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ABSTRACT OF THE THESIS

Toneless Bandpass Dynamic Element Matching

by
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Professor Sudhakar Pamarti, Chair

Dynamic element matching (DEM) has been widely researched in the domain of digital-

to-analog converters. Different architectures, noise shapes and ever higher order shaping

have been devised. However, beyond first order, no schemes guarantee the absence of tones.

Herein presents a band-pass shaping scheme that is provably toneless based on tree structured

DEM. This scheme does incur a noise penalty and additional hardware. However, the former

of which can be controlled and the later of which is only moderate.
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1 Introduction

Communications, instrumentation, and radar applications commonly process high frequency,

band-pass signals. Such signals may come from a variety of media but are often processed by

heterodyne and direct conversion architectures. Such architectures process signals through

a series of mixers, filters and local oscillators in one or multiple up-conversion or down-

conversion stages. Direct radio frequency (RF) sampling does away with most of these

analog components. Instead, signals are sampled at their original bands. As a result, much

of the signal processing is brought into the digital domain which allows for simpler and more

flexible systems. A key component to direct RF sampling is the high-speed digital-to-analog

converter (DAC).

Direct RF sampling however imposes severe linearity constraints on the DAC. High-speed

design necessitates small devices to reduce capacitance which is incongruent with device-to-

device matching; shrinking devices accentuates statistical differences between them. If the

DAC’s devices are excessively mismatched, the sum contribution of those devices making up

the output (be it current or voltage), will not track the DAC code. This leads to distortion

in the intended signal. Distortion can manifest itself as spectral leakage, harmonics and poor

reception quality, all of which are undesired. Effectively, the DAC does not behave linearly

and techniques that suppress said distortion are desired. Dynamic element matching (DEM)

is one such technique and is used in conjunction with certain DAC architectures.

A common DAC architecture is the thermometer DAC. This architecture is composed of

many identical 1 bit DACs, called unit cells. In the simplest implementation, each unit cell

can either contribute to the output or not. An example would be an array of CMOS current

sources which are individually switched between the output or a dummy load. However,

notice that for all DAC codes, except when all devices are on or off, the output can be taken

from a plurality of unit cell combinations. A DAC code of 1 necessitates a single unit cell but

any unit cell can be chosen. DEM takes advantage of this redundancy within thermometer
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DACs. By carefully choosing DAC elements from one time step to the next, non-linearity

arising from mismatched elements is mitigated. However, linearity does not come for free:

noise and tones arise. Both effects are new and occur in addition to existing circuit noise.

The first effect of DEM, noise, can be remedied by being shaped. This shaping is anal-

ogous to how delta sigma ADCs and DACs suppress quantization error in low resolution

DACs. In the case of direct RF sampling, RF signals are often band-pass in nature and

shaping can suppress DEM noise in such a band. This is called band-pass DEM, or equiva-

lently band-stop shaping. The later term emphasizes the suppression of in-band noise and is

used synonymously in this text. With noise shaping, RF signals in said band are captured

or constructed (for ADC and DACs, respectively) with higher fidelity. Tones, on the other

hand, have been more difficult to remedy. They appear as extra signals, which in fact do not

exist, thus compromising desired signal fidelity. The central contribution proposed herein is

to eliminate tones in band-pass DEM.

Two band-pass DEM schemes are proposed: delta-sigma modulated (DSM) N-path DEM

and reset-and-dither DEM. These two schemes eliminate tones while keeping the necessary

noise shaping. Additionally, both schemes are arbitrarily tunable. A key benefit of the

aforementioned direct RF sampling is in its flexibility and band-pass DEM should not limit

which bands can be tuned. Both schemes are in keeping with such philosophy. In this text,

DSM N-path is treated first. Its noise performance was poorer then the second proposal and

thus only covered in modest detail. The dither-and-reset DEM is covered secondly, along

with analysis of its tonal, noise performance and hardware impacts. Summaries of both

techniques are covered at the end.
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2 Dynamic Element Matching

As stated in the introduction, dynamic element matching (DEM) is a technique to linearise

unit cell mismatches in thermometer DACs. Taking a thermometer current DAC, each unit

cell is a current source where all current sources are ideally the same. These cells are turned

on or off depending on the desired output current. The DAC code word represent this desired

output current. For instance, if the code word is three, three unit cells are switched to the

output. All the unit cells are ideally the same so hypothetically any set of three can be

chosen. However, due to mismatch, this is not the case.

2.1 Early Work

Take the DAC shown in figure 1, it is composed of two unit current sources and generates one

of three levels. Ideally, I1 and I2 are the same but they are not. As a result, the middle code

word (’01’) will not be precisely halfway between 0 and I1 + I2. Take the dotted waveform

of figure 2. The DAC output, shown in the solid line, attempts to output this waveform but

between t1 and t2, I1 or I2 can be selected. If I1 is selected, the output will be below the

ideal value (red). If I2 is selected, the output is slightly above the ideal value (blue).

Figure 1: Three level DAC

The ideal value cannot be reached directly at any single point in time. However, the ideal

value could be attained on average over time. One approach is to alternate between I1 or I2

whenever the middle level is requested. This was proposed in [1] and for the sake of this text

will be called clocked averaging. The resulting waveform is shown in figure 3. Now between
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Figure 2: Waveform without DEM

t1 and t2, the waveform is on average 1
2
(I1 + I2) and only limited by dynamic effects such

as clock timing. Non-linearity is now reduced but the output contains an unwanted sinusoid

proportional to the cell mismatch. Effectively, the power which would otherwise reside in

the signal’s harmonics now resides in a tone at half the sampling rate.

Figure 3: Waveform with DEM

Instead of simply alternating between unit cells, another approach would be to randomly

choose unit cells, as first proposed in [2]. A possible waveform is shown in figure 4. As cells

are chosen randomly, no extraneous tones are produced. Instead, the power which would

otherwise reside in the signal’s harmonics, or in a tone at half the sampling rate, now resides

in white noise throughout the spectrum. Tones has now been traded for noise. This noise

can be high-pass shaped as in data weighted averaging (DWA) in [3] if the intended signal is

at low frequencies. However, DWA reintroduces tones. The trade-off between in-band noise
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and tones is a theme in DEM.

Figure 4: Waveform with DEM

2.2 Classes of DEM

Starting from this early work, two general classes of DEM architectures have since emerged:

vector-based shaping and tree-structured shaping. Vector-based shaping was first introduced

in [4] and can be thought of as an array of single bit delta sigma modulators with a shared

quantizer, called a vector quantizer. The scheme is shown in figure 5. Double arrows denote

vectors and each vector has the same size as the number of DAC unit cells. The DAC code

word enters as x[n] into the vector quantizer. The vector quantizer sorts ȳ[n] and selects a

x[n] number of the largest ȳ[n] values. The largest ȳ[n] are denoted by corresponding ones

in x̄[n], with the remainder being zero. For instance, if ȳ[n0] = [0.3, 0.2, 0.4] and x[n0] = 2,

ȳ[n0]’s two largest entries are the first and last values; the output becomes x̄[n0] = [1, 0, 1].

