorithm for the exact likelihood ratio and chi-square statistics. The results will be 
reported in a future article. A FORTRAN program implementing the RPM method is 
available from the authors free of charge. 
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APPENDIXES 

A. PROOFS OF THEOREMS 

We now give proofs of Theorems 1, 2, and 3. 

Proof of Theorem 1: This theorem is proved by consideration of the product of rele- 
vant terms of Hk-1(0, ,O) with the terms of the kth stratum polynomial to get terms of 
Hk (0, 4) in which the power of 0 is n. O 

Proof of Theorem 2: It is clear that vectors identified by the trimming criterion cannot 
be in the required tail of the distribution, and dropping them does not affect the p value. 
Furthermore, the augmentation criterion identifies a group of vectors all of which will 
be in the required tail of the distribution. The total probability of this group of vectors 
is Pr[T+ =- t+,Wk = Wk,WK > wollT+ t,Rj = rj,j = 1,...,k], which can be 
written as Pr[T+ =t+,Wk wkIT+ = t, Rj rj,j = l,...,k]x Pr[WK > wojT+ = 
t, Wk - k, T+ = t, Rj - rj,j = ,..., k]. The expression dk(wk)>k+l(t - t) is, 
within a normalization constant, just this probability. o 

Proof of Theorem 3: We show that a network algorithm for this problem is actually 
a pictorial representation of recursion (2.1). Consider an acyclic network with (K + 1) 
stages. At stage 0, we have one node (0,0); at stage K, we also have a single node 
(K, t); and at stage k, for 0 < k < K, we have nodes denoted by (k, t+), where t+ is 
the cumulative sum tl + + tk. For each k, let Nlk < t+ < N2k, with Nlk and N2k 
as defined in Theorem 1. Then (k, Nlk), (k, Nlk + 1),... , (k, N2k) constitute the set of 
nodes for stage k. 

Now suppose from each node (k - 1, t+_l) at stage k- 1, there is an arc to a node 
in stage k, (k, t+), provided the restrictions on the final value of tL +.. + tK and on 
the value of each tk are not violated. For each such arc, let 7rk(t+ - t+) = 7rk(tk) be 

the probability arc length, and sk(t+ - tk_ ) = Sk(tk) be the rank length. In network 

theory parlance, the set of values of Wk with cumulative sum t+ constitutes the set of 
records at node (k, t ). 

With these terminological conventions in mind, consider now the recursion (2.1). 
Each term of Fk(n, ib) is then equivalent to a record at node (k, n). A term in the 
summation in the right side of (2.1) represents the contribution of an arc from a node 

(k - 1, n- x) at stage k - 1 to this node at stage k. The multiplication of coefficients 
in this summation is equivalent to updating the probability length along this arc, while 

adding the powers of ) is identical to updating the cumulative rank length. Furthermore, 
the shortest and longest paths computed for this network are identical to the quantities 
vk(n) and PIk(n) given in Theorem 2, and are used for an identical purpose. o 

B. BACKWARD INDUCTION SCHEME 

For k < K, and q < t, let P,k(q) = maxZ k sj(tj), Vk(q) = minEKJ s(t), 
and Ak (q) = E { fJ=k rj (t) }, where the maximization, minimization, and summation, 
respectively, are over all (tk,.. , tK) satisfying j-k tj q, 0 < tj < Uj, tj integer, 
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j = k, k + 1,..., K. For any of the Pk(q), Vk(q) or Ak(q) to be defined, we must have 
that >kjl Uk > q. 

Let Nk = max(O,t-u-), Nk=min(t, u+-u),andfor Nk < q< N2k, m (q) 
= max(0, q - N2k) and m2k(q) = min(uk, q - NA). If, for k < K, and j - k, k + 
1,..., K, tj units are allocated to jth stage, and Yk = tk + + tK, then Yk and tk 
satisfy 

Nl*,k- < k < * (B.1) 

and, with Yk fixed, 

mk (yk) < tk < m2k(yk). (B.2) 

Consider first k = K. Then for N* < q < N*K it is clear that ,aK(q) = K(q) 

SK(q), and AK(q) = 7rK(q). For k < K- 1, to compute Ik(Yk), vk(Yk), Ak(yk), we 
implement, for Yk allowable by (B.1), and tk allowable by (B.2), 

/k (Yk) = max { s(tk) + Uk+1 (Yk -tk) }, 
tk 

Vk(Yk) = min { k(tk) + vk+l (Yk -tk) }, 
tk 

and 

m2k (Ck) 

Ak (Yk) = E k (tk)Ak+1 (Yk 
- 

tk) 
tk-=m-k(yk) 

Implementing these recursions in K - 1 stages for k = K - 1, K- 2,..., 2, 1, 
yields, by the optimality principle, the required maximum, minimum, and sum (Hadley 
1964). 
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