The selection vector, x̄[n], in turn enables the appropriate unit cells.

The internal variable ȳ[n] is computed from an array of feedback filters from ȳ[n−1] and

x̄[n − 1]. The original work featured a error feedback filter structure and is shown here as

well. For high-pass shaping, H(z) = 1 − z−1. A simple negation and delay is used within

figure 5. However, this scheme offers shaping beyond first order as many transfer functions

can be employed in H(z). Another advantage is its low noise overhead but often has an
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Figure 5: Vector-based shaping

expensive implementation due to the vector quantizer [5]. Sorting through many fixed-point

numbers becomes prohibitive the larger the ȳ[n] vector becomes.

The second architecture is tree-structured shaping and was introduced in [6]. As the

name suggests, this architecture is in a form of a binary tree. The diagram of figure 6 shows

its structure. The goal is to control many unit cells from a single code word. The multi-bit

DAC code word, x[n] enters the tree at the ”trunk”. Then, the tree repeatedly splits code

words into pairs of progressively smaller bit-width codewords until they are single bits. The

codewords reduce by one bit at each level. Switching blocks within each layer perform this

function. At the tree’s leaves, single bit codes (x1[n] through x8[n]) control the unit cells.

For the example 3 bit DAC shown, the first layer splits the 4 bit code x[n], representing

DAC levels 0 through 8, into two 3 bit codes x3,1[n] and x3,2[n]. The process repeats till

x1[n] through x8[n] are generated.

Figure 6: Tree structure DEM
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Figure 7 shows the switching block structure. To reduce the codeword width, the main

path splits and divides by two the incoming codeword. The codeword can be odd which

would cause loss of information upon division as all xk−1[n] are integers. Therefore, before

division, a sequence generator produces s[n] which is added and subtracted from each branch

to ensure a clean division. Its possible values are ±1 if the codeword is odd or 0 if even.

The sequence O[n] indicates the parity of the incoming codeword. The sequence generator

chooses ±1 or 0 given the codeword parity. The advantage of this architecture is that noise

shaping is fully determined by the weighted sum of power spectral densities (PSD) of all said

sequence generators [7]. Hence, the DEM PSD is quite predictable. Also, tree-structured

shaping is easier to implement with many elements [8]. The sequence generator is described

next.

Figure 7: Switching block

The sequence generator lies at the heart of this scheme. To describe it, an example high-

pass sequence generator is shown in figure 8. Starting at the quantizer, the parity indicator

O[n] indicates whether s[n] should be ±1 or 0; the quantizer quantizes y[n] + d[n] only on

odd parities of x[n], otherwise it is zero. Negative feedback is created by feeding −s[n] into

an integrator. The integrator sums the output sequence s[n] to generate y[n]. By negative

feedback, it is ensured that the sum of s[n] is bounded which guarantees a null in the PSD

at zero frequency [7].
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The dither, d[n], ensures toneless behaviour and was subsequently proven to be toneless

[9]. By adding an independent and identically distributed sequence, any repetition is broken.

If the integrator (y[n]) is zero, dither causes a random±1 output to be made by the quantizer,

independent of prior states.

Figure 8: High-pass sequence generator

2.3 Toneless DEM

Many implementation and extensions have been reported from the two classes above. A

few examples include higher order shaping [8] [10], band-pass DEM [11] [12] [13] [10] [14]

and combined vector-based and tree-structured shaping [15]. However, toneless behaviour

has not been guaranteed beyond first order low-pass DEM. Tones are not as common in

such higher order schemes, but they do occur. This is demonstrated in the noise of figure 9

from a vector-based band-pass DEM shaper. Not only are these artefacts unwanted in many

applications as outlined in the introduction, they are difficult to predict. Simulation of tones

often require long Monte Carlo simulations and additional design margin [5]. This points to

the need to develop other toneless DEM schemes, including flexible band-pass schemes for

the direct RF sampling applications.

To extend toneless guarantees to bandpass DEM, both classes were examined. Between

the two DEM classes, complete removal of tones has not been proven in first order vector

based shaping. As such, the tree-structured architecture was developed further. The ob-

jective here will be to translate high-pass to band-stop noise shaping while preserving the

absence of tones. Two schemes are presented.
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Figure 9: 2nd order vector-based DEM PSD

So called delta sigma modulator (DSM) N-path DEM, this scheme extends high-pass

shaping to band-stop shaping using modulated N-path filters within tree structured DEM.

N-path filters alone have been used within vector-based shaping and are straightforward

to implement [13] [17]. Tuning and noise limitations are present, the former of which is

remedied here with a DSM. The additional modulator toggles the number of paths to allow

arbitrary band tuning. These features can be made while preserving toneless guarantees. Its

noise performance was not satisfactory so this scheme is not emphasized in this work.

The second proposed scheme, so-called reset-and-dither DEM modifies previously re-

ported on 2nd-order filter shaping [11] [14] [16]. This literature does not offer toneless

guarantees. At best, hypothesises are provided in [16]. This work guarantees toneless oper-

ation when reset and dither is added. As such, tones are removed entirely, eliminating the

design and system difficulties attributed to them. Noise performance and implementation

considerations are also detailed within.

Closing out this section, it is instructive to define tonelessness. To be consistent with

prior art in this domain [9], the same definition is adopted here. For a sequence y[n] to
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be toneless, the expected periodogram must be finitely bounded as its length approaches

infinity.

lim
N→∞

E{PN(ejω)} ≤ K <∞, (1)

where the periodogram of y[n] is

PN(ejω) =
1

N

∣∣∣∣∣
N−1∑
n=0

y[n]e−jωn

∣∣∣∣∣
2

(2)
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3 DSM N-path DEM

The first toneless band-pass scheme proposed is DSM N-path DEM. It is based off tree-

structured shaping: the tree and the splitting blocks remain the same. Only the sequence

generator is modified. As such, only the sequence generator will be described.

3.1 Proposed Structure

DSM N-path DEM modifies the sequence generators to an N-path filter approach. In a N-

path structure, each path of a bank of identical filters (integrators in this case) is sequentially

selected. Here, individual paths contain integrators which makes them indistinguishable from

figure 8. However, with multiple paths, the prototype first order low-pass filter is transformed

into a band-pass response. This approach has been used with vector-based shaping in [13]

[14], [17] but not in a tree-structured architecture. Either way, the bands can only be placed

on rational multiples of the sampling rate. Hence, a second adaptation is made such that

band centres can be placed arbitrarily. As an apostle of delta sigma modulation, non-integer

divisions can be attained by way of a delta sigma modulator (DSM).

The proposed structure, DSM n-path DEM, is shown in figure 10. As with N-path filters,

a bank of integrators is placed inside the loop. The rest of the loop, including the quantizer,

remains the same as a 1st order tree structured DEM. The quantizer outputs ±1 or 0 if

x[n] is odd or even, respectively. The dither d[n] causes a random decision to be taken

when the selected path is zero. Switches selects a path at any given time but not all paths

would be selected equally. A DSM coordinates whether to rotate through N or N-1 paths

and a counter selects the required integrator from one clock cycle to the next. The DSM

and counter can be shared amongst all the s-blocks in the tree. For this scheme, a simple

first order DSM without dither was used. As for the number of paths (N), it is dictated

by the lowest frequency to be tuned instead of the tuning resolution as with a traditional

N-path implementation. For example, to tune to a center frequency of 1/3.5 = 0.2857, 4

11



integrators would be needed instead of 7. Correspondingly, the path selection pattern would

be 1,2,3,1,2,3,4... .

Figure 10: DSM N-path Sequence Generator

The path selection pattern is fully determined by the desired center frequency. As such

given an input O[n], this scheme is proved toneless as per theorem 1. If the s[n] sequences of

all s-blocks which make up the tree are toneless then the generated DEM noise will be toneless

as per [7]. Evidently all s-blocks are identical so the entire DEM is toneless. Theorem 1

makes no statements on how path selection is performed so long it is predetermined; hence,

many patterns can be used.

3.2 Simulation

Simulated DEM noise spectra and SNRs are shown in figure 11, with simulation conditions

were as follows. The input waveform was a -6dBFS 4th order delta sigma modulated sinu-

soid. This sinusoid was 1 percent offset from each respective center frequency. The DAC

constituted of 16 elements with 1 percent mismatch. Normalized center frequencies of 0.15,

0.3 and 0.45 are shown along with the non-DSM tree-structured shaper. The required num-

ber of paths were 7, 4 and 3, respectively instead of 10 paths without the DSM selection

strategy. Bandpass shaping is indeed confirmed, along with the lack of tones. The noise

minimum is band frequency dependent, generally following an inverse relationship. Because
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of this reason, this scheme works best at lower center frequencies and OSRs even though no

null is attained.

Figure 11: DSM n-Path DEM NSD at different fc

Two other phenomena are of note. First, there is a persistent null at 0. The running

sum is still bounded, albeit with multiple (but finite number of) integrators, and as a result

a null at 0 will occur [7]. Secondly, shallower troughs are generated at band harmonics and

their aliases, the clearest of which is the second and third harmonics of the 0.15 band located

at 0.3 and 0.45, respectively.

Due the phenomena above and possibly others, DSM N-path does not shape as well

as the second scheme in this work. Although, not covered yet, this is seen by comparing

figures 11 and 26. As such, analysis will mostly end here. DSM N-path will be briefly

mentioned in the implementation chapter. As a final note, a similar DSM selection scheme

could be applied to the vector-based shaper. Such a strategy may yield lower noise but was

not explored here. A vector based approach would however forego toneless guarantees and

13



implementation simplicity.
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4 Reset-and-Dither DEM

The second toneless band-pass DEM scheme is presented here. First, the basic band-pass

DEM scheme is described without ensuring the lack of tones. Then, two modifications are

made. The first introduces a dither region which suppresses tones. The second adds periodic

reset which eliminates tones entirely. Combining both modifications makes up the scheme

proposed herein: reset-and-dither DEM.

4.1 Resonator Based DEM

To start, basic band-pass DEM is derived as follows. The high-pass shaping can be modified

into band-stop shaping by modifying the integrator. To do so, the integrator’s DC pole is

moved. Therefore, the transfer function of an integrator, equation (3) becomes the transfer

function (4). As this transfer function updates y[n] with the fed-back values s[n], the corre-

sponding iterative function becomes equation (5). This equation is the function the sequence

generator must implement. However, y[n] is now complex and cannot be quantized directly

as only a real s[n] is desired. Proceeding logically, only the real portion of y[n] is quantized

and the sequence generator of figure 8 becomes figure 12.

H(z) =
1

1− z−1
(3)

H(z) =
1

1− z−1ejωc
(4)

y[n+ 1] = (y[n]− s[n])e−jωc (5)

The structure in figure 12 can be redrawn into figure 13 where yr[n] and yi[n] denote

the real and imaginary portions of y[n]. Effectively, the integrator has been turned into a
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Figure 12: Bandpass DEM

resonator. Its structure is recognized to be the same as previous work [14][16]. It is also

similar to [11] except here a state-space filter implementation is used instead of a direct

form II implementation. The tonal performance of a direct from II implementation was not

investigated but suspected to be similar. From either figures, a null in the PSD of s[n] at

ωc is expected from equation (6), assuming the PSD of y[n] is well behaved. An ill-behaved

y[n] with tones, may compromise this property or present tones in s[n]. Note that a complex

implementation would simply add an imaginary s[n] path from yi[n] with similar feedback.

The question becomes how best dither be applied to avoid tones.

|S(ejω)|2 = 2|Y (ejω)|2(1− cos(ω − ωc)) (6)

4.2 Dither Region

It is not uncommon to add dither to break up tones in DSMs [5]. However, instead of

considering dither as additive noise, dither can be viewed geometrically. To that end, the

sequence generator’s state plane is introduced.

To gain insight as to how the sequence generator behaves, its state can be tracked over

time on a plane. Tracing its trajectory, a sort of ”state diagram” or phase diagram forms.

The concept is first shown for the first order high-pass sequence generator of figure 8. Figure

14 shows its states. For clarity, the integrator states are in blue. As there is only one state

variable, the phase plane is simply the real line. At reset, the integrator is zero. At every
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Figure 13: Basic 2nd Order band-pass DEM

even input, s[n] is zero and the integrator stays at the same state. Once the first odd input

arrives, denoted as a black 1 on the state diagram, the dither sets s[n] to be ±1 which is

in turn subtracted from the integrator. This example will first assume the dither was 1; as

a result, the integrator state will now move to the left to -1. At the next odd input, the

integrator will still be at -1 and therefore s[n] will be -1. The current s[n] is subtracted from

the integrator which returns the integrator to zero. If the dither was -1, the integrator state

would instead have gone to +1 and come back to zero. As time passes, this process repeats.

However, once the integrator goes back to zero, all previous information as to its state is

lost.

Figure 14: High-pass sequence generator state

17



With band-stop shaping, y[n] is a complex variable so its phase diagram is a plane,

in particular the complex plane. As well, there will be many more states. It is surmised

that tones occurs if patterns are traced repeatedly on this plane. One in particular can

be identified. If ωc = 2π
6

and the O[n] pattern ”1,1,0,1,0,1...” is applied, the resonator will

repeatedly trace the same pattern shown in figure 15. The O[n] sequence was selected such

that the first odd input places the resonator on a circle of magnitude 1 and odd inputs are

fed whenever the resonator state is at ejπ/3 or ejπ4/3. As such, once on the circle, the odd

inputs will subtract ±1 at those states but the resonator magnitude will stay the same and

will always stay on the circle.

Figure 15: Problem Case

The resulting s[n] sequence becomes ”-1,+1,0,-1,0,+1...” and a tone occurs at fc = 2π
4

.

Many other center frequencies with appropriately constructed sequences will produce such

patterns. Taking inspiration from first order shaping, a region can be added to break up

patterns. The principle goes as follows.

When considering dither simply as added noise, depending on the resonator value, said
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noise may not flip the quantizer frequently enough to mitigate tones. The goal is to guarantee

dither will effect s[n] at some finite point in time. Therefore, dither is only considered when

it can effect the quantizer output (s[n]). The resonator values, y[n], under such condition

forms a region in the complex plane. This region is henceforth called the dither region. In

the case of first order shaping, the integrator has values of 0 or ±1 and unless zero, the dither

has no effect. Therefore, dither can be viewed as many different regions which capture the

origin but not ±1. For instance, the dither region can be viewed as only the origin where

dither is added at the resolution of the data type. Or perhaps, the dither region can be

considered as much larger region instead. To extend this concept to band-stop shaping, this

region must be thoroughly defined.

For band-stop shaping, the resonator may not attain zero with repeated odd codewords.

This was illustrated in figure 15. Hence the dither region cannot simply be at the origin. It

must be expanded to ensure y[n] cannot be crossed over indefinitely at every odd codeword.

One such region is a strip of width |yr| ≤ δ where δ > 1
2
. This is shown as the grey box in

figure 16. Here, the cycle first illustrated in figure 15 is broken. After point A, point B can

be attained if d[n] = 1; however, B’ can equally occur if the dither was negative, breaking

up the potential cycle. The solid dots indicate y[n] and the hollow dots, the intermediary

result y′[n] as denoted in figure 12.

Although shown only for a single example, if δ > 1
2
, y[n] will always end up inside the

dither region within a finite number odd inputs, provided it is always of finite magnitude.

Intuitively, the resonator does this: if y[n] is outside the dither region, at every odd codeword

the resonator magnitude will shrink and eventually spiral into the dither region. Once inside

the dither region, a dither takes effect and a random ±1 decision is made by the quantizer

is made.

The modified sequence generator is illustrated in figure 17. The blue blocks are new. The

magnitude comparator checks if |yr[n]| ≤ 0.5 and if so, ±1 dither is fed to the quantizer.
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Figure 16: Dither region

If not, yr[n] is fed to the quantizer. A multiplexer switches the appropriate input to the

quantizer. The sequence generator remains the same otherwise.

No proof is given as to the presence or absence of tones under this scheme. However, as

will be discussed, there are few tones left with some sharp spectral peaking present. The

sharp spectral peaking may or may not be indicative of tones and if of concern, can be fully

resolved with a second technique which follows.

4.3 Resonator Reset

Another attribute of tone-free high pass shaping is that the integrator returns to zero on

a regular basis with odd code words. Each time the integrator is zero, all information

regarding prior states is lost. Combined with dither, the s[n] sequence can then be split

into uncorrelated symbols [9]. Effectively, the autocorrelation of y[n] cannot extend beyond

the next odd codeword and ensures the generated sequence has a finite PSD everywhere. In
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Figure 17: First modification: dither region

the band-stop shaping, expanding the dither region never fully ends y[n]’s autocorrelation.

Therefore, ensuring a y[n] of zero can be imposed through additional means.

This insight leads to the second modification. Simply be resetting the resonator at a

regular interval will ensure y[n] is zero regularly. The dither region is still present. Once a

reset occurs, the dither will cause a random ±1 decision in s[n]. Resets cannot occur too

often either. In the extreme, if the resonator is reset at every time step, the autocorrelation

does not extend beyond a zero offset and white noise results. Even if the resonator is reset

at every other time step, only high-pass or low-pass shaping can be achieved. Effectively,

the resonator at best acts like a two tap FIR filter. As such, the reset interval, denoted Nr,

must be chosen accordingly.

The second modification is shown in red in figure 18. A counter tracks the time since the

last reset. Once it times out, the resonator is cleared by switching in zeros. In the diagram,

two multiplexers perform the switching but in an implementation, the flip-flops would simply
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be cleared. With both modifications, the reset-and-dither scheme is complete. Analysis of

the reset-and-dither DEM follows.

Figure 18: Reset-and-dither DEM with the second modification in red

First though, a statement regarding the absence of tones can be made as per the toneless

definition of equations (1) and (2). Given an input sequence (and therefore O[n]) and a finite

Nr, the sequence generator illustrated in figure 18 is toneless. The appendix provides the

supporting theoretical foundation. Theorem 2 indicates the marginal PMFs of the real and

imaginary portions of Y [n] (capitalized to indicate a random variable) are symmetric about

zero. This property is ensured by the symmetry of the iterative function and the dither. As

such, for every resonator value, there is an equally likely resonator value of opposite sign

which leads to an expectation of 0 as per lemma 1. From this fact, it is confirmed in theorem

3 that the autocorrelation of y[n] cannot extend beyond a reset. The absence of tones is

proven by the convergence of its periodogram which is indeed the case from theorem 4. If

the resonator is always reset at multiples of Nr, the expected periodogram is at most Nr.

This completes the behaviour of a single sequence generator.

The single sequence generator’s spectral properties can be extended to the entire DEM
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tree. From [7], the DAC output DEM noise is simply a linear combination of sequences

sk,r[n]. This combination is dependent of individual cell mismatches but the overall PSD

properties are conserved. Certain subtleties do require addressing which relate to the theo-

rem’s conditioning on O[n] and its independence from d[n].

The first subtlety pertains to the construction of the DEM tree. As noted in [18], d[n] can

be shared amongst switching blocks of the same layer (at the possible expense of noise) but

not between layers. If dither were shared between layers, O[n] would be highly dependent on

d[n]. Simply by employing separate d[n] can this situation is avoided. The second subtlety

arises once the DAC is integrated within a system. Feedback from the DAC output to its

input, such as in ∆Σ ADCs, may introduce dither-to-input dependency. Fortunately, this is

a rare occurrence in a realistic system with dynamic waveforms and multi-level DACs. Note

that by themselves, ∆Σ DACs would not have this issue as feedback is not present.

In general, the theorems depend on the statistical properties of y[n] and s[n] being con-

ditioned on the input parity O[n], any sequence O[n] but a given sequence none-the-less.

Therefore, tones can occur if the current O[n] is dependent on past non-zero s[n] (and by

extension, the dither d[n]). This requirement is implied in high-pass shaping as well. In [18],

a requirement for uncorrelated symbols is that dither be independent of O[n]. However, this

implies a lack of connection in both directions. Not only must dither be generated separately

from O[n] but O[n] must not depend on past dither (and by extension, s[n]). Otherwise,

inputs can be fabricated to break this independence.

An example input with high-pass shaping follows. An odd input is fed and the output is

examined. If s[n0] = 1 (or equivalently d[n0]), an odd input is fed; otherwise, an even input

is fed. At the third position, if s[n0] = 1, an even input is fed; otherwise, an even input is

fed. The process is repeated indefinitely with a period of three. These fabricated symbols

are shown in (7) and (8). Starting from n = 1, every third output becomes -1 and from

n = 2, every third output becomes 1. Hence, an inter-symbol correlation is created through
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O[n] and a tone is confirmed at 1
3

Hz in the PSD of figure 19.

s[n] = · · · ,

d[n0]

↓
1,−1

↑

−d[n0]

, 0, · · · if d[n0] = 1 (7)

s[n] = · · · ,

d[n0]

↓
−1, 0, 1

↑

−d[n0]

, · · · if d[n0] = −1 (8)

Figure 19: Sequence s[n] dependent input PSD
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5 Tonal Performance

Two tone mitigation strategies were covered: dither region and reset-and-dither. In this

section, tonal performance is compared. First, tones from the individual sequence generators

are analysed; problem sequences can be more easily identified in this situation. Tones at

this stage would be indicative of tones from the entire tree but they may or may not be as

severe. Tonal behaviour in a full tree is treated as well.

5.1 Sequence Generators

The overall tonal performance of the sequence generators are evaluated for various inputs

O[n]. Considered inputs include square wave and ∆Σ modulator (DSM) waveforms. The

analysis proceeds by finding the worst case inputs and DEM conditions under which tones are

produced to gauge the robustness of each scheme. Other unwanted artefacts such as sharp

PSDs are noted as well. The PSD s[n] are plotted and not the outputs of the splitting block.

As such, no features of the input waveform should be visible, including input tones. Typical

plots are shown first followed by areas of concern. DEM parameters, whichever apply, are

shown table 1. Frequencies are normalized where the sampling frequency is defined as 1. The

DEM center frequency, fc, of 0.21 in table 1 was chosen to present typical performance. Also,

the dither region was set to δ = 0.501 such that it is only slightly larger than 1
2
. Settings are

modified as needed to highlight problem areas.

Parameter Value
fc 0.21

Reset Interval 128
Dither Region δ 0.501

Table 1: DEM parameters
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5.1.1 Typical Behaviour

Both square waves and a DSM modulated sinusoid are considered for sequence generator

typical performance. Square waves come about from periodic waveforms: periodic even and

odd code words can create said square waves. As periodic waveforms appear often, square

waves are considered. For the typical plot, input square wave of frequency 0.18 is applied

near the DEM band center. The corresponding DEM NSD is shown in figure 20. Other than

square waves, DSM waveforms are commonly encountered as well. For these simulations,

the waveforms were assumed to be generated from a multibit modulator and only the least

significant bit (LSb) was applied. This corresponds to the same condition as the first splitting

block is placed in in the tree. The DSM properties are shown in table 21 and is also centred

on a frequency of 0.18. The resulting DEM PSD is demonstrated in figure 21.

Parameter Value
fc 0.21

Backoff [dBFS] -6
NTF 4th order band-pass

Table 2: DSM parameters

First, general comments are made in regards to tonal performance. For square wave

inputs, tones are often produced if no dither region or reset-and-dither is applied. Shown

in blue of figure 20, tones are clearly seen and are unwanted. However, both the dither

region and the reset-and-dither DEM significantly improve tonal performance. The yellow

and orange curves demonstrative this.

For DSM sinusoidal inputs, tones are much less frequent. This is likely due to the

randomness inherent in the waveform. Figure 21 shows no sign of tones even without dither.

However, tones or sharp spectral peaking are not unusual and can occur at various fc of

which there is no immediately discernible pattern. One example is demonstrated in figure

22 where the band center is near 1/6. The blue curve shows sharp peaks. It is not certain if

these structures are tones. Randomness in the incoming waveform may perturb the sequence
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Figure 20: Typical DEM NSD with square wave input

Figure 21: Typical DEM NSD with DSM sinusoid input
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generators enough to move what would otherwise be tones and show up as peaks instead.

However these peaks are generated, they are clearly unwanted. Both the dither region and

reset-and-dither strongly suppress the aforementioned spectral peaks. These spectra confirm

the need for tonal mitigation strategies. However, not all spectral concerns are mitigated.

A few curiosities are covered next for both the dither region and reset-and-dither DEM.

Figure 22: DEM NSD with problematic DSM sinusoid input

5.1.2 Dither Region

As demonstrated in the previous section, the addition of a dither region substantially cuts

down on tones. However, problematic sequences still do arise. The primary area of concern

is around fc = 1
12

. Constant inputs and square waves of f = 1
2

tend to produce sharp spectral

peaking; the later case is shown in the blue curve of figure 23. The feature is not strictly

confirmed to be a tone but closely resembles one. It should be noted that in general such

peaking can appear elsewhere other than 1
4
, including near fc.
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Figure 23: DEM NSD with problem square wave

With coefficient quantization, more center frequencies become of concern. They include

fc = 1
6a

and 1
2
− 1

6a
(where a is an integer greater than 1) when combined with an input wave-

form containing significant frequency content at 1
6
fc. Quantization modifies the resonator

gain (A) and the closer A is to 1, the worst the peaking gets. This tone-like behaviour can

show up with DSM sinusoid inputs but they are rare. If the aforementioned behaviour is not

of concern, solely a dither region can be applied. Otherwise, reset-and-dither DEM can be

used

5.1.3 Reset-and-dither DEM

With resonator resets, no discernible tonal behaviour occurs, confirming theorem 4. In

general, this scheme does not entirely produce the desired shaping; spectral peaking does

occur, albeit not as sharp. Reset-and-dither DEM is plotted at two different Nr in figure

23. Zooming in, it is much clearer from figure 24 that the peak spreads out as Nr decreases.
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Resetting and dithering occur more often so it is intuitively logical that this trend is observed.

To characterize it, a metric of excess noise is defined: the height of a spectral peak versus

if none where present. Its relationship with Nr is plotted through three cases in figure 25.

Each case corresponds to different fc and input waveform. The worse offenders sharpen at

3 dB per doubling of Nr.

Figure 24: DEM NSD with problem square wave, zoomed in

Such behaviour is not unexpected. If a sinusoid where to develop within the resonator,

upon reset, its opposite waveform could equally occur due to the symmetry in Y [n]’s PMF (as

per theorem 2). Such a waveform is recognized to be a bipolar non-return-to-zero waveform,

as common in communications theory, but modulated at said tone frequency. Assuming a

magnitude of one, the PSD of such waveform follows the sinc relationship of equation (9).

The peak PSD is indeed proportional to Nr from the 6 dB per octave shown in figure 25.

As for the 3dB bandwidth, it approximately decreases inversely to Nr, as shown from the

orange to the yellow curve of figure 24. Additionally, the side-lobes predicted in equation

(9) can be seen if peaking is especially severe.
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Figure 25: Peaking versus reset period

S{f} = Nr
sin(πNr(f − fc))2

(πNr(f − fc))2
(9)

5.2 Tree Structure

The tonal behaviour of a full DEM tree must be established as well. A typical DEM PSD of

a 16 unit DAC is shown in figure 26. The PSDs of the presented schemes are very similar to

that of individual sequence generators of figure 21. In fact, tonal performance of individual

sequence generators readily apply to multi-level DEM. Regions around fc = 1
6a

and 1
2
− 1

6a

are still concerning, especially for a = 1 and with coefficient quantization. As compared to

individual sequences, tones and spectral peaking can be more or less severe in the full tree.
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Figure 26: Typical tree DEM NSD, DSM sinusoid input

6 Noise Performance

The tone mitigation schemes presented add dither and therefore incur a noise penalty. This

additional noise will be treated here. Noise contribution from coefficient quantization and

round-off will be covered in the implementation section.

To start, in-band noise of a full 16 unit DAC DEM is shown in figure 27 at different

over sampling ratios (OSR). This noise is a typical plot taken at a center frequency of 0.21

and does not vary substantially from these nominal values. The input under consideration

is a fourth order bandpass DSM modulated sinusoid, with the center frequency matched

with that of the DEM. As well, unit cell variance of 1 percent is assumed. The first scheme

(δ = 0.51) imposes a consistent 4 dB penalty overall. The additional noise is introduced

near the quantizer and is shaped along with it.

First, adding a dither region (orange curve) adds a consistent 4 dB or so of in-band noise

as compared to the no dither case (blue curve). This is consistent with previous observed

noise spectral such as figure 26. Even at high OSRs, there is no indication of a noise floor.

Dither-and-reset, however, behaves differently.
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Figure 27: In-band noise over OSR

Dither-and-reset exhibits a noise floor. This noise floor is evident from the yellow curve

in figure 27. Even if the dither region is shrunk to almost zero (curve: δ =∼ 0, Nr = 128)

the noise floor is still observed. To explain this behaviour, a rough noise floor estimate is

established. First, consider reset events as a subtraction of the resonator from itself. The

resonator value at reset is then separated from the rest of the loop by way of an additional

noise source. This noise is qr[n] and qi[n] of figure 28.

From this model, noise can be estimated. As the integrator is uncorrelated from one

reset to the next, from theorem 3, q[n] will be as well. Even further, q[n] is only non-zero at

resets and therefore its real and imaginary components can be modelled as white noise. It is

as if a specially designed dither is added directly to the resonator instead of the quantizer.

Recognizing that the path from both the real and imaginary portions of q[n] to s[n] form

the signal path of a DSM, its transfer function has unity gain at fc. At this juncture, a

number of assumptions are made. First, the real and imaginary components of q[n] are

33



Figure 28: Reset noise model

uncorrelated. Second, d2[n] is uncorrelated with the quantizer noise. And thirdly, x[n] is

only odd. Combining all above assumptions, a noise floor is confirmed as the equivalent

white noise injected at q[n] directly goes to the output un-shaped. Also, a loose estimate of

its variance becomes equation (10)

σ2
reset =

E{|s[n]|2}
Nr

(10)

, where E{|s[n]|2} is approximately 1 for most inputs and fc. First, this estimates

confirms that the noise floor is inversely proportional Nr. At high OSR where this noise

floor dominates, figure 29 agrees with this result: as Nr decreases from 256 to 64, the in-

band noise increases by 6 dB. As well, this estimate predicts the in-band noise with Nr =

128 to be the green curve in figure 29 which is approximately 3 dB off from the yellow curve.

Lastly, this noise floor varies only lightly with most input waveforms indicating the third

assumption (x[n] being only odd) may not be entirely needed.
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Figure 29: In-band noise over Nr

7 Implementation

Multiple implementation aspects require consideration. First, a design example will treat

aspects under design control: coefficient quantization, multiplier round-off and reset period.

DEM hardware complexity and speed for said design are covered afterwards. The require-

ments for this example will be an in-band noise suppression requirement of 10 dB at an OSR

of 16.

7.1 Hardware Design

Quantizer noise notwithstanding, the primary noise contributor stems from coefficient quan-

tization, the coefficients being cosωc and sinωc. Coefficient quantization leads to an error

in fc and A, as per 12. Three example resolutions are shown in figure 30. As the resolution

changes from 10 fractional bits to 5 and then 3, the center frequency moves off band and the
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noise trough degrades. To address the change in fc, this design example will limit its error

to roughly 10 % of the in-band bandwidth. As such, 5 fractional bits are required for both

coefficients. For the integer portion, Re{y[n]} and Im{y[n]} rarely exceeds a magnitude of

4 and therefore 2 bits are allocated. This leads to a total of 6 bits plus a sign bit. As for the

error in A, finite noise rejection at fc occurs as evidenced by the modified transfer function

(11). If adequate rejection is not achieved, design can instead start from limits imposed on

A.

|S(ejω)|2 = |Y (ejω)|2(1 + A2 − 2A cos(ω − ωc)) (11)

Figure 30: Effect of coefficient quantization

Multiplier round-off error raises concerns as well, foremost being tones. For the first

strategy, dither region luckily does not need adjustment. When an odd input arrives, pre-

cisely ±1 will still be subtracted from the resonator. In fact, with multiplier round-off, the

dither region will effectively widen as a narrow strip slightly outside the dither region will
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now be included. Considering this, a dither region slightly larger than δ = 0.5 can be easily

implemented by checking if all MSbs are 0 (or 1 if negative). With periodic resets, the lack of

tones is preserved as long as the rounding is done symmetrically. The in-band noise penalty

due to round-off error is minimal compared to shifts in fc and A. Finally, quantization of

cosωc and sinωc can lead to a A larger than 1. As such, these coefficients should be selected

to place A < 1, especially if periodic reset is not employed.

The final step is the selection of Nr. Unfortunately, equation 10 was optimistic and after

some simulation, Nr was set to 64. As for the implementation, resets are done on all layers

synchronously. However, staggered resets are possible as well. The s[n] PSD at various

stages of design is shown in figure 31. With quantization and reset, the required in-band

noise is achieved. Notice the shift in fc and finite noise floor due to coefficient quantization

alone. Resonator reset raises the floor further in the final step. The full tree DEM has a

similar noise profile.

Figure 31: Design example
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7.2 Complexity and Speed

Ensuring the absence of tones does incur hardware overhead and is broken down in table 3.

The dither region requires a magnitude comparator for each switching block and a PRBS

generator. The PRBS generator can be shared amongst all s-blocks within a layer. From

simulation, sharing the random sequence negligibly effects noise. Without justification, a 23-

bit linear file shift register is assumed and imposes the majority of the additional hardware

required. It can be optimized for a particular tone performance. As for the resonator reset,

only a 6 bit synchronous counter is required for the entire tree. The gate estimates for this

single s-block are independent of DAC resolution.

Comparator
(Per s-block)

PRBS Generator
(Per layer)

Reset Counter
(Per DEM)

Rest of s-block
(Per s-block)

11 170 70 1100

Table 3: Estimated s-block gate count

As for speed, one of two possible critical paths can limit speed: the switching network

and the yr[n + 1] calculation. The band-pass sequence generator’s additional complexity

can add delay to the switching network depending on how the magnitude comparison is

performed. If the comparison is place as per the dither in 12, the s[n] computation in the

first s-block would add a fixed 4 gate delay to the entire tree. Alternatively, the comparison

can be performed off of y[n+ 1] and latched. This second approach removes the delay at the

expense of an additional flip-flop.

The second possible critical path is in the yr[n+1] calculation. It consists of the switching

and parity networks, the comparison and the add-multiply-add operations. This path will

most likely place the upper limit on the DEM speed.
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7.3 Scheme Summary

A summary of the schemes discussed is written here. The hardware breakdown of the entire

tree due to the toneless criteria is presented first. Assuming a high-speed switching network

from [8], the gate count required for the entire 4-bit DAC DEM is summarized in table

4. Imposing toneless behaviour adds minimal hardware on band-pass DEM. Overall, band-

pass DEM does require substantial hardware compared to low-pass DEM due to the four

multipliers. Alternate filter structures that both have fewer multipliers and can preserve

PMF symmetry of theorem 2 have not been investigated.

Hardware Low-pass DEM Band-pass DEM
Toneless requirement

overhead 690 880
Rest of DEM 330 16000

Table 4: Estimated gate count of 4-bit low-pass and band-pass DEM

A broader summary of existing tunable band-pass DEM are shown in table 5 and schemes

presented herein are shown in table 6. Unless superseded by a note, hardware is measured

in the number of 2 in gates. As well, note shaping is the noise improvement over DEM with

no shaping at all. As each scheme has different design criteria and special cases so a few

notes are added in parenthesis.

[11] (analog) [16]
Hardware 1645 (1) 16000 (2)

Levels 8 16 (2)
Noise shaping [dB] 20 (3) 10 (OSR = 16)(2)

Toneless Unclear No
Features None I/Q DEM

Table 5: Summary of choice existing tunable BPDEM

Note (1): this is the number of transistors. Note (2): this is this author’s own estimate

based on the above design example. Note (3): no OSR is explicitly designed for. Note (4):

assuming 8 integrators which would correspond to tuning down to 1/8.
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Dither and reset DEM DSM N-path DEM
Hardware 17000 1900 (4)

levels 16 16
Noise shaping [dB] 10 (OSR = 16) 6 (OSR = 16)

Toneless Yes Yes
Features None None

Table 6: Summary of new tunable BPDEM

8 Future Work

With toneless operation guaranteed, this work can be expanded upon on multiple fronts.

The first of which is to simplify the existing structure. The toneless property was proven for

a state-space implementation. If proven for a direct form 2, such structure would cut down

on multipliers by half and substantially simplify the required hardware. It should be noted

that the critical paths would remain the same.

The structure presented can also be extended to 4th order band-pass shaping similar to

the 2nd order high-pass shaping in [8]. A proposed implementation is shown in figure 32.

A second resonator would serve the purpose of the second integrator in [8]. The quantizer

would first check if |Re{y1[n]}| ≤ δ and if true, would check y2[n]. The dither region would

be applied on y2[n] instead. Preliminary simulations indicate the absence of tones, as shown

in figure 33. However, toneless behaviour has not been proven.

Figure 32: 4th order band-pass DEM

Finally, periodic reset can equally apply to vector-based shaping. Currently, only dither
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Figure 33: 4th order band-pass DEM

is typically applied. Additionally, internal states of each DSM would also be periodically

reset and initialized to random states. It is not clear how dither should be applied. However,

if for every selection sequence, there is an equally likely sequence which would produce the

opposite error, tones may be dispersed entirely.
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9 Conclusion

Much literature has been devoted to noise shaping techniques in DEM; however, on the

subject of tones, no progress has been reported beyond first order shaping. Two strategies are

proposed to address this. The first is the formation of dither region within which randomness

is introduced. Although, absence of tones is not guaranteed, tonal behaviour is rare. The

second strategy builds on top of the first and resets the resonator. Combined, they become

provably toneless. A noise penalty is incurred but it can be partially controlled. As well,

although the hardware required is large, the overhead imposed to guarantee the absence

tones is relatively minor.
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10 Appendix A: Proofs

The appendix provides the supporting proofs for both DSM N-path DEM and reset-and-

dither DEM. Theorem 1 shows the toneless property of the first scheme. The rest of the

theorems, culminating in theorem 4, show the toneless property of the second scheme.

Theorem 1. Given any sequence O[n] and path selection pattern, the N-path sequence gen-

erator generates a sequence s[n] which is toneless.

Proof. The single path s-block is known to be toneless as per [9]. The DSM N-path s-blocks

can be decomposed into N traditional s-blocks, each of which generates separate toneless

sequences. Therefore, it is only necessary to prove that interleaving these sequences into the

intended sequence is toneless.

Two sequences x[n] and y[n] are toneless if their PSDs are bounded:

Sxx(e
jω) = lim

N→∞

1

N
E


∣∣∣∣∣
N−1∑
n=0

x[n]e−jωn

∣∣∣∣∣
2
 < Cx <∞∀ω (12)

Syy(e
jω) = lim

N→∞

1

N
E


∣∣∣∣∣
N−1∑
n=0

y[n]e−jωn

∣∣∣∣∣
2
 < Cy <∞∀ω (13)

Which, for the ease of recognition, can be rewritten as the following:

Sxx(e
jω) = lim

N→∞

1

N

N−1∑
n=0

N−1∑
m=0

E
{
x[n]x[m]e−jωnejωm

}
(14)

Syy(e
jω) = lim

N→∞

1

N

N−1∑
n=0

N−1∑
m=0

E
{
y[n]y[m]e−jωnejωm

}
(15)

These sequences must then be combined to create the intended sequence. To this end,

interleaving would expand and shift the sequences, creating two new sequences, x2[n] and

y2[n]. They themselves would have bounded PSDs as expansion simply compresses the
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spectrum and time shifts have no effect on the spectrum magnitude. Summing these two

sequences creates a new sequence, z[n], and taking its PSD yields:

Szz(e
jω) = lim

N→∞

1

N
E


∣∣∣∣∣
N−1∑
n=0

x2[n]e−jωn + y2[n]e−jωn

∣∣∣∣∣
2
 (16)

Szz(e
jω) = lim

N→∞

1

N

N−1∑
n=0

N−1∑
m=0

(E{x2[n]x2[m]}+ E{y2[n]x2[m]}

+E{x2[n]y2[m]}+ E{y2[n]y2[m]})e−jωne−jωm
(17)

However, E{x2[n]y2[m]} = 0∀m,n because, their choice of ±1 (if not zero) is independent

even though the sequences are related through odd{xk,n}. Without the cross-terms, the PSD

of z[n] is itself composed of finite bounded PSDs Sx2x2(e
jω) and Sy2y2(e

jω) which indicates

z[n] is toneless.

Theorem 2. The marginal PMFs of Re{Y [n]} and Im{Y [n]} for every n generated by the

iterative function

y[n+ 1] = A(y[n]− s[n])ejωc (18)

where

s[n] =


0, O[n] = 0

sign{Re{y[n]}}, O[n] = 1 and |Re{y[n]}| ≤ δ

d[n], otherwise

are symmetric for any given O[n].

Proof. For the sake of notation, the random variables Re{Y [n]} and Im{Y [n]} will be ab-

breviated as Yr,n and Yi,n, respectively. The marginal PMFs of Yr,n and Yi,n are symmetric
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if

PYr,n(rn) = PYr,n(−rn)∀rn

PYi,n(in) = PYi,n(−in)∀in.
(19)

The proof will proceed in two steps: first, symmetry in the joint PMF PYr,n,Yi,n(rn, in) is

linked to the marginal PMFs and then joint PMF symmetry is proven over all n.

For the first step, the PMF of Yr,n is derived as follows. If the joint PMF is symmetric,

i.e.

PYr,n,Yi,n(rn, in) = PYr,n,Yi,n(−rn,−in)∀rn, in, (20)

then it follows that

PYr,n(−rn) =
∑
in

PYr,n,Yi,n(−rn, in) (21)

=
∑
−in

PYr,n,Yi,n(−rn,−in) (22)

PYr,n(−rn) = PYr,n(rn)∀rn. (23)

A similar argument can be made to show

PYi,n(−in) = PYi,n(in)∀in, (24)

which completes the first portion of the proof.

For the second portion of the proof, it is to be shown that (20) is true for any n. A

proof by induction follows. For the base case, equation (20) is satisfied when Y [n] is reset:

only one value is likely and it is at 0. For the induction step, for any subsequent n, (20)

can be broken up into an odd and even cases as O[n] is given. For notational simplicity, the

conditions on O[n] are dropped and the substitutions for the constants A sinωc = As and

A cosωc = Ac are made.
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Case 1) Even case (O[n] = 0):

If (20) is true then applying the iterative function, it is evident that

PYr,n+1,Yi,n+1
(rn+1, in+1) = PYr,n+1,Yi,n+1

(−rn+1,−in+1)∀rn+1, in+1 (25)

Case 2) Odd case (O[n] = 1):

The odd case is not as straightforward as the iterative function must be expanded; the

expressions are written out on separate lines. The joint PMF PYr,n,Yi,n(rn, in) is decomposed

into the sum of conditional PMFs:

Pr(C)PYr,n,Yi,n(rn, in|C) (26)

Pr(C∗)PYr,n,Yi,n(rn, in|C∗) (27)

Where C and C∗ are equally likely events such that Yr,n > δ ∨ (|Yr,n| < δ ∧ d[n] = 1) and

Yr,n < −δ ∨ (|Yr,n| < δ ∧ d[n] = −1, respectively. Applying the iterative function, at n + 1,

the terms above become

Pr(C)PYr,n+1,Yi,n+1
((rn − 1)Ac − inAs, (rn − 1)As + inAc|C) (28)

Pr(C∗)PYr,n,Yi,n((rn + 1)Ac − inAs, (rn + 1)As + inAc|C∗) (29)

Similarly, the joint PMF PYr,n,Yi,n(−rn,−in) is composed of the conditional probabilities and

with some manipulation yields

Pr(C∗)PYr,n+1,Yi,n+1
((−rn − 1)Ac + inAs, (−rn − 1)As − inAc|C∗) (30)
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Pr(C)PYr,n+1,Yi,n+1
((−rn + 1)Ac + inAs, (−rn + 1)As − inAc|C) (31)

Rearranging signs of (30) and (31) yields

Pr(C∗)PYr,n+1,Yi,n+1
(−((rn + 1)Ac − inAs),−(rn + 1)As + inAc)|C∗) (32)

Pr(C)PYr,n+1,Yi,n+1
(−((rn − 1)Ac − inAs),−((rn − 1)As + inAc)|C). (33)

Noticing that the terms (28), (29) are negatives of (33), (32), respectively, it must be

that

PYr,n+1,Yi,n+1
(rn+1, in+1) = PYr,n+1,Yi,n+1

(−rn+1,−in+1)∀rn+1, in+1. (34)

By induction, equation (20) is satisfied for all n. Combining the results from both portions

of this proof, it must be that the marginal PMFs of Re{Y [n]} and Im{Y [n]} are symmetric

for all n.

Lemma 1. Given any sequence O[n], the expectation E{y[n]} = 0 for the update function

(18).

Proof. Expanding the expectation reveals the two random variables, Re{Y [n]} and Im{Y [n]},

which have symmetric PMFs as per theorem 2. As a random variable with a symmetric PMF

would have an expectation of zero, the lemma follows from this fact.

Theorem 3. The expectation E{y[m]y∗[n]} = 0∀m,n 3 m < Nr ≤ n if y[Nr] = 0, given

any sequence O[k]∀k for the update function (18).

Proof. The random variables Y [m], Y [n] are not independent for m < Nr ≤ n because of

O[k]; however, conditioned on any sequence O[k] for Nr ≤ k ≤ n, independence is assured
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due to the intervening reset. Expanding out the expectation

E{y[m]y∗[n]} =
∑

Oi,k∈{O[k]3Nr≤k≤n}

Pr{Oi,k}E{y[m]y∗[n]|Oi,k}

=
∑

Oi,k∈{O[k]3Nr≤k≤n}

Pr{Oi,k}E{y[m]}E{y∗[n]|Oi,k}.

From lemma 1, all E{y∗[n]|Oi,k} above are zero; therefore, the theorem holds.

Theorem 4. Given a sequence O[n], the sequence generator with the iterative function

y[n+ 1] = A(y[n]− s[n])ejωc (35)

where

s[n] =


0, O[n] = 0

sign{Re{y[n]}}, O[n] = 1 and |Re{y[n]}| ≤ δ

d[n], otherwise

is toneless if integrator resets occur at most with finite intervals Nr.

Proof. The expected periodogram can be expanded and rewritten as a summation of auto-

correlation terms. The proof will focus on this autocorrelation.

E{PN(ejω)} =
1

N

N−1∑
m=0

N−1∑
n=0

E{y[m]y∗[n]}e−jω(n−m) (36)

As shown in Theorem 3, y[n] is uncorrelated across resets. This allows equation (36) to

be broken down; the analysis proceeds similarly to [9]. y[n] can be expressed as a series of

symbols where resets mark the leading sample,

y[n] =
∞∑
k=0

y[n]wk[n], (37)
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where the windowing sequence wk[n] is 1 only for the kth symbol. In contrast, high pass

shaping marks symbols at every second ±1 sample in the s[n] sequence.

Substituting equation (37) into (36) becomes

E{PN(ejω)} =
1

N

N−1∑
m=0

N−1∑
n=0

Nsym−1∑
k=0

Nsym−1∑
l=0

E {y[m]y∗[n]wk[m]wl[n]} e−jω(n−m) (38)

where Nsym is the number of symbols which constitute the first N samples. Noting that

symbols are uncorrelated across symbols (i.e. the expectation is only non-zero if k = l),

consolidation of terms yields

E{PN(ejω)} =

Nsym−1∑
k=0

E

 1

N

∣∣∣∣∣
N−1∑
n=0

y[n]wk[n]e−jωn

∣∣∣∣∣
2
 . (39)

Each symbol is at most length Nr, therefore (39) has a magnitude of at most N2
rNsym

N
. As

Nsym ∝ N (or Nsym = N
Nr

if all symbols are length Nr), the limit of (39) is finite as N →∞.
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